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1. Introduction

Billions of holes are drilled every year in the United
States alone [l]. This makes the drilling process one of the
most important machining operations. With increasing
reqguirements on drilling accuracy and higher production rates,
dvnamic characteristics of the drill bits can no longer be
neclected. The importance of transverse vibration and stability
of Adrill bits for the precision of high speed drilling of small
holes has alreadvy been emphasized by researchers [1-4].

Nevertheless drilling is probably the most complex machining
process. Early researchers have spent substantial effort to
understand drilling and to relate it to the orthogonal cutting
process [5-8]. Modeling the drill point geometry is still
one of the active research areas [9—11i. Drill wear [12-14], and
drill point geometric optimization are still unresolved subjects.

Althouch there has been research about vibration in the
metal cutting process, it has concentrated on the vibration of the
nachine tool itself, Chatter is a problem of the particular
machine tool that arises at certain speeds and féeds [15,16].
Thus, it can be prevented by improving the design of the |
machine tool. However to prevent the vibration of the tool, the
tool itself should be modeled. There are several papers
published about the vibration, stability ané control of band saw
and circular saw blades [17-21]. Altbouch there are
researchers interesed in the transverse vibration and stability
of drill bits, they do not consicder the rotation of the drill
[2,22-24]. The peper presented by Ulsoy [4] (see also

srpendix A) gives a lumped parameter model for dGrill bits and



investigates their transverse vibration.

The ﬁain formulas of Ulsoy's paper [4] will be presented
hére with reference to Appendix A, The drill bit is considered
as a clamped-clamped massles rod with the mass lumped at the
- middle of the drill bit. Thus the total unsupported masé,

(see figures A-la and A-1lb)

m = pA(L-d) (A-1)

rr = If = f_+f_+£ (A-3)
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where r is, the position vector; £ , £

L £ s’ ﬁd are the external,

spring and damping forces. Thus we have an overall equatiocn,
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where {, Cyr €, are rotational speed, and damping coefficients
and kx' ky, fx’ fy are stiffnesses and external forces in two

transverse directions,

Before describing the various coefficents in Egn. (A-7)
first consider the rotational speed {(t). From a control point
of view one would like to maintain §(t) at a desired reference
valuve. A typicai contfoller torgue Tc will be required to
overcome the cutting torque T. Then a closed loop system which

neclects the torsional stiffness and damping woulc-be,

Jo = Tc(t) -7 (1.1)



where J is the moment of inertia of the drill bit in the axial
‘direction. A typical feedback controller for this rotational

speed control application might be, e.g.,

t
T = Ky L (2 -2t - k,Q (1.2)

where kl and k2 are controller gains selected to provide the
desired performance characteristics.

In Egn. (A-7) the dampipg effects are neaglected, thus
c

1=c2=0. The stiffness has two components arising from the

clamped rod (kxo'kyo) and the thrust force employed during

drilling (kxl'kyl)' Thus,
kX = kxo + kxl
(A-8)
k = k + k
Y yo yl
As discussed in Appendix A the total stiffnesses are,
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If the rotational speed is assumed to be constant, the damping
coefficients are zero, and the stiffnesses are as given above,

(A-7) becomes
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I1f furthermore the stiffnesses in two transverse directions are

assumed to be the same,

kx = ky = k (1.4)
and,

wnl = V k/m (1-5)
where W is the fundamental transverse natural frequency, the

nl
characteristic equation obtained from (1.3) gives

rpos (g9
(1.6)
A2 = (wnl+Q)
If Wy is equal to the rotational speed of the drill bit (%), Xl

-vanishes. Thus the beam becomes very "soft" with zero stiffness,
The fundamental natural frequency at zero speed may be defined as

the critical rotational speed. Thus

0 - " = w = ( 192EI4 _ 2 ? . (1.7) .
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where Fz is the thrust force; E the modulus of elasticity of the
drill bit material; I is the transverse area moment of inertia,
and A is the cross sectional area of the drill bit. If the drill

bit is assumed to be a circular rod,
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On the other hand if the fluted characteristic of the drill

bit is considered from (A.33) anéd (A.34) we obtain,

I = I, = I, = 0.38 (4 /64)
(1.9)

0.621 (mD2/4)

g
L[}

In the discussion section of this report both forms, (1.8)
and (1.9), of the drill bit moment of inertia and crossection are
used to compare the zero speed fundamental natural frequency with
the experimental results.

The thrust force Fz is dependent upon the drill diameter
(D), feedrate (f) and Brinell hardness of the ‘material (for
torque/thrust formulas see BAppendix B). Thus the model developed
in [4] includes effects of drill rotational speed on feedrate
as well as drill bit length, diameter and material properties.

