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ABSTRACT

Theory and experiment are presented for the drag exerted on electrons
in antimony-doped germanium by a traveling acoustic wave, using a method
similar to that employed by Weinreich, Sanders, and White for arsenic-doped
germanium. It is shown that the drag, or acoustoelectric voltage, indi-
cates directly the intervalley scattering rates as a function of tempera-
ture and doping. Experimental data for five antimony-doped germanium crys-
tals are given with impurity content ranging from 1.5x10%4 to 8.3x105 cm™3
and for temperatures of 15°K to 100°K.

Intervalley scattering rates are attributed, as previously, to phonons
and to both ionized and neutral donors. In the temperature region where
the phonon contribution is dominant, our results agree with the phonon rates
previously determined.

The express purpose of this experiment was to determine the inter-
valley scattering rate due to antimony donors. Antimony was chosen because
its valley-orbit splitting is approximately one-seventh that of arsenic,
these donors representing the extremes in valley-orbit splitting of the
commonly used Group V impurities, and the intervalley scattering rate due
to arsenic donors had been previously measured.

The effective intervalley scattering cross section for ionized antimony
follows a T-2:5 temperature dependence, which is characteristic of recom-
bination cross sections. Two possible contributions to the intervalley
cross sections have been examined in detail, viz, the compound capture re-
emission process and direct scattering by the central cell potential. They
are found to be inadequate to explain the present experimental results.

Two other possible mechanisms have been briefly discussed.

The neutral donor contribution has been attributed to exchange scatter-
ing and an order of magnitude agreement has been achieved by scaling appro-
priate calculations for atomic hydrogen.

As a subsidiary result of our experiment, and a definitive check on
our experimental procedure, uniaxial deformation potential of 16.9 ev has
been found. This is in good agreement with the previous determination of
Weinreich, Sanders, and White and with other independent estimates.
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CHAPTER I

INTRODUCTION

This thesis is & report of the measurement of the acoustoelectric
effect and of intervalley scattering rates in antimony-doped german-
ium. It is an extension of the experiment of Weinreich, Sanders, and
White (1) on arsenic-doped germanium. Their work constituted the first
experimental observation of the acoustoelectric effect, although there
had been many previous and several subsequent theoretical papers (e.g.,
2-6).

The W.S.W. experiment was also the first direct determination of
intervalley scattering rates in n-type germanium. Previous attempts to
measure these rates had, of necessity, been rough estimates because of
the inability to separate intervalley scattering from the much faster
intravalley rates. The acoustoelectric effect, however, provides s
direct measure of these rates, since it depends on the relaxation of
the electron distribution after a relative population shift of the
valleys. Intervalley rates had previously been deduced from devig-
tions in pilezoresistance data from theoretical predictions (8,9L and
had been attributed entirely to phonons. Weinreich) Sanders, and
White%succeeded in determining the energy of the "intervalley phonon",

and in showing that at low temperatures (T <, 100°K) a sizeable con-

*Called W.S.W. hereagfter



tribution to the total rate is due to donors (both ionized and neu-
tral).

As will be explained later, donor-induced intervalley scattering
rates depend on the detailed structure of the donor potential in the
cehtral impurity cell. This potential gives rise to a splitting of
the "hydrogen-like" energy levels, which would be degenerate in
effective mass approximation (10). This splitting is called the val-
ley-orbit splitting, and is about a factor of seven larger for arsenic
than for antimony donors in germanium. Since W.S.W. measured inter-
valley scattering rates for arsenic, we felt it would be interesting
to do a similar experimeht for antimony. Our purpose was to see how
these rates depended on the donor by virtue of the valley-orbit split-
ting, and to attempt to interpret the results.

There are not, to our knowledge, any detailed theories for either
ionized or neutral impurity induced intervalley transitions. Certain
hypotheses as to the dependence of intervalley scattering on the val-
ley-orbit splitting have been’made, and they are briefly discussed by
Koenig (12), They are not in agreement with experiment.

We have attempted to make order-of-magnitude calculations for
the several processes which are expected to contribute to the inter-
valley rates (1,11), Physical explanations and attempted calculations
for donor induced intervalley scattering constitute the chapter on

Interpretation.



The acoustoelectric effect is a direct measure of the electron-
lattice interaction, aside from the determination of intervalley scat-
tering rates which are peculiar to n-germanium, n-silicon, bismuth,
and several other solids. Whereas such processes as resistivity and
thermoelectricity depend on the coupling between the electron and the
lattice (thermal phonons), the acoustoelectric effect allows us to
study this coupling for a single lattice mode (an ultrasonic phonon).

The acoustoelectric effect or acoustic drag is determined by the
electric potential set up by a traveling acoustic wave, so that 1if
relevant relaxation times are known, we have a direct measure of this
potential. From this electric potential, the appropriate deformation
potential constants can be determined (i.e., electron-lattice coupling
constants). If, however, neither the relaxation times or deformation
potential are known, it may be possible to determine both by measuring
the acoustoelectric effect at several frequencies. (See p 66.) It
might be interesting to study the magnetic field dependence of the
acoustoelectric effect (2,52), and also to determine the acousto-
electric effect in the presence of an external electric field (5,7,
53,54). We have not, however, attempted to do this.

Unfortunately, the electron-lattice coupling is usually weak,
and when space charge diminution of the traveling potential is taken
into account, the acoustoelectric effect becomes very small. It can

be readily observed in n-germanium, however, because space charge ef-



fects can be eliminated as a result of the "many-valley" structure.

The effect has been recently observed in Cds(?)'which is a piezoelec-

tric semiconductor in which the electron-lattice coupling (piezoelec-
tric coupling constant) is several orders of magnitude larger than
the coupling in germanium. It is conceivable that one might observe
this effect in certain semiconductors by using ambipolsr conduction
(both electrons and holes) to alleviate space charge problems (3,4),
It might .also be possible to do experiments in n-type silicon simi-
lar to the present experiment and the previous experiment of W.S.W.
The format for this thesis consists of an explanation of the

acoustoelectric effect (Chap. II), description of experimental tech-
niques (Chap. III), presentation of results (Chap. IV), and the en-

suing interpretation (Chap. V).



CHAPTER IT

THE ACOUSTOELECTRIC EFFECT

A. INTRODUCTION

The acoustoelectric effect refers to the production of a dc elec-
tric field under the action of a traveling acoustic wave in a medium
containing free carriers. In extrinsic n-type germanium, the conduc-
tion electrons are coupled to the wave by means of a deformation poten-
tial. The electrons, in the absence of the acoustic wave, perform a
diffusive motion, being continually scattered by lattice vibrations
and impurities. The perturbing effect of the traveling wave may re-
sult in a preferential scattering of electrons in the direction of
the wave: That is, a net average force exerted by the wave on an
electron along the direction of propagation. We will consider only
the case where the thermal energy of the electron is much greater
than its deformation potential energy, and its mean free path is
short compared to the acoustic wavelength.

The simplest physical picture for this process is to visualize
& sinusoidal potential traveling with the velocity of sound C, with
the electrons attempting to attain equilibrium positions favoring
regions of lower potential. If the electrons were capable of immed-
iate redistribution with respect to the traveling potential, exact

equilibrium would be attained. The electron density at any point in



space would then simply oscilillate at the acoustic frequency. At the
other extreme, the electrons would have g relaxation time long com-
pared to the period of the wave. Then, the electrons would be almost
unaffected by the wave, and the electron density would remain uniform
in space. In the first case, the net average force exerted by the

wave on the electrons would be zero. In the latter case (the ultra-
sonic frequency approaching infinity) an average force remains. This
results despite the deviations from a uniform electron density approach-
ing zero, since the local force approaches infinity. Their product,
however, remains finite. (See Fig. 1A for the first case.)

For intermediate cases, where the electron relaxation time is
short but still finite with respect to the period, the electron sees
the potential but cannot attain exact equilibrium. The electrons get
behind, and tend to bunch on the backward slope of the wave. (See
Fig. 1B.) This implies a net average force (i.e., the local force
weighted by the local electron distribution) in the direction of the
wave. The magnitude of the force depends on the amount by which the
electron distribution deviates from its equilibrium distribution.

The net average acoustic force per electron causes a certain num-
ber of electrons to flow down the crystal. These electrons then pro-
duce & dc electric field whose effect balances out the force due to
the acoustic wave. This dc field, or equivalently, the corresponding

dc voltage, is called the acoustoelectric voltage.
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Traveling potential, V, with velocity, ¢, and electron density, n, for
(A) low frequency case, and (B) intermediate frequency case (ii' is the
backward slope of the potential, and the curved arrows indicate the re-
laxation mechanism). The net average force, F, is in the direction of
the wave propagation.

Fig. 1. Pictorial description of acoustoelectric effect
for simple semiconductors.



The relaxation time described above is the spatial redistribu-
tion or diffusion process. As will be shown, it is both frequency
and mobility dependent, and is the only process available for the car-
riers to attain equilibrium in a simple semiconductor.

We have so far neglected space charge effects due to the bunching
of carriers. The electrons are assumed to move in a uniform positive
charge density due to the ionized donors, and bunching of electrons
will wupset the charge neutrality. This will result in their mutual
repulsion, and the restoration of a uniform electron distribution.
Since the acoustoelectric voltage results from the bunching of car-
riers, we cannot produce a gizable effect without overcoming space
charge inequalities.

Fortunately, space charge difficulties can be eliminated in a
many-valley semiconductor such as n-type germanium, where we can pro-
duce considerable bunching without upsetting space charge neutrality.
We can therefore produce a measurable . acoustoelectric voltage, which
will give a direct determination of intervalley scattering rates. We
will next discuss the band structure of germanium, and the relation-

ship between the acoustoelectric effect and intervalley scattering.

B. BAND STRUCTURE OF GERMANIUM
Germanium is an elemental semiconductor whose space lattice is
face centered cubic. It has two atoms associated with each lattice

point at [000] and [1/4%, 1/4, 1/L4]; each atom formscovalent tetra-



hedral bonds with its four nearest neighbors. A donor (antimony,
arsenic, phosphorus, and bismuth with five electrons in their outer
shell) enters the germanium lattice substitutionally, and the extra
electron is weakly bound. At low temperatures, it is only the extra
electrons that contribute to conduction processes.

The simple model of a semiconductor is based on a nondegenerate
energy minimum located at the center of wave vector or reciprocal
lattice space, and spherical constant energy surfaces in the neigh-
borhood of the energy minimum. This implies single isotropic ef-
fective masses for the carriers. In germanium, neither the valence
band nor the conduction band follows this simple scheme. The con-
duction band contains a set of equivalent energy minima, or "valleys"
symmetrically located at the points where the [111l] axes intersect
the surface of the basic cell in reciprocal space, i.e., the reduced
Brillouin zone. Since the valleys are at the zone faces rather than
in the interior, we have only four valleys instead of eight. This
follows from the periodicity of the reciprocal lattice, where any
points differing by a reciprocal lattice vector are identical. (See
Figs. 3A and 3B.)

The constant energy surfaces are ellipsoids of revolution cen-
tered at the equivalent minima whose symmetry axes are the [111] axes.
We now have an anistropic effective mass whose component mz along the
symmetry axis has been measured to be approximately 20 times the com-

ponents m, perpendicular to the axis (10, p 273).
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Electrons in the conduction band will have energy and crystal
momentum corresponding to states in the neighborhood of one of the
valleys, since these are the only states populated at low tempera-

tures.

C. INTERVALLEY SCATTERING

To return to the qualitative description of the acoustoelectric
effect, we will later show that a transverse elastic wave traveling
in a [100] crystallographic direction, and polarized in an arbitrary
direction destroys the energy degeneracy of the valleys. Two valleys
are shifted equally but oppositely, and the other two also equally
and oppositely but by a different amount than the first two. ILhis
case is called a symmetric four-class system. For a sinusoidal shear
wave, the shifts occur at the acoustic frequency. If the shear wave
is polarized in a [010] direction, the shifts of the two pairs be-
come equal and this case is called a symmetric two-class system. We
are assuming, as is customary, that the only effect of the strain is
to shift the valleys rigidly by a certain energy called the deforma-
tion potential energy (13,14 p 167). The total number of electrons
in the conduction band does not change as a result of the shear wave,
since the sum of the energy shifts is zero. (See Fig. 2.)

The electrons, because the valley degeneracy has been destroyed,
will however attempt to redistribute themselves among the valleys

according to a Boltzmann factor. The extent to which the electrons
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can reach an equilibrium distribution is determined by the relation
between the redistribution time or intervalley scattering rate and
the acoustic frequency. We assume that electrons reach equilibrium
within a valley in a time short compared to the redistribution time
between valleys. In other words, the intravalley scattering time is
fast compared to the intervalley time.

Analogously to the discussion in Part A on spatial redistribu-
tion, we do not get an acoustoelectric voltage if the electrons re-
distribute perfectly among the valleys. At the opposite extreme
(the intervalley scattering rate approaching zero), the problem re-
duces to that of a simple semiconductor, but with no space charge
problems (Sec. E). For intermediate cases, the electrons follow
the changing valleys, but not perfectly, and we again develop a net
average force and a corresponding acoustoelectric voltage.

Therefore, the two relaxation mechanisms available are inter-
valley scattering and spatial redistribution. Since the spatial re-
distribution time is known, this experiment (as will be shown) deter-
mines the intervalley scattering time.

In intervalley scattering, the electron changes its valley
but not its position in r space, and in spatial redistribution, it
changes its position but not its valley. Instead of a single
traveling potential, we now have four potentials each corresponding

to a single valley.
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» X

P X

Traveling potentials, V(a), with electron densities, ny, for the inter-
mediate frequency case. (The curved arrows indicate the two relaxation
mechanisms, and ii' is the backward slope of the potential.) The net
average force for the electrons in each class is in the direction of
wave propagation.

Fig. 2. Pictorial description of acoustoelectric effect in
many-valley semiconductor (symmetric four-class system) .
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Furthermore, we are able to overcome space charge problems. In
the absence of the shear wave, the valleys are equally populated with
n, electrons per unit volume in each, and the total density of elec-
trons n(x) at any position along the crystal in hno. In the presence
of the shear wave, the electrons tend toward an equilibrium which fa-
vors regions of lower potentigl and valleys of lower energy. The
electrons can now get behind, however, without upsetting space charge
neutrality.

The reason is that lifting the valley degeneracy causes redistri-
bution among the valleys, but does not affect the distribution in r
space. Similarly, spatial redistribution will no longer produce space
charge .inequalities, since electrons in valleys seeing opposite de-
formation potentials will diffuse in opposite directions. Conse-
quently, as many electrons as diffuse toward the low potential re-
gions in one valley, diffuse away from the high potential regions in
the opposite valley. (See Fig. 2.) Any deviations from a uniform
electron density are damped out in a time characterized by the di-
electric relaxation time which is short compared to the period of

the acoustic wave (Sec. E). Therefore, at any position along the

crystal n(x) will still equal Ln,.

D. DERIVATION OF ACOUSTOELECTRIC VOLTAGE
We will derive here the case for a symmetric four-class system,

and show that it gives the same result as the symmetric two-class



1k

system used by W.S.W. (See beginning of Sec. C for nomenclature. )

If we have a shear wave traveling along a [100] axis, and po-
larized in a [010] axis, the only nonzero component of the strain
tensor referred to the usual cubic axes is Uy = W e Now, if the
wave is still traveling along [100], but is polarized in an arbitrary
direction [0aB], in the rotated system only uiz = u is nonzero. Re-

lating back to original cubic system and using the transformation law

of second rank tensors ujj =Z{j R, R. u' vwe get W, = Qu and

ip~jopo
P,0
U3 = -PBu where
100
0-B «

Using the deformation potential as defined by Herring (13), the con-
tribution to the potential energy due to a strain for an electron in

the a'th valley is

(<) _ —_ (%) (el)
v - EEO{ S('a + :_.1% {(é /(9( juoa (2.1)

(04
The gradient of V( ) (i.e., the force) is longitudinal in
character, and will couple the shear wave to longitudinal currents.
=ug and'—y are the dilation and uniaxial deformation potential con-
stants, and K(?) and K(?) are the i'th and j'th components of a unit
vector from the center of the zone to the ¢'th valley.
As previously discussed, we have four valleys in germanium at

the positions [111], [I11], [111], and [111]. (See Fig. 3B.) Although
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The schematic representation of the energy bands, (4), (41, p. 30k4),
and the location of the valleys (B). A constant energy ellipsoid in
the neighborhood of each of the valleys is also shown.

