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HEAT TRANSFER I[N SOLIDIFYING BARS

by

Andrew SzénTé Telier
ABSTRACT

A method for the soiution of a fwo-dimensional Stefan pirobiem
is developed., The computations based on this method can predict not
only the temperature distribution and the location of the solid-liquid
interface but also the shape ot the interface. In addition, a versatile
horizontal tube furnace has been constructed, which is capabie of
producing decanted solid-iiquid interfaces during normal freezing
and zone refining experiments. This feature al'ows the presefvaTion
of these interfaces for later examination.

The problem considered consists of a rectangle containing fwo
different phases of the same material in fwo regions, corresponding tfo
the longitudinal center piane of a bar in a normal freezing experiment,
The temperature distribution around the rectangle is an arbitrary
function of time and location, The problem is formuiated in ferms of
two simul!taneous equations, nameiy, (aj a differential equation
describing the motion of the intertface, and (b) a partial differential
equation defining the femperature distribution in each of the regions,
Several finite difference procedures are considered for the solution
of these equations. A simple explicit procedure is used to solve the
difference form of equation (a) while the Aiternating Direction Implicit
Method is used to solve equation (bj, in order to minimize the amount

of computations needed to ftest the method, severa! simpiifying assumptions






are made, The most signiticant of fThese s the assumption of constant
density throughout the rectangle, which i furn ‘mpiies no movement of
materiai within the reg:ons.

An IBM 7090 dig:ta! computer was used To carry out The computa-
tions. A probiem conrain.ng 45 x 5 grid points, requi-ed 280 seconds
for 600 iterations when The temperature distribution was printed in
every 20 iterations, and 't required 480 seconds for 1200 iterations
when the temperature disfribution was prinfted in every 100 iterations.

The finite difterence computations were carried out for severa!
possible materiai constants and pa~ameters. The effects of the heat
transfer coefficient, veiocity, iatent heat and thermal! diffusivity
on the numerical soiution were investigated. With the Temperature
distribution used for these computations the interface was siightly
convex under equiiibrium conditions. The caiculations showed that The
convexity of the interface shouid decrease, become piane, or even
become concave as the bar startsto move in the furnace. The magnitude
of the change seemed to depend primarily on the veiocity ot the bar and
on the latent heat of the materiai. The computed resulfs show at ieast
qualitative agreement with observed results. The convergence of the
numerical method is also shown in severail sampie computations.

The experiments were carried out using indium anf?mon?dec The
material was encapsuilated in a 22 cm. !ong, 2 cm, x Z cm. square quartz
tube, The material fiiled about 60% of the tube when it was ali [iquid.
In the first experiment 40% of the bar was normaily trozen in The furnace.
The velocity of the bar during the process was 0.73 inches/hr. in the
second experiment the bar was piaced in The turnace and ailowed to come

to equiiibrium; fthe position of the bar was such That approximately 40%






of the bar was frozen whiie the rest meited in the warmer part of the
furnace. Photographs of the interface show that the experimental
furnace accomplished its objective. ithough the change in the
interface curvature agrees with the calculated change, direct
quantitative comparison of the experimental results is not possible
due to (a) the assumptions made in simpiifying the problem and (b) the
awkward geometry used for the experiment. Severai suggestions are
made to improve the accuracy, generality and applicabiliity of the
computations and to modify the experimental procedure used to verify

the computed resulifs.
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ABSTRACT

A method for the solution of a two-dimensional Stefan problem is
developed. The computations based on this method are sufficiently
accurate to predict not only the femperature distribution and the loca-
tion of the solid-liquid interface but also the shape of the interface,
In addition, a versatile horizontal tube furnace has been constructed,
which is capable of producing decanted solid-liquid interfaces during
normal freezing and zone refining experiments. This feature allows the
preservation of these interfaces for later examination.

The problem considered consists of a rectangle containing fwo
different phases of the same material in two regions, corresponding to
the longitudinal center plane of a bar in a normal freezing experiment.
The temperature distribution around the rectangle is an arbitrary func-
tion of time and location., The problem is formulated in terms of fwo
simultaneous equations, namely, (a) a differential equation describing
the motion of the interface, and (b) a partial differential equation
defining the temperature distribution in each of the regions. Several
finite difference procedures are considered for the solution of these
equations. A simple explicit procedure is used fto solve the difference
form of equation (a) while the Alternating Direction Implicit Method is
used to solve equation (b). In order to minimize the amount of computa-

tions needed to test the method, several simplifying assumptions are



made. The most significant of these is the assumption of constant den-
sity throughout the rectangle, which in turn implies no movement of
material within the regions.

An |BM 7090 digital computer was used to carry out the computations.
A problem containing 45 x 5 grid points, required 280 seconds for 600
iterations when the temperature distribution was printed in every 20
iterations, and it required 480 seconds for 1200 iterations when the
temperature distribution was prinfted in every 100 iterations.

The finite difference solutions are computed for several possible
operating conditions and for several possible material constants. The
computed results show at least qualitative agreement with observed re-
sults. The convergence of the numerical method is shown in sample com-
putations.

The previously-mentioned experimental furnace is described and the
operating procedures used in Two experiments are given. Photographs of
the interfaces obtained in the experiments show that the experimental
furnace accomplishes its objectives. Direct quantitative comparison of
the experimental and calcuiated results is not possible due to (a) the
assumptions made in simplifying the problem and (b) the awkward geometry
used for the experiment., Several suggestions are made to improve the
accuracy, generality, and applicability of the computations and to modify

the experimental procedure used to verify the computed results.

xt






CHAPTER |

INTRODUCT I ON

The object of this investigation is to develop a method for com-
puting the position and shape of the solid-liquid interface in a solid-
ifying bar. Thus the Stefan problem is to be solved in two or more
dimensions. One has to keep in mind that the accurate location of the
interface is the main goal of interest rather than the temperature dis-
tribution or the time required to freeze a portion of the bar. Although
these temperatures and times will be available as part of the computa-
tion, the above consideration places |imitations on the methods which can
be used to solve the Stefan problem. The amount of computation required
for a three-dimensional model| would have been more than this investiga-
tion would have allowed., Work was, therefore, carried out on a two-
dimensional mode!. The present computations and some of the derivations
are for a specific problem which was simplified for sake of expediency.
However, the method used for its solution contains many general ideas
which are extendable to more general, more useful, and even more complex
problems in two and three dimensions. The need for this investigation
can be seen after a brief review of the developments which preceded it.