It shows that the transverse natural freguencies depend on the
rotation speed, and transverse instability occurs at critical
speeds where the natural freguencies vanish.

The purpose of this paper is to present the research
initiated to validate the model developed by Ulsoy. The final
coal cf this research is to model the dynamics of drill bits
accurately enough for control or design purposes. From this
point of view the research reported here is considered to be a

preliminary investigation that will enable us to outline future



research areas,

In sections two and three the experimental setup and the
procedure respectively are discussed. Section four gives a
discussion of the results. Appendix A is basically a review and
extension of the theoretical relationships presented in [4)]), and
gives the main formulas used for the lumped parameter model. Some
torque and thrust formulas for drill bits, as developed by

several researchers, are given in Appendix B.



2. Experimental Setup:

In order to study the dynamic characteristics of drill bits 6
different sizes of drills were used. They were at three
different diameters: 6.35 mm (1/4 in), 4.7625 mm (3/16 in),
3.175 mm (1/8 in); and at two different lengths: 304.8 mm (12
in),.152.4 mm (6 in).

Obtaining sufficient information about the drilling process
requires information about rotation speed, feed, torque, tﬁrust
and, transverse vibration. For this purpose the setup shown in
Fig. 2.1 was utilized.

The 8rill press shown has a 2 hp motor and could be set to 4
different speeds (650, 1300, 1800, 3600; rpm) and to 4 different
feeds (0.0381, 0.0762, 0.1524, 0.2286, 0.3048; mm/rev),

Torgue and thrust measurements are taken by a torque/thrust
dynamometer and recorded on a strip chart recorder via a 4
channel strain gage amplifier.

Transverse vibration is measured by two noncontacting
proximity probes attached on two stands at two perpendicular
directions. Probes give dc voltages (0/-18 volts) accorcing to
the transverse deflection of the drill bit via thé proximeter.
The signal taken from the proximeter is recorded on two channels
of a 7 channel data recorder.

This recording is then replayed (gives 0.3v peak) and
processed in the two channel spectrum analyzer. (Figures 2.2 and
2.3). It is very difficult if not impossible to process the
vibration signal on line if one‘considers that at 0.1524 mm/rev
and 3600 rpm, a drilling depth of 0.9 mm takes one second. On
the other hand the spectrum analyzer needs one second to take one

sample over a moderate (0 to 1 kHz) frequency range. The data



recorder provides the opportunity to process the data several
times and at lower play back speeds.

The windowing used at the spectrum analyzer is uniform.
Although uniform windowing doesn't give accurate measurements for
amplitudes of the peaks, it is very accurate for the freguencies.
The freguencies were particularly iﬁportant in that the concern
was to find out the damped natural freguencies of the system.

The rms averaging method is used with different number of

averages according to the condition of the signal.



3. Experimental Procedures

These experiments are designed to enable the data to be
compared to the lumped parameter model. Thus the same procedure
used in [4] is followed. However as indicated in the previous
section there were constraints 6n the feed rate and rotational
speed of the drill press used. On the other hand there are also
physical constraints for the drilling process itself, Hence,
while desicning the experiments, it was attempted not to deviate
significantly from recommended speeds and feeds given in [25].

The first set of experiments consisted of 8 drilling and 10
static tests, Drilling tests, feed, rotational speed, drill
diameter and length are given in Table 4.1. These tests were
designed to check torQue and thrust formulas and to compare the
critical rotational speed against feed, rotational speed, drill
lenagth and drill diameter. A piece of'AISI 1112 annealed steel
is drilled. This material is chosen because of its fairly
brittle nature, to obtain broken chips during drilling which
prevented the chips from rising along the flute and damaging the
proximity probes hanging very close to the upper part of the
drill. Some of the static tests were conducted tb record the
stand and drill press freguencies before the actual start of
drilling. Other static tests were conducted to record the zero
rotational speed fundamental freguency of the clamped-clamped and
cantilever drill bit. The excitation éuring these static tests
is anplied by tapping on the particular structure.

During drilling we did not tap on the drill bit. It was
expected that the cutting process would produce enough excitation
on the drills to excite the drill natural freguencies. The basic

drill length used was 152.4 mm (6 in). Having consumed 46 mm of



the length inside the chuck, the drill frequencies were in the
range of 2000-5000 Hz, The cutting conditions were not
sufficient to excite these frequencies. Thus, all the energy was
consumed at stand and drill press frequencies (0-200 Ez).