Fig. 3. Energy band structure of germanium.
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the Brillouin zone has a shape which is not cubic, the cube illustrates

the relevant properties and is used for simplicity. The unit vectors

KW= L /(\,+A+1’/&\J Hm: L ot
-@," j ) ) u_é_ c

\2(2)— N A /\J (ZD: -1
EEL+J+k ) K, =
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3 4
so that V(l) = —V(2) and V ) = -V( ? Since originally, all valleys

had extremal energy Ej, the extremal energy of the «/th valley is

()

now Eo + V The original valley degeneracy is completely destroyed
in a symmetric pairwise manner, i.e., a symmetric four-class system.

Following W.S.W., we define a 'field strength" of the elastic

wave ¢ = O elkx‘lwt

o such that 1/2 Re(® ®*) is equal to the elastic

energy density. We also introduce a quantity "q'" which W.S.W. called
the "acoustic charge". It is defined as l/Jé times the deformation
potential in a strain of unit energy density. This enables us to
write the local potential experienced by an electron in the form

MCNCPY

Furthermore, the average acoustic power flow is

S=tre(E B

where C is the velocity of a shear wave traveling in a [100] direc-
tion.

The elastic energy density for a cubic crystal (15, p. 91) is
~ [ 2 2 2
%Re(é— §> = ‘é’ Cu (uu +Uy uBB)
+Cia (un oy + Uy Uyy + Wy, Usg

2 S
v J?fc‘/lf (u'l?- +L{/3 + U_:3
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where Cy3, Ci2, and C44 are the non-zero elastic constants

For our case, the energy denSity reduces to
{

LR(ETE )= ¢ Cyy (i + g

so that for a strain of unit energy density, we get
?C"” - L -\/~ ("()
Vo

and

which yields
=
174 R
2 , m%

where the A(a) are given by Eq. (2 5), or
[

79 3 "C“ (-£) = (- )

1Y =-(x-p) g
(©= (r+8) 4

3= (rep) g

where - —
1= 3 2w
\)Cq,l.}

(2.4)
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The i'th type of particle therefore experiences a local potential
e q(i)@,

We now calculate the bunching that occurs as a result of the
[100] - [0aR] acoustic wave using the approach of W.S.W. It is a
macroscopic approach, which is valid when the sound wave length is

much greater than the electron's mean free path.

The continuity equation for the i'th wvalley is

, VA e (x-ct)
Dhb+ 336: E np=hg(x-cl (2.5)

ot yo= 5. (x=ct)

2t X
where Pi is the net rate of intervalley scattering which produces

| Y

particles of type i. It will be discussed below.
The particle current density for the i1i'th valley is
YK ()., =
4, =~D g—%‘v“ (&‘ oL (2.6)
RT OX

where the first term is the ordinary diffusion term due to concen-
tration gradients and the second is the conductivity current set up
by the force field q(i)8®/ax accompanying the acoustic wave. We have
used the relations o(i) = n;p = njD/kT where a(i) is the conductivity
of the i'th valley, and D and p are the directionally averaged dif-
fusion constant and mobility ordinarily encountered. The fact that
the mobility, which is a tensor quantity for a single valley, can be

replaced by its directionally averaged value for particle motion

along a [100] direction is explained in Appendix A.



20

We will discuss the continuity Eq. (2.5) in order to derive Pi
(the net rate of intervalley scattering). To repeat, the physical
situation is that the shear wave produces a spatially variable trav-
eling potential and also shifts the relative energy of the valleys
at the acoustic frequency. The electron distribution ny attempts to
relax to its thermal equilibrium distribution. We mean by the ther-
mal equilibrium distribution the distribution which would be attained
in the presence of the shear wave if the electrons were capable of
instantaneous relaxation.

If we consider a fixed volume of the crystal, and we want to
find how the density of type i particles changes with time (dni/dt)
when the equilibrium distribution is upset, we would say that it can
"relax" due to particles flowing’into the volume from outside
(3J;/9x) and by production of particles within the volume (P;). In
other words, one gets the standard form of a continuity equation
where aji/ax is related to spatial redistribution and P; to inter-
valley scattering.

P; (the net rate of production of type i particles) is de-

scribed by the equation

P = gp(g =(n, — R(( =) m'j

“f“ZR(V&-)C)V\k "R(ﬁ'-—ﬁz) y\LZ “L{R (/q_)(,)nxw R(L%é)nf}(gY)
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so that R(J -+ i)nj is the total rate at which electrons leave valley
J for i, and R(i > j)ng is the reverse rate. R(j » i) is the prob-
ability per unit time that an electron in valley Jj will make a transi-
tion to valley i, and nj is the instantaneous density of electrons
in J.

The first bracket, therefore, gives the net rate of production of
type i particles due to the fact that the total transition rate from
i to J is not equal to the reverse rate. That is, there are net tran-
sitions.

In thermal equilibrium Pi = 0, and each bracket must separately

be equal to zero. This gives for the first bracket
[ O . o}
R(3_>L> V\? = R(C-—Bj) N,
where n and ng are the equilibrium densities of particles in valleys

i

i and j and
o . © _ gWF
o[- 57 = 00 - L

since at equilibrium the electrons would populate the valleys ac-

cording to a Boltzmann distribution, n. is the equilibrium density of

(@
electrons in each valley in the absence of strain, and we consider

only the case of q(l)Q < < KT.

This yields

R(420)= REsg)aye] (103 )3



22

or

' OIRGNES
=1 = Fi(c,‘9 1:11-</2 - ~—
Since the valleys are driven at the acoustic frequency, and the

distribution of electrons among the valleys takes a finite time to

© and

reach equilibrium, n, and n:; will not necessarily be equal to ns

i J
ng. The electrons "relax" toward equilibrium with "relaxation times"
given by 1/R(i + j and 1/R(j + i).

Still considering only the first bracket, and using Eq. (2.8),

we get

=Ry e+ (%39

We expect the ni's to perform a small sinusoidal variation

around ng (the equilibrium value in the absence of strain):
n, =N, +Smbl Lﬂ»(c/ax—ccut) (2.9)

where ®n; is assumed to be of order q(i)Q/kT.
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To first order

7 =R@gfinin en (L )z [0
kT

(2.10)

We now want to relate R(i » j) to R,, vhere R, is the proba-
bility per unit time for an intervalley transition to occur between
any pair of valleys (e.g., i to j or k to 1) in the absence of strain.

' = [ Jlm jf]
=Y Ra[+m %ﬁ

Therefore, to first order, we can replace R(1 + j) by R, in (2.10).
Performing the same manipulations for other two brackets, (2.7) can

be written

[(%hg—ina +h, (cé(’))_%@) z, :]

kT
+@§T\R- Snd> +n,(1 (k)_%(‘.)) :%:] |
RT

‘} +[(§V]{— ?n‘:) -+ ﬂo (g (422_ Z(Z) E;]
- *T

which reduces to

P =R, (Snwgnk-rgnl—ﬁm) ¢ (kx—cst)
no(1% 4™ g0 50)F,
Ve

ei(kx -wt )

(2.11)
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We require that 2 &ny = O since the total density of electron
0

n(x) = bn, does not change. This condition yields
SNyt ol v SN, =350 = —4 I,

which is substituted into (2.11). We want to make one further
change in(2.ll)j R, was defined as the probability per unit time that
an intervalley transition will take place between any pair of Valleyi
so that the total probability for transitions from i to j, i to k,
and 1 to 1 will be BRO = Riv' Riv is therefore the total probability
per unit time for an electron to leave a valley. In other words, it
is the intervalley scattering rate per electron.

Finally,

= _@g ~4 on; -—n,(3% (Q_%@lz@?@)ﬂ% ec'(lex—wt)

(2.12)

(07
For i = 1, using the values for the q( ) in Eq. (2.&), we get

=gk, [ 3 B i, e

This is the form which we want for the Pi's, and we can now re-
turn to the solution of Egs. (2.5 and 2.6).

The continuity equation becomes
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M, %9 __y

5t DK Rtv h (°( ﬁ)@ SH ,L(Rx*w f)

(2.13)

and taking derivative of the current equation

) | ) _ 2 _ ‘ | 6‘ -wt
%_é_: cké},_ Dk [Sn, N, ((-3) %%]6 (kx ) (2.14)

Substituting (2.1k4) into (2.13) and using ani/at = -iwdn;, we

obtain

Sn,[awt/)ﬁv“ R,v =-n, [Dk + 4 E,J(‘* ﬁ) 77

We define

L= + Dl’&}'
3 fV
z:r
so that
gn‘ = ——no("("ﬁ’2 Z__Eo
|—Cw. RT

where the total relaxation time T

r 18 composed of the intervalley
scattering time 1/Rjy and spatial redistribution time l/Dk2 as pre-

viously discussed. l/Dk2 is the time it takes an electron to dif-

fuse a distance equal to a wavelength divided by 2=x.
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Finally
((kx-wt)
0,=No|I-E-p) T € (2.15)
RT 1= Cwy,
and in similar fashion
rx-wt)
Ny :ho[“'(‘*"ﬂ)%i ¢ )
anl /—C(W?r
é(kx—wt
N3z {j —(o(m)%}f : ) (2.15)
T I—Uwgr_ '
S (kx=wt)
Ny =N, 1+(°(+{5)%;% e’
L LTI T

To find the average or dc force exerted by the wave on an electron,
in {'th valley, we find the local force-—q(l)BQ/BX;, weight it with
the electron distribution, average over a wavelength, and divide by

the average :electron distribution:

— _ U') DE -)F')
E:Ji?f< L EY3 . (2.16)

Ny

From (2.4), (2.15) and (2.16) we get

c*RT H.w"-z'r'_'— (2.17)
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and

.2 <
48#74>2 b > 31_;§}
CRT 1+ T" (2.18)

anl)
1

<
il

so that fi is the average force exerted by the acoustic wave on the
i'th type of electron and S = 1/2 Re(@é@o) is the average acoustic
power density.

We now want to find the average electric field which is set up
by the shear wave due to electrons being dragged to the back of the
crystal. We are working with open circuit conditions, and the force
associated with the electric field builds up until it is equal and
opposite to the acoustic force, in order to satisfy the condition
that there is no net current flow.

To find the average electric field, we first calculate the
total short circuit current which would flow under the action of the
acoustic wave. The total current jA is the sum of the currents of
the individual valleys, and the conductivity of the i'th valley for
[100] particle motion, averaged over a wavelength.is one-quarter
of the total conductivity (see Appendix A).

The current for an individual valley is given by j(i) = g(i)F ;
taking the time average of Eq. (2.6), substituting from Egs. (2.17)

and (2.18) with o; = n,D/kT,

employing QA = S_: 3(6/) and = éi(;’("’)_: Yne D
¢ kT
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g | T+F
AT — l 3
net [

This is the total current which would flow under short circuit

we get

conditions.
For open circuit conditions, we require that jA+jE = 0 where
jE =-cﬁ is the total current set up by the opposing electric force;

which yields

£ = ﬁ+@

PAS

or

w—n———

.
cE = f‘()_i Wiy <. (2.19)

PIA

c*RT 1rwrz?

This is the result obtained by W.S.W., which we have arrived
at with considerably more work. It does however show that the sym-
metric four-class system gives the same result as the two-class sys-
tem, and perhaps also justifies the form of Pi which W.S.W. arrived
at by intuition. We should alsoc mention that in deriving the form
for P; we kept only the lowest order in q®/kT, whichjsince eE was
found to be linear in the power under our experimental conditions,

is wvalid.
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E. SPACE CHARGE

In order to show how space charge can diminish the acoustoelec-
tric effect, we will calculate the effect for a simple single valley
semiconductor (e.g., InSb) first neglecting and then considering
space charge.

When we neglect space charge, we get from the current equation

}_“D[5Y+ h g 2%
T X

and from the continuity equation
b % _
AT Y

that
d(hx-—ut)
n=mn,|i- 3% &
®RT  —Cw &

D

where Tp = l/Dk2, the spatial redistribution time, is the only re-
laxation mechanism available.

m
N, el j+w* ZEL

This is what we would get for n-type germanium if T were much

faster than the intervalley scattéring time as previously mentioned.

Then

_L- - fﬁ_ , _l_ “ ‘IL
Zr BRN—/-?DNZVD
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and when substituted into (2.19) gives the above result.
If we now include space charge, we have also to solve Poisson's

equation
T
D Vse
i
DX

T
Lh';e (n__no)

where (n-no) is the periodic electron density modulation caused by
the sound wave. ©Since n, is the equilibrium density of free elec-
trons which is equal to the density of positive donors, this then
represents the periodic deviation from charge neutrality. VSC is

the space charge potential, and the total electron potential is

gg - ::'&4 CV-CIt)
Ve = Ve t 4 > V=V (x-ct)

Again solving the current eguation

9:-—1)[5"‘ W@ﬁﬁ-’a

and continuity equation, we get for the instantaneous electron dis-

tribution
((ex—wt)
n= nll-3% €
T ’+( —uuZ“
Lp

where X = l/k is the acoustic wavelength divided by 2x, and LD is

the Debye length
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kk
1N, e*

The total electron potential is then

V. = %50 (/__ éw?/b) 6"(@(““1‘)
MRk

and

Now, at 60 mc/sec

z %
-Z'> % [0 T /05—
Lp

depending on temperature and doping and

so that space charge effects drastically reduces the acoustoelectric
effect.

The reason for this is that for

)Y 2
L >> | \/’ A G E
Ly A

and the total electron potential approaches zero. Physically, the
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Debye length is the distance over which one can maintain a nonuniform
potential. If this distance is small compared to a wavelength,
enough electrons instantaneously regroup in such a manner as to
screen the deformation potential. The total potential approaches

a uniform value, and consequently there is no force on the remaining
electrons. This regrouping takes place via transport in an electron
field characterized by the dielectric relaxation time &/hﬂo. Poten-
tial and space charge inequalities are damped out in a dielectric
relaxation time, which is very short compared to the period of the

wave.

F. ATTENUATION AND RADIATION PRESSURE (16)

The attenuation of the ultrasonic wave due to the interaction
with conduction electrons will be equal to the average rate that the
wave loses energy to an electron times the total number of electrons.
The average rate at which the wave loses energy to thevﬂth type of

electron is

dw; éfe(ﬁ'ﬁfl— g (§~‘2—?+ 2‘3;})
v n, “

The first term is the local force Fj = —_@ J9/0X times the local cur-
rent which is the ordinary Joule heat loss. The second term is the
energy lost to disappearing particles. Since all quantities go as

exp(ikx-iwt)
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which is ¢ times the average momentum loss (acoustoelectric force)

to the i'th type particle. Averaging over all valleys, and multiply-

ing by the total number of electrons, gives (lng)cF = N cF. knj = Nj

is density of electrons cm—s, and F is the average acoustoelectric
force. Thus the attenuation due to the free carriers per unit power

density is

—

o = N, CF /nepers) _ NoceE
S o S

where S 1s power density.

For typical values, we have

Cox 30 ey F o5 a
S/ec e

So that

-3 —y
of % 1.EX 0 nepers . 2x0 ' db
cm S

and a logarithmic decrement of
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-G
Eg = CK/ ;% e 72.5; X 1D 1 ¢o me

The attenuation in the acoustic power over the length of 5 cm due

to free electrons will be

o X

S=S,. e x 99 S,

The power density at the far end of the crystal is still 99% of its

original value. This represents a negligible loss for our purposes.

Radiation Pressure

The acoustoelectric effect is the result of the loss of momen-
tum by the wave to the electrons. This momentum transfer is directed
along the direction of propagation of the wave, and is the»average
force (i.e., the acoustoelectric force) exerted by the wave on an ab-
sorber (i.e., a free electron). In analogy to electromagnetic waves,
we can say that the wave exerts a radiation pressure on an absorber

which is simply the acoustoelectric force.



CHAPTER III

EXPERIMENTAL EQUIPMENT AND PROCEDURE

A, GENERAL

The experimental arrangement used here is similar to that pre-
viously used by W.S.W.

The acoustic wave is generated by driving a quartz transducer,
usually at 60 mc, which is acoustically coupled to the germanium.
The wave is absorbed at the far end of the crystal (approximately 5
cm long) by means of an indium absorber, and a voltage is set up
along the crystal. The acoustoelectric voltage is in principle dec,
but the rf was amplitude modulated in order to produce an audio com-
ponent (Appendix B). Aside from the fact that small audio voltages
are easier to amplify and detect than dc, the reason for audio is
that a thermal gradient of a few hundredths of a degree Kelvin per cm
will produce a dc thermoelectric voltage which is often comparable
to or larger than the acoustoelectric voltage. Gradients of this
order exist even in the absence of acoustic power, and in our method
of acoustic power measurement (see below), thermal gradients of sev-
eral tenths of a degree Kelvin are produced.

