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Summary. This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment
(or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe
time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins’
structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented
and discussed: The first is a proposed two-stage regression estimator. The second is Robins’ G-estimator. The results of a
small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the
bias–variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from
a depression study.
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1. Introduction
In this article, we are interested in assessing the causal ef-
fect of treatment as a function of variables that may lessen
or increase this effect—that is, we are interested in causal
effect moderation—in the time-varying setting. A distinctive
feature of assessing effect moderation in the time-varying set-
ting is that both treatment and the set of putative moderators
vary over time. This feature of the data provides both an op-
portunity for improved empirical research and also provides
a methodological challenge. An opportunity presents itself in
the form of more varied and interesting questions that scien-
tists may ask from time-varying data. For instance, consider
our motivating example, the Prevention of Suicide in Pri-
mary Care Elderly—Collaborative Trial (PROSPECT) study
(Bruce et al., 2004), in which some patients switch out of de-
pression treatment with their mental health specialist. Using
time-varying information about suicidal thoughts and depres-
sion, we can ask “How does switching out of treatment early
versus later affect future depression severity scores as a func-
tion of history of suicidal ideation and levels of depression?”

A methodological challenge arises because moderators of the
effect of future treatment may themselves be outcomes of ear-
lier instances of treatment (Robins, 1987, 1989b, 1994, 1997);
or, in the context of PROSPECT, suicidal ideation measured
at the second visit (S 2) is a moderator of the effect of switch-
ing out of treatment after the second visit (A2) on depression
severity (Y), and switching off of treatment after the baseline
visit (A1) affects suicidal ideation at the second visit (S 2).

In this setting, a näıve extension of the treatment–moderator
interaction framework (Kraemer et al., 2002), in which, for
instance, a regression model such as the following one is used,
creates at least two problems for causal inference:

E(Y |S1, A1, S2, A2) = β0 + η1S1 + β1A1 + η2S2 + β2A2

+ β3A1S1 + β4A1S2 + β5A2S2

+ β6A1A2 + η3S1S2. (1)

First, conditioning on S 2 cuts off any portion of the effect
of A1 on Y that occurs via S 2, including A1S 1 interaction
effects. Secondly, there are likely common, unknown, causes
of both S 2 and Y; thus, conditioning on S 2 (an outcome of
treatment A1) in equation (1) may introduce biases in the
coefficients of the A1 terms. The end result is that A1 and its
interactions (e.g., β 1 and β 3) may appear to be (un)correlated
with Y solely because A1 impacts S 2 and both S 2 and Y are
affected by a common unknown cause. These problems can
occur regardless of whether A1 and/or A2 are randomized
(Robins, 1987, 1989b, 1994, 1997).

A framework for studying time-varying effect moderation
that also addresses both of these challenges involves the no-
tion of a conditional intermediate causal effect at each time
point. These causal effects are a part of Robins’ structural
nested mean model (SNMM; Robins, 1994). They isolate the
average effects of treatment at each time interval as a function
of moderators available prior to that time interval.
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This article contributes to the literature on modeling
and estimating causal effects in the time-varying setting by
(1) clarifying and illustrating the use of Robins’ SNMM
to assess time-varying effect moderation, (2) proposing a
two-stage parametric regression estimator for the parameters
of an SNMM, and (3) comparing the proposed parametric
estimator to two versions of the semiparametric G-estimator
(Robins, 1994) in terms of a bias–variance trade-off.

In Section 2, the causal effects of interest are defined in the
context of Robins’ SNMM. The two estimators of the interme-
diate causal effects are presented and discussed in Section 3.
The results of a small simulation study that sheds light on
the bias–variance trade-off between the two estimators is
presented in Section 4. The methodology is illustrated in
Section 5 using data from the PROSPECT study. A discus-
sion of the methods is presented in Section 6.

2. Effect Moderation with Time-Varying Treatment
and Time-Varying Moderators

To define the structural parameters and to state the struc-
tural assumptions necessary for valid causal inference we use
the potential outcomes framework for causation (Rubin, 1974;
Holland, 1986; Robins, 1987, 1989a, 1994, 1997, 1999). Sup-
pose there are K time intervals under study. Treatment is
denoted by at , at each time interval t, where t = 1, . . . ,
K . Denote the treatment pattern over K intervals by āK =
(a1, . . . , aK ); where at = 0 represents standard, or baseline,
treatment. For simplicity, we consider binary time-varying
treatments at , though the ideas presented below apply with
little modification to continuous or categorical at . Let AK be
the countable collection of all possible treatment vectors. For
each fixed value of the treatment vector, āK , we conceptual-
ize potential time-varying moderators {S2(a1), . . . , SK (āK −1)}
and a potential final response Y (āK ). Thus, St (āt−1) is the
value of the time-varying moderator at the beginning of the
tth interval, had the subject followed the treatment pat-
tern āt−1 through the end of the t − 1 interval. Baseline
moderators are denoted by the vector S1. Let S̄t (āt−1) =
{S1, S2(a1), . . . , St (āt−1)}, the history of moderators up to the
start of the tth time interval.