Having experienced the above difficulties a second set of
experiments were performed. This time long drills (304.8 mm)
were used. The freguency range obtained was 100-400 Hz.

To get the transverse natural frequency vs. rotational speed
curves (Fig. 4,3) actual drilling experiments were conducted with
6.35 mm diameter long drills at four different rotational speeds.
Smaller diameters were also tried. However they easily became
unstable and broke. This was not only because of the drop in the
fundamental freguency but also due to the eccentricity inherent
in the long drills.

For Fig. 4.4 two drilling experiment were conducted at 1300
rpm ané at two different feeds. Hicher feeds caused the chips to
tangle on the probes hanging close to the drill bit. The feeds
available on the drill press (see section 2) were not fine enough
to obtain more experiments and stay below the recommended feeds
in [25].

Figures 4.5 and 4.6 are the results of the static tests.
Thus, the drills were léaded axially to the thrust force which would
have been obtained during actual drilling} then excited by tapping
on them while recordinc the probe output. The amount of the
thrust force is checked by the dynamometer connected to the
strain gage amplifier.

Analysis of the probe data as taken during actual drilling

10



introduces certain difficulties as emphasized before. During
actual érilling the drill not only rotates but feeds axially.
Thus the drill becomes stiffer as the drill proceeds inside the
material. It is extremely important to know at what depth the
drill is while taking the spectrum. Thus a trade off is faced.
In order to get the best spectrum the tape recorder is slowed
down three times. Thus the freguencies obtained were 1/3 of the
actual freguencies. Then averaging is selected to be different
for each rotational speed and feed, such that at the end of
averaging the dérill was approximately 12 mm inside the material.
The error resulting from this procedure is discussed in the
results section.

The signals obtained by static tests are analyzed at high
averacing rates, namely 64 averages per spectrum. This not only
gave an accurate averaging from the signal processing point of
view but also helped to compensate for the probable damping

introduced by tapping.
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4. Results

In this section the results of the experiments will be given
and the accuracy of the formulas will be discussed as they are
introduced.

Table 4.1 gives the torque and thrust measurements and
compares them with the formulas given by Boston and Oxford (see
aléo Appendix B). In order to show.the trends in these formulas
they are plotted in Figs. 4.1 and 4.2,

Figure 4.1 gives the torque and thrust plots according to
the change in feed. It can easily be seen that torgque and thrust
increases at higher feeds. It should be mentioned that the
formulas given by Boston and Oxford are almost in 100% error when
compared to each other. The experimental points are more or less
scattered., For the case of torque, experimental points are
closer to Boston's formula (see appendix B; Egn. B-2). Boston's
torgue formula does not consider the drill point ceometry and
Brinell hardness of material as done by Oxford (Egn. (B-3)).
However the results do not seem to agree with those based on
oxforé's formula. For the case of thrust the experimental points
are close to Boston's second formula (Eqn. (B-4)). The other
formula given by Boston (Egn. (B-2)) is in error. Oxford's
thrust formula (Egn. (B-3)) is basically close to experimental
points. However the shape of the curve given by Oxford's thrust
forrule conflicts with the one given by Boston's second formula
(Ean. (B-4)). For the case of torqgue the error inherited to the
neasurement is approximately # 0.2 N-m, It is hoped that future
experiments will be conducted using more sensitive bridge
amplifiers.

Fig., 4.2 gives the torque and thrust readings vs. the drill

12



diameter. The two formula's given by Boston (Egns. (B-2 and B-
4)) and the one given by Oxford (Egn. (B-3)) are also plotted.
For the case of torgque measurements they follow Boston's first
formula (Egn. (B-2)) very closely. For fhe case of thrust
Oxford's formula (Egn. (B-3)) is the closest one to experimental
points, Oxford's (Eagn. (B-3)) ané Boston's (Egn. (B-2)) first
thrust formulas show the same trend. Thus the thrust force
increases as the drill diameter increases. Fowever the second
formulez cgiven by Boston (B-4) reverses this trend. Thus at 3.175
mm diameter it predicts a very high thrust force. This is mainly
because of the weiching given to the web thickness (w) in this
formula.

It should be mentioned that both Boston and Oxford conducted
their experiments for drills bigger than 6.35 mm diameter.
However the drills used in thése experiments had smaller diaméters.
Both Boston and Oxford consider the (w/D) (web thickness/drill
diameter) and (c/D) (chisel edge length/érill diameter) ratios to
stay the same as the drill diameter increases. Unfortunately
this is not the case for the drills used. 1In fact ¢/D increases
from 0.194 to 0.28 and w/D increases from 0.156 to 0.224 as the
drill diameter decreases from 6.35 mm to 3.175 mm (see Table B-
1).