The audio component of the acoustoelectric voltage is meas-
ured at three contacts along the crystal spaced about i cm apart.

The dc thermoelectric voltage, produced by the dissipation of the

35
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acoustic energy in the absorber, is measured at the same contacts as
the acoustoelectric voltage.

The rf driving the quartz transducer was around 20 v, which pro-
duced an acoustic power density of around 0.5 w/cm2. Depending on
the temperature and the resistivity of the germanium, the acoustoelec-
tric voltage ranged from less than 1 pv/cm to over 100 uv/cm, usually
being less than 20 uv/cm. The main experimental problems were elimin-
ating pickup and producing good crystals. The rf can easily be picked
up and demodulated . at metal-semiconductor contacts or at circuit non-
linearities such as the input stages of the low level amplifier, which
when overdriven produce a large spurious signals at the audiofrequency.
To prevent this required special sample and sample holder design,
ohmic metal-to-semiconductor contacts down to the lowest temperatures
used, doubly shielded cables, careful grounding, etc. The test used
for checking the pickup level was to replace the transducer by a
piece of mica of equivalent size and thickness. Since the impedance
of a heavily loaded quartz crystal is approximately its geometrical
capacitance, the mica reproduces the rf configuration without pro-
ducing any acoustoelectric voltage. On all crystals on which final
.data were taken, the total spurious signal at liquid nitrogen tem-
perature was slightly less than 1 uv, which means a 1:1 signal to
noise ratio at 110 to 120°K. This is the reason for discontinuing
the experiment at 100°K, and for less consistency in the data at

high temperatures.
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B. SAMPLES AND TRANSDUCER
Final data were taken on five different resistivity samples of
antimony-doped germanium. The resistivity range was 0.2 ohm-cm with

15 3 . 14 -3
8.3 x 10 cm  donors to 10 ohm-cm with 1.5 x 10 cm ~ donors.
The single crystals were doped and grown in a [100] direction
by the Western Electric Company. They were grown from intrinsic

013 cm=3

rav material with unknown contamination levels of about 1
(quite possibly arsenic) which is probably as good as can be achieved
without special efforts. All crystals were then doped only with an-
timony to the final donor concentration.

The front face, or driving end of each crystal, was oriented in
a [100] direction by standard Back Laue Reflection Techniques (17,
Chap. 8), since a crystal grown in a [100] direction can be several
degrees off axis. Two crystals were oriented with all faces in a
[100] direction, and one was oriented with the side faces in [011]
directions, in order to check on the independence on orientation of
the side faces. The final dimensions of the crystals were approxi-
mately 0.54 cm by 0.54 cm and 4.5 to 5 cm long. The samples were not
etched, and the final lapping was 400 Carborundum grit (=35 u).

Achieving low resistance ground contacts and ohmic signal con-
tacts was of utmost importance in this experiment. This is necessi-

tated by the fact that the ground contact serves as a return path to

ground for the rf current which drives the transducer. Any current
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which flows through the .crystal produces an rf voltage which can be
demodulated by non-ohmie contacts. Furthermore, rf chokes were placed
on the sample holder, close to the signal contacts, in order to pre-
sent a high impedance to the rf.

A layer of gold containing 0.6% antimony about 10,000°A thick
was deposited on the germanium in & high vacuum evaporator. A mask
covered the germanium so that only the ground contact and the signal
contacts were exposed. The gold-antimony combination is then alloyed
to the germanium by heating in a carbon boat to approximately 425°C,
a temperature between the gold-germanium eutectic point and the tem-
perature where copper contamination of the germanium becomes serious.
@opper in germanium is a deep lying acceptor which can compensate up
to three donors (i.e., trap three electrons). It diffuses rapidly
into germanium at temperatures above 500°C, so that the resistivity
of n-type germanium can be appreciably increased (18)9 This temper-
ature was maintained for several minutes, and then slowly lowered,
“in order to achieve a semlequilibrium process which results in uni-
form regrowth layers. The indium absorber is then soldered on the
back end of the crystai) and finally a fresh layer of gold is evap-
orated onto the ground and signal contacts. A heater, in the form
of a miniature 1 K resistor, is thermally anchored to the absorber.
Copper wires (0.004 in.) were attached to the signal contacts with
air drying silver paste. (See Fig. L4.)

The presence of the antimony serves to give a high donor con-
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centration at the surface, which along with a relatively rough sur-
face, greatly diminishes hole injection, and helps produce ohmic con-
tacts (19, Chap. 14). The fresh layer of gold on top of the alloyed
layer gives a low contact resistance. The contacts were ohmic up

to a minimum current of 40 ma at liquid nitrogen temperature.

In preliminary work, large differences in acoustoelectric volt-
age occurred between the upper and lower sections of the crystal.
That is, the voltage measured between the top and middle contact
could be 50% larger than the corresponding voltage between the middle
and bottom contacts. It was finally discovered that this discrep-
ancy was due to imperfect contact between the indium and the german-
ium, caused by an oxidizing film which formed during soldering. The
discrepancy became greater at lower temperatures, because of different
thermal expansion rates of the two materials. This was probably due
to a nonuniform absorption of the acoustic wave, which altered the
acoustoelectric field in a irregular manner. Final data were
taken on crystals where the discrepancy was less than 10%, and usu-
ally less than 5%.

The quartz transducers were Y cut to operate in a fundamental
shear mode of 20 me. They were usually operated in their third har-
monic. The dimensions were 0.51 cm x 0.51 cm and 0.0l cm thick. The
acoustic bond between the quartz and the germanium was made by a thin

layer of Nonag stopcock grease, which solidifies near 200°K. It pro-
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vided good shear wave coupling over our entire temperature range.

The side of the transducer facing away from the germanium was
plated with a thin layer of gold in order to produce a uniform charge
distribution and uniform excitation. The transducer was held against

the germanium by a brass plug on a spring loaded teflon plunger.

C. SAMPLE HOLDER

The samples were held in a two-chamber copper enclosure, to
which was attached a copper can containing charcoal. (see Figs. 5
and 6.) The holder was suspended into a conventional double Dewar
system by a stainless steel tube of 0.5 in. 0.D. and 30 cm long. The
tube also served as the outer conductor for the rf input, the inner
conductor being a tightly stretched .008 in. copper wire. The tube
was attached to the sample holder by means of a BNC connector. The
massive copper sample holder and charcoal-filled can gave the system
good thermal stability.

The two-chanber construction was designed in order to shield the
signal leads from the rf at the driving end. The germanium crystals
were held in cantilever fashion at the ground contact, securely locked
into the notch between the two chambers with a corrugated phosphor-
bronze spring. This provided good electrical and thermal contact be-
tween the germanium and the holder. The fact that the crystal was
thermally isolated, except at the ground contact, enabled the absorbed

power to produce a thermal gradient along the crystal (approximately
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O.5°K/cm), which was necessary for our method of power measurements.
All signal leads and heater leads were 0.004 in. or 0.005 in.
copper wire in order to minimize heat leaks. They were brought out
of the Dewar by means of a second stainless steel tube. Two copper-
constantan thermocouples were used; one to measure the temperature
of the sample holder, and the other to measure the temperature dif-
ferences between the crystal and the holder. The first thermocouple,
which measured the absolute temperature, consisted of three constan-
tan wires in parallel and one copper wire. It was firmly secured
to the sample holder in a position where it was free from mechanical
disturbances, and was calibrated several times, in situ, at the
boiling points of liquid helium (4.2°K), liquid nitrogen (77.4°K),
and liquid oxygen (90.2°K). The extra constantan wires and the free-
dom from mechanical disturbances were necessary in order to cut down
inhomogenieties and possible crimping or stresses which would change
the thermocouple calibration (20, p 134). It was calibrated in place
in order to reproduce the thermal gradients that would exist in prac-
tice, and was recalibrated several times during the course of the ex-
periment. Only minor adjustments were necessary after each recali-
bration. The temperature was interpolated between calibration points
by means of a table prepared by the National Bureau of Standards (21).
The second thermocouple was of the differential type. A constan-
tan wire was thermally anchored to but electrically insulated from

both the absorber and the sample holder by means of nail polish and
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cigarette paper. A 0.003 in. copper wire was soldered to each end of
the constantan. This enabled us to measure the total temperature
difference between the crystal and sample holder due both to the heat-
ing caused by the absorbed power and to the finite thermal resistance
at the ground contact.

Helium was used as the refrigerant in the temperature range of
10° to 80°K. Nitrogen was used from 70°K* to 120°K. The system had
good thermal stability and could stay within 0.5°K of any desired
temperature for the two or three minutes necessary for data taking.
The temperature was raised by means of a heater wound around the

charcoal-filled can.

D. ELECTRICAL EQUIPMENT

The block diagram of the electrical equipment is shown in Fig. 7.
an rf oscillator, of the plate coupled Hartley type, drives a tuned
power amplifier which is plate modulated at 10 kc. The rf unit would
work at either 60 mc or 20 mc by changing the inductors in the tuned
circuits. The final tank circuit was inductively coupled to a short
output cable. Since the cables and transducer present a capacita-
tive load, a small variable inductor, placed on the flange on the
Dewar, was used to tune for maximum power transfer. Another pickup
coil was connected directly to the plates of a Dumont oscilloscope
in order to measure and monitor the modulation percentage.

The signal leads are used both for the acoustoelectric voltage

*obtained by pumping on the nitrogen
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and thermoelectric voltage, and provision was made for switching be-
tween them. When used for acoustoelectric voltage, the leads go to
a type 122A Tektronix amplifier (maximum gain of 1000) used in differ-
ential gain position. This automatically gives the &oltage,between
any two contacts, and subtracts out any pickup common to both. It
then goes to a transistor amplifier (maximum gain of four), and an
emitter follower which drives a phase sensitive detector. The out-
put of the detector goes to a difference amplifier, used as a volt-
meter, which serves as the output indicator. The maximum sensitiv-
ity of the system was 0.5 pv. The signal leads, when used to meas-
ure thermoelectric voltages, are connected pairwise to a Rubicon
type B precision potentiometer. The same potentiometer is used to
measure the temperature and the differential temperature through

another set of switches.

E. EXPERIMENTAL PROCEDURE

Data were taken in the temperature range of 10°K to 120°K. A
convenient modulation percentage was chosen depending on the amount
of power absorbed and the magnitude of the acoustoelectric signal.
When running the two high resistivity crystals, it was necessary to
change the amplification factor several times in the temperature
range of 10°K to 80°K.

The procedure used in taking data was to stabilize the system

at a particular temperature, measure the temperature, the acousto-
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electric voltage between the three sets of terminals, and the thermo-
electric voltage due to the absorbed power alternating between the
top and middle contacts and the middle and bottom contacts. The rf
was then unplugged, and the thermoelectric voltage was reproduced by
running dc through the miniature resistor anchored to the absorber.
Knowing the voltage and current through the resistor, gave directly
the absorbed acoustic power. The temperature was remeasured, the

dc turned off and the rf was reconnected. After allowing the system
to return to equilibrium, the differential temperature was measured.
(It was usually around 1° or 2°K.) The temperature was then raised
2 or 3°K by the heater on the copper can, the heater was turned down,
and the system allowed to stabilize at the new temperature.

The modulation percentage was measured approximately every ten
degrees, by photographing the modulation trapezoid with a Polaroid
scope camera. Amplification factors were measured before and after
each run, and the phase sensitive detector was calibrated after

each run.

F. RESISTIVITY MEASUREMENT

The resistivity of each crystal was measured between 10°K and
room temperature in order to find the number of ionized and neutral
donors at each temperature. The method used was a standard one for
measuring resistivity of semiconductors and insulators (22, p 34y,

Direct current of 100 to 500 ma, depending on the resistivity
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of the crystals, was run between the absorber and the ground contact,
both of which served as equipotential surfaces. The voltage was
measured between the same contacts as the acoustoelectric voltage,
and the standard formula p = % % gave the resistivity. A potenti-
ometer was used to measure the voltage in order to eliminate the ef-
fect of contact resistance. The effect of thermal gradients due to
the crystal hanging in the cantilever manner were corrected for by
using both current polarities, or by measuring the voltage with and
without current. dJoule héating of the crystal represented a negli-
gible error.

The mobility of n germanium as a function of temperature and re-
sistivity is known from the work of Debye and Conwell (23). Since

= = neu, we have the number of free electrons which are equal to the

ol

number of ionized donors at each temperature. The number of neutral
donors is the saturation donor concentration minus the number of ion-

ized donors.



CHAPTER IV

RESULTS

A. REDUCTION OF THE DATA

The intervalley scattering rate is calculated for each crystal
as a function of temperature from the observed audio component of the
acoustoelectric voltage (see Appendix A). All quantities except Rjy
in the formula for the acoustoelectric voltage (2.19) are either pre-
viously known (q and DkZ*) or are measured (power, modulation per-
centage, frequency, etc.). This then determines the absolute value

for Riv since

(l

i?' 1 %3{V -+ Z) }22

3

The intervalley scattering rate Rjy is plotted as a function of
temperature for five antimony-doped germanium crystals in Fig. 8.
The data was fit by attributing the intervalley scattering rate to
phonons and to impurities. It is seen from the data that all rates
approach a common line at higher temperatures, particularly the
purer crystals. This is the phonon line previously found by W.S.W.
At low temperatures, the rates for different crystals are distinctly
different since impurity effects dominate. It is impossible to fit

the data in this range without attributing the rate to both ionized

*D is known from mobility date (23).

50
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and neutral impurities. Following W.S.W.

T T
P\'_V(‘T') - RP( o?xans + (%IO(VIZQ& K Rhiu‘h‘)a‘ (4.1)
donars donors '

The total intervalley scattering rate is due to three independent
rates, and

RDW= NOE VY = N(T) AT o

c{ov\ors

Rg\;}) = Ne(T) vy = N(m) B(T)

(4.3)

where Ny and Nduare the densities of ionized and neutral donors for
a particular crystal at the temperature T. See Fig. 9. A(T) and
B(T) are the intervalley scattering rates per electron per ionized
and per neutral donor. They are equal to the Boltzman average of an
effective cross section times a velocity.

The phonon curve was previously determined, and agrees well
with the high temperature data in this experiment. We have, there-

fore, subtracted off the phonon contribution from the total rate.

R (M) = R, (T) — R(’F) (L.4)

‘mPfAV‘\fnes Ohon

The impurity rates Rimp were fit for the five crystals with
the two parameters A(T) and B(T) by the method of least squares.

The fit was performed in order to give the least percentage error
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in each crystal. This was done by weighting all crystals equally,
and by normalizing the impurity contribution to the intervalley
scattering rate. The normalization was necessary in order to give
equal weight to crystals whose rates at certain temperatures differed
by a factor of 50. The results of the least squares fit are shown
in Fig. 8 as the solid lines and in Fig. 10 as the x's.

The check that we used for impurity concentrations was to cal-

N,2

culate — from our measured values for N, and Nj (Chap. III, Sec. F
o)

and Fig. 9). It can be shown (with obvious modifications in the

. ) N 2 -E m*¥kT 3/2 .
derivation of (24, p 30)) that ﬁi_ = Nye E% where N, = <é;%%> is
an effective density of states in the conduction band, and E, the

N 2
donor ionization energy. Since ﬁi_ is independent of doping, the
o

consistency of the impurity concentrations can be checked. The con-
sistency was good, the only disagreement being in the 0.5 ohm-cm
crystal. A shift of the order of 5% in the number of ionized and
neutral donors at each temperature would bring this crystal into
agreement.

Furthermore, the slope of

/a'\‘ Nz.lT\";/)_
e\ £
No . E,

s | —_
= <

This gives us a check on possible contamination or compensation of

the crystals, since Eo for antimony in germanium is known to be 9.6

2 .
mev. %i—T 3/2 is plotted against % in Fig. 11, where we have aver-

O
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A(T) is the intervalley scattering rate per ionized
antimony donor and B(T) per neutral antimony donor.
The solid line for B(T) represents the theoretical

fit. (See p 113.)

Fig. 10. A(T) and B(T) for antimony-doped germanium.
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2
aged %i— over all crystals. A least squares fit to a straight line

ol
gives E, = 9.3 mev. The value of N, obtained was consistent with an

effective mass equal tox 0.23 m, .

B. ESTIMATES OF ERROR

The quantities needed for the absolute measurement of the inter-
valley scattering rate are modulation percentage, absorbed power,
radio frequency, amplification factors, sensitivity of phase sensi-
tive detector, area of crystal, and the temperature. The error in
these quantities we believe to be random.