2.1 The Conditional Intermediate Causal Effects
For simplicity, let K = 2; thus, we have {S 1, a1, S 2(a1), a2,
Y (a1, a2)}. The response Y (a1, a2) is taken to be continuous
with unbounded support. We are only concerned with mod-
eling the mean of the response Y (āK ) as a function of āK

and SK (āK −1). Using potential outcomes we can express the
marginal average causal effect of ā2 on Y (a1, a2) as E{Y (a1,
a2) − Y (0, 0)}, where at = 0 is the baseline level of treatment.
We can write this difference as a decomposition of conditional
means: E{Y (a1, a2) − Y (0, 0)} = E{Y (a1, a2) − Y (a1, 0)} +
E{Y (a1, 0) − Y (0, 0)} = E[E{Y (a1, a2) − Y (a1, 0) | S̄2(a1)}] +
E[E{Y (a1, 0) − Y (0, 0) |S1}], with the outer expectations
over S̄2(a1) and S1, respectively. The inner expecta-
tions on the right-hand side are conditional intermediate
causal effects of treatment. Let μ2(S̄2(a1), ā2) denote E{Y
(a1, a2) − Y (a1, 0) | S̄2(a1)}, the effect of treatment (a1, a2)
relative to the treatment (a1, 0) within levels of S̄2(a1); and
let μ1(S 1, a1) denote E{Y (a1, 0) − Y (0, 0) |S 1}, the effect
of treatment (a1, 0) relative to (0, 0) within levels of S1. S 1

is defined as a moderator of the impact of (a1, 0) relative
to (0, 0) if μ1 is nonconstant in S 1; similarly for μ2. The
effects μ1 and μ2 are intermediate causal effects because they
isolate the causal effect of treatment at time 1 and time 2,
respectively; note the constraints μ2(S̄2(a1), a1, 0) = 0 and
μ1(S 1, 0) = 0. The “isolation” is achieved by setting future
instances of treatment at their inactive levels—in our case,
the zero level. Hence, μ1 corresponds to a contrast of the
potential outcomes in a1 with a2 set to its inactive level.
On the other hand, μ2, which corresponds to the effect at
the last time point, is defined exclusively as a contrast in a2

where, in general, a1 can take on any value in its domain.

2.2 Robins’ Structural Nested Mean Model
We use the SNMM, developed by Robins (1994, 1997), to
combine the μt ’s (also known as Robins’ blip functions) addi-
tively in a model for the conditional mean of Y (a1, a2) given
S̄2(a1). The SNMM is expressed as a telescoping sum:

E{Y (a1, a2) | S̄2(a1)} = β0 + ε1(S1) + μ1(S1, a1)

+ ε2(S̄2(a1), a1) + μ2(S̄2(a2), ā2), (2)

where β 0 = E{Y (0, 0)}, the mean response to baseline
treatment averaged over levels of S̄2(a1); ε2(S̄2(a1), a1) =
E{Y (a1, 0) | S̄2(a1)} − E{Y (a1, 0) |S1}; and ε1(S 1) = E{Y (0,
0) |S 1} − E{Y (0, 0)}. In Web Appendix A, we define
the SNMM for K time points. The SNMM depicts how
the intermediate effect functions relate to the conditional
mean of Y (a1, a2) given the past; it places no restriction
on the distribution of Y (a1, a2). ε1 and ε2 are defined such
that the right-hand side of equation (2) is indeed equal
to E{Y (a1, a2) | S̄2(a1)}. They satisfy the constraints E{ε2

(S̄2(a1), a1) |S1} = 0, and E{ε1(S 1)} = 0, and they are consid-
ered nuisance functions because they contain no information
regarding the conditional intermediate causal effects of ā2 on
the mean of Y (a1, a2). The nuisance functions carry causal
and noncausal information about the relationship between the
time-varying moderators and the response.

3. Estimation Strategies for the SNMM
3.1 Observed Data and Assumptions Underlying Estimation
Denote the observed treatment history by the random vector
ĀK := (A1, A2, . . . , AK ); denote the observed time-varying co-
variate history by the random vector S̄K := (S1, S2, . . . , SK );
and denote the observed outcome by the random variable Y.
The two estimation strategies described below rely on the as-
sumptions of consistency and sequential ignorability (Robins,
1994, 1997) in order to make causal inferences.

The consistency assumption states that Y = Y (ĀK ) =∑
āK ∈A I(āK = ĀK )Y (āK ), where I(āK = ĀK ) denotes the

indicator function that āK is equal to ĀK . The consistency
assumption is the link between objects defined as potential
outcomes, and objects that are actually observed. Assum-
ing consistency for the time-varying moderators {S̄K (āK −1) :
āK ∈ AK } as well, then a similar relationship holds between
the counterfactual objects in the SNMM and a correspond-
ing set of observed data. The actual data observed (not to be
confused with the complete set of potential outcomes defined
above) for one individual in our study are D = (S 1, A1, S 2,
A2, . . . , SK , AK , Y ), where for each t > 1, St takes on some
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value in the set {St (āt−1) : āt−1 ∈ AK }, At takes on some value
in the collection AK , and Y takes on some value in the set
{Y (āK ) : āK ∈ AK }.

Another key assumption used to identify the causal pa-
rameters of the SNMM using observed data is the sequential
ignorability assumption: For each t = 1, 2, . . . , K , At is inde-
pendent of {Y (āK ) : āK ∈ AK } given (S 1, A1, S 2, A2, . . . , St ).
This assumption is sometimes known as the no unmeasured
confounders assumption (Robins, 1997). Intuitively, the as-
sumption implies that aside from (S̄t , Āt−1), the history of
observed treatment and moderator variables up to the begin-
ning of the t th time interval, no other variables known or
unknown, measured or unmeasured, directly affect both At

and {Y (āK ) : āK ∈ AK }.
The causal meaning of models for μt (S̄t , Āt ) =

E(Y | S̄t , Āt ) − E(Y | S̄t , Āt−1, At = 0) relies on the above
assumptions (see Web Appendix B), whereas their estimation
requires other modeling (or statistical) assumptions, such
as the choice of parametric models. One possible param-
eterization of the intermediate causal effects is linear in
the parameters. For example, in our presentation of both
estimators below, we use

μt (S̄t , Āt ; βt ) = At (Htβt ), (3)

where At is the univariate treatment variable at time t, βt rep-
resents a qt -dimensional column vector of unknown parame-
ters at time t; and Ht , a qt -dimensional row vector, is a known
function of (S̄t , Āt−1). Using this general form ensures that the
following constraint is always satisfied: μt (S̄t , Āt−1, 0; βt ) = 0.
Typically, the first element in the row vector Ht is one.