In the introduction (see also Appendix A) it was shown that
the characteristic equation of the model (Egqn. (1.3)) will have
two roocts. At zero rotational speed these roots coincide.
Bowever when the rotational speed is increased the roots diverge

from each other in a linear manner., Thus while one eigenvalue is
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increasing the other one decreases and becomes zero when the
rotational speed of the drill bit reaches the zero speed
fundamental natural frequency. This rotational speed is called
the critical rotational speed. Thus at critical rotational speed
the rotating shaft will have a zero stiffness or in other words
the rotating shaft becomes very "soft".

Fig. 4.3 shows the experimental points obtained for the
fundamental natural frequencies of the drill bit at different
rotational speeds. The figure also includes two theoretical
predictions. The plot numbered (1) shows the model prediction by
using a solid shaft (Egn. (1.8)). Thus, the fluted geometry of
the cérill bit is neglected. The other plot (plot numbered as
12)) consicers that the drill bit has a completely fluted
geometry (Egn. (1.9)). The solid shaft prediction gives higher
frequencies. Thus it is stiffer than the fluted model. The
experimental points are recorded when the drill is at 12 mm depth
inside the material. 1In this case the 1/3 of the unsupported
length was fluted while 2/3 of the drill had a round solid shape.
It can be seen that the experimental points are between these two
theoretical predictions and closer to the solid round shaft
prediction as expected.

The zero rotational speed fundamental freguency is obtained
statically by placing the drill inside the 12 mm hole and loading
axielly to the expected 755 N force. Then the drill bit is
excited by tapping on it. The 650 rpm experiment results are not
shown in the figure. The spectrum gave ‘strong peaks around 270
to 280 Bz range. Some of these peaks were coming from the drill

press. Thus, it was difficult to cistinguish the actual drill bit

14



frequenices. The other points are taken at the available
rotational speeds possible on the drill press namely at 1300,
1800 and 3600 rpm.

Fig. 4.4 gives the fundamental natural freguencies taken at
1300 rpm and at two different feeds. The effect of increasing
the feedrate is to increase the thrust force. Thus at 0.0762
mm/rev the thrust force (Fz) is increased from 755N to 1100N.
The two moédels for solid shaft and fluted shaft are also ploted
in the figure. The drop in fundamental fregquencies is slightly
hicher for the fluted case than for the solid shaft prediction.
The fluted mocdel employs the eguivalent diameter which is smaller
than the shank diameter. Thus, for the fluted case the increase
in thrust force is much more pronounced than the solid shaft
case. The 0.0381 mm/rev experimental point agrees very well with
the solid shaft model., On the other hand the results of the
higher feedrate (0.0762 mm/rev), are closer to the fluted shaft
preciction. Although the model predicts the drop in natural
frequencies with increasing thrust forces the experimental points
seems to drop much more rapidly than the model predictions.
There mav be several reasons for this drop. The averaging might
have introduced some error. Thus the higher feedrate case
resulted in fewer averaces before the drill reached the 12 rm
depth. The eccentricity inherited from the drill bit might have
resulted the thrust force being more pronounced. Finally the
frequencies arising from the stdnds and the drill press might
have shifted the actual drill bit peaks. Nevertheless these

results are between two theoretical model predictions.

15



In Fig. 4.5 the fundamental natural freguencies at zero
rotational speed vs. drill diameter are shown where depth is a
parameter. Experimental points are collected at two different
depths and three different diameters. The two model predictions
(solid and fluted models) are also ploted for comparison. These
experimental points are obtained by placing the drills into the
holes at two different depths and loading them axially to the
expected thrust forces.

The experimental points lie closer to the solid model as
expected, There are two points at the middle of the two model
precdictions. These are the ones with 4.76 mm diameter at 5 mm
depth and 6.35 mm diameter at 40 mm depth. The model is
developed with the assumption that the drill has built in support
conditions, while the actual conditions probably lie between the
clamped-clamped and the clamped hinged cases. Also the static
tests apply only the thrust force. However during actual
drilling érill is also loaded with torgue. Although not included
in this model, this load is coupled to the transverse vibration
of the drill bit. Note also that the model predicts divergence
buckling (wn1=0) for small drill diameters. The experimental
points are not too far from the model predictions and follow the
trends guite ciosely.