The heat transfer problem associated with solidifying liquids was
not studied until 1891, when Stefan (89) wrote an article on the forma-

tion of ice. Since this seems to be the first article published on this
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subject, freezing problems are frequently called "Stefan" problems.
Carslaw and Jaeger (18) point out that some of the mathematical results
applicable to these problems were known even earlier. They also give a
brief review of the early developments in the field of heat conduction
with change of state.

In recent times several complicated engineering problems have been
closely related to the freezing problem. These include the ablation
cooling of space vehicles, the underground storage of liquified natural
gas and the directional solidification of alloys. These problems were
not solvable with the available methods, thus giving rise to the current
interest in alternative techniques. Examples of the latfer include:
transformation of the problem to one which is solvable, at least approx-
imately, by analytic methods or the use of numerical methods to solve
the problem either in its original form or afTer Transforma#ion. These
numerical methods became more popular with the development and general
availabilify of high speed digital computers. Nevertheless, progress
was slow.

The one-dimensional Stefan problem has been discussed exfensively
in recent years by Altman (2), Boley (7,8,9), Churchill and Seider (19),
Churchill and Teller (20), Citron (21), Crank (25), Dewey (26), Donald
(27), Douglas (30,31,33), Douglas and Gallie (36);;Douglas and Jones (39),
Ehrlich (44), Evans (45), Friedman (46,47,48), Goodman (50), Hamill and
Bankoff (51), Kolodner (58), Kyner (60,61), Landau (62), Lax (65),
Longwel | (68), Lotkin (69), Luke (70), McMordie (71), Miranker (73,74),

Murray and Landis (76), Poots (81), Price (83), Sunderland and Grosh (91),



Trench (95), and by many other investigators. These articles indicate
the amount of work that has been done to develop new one-dimensional
methods, establish their applicability and accuracy, and indicate their
advantages and disadvantages. The information is still not well organ-
ized, however, and it is scattered throughout the literature.

Many problems cannot be solved by one-dimensional methods directly
even with the use of transformations. In certain others the approxima-
tion achieved by these simple methods is inadequate. Until recently
these problems were considered unsolvable because of the large amount
of computation required in even the simplest multi-dimensional problem.
As the size and speed of computers increased, and numerical methods
utilizing them became available for multi-dimensional problems, some
two-dimensional problems were solved by Allen (1), Cook, Mason, and
Smith (23), Hashemi (53), Wilcox and Duty (99), Wilkes (100), and other
investigators. These works, along with the present investigation, show
that two-dimensional problems are solvable on existing large computers
and that smaller three-dimensional problems may also lie within their
capability. But today's large and complex multi-dimensional problems,
unsolvable on our present computers, will be solved by improved methods
using larger, faster computers which are being developed.

The discovery of transistors and other semiconducting devices gave
rise to new interest in the preparation of high purity materials. Among
the processes used for this purpose are the various zone refining, zone
leveling and repeated partial normal freezing techniques. These same
processes, along with crystal pulling from the melt, can be used to pre-

pare single crystals. Recently, directional solidification was used to



cast alloys with special properties. |t would be desirable in all these
processes to be able to solve the heat, momentum, and material balance
equations simultaneously. Although this is a large task which remains
to be done in the future, the present study can be considered to solve
some of the questions arising in these problems. Previously, Cook, Mason,
and Smith (23) calculated the temperature distribution in a cylindrical
sample. They neglected the heat of fusion, reducing the problem to one
of simple conduction. The error in such a procedure was pointed out by
Lightfoot (67) in 1930, but when a good solution is not available, a
crude approximation is better than none at all, Wilcox and Duty (99)
presented a more sophisticated procedure by assuming a pseudo steady
state and using a frial and error procedure fo compute the interface
shape in a cylindrical bar., Hashemi (53) proposed a general method to
obtain the temperature distribution in a two-dimensional Stefan problem,
in which he assumed that freezing occurred over a femperature range.
This assumption was excellent for certain materials, |ike wet soil, and
his computations for these kinds of materials were good. But for pure
materials with a sharp melting point the computation is of questionable
value as it is not clear how the solution would behave for smaller and
smal ler melting temperature ranges. The method presented in this work
is general enough fto be usable for both kinds of materials.

The organization of this dissertation is as follows: First, in
Chapter |1, the mathematical models available for presenting the Stefan
problem are discussed and some of the ideas available to solve fthem are
reviewed. In Chapter |1l, the problem is defined in its specific form

and The eguations used to solve it are derived. The computer program
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used to solve the problem is described in Chapter IV, followed by a dis-
cussion of the computed results in Chapter V. Next, in Chapter VI, the
design of a furnace capable of producing decanted interfaces in a freez-
ing, horizontal, rectangular bar is presented along with the resuits
obtained during the operation of such furnace. It will be poinfed out
that a more complex mathematical model is required fo represent this
experiment and predict the location and shape of the interface correctiy.
Finally, in Chapter VII, an improved experimental technique for the
verification of this and similar computations and the solution of mathe-
matical models representing more significant physical problems are

suggested for fufure investigation.



CHAPTER ||

DISCUSSION OF PREVIOUS WORK

In order to solve a multi-dimensional freezing problem using a
numerical technique, one has to be familiar with a large number of sub-
Jects related to heat transfer and phase changes in general, their
mathematical representation, the various numerical methods and their
properties as they apply to these problems, the programming of computers,
and so on. No attempt will be made to review comprehensiveiy the work
done in all or any of these fields; only those works and ideas will be
mentioned which have some bearing on the fol lowing developments.

