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Summary. Ye, Lin, and Taylor (2008, Biometrics 64, 1238–1246) proposed a joint model for longitudinal measurements and
time-to-event data in which the longitudinal measurements are modeled with a semiparametric mixed model to allow for the
complex patterns in longitudinal biomarker data. They proposed a two-stage regression calibration approach that is simpler
to implement than a joint modeling approach. In the first stage of their approach, the mixed model is fit without regard to the
time-to-event data. In the second stage, the posterior expectation of an individual’s random effects from the mixed-model are
included as covariates in a Cox model. Although Ye et al. (2008) acknowledged that their regression calibration approach may
cause a bias due to the problem of informative dropout and measurement error, they argued that the bias is small relative to
alternative methods. In this article, we show that this bias may be substantial. We show how to alleviate much of this bias
with an alternative regression calibration approach that can be applied for both discrete and continuous time-to-event data.
Through simulations, the proposed approach is shown to have substantially less bias than the regression calibration approach
proposed by Ye et al. (2008). In agreement with the methodology proposed by Ye et al. (2008), an advantage of our proposed
approach over joint modeling is that it can be implemented with standard statistical software and does not require complex
estimation techniques.
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1. Introduction

Ye et al. (2008) proposed a two-stage regression calibration
approach for estimating the relationship between longitudinal
measurements and time-to-event data. Their approach was
motivated by trying to establish such a relationship when the
longitudinal measurements follow a complex semi-parametric
mixed model with subject-specific random stochastic pro-
cesses and the time-to-event data follow a proportional haz-
ards model. Specifically, they proposed a semi-parametric
model with additive errors for the longitudinal measurements
X ij of the form

Xij = Z ′
iβ + ϕ(tij ) + U i (tij )bi + Wi (tij ) + εij

= X∗
i (tij ) + εij ,

(1)

where β is a vector of regression coefficients associated with
fixed effect covariates Z i , ϕ(t) is an unknown smooth function
over time, bi is a vector of subject-specific random effects
corresponding to covariates U i (t), which is assumed normally
distributed with mean 0 and variance Σb . Further, W i (tij ) is
a zero mean integrated Wiener stochastic process. We denote
X i as all longitudinal measurements on the ith individual.

In Ye et al. (2008)’s approach, the relationship between the
slope of the longitudinal process and a time-to-event outcome
T i is characterized by a Cox proportional hazards model with

the slope at time t, denoted as X∗′
i (t), being treated as a

time-dependent covariate. The authors proposed a two-stage
estimation procedure in which in the first stage, the mean of
the posterior distribution of the slope at time t, E[X∗′

i (t) |X i ,
Z i ], is estimated using model (1) without regard to the time-
to-event process T i . In the second stage, E[X∗′

i (t) |X i , Z i ]
replaces X∗′

i (t) in the Cox model. Ye et al. (2008) proposed
two approaches: (i) the ordinary regression calibration (ORC)
approach in which E[X∗′

i (t) |X i , Z i ] is estimated using (1)
with all available longitudinal measurements and (ii) the risk
set regression calibration (RRC) approach in which these ex-
pectations are obtained by estimating model (1) after each
event using only longitudinal measurements for subjects at
risk at time t (i.e., subjects who have an event before time t
are removed from the estimation).

The advantage of these regression calibration approaches
are that they do not require the complex joint modeling
of the longitudinal and time-to-event processes. In the dis-
cussion of their paper, Ye et al. (2008) acknowledge that
these approaches may result in a biased estimation due to
informative dropout and measurement error, and that im-
proved performance will require incorporating informative
dropout and the uncertainty of measurement error into the
estimation. In this article, we show that an alternative two-
stage procedure can be formulated, which reduces the bias
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considerably without requiring complex joint modeling of
both processes. For simplicity, we develop the approach for
a longitudinal model without the smooth function ϕ(t) and
the stochastic component W i (t) in (1), but the proposed ap-
proach applies more generally. In this approach, we approx-
imate the conditional distribution of the longitudinal pro-
cess given the event time, simulate complete follow-up data
based on the approximate conditional model, and then fit
the longitudinal model with complete follow-up on each pa-
tient (hence avoiding the problem of informative dropout
in Ye et al. [2008]’s approach). Section 2 develops the ap-
proach for a discrete event time distribution followed by
an approximation for the continuous event time distribu-
tion. The results of simulations that show the advantages of
the proposed approach over ORC and RRC are provided in
Section 3. A discussion follows in Section 4.

2. Modeling Framework
We begin by considering a discrete event time distribution.
Define T i to be a discrete event time that can take on dis-
crete values tj , j = 1, 2, . . . , J , and Y ij to be a binary in-
dicator of whether the ith patient is dead at time tj . Then
Ji =

∑J

j=1(1 − Yij ) = J − Y i . where Yi. =
∑J

j=1 Yij indicates
the number of follow-up measurements before death or ad-
ministrative censoring for the ith patient. Every patient will
be followed until death or the end of follow-up at time tj .