The change in drill fundamental freguencies at two different
lengths and depths are shown in Fig., 4-6. The figure includes
two model predictions and the experimental points obtained. It
can easily be seen that at both depths the experimental points
lie between the two model predictions and close to the solid

shaft model.
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The experimental results presented above are in good
agreement with the two models, The solid shaft model assumes
that the drill bit has a solid round crossection. The fluted
model uses the idea of effective diameter to calculate the
crossectional area and area moment of inertia of the drill bit,.
The drill bits used had a fluted crossection along 1/3rd of it's
unsupported length. The experimental points obtained lie between
these two models closer to the solid shaft model as expected.
Thus, the experimental points represent an overall error of less

than 20% when compared to any of the models,
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5. Conclusion

In this report, the experiments conducted to investigate the
accuracy of the lumped parameter model in [4] are presented. The
results given in section four are in good agreement with one of
the versions of the model. The overall error of the results when
compared with any two versions of the model is less than 20%.
This error is better than expected considering the possible
errors in the experiments and the assumptions made during the
derivation of the model (see Appendix A).

‘It can be said that the lumped parameter model [4] can
easily be used for control purposes after small modifications.
Thus, it is hoped to develop a better model in the future by the
experience gained during this preliminary investigation.

One of the extension that will be investigated is to model
the torsional vibration which is probably coupled with the
transverse vibration. The final step is nevertheless to develop
a distributed parameter model that will at least include
transverse and torsional vibration of the drill bit. Then using
the models obtained, a simpler version to be used for control
purposes will be derived.

The importance of the vibration and stability of the drill
bits for high speed precision drilling requires research on the
dynamic characte:istics of the drill bits. The research
initiated here to investigate the dynamic characteristics of
érill bits will enable us to improve the accuracy of the drilling

operation.
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Appendix A

A Lumped Parameter Model for the Transverse
Vibration of Drill Bits.

A lumped parameter model for the transverse vibration of
drill bits has been developed by Ulsoy [4]. It will be presented
here briefly including some extensions which consider the
concepts of effective mass and effective stiffness.

With reference to Fig. A-la and Fig. A-1lb; the total

unsupported mass, of the drill is,
m = pA(g-4d) (A-1)
The position vector,

I = xXxe_ +x ¢ (A=-2)
Y

np o= If = f_+ L+ fg (A-3)
£, = fx (= + fy gy (A-4)
£, = --kX x e, - ky y gy (A-5)
Ed = —(clk - c,y)e, - (cly + c2s2x)gy (A-6)

where ie are external forces, fs are stiffness forces, and, fd are damping

forces. The above relaticnships give an overall equation,
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m o X c --2m$2-1
) 1l
+ +
O m Yy 2mf ¢y
I I S . (A-7)
kX mQ mQ czg X _ fX
A , 5 =
mQ+c29 ky—mQ ]|y fy

In the above equation ci, c, are damping coefficients [4].
They should be determined by experimental methods and are open to
extensive research. For the time being 4y and c, will be
consicered zero.

Next we consider the modeling of the transverse stiffness of
the drill bit. A drill bit inside the material at depth d > 0 may
be considered as a massless clamped-clamped rod with its mass
lumped at the middle of the rod. (Fig. A-2). In this case the

stiffness will have two components,

(A-8)

k = k. +k
% yo vyl

Where kXo is the stiffness of the clamped-clamped beam and'kXl is
the additional parameter resulting from the thrust force
encountered in the drilling process.
Shigley [26] gives the deflection of a clamped-clamped beam
loaded at the middle,
3

F_2
X

yrr.ax = 192ET (A=3)
XX

Thus, the stiffness can be written as,

' i 192EIXX
X0 (2-d)3
(2-10)
J92EI
K o 3
Y (2-4d)

21



With reference to Fig. A-3 a x length transverse deflected

rod creates a reaction force,

~

Fx = 2Fz sin® ~ ZFZQ ~ ,ZQJX/(Q—d)/Z) (A-11)

Fere the deflection of rod is assumed to be negligible compared
with the free length of the drill. Thus, is a small angle.
From Egn. (A-11l) the stiffness arising from the thrust force Fz

is,

=
"

x1 4Fz/(£—d)

(A-12)

k

y1 4Fz/(l-d)

Emprical relations for F_ are given in Appendix B. Thus,

l92EIxx 4Fz

Ky = Ko ¥ kxl - (2—d)3 B REY)
(A-13)

lQZEIyy. 4Fz

ky = kyo"i'ky]_ = (SL-—d)3 R ZT))

Here Fz is the thrust force which acts as a recucer of
stiffness. Dividing the stiffness by the total mass of the rod
(the mass that is lumped), gives the fundamental natural

frequencies in two directions.

k, k, 1/2  192EI__ tF 1/2
o o= ] E = X o - )
nxl m pA (1-d) oA (2-a)*  pA(1-@)?

k k 1/2  192EI 4F 1/2
R — N o
ny b pA(2-d)?  pA(2-4)

Another way to obtain a lumped parameter model of a system

22



is to use the idea of equivalent mass. This can be realized by
equating the kinetic energies of the lumped and distributed
systems as proposed by Palm [27].