In a review of this kind it is difficult to decide how far one
should go in giving credit to the original or first investigators. For
example, in treating the curved boundary, an interpolation of degree
two is needed. Even though a good method was proposed by Shortly and
Weller (88) in 1938 and Mikeladze (72) in 1941, many modern papers
either derive their resulfs using Taylor series and do not give any
reference, or refer to a general text, such as Forsythe and Wasow (49),
which discusses these articles while freating curved boundaries in
general, Similarly, the various Alternating Direction Implicit (ADI
hereafter) methods are treated with increasing frequency without refer-

ring tfo the articles of Peaceman and Rachford (77) and Douglas and



Rachford (40). This is due fo fwo factors: first, the information is
becoming widely known and used, being often presented in lectures and
discussions without mentioning the original source, and this carries
over to the written works; secondly, some ideas are first presented in
a form which has narrow applicability, and considerable work is done
by many investigators before it reaches its final, most useful form,
making it practically impossible to give credit to all those investiga-
tors who were responsible for its development., In this work no attempt
will be made to reference all the ideas presented even though some of
the important fundamental articles are included in the bibliography.
Let us consider a body in which the temperature distribution is
such that in various parts of the body different phases are present,
This body occupies region R in space and bonded by surface S. Within

this region there exist a number of homogenous subregions, Ri’ each

(@)

(b)

{ + $ —= DISTANCE
SL Sn 523 53

Figure 2.1.
(a) A two-dimensional body containing three subregions.

(b) Graph of a possible temperature distribution along the
cut A-A,



containing one phase of the material, and each is bounded by the surface
Si‘ Those portions of the subregion surfaces which belong fo two dif-
ferent subregions, Si and Sj where i#j, we shall call interfaces and
designate as Sij’ as illustrated in Figure 2.1. It would be desirable
to know the temperature distribution in this body and the location of
the interfaces as a function of time.

The temperature distribution in each subregion satisfies the heat
equation as long as there is no movement of material. In three-dimen-

sional rectangular coordinates, we have:

3 i i
— —— + R, e = O <
Y Kil 3% e Ki2 3 T o Nz e i AT

(2.1)

when x € Ri and ¥ > 0

subject to the boundary conditions:

oT. + B ;;l =y, when X € S, and T >0 (2.2)
and to the initial condition:

T. = ¢, when x ¢ R, and t = 0, (2.3)
where

X = (xl,x Xz), the location of a point in space,

2°73°°
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time,

—
1

temperature in the subregion Ri’
Ki1rKigoKis =

ki|=ki2=ki3=ki‘ In the following discussion an isotropic

medium will be considered, and it will be assumed that k

thermal conductivity. In an isotropic medium

is a function only of the temperature, position and the

phase present; kizk(;'Ti)'

p. = density. Although the density is a function of temperature
and position in general, one has fo assume that it is a
function of position only if no material movement is to
occur, Crank (25) nevertheless solves a one-dimensional
problem containing two phases of different densities. Some
simple temperature dependence of similar nature can be
accommodated in numerical solutions also, but tend fto com-
plicate the computations. We will return to ways to handle
this question in the section on recommendations for future
investigations. Until then, it will be assumed that ;=
p(x) .

c, = (%%), is the heat capacity, where H is the enthalpy of the

material. |+ is in general a function of both the location

and the temperature; ci=c(§,T ).

i

¢, = the initial ftemperature distribution in the subregion Ri'
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The coefficients o, Si and Y; arise from the boundary conditions
and they may depend in general on both the temperature and position., On

an interface Sij equation (2.2) becomes:

T, =T. =T (2.4)
i J FiJ
and
aTi aT . dNS
N wmo T KwmoT T be g o (2.5)
J J
where

is the direction normal to the interface,

iJ
L is the latent heat of fusion,
TF is the fransformation temperature,
i
dNS
T is the velocity of the moving interface.

Equation (2.4) merely states that the boundary separating the two sub-
regions is at the transformation temperature; if the phase in subregion

Ri is stable above the transformation temperature, then Ti 2 TF 2 Tj
i
holds in the two subregions. Equation (2,5) is an energy balance

around the interface stating that the net heat input by conduction

equals fthe heat absorbed during the change of phase as latent heat.



The equations (2.1 - 2,5) form a nonlinear system of partial dif-

ferential equations as is pointed out by Landau (62) and by Carslaw and

Jaeger (18), The nonlinearity arises mainly from the nonlinear boundary

condition, equation (2.5). Nonetheless, the equations can be solved

analytically in special cases. Most of these involve problems which can

be reduced to one dimension. Carslaw and Jaeger (18) is a standard

reference book on the existing one-dimensional problems, while a person

interested more in theory would turn to Friedman (48). But not all one-

dimensional problems can be solved analytically, and nothing shows this
better than the large number of methods proposed for their solution.

Many authors use the following model fo demonstrate their methods

=T when 0 <x <S(t) and t > 0,
XX 1
T =0 when x 2 S(t),
T)< = -] when x =0 and t > 0,
dSF - 1 hen  x = S() and t+ >0,
dt X
S(0) =0 when + =0,

Equation (2.6) is the heat equation for the region under consideration,
and on one boundary a constant heat flux is imposed on this region,
while the other boundary is a moving interface. These are illustrated
in Figure 2.2. The problem is reduced to considering a single region,
however, by assuming that the femperature distribution in the other re-

gion is already at the fransformation temperature. This may be a

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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(a) The semi-infinite region and
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(b) temperature distribution defined by equations (2.6) - (2.10).

significant simplification because equation (2,9) contains only one

derivative and not the difference of two derivatives as in equation

(2.5). Hence, equation (2.9) can be approximated more accurately.

A second problem, illustrated in Figure 2,3 can be stated as

fol lows:

(A) During the time period 0 < t < t¥

for

subject to the boundary conditions:

kT =

-Q(1)

at x =

at x

0 < x < w,

and

(2.11)

(2.12)

(2,13)
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and to the initial condition

T=0 at + =0, for 0 £ x £ w. (2.14)

*
(B) For times t > t

aT_ =T for s(t) < x < w, (2.15)

subject to the boundary conditions

ds

K Tx = -Q(t) + pL T at x = s(1), (2.16)
*

T=T at x = s(1), (2.17)

T.=0 at x = w. (2,18)

The time T* is the time when the surface x = 0 reaches the transforma-
tTion temperature T*, hence it is also true that s(T*) = 0., In the
above equations L stands for the latent heat of fusion, Q(t) is an
érbifrary heat flux and the other, previously not defined variables are
given in Figure 2.3. This problem is very important in predicting the
effectiveness of an ablative cooling shield. Figure 2.3a and equations
(2.11) - (2.14) represent the initial heating of a material which
originally was at a uniform temperature. When the surface reaches the
transformation temperature of the material some of the heat is absorbed

as latent heat by the material which melts or sublimates or decomposes,
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(a) The plate before time T .
*

(b) The plate after time 1 .