There is the possibility of systematic errors such as pickup,
electrical leakage, heat leakage, reverse heating, distance between
contacts, imperfect absorption of the sound wave, acoustic beam
spreading, and ultrasonic attenuation. There is also the possibility
of error in determining the number of ionized and neutral donors at
each temperature. These errors will be discussed below.

The two parameters A(T) and B(T) could have been determined
from two crystals with donor concentrations differing by a factor
of two or three. We have fit five crystals with donor concentrations
differing by more than a factor of 50. The internal consistency of
these crystals (the precentage deviation of the average experimental
value from the least squares fit) is within lO%. This means that de-
spite the large number of quantities needed (few of which can be

measured better: than 5%) the random errors give an overall statisti-
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cal error of less than 10%.

The major possibilities of serious error would be systematic
errors such as reverse heating, heat leakage, and beam spreading
which could give an almost constant percentage error in the meas-
ured intervalley rate for each crystal. These would not affect
either the internal consistency or the reproducibility of the data,
since they would shift the parameters A(T) and B(T) by this percent-
age. The possibility of a major error due to something of this
nature should be small.

We will now try to explain the reasons for our confidence in
the data. The data for each crystal is a conglomeration of data
from several separate runs. Usually, the crystal was entirely re-
made before the second helium run. That is, the old leads, ground
contact, and absorber were removed, and new ones were attached.
Various runs were made with power densities and modulation percent-
ages differing by almost a factor of two. Final data was taken over
a several month period during which the amplifiers and phase sensi-
tive detector were calibrated many times, and the thermocouple cali-
bration checked three or four times. The thermocouple calibration
is believed accurate to #1°K. The reproducibility of data for a
particular crystal was always within 15%.

One possible systematic error is the measurement of the distance

between contacts. The contacts were slightly less than 1 mm wide,
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and the distance between centers was about 1.2 cm. The length that
we used was the distance between centers rather than the closest dis-
tance between contacts. Room temperature resistivity measurements
using the distance between centers agreed to within 3 or 4% of the
average resistivity quoted by the Western Electric Company. The re-
sistivity was measured both before and after heating the crystal to
attach the leads. This gave us another check for possible contamin-
ation, and no significant disagreement occurred. The distance be-
tween centers could be measured to about 0.05 cm out of approxi-
mately 1.2 cm. We would not expect an error of over 5% due to this
factor.

Several of the systematic errors are believed to be somewhat
random. That is, they would differ from run to run, and would have
different effects for different crystals and at different tempera-
tures. Pickup, both external and due to rectification at metal-semi-
conductor contacts, 1s of this nature. Pickup of either type would
be considerably more serious for the 0.2 ohm=cm crystal than for
the 10 ohm-cm, since the maximum observed signal for the 0.2 ohm~cm
was about 6 uv/cm and for the 10 ohmecm it was as high as 150 uv/cm
near 20°K. If pickup were significant in the 15° to 100°K range,
one would expect a considerably worse internal consistency.

Nonuniform acoustic absorption would also be of this type. Re-

making the crystals, and resoldering the absorbers would tend to show
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if there was any serious discrepancy due to nonuniform absorption or
rectification. If nonuniform absorption were a serious factor, it
should show up in poor reproducibility of data taken before and after
remaking the crystal and in the internal consistency between crystals.

Another error of this form is electrical leakage. Surface leafk-
age can be minimized by initially cleaning the crystals well, and
keeping them clean. Leakage was considered negligible except in the
region below 15°K, where it may have been a factor in the poor inter-
nal consistency and reproducibility.

The above "random" systematic errors would also tend to show
up in discrepancies between the two sections of the crystals. Re-
quiring the intervalley scattering rates measured between the top
and middle contacts and the middle and bottom contacts to agree within
several percent further eliminates serious errors.

Pickup was the major problem above 80°K, since the level could
not be reduced much below lpv/cm. This is the reason for more scat-
ter in the high temperature data, and for discontinuing the experi-
ment at 100°K.

We would expect a total error due to these causes to be around
5% in the 15°K to 80°K range and around 10% from 80°K to 100°K.

There is also an indeterminacy in the impurity concentrations.
From the room temperature resistivity, we determined the saturation

number of donors from a graph by Prince (51). Resistivity was then
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measured as a function of temperature for each crystal, and mobility

values taken from Debye and Conwell (23). The number of ionized

donor follows from % = nep, n = N,. dJudging by the consistency of
2 -

N= as mentioned in Chap. IV, Sec. A, we would expect an error of
o)

less than 10%.

Finglly, we reach the systematic errors which would not appre-
clably affect either the reproducibility or internal consistency. Re-
verse heating arises from the 12R losses when rf current flows through
the transducer to ground. The R represents an effective contact re-
sistance. Reverse heating was estimated by the thermoelectric voltage
generated when the mica is present rather than the gquartz. Since, in
this case, there is no acoustic wave generation and no heating of the
,absorber, any thermal gradient produced arises from the IZR loss.

No correction was necessary. In the experiment of W.S.W., this fac-
tor represented a 5 or lO% correction. Perhaps the reason is that
they drove an unplated surface of germanium with its relatively high
contact resistance, while in our case we had a low resistivity of a
gold plated surface. They did not have to plate their front surface
because their ground contact region was of considerably higher con-
ductivity than the active region of their crystal. RF flowed to
ground in their crystals through the entire driving end instead of
Just through a thin layer of gold.

Heat leakage was also a cause of a small error. As previously
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mentioned, it was necessary to have high thermal impedance between
the crystal and the holder except at the ground contact. If all of
the dissipation of acoustic power took place at the absorber, it
would not be necessary to have perfect thermal isolation. For in
this case, since power is measured by the substitution method, the
same heat loss would be reproduced by means of the heater, and no
error would ensue. If, however, there is some distributed loss of
acoustic power due to ultrasonic attenuation and beam spreading, we
can only perfectly reproduce this loss in cases of complete thermal
isolation, as will be explained below. In any event, heat leaks are
due to thermal conductance of the leads. The radiation loss between
the crystal and the holder will be negligible because of their small
temperature difference (20, p 191). A rough calculation shows that
thermal conductance can account for a loss of 5 mw per lead (equal
to 15mw) when the holder is at 20°K (20, p 196). This would repre-
sent a loss of around 5% of the input power, most of which will be
reproduced by the heater.

The last causes of error that we wish to discuss are attenua-
tion and beam spreading. Both factors can lead to an absorption and
a scattering of the ultrasonic wave, with the energy lost by absorp-
tion being converted into heat. Aside from attenuation by the con-
duction electrons, other possible loss mechanisms are
scattering and absorption due to defects, dislocations, boundaries,

etc. Boundary effects would be due to beam spreading. The loss due
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to scattering will show up as a discrepancy between the two sections
of the crystal. In other words, any deviation of the ultrasonic
beam from a [100] transverse wave will mean a diminishing of the
acoustoelectric voltage without a proportional reduction in power
density. This would mean a higher acoustoelectric voltage at the
top section of the crystal, but the same power density in both sec-
tions. This error has already been taken into account when discus-
sing imperfect absorption of the sound wave, since we cannot deter-
mine how much discrepancy is due to scattering and how much to im-
perfect absorption.

We would now like to show that if we had complete thermal iso-
lation except at the ground contact, no loss would occur as the re-
sult of distributed absorption of the ultrasonic wave. Assuming
thermal isolation, heat current flows only to the ground contact,
and the heat current passing through any unit area is simply pro-
portional to the acoustic power flowing through the same area. In
other words, the heat current is the same regardless of where the
power is dissipated, as required by the conservation of energy (con-
version of acoustic energy into heat). If J(x) is the heat current

in cal/sec cm®

, at some distance x along the crystal and S(x) is
the acoustic power density in watts/cm®, then J(x) = AS(x). A is

the reciprocal of the mechanical equivalent of heat i.e., 0.24

cal/joule. The acoustoelectric force is eE(x) = BS(x), and in the
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interval x; to xp,

X, X

e’\]A'. = eE‘(xMx:A@ T dx

£
X X,
The acoustoelectric voltage measured in the two sections of the

crystal will be determined by the heat current in that region, re-
gardless of the location of the heat sources. This heat current
would be exactly reproduced by the heater, leaving invariant the cal-
culated intervalley scattering rates. The acoustoelectric voltage
and the power density were always higher by around 10% in the top
section of the crystal than the bottom. It is only when, for in-
stance, the acoustoelectric voltage is 15% higher in the top sec-
tion and the power density by only 10%, that the discrepancies dis-
cussed before will enter.

When, however, there are heat leaks, the heat current will be
partly lost through these leaks. The heater can only reproduce that
part of the distributed heat current which flows through the ground
contact. It will reproduce all of the heat current which is formed
at the absorber. If we had considerable distributed absorption along
with excessive heat leaks, it would again show up in the discrepancy
between the two sections.

It is also worth noting that data on the 5 ohm-cm crystal was

taken at both 60 and 20 mc.
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At 20 mc, the spatial redistribution rate %;D is slow compared to Riv
and the &éTi term in the denominator is negligible. We have therefore
two linearly independent equations for the same crystal which gave
substantially the same calculated value for Riv' Alternatively, we
can instead eliminate-RiV from the above equations and calculate a
value of~q2. Reasonable agreement between the calculated value and
the value we used corresponding to a deformation potential

\=ly = 16.6 ev or g% = 1.17x10747 Qﬁ; (MKS units) where

1
il

-
$= 3

provides a further check on possible systematic errors. If there

Uy

were serious systematic errors, we could use the calculated value
of fzju, instead of the accepted value,* and we would still be cor-
rect in our values for A(T) and B(T). However, at =~=L40°K where
E(6O me) deviates most from a simple proportionality to aF, we get
¢® = 1.21 x 10°*7 MKS, =), = 16.9 ev. This is within experimental

error of the accepted value.

The last comment we will make is the agreement of the high tem-

*Accepted values of =, range from 16 ev to 19 ev (1,25,26), with part

of the possible discrepancy due to a temperature dependence of :311

(25).
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perature data for the high resistivity crystals with the phonon line
previously determined by W.S.W.

Summing up, we would expect a statistical error of less than
10%, and an error in impurity concentrations of around 10%. We also
expect three errors of around 5%, one due to pickup and imperfect
absorber, another due to uncertainty in the distance between con-
tacts, and the last due to a combination of heat leakage and ultra-
sonic attenuation. Since‘these errors are independent, A(T) and
B(T) should be reliable to around *15% in the temperature range

15°K to 80°K, and probably around *20% from 80°K to 100°K.



CHAPTER V

INTERPRETATION OF INTERVALLEY SCATTERING RATES

A. PRELIMINARY REMARKS

We wish to discuss the problem of donor induced intervalley
transitions, and how different donors will affect this transition
rate. Straightforward calculations of intervalley scattering rates
due to the shielded Coulomb field of a donor gives results which

~are several orders of magnitude too small. The reason is that an
intervalley transition involves a large momentum change, and the
shielded Coulomb field is too weak to provide this kick.

Intervalley scattering, as will be shown, depends on the de-
tailed structure of the donor. The structure of donor states in
germanium is a. topic of considerable interest, and there exists an
excellent review article on this subject by Kohn (10). Since we
cannot discuss donor induced intervalley scattering without some
knowledge of donor states, we will give a concise introduction to
this subject based primarily on the article by Kohn.

For the sake of completeness, we should mention phonon induced
intervalley scattering, which predominates at high temperatures. A
< 100 > phonon is necessary to induce an intervalley transition be-
tween any pair of valleys. In the simple model proposed by Herring

(13) and used by W.S.W. (1), only one phonon energy is considered,

68
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and the actual phonon energy determined will be a weighted average
of several possible phonons. The "intervalley phonon" determined
by W.S.W. agrees well with the present experiment and corresponds
to the two degenerate < 100 > phonons determined by Brockhouse

et al., (42), from neutron diffraction experiments. The phonon en-
ergies in units of %Z, correspond to a temperature of 310°K, and
are the longitudinal acoustic and longitudinal optical phonons.

The lower energy < 100 > phonons (transverse acoustic) are symme-

try forbidden according to group theoretical arguments of Lax and

Hopfield (38).

B. THEORY OF DONOR STATES IN GERMANIUM

A donor, with five electrons in its outer shell, enters sub-
stitutionally into the germanium lattice. It forms covalent bonds
with four germanium atoms, and its extra electron is weakly bound.
We can picture the donor as a closed shell with a single positive
charge, giving rise to a Coulomb potential %;. The dielectric con-
stant K enters because of polarization of the host lattice, and at
distances far from the donor where this approximation is valid, K
is taken as the static dielectric constant for germanium. An elec-
tron bound by this weak Coulomb field would in general be expected
to execute large orbits, because of its small effective mass (ap-
proximately 0.2 free electron) and the shielded nature of the po-

tential.
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The Schroedinger equation for an electron in a crystal in the

field of a donor is

{«jf__ 7L - Y= EYE o

LMo

where V«r) is the periodic crystalline potential. In the effective
mass approximation, the equation becomes
T 2 1 2

{‘;—% @fxz +?—a—gz> -3 et } EG)=E F) .2

t Mg DE Kr
where m, and m, are respectively the effective masses along the sym-
metry axis of the valley and normal to the axis. ZEven though
m, ~ 20 m,, we will for illustrative purposes assume an isotropic ef-

)1/3$$().2mo where m_ is the free electron

fective mass m¥* = (mim 5

J/

mass.

With this further approximation, the equation is

B g {Fp= EFD 07
KY

2m*

This is the hydrogen equation with mo replaced by m* and e®
replaced by eg/K. The F(r) are hydrogen-like envelope functions.

If the assumption of isotropic maess is not made, the equation
must be solved by variational methods, and the F(r) will not be
sphérically symmetric for S-states, but will instéad be compressed
in the heavy mass direction. In either case, the states are la-

beled with the usual hydrogen notation ls, 2p, etc.
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The validity of the effective-mass approximation, where we have

incorporated the crystalline potential into an effective mass is dis-

el

cussed by Kohn (10, p 274 £f). The basic assumptions are that o

varies slowly with respect to a lattice constant, and that the elec-
tron energy, in the neighborhood of a conduction band minimum be a

continuous, differentiable function of crystal momentum i.e.,

e(g)- (ot 6B, @RS

2M¢ 2my

where P. , P, P are the crystal momenta at the energy minimum.
X0 Jo Zo

The symmetry axis of the constant-energy ellipsoids i1s taken as the

7z axls. The wave function for an electron bound to the donor would

Vo) = Y(k,r) F(O)

be

where (ﬂ(g,g) is a Bloch wave function and k = P;/A is the wave

vector at the energy minimum,

L

g
¢(e,r)=ulBir) €

where UK%,;) has the translational symmetry of the crystal. It
varies rapidly over a unit cell, and approaches the atomic wave

function in the neighborhood of a nucleus. The envelope F(;) must

change slowly over a lattice spacing, since this is equivalent to
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e2
requiring ¥y to change slowly over this distance. The wave function

H{(g,g) is a physically plausible result since a free electron in a
crystal is described by a Bloch function, and an electron weakly
bound to a donor is then a Bloch function slowly modulated by a hy-
drogen like envelope.

In this approximation, the eigenvalues E, for "8" like states

Fo- L eﬁm*
nT e —_—

are

1l
The ground state is E, = KZ m = EH and the donor "Bohr radius"

K mO

ap = & where Ey and ay are the ground state energy and Bohr

radius for the hydrogen atom. Since K for germanium is around 16,

aDp

A variational calculation using the following trial function

Es - <,’7—l£{?b “Q’Y’P( jx?d-gz ED

gives a = 6L4.5A°, b¥22.7A°, and E3'= 9.2 mev. We now take the

1/2
and m¥/my % 0.2, Eg 2210.5 mev, ap R L4OA° and Fyg =él 9 e'r/aD.

effective radius a* = (agb)l/%xh6A°. Since Eg is the donor ioni-
zation energy which is known experimentally to be 12.7 mev for ar-
senic and 9.6 mev for antimony, corrections to effective mass
theory will be required.

Since, however, we have four equivalent valleys, we will have
a four-fold degenerate solution to the effective mass equation (omit-

ting spin degeneracy). The solutions are therefore
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i A @ 4, o
Y(@ = ZZ— (- e(ki,r) E(r) =§_'o(f)a(;gm) E@@‘f’?‘ r
= A=)

where 1 labels the valleys, and i and j run from one to four. FEach
Qﬁki,r)Fi(r) is composed of momentum states from the extremal re-

m

gion of a single valley. The Lg(gi,;) are chosen to be equal at any
lattice site, in particular at the donor nucleus r = 0. The Oéj)
are numerical coefficients, and in the limit of the validity of the
effective mass approximation, we set oy = Sij. We have four de-
coupled solutions, each belonging to a single valley, and no mech-
anism for transitions between valleys exists. Valley is, therefore,
a good "quantum number."