With reference to Fig. A-4, the kinetic energy of the

clamped-clamped beam vibrating at its first natural freguency is

(28],
(2-4d)
KE = 3wy u . y*az
(B-15)
My = m/(&-4d)

Fic. A-4 gives the approximate first mode shape [28].

Thus, employing this equation gives,

s 3.2 .2 _
FE = 4yo wnlm (A-16)

The Kinetic Energy of the system with equivalent mass is,

w12 2 _
KE = 5 m, wii(2y.) (A-17)

e

These two expressions for KE should be equal as proposed.

Thus,
m, = 0.375 m (A-18)

Now we can get the fundamental frequencies by using the

stiffness expressions given previously in Egns. (A-10) and (A-11)

) 192E1 512E1
W = XX = XX
nlxo (4-a) °m_ on (2-d) *
=10
5 192EI 512EI (A=13)
“nlyo T T T
nLy (2-a)°m_  oa(2-a)*
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5 5 4F_ 10.66 F, (a-20)
1x1 -
nlx nlyl (% d)me pA(i-d)z

Thus, the fundamental natural frequencies are,

512EIXX 10.66 Fz 1/2

w = - )
nlxl A(-a)4  a(s-a)?

(A-21)

512E1 10.66 F_ 1/2
Yy z /

W = - )
nlyl oa(s-a)*  pa(s-q)2

Another approach for obtaining a lumped parameter model of
the system is to equate the fundamental freguencies of the lumped
and distributed systems.

The fundamental frequency of a clamped-clamped beam is,

2 _ ) _ay 3 -
0l = (22.0)%B1/(m(1-8)°) (A-22)
Thus,
k = 501.75 BI_/(%-d)°>
egxo XX
(A-23)

k = 501.75 EI_ /(8-d)°

egyo Yy

In order to find the equivalent stiffness of the massless
rod that is subjected to a thrust force we can assume that the

cross section of the rod is small and consider the rod to be a
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string., With reference to Fig. A-5 [29],

= 7%,/ (0 (2-a)° (a-24)

“nixi wnlyl

and the first natural frequency of the lumped system is,

“n1x1 T “miy1 Kegx1/™ (A-25)
Thus,
k = 'rr2 F_/(2-4d)
egxl z
(A-26)
k = 12 F_/(8-d)
eayl z

Using the equivalent stiffness given by Egns. (A-23), (A-26) and the

assumption in Egn. (A-8)

501.75EI n2F
K - XX z
eqx (,Q,"d)3 (Q'—d)
5 (A-27)
501.75EI T°F
k = vy _ 2
eqy (2-d)3 (2-4d)

Thus, the first natural frequency, using the equivalent

stiffnesses in Ean. (A-28) and the total mass m, can be expressed

as
k X
U.) —4 _eg_
nlx m
: (A-28)
k
w - [ leay
nly m
501.75EI n2F 1/2
W = (- xx _ 1z 47"
nlx oA (2-d) 2 oA (2-4) 2
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5 (A-29)
501.7SEI, 1°F,  1/2

w =( - )
nly oA (2-a) * o (2-d) 2
or,
501.75ET 9.87F 1/
(.L)l "'( XX" Z)/
nax oA (2-a) 2 oA (2-a) 2
(A-30)
501.75EI 9.87¢ 1/2
“nly = - )

oa (2-a) 2 oA (£-d) 2

Now we can compare the two lumped models given in Egqns.(2-21) and
(A-3C) which were developed by using the idea of equivalent mass
anéd eguivalent stiffness respectively.

These two sets of equations have the same form, namely
BFZ 1/2

(—2EL — - —) (A-31)
ok (2-d) oA (%-d)

\ =
®n1

The coefficient o given in Egn. (A-30) is 2% higher than the
one given in Ean. (A-21). This basically arises from the
approximation made for the first mode shape of the clamped-
clampeé beam in Fig. A-4. The second coefficients in Egn. (A-30)
is 8% lower then the one found in Egn. (A-21). This not only
arises from the assumptions made regarding the massless rod and
string but also the assumption made regarding the first mode
shape.

The coefficients described by Egn. (A-31) are given in Table
2-1 for Egns. (A-14), (A-21) and (A-30).

In order to complete the model development we must know the
moment of inertia and crossectional area of the drill bit.,

Althouch flute geometry chancges from one manufacturer to another,
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the approximate values given by Burnham [2] are quite reasonable
and will be employed.