For illustrative purposes, we will consider a joint model
for longitudinal and discrete time-to-event data in which the
discrete event time distribution is modeled as a linear function
of the slope of an individual’s longitudinal process on the
probit scale. Specifically,

P (Yij = 1|Yi(j−1) = 0) = Φ(α0j + α1bi1), (2)

where j = 1, 2, . . . , J , Y i0 is taken as 0, α0j governs the base-
line discrete event time distribution, and bi1 is the individual
slope from the linear mixed model,

Xij = X∗
i (tj ) + εij , (3)

X∗
i (tj ) = β0 + β1tj + bi0 + bi1tj , (4)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J i . In (4), the pa-
rameters β0 and β1 are fixed-effect parameters characteriz-
ing the mean intercept and slope of the longitudinal process,
respectively; (bi0, bi1)′ is a vector of random effects, which
are assumed multivariate normal with mean 0 and variance

Σb = (
σ2

b0
σb0,b1

σb0 ,b1 σ2
b1

); and εij is a residual error term that is as-

sumed normal with mean zero and variance σ2
ε . In (2)–(4), the

event time and the longitudinal process are linked through bi1,
and the parameter α1 governs the relationship between the
slope of the longitudinal process and the event time distribu-
tion. Denote X i = (Xi1, Xi2, . . . , XiJi

)′, bi = (bi0, bi1)′, and β
= (β0, β1)′. As in Ye et al. (2008), the normality assumption
for bi is made for these joint models. Although not the focus of
this article, various articles have proposed methods with flex-
ible semi-parametric random effects distributions and have
demonstrated that inferences are robust to departures from
normality (Song, Davidian, and Tsiatis, 2002; Tsiatis and Da-
vidian, 2004; Hsieh, Tseng, and Wang, 2006).

For estimating the relationship between the slope of the
longitudinal process and the time-to-event process, the cali-
bration approach of Ye et al. (2008) reduces to first, estimat-
ing E[bi1 |X i , β] using (3) and (4), and second, replacing bi1

by E[bi1|X i , β̂] in estimating (2). As recognized by Ye et al.
(2008), this methodology introduces bias in two ways. First,
there is the problem of informative dropout, whereby bi0 and
bi1 can depend on the event time T i (which will occur if α1

�= 0 in (2)). Ignoring this informative dropout may result in
substantial bias. Second, not accounting for the measurement
error in E[bi1|X i , β̂] relative to true values of bi1 will result in
attenuated estimation of α1.

We propose a simple approach that reduces these two
sources of bias. We first focus on the problem of informa-
tive dropout. The bias from informative dropout is a result
of differential follow-up whereby the response process is re-
lated to the length of follow-up (i.e., in (2)–(4), when α1 is
positive, patients who die early are more likely to have large
positive slopes). There would be no bias if all J follow-up mea-
surements were observed on all patients. Thus, we recapture
these missing measurements by generating data from the con-
ditional distribution of X i given T i , denoted as X i |T i . Since
X i |T i under (2)–(4) does not have a tractable form, we pro-
pose a simple approximation for this conditional distribution.

Under model (2)–(4), the distribution of X i |T i can be ex-
pressed as

P (X i |Ti ) =
∫

h(X i |bi , Ti )g(bi |Ti )dbi . (5)

Since T i and the values of X i are conditionally independent
given bi , h(X i | bi , T i ) = h(X i | bi ), where h(X i | bi ) is the
product of J i univariate normal density functions each with
mean X∗

i (tj ) (j = 1, 2, . . . , J i ) and variance σ2
ε . The distribu-

tion of X i |T i can easily be obtained with standard statistical
software if we approximate g(bi |T i ) by a normal distribution.
Under the assumption that g(bi |T i ) is normally distributed
with mean μT i

= (μ0T i
, μ1T i

)′ and variance Σ∗
bT i

, and by rear-
ranging mean structure parameters in the integrand of (5) so
that the random effects have mean zero, X i |T i corresponds
to the following mixed model:

Xij |
(
Ti , b

∗
i0T i

, b∗i1T i

)
= β∗

0T i
+ β∗

1T i
tj + b∗i0T i i + b∗i1T i

tj + ε∗ij ,

(6)

where i = 1, 2, . . . , I ; j = 1, 2, . . . , J i ; and the residuals ε∗ij
are assumed to have independent normal distributions with
mean zero and variance σ∗2

ε . Further, the fixed-effects pa-
rameters β∗

0T i
and β∗

1T i
are intercept and slope parameters

for patients who have an event at time T i or who are cen-
sored at time T i = tJ . In addition, the associated random
effects b∗

iT i
= (b∗i0T i

, b∗i1T i
)′ are multivariate normal with mean

0 and variance Σ∗
bT i

for each T i . Thus, this flexible conditional
model involves estimating separate fixed effect intercept and
slope parameters for each potential event-time and for sub-
jects who are censored at time tJ . Likewise, separate random
effects distributions are estimated for each of these discrete
time points. For example, the intercept and slope fixed-effect
parameters for those patients who have an event at time T i =
3 are β∗

03 and β∗
13, respectively. In addition, the intercept and

slope random effects for those patients who have an event at
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Ti = 3, b∗
iT i

= (b∗i03, b
∗
i13)

′, are multivariate normal with mean
0 and variance Σ∗

b3. Model (6) can be fit with standard R code
that is available from the first author.