3.2 Parametric Two-Stage Estimator: β̂

We propose a parametric two-stage estimator that em-
ploys the following general approach for estimating the
parameters of an SNMM: In the first stage, for ev-
ery t, we model the conditional distribution of St given
(S̄t−1, Āt−1), denoted by ft (St | S̄t−1, Āt−1), based on un-
known parameters γ t . We then pose a model εt (S̄t ,
Āt−1; ηt , γt ) = gt (S̄t−1, Āt−1; ηt ) δt (S̄t , Āt−1; γt ) for the nui-
sance functions εt (S̄t , At−1) = E(Y | S̄t−1, Āt−1, St , At = 0) −
E(Y | S̄t−1, Āt−1, At = 0). Under this general model, gt is
any function of (S̄t−1, Āt−1) based on unknown parameters
ηt ; and δt is any function of (S̄t , Āt−1) based on one or
more features of the distribution ft (and parameters γ t ),
such that E(δt | S̄t−1, Āt−1) = 0. The constraint ensures that
E(εt | S̄t−1, Āt−1) = 0, as required. In the second stage, these
models for the nuisance functions are put together with mod-
els for the intermediate causal effects in an SNMM for the
conditional mean of Y given (S̄K , ĀK ). Estimates for β are
then based on solutions to the following estimating equations:

Pn

[{
Y − β0 −

K∑
t=1

At (Htβt ) −
K∑
t=1

εt (S̄t , Āt−1; ηt , γt )

}

×

(
A1H

T
1

· · ·
AK HT

K

)]
= 0 (4)

where for any function V () of the observed data D, Pn V (D)
denotes 1/n

∑n

i=1 V (Di ). In the following, we present a par-
ticular linear implementation of this general approach.

3.2.1 A linear regression implementation of the two-stage
estimator. For simplicity, assume that St at each time point
is univariate (i.e., one time-varying moderator per time t is
used); an extension of the method to multivariate St is pre-
sented in Web Appendix C. The proposed linear implemen-
tation sets δt = St − mt (S̄t−1, Āt−1; γt ) and uses gt = Gtηt ,
where Gt is a row vector summary of the past (S̄t−1, Āt−1), ηt

is an unknown wt -dimensional vector of parameters, and mt is
a model for the conditional mean of St given the past based on
an unknown lt -dimensional vector of parameters γ t . Let Ft be
a row vector of the data (S̄t−1, Āt−1). We employ generalized
linear models (GLMs; McCullagh and Nelder, 1989) for the
mt : Thus, when St is continuous, we use mt (S̄t−1, Āt−1; γt ) =
Ftγt ; when St is binary, we use mt (S̄t−1, Āt−1; γt ) = Pr(St =
1 | S̄t−1, Āt−1) = expit(Ftγt ). (It is also possible to model the
mt simultaneously, in a longitudinal model.) A simple model
for εt will have Gt = (1), so that εt = ηt0δt (S̄t , Āt−1; γt ),
for example. Note that under this implementation, we can
multiply every element of Gt by the residual δt , denoted
G∗

t (γ t ), and re-write the parametric model for the nuisance
functions as εt (γ t , ηt ) = G∗

t (γ t )ηt . If γ t were known, this
would imply a linear (in the β’s and η’s) parametric model
for the SNMM. For example, for K = 2, E(Y | S̄2, Ā2) = β0 +
A1H1β1 + A2H2β2 + G∗

1η1 + G∗
2η2. This idea forms the basis

for the linear implementation of the two-stage approach, given
here for general K time points:

(1) Stage 1 Regression. GLM analyses are used in the first
stage to obtain γ̂t based on regressions of St on (St−1,
At−1). These are carried out for each time point t = 1,
2, . . . , K .

(2) Use the predicted means m̂t (γ̂t ) to construct the pre-
dicted residuals δ̂t = St − m̂t .

(3) Combine the model vectors for the conditional interme-
diate effects (and a column for the intercept) and denote
this quantity by X; that is, X = (1, A1H 1, . . . , AK HK ).
Note that Xβ = β0 +

∑K

t=1 AtHtβt represents the func-
tional of interest of the SNMM.

(4) Multiply each element in Gt by the predicted residual
δ̂t and denote this quantity by Ĝ∗

t ; that is, Ĝ∗
t = δ̂tGt .

Note that if η = (ηT
1 , . . . , ηT

K )T were known, then G∗η =∑K

t=1 Ĝ∗
t ηt would represent an estimate of the sum of the

nuisance functionals of the SNMM.
(5) Augment the row vector X to include the Ĝ∗

t ’s; that
is, Xaug = (X, Ĝ∗

1, . . . , Ĝ
∗
K ). Define the (1 +

∑K

t=1 qt +∑K

t=1 wt )-dimensional column vector of parameters θ =
(βT , ηT )T .

(6) Stage 2 Regression. Use standard linear regression of Y
on Xaug to obtain θ̂ = θ̂(γ̂).

3.3 Robins’ Semiparametric Efficient G-Estimator: β̃

The following estimator, derived in Robins (1994), does not
rely solely on correct models for the nuisance functions to
achieve consistency for β. Instead, its consistency relies on ei-
ther correct models for the nuisance functions or correct mod-
els for the observed treatment mechanism (conditional on the
time-varying moderators). In K = 2 (see Web Appendix D for
the general form), the estimate is based on these estimating
functions:
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Pn

[
σ−1

2 (S̄2, A1)(Y − A2(H2β2) − b2(S̄2, A1; ξ2))

×{A2 − p2(S̄2, A1; α2)}

{
0q1

HT
2

}

+ σ−1
1 (S1){Y − A2(H2β2) − A1(H1β1) − b1(S1; ξ2)}

×{A1 − p1(S1; α1)}

{
HT

1

Δ(S1; κ)

}]
, (5)

where pt (S̄t , Āt−1; αt ) is a model for Pr(At = 1 | S̄t , Āt−1);
b2(S̄2, A1; ξ2) is a model for E{Y − A2(H2β2) | S̄2, A1}, and
b1(S 1; ξ 1) is a model for E{Y − A2(H 2 β 2) − A1(H 1β 1) |S 1};
Δ(S 1; κ) is a model for E{A2H