The presence of a donor, representing a local positive charge,
destroys the perfect translational symmetry of the lattice. In par-
ticular, bound electrons whose orbits penetrate into the central cell
and possibly into the donor core, due to the breakdown of dielectric
shielding in the immediate vicinity of the donor, will see a poten-
tial that is rapidly varying with respect to a lattice constant.
This is a violation of the effective mass approximation, and it will
give rise to a splitting of the original four fold degenerate levels
into a singlet and a triplet. The magnitude of this splitting is a
measure of the change in the polarization energy of the lattice as

the electron penetrates into the central impurity cell. This split-

ting will be greatest for the deepest penetrating orbits (i.e., low
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lying S states) and is called the 'valley-orbit" splitting. It
represents the breakdown of the effective mass approximation.

The exact form of the central cell potential is not known. It
can, however, be taken into account by adding to the original Hamil-

tonian

a perturbation U(g) which is large only in or near the central im-

purity cell. We take (27)

‘R*- . - . —“—[B }
= J‘h(r)[Ho *U(fﬂ*\y}(’“)i'*:v =B 5 CER (5

where the Wa(r) are the single valley wave functions.

The modified Hamiltonian in matrix notation is

|-EF0 =& - =D
H | —& “Ern - =D
(3 .

-h =& -E-A -b
- b -n -E-b

In this new representation, the original four-fold degenerate

(5.5)

levels have been split into a singlet and a triplet. (A small split-

ting would exist, however, even for U(r) = 0.) The singlet energy

is E = -E}MA and the triplet is ET = —Eg The negative sign has been
I a— R amm

chosen for the matrix elements A since it is known that the singlet

lies lowest in arsenic and phosphorus-doped germanium (50), and is
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probably also lowest for antimony-doped germanium.

The wave functions are again written

Y Zcx "¢k, ) F ()

but the eigenstates of this Hamiltonian, instead of the previous sin=-

gle valley states are linear combinations of them.
(s) |
- (S l
- .
Yo'= LY+t “/év“@ ] G

where Yy = Va(kl, JFz(x), etc.
The singlet is the totally symmetric combinaticn of the four

valleys. The triplets‘ﬂﬂé§) are
Y(m) = “ZH). -1, ) = %]
V) =g[ ¢ - -+, (5-60)
Y(Ta):i;_[\ﬁ + 1 —-%3—“/{,]

An electron, bound to a donor, is no longer in a single valley, but
in some linear combination of valleys. Valley is, therefore, no
longer a good "quantum number. "

The quantity“MA"is the valley-orbit splitting. The ground state
splittings have been measured for the common Group V impurities.

The results are

4.1 mev  (25,29,30)

Arsenic LA

Phosphorus LA

3.0 mev  (29,30)

Antimony La = 0.6 mev  (31,32)
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The valley-orbit splitting is around one-third of the donor ion-
ization energy in arsenic, and only approximately one-fifteenth of
the ionization energy in antimony. These two donors provide the ex-
tremes for studying the effect of the valley-orbit splitting on the

intervalley scattering rate. (See Fig. 12).

C. INTRODUCTION TO THE IONIZED DONOR -PROBLEM

We mentioned in our preliminary remarks that the shielded
Coulomb field of a donor was too weak to produce appreciable inter-
valley scattering. This will be shown in Sec. D.

Two mechanisms have been proposed for ionized arsenic donors.
The first is direct transitions caused by the central cell potential,
for which, to make the calculations tractable, we pick a delta func-
tion located at the donor site (Sec. D). This model is due to
Price (11), and predicts an intervalley scattering rate which de-
pends on the square of the valley-orbit splitting. The other mech-
anism is a compound capture re-emission process (Sec. E). An elec-
tron is captured into an excited state of the donor, from which it
may be directly re-emitted, or it may cascade among the various ex-
cited states before re-emission. Its subsequent re-emission may,
in either case, take place intc a valley different from the origi-
nal one. According to Koenig (12) this process, which was first
proposed by W. S. W, should be linearly dependent on the valley-

orbit splitting.
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energy levels of donors in germanium (S states only).




(S

The compound capture re-emission process is not readily calcu-
lable, but it appears feasible that the total intervalley rate due
to ionized arsenic could be fit by adding to the direct scattering
by the delta function the contribution from the compound capture
process.

For antimony, however, the situation is somewhat different.
Since its ground state valley-orbit splitting has been measured to
be one-seventh that of arsenic, we would have expected the rate
per ionized antimony to be considerably smaller than that for ar-
senic. This is not, however, what has been observed. At 20°K
(cf Fig. 10 and 13), the rate per ionized antimony donor is one-
half that per ionized arsenic. At 100°K, the factor has become one-
tenth. The temperature dependence of the scattering rates are,
therefore, distinctly different. The rate per lonized antimony
donor follows a simple temperature dependence, while the rate for
arsenic is such as to indicate that both above mentioned mechanisms
contribute. For antimony, however, the sum contribution from these
mechanisms does not appear to be large enough to fit the observed
rate. (Secs. D and E.)

The valley-orbit splitting, as previously discussed, depends
on the central cell potential. To the author's knowledge, these
potentials are not known analytically, and the valley-orbit split-

tings for the various donors in germanium have not been successfully
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Fig 13. A(T) and B(T) for arsenic-doped germanium (1).
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calculated. The matrix elements — A used in the last section were
chosen so that they would give the measured valley-orbit splitting.
We will show in Appendix C that we can adjust the magnitude of a
delta function to obtain the observed splittings. There is no
unique potential for obtaining this splitting, and apparently no
good reason why the splitting for arsenic should be appreciably
larger than for antimony. In fact, arsenic, which has the largest
valley-orbit splitting of the Group V donors, is right next to ger-
manium in the periodic table. One might, therefore, guess that ar-
senic would "fit" better into the germanium lattice than would an-
timony and phosphorus. However, although radii of the donors vary
monotonically as one descends column V of the periodic table, the
valley-orbit splittings do not (33).

The compound capture re-emission process turns out to depend
predominantly on the excited states, with only negligible contribu-
tion from the ground state. The valley-orbit splittings of the ex-
cited states have not been measured, but we have calculated them
using hydrogenic wave functions and assuming a delta function for
the central cell potential (Appendix C). It might be possible to
find a potential which would give the measured difference for the
valley-orbit splitting of the ground states of arsenic and antimony
donors, but would give less disparity in the excited states. How-

ever, this is somewhat speculative, and we will conclude by saying
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that the subject of the valley-orbit splittings is not a closed one.

D. IONIZED IMPURITY SCATTERING-DIRECT
We first wish to discuss direct intervalley scattering by the
potential field of an ionized donor. As is shown in Appendix C,

the donor potential can be written

GERRTE Y(y) (5.7)
Kr
where
X = —-(?fl)) _ - \15’7 C&*B
4 [P [ulko)| ™
V(r)
N
-
4*\\§ ng
K
- X B0

Following the notation of Landau and Lifshitz (34, p 410 ff)

for the scattering amplitude in Born approximation
@

-'t{.r 2 C‘Bz‘f
f0)= 2 |l (&) ul, )€ 4y

Kr s

0
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The periodic part of the Bloch functions are given an appropriate

average, and can be removed from the integral
)

-—'htr L [le.!-
= m Uk, Uk ‘e’u-(.c..)e
€(9)‘z,.~.ﬁ‘ u(knr)u(ﬁl),r;)\o = da
= ym/er || Wle,r) (e r)| (5.8)

-hz ’AK@* ’ “’5« *”B—z_l =

For an intervalley scattering process, lgljggl is of order %E

where "C" is a lattice constant. That is, the Coulomb field must
supply momentum components of“ﬁigi, which means the electron must

penetrate into the central cell,

The cross section is

g=3fc;’(9)dﬂ - 3 (]t da

&= 3.5x107° [w* (=, ) u(Ve&)r)/ ar*
€95

The factor of three enters because of the three possible final val-
leys.
' 2
Now, the experimental cross sections are of order a* , sc that

direct scattering by a Coulocmb potential is several orders of magni-

tude too small. Furthermore, the factor |W¥(ky,r)W(ks,r)| is nearly

unity for |ki|~ |kz| i.e., an intravalley process, but is consider-
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ably less than unity for an intervalley process. We conclude, there-
fore, that direct scattering by means of the shielded Coulomb field
of a donor ion mekes a negligible contribution to the intervalley
scattering rate. This is opposed to intravalley scattering where
scattering by the Coulomb field is the dominant mechanism, since in-
travalley scattering requires only a small momentum change (35).

The possibility of direct scattering by a sharply pesaked poten-
tial was pointed out by Price (11). In unpublished work, he has
been able to fit W.S.W. data for ionized arsenic impurities in the
region above 45°K with only a delta function scatterer.* Below 45°K,
the difference between the experimental and the calculated value in-
creases rapidly. We have sketched Price's work below with several

minor modifications.

Ox "L"E(l.‘ “31'!—
ﬁ (8) = 2%;]7. U*({fn!') e FD(‘ S([ﬂ L((‘f{,)r)e - JI

= M K/M('#QO)/Z

Mk

3
_ %
f ()= _Z—V;"—%z o4 (6.9)

*The reason why'é delta function should produce appreciable scatter-
ing is discussed by Bohm (36, p 538).
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We have used plane waves where we should have been using Coulomb
functions. This is particularly true at the origin where the plane
wave approximation is poorest. Since we are only interested in the
electron wave function at the origin, we can use an enhancement fac-
tor which is the ratio of the squared modulus of an attractive Cou-
lomb wave function to a plane wave at the origin. According to

Landau and Lifshitz (34, p 422) this factor is

ol
- 271 (~27)
= 20 _ ex ( 27
ik a” [' ART a*)] (920
H8k is the electron's thermal momentum and

et =[G =JE

where
. T
* e ‘ = IR
Bo = o and ==
! 2m*
is the thermal energy; Eg is the effective mass ionization en-

ergy. (According to Price, this is the correct energy to use.)
Since we are working at temperatures where Eg > E, we can omit the

exponential in the enhancement factor, so that

R= 27| E)

2 (5.11)
t
and the Born approximation scattering amplitude becomes
3
]C <e> _mtha £
PR - - (5-12)

;‘#‘Z_ E
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and

3 (@l da =rq [4e)

since f2(©) is isotropic and the factor of three is again for the
three possible final valleys. Therefore the total intervalley scat-
tering cross section for this process is
- 3 * 2 i #
6\/'“ 120" M DZ &i\*‘o E’
Ty —2 (5.13)
h
E
A (T) (the intervalley scattering rate per donor due to the

delta function) is the thermal average of ov given by

Ev) = f £- e“’<;<ﬂ dE

jcg = ’”?‘P( M) O(E

0
The thermal average of v/E is given by

‘v\N=— 2 X
/\E‘ N \)%"Im*//aT

consequently

%
/51('77) = 57 AR PULCED

with a T_l/z temperature dependence. Using effective mass values for
*
a*(L6°A) and E4(9.2 mev) and with m* = 2 x 107%8gm, 4A = 4.1 mev for

arsenic, and 0.6 mev for antimony, we get
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L.

ACT) % o 07¢ (129)" ool
R

(5.15)

for arsenic and
7, 100 )%
) SX/O‘(Q?) 3
A(T)x 8, ™ 5&3 (5.16)

for antimony. For arsenic at 50°K, A(T)x5.6 x lO'Gcms/sec which is
exactly the experimental value from W.S.W. For temperatures above
50°K, A(T) has the right temperature dependence. Below 50°K, how-
ever, the experimental value is greater than the calculated value
and this difference increases rapidly with decreasing temperature.
For antimony, A(T) is considerably smaller than the experimental
value over the entire temperature range, and has the wrong temper-

ature dependence.

Direct scattering by the delta function can account for the ob-
served rates at temperatures above 50°K for arsenic. (However, we
feel that, in a correct theory, A(T) due to the above process would
make a sizable contribution for temperatures above 50°K;
but not the entire contribution.) At lower temperatures for ion-

ized arsenic donors, and for the entire temperature range for ion-

ized antimony, some other process must be operative.
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E. TIONIZED DONORS-COMPOUND CAPTURE RE-EMISSION PROCESS

The second process that we wish to describe is the capture of
an electron into an excited state of a donor, and its subsequent re-
emission at a later time into a valley which may differ from the or-
iginal. The initial capture process is related to the "giant trap"
mechanism of Lax (37). Lax describes how an electron, moving in
the vicinity of an ionized donor, can dissipate approximately kT of
energy in order to be initially captured into an excited state of
binding energy U. He considered recombination processes where the
thermal density of carriers was disturbed by means of impact ioni-
zation due to a pulsed external electric field, and the measured
quantity (39,47) was the recombination time in which the electron
density returned to thermal equilibrium. From this recombination
time, cross sections were calculated. The electron was assumed to
diffuse or cascade up and down the energy scale (the various ex-
cited states) and is either captured into the ground state or es-
capes in a time short compared to the measured recombination time.
In other words, the individual Jumping times among the excited
states and between an excited state and a continuum state is short
compared to the eventual recombination time. The diffusion up
and down the ladder takes place by absorption and emission of
phonons (phonon processes are considerably faster than photon pro-

cesses), and if the electron reaches an excited state of binding en-
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ergy KT below the conduction band, there will be few phonons avail-
able that can scatter it back. ILax describes this by means of a
sticking probability P(U) where P(U)= 1 for U > kT and considerably
less than 1 for U < kT. The total cross section is the sum of all
states j of % oc(3)P(U3) where oo(j) is the capture cross section
for the j'th state. It turns out that only s-states contribute ap-
preciably to the total cross section (L40).

We are dealing with a thermal equilibrium process, and we
need the capture to last for only a finite time. As an electron
is captured, another electron is emitted from a different donor
so that the thermal equilibrium density is maintained. Analogously
to Lax's sticking probability, Ascarelli and Rodriguez (L40) have
calculated thermal emission rates for temperatures below 10°K.
States having sticking probability close to one will have long
thermal emission times (small thermal emission rates) while small
sticking probability implies short emission times. They also
state a formula for the rate of cascading (transition rate) be-
tween any two low lying excited states.

We have calculated the thermal emission rates for the first
four excited states (j = 2 to 5) for temperatures of 25°K, 50°K,
and 100°K, modifying the calculation of Ascarelli and Rodriguez
to fit our temperature range. We have also calculated transition

rates between several low lying excited states. Our calculations
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are discussed in Appendix D and are listed in Tables I and II.

The crucial quantity in determing the intervalley scattering
rate for a given state is the product of its valley-orbit split-
ting and the average time an electron spends there. This is why
a difference between antimony and arsenic donors would be expected
(due to the difference in valley-orbit splitting); states which
would be most effective in inducing intervalley transitions are
those in which an electron spends Jjust enough time to make an in-
tervalley transition, and is shortly thereafter re-emitted into
the continuum. For the ground state the electron is there too
long, and for high lying excited states it is not there long
enough. We will now attempt to put this in a more quantitative
form.

As shown in Chap. V, Sec. B, the singlet and triplet wave

functions for an electron bound to a donor are

Vo= 1ttt % (s60)
YT, Ll“« -f Y- khf—] (5-64)
=4[t -% %+
L=ttt % %

7

and ES = "E:"LfD ) ET -7 l::o

1"

1
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where =‘€5kr)F(r) are the single valley wave functions.

To consider a specific process, let an electron belonging to
valley 1 be captured by a donor at t = O, and we follow the elec-
trons wave function in time.

At t = 0, its wave function is

o= {(fs t e L i/)“zj

and at a later time t

V)= ; /“l;’g e R (Yot k 7; ¢

-

since‘q(é and thefﬁ&'s are the solutions to

jf; — (1 LT/ Eﬁ‘ - ¢ jﬁ > ¥3 ;:ggi.!<s
H v = (HOJ[. U(r))é_us /Jat

A Y, ey,

o vT’

and therefore
(B4 +
V() = Ylo) € Sk

etc.

Because the singlet and triplet have different energies, they
change their phase. differently in time. Consequently, at a later
time the electron will be in a different linear combination of sing-

let and triplet corresponding to a different valley or, in general,
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combination of valleys. If we, therefore, give this process time to

work, we have a finite probability for an intervalley transition.