Thus,

D, = 0.788D (A-32)

where De is the effective drill diameter for the calculation of
mass moement of inertia and crossectional area for the fluted
part of the drill. D is the diameter of the solid part of the

drill. BEence,

ﬂ(0.788D/2)2= (0.621)(WD2/4) (A=-33)

>
n

= = - 4
I = I, = Iyy = (0.386)(mTD"/64) (A-34)

The values used for the calculation of the theoretical first
natural frequency for a particular experiment are given in Table A-
2.

Table A-3 gives the comparison between an experimental point
with the three theoretical formulations. From the table it can
be seen that the difference in the last two columns is less then
0.5% as opposed to the differences between the two coefficients
civen in Table A-1l, where it was 8%. This is the result of the
low thrust forces employed in the experiment,.

Baving modeled the tranéverse stiffness and fundamental
natural freguency of the drill bit we can reconsider Egn. (A—7).
Essume that the driiling is done at constant rotational speed and

that the damping coefficents are zero:

o =0,

27



Cy = ¢, = 0 (A-35)

Also assume that the stiffnesses in the two transverse directions

are equal,
k., =k =k (A-36)

Then Egn. (A-7) becomes:

B R I e R ) [ B
(A-37)

Solving the characteristic equation of this sytem gives

kl = wnl4”

(A-38)
kz = (wnl+ﬂ)
Assume, wn1=Q. Thus,
>\1 = 0

(A-39)
>\2 = 28

which simply means that the stiffness of the drill bit is zero.
Hence it can easily deflect with any external force. We may.
rename the zero rotational speed fundamental natural frequency of
drill bit as a critical rotational speed'(ch). When the
rotation of the drill bit reaches this speed the drill bit
becomes very "soft" or even unstable. In reality there is a
slicht difference between the two transverse direction

stiffnesses of the drill bit. Thus Qo occupies a region, namely
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< Yk _/m
y cr X (A-40)

‘Eon. (A-39) also shows that the fundamental natural
frequency of a drill bit will split into two as the rotational
speed is increased. Typical plots for this phenomenon are given

in Fic. 4.3.
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Appendix B

Torque and Thrust Fornulas for Drill Bits

There has been several formulas proposed by researchers
[5-9]. These formulas are all developed emprically from various
experimental data. They are generally of the form,

F, o= C £Yp®
(B-1)

where £ and D are the feed and drill diameter respectively ané C,
Y, 6, X, &, 1N are the constants related to the drill geometry and
the material to be drilled. Roston and Oxford have related these
constants to the Brinell hardness of the material.

The formulas vroposed by Boston [5] are

(B-2)

r - g ¢0.78 pl.8

where Kl and Cl are related to the Brinell hardness of the
workpiece used.

Shaw and Oxford applied dimensional analysis to drilling and
cshowed that torgue ané thrust are not only dependent on the
Brinell hardness .of the material, but also the chiesel edge
thickness (c) of the drill point. Typical formulas as c¢iven by

Shaw and Ozford in [8] are,

F_ c2f° 78 (1- £) L 0.8 .2
5 = + 2.2 (B) + C3 (‘5)
D25 oL.2 (B-3)
‘b (1+ g)
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; 0.8 c
3. T T ot 3.2(p
D Hb D (l+6-

where ¢ is the chiesel edge thickness of the drill point. The
ratio ¢/D changed from 0.194 to 0.280 for the drill bits used
accordinag to the drill diameter. Hence employing these values
reduces the complexity of the formulas considerably.

Similar formulas given by Boston [5] are,

2.12

8
0.87 )

= . D
F = C4 f (157 +

o=

(B-4)

T = x, £0:78 pl.8

where w is the web thickness of the chiesel edge and K4 and C4
are again related to the Brinell hardness of the workpiece.

The most detailed formulas which relate the complete drill
point geometry and material properties are the ones given by
Williams [9). Williams divides the drill point into three
regions: Main cutting edge, secondary cutting edge, and the
indentation zone. BHe then develops semianalytical formulas for
these three regions. Although they are very detailed and
probably accurate, their use reguires detailed information about
the drill point geometry. It is not only difficult to obtain the
cormplete drill point geometry from the manufacturer or by
measuring it, but also difficult to get two identical drills in
the market. Thus, these formulas are not utilized in this study,
considering the fact that 5% error in torque and thrust
neasurements were acceptable for the purposes of this research.

Table RBR-1 gives the drill point dimensions of the drills
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used., These are taken by using a tool microscope which is
accurate to one thousands of an inch.
Table B-2 gives the constant used for the AISI 1112 steel.