*
Time = t when the surface at x=0 reaches the melting ftemperature T

but is immediately removed by some mechanism. The thickness of the
material is reduced at a rate determined by equation (2.16), but the
temperature at the surface remains constant, This problem was discussed
by Evans, lIsaacson and MacDonald (45), Landau (62), Citron (21), Dewey,
Schlesinger and Sadhkin (26), Lotkin (69), Boley (79), Aifman (2),
Sunderland and Grosh (91) among others. Most of these solutions are
designed for this particular problem and are not extendable, although
the transformation suggested by Landau (62) is used for various solu-
tions of all the one-dimensional moving boundary problems.

The two previously mentioned problems consider the temperature
distribution in one region only. The more general treatment using two

regions is usually stated in the following form:

T = T in R, (2

*

]

.19)
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aT2 = T2 in R2,
XX L
ds oT. oT
12 _ i 2 _
i N T P
TI = T2 at x = S|2,

subject to an initial temperature distribution as in equation (2.3)
and to outside boundary conditions as in equation (2.2) usually at

x = 0 and at x = w, but the latter is sometimes replaced by

T, = A as x &+

The methods developed for solving the problem defined by equations
(2.19) - (2.23) are usually adaptable to the problem defined in
equations (2.6) - (2.10).

Before going into the numerical solutions available fo solve
these equations as they stand, let us review two ways to eliminate
interfacial boundary conditions and thereby simplify the solution.
The interfacial boundary condition (equations (2.5), (2.9), and (2.2l
was introduced to account for the latent heat |iberated at these
boundaries. |f one knows the position of the interface as a function

of time, one can consider a continuous conduction problem in which a

(2.20)

(2.21)

(2.22)

(2.23)

))

heat source (or sink) is passing through the region. |f fthe intensity

of the heat source at point x and time t is A (x,t), then the heat

equation becomes:



-16=

T, = ol o5 Alx,T) in R for + > 0, (2.24)

subject to boundary conditions on S but not on the interfaces.

Several numerical methods were suggested utilizing this idea in
a finite-difference approximation. Dusinberre (43) refered to earlier
work, where the second ferm of the equation was calculated for a spatial
interval before the computation of the heat equation started, and the
term was cal!led the temperature suppression. During the computation of
the temperature distribution this term was added (or subtracted) over
one or more time steps whenever the calculated temperature of an infer-
val tended to pass through the phase change temperature. He s+a+ed that
the method easily applied to hand computation and the heat balance cor-
rectly observed, but it introduces unrealistic oscillations in the cal-
culated temperatures. Price and Slack (83) applied a similar method to
the problem defined by equations (2.6) - (2.10) and illustrated in
Figure 2.2, In the finite-difference computations they calculated the
temperature distribution in tThe region under consideration, but any one
intferval does not become part of the region until the heat conducted
into kor away from) the interval equals the latent heat. Later, it
will be pointed out that Thisi%fequivalenf o a zero-order approximation
of the moving boundary problem. The significance of this method is that
it is directly adaptable to analog computers as long as the number of
spatial increments in the region is not iarge.

Dusinberre (43) calls attention to the fact that one can consider

the source of all the difficulty to be the discontinuity in the
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temperature-enthalpy relation, This is illusftrated in Figure 2.4

a.

This discontinuity gives rise to an infinite heat capacity at the melf-

ing point. Dusinberre (43) recommends the use of a heat capacity
“} @ | (b
H H y
r JAN
G
:* T — ——
T Figure 2.4. T TEMPERATURE
True temperature-enthalpy relation. ,
Approximate temperature-enthalpy relation. cp = %; is
also plotted.
function:

|
*
a + b(T-T)

C +

o} 2

where a and b are chosen to satisfy the condition:

and the resulting continuous enthalpy-temperature relation is plotted

in Figure 2.4b,

The larger the b/a ratio in the above relation, the

better it approximates the true enthalpy-temperature relationship.

(2.25)

(2.26)
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Using this heat capacity function, the problem is reduced to a simple
heat conduction problem with variable coefficients. This problem can
be approximated numericaily, and as long as the amount of heat trans-
ferred in any time interval between any two neighboring spatial inter-
vals is small, the approximation remains a good one. Unfortunately, the
time and/or spatial increment to be used for any given b/a ratio has
not been worked out, nor is the reverse relationship known.

Hashemi (53) recommends the use of an "effective heat capacity,"

Cp = c_+ Acexp L - BZ(T—T*)2 1, (2.27)
eff P

with appropriately chosen values of A and B. The enthalpy-temperature
and heat capacity-temperature reiationships remain similar to Figure
2,4b. He does not claim that this is in any way superior to fthe heat
capacity function suggested by Dusinberre; in fact, he does not mention
the work of Dusinberre. On the other hand, he points out that the

method is superior to others when the material does not freeze at a

given fixed temperature but over a temperature range. This is probably
so, but he does not substantiate this statement nor does he demonstrate
convergence as this approximate enthalpy-temperature relation approaches
the true enthalpy-temperature relation. Thus, the usability of fthese
methods rests on intuitive reasoning and not on mathematical analysis or
on agreement with experimental evidence. These argUmenTs do not diminish
the value of these investigations but only point out the need for more

work in these areas.
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Returning to the problems posed by equations (2.6) - (2.23), let us
review some of the methods suggested to solve the mathematical problem
as stated. The difficulty seems to arise from the interface boundary
conditions: how to calculate the position of the boundary, how to
approximate the slope at the boundary and how to compute the temperatures
at the nodal points immediately next to the boundary. Douglas and Gallie
(36) proposed a method for solving equations (2.6) - (2.10) in which the
region is divided by a uniform mesh spacing Ax. They propose choosing
At, the time step to be used at any one time, in such a way that the
boundary will travel the distance Ax in the time step At. This means

that the time after n time steps is given by:

n

—+
1l
1 e B |

ATJ (2.28)
0

and the interfacial boundary is at

S(Tn) = n Ax. (2.29)