A similar approximation of the conditional distribution
of the longitudinal process given dropout time has been
proposed for estimating mean change over time in longitudinal
measurements subject to informative dropout (Wu and Bai-
ley, 1989; Wu and Follmann, 1999). In this article, we use the
approximation to construct complete longitudinal datasets
that in turn are used to estimate the mean of the posterior
distribution of an individual’s random effects given the data.
Specifically, multiple complete longitudinal datasets can then
be constructed by simulating X ij values from (6) where the
parameters are replaced by their estimated values. Since the
simulated datasets have complete follow-up on each individ-
ual, the bias in estimating E[bi1 |X i , β] caused by informative
dropout is much reduced.

We provide a correction to account for the measurement
error in using E[bi1|X i , β̂], denoted as b̂i1, instead of using
the actual random slope bi1. As in Carroll et al. (1984) who
adjust for measurement error in a covariate, we note that

P (Yij = 1|Yi(j−1) = 0, X i ) =
∫

Φ(α0j + α1b1i )g(b1i |X i )db1i

= Φ

(
α0j + α1b̂i1√

1 + α2
1Var(̂bi1 − bi1)

)
,

(7)

where Var(̂bi1 − bi1) measures the error of estimation in b̂i1 rel-
ative to bi1 that is the 1-1 element in the matrix Var (b̂i − bi ),
given by

Var(b̂i − bi ) = Σb − ΣbR′
i{W i − W iF iQF ′

iW i}RiΣb ,

where Q =
∑I

i=1(F
′
iW iF i )−1, W i = V −1

i , and Vi is the vari-
ance of X i (Laird and Ware, 1982; Verbeke and Molenberghs,
2000). Further, F i and Ri are vectors of fixed and random
effects for the ith subject. This variance formula incorpo-
rates the error in estimating the fixed effects in the longi-
tudinal model. Expression (7) follows from that fact that
E[Φ(a + V )] = Φ[(a + μ)/

√
1 + τ 2], where V ∼ N (μ, τ 2).

Only individuals who have at least two longitudinal mea-
surements provide useful information in assessing the rela-
tionship between an individual’s slope and their time-to-event
data, so we assume that all individuals in the analysis have
at least two follow-up times. Thus, α01 = α02 = −∞ and the
regression parameters in the discrete-time model α0j (j = 3,
4, . . . , J) and α1 can be estimated by maximizing the likeli-
hood

L =
I∏

i=1

[
J i∏
j=1

{1 − P (Yij = 1|Yi(j−1) = 0, X i )}

]
× P (Yi(J i +1) = 1|YiJi

= 0, X i )J i < J . (8)

Thus, we propose the following algorithm for estimating
α0j (j = 3, 4, . . . , J) and α1 with a two-stage procedure

1. Estimate model (6) with all available longitudinal mea-
surements using linear mixed-modeling software such as
lme in R.

2. Simulate complete longitudinal pseudo measurements
(i.e., X ij for i = 1, 2 . . . , I and j = 1, 2, . . . , J) using
model (6) with model parameters estimated from step
1. Specifically, these measurements are simulated by
first simulating values of b∗iT i

from a normal distribution
with mean 0 and variance Σ∗

bT i
and ε∗ij from a normal

distribution with mean 0 and variance σ∗
ε2 , where the

variance parameters are estimated in Step 1.
3. Estimate model (3) and (4) (without regard to the

event time distribution (2)) with complete longitudi-
nal measurements simulated in Step 2 using a linear
mixed modeling software.

4. Estimate α0j (j = 1, 2, . . . , J) and α1 (denoted as α̂0j

and α̂1, respectively) using (7) and (8) with b̂i1 obtained
from Step 3.

5. Repeat Steps 2–4 M times and average α̂0j and α̂1 to
get final estimates.

The approach can be generalized for continuous event-time
distributions where T i is the continuous event time for the
i individual, all individuals are followed up to time T E , and
where patients are administratively censored at the end of the
study when T i > T E . In addition, the Cox model, λ(t, bi1) =
λ0(t) exp(α bi1), is used to relate the longitudinal measure-
ments to time-to-event data. We can approximate this condi-
tional distribution by first discretizing the follow-up interval
into K equally spaced intervals. We define di as a discretized
version of the continuous event time distribution, whereby
di = k when T i ∈ ((k − 1)T E/K , kT E/K ], k = 1, 2, . . . , K ,
and where di = K + 1 when patient i’s event time is admin-
istratively censored at time T E . The conditional distribution
of the longitudinal measurements given the continuous event
time, X i |T i , can be approximated by the distribution of the
longitudinal measurements given the discretized version di ,
X i | di , where, as for the discrete event time model, this con-
ditional distribution can be approximated by a linear mixed
model

Xij |
(
di , b

∗
i0d i

, b∗i1d i

)
= β∗

0d i
+ β∗

1d i
tj + b∗i0d i

+ b∗i1d i
tj + ε∗ij ,

(9)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J i , and where J i is the
number of follow-up measurements before death or adminis-
trative censoring for the ith patient. Similar to (6), β∗

0d i
and

β∗
1d i

are intercept and slope parameters for patients with a
discretized event time of di . Also, b∗

id i
= (b∗i0d i

b∗i1d i
)′ are as-

sumed to be normally distributed with mean 0 and variance
Σ∗

bd i
. For continuous event times, we apply the previous al-

gorithm for discrete-time data except that in Step 1 we fit
model (9) for a reasonably large K, and in Step 3, we fit a
Cox model without a measurement error correction instead
of the discrete-time model.