T
2 |S 1, A1 = 1} − E{A2

HT
2 |S 1, A1 = 0}; and 0q1 is a q1-dimensional row vec-

tor of zeros. The set of equations (5) is (q1 + q2)-
dimensional because Ht is qt -dimensional for t = 1, 2.
We denote this system of equations by Pn ψβ (D; α, ξ, κ),
where α = (αT

1 , αT
2 )T (of dimension r1 + r2), ξ =

(ξT
1 , ξT

2 )T , and κ are all unknown parameters. The con-
ditional variances σ2

1(S 1) and σ2
2(S̄2, A1) are defined as

σ2
1(S 1) = Var{Y − A2(H 2β 2) − A1(H 1β 1) |S 1} = Var{Y −

A2(H 2β 2) − A1(H 1β 1) |S 1, A1} and σ2
2(S̄2, A1) = V ar{Y −

A2(H2β2) | S̄2, A1} = V ar{Y − A2(H2β2) | S̄2, Ā2} where the
second equality in each follows by assumption (without this
partially homogenous variance assumption, the estimating
equations are intractable). In our implementation, we further
assume that these variances are constant in (S̄2, A1) and S 1,
respectively. To use Pn ψβ (D; α, ξ, κ) for estimation, we substi-
tute estimates of the parameters α, ξ, and κ in pt (αt ), bt (ξt ),
and Δ(κ)—denoted p̂t (α̂t ), b̂t (ξ̂t ), and Δ̂(κ̂)—and solve for
β in the estimating equations 0 = Pn ψβ (D; α̂, ξ̂, κ̂). The re-
sulting estimator β̃ := β̃(α̂, ξ̂, κ̂) is known as Robins’ locally
efficient semiparametric G-estimator for β.

3.3.1 Implementing Robins’ G-estimator. We consider two
implementations of Robins’ G-estimator: In both implemen-
tations, we estimate α̂ using logistic regression models at each
time point t based on Zt , a row vector of the data (S̄t , Āt−1).
The predicted probabilities from the logistic regression are
used to get p̂t . In both implementations, we obtain Δ̂ by first
using ordinary multivariate regression models for λ(S 1, A1;
κ) = E(A2H

T
2 |S 1, A1) to get κ̂, and then predicting Δ using

Δ̂(S1; κ̂) = λ̂(S1, 1; κ̂) − λ̂(S1, 0; κ̂). The two implementations
differ in the way we obtain estimates for bt and how we find
the solution to Pn ψβ = 0.

Implementation A. For a fixed t, note that bt is
a model for E{Y −

∑K

j=t
Aj (Hj βj ) | S̄t , Āt−1} = β0 +

∑t−1
j=1

Aj (Hj βj ) +
∑t

j=1 εt (S̄t , Āt−1), the sum of the intercept, the
nuisance functions through time t, and the intermediate
causal effects through time t − 1. Hence, the two-stage es-
timator presented above can be used to obtain the “guesses”
b̂t (ξ̂t ) needed to solve the equations. We do this under
G-estimator implementation A, by using the relevant portions
of the (two-stage) estimated conditional mean at each time t
to create the estimates for b̂t (ξ̂t ). Thus, at time 1, for in-
stance, we use b̂1(S1; ξ̂1) = β̂0 + ε̂1(S1; η̂1, γ̂1), where ξ 1 := (β 0,
ηT

1 , γT
1 )T are estimated using the two-stage estimator. The

numerical search for the solution to Pn ψβ (D; α̂, ξ̂, κ̂) = 0 is
itself an iterative process that requires starting values. We
use the estimates obtained from the two-stage estimator, β̂,
as the starting values for this search. A FORTRAN subroutine
was used to find the zeros of Pn ψβ . The estimates for β under
G-estimator implementation A are labeled β̃A .

Implementation B. For the second implementation, we em-
ploy two successive evaluations of a one-step Newton–
Rhapson (NR) estimator to obtain the solutions to
Pn ψβ (D; α̂, ξ, κ̂) = 0, as follows: First set starting values
β(0) = 0 and starting guesses bt = 0, and find β̃(1) using
one iteration of the NR method. Second, obtain predicted
values b̂t (ξ̂t ) based on the results of linear regressions of
Y −

∑K

j=t
Aj (Hj β̃

(1)
j ) on (S̄t , Āt−1). Third, using starting val-

ues β̃(1) and starting guesses b̂t (ξ̂t ), find β̃(2) using one iteration
of the NR method. We label the resulting estimates β̃B for
G-estimator implementation B.

3.4 Estimated Standard Errors (SEs) for β̂ and β̃

Estimated asymptotic SEs for β̂ and β̃ are computed using the
delta method, based on one-step Taylor series expansions (see
Web Appendix D). ŜE(β̂) takes into account the variability in
the estimation of γ. ŜE(β̃) takes into account the variability
in the estimation of α and ξ.

3.5 Comparing the Properties of the Two-Stage Estimator
and the G-Estimator

The G-estimating equations Pn ψβ provide unbiased estimat-
ing functions for β given correct models for the intermediate
causal effects and the pt ’s, regardless of our choice of models
for the bt ’s and Δ (or the outcome variances, the σ2

t ’s). Indeed,
even if Δ = 0 and bt = 0 for all t, we still have E(ψβ ) = 0.
Conversely, given correct models for the intermediate causal
effects and the bt ’s, unbiasedness is still achieved with the
G-estimator regardless of our choice of models for the pt ’s
and Δ. This is known as the double-robustness property of the
G-estimator (Robins and Rotnitzky, 2001). Now, provided
true models for both bt and pt (for all t; and true model for
Δ), the resulting estimates are also asymptotically efficient.
By efficient, we mean that the asymptotic variance of the re-
sulting G-estimates of β achieve the semiparametric efficiency
variance bound (Bickel et al., 1993) for the class of models in
which μt are parameterized linearly and the remaining aspects
of the model, including the εt s, are left unspecified.