Since the boundary is always at a nodal point, the equation can be
approximated by normal numerical methods. Douglas and Gallie (36)

used the backward difference method which is generally stable for any
value of AT/(Ax)Z. Even though At keeps increasing as time increases,
Douglas (31) has proved the uniqueness and rate of convergence of the

solution.,
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The other investigators used fixed At for their methods. Murray
and Landis (76) give two distinct methods for the solution of the prob-
lem. The first, restricted fo regions of finite width, uses a fixed
number of grids in each subregion. The length of these intervals is
equal within each subregion, buf not in the whole region, and it changes
with time, In this method the boundary is again at a grid or nodal
point at all times. |In the second method they use fixed spatial incre-
ments along with fixed time steps. Since in This method the fusion
front does not necessarily coincide with a grid point, they have to use
a special variable to record the location of the interface SIZ' Figure
2,5 illustrates their treatment of the boundary conditions near the
interface. When the interface is closest to the g-th intferval, they
interpolate (and/or extrapoiate) two temperature values for the inter-
val: T, and T ,,using the known values of T at g-2, g-I, S

ql 92 12?

g+2 by a second order extrapolation-interpolation formula. They use

g+l and

| T

REGION 1 INTERFACE Si2 REGION 2

= X

Figure 2.5.

I I lustration of Murray and Landis' (76) method.



-2|-

qu in computing the temperature distribution by an explicit method in
the region Rl’ and they use this same ftemperature in computing %;

near the interface. Similarly, they use T , fo compute the same things

q2
in R2 and then they can explicitly calculate the movement of the inter-
face. Depending on the position of the interface S|2 the temperature

at the g-th grid point is qu or Tq2'

This second-order approximation of the temperature at the inter-
face can be considered an improvement of the method proposed by Price
and Slack (83). They use Tq = T* during the time infterval the interface
is in the g-th space interval, which is a zero-order approximation.
Crank (24) and Ehrlich (44) also use an uneven grid spacing directly
adjacent to the interface to achieve better approximation in connection
with Crank-Nicolson type calculations. Douglas and Jones (39) point
out that a predictor-corrector type computation sometimes can be more
efficient than the Crank-Nicolson type without l|oss of accuracy. Rose
(85) also proposes a method similar to the one used by Lax (64) for
solving non-linear hyperbolic equations. He nctes that the method is
independent of dimensionality, but does not illustrate this point.

Before turning to the ftwo-dimensional investigations, let us men-
tion some of the investigators who proved some of the mathematical
theorems which provide the foundation for these methods. The existence
of the solution is proved with various restrictions by Bellman (6),
Douglas (31), Friedman (46,47,48), Kolodner (58), Kyner (60,61),

Miranker (73) and Trench (95). The proof of uniqueness for the solu-

tion appears in the works of Boley and Weiner (9), Douglas (31),
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Friedman (46,47,48), Kolodner (58) and Kyner (60)., Bellman (6) shows
that the solution is bounded, while Boley (8) and Hamill and Bankoff
(51) show that the bounds can be computed. Some of the resulfs are
applicable only under restricted circumstances; Douglas (33) shows the
applicability of the numerical methods fo quasi-linear probiems,
Thompson (92) also proves that the conditions to be placed on the non-
linear problem are sometimes the same as the conditions on the |inear
probiem,

Du Fort and Frankel (42), beside proposing an unconditionally
stable numerical method, point out the need for analysis of a formal
approximation, as certain approximations may lead to inconsistent re-
sults if the limiting process is carried out thoughtlessly. Setting
up the initial conditions and starting the numerical computation may
require special consideration as Murray and Landis (76) state. Some-
times fThese special considerations are simplified by the use of an
approximate initial temperature distribution., This infroduces a starf-
ing error which usually diminishes rapidly. Such a temperature dis-
tribution was previously used by Churchill and Teller (20) and it is
used in the present investigation.

Turning To fthe previous investigations of the two-dimensional
Stefan problem, the most recent work seems to be that of Hashemi (53).
He solves the two-dimensional heat conduction problem with variabie
coefficients. As previously mentioned, the latent heat of fusion is
taken info account by fthe use of an "effective heat capacity" over a
finite ftemperature interval. Wilcox and Duty (99) propose a method in

which They assume a shape for the solidifying interface, compute the



Tair = constant v v

/—X\a M, THE SOLIDIFYING
INTERFACIAL SURFACE
TUQUID = CONSTANT KT CONSTANT TEMPERATURE T,

Figure 2.6.

The problem solved by Wilcox and Duty (99).

temperature distribution in the bar and then check the heat balance
around the solid portion of the bar. The probiem is illustrated in
Figure 2.6. |f the heat balance does not check, they modify their
assumptions and start the computation again. Their method is not
usable for transient problems, but can give the pseudo-steady state
temperature distribution and interface shape. They only published a
few results for the steady state case (the velocity of the freezing

bar is zero) without giving the computer program or the algorithm used
to solve the problem. The efficiency of their method is also not
known. Allen and Severn (l|) propose a method to solve equation (2,24)
in two dimensions using a relaxation method. They claim that the error
of their numerical computation is less than one percent in their sample

problem,



CHAPTER 111

THE HEAT TRANSFER PROBLEM WITH PHASE CHANGE

3.1 Introduction

The heat transfer problem with change of phase is quite complex.
As it was pointed out earlier, the problem was attacked in several djf-

ferent ways. These methods fall into two major groups:

. Solve a simplified problem rigorously.