Asymptotic standard errors from the discrete or continuous
event time models cannot be used for inference since they fail
to account for the missing data uncertainty in our procedure.
The bootstrap (Efron and Tibshirani, 1993) can be used for
valid standard error estimation.

3. Simulations
We evaluated the procedure for both discrete and con-
tinuous time-to-event data with a simulation study. For
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Table 1
Estimates of α1 from model (2)–(4) when

β0 = 1, β1 = 3, σb0 = 1, σb1 = 1, and σb0,b1 = 0. We assume
that σε = 0.75, α0 = −1.5, α1 = 0.50, J = 5, and I = 300.
Further, we assume that tj = j and all individuals who are
alive at t5 = 5 are administratively censored at that time

point. The means (standard deviations) from 1,000
simulations are presented.

Estimator α̂1 SD

Known1 0.50 0.076
Complete2 0.50 0.077
ORC 0.45 0.078
RRC 0.45 0.075
Prop M=3 w/o MC 0.49 0.097
Prop M=3 w/MC 0.49 0.098
Prop M=10 w/o MC 0.49 0.090
Prop M=10 w/MC 0.49 0.092
Prop M=20 w/o MC 0.49 0.089
Prop M=20 w/MC 0.49 0.090
Prop M=50 w/o MC 0.49 0.088
Prop M=50 w/MC 0.49 0.089
Prop M=100 w/o MC 0.49 0.087
Prop M=100 w/MC 0.49 0.089

1Model (2) fit with bi1 assumed known.
2Model (2) fit with b̂i1 replacing bi1. The empirical Bayes estimates

b̂i1 are obtained by fitting (3) and (4) with complete longitudinal mea-
surements.

discrete event-time data, we assume that there are poten-
tially five follow-up times J = 5 at discrete times tj = j
(j = 1, . . . , 5) and I = 300 subjects having at least two or
more longitudinal measurements (i.e., α01 = α02 = −∞) with
α0j = −1.5, j = 3, 4, and 5, and α1 = 0.50. Table 1 shows
the mean and standard deviation for various estimators of
α1. These values are provided for estimators in which bi1 is
assumed known, estimators that use complete simulated data,
ORC and RCC, and our proposed approach with and without
measurement error correction for different numbers of simu-
lated datasets (M). The results show that ORC and RCC have
an approximately 10% bias, while the proposed approach is
unbiased. We also found that choosing M = 10 provided a
good balance between efficiency and computational efficiency.
Further, not incorporating the measurement error correction
in the proposed approach had little effect on the results. We
found this to be the case even when we increased the mea-
surement error above 1, suggesting that this adjustment is not

particularly important for the simple model in which longitu-
dinal measurements and survival are linked through a random
slope parameter. The measurement error correction may be
more important for a more complex model such as that pre-
sented by Ye et al. (2008).

For continuous time-to-event data, the simulation was con-
ducted with an exponential survival distribution with a mean
of 5 years when bi = 0, administrative censoring after 5 years,
and α = 0.5. We also assume that longitudinal measurements
are taken at t1 = 0, t2 = 0.125, t3 = 0.25, t4 = 0.75, t5 =
1, t6 = 2, t7 = 3, t8 = 4, and t9 = 5 (J = 9), with survival
times being categorized into one-year intervals with K = 5.
Table 2 shows the results of these simulations with I = 300,
α = 0.5, M = 10, and different values of the measurement
error σε . We present the mean (standard deviation) of param-
eter estimates with complete longitudinal data, ORC, RRC,
and the proposed approach. Although the proposed approach
has increasing bias as σε becomes large, this approach has less
bias than both ORC and RCC for all values of σε . Further, we
conducted an additional simulation in which measurements
t3 to t9 were missing with probability 0.5, creating datasets
with fewer observations on each subject. Results were essen-
tially the same as reported in Table 2, suggesting that our
approach does well even with shorter sequences of longitudi-
nal data (data not shown).

4. Discussion
This article proposes a simple regression calibration approach
for estimating the relationship between longitudinal measure-
ments and time-to-event data that account for informative
dropout in the longitudinal process. The approach is not com-
pletely unbiased since the conditional distribution of the lon-
gitudinal process given the event time is approximated by a
multivariate normal distribution. Particularly when the longi-
tudinal and time-to-event processes are strongly linked, there
may be small amounts of departure from normality. The ef-
fect of this lack of normality on a bias appears to increase
as the measurement error increases. However, in most situ-
ations, the bias is substantially smaller than the ORC and
RCC approaches proposed in Ye et al. (2008). The simulation
results demonstrate that, in general, the proposed approach
results in estimates with increased variance relative to ORC
and RRC. More precise estimation is possible under a more
parsimonious parameterization. For example, β∗

1T i
in (6) may

be modeled as linear in T i .

Table 2
Estimates of α from model (3) and (4) and λ(t, bi1) = λ0(t) exp(α bi1) where I = 300 and M = 10. We also assume that
β0 = 1, β1 = 3, σb0 = 1, σb1 = 1, and σbi 0,b i 1 = 0. The means (standard deviations) from 1,000 simulations are presented.