The two-stage estimator relies on correct models for both
the intermediate causal effects and the nuisance functions to
provide unbiased estimates for β. At the correct model fit,
we conjecture that the two-stage estimator enjoys better effi-
ciency than the G-estimator. This gain in precision, however,
may be offset by a lack of robustness to misspecifications in
the εt ’s. Exactly how to balance the trade-off between bias and
variance is an open question. The simulation experiments in
the next section shed light on this question.

4. Simulation Experiments
All simulations are based on N = 1000 simulated data
sets and K = 3. We generated continuous time-varying
covariates {S 1, S 2, S 3} and continuous outcome Y such
that their implied marginal distributions and bivariate
correlations are similar to those found in the PROSPECT
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data (see Section 5 below), where St is suicidal ideation
at time t, and Y is end-of-study depression scores. Spec-
ifically, [S1] ∼ N (m1 = 0.5, sd = 0.82), [S2|S1, A1] ∼ N (m2 =
0.5 + 0.10S1 − 0.5A1 + 0.35S1A1, sd = 0.65), and [S3|S̄2, Ā2] ∼
N (m3 = 0.5 + 0.17S2 + 0.1S1 − 0.5A2 + 0.5S2A2, sd = 0.65),
where binary treatment At ∈ (0, 1) at each time point is
generated as a binomial random variable with Pr(At =
1 | S̄t , Āt−1) = pt = expit(0.5 − 1.5St ). The nuisance func-
tions were chosen as ε1 = 0.1 (S 1 − m1), ε2 = {0.2 +
0.18S 1 + 0.4A1 + 0.35A1S 1 + sin(4.5 S 1)} (S 2 − m2), and
ε3 = {0.3 + 0.18S 2 + 0.4A2 + 0.35A2S 2 + sin(2.5 S 2)}
(S 3 − m3). The intermediate causal effect functions in the
SNMM were set to: μt = At (Htβt ) = At (1, St ) (βt,0, βt,1)T =
At (βt,0 + βt,1St ) for t = 1, 2, 3. The true value for all six
causal parameters was set to βt,j = 0.45, where j = 0, 1.
The outcome Y was generated as a normal random variable
with a conditional mean structure according to the above
SNMM, and intercept and residual standard deviation (SD)
set to 1.0.

Experiments were carried out to compare the perfor-
mance of the two-stage regression estimator and the two G-
estimator implementations (A and B; see Section 3). For both
G-estimator implementations, true logistic regression models
were always fit to obtain the p̂t predictions; and multivari-
ate linear regression models that included all main effects
and all second-order interaction terms were always used for
E(A2H

T
2 |S 1, A1), E(A3H

T
3 |S 1, A1), and E(A3H

T
3 | S̄2, Ā2)

to obtain Δ̂. True models were always fit for the bt under
G-estimator B. True models were always specified for the in-
termediate causal effects, the μt ’s, for all three estimators.
Models for the εt under the two-stage estimator varied, as
described below.

First, we compared the small versus large sample properties
of the three estimators when the true two-stage estimator is
fit to the data. Sample sizes were varied and performance
measures for point estimates and SEs were compared across
the estimators. The n = 300 sample size is approximately the

Table 1
Small versus large sample performance of the two-stage estimator, G-estimator implementation A, and G-estimator

implementation B. Results are shown only for βt1, the time-varying interaction terms at each time point t. True parameter
values are βt1 = 0.45 for t = 1, 2, 3.

True G-estimator G-estimator
Two-stage estimator implementation A implementation B

AVG AVG 95% AVG AVG 95% REL AVG AVG 95% REL
n β 2j EST SD SE COV MSE EST SD SE COV MSE EST SD SE COV MSE

50 β 11 0.453 0.580 0.532 91.0 0.337 0.459 0.807 0.735 88.5 1.9 0.463 0.846 0.804 89.8 2.1
β 21 0.412 0.739 0.637 90.0 0.547 0.379 0.859 0.669 83.2 1.4 0.402 0.863 0.759 89.6 1.4
β 31 0.430 0.634 0.493 85.8 0.402 0.302 0.829 0.552 80.9 1.8 0.483 0.688 0.491 78.7 1.2

300 β 11 0.452 0.197 0.186 93.5 0.039 0.468 0.310 0.297 93.2 2.5 0.470 0.310 0.295 93.3 2.5
β 21 0.456 0.229 0.222 93.8 0.053 0.454 0.279 0.273 94.6 1.5 0.457 0.285 0.278 94.4 1.6
β 31 0.439 0.184 0.182 93.4 0.034 0.444 0.207 0.208 92.8 1.3 0.426 0.283 0.269 93.3 2.4

1000 β 11 0.452 0.102 0.100 94.6 0.010 0.447 0.171 0.165 93.9 2.8 0.447 0.170 0.164 94.0 2.8
β 21 0.440 0.117 0.120 95.7 0.014 0.439 0.150 0.147 94.1 1.6 0.438 0.155 0.150 94.1 1.8
β 31 0.454 0.099 0.099 94.8 0.010 0.456 0.114 0.113 94.0 1.4 0.455 0.154 0.146 93.7 2.4

REL MSE denotes MSE relative to the true two-stage estimator.

size of the data set used in the analysis in Section 5; n =
50 and n = 1000 were chosen to study relatively smaller and
larger data sets.