Substituting back for the single valley functions and defining

ha

Vv = we get
‘fl’ g

Et¢ ¢ o |
O (TR AR

E

_ 8‘:%‘& L’T(ES +e“”9\ﬁ+ﬁ(€§u€l)(ﬂ +¥+ V;)

The probability that the electron will have made a transition
from valley 1 to some other valley at time t is three times the
square of the coefficient of one of the other valley functions.

!

2
e 31 vt _ [ - 3/(_
Probability = =2 [& | = = CeD IJt
T g ( )

The transitions occur at a rate v =‘%A having a maximum prob-
ability of 3/4 and a time average of 3/8. However, the probability
of making a transition at time .t must be weighted by the probability
that the electron has not left a particular level before time t.

This probability will be of the form exp(—t/?j), where ?j is the

average time that an electron spends in the j'th level. :_ depends
J

on the rate of emission into the continuum or conduction band (ther-

mal ionization rate) and on the transition rate to all other bound
states? -1:. = (39_ + Z M{;l-"? !
,2% ) 2
}#3
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where Bj is the thermal ionization rate and Wj > 3 is the transi-

tion rate from bound state j to bound state J'.
The probability, therefore, that an electron leaving a level

at time t will leave in a different valley is

;;; [I' @Ugfj L4p <"f/,%

The subscript on the v indicates the valley-orbit splitting of the
J'th level as described in Appendix C.

The time average probability is

- = Tt (5.17)
-t /) 2
0

The total rate of transitions due to a level j is

- . __ l)z—'}'—
By éi: Wi g FD(D T > =3 Z - %E
b 7, b [ POy7,)= 3 pp

since this is the total rate of leaving a level times the probabil-

ity of an intervalley transition occurring. This rate is a maximum

for Vj?j = 1 or equivalently
B o
= W !
BT AT e Yoy
J 7

and is equal to 5/16 vj. A state is most effective therefore when

the rate at which intervalley transitions occur (vj) is equal to the
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rate at which electrons leave (Bj + lej - j')’ so that the electron
J

spends just enough time to make a transition.
This means that if we have a state for which
v, = By é;f Wy 541
f 9&7%94
the resulting intervalley transition rate is¢$5/l6 v.: while for

J

other states the rate is correspondingly less than the maximum. Of

B.
this rate, the fraction d is directly observable,
By ¥ i+ gt
J'#J
Zhj > jl
and the remainder 5.+ ST is observable when the electron
SIS

is emitted from some other state. (We only observe a transition
when the electron is re-emitted into the conduction band.)

We would now like to explain, in a little more detail, what
W.8.W. called the compound capture re-emission process. An electron
is captured into a state j having a capture cross section Gc(j). It

B
may be directly re-emitted [this probability is J
5J'+ZWJ+J'

or it may make transitions up and down the energy scale [ the prob-
g

Bj + 0w

ability for any such transition is What has to

J>J

be determined is the intervalley scattering rate due to every pos-
sible sequence of events weighted by its probability of occur-
rence. The total rate is then the sum of all these weighted

individual rates. One limit which can. be
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calculated is the complete omission of internal transitions (this im-

plies that >> 50w,
g S 270

which we know to be incorrect). See Tables I and II. The other
limit . consists of assuming that there is a considerable amount of
cascading down to the first excited state and the ground state,
where the characteristic rates Vj of making an intervalley transi-
tion are large. The electron then cascades back up the energy
scale where it is re-emitted into the continuum. We will now cal-
culate these limits.

In order to maintain the thermal equilibrium density of car-
riers, the number of electrons bound to donors in level j times the
thermal emission rate from that level must be equal to the number

of free electrons times the capture rate of that level:
N? —n(/\/ AL
o Py = + oc (2 (5.18)

The capture rate is the number of ionized donors N, times a
thermal average of the capture cross section and electron velocity,
and n is the number of free electrons. Ng is the number of neutral
donors in which the electron is bound in level j, and Bj is its
thermal emission rate.

Now, we multiply both sides of the above equation by S(J),
where S(J) is the total probability that an emitted electron has

undergone an intervalley transition. AJ(T) (the intervalley scat-
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tering rate per ionized donor due to the j'th level) is <Uc(j)V>S(j),
since this is <oy, V> where Uiv is the effective intervalley scatter-
ing cross section; so that

(1)= NP5 50)

n Ny

(5.19)

and the total ionized donor contribution is

A (qj) = E;h %\g,<q1)

We have that
E:—€
1 %W(;?}'\".T& Ny
o _..é:f - (5.20)
;ﬁ,'wP(E’;{T) 2 % Q/ff 7 )

where ND is the concentration of donors, gj 1s the degeneracy of

N

the j'th level (for s states g = 8 because of the two-fold spin and

the four-fold valley degeneracy), and EF and €.

j are the Fermi energy

and the energy of the j'th donor state.

The first factor in the above expression is the fraction of
electrons which are bound in level J, and the second is the total
number of neutral donors at temperature T.

This reduces to

= Ny 9o B
CTwe(em) o

E.— €,
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Furthermore,
N, = Do
. = €, (5.22)
s
and
- N EF"EC)
n= 99 Ve NP( wT (5.23)
so that

E. g
32N0Q4/’}>E777_: nﬁ’“/’PE

where EC is the conduction band edge energy, and the density of

states factor is given by
35 K

N = /’”*kr/-]

A

(see, for example, 41, p 284 ff).

After some reduction, we get

A?(T> - A 5(9)%,”0( —Tfﬂ)

A%:
and defining Ec-ej,= Ej’ the lonization energy of the j'th state
E ¥
= ——, the final result is
J
;f E

*Contrary to convention, we do not include the degeneracy in the
definition of Ng.
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The problem now is to calculate S(j), the average probability
that an electron emitted from level j will have made an intervalley
transition. This probability must include the effect of electrons
emitted from level J which have reached the states j = 1 or 2 and
have cascaded up to J. To actually find S(j), we must follow the
path of many electrons from capture into j or some other excited
state, until eventual re-emission from j into the continuum. This
suggests a Monte Carlo type of calculation which we have not at-
tempted.

In the limit of BJ>L>EE: W the dominant process will be

I%%

direct re-emission from the same level into which capture occurred.

3"

The probability of the electron having changed valleys upon emis-

sion from j is

P(4,%,)= ;— AR

/+é7— “;—
so that for B > > 2w, .,, this reduces to
J J7J ley/ N
>\ - \ — 3
P, T, )= S(3) = = L0

6 1+ Yy By
This approximation is not very satisfactory, as can be easily seen
from Tables I and II. For example, an electron captured into j = &
has an appreciable probability of making a transition to j = 3.
Continuing down the energy scale w3 is comparable to Bs.

> 2

In the limit, however, of neglecting cascading, we have simply



B2
Pa
Pa
Ps

1.6x10
8.0x10°
2.0x10°

1.0x10°
6.7x10:
1.6x10

1.3x10°
5.5x10°

9.8x10™°
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AL
TABLE I
THERMAI, EMISSION RATES
Bj(sec'l)
(Calculated from (D.11) to (D.1h4))
05°K 50°K 100°K
5.2x10° 1.0x10*° 2.1x10%°
6.2x10%° 1.2x1011 2.5x1011
3.5x10%1 7.0x1011 1.4x1012
6.3x10% 1.3x10%2 2.5x1012
TABLE IT

INTERNAL TRANSITION RATES
v, ., (sec”l)
J*J

(Calculated from (D.17) and (D.18))

0

Wss1 = 6.1x10
Werl = »1.7xloz
Wary = 5.5x108
Wory = 5 . BXlO
Ws»3 = l.EXlOi;
Werz = 2.7x10
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The results obtained from (5.25) for antimony-doped germanium

using the values for Bj in Table I and vj in Table III are given

below in Table IV and compared with the experimental value.

TABLE III

CHARACTERISTIC RATE OF
CHANGING VALLEYS vj(sec'l)

Antimony Arsenic
vi = 9.1x10 " vi = 6.3x10 -
ve = 1.1x10™" ve = 7.8x10™"
vs = 3.Lx10™° va = 2.3x10°"
va = 1.kx10™° va = 9.8x10"°
vs = 7.3x10° vs = 5.0x10°°

vj = %%i, where hAj is the valley-orbit splitting of the j'th
_ ha

state. From Eq. (C.11), uAj = -, where LA is the valley-orbit split-
J

ting of the ground state = 0.6 mev for antimony and 4.1 mev for arsenic.

TABLE IV

COMPOUND CAPTURE PROCESS FOR ANTIMONY
(A(T) in cm3/sec)

05°K 50°K 100°K

X -6

Ob d .5x10 -8 -7
3:;12 25 1.7x10 L, 2x10
Ao 1.9x1077 7.2x1078 4.2x1078
Ag 3.1x10° 7 5.%x10°8 8.8x10°°
Ay 1.0x1078 1.5x107° 2.6x107*+°
Total 5.1x10°7 1.4x10°7 5.1x1078

For comparison, we have also calculated A(T) from (5.25) for arsenic
at 25°K. The contribution from this process is 1.7x10 °cm3/sec

which when added to the delta function contribution (8.OxlO_6cm3/sec)
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Eq. (5.15) gives for the total rate 9.7x10_6cm3/sec. The observed
value from W.S.W. is l.5x10_50m3/sec.

We have omitted the ground state from the above mostly because
our approximation for calculating Bj is not valid for j = 1. It
seems clear, however, that its thermal emission rate should be
quite small, since a phonon of energy greater than kT is necessary
to liberate the electron, whereas for other states the opposite is
true. In the limit v, > > By, the direct rate reduces to 3/8 By
so that the ground state would be negligible.

It is seen that this limit is approximately an order of magni-
tude too small for antimony, and even adding the delta function con-
tribution (~8.5x107° @%9)1/ 2) helps only at the high temperature
end.

In the other limit, cascading is significant, and we assume
that at least one level attains close to its maximum possible rate.

This occurs for Qj*'}:wj+j' = Vi and the rate is 3/16 vy From
J#

Tables I, II, and III, it appears that the only plausible candidate

is j = 2. For higher states Bj is already greater than Vj’ so that

including internal transitions, these states are less effective

than in the previous limit. For J = 1, it appears that

"

B1 +%;J'wl+j' is too small in comparison to ¥y for this state to
JFL

achieve maximum effectiveness. There should, however, be some con-
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tribution from this state.

We now assume that A(T) can be written (cf 5.24)

A (7“) sz ’9]‘5(”[&/;\%/" WPQZ/@J (5.26)

and the state J = 2 attains its maximum possible rate. Therefore,

Z W‘—”‘BQJS(Z) ~ 3 )

J "£2

For j = 1,
2 4 S Wiy ‘S(VJ
Ug' I g

where "f" is an adjustable fraction allowing us to match the experi-

mental data.

- 3 A{l-—: — < -+ W
t4 = ¢ Ui‘“jga ~ “gﬂﬁ' & oy’
for
VC 3> ﬁ%? E [- @: u i; W, 3/~J

For 25°K, Ap = 2.1x10 “cm"/sec, which means Ay should contrib-

ute X 3.3x10"%cm®/sec. This gives f‘?ﬁg%a.

might appear reasonable, but it implies more than lO9 transitions

At first sight, this

per second from the ground state. From Table II, however this ap-

pears much too large.
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At 50°K, As = 4.2x10" cm /sec, so that A, must contribute
i~/ l.2x10-6cm3/sec. f is then approximately %6, so that more than
10*° transitions per second from the ground state are required.
This also does not appear to be reasonable.

The above overestimates the actual situation. TFirst, because
we would not expect j = 2 to attain its maximum rate, but, at best,
something close to it.

Furthermore, some of the electrons making transitions from
J = 1 or 2 to a higher state, may return to these states before re-
emission into the continuum.

For ionized arsenic, the j = 2 and j = 3 states would be ex-
pected to contribute to the intervalley scattering rate, and no
contribution would be required from the ground state. It appears
reasonable, then, that the contribution from the compound capture
process added to the rate due to direct scattering by the central

cell potential could fit the experimental data.

F. CONDLUDING REMARKS ON IONIZED DONORS

It might be advantageous to specifically point out in detail
the difference of A(T) for antimony and arsenic. (See Figs. 10
and 13.) At 20°K, the rate per ionized arsenic donor is roughly
twice that of antimony. The rate for antimony follows a simple
temperature dependence of approximately T-g which means the ef-

. . . . -2.5
fective intervalley scattering cross section Giv goes as T
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(A(T) = <04,V >). The rate for arsenic which initially falls
rapidly, levels off with approximately a T—o.s dependence. This
leveling is presumably due to direct intervalley scattering by the
central cell potential (Sec. C). The rate for antimony and part
of the rate for arsenic were believed to be due to the compound
capture re-emission process. The maximum difference between the
two donors occurs at the highest temperature measured (100°K), and
is about a factor of 10. Here, the rate for antimony should begin
to level off due to the onset of direct scattering; however, we
.cannot determine this from our data.

It may be worth mentioning that recombination cross sections
(39,47), briefly discussed in Sec. E, follow approximately a T~ 2-5
temperature dependence. These cross sections have been measured
up to 10°K, and s extrapolation to 20°K gives a result considerably
smaller than the effective intervalley cross section. W.S.W. or-
iginally conjectured that the discrepancy could be attributed to
higher excited states being effective for intervalley scattering
than for recombination. The initial capture of the electron in
both processes takes place by means of the. '"giant trap'" mechan-
ism (37). The fact that higher excited states are effective for
intervalley scattering is to some degree true, but only the first

two states can possibly make a sizeable contribution in antimony,

and only the first three for arsenic. (Higher states have maximum



104

intervalley scattering rates which are too small to contribute sig-
nificantly.) States which are effective for recombination have bind-
ing energy greater than kT, which means only the ground state for
temperatures above 30°K.

The form of the giant trap mechanism has been obscured by the
method used to calculate thermal ionization rates. The "giant trap"
describes the thermal capture rate (inverse of thermal ionization)
and can also include the impact capture or recombination rate which
will be briefly discussed below.

It would be comforting, therefore, 1if the gilant trap mechanism
which is reasonably successful in explaining recombination cross
sections could also explain the compound capture re-emission con-
tribution to the intervalley scattering rate, taking into account
that more states are effective. However, as we discussed in the
previous section, the compound capture process according to our cal-
culations cannot explain the experimentally observed rates for an-
timony. It is capable, in principle, of explaining the rates for
arsenic. Whether it actually does fit the observed data cannot be
determined from our calculations. - Furthermore, the direct scatter-
ing contribution complicates the problem for arsenic, since it must
first be.subtracted in order to determine the compound capture con-
tribution.

- It has been stated by Ascarelli and Rodriguez (40) that when
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an electron is emitted by a donor, the emission may occur (with
appreciable probability) into a random valley. This would mean
that the maximum rate for each state would depend on its thermal
emission rate Bj, and not appreciably on its characteristic rate
of changing valleys v, (i.e., the valley-orbit splitting). This
would be true if the phonon necessary for thermal ionization were
of comparable energy to an intervalley phonon. This does not ap-
pear to be the case, and we are not convinced of the validity of
their statement. If this were true, however, we would have a pro-
cess which was independent of the valley-orbit splitting. This,
plus the contribution from the compound capture and the delta func-
tion process could then possibly explain the observed rates.

It has been suggested by Koenig (12) that perhaps impact ion-
ization and its inverse process, impact recombination (Auger Ef-
fect), might play an important role in the intervalley scattering
process. The reasoning is that if impact ionization rates were
significant, the number of electrons leaving the ground state per
second would be considerably larger than the rate due to thermal
emission which we calculated in Sec. E., This would then increase
the contribution of the ground state to the intervalley scattering
rate)since we found that the ground state was ineffective because
the rate at which electron left was too slow. In order to main-

tain thermal equilibrium concentrations, the rate of impact iloni-
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zation must equal the rate of electron capture by impact recombina-
tion (i.e., electron-electron collisions in the vicinity of an ion-
ized donor in which one electron removes the excess energy so that
the other is readily captured).
This would mean that instead of our previous rate equation
(Eq. (4.1)) for intervalley scattering, the rate per electron due

to impurities would be

Rfm = Ne ACT) + N, B(T) + NfC (‘T’) (5.27)

i
where Nf C(T) is the rate per electron due to impact recombination,
and N, C(T) is the rate per electron per ionized donor.