Parameters Estimators of α

σε α Complete ORC RRC Proposed

0.2 0.25 0.25(0.072) 0.22(0.069) 0.21 (0.071) 0.24 (0.084)
0.50 0.50(0.077) 0.43(0.072) 0.42(0.072) 0.48 (0.088)

0.5 0.25 0.25(0.072) 0.19(0.066) 0.19 (0.067) 0.24(0.104)
0.50 0.50(0.077) 0.37(0.069) 0.36(0.068) 0.48(0.109)

1.0 0.25 0.25(0.072) 0.14(0.067) 0.16 (0.063) 0.23(0.149)
0.50 0.50(0.078) 0.32(0.067) 0.30(0.064) 0.46(0.155)
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The proposed approach could be applied to a setting in
which the two processes are linked through the true value
of the longitudinal processes and time-to-event distribution.
Further, the approach could be extended to allow for a more
complex stochastic processes mean structure for the longitudi-
nal process and for a semi-parametric fixed-effect structure as
proposed by Ye et al. (2008). This would involve fitting model
(6) or (9) with a different smooth curve ϕ(t) and stochastic
process W i (t) for each discretized dropout time. Such a model
could be fit within the framework proposed by Zhang et al.
(1998).

Our setup assumes that event times are only administra-
tively censored after a fixed follow-up at the end of the study.
For the case in which patients are censored prematurely,
dropout times can be imputed based on a model fit using
only patients who had the potential to be followed over the
entire study duration.
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The authors replied as follows:

1. Introduction
The focus of our article, Ye, Lin, and Taylor (2008), hereafter
referred to as YL&T, is on fitting a joint longitudinal survival
model in the situation where we can make minimal assump-
tions about the population and individual longitudinal trajec-

tories other than that they are smooth functions of time. We
proposed a two-stage approach to avoid the complexities of
joint estimation of longitudinal and survival models when the
longitudinal model was specified as a semiparametric mixed
model.

Albert and Shih (2009), hereafter referred to as A&S,
note the two sources of potential bias with the two-stage
method, ordinary regression calibration (ORC). As described
in YL&T, in the first step of ORC a longitudinal model is
fit to all the data. The first source of bias is from informa-
tive dropout in this longitudinal model. One way to remove
this source of bias is the riskset regression calibration (RRC)
method in YL&T, in which separate longitudinal models are
fit to the historical data of subjects in the riskset at each event
time. While this more computationally intensive approach
should reduce the bias, the simulation results from both us
and A&S found very little difference between the ORC and
RRC results. The second source of bias is due to uncertainty
in the estimate of the best linear unbiased prediction (BLUP)
estimate, which is directly plugged into the partial likelihood.
With the goal of reducing this bias, A&S proposed a useful
modified two-stage approach. They nicely demonstrated that
the proposed method has a good performance and outper-
forms the existing two-stage methods in simple settings.

The idea of A&S of imputing pseudo observations has the
potential to be extended to deal with more complicated set-
tings. However, we would like to point out that some chal-
lenges remain. We will concentrate on the two major assump-
tions made by A&S: (1) the longitudinal variable has a linear
trajectory (Section 2); (2) event times are only administra-
tively censored after a fixed follow-up at the end of the study
(Section 3). Furthermore, we discuss different possible strate-
gies for imputing pseudo observations and conduct simulation
studies to compare two of them to the method of A&S, and
the ORC method in two scenarios (Section 4). Conclusions
and discussion are provided in Section 5.

2. The Linear Trajectory Assumption
In the preliminary stage of their proposed method, A&S used
a pattern mixture model to estimate Xi |Ti . In this model,
each subpopulation (subjects with same event-time) has a
unique set of parameters for its population mean trajectory.
The only parameter shared between these subpopulations is
the measurement error term.

In A&S’s setting, since the true trajectory of Xi is linear
and only subjects with more than two longitudinal observa-
tions are included in the analysis, the pattern mixture model
of Xi |Ti can capture the feature of the complete trajectory
with a good linear approximation. However, for very low Ti for
which subjects had just one or two observations, the reliability
of the estimates from the pattern mixture model would seem
questionable. Consequently, there would be concerns about
whether use of the future imputed values of Xi was actually
reducing the bias due to informative dropout or increasing
the bias due to unreliability of the values. This concern could
be reduced if the separate longitudinal models given Ti are
linked to each other, for example by forcing the parameters
from each model to be a smooth function of Ti (Hogan, Lin,
and Herman, 2004). The price to pay for this approach would
be more computational complexity.
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When the true trajectory is not linear, e.g., the nonlin-
ear prostate-specific antigen (PSA) trajectory presented by
YL&T, using a pattern mixed model similar to the one pro-
posed by A&S, one might not be able to capture the features
of the complete trajectory for some subpopulation, especially
those who have very short follow-up time. In this situation,
the quality of the imputation of the PSA values would be
heavily reliant on the assumptions of the nonlinear model.
In YL&T, we used a semiparametric mixed model to cap-
ture the smooth nonlinear pattern of PSA. Because of the
structure of this model the imputation of the missing lon-
gitudinal measurements after the time of the last observed
PSA, measurements would be based on linear extrapolation.
This could be considerably biased for some subjects with early
events.