In a second set of experiments, we sought to shed light
on the bias–variance trade-off between the two-stage estima-
tor and the G-estimator. In this set of experiments, the nui-
sance functions in the two-stage estimator were misspecified
and the relative performance of the estimators (in terms of
mean squared error [MSE]) was assessed. Only data sets of
size n = 300 were considered. Misspecification of the nuisance
functions is measured using the scaled root-mean squared

difference = SRMSD(ν) =
√∑K

t
E{εTRUE

t − εt (ν)}2/Var(Y ),
where for a fixed value of ν, εt (ν) denotes the misspecified
nuisance function at time t. SRMSD has the interpretation
of an effect size, so that SRMSD values of 0.2 and 0.5, for
example, correspond to small and moderate levels of mis-
specification, respectively (see Cohen, 1988). We varied val-
ues of SRMSD using ν, by replacing St ’s in the εt ’s with St

times U, where U is a draw from the normal distribution N (1,
sd = ν). When ν = 0, the true two-stage estimator is fit to
the data.

4.1 Simulation Results and Discussion
Table 1 shows the results of the first experiment. We report
results only for βt1, t = 1, 2, 3; results for βt0 are similar
unless otherwise noted. As expected according to large sam-
ple theory, all three estimators are unbiased when n = 1000;
and empirical SDs and mean SEs (MEAN SE) show good
agreement for all three estimators when n = 1000. All 95% CI
coverage probabilities at n = 1000 show coverages between
the expected 93.6% and 96.4% range for n = 1000 replicates.
Performance in terms of mean bias is only slightly worse at
n = 300 relative to n = 1000 for the three estimators. As
expected, the variance (both SD and AVG SE) increases sig-
nificantly with the smaller sample size. The 95% CIs show
under-coverage at smaller sample sizes, especially at n = 50.
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Table 2
Results of a simulation experiment to understand the bias–variance trade-off between the two-stage estimator and the two

G-estimator implementations. Data sets of size n = 300 used for these simulations. Results are shown only for βt1, t = 1, 2, 3,
the time-varying interaction terms. ν > 0 corresponds to misspecified two-stage regression estimators.

Two-stage regression estimator G-estimator implementation A

AVG AVG 95% REL REL AVG AVG 95% REL
ν βtj EST SD SE COV MSE# MSE† EST SD SE COV MSE†

0 β 11 0.452 0.197 0.186 93.5 0.4 0.4 0.468 0.310 0.297 93.2 1.0
β 21 0.456 0.229 0.222 93.8 0.7 0.7 0.454 0.273 0.266 94.6 1.0
β 31 0.439 0.184 0.182 93.4 0.8 0.4 0.444 0.208 0.208 92.8 0.5

1 β 11 0.345 0.219 0.208 89.7 0.6 0.6 0.468 0.314 0.292 98.3 1.0
β 21 0.348 0.275 0.267 92.5 0.9 1.0 0.454 0.311 0.308 98.6 1.2
β 31 0.350 0.233 0.219 90.5 0.9 0.9 0.444 0.263 0.286 99.0 0.9

3 β 11 0.247 0.230 0.215 81.9 0.9 1.0 0.468 0.316 0.292 91.8 1.0
β 21 0.105 0.300 0.279 73.4 2.1 2.6 0.459 0.317 0.317 94.7 1.2
β 31 0.157 0.235 0.228 72.7 2.0 1.7 0.431 0.268 0.316 97.0 0.9

5 β 11 0.230 0.230 0.217 81.7 1.0 1.1 0.468 0.316 0.292 92.0 1.0
β 21 0.049 0.297 0.282 68.6 2.4 3.0 0.456 0.319 0.318 94.0 1.3
β 31 0.124 0.231 0.230 67.7 2.3 2.0 0.430 0.265 0.318 96.5 0.9

ν = 0, 1, 3, 5 corresponded to SRMSD = 0.0, 0.47, 0.53, 0.55, respectively.
#denotes MSE relative to the G-estimator implementation A.
†denotes MSE relative to the G-estimator implementation B.

For the three estimators, the coverage gets worse for the pa-
rameters at later time points.

REL MSE denotes relative MSE of the G-estimator rel-
ative to the two-stage estimator. As conjectured, the two-
stage estimator (evaluated at the true model) outperforms the
G-estimator in terms of MSE across all the scenarios.

Table 2 shows the results of the second experiment. We
report results only for βt1. Values of ν were varied from 0
to 5 corresponding to SRMSD values between 0.0 and 0.55—
that is, from no misspecification to just beyond “moderate”
amounts of misspecification in the two-stage estimator. We
report REL MSE’s of the two-stage estimator relative to the
two G-estimators, and REL MSE of G-estimator A relative
to G-estimator B. Because we always fit the correct models
for bt (and pt ) for G-estimator implementation B, a panel is
not shown for G-estimator implementation B. As expected,
bias increases for the two-stage estimator, whereas the G-
estimator remains unbiased, for higher values of ν. As ex-
pected, as well, REL MSE of the two-stage estimator relative
to the G-estimators increases for higher values of ν. The re-
sults show this is largely due to increased bias in the two-stage
estimator. The results also demonstrate that the G-estimators
begin to dominate the two-stage estimator (in terms of MSE)
at ν = 3, corresponding to roughly a “moderate” amount of
misspecification (SRMSD ≈ 0.5), although there is some min-
imal variation by parameter in the trajectories. For both β 31

(and β 30, not shown), G-estimator A dominates G-estimator
B when ν = 0. However, G-estimator B is equivalent to or
slightly better than G-estimator A under misspecified models
for the bt in G-estimator A. This is due to increases in vari-
ance in G-estimator A for misspecified bt models, as expected
according to large sample theory and as demonstrated in the
simulations.

5. An Illustration Using the PROSPECT Data
The PROSPECT study evaluated the effect of a primary care
intervention, as compared to usual care, on suicidal ideation
and depression in older patients (Bruce et al., 2004). Inter-
vention patients had access to a mental health specialist who
offered education, care management, and support. Not all pa-
tients met with their health specialist throughout the entire
course of the study; and those that stopped meeting with their
health specialist at some time point, never met with them
again thereafter (i.e., a monotonic treatment pattern). The
continuous scale for suicidal ideation (SSI) and continuous
Hamilton depression severity scale (HAMD) were collected
at baseline and at clinic visits at 4 months, 8 months, and
12 months post-baseline. Restricting our sample to patients
in the intervention arm (n = 277), we illustrate the SNMM
methodology to assess the impact of switching off treatment
(defined as meeting with the health specialist) early versus
later on end-of-study (12-month) depression severity, as a
function of SSI and HAMD between baseline and 8 months.
From a practical point of view, understanding these effects
can serve as a useful guide to clinical decision making by sug-
gesting whether or not a patient should continue to meet with
their health specialist depending on what is known about their
history of depression and suicidal ideation.