This can be seen as follows: this rate must be proportional
to the rate of impact recombination times the probability of an in-
tervalley transition occurring. The rate of impact recombination is
proportional to the probability that two electrons will collide in
the vicinity of an ionized donor with the proper energy losing col-
lision; that is, to the square of the electron concentration times
the density of ionized donors. The total rate of intervalley tran-
sition occurring is Nf C(T), where C(T) is the temperature dependent
proportiocnality factor giving both the probability of initial cap-
ture and the ensuing intervalley transition probability. (As an
electron is captured via impact recombination, another electron is

released as a result of impact ionization in order to maintain ther-
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mal equilibrium concentrations.) Since we have defined Rimp as the

intervalley scattering rate per electron, R;

S mp due to impact recom-

bination is Ni ¢(T). (In the limit of negligible compensation, the
density of free electrons n equals the density of ionized donors Ni.)
However, in the high temperature range where the number of neu-
tral donors becomes small, Rimp o Ny, and in the low temperature
range, the Ny B(T) term appears to be necessary. Since a good fit
to the experimental data is possible without Nf ¢(T), we can only
conclude that while there may be some contribution due to impact re-

combination, it i1s not the dominant mechanism.

G. NEUTRAL .DONOR INDUCED INTERVALLEY TRANSITIONS

The scattering of electrons from neutral donors is similar to
the scattering from atomic hydrogen. However, the only processes
which we detect are those that lead to an intervalley scattering.
This eliminates direct scattering by the combined field of the donor
core and the bound electron, since the resulting rates will be of
the same order as for direct scattering by ionized donors. We can,
however, have .the delta function type scattering.

The process with which we will be primarily concerned (it is
the only significant contribution for antimony-doped germanium) is
exchange scattering by means of the Coulomb field of the core and
the bound electron,

Only those exchange processes are detected in which a change
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of valley results. This will be 5/4 of the total exchange cross sec-
tion. One way to visualize this process is to say that since the
bound electron is a linear combination of valleys, it has a finite
probability at any instant to be found in any one of the four val-
leys. The incoming electron belongs to a specific valley and if the
exchange occurs when the bound electron is in a valley other than
the valley of the incoming electron, an intervalley transition has
taken place. Since the bound electron, on the average, will be B/M
of the time in a valley different from that of the incoming, the in-
tervalley scattering cross section for neutral antimony donors should
be just 3/4 of the total exchange cross section,

We have tried to calculate the exchange cross section in first-
order Born approximation. In a simplified two-valley representation

the wave function for the bound electron 1§
. - ,") > \r-
Ky CKpr ] T
a4 . B ~ !
Yxle + € e
vz

are the extremum or valley minima wave vectors. We have taken plane

~

. =
) KN and K@

wave .trial functions for the free electron. For a specific example,

> >
if electron 1 is incoming and belongs to valley @, then kj =l(gf6k,

>
where Hhdk is the thermal momentum; and if electron 2 is emitted into
-> > >

valley B with ko =l<é+6k, an intervalley transition has occurred.

The scattering amplitude is (43, p 241 ff)
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and for this event

S s

where the interaction potential is

2 Z
Vinr,) = -8 L ¢
Nz —,
i KR-E]

Now, matrix elements of this form will be of considerable mag-
nitude. Unfortunately, putting in the normalization and density of
states factor, the resulting cross section is two or three ordersof
magnitude too large.

The Born approximation is valid when the energy of the incoming
electron is large compared to the binding energy of a state or to
the potential from which we are calculating the scattering. In the
above example, Born approximation would be valid for dka* > > 1,
which is opposite to the experimental situation. We did not, how-
ever, expect to be off three orders of magnitude.. We have, there-

fore, tried to forget that we attempted this calculation. It is

mentioned only because it illustrates the exchange process.
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The scattering of electrons from antimony donors should be sim-
ilar to scattering from hydrogen atoms, if we overlook the aniso-
tropic effective mass. Since there have been many sophisticated
calculations (in reasonable agreement with experiment) of scatter-
ing of slow electrons from hydrogen atoms (L44), we have attempted
to scale the hydrogen problem. The usual calculations are the
partial wave phase shifts for the singlet and triplet states con-
sidering only incoming "S" waves. The singlet and triplet arise
in processes involving identical spin 1/2 particles, since the
total electronic wave function must be antisymmetric* (spin func-
tion times the space function). Ifjif(rl,rg) is the space func-
tion of the two electron systems, we can equally write the wave
function aswfp(rg,rl) and the total space function must be written
4%? (rl,rg)inr(rg,rl). The plus sign is symmetric with respect to
interchange of electron 1 and 2, and the minus sign is antisymmet-
ric. Since the two electron system has three symmetric spin func-
tions and one antisymmetric spin function (Schiff, p 233), the
minus sign must be given a statistical weight of three (triplet
state), and the plus a statistical weight of one (singlet state).

Following Schiff (}>1H3) and Appendix E, the total differ-

ential cross section is written in terms of the scattering

*Actually, for a many-valley semiconductor, the total wave function
must be antisymmetric in spin-valley times space functions. This does
not, however, affect the exchange cross section. (See Appendix E.)
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amplitudes

G\, @) 20030 42 [100)" e

¢ (e)= %H)W“’/ 6/%)—9(9))2 Donors  (5.30)

Total

where £(0) is the scattering amplitude for direct scattering and
g(6) for exchange scattering.

|f(9)+g(9)]2 = US(O) represents the singlet cross section re-
sulting from the symmetric space function?fr(rl,rg)+Tff(r2,rl) and
OT(O) = [f(O)-g(Q)|2 represents the triplet cross section from the
antisymmetric space function. The direct scattering cross section
GD(Q) is |£(@)|® and the exchange cross section OE(O) is |g(o)|?.

The quantities which we have taken over from the hydrogen prob-

lem are the singlet partial wave phase shift &, and the triplet

S T
The methods and results for such calculations are summarized in a
recent review article (44), and we have used the results of Temkin
(45) and Schwartz (L46).

Still following Schiff (p 105) with obvious extensions, the

cross sections are written in terms of the phase shifts (for "8"

wave (£=0) only)
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66 = l.(:‘(g)_(_%(e)‘l:éz [e" s Es/l
67 (8) = |F(@) -9 ng’;z ( e"gmw gﬂjz

so that f(o) +9(8) = % edgs oS
fo) ~9te)=% e Sim 817
R AL et

§(6) =3 [ onSs -e 758, ]

The exchange cross section |58
@)= o) Z-’-'jk‘z [f@w\’“ B + Su on =250 mgmm(%’?")]

Since the differential cross section is spherically symmetric for in-

coming "S" waves

cu e —1E [
6= 4“55(@‘%%- [&w\l&; + &M““S,P -2 w%swg,r.m({p‘géwjo)

Scaling, in this problem, consists simply of replacing the hy-
drogen Bohr radius with the appropriate donor tradius. The values

B and ST are listed in Table V, for values of k%&} up to 0.6k,

S
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(b for antimony=l#5A°).* This corresponds to a temperature of ap-
proximately 50°K, which is as high as our experimental determination.
Also listed in this table is the temperature corresponding to each

value of k2b2, the exchange cross section, and B(T) (the intervalley

3

scattering rate per neutral donor), given by B(T) = = o_V where

4 "E
BKT
m¥*

V= is the root mean square velocity. B(T) for antimony is
plotted against the experimental values in Fig. 10 (shown as the
solid curve). This part of B(T) also applies to arsenic donors, ex-
cept that we will use the appropriate effective radius (b=30A° %),

The experimental values of B(T) for arsenic obtained by W.S.W. are

compared with the calculated values in Fig. 13.

TABLE V

NEUTRAL DONOR DATA

3

lgobs.= kp? 8q(radians)  &p(radians) o(b%) T B(T)<%§§>
0.16 1.45 2.30 3.5 12°K 8.7
0.25 1.23 2.11 2.4 19°K 7.7
0.36 1.04 1.93 1.7 27°K 6.2
0.49 0.93 1.78 1.15 36.5°K 5.0
0.56 0.91 1.72 0.95 Lo°K 4,5
0.64 0.88 1.64 0.73 48°K 3.6

*The radil are chosen from the asymptotic form of the envelope which
for large values of r is F(r}ve'r/b, where b is related to the ef-
fective mass radius by b = a* (BEgps, mass/Eobs.)l/g and a* = LOA®,
Eeff. mass = 9.2 mev, Egyg. = 9.6 mev for antimony and 12.7 mev for
arsenic. See Kohn, p 291.
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For arsenic, it may also be necessary to include the delta func
tion scatterer. ©Similarly to the case for ionized arsenic, the delta
function can cause direct intervalley transitions, and may also con-
tribute to the exchange cross section. We have not, however, included
the delta function.

Possible shortcomings of this calculation, other than those in-
herent in applying the hydrogen problem to donors (such as neglecting
the anisotropy of the effective mass), are the inclusion of only “8"
wave incoming angular momentum states, considering only elastic pro-
cesses, and assuming all electrons bound to donors are in the ground
state.

At low temperatures (ka* < 1) according to Landau and Lifshitz
(3% p. 4OL4), the phase shift for the Lth partial wave 6£ﬁf(k€921+1,
so that for low enough temperatures only £ = O contributes. Further-
more, since the bound electron has zero angular momentum in the
ground state, exchange processes for which the incoming electron has
angular momentum other than zero should be less probable.

Inelastic collisions from the ground state can occur only if the
incoming electron has sufficient energy to excite the bound electron.
At temperatures we are working at, the only inelastic collisions pos-
sible are between the singlet and triplet of the ground state. Such
inelastic exchange processes might be frequent for antimony but not

for arsenic donors, and it is élearly not included in the hydrogen

problem.
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The percentage of electrons in the ground state will be deter-
mined by a Boltzman factor, assuming hydrogen-like excited states.
At the highest temperature that neutral donor scattering rates have
been measured (T=¢50°K) the approximate percentage in the ground
state is 85%. We have neglected effects due to the relative pop-
ulations (as a function of temperature) of the singlet and triplet

components of the ground state.



APPENDIX A

MOBILITY AND CONDUCTIVITY IN A MANY-VALLEY SEMICONDUCTOR

.We want to show that the mobility of an electron belonging to a
specific [lll] valley is its spatially averaged value for motion
in a [100] direction. This will require preliminary remarks con-
cerning mobility and conductivity in a many-valley semiconductor,
which are based on a thorough treatment by Herring (13).

For germanium, the conductivity and mobility (due to carriers
in all of the valleys) are isotropic. This follows from the fact
that for cubic symmetry, the symmetric 2'nd rank conductivity and
mobility tensors are GBij and “Sij‘ That is, they are determined
by a single scalar which is their directionally averaged value. If
we consider, however, only the carriers belonging to one particular
valley, the mobility in an arbitrary direction is not, in general,
its spatially averaged value.

The mobility (for crystals which have isotropic effective mass)

can be written in the form

= € €)
M —%\—%— (a.1)
and the conductivity
= €
6/ nep (A.2)

116
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This assumes that all scattering processes can be described in
terms of a relaxation time, and that a total relaxation time exists.
It is also assumed that T(e) is a function only of the electron en-
ergy, and that it represents some appropriate average over the elec-
tron energy distribution.

For germanium, however, if we consider only carriers which be-
long to a particular valley, the mobility is a tensor because of the
anisotropic effective mass. The principal axes of the mass tensor
are the symmetry axis of the [111] valley and two mutually perpen-
dicular axes normal to the symmetry axis. The principal values are
my, m, and my (Chap. II, Sec. B).

In this set of axes, the mobility and conductivity are also di-
agonal. The mobility for a direction parallel to a symmetry axis

_et(e)
m

is My and for directions perpendicular to a symmetry axis is

Hy = EILEL. Since we have assumed that T(e) is isotropic, then the
m,

mobility anisotropy ratio K for a single valley is

My e ~ 20

M
(= Mo

That i1s, loosely speaking, the electron is more "mobile" in direc-
tions for which it has a smaller effective mass. In actual fact,

7(e) is not in general isotropic, and this reduces the anisotropy

ratio (25).

The current in valley i is related to the electric field E by
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the conductivity tensor of the valley, and the total current is the
sum of the Currents due to the individual valleys, The total con-
ductivity tensor is the sum of the ‘cbncfétt‘c:’fi\/ity tensors

of the individual valleys (ie. Cup= 5 = since

Y
O _q ' ‘ ,
4o :% dut —%{%@:}E/G))ano( for-a cubic crystal

- L S —

6/—3 £ Guof "%(ZG/-(:'ijz) (A'3)
<

The overall mobility tensor is the average over all valleys of

the single valley mobility tensors. So that
l (¢
Mgy = = S u
AT 4 S MeAp
which for cubic symmetry becomes

_
M‘—’-g'"g/‘*o(o( -3 M/L”-Ma (A.4)

¢ and u are the spatially averaged values of the conductivity and
mobility tensors .

We will now show that for valleys along the [111] axes, the mo-
bility of an electron along [100] is simply its spatially averaged
value. This follows from the fact that since the valleys are sym-
metric with respect to a [100] axis, the mobility component along
[100] averaged over all valleys is the same as the component in
this direction from any one valley. Since the mobility averaged

over all valleys is the same in all directions, i.e., its spatially
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averaged value p, the mobility component along [100] for any one val-
ley is also equal to p. The conductivity for any valley along [100]
will be one-quarter of the total conductivity provided the electrons
are evenly distributed among the valleys (i.e., in the absence of a
symmetry destroying strain. For our case, the conductivity of a val-
ley, averaged over an acoustic wavelength, will be one-quarter of
the total conductivity.)

We want to briefly discuss the relaxation time v(e). It will
depend both on intravalley and intervalley scattering processes,

and can be written in the form (13, 14, p 19k4)

, - | — ‘L_ _’. Qr ._/._ ’
L = — . = o ¢ A,
~27z) - ¢ Z,LL - . C # (4.5)
xa
where Tii is the relaxation time for intravalley scattering, and

s l
11 is the relaxation time for scattering from i + j (i.e., ﬁ({:};

from Eq. (2.7).

| In the unstrained state, all Tij are equal, as are all Tii. In
the presence of a symmetry destroying strain, the intravalley relax-
ation time does not change under the assumptions of the deformation
potential model. That is, Tii depends only on the energy of the

electron with respect to the extremal energy of the valley, and the

valleys are shifted rigidly. However, as discussed in connection

Iy

with Eq. (2.7),_T1J is no longer equal to It

This means that mobility will depend on the strain, and we

could take this into account in Eq. (2.6). However, to lowest or-

d
der in %T’ we can still use its directionally averaged value.



APPENDIX B

THE USE OF MODULATED ACOUSTIC POWER

In the absence of modulation E‘ AB where 8 —Z_Ke@‘?)c Now,lf
the rf is amplitude modulated @ = ®(1+m cos w t) where m is the mod-

ulation percentage, and w  is the modulation frequency(u%nzzﬂx,o;<g),

§:§m =§:§o (I +2mcpw, T +m7'c5;7‘w,,,t) (B.1)

Vo= B pS(ivn) = 475

\&c_u——ﬁsz AS(bm) is the audio component at the modulation fre-
guency. The audio component 1s taken as the peak to peak value be-
cause the amplifiers and phase sensitive detector were calibrated
using an oscillascope, where peak to peak values are the easiest

quantity to measure. So that

[+
X/r = ~ 7 - W el (B.2)
g = - Vi A‘S

where wa is the measured audio component of the acoustoelectric
m? .
voltage, and S' = S(l+§—) is the measured power density.
The thermoelectric voltage“Vé’produced by power dissipation in

the absorber was usually considerably larger than the dc component

of the acoustoelectric voltage. In cases where the dc component
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could not be neglected, an addition to the measured power was made.
Since the power 1s proportional to the thermoelectric voltage, the

addition is

(B.3)

<

i.e., since VS and VDC have opposite sign (p 6 and 24, p LO), the
true thermoelectric voltage is Vg + Vpn. Therefore, the true power

is
\ /
(1+_D_C.S
(B.4)
¥

For n-type germanium, with the absorber at a temperature +AT with re-
spect to the sample holder, the thermoelectric voltage was positive
with respect to ground, while for the acoustoelectric voltage the
absorber was negative.

The other point to be made is that while the dc component of
the thermoelectric voltage is usually considerably larger than the
dc component of the acoustoelectric voltage, for the audio components
the opposite is true. Any audio temperature variations will be

o
damped out as exp [- ,55 X] , where D is the heat diffusion constant

_ K (thermal conductivity) K 1 cal 4 C cal ‘
" C (specific heat) 5 &0 T sec deg 21 0 Jeg cme &1VeS
D in S02

sec’

From the heat flow equation

3T _ 9T
DSx: = 52 (B.5)
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the ac solution at the modulation frequency

. N T .
S b W_. ¢ w, T(x)
b X § R
i/ rr C W
T(x) = T ¢ 5~
so that
- TE;: X C‘ ZJ’:’ X — (’Ou) ( \
m \J P ) W, T
T(xe)= T, ¢ " <€ 0 (3.6)
since JZ? - (2;(
\/ 2.