3. Censoring Assumption
A&S assume that event times are only administratively cen-
sored after a fixed follow-up at the end of the study. However,
in many applications, censoring occurs at a broad range of
times, either because subjects often drop out of the study be-
fore it ends, or because subjects enter the study at different
times. Thus follow-up time differs greatly for subjects who
never experience the event during the study. For these cen-
sored patients, longitudinal measurements are also missing
after the censoring time. Subjects who are censored at a spe-
cific time could have very different longitudinal trajectories
from each other and from those whose event-time is close to
their censoring time. Consequently, it is not appropriate to fit
the pattern mixture model grouping together subjects with
similar censoring times and event times. In discussing this,
A&S stated that “For the case in which patients are censored
prematurely dropouts can be imputed based on a model fit
using only patients who had the potential to be followed over
the entire study duration.”

To follow up with their idea on imputing event-time, one
could potentially impute the event times using a survival
model based on baseline covariates for censored subjects. One
might also use ORC or RRC in YL&T to include the longitu-
dinal measurements as a time-dependent covariate, or other
parametric (Faucett, Schenker, and Taylor, 2002) or nonpara-
metric approaches (Hsu et al., 2006). The prediction of exact
times is not precise, so a multiple imputation strategy would
be preferred. This would detract from the computational sim-
plicity of A&S’s approach.

4. Simulation Studies to Compare A&S’s Method
with Alternative Methods
An interesting feature of A&S’s procedure is that they sim-
ulate complete observations for each person. Thus the simu-
lated data are supposed to “look like” the original data before
the dropout time, and to exist after the dropout time. An al-
ternative strategy would be to preserve the actual observed
data for each subject and only simulate pseudo observations
after the dropout time. Intuitively there would seem to be
some inherent robustness in not replacing the observed data
with pseudo data. For example, if the observed data are far
from being multivariate normally distributed, then the A&S
simulated data before the dropout time may not “look like”
the real data. In this case it would seem less damaging to

subsequent analysis only to simulate pseudo data after the
dropout time, rather than at all times.

To develop this further, we consider the models described
in equations (2)–(4) of A&S and an approximation of the
Bayesian imputation procedure. Recall that β∗ and b∗ denote
the fixed and random effect vectors in the pattern mixture
model, where b∗ ∼ N (0, Σ∗

b ) and ε is the error term, and ε ∼
N (0, σ∗2). We consider the following strategy as a modified
A&S method (MAS).

Let X, X0, and Xm denote the complete, observed, and
missing due to dropout observations, respectively, and note
that

[Xm |Xo ] =
∫

[Xm |Xo , θ, b∗][θ, b∗ |Xo ]dθ db∗

=
∫

[Xm | θ, b∗][θ, b∗ |Xo ]dθ db∗,
(1)

where θ = (β∗, σ∗2
ε , Σ∗

b ). One can impute Xm by first drawing
(θ, b∗) from the posterior and then drawing pseudo observa-
tions from a normal distribution conditional on them. In our
approach, we replace the draw of [θ, b∗ |X0] by a draw from
[β∗, b∗ | σ̂∗

ε , Σ̂∗
b , X0] at fixed values of σ̂∗

ε , Σ̂∗
b , and then draw

Xm conditional on the drawn value of β∗ and b∗. A detailed
description of this procedure is given in the Web Appendix.

We also note that the analytic formula for the correction
for uncertainty (equation [7] in A&S) can be directly applied
to the ORC method. We repeated and extended the simula-
tion study of A&S to compare the ORC, A&S method, MAS,
and their corresponding versions with uncertainty correction
(UC).

We fit the probit model (2) of A&S with true b1i as a bench-
mark method, which we refer to as the TRUE method. We
vary the measurement error and the value of a1 to investigate
how the two strategies ((1) imputing the missing longitudinal
measurements to reduce the bias; and (2) UC) work under
difference scenarios.

For each simulation study, we simulated 500 data sets of
sample size N = 300 based on equations (2)–(4) in A&S, and
β0 = 1, β1 = 3, Σb = I2×2, a0 = −1.5, J = 5. All individuals
who are at risk at t5 = 5 are administratively censored at that
time point. To save computation time, we simulated M = 3
data sets in the multiple simulation step for all of our simu-
lation studies.

Table 1 shows the results. When a1 = 0.5, both the A&S
and MAS methods perform very well. Even when σε is at the
largest, the bias in these two methods are still quite small (ap-
proximately 2%). The efficiency of the A&S and MAS meth-
ods is similar. The bias of ORC increases as measurement
error σε increases. UC works very well for the ORC method:
the relative bias in all the three means of the ORC estimates
with UC is less than 0.5%, which is even better than the A&S
and MAS methods without UC. In addition, the efficiency of
the ORC method with UC is better than both the A&S and
MAS methods, especially when measurement error is large.
Under this set-up, since both A&S and MAS work quite well
without UC, it is hard to judge how well UC works for these
two methods.

In Table 1, when a1 = 1, all methods yield more bias
compared to when a1 = 0.5. Bias in all the three methods
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Table 1
Estimates of a1 from models (2)–(4) of A&S. Entries are Monte Carlo average of estimates (MEAN) Monte Carlo standard

deviation (SD) from 500 simulations. Relative Bias (RB) is calculated with respect to the mean estimate from the TRUE method.