Let St = (SSIt , HAMDt ), where t = 1, 2, 3 denotes clinic
visits at baseline, 4 months, and 8 months, respectively. Let
At denote the binary (1/0) indicator measuring whether a
patient met with his/her assigned health specialist between
clinic visits (i.e., A1 = 1 means the patient met with his/her
health specialist between baseline and 4 months; A2 and A3

defined similarly for the 4-to-8 and 8-to-12 month intervals,
respectively). Let Y denote 12-month HAMD; that is, depres-
sion severity at the end of study.
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Table 3
An illustrative analysis of the effect of switching off treatment early versus later on end-of-study depression scores given

time-varying suicidal ideation and depression severity

Two-stage regression G-estimator G-estimator
estimator implementation A implementation B

Effect β̂ SE P-val β̃A SE P-val β̃B SE P-val

β 10A1 −0.201 0.373 0.59 −0.211 0.369 0.57 −0.106 0.349 0.76
β11A1SSI1 0.106 0.149 0.48 0.091 0.338 0.79 0.142 0.288 0.62
β12A1HAMD1 −0.241 0.347 0.49 −0.105 0.334 0.75 −0.159 0.324 0.62
β 20A2 0.396 0.312 0.20 0.519 0.327 0.11 0.418 0.337 0.21
β21A2SSI2 0.221 0.272 0.42 −0.028 0.366 0.94 −0.200 0.352 0.57
β22A2HAMD2 0.109 0.158 0.49 0.106 0.237 0.65 0.274 0.258 0.29
β 30A3 −0.268 0.258 0.30 −0.416 0.300 0.17 −0.403 0.311 0.20
β31A3SSI3 −0.119 0.261 0.65 −0.604 0.499 0.23 −0.620 0.519 0.23
β32A3HAMD3 −0.015 0.187 0.94 0.026 0.228 0.91 0.039 0.240 0.87

Causal models. Parsimonious linear models were cho-
sen for the intermediate causal effects, whereby the ef-
fect of switching off treatment at time t is a func-
tion of suicidal ideation and depression severity at time
t only: μt = At (1, SSIt , HAMDt ) (βt0, βt1, βt2)T = βt0At + βt1

AtSSIt + βt2AtHAMDt . The variables SSIt and HAMDt

in μt were centered at their grand mean so that βt0

has the interpretation as the average effect of switching
off treatment at time t for patients with average suici-
dal ideation and depression severity. Due to monotonicity
(i.e., A3 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}), the intermedi-
ate causal effects cannot vary according to previous levels of
treatment.

Nuisance models. Simple linear regressions were used for the
mt in the two-stage estimator, for the Δt in both G-estimator
implementations, and for the bt in G-estimator B. Logistic re-
gressions were used for the pt in both G-estimator implemen-
tations. In each of these working models, and in the Gt in the
two-stage estimator, we included all variables in the past as
main effects together with all second-order interaction terms.

Variable selection. To arrive at parsimonious working models
for mt , Δt , bt , and pt we employed a hierarchical forward-and-
backward stepwise AIC variable selection procedure, as imple-
mented in R (Venables and Ripley, 2002). The same variable
selection method was used on the final two-stage regression
fit to find the best fitting models for Gt . Variable selection
results and working model fits are not shown here for reasons
of space.

The results of the data analysis are shown in Table 3
for the two-stage estimator and the two implementations of
Robins’ G-estimator. The three estimators show good agree-
ment in terms of direction and magnitude of the effects, and
in the magnitude of estimated SEs. The results show no ef-
fect moderation by either time-varying suicidal ideation or
previous levels of depression severity, nor evidence of an ef-
fect of treatment for patients with average levels of SSI and
HAMD. Indeed, the results show no significant impact what-
ever on end-of-study depression severity of meeting with a
mental health specialist early or later during the course of the
study.

6. Discussion
This article presents and discusses the use of intermediate
conditional causal effects to study time-varying causal effect
moderation using Robins’ SNMM (Robins, 1994). A paramet-
ric two-stage regression estimator was proposed and compared
with the existing semiparametric G-estimator.

The SNMM and Robins’ G-estimator have also been used
previously to study the effects of randomization to an inter-
vention in the presence of noncompliance (Goetghebeur and
Lapp, 1997), including when the outcome is binary (Vanstee-
landt and Goetghebeur, 2003; Robins and Rotnitzky, 2005);
and the G-estimator has been used recently for studying
causal effect mediation (Joffe, Small, and Hsu, 2007; Ten
Have et al., 2007). Petersen et al. (2007) have also proposed
a method for assessing time-varying effect moderation, called
historically adjusted marginal structural models (HA-MSMs).
With HA-MSMs, MSMs (Robins, 1999) have been general-
ized to allow conditioning on time-varying covariates; this
is accomplished by positing different MSMs, one per time
point, and estimating them simultaneously. HA-MSM’s dif-
fer from SNMMs in one important respect; namely, SNMMs
are fully structural models for the conditional mean of Y given
(S̄K , ĀK ), whereas with HA-MSMs there is no requirement,
for instance, that the model posed for the causal effect of
a1 in the MSM at t = 1 be equivalent to the model for the
causal effect of a1 that is implied by the last MSM at t = K .
Future work that compares HA-MSMs and SNMMs will be
important.