These values are obtained from [5,8].
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A

C11Cy

C11CprC3:Cy

Q

o

jomenclatu
crossection area of drill bit
coefficients of viscous damping
emprical coefficients for thrust force
chisel edge length of drill bit
depth of hole
drill diameter
unit vectors of rotating coordinate system
modulus of elasticity of the drill bit
feed
transverse and axial forces on the drill bit
thrust force
unit vectors of the fixed coordinate system

area moment of inertia about the x and y axis
respectively

transverse stiffness coefficients in x and y
directions

empirical coefficient for torque
controller gains for feedback controller

effective stiffness of the drill bit in x and -
y direction

drill length

lumped mass of the drill bit

effective lumped mass of the drill bit.
torque

web thickness of drill point.

drill transverse deflections in rotating coordinate

system

coefficients for fundamental natural frequency
formulation
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Y8, Em exponents used in the emprical relationships
defining torque and thrust force

P mass density of the drill material
Q drill rotational speed

Qop critical rotational speed

Q. reference rotational speed value
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D | L f e T (1) [T (2) |T found |Fz (3) |Fz (&) |Fz (5) |Fz found

(mm) |(mm) |(mm/rev) |(rpm){(N-m) |(N-m) [(N-m) [(N) [N (N {0
2.1751152.41.0762 1800 |0.428 |0.722 |0.271 184. 929. 411, 284,

4.762 0.880 |1.353 {0.789 |276. [595. |515.  |{5¢5.
6.350 650 [1.466 |2.233 [1.883 |369. |622. |e67. |729.
1300 1.827 ‘ 675.
1800 1.308 778.

3600 1.042 728.
.1524 1800 |2.526 {3.879 {2.334 |631. 1142. }951. 1142,
304.81.0762 1.466 12.233 |1.184 369. 622. 667. 729.

Table 4.1 Torque and Trust measurements at various speeds and
feeds compared with Boston's and Oxford's formulas.

D: drill diameter ; L: drill length ; T: torque
Fz: thrust ; w: web thickness ; <c: chisel edge length
Hb: Brinell Hardness ; Cl,Cz,CB: constants

(1) Boston's torgque formula ; T = Ki f'78 Dl'8

(2) Oxford's torque formula ; T = K, Hb £-8 Dl'8

(3) Torgue found during experiments.

(4) Boston's first formula for trust ; FZ = Cl f'78 D
(5) Boston's second formula for trust; Fz = C4 f'87
{D/127 + w/D} 2.12
0.8 0.8
(6) Oxford's formula for trust ; F_ = CyHy f D +
2.2 -~
C3Hb C™D

(7) Thrust found during experiments.

For the formula ahove refer to Appendix B.
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speeds while drilling AISI 1112 steel, compared
with Boston's and Oxford's ‘formulas.

(1) Oxford's torque formula, T = K, H_ £0-8 pl.8
(2) Boston's torque formula, T = Kl fo’78 Dl'8
(3) Oxford's formula for thrust, FZ = C2 Hb fo'8 DO.S
2
+ C3 Hb c
(4) Boston's second formula for thrust F,=2C, f9'87
D w,2.12
137 * p
(5) Boston's first formula for thrust F= Cl f0'78 D
For the formulas given ahove see also appendix B.
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Fig. A-la. Drill geometry. [4]
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Fig. A-1lb. Drill support conditions [4]
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Fig. A-4 First mode of the clamped damped beam and the
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Static formulation (A-14)

Equivalent mass formulation (A-21)

Equivalent stiffness formulation (A-30)

aETI

= ( -

BF

oA (2-a) 4

z )1/2

pA (2-d) 2

192.0 4.0
512.0 10.66
501.75 9.87

Table A-1 Comparison between static, equivalent mass and
equivalent stiffness formulations.

Table A-2

Parameter.(ggits)

Q2 (rad/s)
2 (m)

D (m)
p(kg/m°)
E(Pa)
d(m)
f(m/rev)
F_(N)

4

I (m7)

xx’ Lyy
A (m?)

Value

0.

0.259

6.35 107>
7850.
200.10°

0.04

7.62 107>
755,

3.081 10711

1.967 107°

Parameters and the values used for the calculetion
of zero speed theoretical natural freguency of an

experiment.
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Fundamental Transverse Natural
Frequency, Wnyr (Hz)

Experimental 298,
Static formulation 216.
Effective mass formulation 352,
Effective stiffness formulation 350.

Table A-3 Comparison between an experimental point and three
theoretical formulation.
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