σε = 0.25 σε = 0.75 σε = 1

MEAN RB(%) SD MEAN RB(%) SD MEAN RB(%) SD

a1 = 0.5

True 0.503 – 0.077 0.503 – 0.077 0.503 – 0.077
ORC 0.489 −2.8 0.077 0.451 −10.3 0.075 0.437 −13.1 0.075
A&S 0.493 −2.0 0.089 0.494 −1.8 0.101 0.492 −2.2 0.105
MAS 0.503 0.0 0.083 0.498 −1.0 0.098 0.494 −1.8 0.103
ORC with UC 0.505 0.4 0.080 0.505 0.4 0.087 0.504 0.2 0.090
A&S with UC 0.494 −1.8 0.086 0.496 −1.4 0.102 0.496 −1.4 0.108
MAS with UC 0.503 0.0 0.083 0.501 −0.4 0.099 0.498 −1.0 0.106

a1 = 1

True 1.012 – 0.098 1.012 – 0.098 1.012 – 0.098
ORC 0.971 −4.1 0.097 0.871 −13.9 0.097 0.837 −17.3 0.097
A&S 0.944 −6.7 0.110 0.927 −8.4 0.120 0.923 −8.8 0.138
MAS 1.007 −0.5 0.105 0.979 −3.3 0.123 0.966 −4.5 0.131
ORC with UC 1.015 0.3 0.105 1.021 0.9 0.126 1.024 1.2 0.136
A&S with UC 0.948 −6.3 0.112 0.945 −6.6 0.127 0.949 −6.2 0.150
MAS with UC 1.012 0.0 0.107 1.000 −1.2 0.131 0.994 −1.8 0.143

without UC increases as measurement error σε increases. MAS
has the least bias among all the methods without UC at all
three σε values. When σε = 1, bias in the MAS estimator is
approximately half as in the A&S estimator. Efficiency of the
A&S and MAS methods seems to be similar in general. When
measurement error is small, σε = 0.25, the ORC method is
slightly better than the A&S method, but when σε = 0.75,
1, the ORC method yields the largest bias among the three
methods without UC. Similar to where a1 = 0.5, UC works
very well for the ORC method: the relative bias in all the
three means of the ORC estimates with UC is less than 1.5%.
UC also works very well on the MAS methods (relative bias
< 2%), although MAS with UC is less efficient than the ORC
method with UC. UC does not have much effect on the A&S
method, although it seems to decrease the bias a little bit
when measurement error is large.

In A&S, they assume P (Yij = 1 |Yi(j−1) = 0) = Φ(a0 + a1 ×
bi1), where bi1 is the difference between the subject-specific
slope and the population mean slope. Here we will also study
the above methods under a slightly different survival model
where

P
(
Yij = 1 |Yi(j−1) = 0

)
= Φ(a0 + a1 × (bi1 + β1)). (2)

In this model it is the individual’s slope, rather than the devi-
ation of that person’s slope from the population average that
determines the hazard. Under this scenario, another alterna-
tive method, which is computationally simpler than MAS, is
to replace (bi1 + β1) in (2) using draws from [β∗, b∗ | σ̂∗

ε , Σ̂
∗
b , X0]

directly rather than going through imputing Xm and ORC as
in MAS. Similar to the MAS and A&S methods, three sets
(M = 3) of (β∗, b∗) are drawn and a multiple imputation strat-
egy is used. We call this method DirectMAS and study it to-
gether with the other six methods under the above model
(2) in this article, and (3) and (4) of A&S. In addition,
to study the behavior of all these seven methods under a

nonnormal scenario, we simulated random effects using two
independent exponential distributions: b0i = ξ0i − 1, and b1i =
ξ1i − 1, where ξ0i ∼ exp(1), ξ1i ∼ exp(1), and cov(ξ0i , ξ1i ) = 0.

Table 2 shows simulation results in the setting where the
risk of event depends on the subject-specific slope (β1 + b1i ).
To make the setting in Tables 1 and 2 more comparable, we
adjust a0 = −3 so that the event rate is similar between the
scenarios presented in Tables 1 and 2. When (b0i , b1i ) are
normally distributed, conclusions that can be drawn from
Table 2 are in general similar to those in Table 1. The ad-
ditional method DirectMAS also works very well and yields
results that are similar to MAS and better than ORC and
A&S.

When (b0i , b1i ) are from nonnormal distribution, all meth-
ods yield more biased estimate than in the normal setting.
The A&S method yields severely biased estimates (19–22%),
even when measurement error is small. The ORC method
yields small bias when measurement error is small (1%), but
substantial bias when measurement error is large (8%, 18%).
MAS also yields considerable bias but much better than A&S
at all three σε values. The DirectMAS method seems to work
very well, and the bias is only 3% even when measurement er-
ror is at its largest value. As expected, DirectMAS has much
larger SE compared to other methods, which is a trade-off
for less bias. Unlike in the normal setting, UC does not work
for the ORC method, but instead increases the bias largely.
This is not surprising, because the uncertainty equation (7)
in A&S was derived under normality assumption for random
effects. Similar to the normal setting, UC does not improve
the A&S method. Under this nonnormal setting, UC also has
little effect on the MAS method.