Taking the absorber at x = 0, T(0,t) = Toe'iuﬁto The ac tem-
perature variation and the resulting ac thermoelectric voltage will
. 2D .
be damped out for x several times 55' The distance from the ab-
sorber to the bottom contact is approximately 0.5 cm.

We have calculated below some approximate values for the heat

QR

2D
diffusion constant D = % and the "damping length" }mﬁ' Our values
for the thermal conductivity K were obtained from Geballe and Hull

(4L8), and for the specific heat from the American Institute of

Physics Handbook (49 p 4-L4O).

AT
2 2D
At 10°K, D(10) 21600 -Cs-l;la, N @y %0-25 cm

2 el
At 15°K, D(15) = 400 S5z, ,\ggevo.lz cm

(l)rn'v
cm@ (2D
At 20°K, D(20) = 150 sog” \@%0.07 cm

At 15°K, any ac temperature variation at the absorber will be
down to e~%* of its original value at the bottom contact. At higher

temperatures there will be negligible component of audio thermo-
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electric voltages between any two terminals. Although corrections
to the dc thermoelectric voltage due to the dc acoustoelectric
voltage were often made, no corrections to the ac acoustoelectric

voltage due to thermoelectric voltage were ever made.



APPENDIX C

DELTA FUNCTTION REPRESENTATION OF VALLEY-ORBIT SPLITTING

The Hamiltonian for an electron in the field of a donor is

He[5 (Z-2) - 2 e ] L U

am \XT 247/ 2my 22
or (c.1)
Hep = Hoby + U, )
U(r) is a potential which is significant only in or near the central
impurity cell, and varies rapidly compared to a lattice spacing. Be-
cause of itsschort range, it will have approximately equal diagonal
and off diagonal matrix elements. (This follows from Eq. (5.4) since

the single valley wave functions are equal at the origin.)

Assuming a delta function representation for U(r), we have

‘ht oy

I{}(F}:KS(F) I =x (1) I (c.2)

¥ must be determined in terms of the valley-orbit splitting of the
particular donor,and 8(7) is located at the donor nucleus.
Using the eigenstates and eigenvalues in Chap. V, Sec. B.,

(5.6a and b)

Hte=HSals + KSR T Y, = (-e1-40)Y, (o.y
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Hgs qﬁkT = H( \é( ) IP\ T + >< E(Y")I EJ’fT po ( Ef) 1{/‘ r

(C.k)
Where '
|5 [ 00O
_ L . =L ¥ ~E" ot ooO
Ys-z ) YT‘Q\KJ ) HSL} °lootl O
| Yo/ 000 |

For the singlet

<4

and

AR AN AEE NS

K L 180T = - e

(c.6)

where
T N

i
N
<yiuoﬂw>_L S el
[ |
III::'
so that 4KlWl(0)l2 = ~UA, since all single valley functions wi(r)

are equal at r = 0. Similarly for the triplet v}(lwl(O)lg =0 so

, -(4A) 1 _
that K = I Ivl(o)lg where 4A is the valley-orbit splitting.
\ 12 2
'{\Ll/, (())( — I M(VQ/())) F(o)l = f(/((k o)} (.7

IIOKX

and.
X = - (7a*?)

| w(k, o) *
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This is the Born approximation matrix element used for the

delta function scatterer in Chap. V, Sec. C.

VALLEY~-ORBIT SPLITTING OF EXCITED STATES
Using the same representation as above, the interaction energy

H' for the n'th "S" like state

H' (singlet) =<11fn"‘(ﬁ) XS(F)I'K(F’»:.-&—*L%KJE(O)[Z{u(kzo)lz (c.8)

H' (triplet) =<ﬂj{n*(F)))<g(F)I/Yn(F)) =0 (c.9)

| , 2 b
The total splitting (—]5 — HT = —4Xx ’E(O)/ /u.(h/o)} (c.10)

If we assume that the envelope functions are hydrogen-like, then

= L Zﬁﬂ

near the origin f = r

(Landau-Lifshitz p 124). Since the periodic part of the Bloch func-

tion¥* is the same for all donor excited states, we get simply that

*The periodic part of the Bloch functions are constructed for each band
(i.e., valence or conduction band). They vary rapidly with r, but
slowly with k within a given band. The donor excited states being mod-
ulated conduction band Bloch functions with a small range of k values,
only the modulation envelope varies appreciably among the excited ststes.
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APPENDIX D

THERMAL TRANSITION RATES

In Appendix A of their paper on "Recombination of Electrons and
Donors in n-Type Germanium" (L40), Ascarelli and Rodriguez have cal-
culated thermal emission rates for temperatures below 10°K. We would
like to extend these calculations to 100°K. They state the following
formula for the "rate" (i.e., transition probability per unit time)
that an electron in a bound state J is thermally excited to the con-

tinuum by means of phonon absorption.

R

s, - = o) Rl kW) 452 2 M )|
T @)kt (p.1)

In the above formula,tzl is an appropriate deformation potential,

c. is the longitudinal velocity of sound, p the density of germanium,

S
Ti(¥w) is the thermal distribution of phonons = [exp Qﬁb/kT)-lJ_l.

4%D and q are the phonon energy and wave vector, K is the electron
wave vector, IM(K,j)I is the matrix element governing the transition,
and Ej is the binding energy of the j'th bound state Ej = Eo/j2°

The derivation below is based on a method used for ultrasonic

attenuation (28, p 216). The transition probability per unit time

is
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Z ; \| ~/_ |
By = l +r<> '».é)"g 3(é&a+@'twij

2k2
k ~ 2m*

E is the kinetic energy of the emitted electron, and the sums
are taken over the electron and phonon distributions. The delta func-
tion ensures conservation of energy.

H; (the electron-phonon interaction) in its simplest form is

H = =1 v s(F (D.3)

->
This includes only longitudinal phonons. s(r) is the displacement of
the atom from its equilibrium position, and is written in terms of

phonon creation and destruction operators.

s e

s(7)- X é’t‘w%z—“*?("f'ﬁ) *J%_—ZTWP(*(%-TF):{

\ zp (D.4)

where s(sT) are the phonon destruction (creation) operators, and S
is a unit polarization vector. s and sT act only on the phonon oc-

> >
cupation number, and exp * iq-r only on the electron coordinates.

We consider only the phonon destruction operator, since we are in-

terested in absorption of a phonon by an electron

o= L Lﬁ)} g,o,\/,lg(c'*—)

L eV \)ﬁ—; (D.5)
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b=

Vi e[ M) oo

Ve is the continuum function (plane waves or Coulomb Continuum func-
tions) and Wj is the hydrogen-like envelope for the j,1 = O state.

J 1s used for the principal quantum number to avoild confusion with
the phonon occupation number.

With

i.e., the integral representation of the density of states for con-

tinuum, we 36”' for the electron Coordinates

S5 ek iy |13 | (Bt - hay) may

<ZT l)‘s

substituting

Eo= bR 4 V(Zo\h:m..(zm[ JE
=

k Zm*
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The result is

m¥* K ) *
" {a,QKWK )

with N %i
SICORY

setting Z J : e d 0
‘& = L (a7 = L g

W
and assuming q = Tg, we finally get

? pa
o= 2 —* Amoo)(kwfﬁ(m):«m)}mz JCLQK'MCK,A)I

GO

—

J
which is the result quoted by Ascarelli and Rodriguez.

2
Turning to the matrix element |M(K,j)| , we attempted to eval-
uate it using plane waves for the continuum states. 1i.e.,

==
L

‘ KPR
Mky) = | ¢ el AGEG
This appears to appreciably underestimate the thermal ionization
rate. Ascarelli and Rodriguez have given IM(HLJ)IZ in a closed form
using Coulomb continuum functions. We have not checked their deri-
vation, but merely state their result, and discuss the validity of

their approximations. In the limit of Q? >> 1, q >> K, and Ka* << 1,
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(Qj = jqa*, q and [ are the phonon and electron wave vectors), As-

carelll and Rodriguez obtain the following results.

- 3_\2
él 7 a

We now consider their approximations to show their validity
independent of temperature. From the conservation of energy con-

tained in the delta function

ﬁzKl _ hw-

rm*
K'Y o— o L - zmE
TS Ao

2k -
The maximum value of kz/qz is when g =,534 obtained from setting

5 S
da (k s
a€<ég>= 0. This gives

2z
K¢ L mic
¢

so that

therefore q >> K for j < 5 where Eo’ the ground state binding en-

2 -
ergy, 1s =10 mev and mec_ = 3x10 2 mev. We also need the magni-

S

tude of Qj = jaa¥ Now Aw = Ey when K = 0,80 that Aw > Ey and

Q
Vv
2

a —Ma, SEMRT [ L o %00
9’1_ t‘LCS?— Zkf\ CS 9
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Q,-2

3 >> 1 is also valid for j up to 5. The last approximation they

2
used in evaluating IM(]-(’,J)I is that Ke* << 1. From the form of
the integral for M(K,j), i.e., [exp 1(q-]< |3-R| will tend to be
as small as is consistent with conservation of energy;

L L
— —_ *\ 2
| g-K =hu ——(2_@) (}\o\;-—E ] e
T 3
T C 17

S
. . - _ 1 x 2 ZK." %
This is a minimum for fw = Ej+§ me, , so that for %*NJZ*JT%CS')

Kc{*x_nﬁ*'cgal’%xo.oa This approximation should be adequate.

Using their result (D‘D with

e *udf\cS( )7‘, 3 e\
(@)~ £,2)

in the integral for thermal emission rate, we get the following:

_sthicdmr = d(’m)u
ey = .(mfég (m) [M( ) )

2
Since IM(K,j)| is spherically symmetric, the two angular integra-

(D.10)

2
tions give (L4xn) . The lower limit of the integral arises from the
requirement that the phonon must have at least as much energy as
the binding energy.

We now want to expand the exponential in the denominator. For
the temperature range 20°K to 100°K it will usually be adequate to

: w Ao _

approximate [exp T -1] by T This assumes that the maximum con-

tribution to the integral comes near 4w = Ej' (Eg < kKT for T > 30°K
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and Ez < kT for T > 15°K> We will not be able to calculate the
ground state; its  thermal emission rate, however, should be small.

We also have to approximate the exponential in the numerator.
Since the lower limit of the integral is Ej’ for j = 2 the exponen-
tial is essentially 1. For j = 3,4, 5 we expand the exponential in
a power series, and the integral eventually converges. For j = 5,
satisfactory convergence required eight terms.

The results are

2 2
B, = 25kl mr it RT YT

o~ %6 8
57 a E; (D

b, T 20 X108 T () (0.11)

fon % 25x107 T (sec™)
(D.12)

- . - [0 -
/slf T LHX/0 ’7—’ (SQQ > (D.13)

Bem 25% 0T (sec™!) (D-14)

We have used the following values for the constants
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=1 =20 ev E, = 9.6 mev
-28 5
m* = 2x10 gm cg = 5x10 cm/sec
a* = 4.5%10" cm o =5.4 gn/en®

TRANSITIONS BETWEEN TWO BOUND STATES

We would like to briefly discuss the transition rate between
two bound states J and j'. The derivation is similar to that of ther-
mal ionization. If the electron is originally in state j, and J is
greater (less) than j', the transition occurs through phonon emission
(absorption). The sum on the electron distribution % + 1, and the
Fermi distribution factor is omitted. This assumes that the electron
1s originally in state J, and we want to calculate the transition
rate to a state J' which must be empty. We also assume that transi-
tions with change of spin are less probable. Energy conservation is
expressed by S(Ej-Ej,iﬁw).

The previous matrix element M(K,j) is replaced by M(j,j') and
only transitions between s states are considered.

For an s state with principal quantum number Jj, the wave func-
tion Eﬁﬁr) (i.e., the spherically symmetric envelope) can be written

(see Landau and Lifschitz, p 124 ff and 496).
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and

M) = S g

The integration gives reciprocal powers

AT 2
Lml(f}) * %j
and for

%CL% > |

we keep only the lowest order.

From the conservation of energy

(D.16)

For ga* >> 1, we can also neglect (L/j + 1/j')% with respect to ga*.

Unfortunately, proceeding with the derivation we do not get

the same result as Ascarelli and Rodriguez.

We get a result which

is higher than theirs. However, we are not actually calculating any-

thing using these rates, but merely want to use them to illustrate
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relative magnitudes. We, therefore, will use the results quoted in

their paper (LO).

For j > §'
W, (@i‘:ﬁ 2 (59)° [i-e &)
J J y;(;o( Ees ( 9> (}*J) (D.17)

wWhere

] ! I
W = E (=
’h }g' O(gll 91)
From detailed balance,we aﬁt

Wg'ﬁg - W) 54! QXP(“ %%333) (D.19)

We use the same values for the constants as in (D.11) to (D.1k4).

(D.18)

W, = hoxio® 3 t’ e‘%"{/
(#3080




APPENDIX E

VALLEY STATISTICS

As was mentioned in Chap. V,; Sec. E, the many-valley structure
does not alter the exchange cross section. It is amusing, however,
to consider how the many-valley structure affects the total cross
section by virtue of altering the distinguishability of electrons.
In a single-valley process, one requires that the product of spin
function and space function be antisymmetric with respect to the
interchange of the two electrons. In a many-valley process, the
requirement is that the spin-valley function times the space func-
tion be antisymmetric.

For germanium, which has four valleys, there are ten symmetric
valley functions and six antisymmetric valley functions.

Using the schematic notation that (12) means electron a in
valley 1 and electron b in valley 2, and (21) means a in valley 2

and b in 1, we get the following valley functions:

Symmetric Antisymmetric
11 12-21
22 13-31
33 14-41 =6
Ll k 23-32 |
12+21 = 10 2h-L42
13+31 3h-b3
1h+h1 :
23+32
2h+h2
3+l 3
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For a two electron system, there are three symmetric spin func-
tions (1,44, andTl +lT) and one antisymmetric spin function
(N -JT). There are therefore a total of 64 spin-valley functions
of which 36 are symmetric and 28 are antisymmetric. (The %6 arises
from ten symmetric valley functions times three symmetric spin
functions plus six antisymmetric valley functions times one anti=~
symmetric spin function.)

The total wave function must now be made antisymmetric in spin-
valley times the orbital wave function. To conform to the hydrogen
notation, we will call the total function the triplet if the orbital
is antisymmetric, and the singlet if the orbital is symmetric. We
have therefore 36 triplets and 28 singlets.

The total cross section is then written

28
= 2! 36
bt = 7y &5 b &

NN

(E.1)
where the corresponding result for hydrogen is

- 3

= 1 -+ E.2

Using the previous hydrogen notation for the cross section in

terms of the direct (f(©)) and exchange (g(©)) scattering ampli-
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tudes (Eq. (5.29)).

= 4e) + 98| .

= ]10(9)-'—9(9)/1

(E.4)
and
s, = [t@]° (5.5
G = Ere (E.6)
so that

. = we)ﬁ |96~ & o) l9co)

= &g + 6y -+ [e)|9@)
for donors in germanium, and

Gl = HO " +la@] — [f@l 5]
. ()
=Gt +6y — {090

for hydrogen. The explanation for the above cross sections is as
follows: When the particles are distinguishable (different valley

or different spin), the total cross section is the sum of the direct

: 2
and exchange cross sections, i.e., \_Q(e) \1 +» \9(9)}
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In 3/h of the collisions, the electrons belong to different
valleys, and in 1/2 of the collisions they have opposite spins. Of
the 64 spin-valley combinations, 48 are distinguishable as a result
of valley, and half of the remaining 16 as a result of spin. For
the remaining eight combinations, the antisymmetric space function
must be used. This gives

¢ = f;é" (H(@)ﬁ /3/9)(7 4 (4/@)—5@)[1

toTa '

H(@)\Zﬂw))z_ L £(0) ]3(@)1 )

= Gt ~-;;)#(9)H9/<9){

The corresponding result for hydrogen is

Gy = (RIS (9 £ #e)-g0e) | *

since in half of the collisions the electrons are distinguishable

so that

Crgta) & 5+ 6 - £ ®]19¢e)] (E.8)

Since the cross term (|£(0)]g(®)]) contribution would vanish in
the 1limit of truly distinguishable particles, the many-valley model

is seen to make electrons more distinguishable.



1ho

It is also seen that although the many-valley structure alters
the total cross section by changing the contribution of the inter-
ference term, the individuvual direct and exchange or equivalently

the "singlet" and "triplet" are not affected.
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