2. Obtain an approximate solution to a complex problem.

Both approaches have their advantages and disadvantages. The first has
the advantage that the method which was used for the solution can often
be extended to more complex problems by eliminating some of the sim-
plifying assumpfiqns, but until then it is applicable only to the specific
simplified problem or its equivalents. The second approach gives an
immediate solution, but the approximation is sometimes not sufficiently
accurate. In this work the first route is followed. Using the informa-
tion gathered in the rigorous solution of one-dimensional problems, a
method is proposed to solve a simple two-dimensional Stefan problem with
sufficient accuracy to predict the shape of the interface. Many of the
ideas presented in the following chapter are general enough to be used

in more complex probiems. Some of the possible extensions will be recom-

mended for future investigation in Chapter VII,

-2
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In this chapter a heat transfer problem with phase change, the
physical problem to be solved is defined and the equations used for its
solution are derived., The problem is stated in Section 2, and its
mathematical description is given in Section 3. This description is
transformed into a dimensionless form in Section 4. The numerical
technique used to solve the heat conduction equations is presented in
Section 5. In Section 6 some characteristics of this fechnique are
discussed. The system of grid points necessary for the numerical approx-
imation of the mathematical problem is introduced in Section 7. In Sec-
tion 8 the derivatives are approximated by finite differences and in
Sections 9 and 10 the system of equations used in the numerical technigue
is derived. The method for solving this system of equations will be
described in Section ||, The motion of the interface will be discussed
in Section 12, while the question of obtaining the initial conditions

are taken up in Section |3.

3.2 The Problem Statement

The problem may be stated as follows: a rectangular bar, made of
a material which undergoes a phase transformation, is pushed through a
furnace in which the temperature distribution is symmetric around the
axis of this furnace, but is not uniform along this axis. Indeed, the
temperature variation in the furnace is such that the femperature at one
end of the bar will be below the transformation temperature, while at

the other end it will be above the transformation temperature. One end
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of the bar, therefore, will contain the phase which is stable at low
temperatures, while the other will contain the phase which is stable at
high temperatures. The problem is to find the location of the phase
boundary and calculate the temperature distribution., We will restrict
our attention to the longitudinal center plane of the bar. This center

plane is a rectangie shown in Figure 3.1,

L {2 ;ﬁ
_ REGION R, REGION R a2
\ | CONTAING CONTAINS
| PHASE 1 PHASE 2
[ ~INTERFACE

Figure 3.1.

The heat fransfer problem with phase change.

The dimensions of the rectangle in which we want to compute the
temperature disftribution and the location of fhe phase boundary are 22
and Ri in the x and y direction respectively., Denoting Thé phase frans-
formation temperature em, the phase which is stable below this tempera-
ture is phase |, the other, phase 2 and identifying the regions occupied

by these phases with fthe same numbers, we know that the temperature in

region | (RI) is always less than or equal to em while in region 2 (RZ)
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it is greater than or equal to em. The interface temperature is em.

The rectangle is heated or cooled by its surroundings depending on the
relative ftemperatures of the rectangle's side and the surroundings.
Assume that the amount of heat transferred to the material or away frcm
it depends linearly on the temperature difference between the material's
surface and the surroundings, the constant of proportionality being h,
the heat transfer coefficient.

The material is taken to be of constant density and therefore no
movement of material occurs. Crank (25), Wilkes (100) and others solved
problems without making this assumption. This assumption greatiy sim-
plifies the present problem and allows the attention to be concentrated
to the moving boundary., Possible future work without this assumption is
discussed in Chapter VII. The other physical constants, the heat capacity,
c, the thermal conductivity, k, and the heat transfer coefficient, h, are
assumed to be constants for each of the phases. This again is not neces-
sary as Hashemi (53) previously solved a two-dimensional heat conduction
problem with temperature-dependent coefficients, This assumption is used
to further simplify the combuTaTion. The same kind of calculation can
surely be carried out even if these constants are functions of both loca-
tion and temperature, but the resulting computation will take more time
and the necessary computer program will be considerably more complex.

The temperature distribution in the furnace is not necessarily con-
stant, but may be a function of time. The bar and the furnace can be in
motion relative fo each other. It is important, however, that the tem-

perature of the bar's surroundings are a known function of time. The
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actual femperature distributions used in the sample computation is dis-

cussed in The next chapter.

3,3 Mathematical Description

In this section the mathematical equations describing the problem
are given, The heat balance at each point of the regions are given by

Laplace's equation:

98

— = o« Vo in R, (3.3.1)
oF
30
2 = o, 7, in R, (3.3.2)
5T

where el is the temperature in Ri’

o, is the thermal diffusivity, ki/(p'ci), cmz/sec,
T is time, sec.

These partial differential equations (P.D.E. hereafter) holc inside each
of the regions. At the boundaries of the regions the heaT‘baIance is
given by the boundary conditions. There are two boundary conditions for
each spatial variable in each subregion as the P.D.E.'s are second order
in the spatial variables, Let us denote the temperature of the surround-

ings in the immediate neighborhood of a boundary point by 65. The heat
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balance equations at the boundary points are

ael

when x = 0: kI —_— = hl(eI -6,
5T s
862

when x = 22: k2 - = hz(es - 62),
ot
aei

when y = 0: k’ — = hl(el - es),
ot
aei .

when y = Zl: ‘ ki — = hi(eS - BI);
ot

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

where ki is the thermal conductivity in the subregion Ri and hi is The

heat transfer coefficient at the boundaries of the subregion Ri' The

remaining two boundary conditions are given at the interface of the two

subregions:

eI - e2 = em
and
96 06 =
K — -k, == = oL &,
on an dt

where 7 designates the direction normal fo the interface,

is the rate of motion of the ihferface, cm/sec,

is the latent heat of fusion, cal/gm,

oo |8
—+ELZ'

p is the density of the material, gm/cc.

(3.3.7)

(3.3.8)
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Carslaw and Jaeger (18) show that equation (3.3.8) is non-linear, and
Landau (62) even proposed a ftransformation which would move the non-
linearity from the boundary condition to the P.D.E. Since that trans-
formation does not seem fo simplify the present problem, only one more
simplifying transformation is made before obtaining the dimensioniess
form of the equations and boundary conditions., |t is known that the

component of the normal derivatives in a particular direction equals

the directional derivative. In particular
98 cos y = 3% s (3.3.9)
an X

where Yy is the angle between the x and the normal direction.: This is
the same as the angle between the interface and the y direction as can
be seen on Figure 3.2, Using this identity, equation (3.3.8) can be

put intfo a more functional form:

aeI k2 ae2 _ pkcosZY

(3.3.10)

o_lo.
=+ [X]

INTERFACE NORMAL TO INTERFACE

TANGENT TO INTERFACE

Figure 3.2,
Definition of the angle Y.
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3.4 Transformation to Dimensionless Form

The dimensionless forms of the equations given in the previous sec-
tion can be obtained by defining a suitable set of dimensionless variablies.