The two-stage estimator requires more knowledge about
portions of the conditional mean of Y given (S̄K , ĀK ) than
does Robins’ G-estimator. If this additional knowledge (con-
cerning the nuisance functions εt ) is incorrect, it is possible
that β̂ is biased for the true β. On the other hand, scien-
tists may tolerate bias in β̂ if its variance is smaller than
an unbiased β̃. The simulation studies presented above be-
gin to shed light on this bias–variance trade-off. The simu-
lation experiments suggest that it may be useful to consider
parametric estimators such as the two-stage estimator over
the G-estimator up to moderate misspecifications in models
for the nuisance functions using the parametric estimator.
This interpretation relies on fitting true models for the μt ; in
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practice, it is possible the scientist will misspecify the μt as
well.

An important limitation is that the results of our simu-
lations are contingent upon our method for exploring the
space of misspecified two-stage regression fits. Though we
have found similar results (not shown) when we have con-
sidered other one-dimensional paths through the truth, it is
possible that other approaches to making the fitted model dif-
fer from the correct model may lead to different results. More
work is needed in this area to understand the extent to which
parametric estimators in noisy settings may dominate semi-
parametric estimators of the SNMM, including the different
possible scenarios under which this may or may not be true.

While the two-stage estimator can serve a stand-alone es-
timator for the intermediate causal effects, we also sought to
evaluate its use as a method for obtaining guesses for the bt

in the G-estimator. We did this in a simulation experiment
by comparing two implementations of the G-estimator, where
one method (G-estimator A) uses estimates for bt derived from
the two-stage estimator. In the simulations, true models were
used for the bt in G-estimator B. G-estimator B dominated G-
estimator A only slightly when misspecified models were used
for the bt . When the true bt were used for G-estimator A,
the two estimators performed similarly except for the param-
eters at the last time point where G-estimator A dominated.
In the data analyses, both G-estimators provided similar
results.

The methodology was illustrated with observational data
from the PROSPECT study. A potential limitation of our
analysis is that the assumption of sequential ignorability may
be violated. The illustrative analysis assumes that only previ-
ous suicidal ideation and history of depression both (a) affect
future depression outcomes, and (b) determines whether or
not a patient switches off treatment at the next time point.
Yet it is possible that subjects that were worse off, in terms
of having a history of emotional problems or other physical
ailments, are more likely to receive treatment at subsequent
visits to the clinic. If this is true, then the estimates of β
(under both estimators) are likely biased due to confounding.
In observational studies, such as ours, the assumption of se-
quential ignorability is likely to be fulfilled when researchers
proactively measure all important variables thought to be
associated with time-varying treatment (e.g., in our case,
switching off treatment). By design, the assumption is ful-
filled in sequential multiple assignment randomized trials, in
which patients are randomized to different treatment options
(e.g., stay on treatment, or switch off treatment) at critical
decision points over time.

A more in-depth analysis of the PROSPECT data will seek
to better understand observed confounding, by discovering
what are the predictors of time-varying treatment Ā3. If these
observed, time-varying covariates (possible confounders) are
also time-varying moderators of interest, they could be en-
tered into the SNMM (as a part of S̄K ) as described in this ar-
ticle; doing so would help resolve observed confounding bias in
addition to understanding their role as putative time-varying
moderators. If, on the other hand, these covariates are auxil-
iary (i.e., they are not time-varying moderators of interest), it
may be possible to adjust for them using the estimation meth-
ods proposed here in combination with inverse-probability-of-

treatment weights (Robins, 1999). This is a promising future
research direction, currently being explored.

Under sequential ignorability and the (testable) assumption
that there is no causal effect moderation by S̄t (āt−1), which
implies that μ1(s1, a1) = E{Y (a1, 0) − Y (0, 0)} = ω1(a1) and
μ2(s̄2, ā2) = E{Y (a1, a2) − Y (a1, 0)} = ω2(a1, a2), both the G-
estimator and the two-stage estimator may be used to identify
ω1 and ω2. Thus, the methods proposed here may be used in
special cases to identify marginal causal effects, as in those
indexing MSMs (Robins, 1999).

Robins (1994) describes a generalization of the G-estimator
presented here for longitudinal outcome Yt . In this case, a sep-
arate SNMM is specified for each t, one for each conditional
mean Yt given (S̄t , Āt ). It should be relatively straightfor-
ward to extend the two-stage estimator in a similar fashion
to accommodate longitudinal outcomes.

The notion of time-varying causal effect moderation, and
the use of the SNMM, should find ready application in the
medical sciences, as well as in the social and behavioral sci-
ences where structural equation modeling (SEM) approaches
are more common. The methods described here can be gen-
eralized to accommodate latent constructs that are typical in
SEM implementations. An important distinction is that with
the SNMM we parameterize the causal functions of interest
directly; whereas, typical SEM implementations parameter-
ize the conditional mean as in equation (1) then derive causal
meanings from the estimated parameters.

It remains to be seen how the two estimators discussed here
will compare to a fully parametric maximum likelihood esti-
mator (MLE), such as the one proposed by Robins (1997). As
moments-based estimators, neither the two-stage estimator
nor Robins’ G-estimator require distributional assumptions
(e.g., normality) on the full likelihood for (S̄K , ĀK , Y ). An
MLE, on the other hand, requires positing distributional as-
sumptions for the distributions of Y given (S̄K , ĀK ), and St

given (S̄t−1, Āt−1). In addition, because parametric models for
the εt ’s in the SNMM rely on the distribution of St given
(S̄t−1, Āt−1), parameters in models for the distributions of St

given (S̄t−1, Āt−1) will appear in models for the distribution
of Y given (S̄K , ĀK ). Finding the MLEs for the parameters
of an SNMM, therefore, may require nonlinear optimization
routines and, we conjecture, may be sensitive to starting val-
ues. Some of the ideas discussed in this article, such as the
use of linear models for the εt ’s (as in our implementation
of the two-stage estimator) may facilitate a full likelihood
implementation.

7. Supplementary Materials
Web Appendices referenced in Sections 2.2, 3.1, 3.2.1, 3.3,
and 3.4 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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