5. Conclusion and Discussion
A&S suggested a simple approach, which shows good per-
formance in simple settings. For more complicated settings,
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Table 2
Estimates of a1 from model (2) in this article, and (3) and (4) of A&S. Entries are Monte Carlo average of estimates (MEAN),
Monte Carlo standard deviation (SD) from 500 simulations. Relative Bias (RB) is calculated with respect to the mean estimate

from the TRUE method.

σε = 0.25 σε = 0.75 σε = 1

MEAN RB(%) SD MEAN RB(%) SD MEAN RB(%) SD

a1 = 0.5
b0i and b1i are from normal distribution

True 0.505 – 0.073 0.505 – 0.073 0.505 – 0.073
ORC 0.489 −3.2 0.071 0.451 −10.7 0.070 0.437 −13.5 0.071
A&S 0.495 −2.0 0.083 0.498 −1.4 0.095 0.493 −2.4 0.099
MAS 0.505 0.0 0.077 0.499 −1.4 0.086 0.495 −2.0 0.090
DirectMAS 0.506 0.2 0.080 0.499 −1.4 0.090 0.496 −1.8 0.083
ORC with UC 0.505 0.0 0.074 0.505 0.0 0.082 0.505 0.0 0.086
A&S with UC 0.496 −1.8 0.083 0.500 −1.0 0.097 0.497 −1.6 0.102
MAS with UC 0.505 0.0 0.077 0.502 −0.6 0.087 0.499 −1.2 0.092

a1 = 1
b0i and b1i are from normal distribution

True 1.012 – 0.088 1.012 – 0.088 1.012 – 0.088
ORC 0.997 −1.5 0.088 0.954 −5.7 0.096 0.941 −7.0 0.102
A&S 0.984 −2.8 0.092 0.971 −4.1 0.114 0.962 −4.9 0.118
MAS 1.009 −0.3 0.094 1.004 −0.8 0.117 0.998 −1.4 0.127
DirectMAS 1.017 0.5 0.103 1.024 1.2 0.116 1.020 0.8 0.165
ORC with UC 1.018 0.6 0.094 1.034 2.2 0.118 1.039 2.7 0.130
A&S with UC 0.986 −2.6 0.093 0.990 −2.2 0.121 0.989 −2.3 0.129
MAS with UC 1.012 0.0 0.095 1.024 1.2 0.124 1.027 1.5 0.139

a1 = 1
b0i and b1i are from nonnormal distribution

True 1.012 – 0.106 1.012 – 0.106 1.012 – 0.106
ORC 1.001 −1.1 0.111 1.089 7.6 0.150 1.186 17.2 0.195
A&S 0.824 −18.6 0.110 0.802 −20.8 0.122 0.791 −21.8 0.128
MAS 0.972 −4.0 0.110 0.933 −7.8 0.131 0.920 −9.1 0.146
DirectMAS 0.985 2.7 0.113 0.983 −2.9 0.155 0.981 −3.1 0.182
ORC with UC 1.043 3.1 0.124 1.216 20.2 0.191 1.324 30.8 0.250
A&S with UC 0.825 −18.5 0.111 0.813 −19.7 0.127 0.807 −20.3 0.136
MAS with UC 0.972 −4.0 0.110 0.948 −6.3 0.138 0.941 −7.0 0.157

such as the settings with nonlinear models or different
censoring times, modifications of their simple imputation pro-
cedures might be feasible although not straightforward and
can be computationally complex. If computational considera-
tion is not an issue, then of course methods that use the full
likelihood of the longitudinal and survival data are preferred
rather than two-stage approximations.

The idea of improving the first stage of a two-stage ap-
proach to joint modeling of longitudinal and survival data
can be implemented in a number of different ways. In this ar-
ticle, we suggested two other multiple imputation approaches,
MAS and DirectMAS, which are slightly more computation-
ally complex and do appear to have better properties. In ad-
dition, we found that the ORC method with UC also works
very well when random effects are from multivariate normal
distribution.

We have discussed a number of different multiple imputa-
tion strategies that are followed by the ORC method. A more
computationally intensive alternative would be to follow the

imputation with the RRC method. In such a case the imputed
values after the event-time would not be used at all and are ir-
relevant. If we had implemented the MAS procedure followed
by RRC, it would have corresponded exactly to the original
RRC procedure, which was biased. This leads us to believe
that the major source of bias for the ORC and RRC meth-
ods in the situation that we and Albert and Shih (2009) have
considered is the uncertainty in the BLUP estimates, rather
than the bias due to informative drop-out. This suggests that
the reason the MAS and DirectMAS methods we proposed
did work and the A&S method is useful is because the multi-
ple imputation method does introduce some uncertainty into
the BLUP estimates, which helps reduce the bias due to this
source.

The DirectMAS method, which directly uses imputed
subject-specific slopes from the pattern mixture model in the
second stage survival model, works very well not only under
normal scenarios but also under nonnormal scenarios. This
is probably due to the fact that the BLUP estimates in the
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pattern mixture model are quite robust to nonnormal dis-
tribution. In contrast, in the MAS method, BLUP estimates
from the linear mixed model fit to the pseudo observations
are assumed to be normally distributed and therefore are less
accurate than those from the pattern mixture model.

6. Supplementary Materials
The Web Appendix referenced in Section 4 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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