I f eh is a reference temperature, the following dimensionless variables

are introduced:

X = 3= Y = g t = 5= T = 55 (3.4.1)
l

where T is the dimensionless femperature and x, y and t (the letters
without the diacritical mark wherever such is used) are also dimension-
less. |t can be seen that T is so chosen that the interface femperafure
is always zero, and therefore the temperature in R' is always negative
while it is always positive in R2. Substituting these new variables

intfo equations (3.3.1) - (3.3.7) and (3.3.10), the following equations

are obtained;

BTI ) T| ) T|
—a'_'F- = 5 + ——7—- n Rl’ (3.4.,2)
9x oy
T, o, 2°T, 0T,
7 = = [ —= + ——7—-] in R, (3.4.3)
I 90X oy

and the boundary conditions on the sides of the rectangle become
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3T| h|2|
3;— = —k',—" (TI - TS) when x = O, (3.4.4)
8T2 h22|
P = -TZ— (TS - TZ) when x = 2.2/2,[ , (3.4.5)
3Ti hili
—97 = —k—'—— (T' - TS) when Yy = O, (3.4.6)
BTi hill
W - (Ts - Ti) when y = 1|, (3.4.7)

while at the interface the following two conditions hold:

T, T, =0 on the interface and (3.4.8)
2

BTI kz BTZ aipkcos Y dx

—_ - _£ e = —— on the interface. (3.4.9)

ax kl 9 kl(eh-em) dt

It can be seen that the dependent variables TI’ T2 and the location of

the interface depend on the following independent variables and para-

meters:

a'pkcoszy

X, ¥, T, az/a|; 2 -—ETTEE:E;), (3.4,10)

2/2|, hlgl/kl’ h22|/k2, TS,

the last one of which can be eliminated by a suitably chosen eh,

the arbitrary reference temperature. The assumption of identical

properties in the two phases would further reduce the number of
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parameters. Neither the elimination of the last dimensionless group,
nor other ways of reducing the number of groups would lead to more use-
ful results in this case.

Dimensionless groups and variables find their greatest usefulness
when a large class of problems have identical dimensionless solutions
or when a correlation exists between the dimensionless groups. Neither
of these conditions are applicable to our problem in the strict sense.
In the general case the properties, and therefore many of the dimension-
less groups, are temperature-dependent. Even more important, the most
frequently changed parameter is.TS. As a matter of fact, TS is not
even a constant parameter, but a function of both time and location.

It is defined separately for each problem. Hence we do not deal with
one problem, but with many problems which have the same form. Every one
of these problems has a different solution, and they are as dissimilar
as the TS?S, the boundary temperature distributions, used.

The dimensionless groups were introduced because they are useful
in a different way. Their use somewhat simplified the notation. Also,
in the sample. computations not the boundary conditions but rather, the
material properties were varied to study how they affect the solution.
This is not the usual case when one wants to use this type of program.
Usual ly the material is given and the problem is solved using various
functions for TS. In either case, the use of the dimensionless tempera-

ture makes the relative temperature distribution easy to visualize.
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3.5 The Numerical Method

We are now in position to outline a numerical procedure for solv-
ing the problem defined by equations (3.4.,2) - (3.4,9). Seemingly,
equation (3,4.9) can be used to find the location of the Interface if
one knew the temperature distribution. Also, if the location of the
interface is known, equations (3.4.2) - (3.4.8) can be used to solve
the temperature distribution. But since the required knowledge is not
readily available, one has to solve the equations simultaneously.

This is done by using a so-called marching technique. In this fechni-
que one has to know the solution to the problem at some ftime t. Using
some method one computes the solution at a later time t+At. By repeat-
ing The method over and over again, the solution can be obtained at all
later times. At this point one has to answer ftwo questions: |. |Is
there such a method? 2. Do we know the solution at any one time?

The answer to the first question is that the methods available
do not give an exact solution, the error involved depends on the size
of A&t. The larger Af is, the larger the error. This forces us to use
relatively small At's repeatedly. This means repeating the computa-
tions more often, possibly compounding the errors. The method chosen
has to give a more accurate solution with the repeated use of these
shorter time intervals, to be useful. |In this chapter only those
methods will be discussed which have this property, that is, they are
convergent, This question will be further discussed in the next sec-

tion.
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The answer fo the second question is no in most cases. However,
there are ways to overcome this difficulty and these will be discussed
in Section 3.13.

Returning to the first question, when a numerical method is used
one usually breaks fthe problem into subproblems and solves these. Once
a solution to these problems is available, one can go ahead with the
whole problem. Sometimes the sequential solution of the subproblems
is a solution of the whole. At other times a more complex way is
necessary. Let us first discuss how one would go about solving equations
(3.4.2) and (3.4.3), and return to the solution of the whole problem
at a later time,

Common to all the numerical methods to be discussed is the approx-.

imation of the time derivative;

a7 T(T+AT) _ T(‘I‘) (3.5 1)
dt At ’ D,

where fthe superscript identifies the time. Let us denote with Ai T(T)

the approximation of the second partial derivative of T with respect
to x taken at time t. Let us use similar notation for the derivative
taken with respect fo y. Following the idea developed for one-dimen-
sional techniques, one can write the equations of three possible

numerical methods:

(t+41) ()
T - T _ .2 (D) 2 (1)
T = A>< T + Ay T R (3.5.2)




-36-

SC VS DR

T _ 2 _(t+AT) 2 _(++AH)
AT = AT T (3.5.3)
T 12 )
AT 2 X
(3.5.4)
N %_ Ai (PR | L)

It turns out that these methods are rarely used. Equation (3.5.2) de-
fines the explicit method because the equation contains only one unknown,
and can be solved explicitly. 1t is seidom used in fthis form because
stability considerations |imit the size of the largest usable At to a
very small| value. Equation (3,5.3) defines the implicit method. The
equation generally contains five unknowns, and the temperature at any
point is obtained by solving a system of equations. This requires a
considerable amount of computation and is therefore infrequently used.
The Crank=-Nicolson method, which is defined by equation (3.5.4) is also
rarely used, for the same reason, This method is better than the im-
plicit method as its convergence is second order in time while the im-
plicit method is only first order. Methods requiring less computation
with similar convergence characteristics have been developed. These
methods are perturbations of the Crank-Nicolson method and are the ones
usually used in multi-dimensional work. One, developed by Peaceman and
Rachford (77) and often referred to as The Alternating Direction Implicit

Method can be defined by ftwo equations:
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FUTHAT/2) ()

T _ 2 () 2 (t+At/2)
X/ = Ax T + Ay T , (3.5.5)
(t+At) (t+41/2)
T - T - A2 T(T+AT) + A2 T(T+A+/2) . (3.5.6)
At/2 X y

The method derived its name because it is implicit for a At/2
time period in the y and explicit in the x direction while for the
fol lowing At/2 time interval it is implicit in the x and explicit in
the y direction. An equivalent method was proposed by Douglas and

Rachford (40) which is given by the following equations:

T - 1D 2 () 2 _*
= a2 7 L2 (3.5.7)
At X y
(tA1) (1) .
! il A (3.5.8)
At X y

This is also an alternating direction implicit method. T* and in

later equations T** stand for intermediate approximations of the tem-
perature distribution. The difference between these two methods may

be encountered when one ‘tries to use them in three dimensions. |f one
attempts to extend the first method, it seems natural to try fo intro-
duce three time levels. One would use an implicit method for a time
interval of At/3 in each direction, Unfortunately, the method so con-
ceived would not have the stability characteristics of the other Crank-

Nicolson type methods. On the other hand, equations (3.5.7) - (3.5.8)
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can be readily extended to the following convergent three-dimensional

method:

i 2 (1) 2 () 2 *

_— = AT + AT T + AT T, (3.5.9)
At X y z

T - 2 _(H 2w 2

T T - a2 11 2 g2 77 4 42 1 (3.5.10)
At X y z

TD g 2 ety 2 2

AT X y v B T (3.5.11)

Brian (15) recently proposed a third variation of the Crank-Nicolson
method which in two dimensions can be given most visually by the

fol lowing three equations:

IR S R 2 (1) 2
g B VIR A i (3.5.12)
X% (1) x .

LT - o2 T 4 Ai T, (3.5.13)
(+401) (1) o .

T - T - Ai - Ai T, (3.5.14)

*%
T can be eliminated between equations (3.5.13) and (3.5,14). The

resulting two equations are equivalent to- those previously mentioned.
This method also has a convergent three-dimensional equivalent, and

the four equations defining it most visually are:
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* (1)

T =T - A2 AT _ 2 (1) 2 X
—5T7— ° Ax T = Ay T + AZ T, (3.5.15)
T -1 e 2, 2 ok 2
AT/ x T oAy T AT, (3.5.16)
T*** - T(f) 2 _¥¥¥ D %% 2 %
75 = Ax T + Ay T + Az T, (3.5.17)
(t+at) _ (1) XX % %
! LI AR (3.5.18)
At X y z
X X%
In this case again T can be eliminated and further simplification

of the equations result in a method which is probably better than the
one proposed by Douglas and Rachford (40). A method equivalent to
this was also proposed by Douglas (35). These are still being improved
and generalized (see Mitchell (75) for exahple), but for our purposes
this should give a sufficient insight into the basic methods.

There is another fechnique available which should be mentioned.
In the previously-discussed methods only the solution at time t was
used tfo compute the results at time t+At, although the implicit methods
implicitly took into account the temperature distribution at times
other than +, The explicit method, and on certain problems all| methods,
can be improved by assuming that the results calculated by them are only
"predicted results." Repeating the computation using both the solution
at time t and the predicted solution at time t+At one can obtain im-
proved results, This is especially true with problems containing vari-

able coefficients, and it is probably true in the problem under
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consideration. The disadvantage of this method is that one has to do
the computations fwice. Since the increased accuracy allows the use
of larger At's than the original methods themselves would, the amount
of computation for the same degree of accuracy is not doubled. Whether
there is any saving in overall computing Time depends on the individual
problem. Certain problems, however, cannot.be solved easily without
the use of this method.

[T can be seen that any one of the above mentioned methods can
be used to solve equations (3.4.2) and (3.4,3) with constant coefficients
and with linear boundary conditions. Hashemi (53) used the predictor-
corrector technique with the A.D.l. method to solve the problem with
variable coefficients and non-linear boundary conditions. |In this work
the A.D.l. method is used for the calculations with some boundary condi-
tions defined on a moving boundary. The location of this boundary will
be determined using the explicit approximation available for equation
(3.4.9), as will be stated in Section 12, When the problem is used with
variable coefficients, a predictor-corrector type of computation is re-
quired and would probably also reduce the error introduced by the ex-

plicit approximation used for equation (3.4.9).

3.6 Characteristics of the Numerical Method

In the previous sections several numerical methods were reviewed.
In these the partial derivatives appearing in the P.D.E, were approximated

by finite differences. |t would be desirable to know that solution of the



-4~

finite difference equations (abbreviated as F.D.E. hereafter) is an
approximate solution of the P.D.E. Before this can be ascertained,
several characteristics of the F.D.E. have to be examined.

First, one has to make sure the F.D.E. is consistent with the
P.D.E. Let us call the difference between the F.D.E. and the P.D.E.
the truncation error. This error has to approach zero as a limit as
the increment size of the independent variables is reduced to zero.
This happens in most cases, but du Fort and Frankel (42) did discover

a finite difference approximation to the u, = Useo equation in which

+
one of the terms in the truncation error was proportional to (AT/AX)Z.
This meant that the consistency of this approximation depended on how
At and Ax approached zero. Their method is mentioned in the l|iterature
only fo point out that consistency is not automatic in every case.
Most authors tend to prove consistency over and over again, although it
is sufficient to refer to the work of Peaceman and Rachford (77) who
showed that ftheir method is a consistent approximation of the two-dimen-
sional heat equation in a rectangular coordinate system. Let us now
turn our attention to the other characteristics of the F.D.E.

Once consistency has been proven it is certain that the F.D.E.
approximates the P,D.E, This, however, is not sufficient to insure
that the solution of the F.D.E. is a solution of the problem. Other
errors may be committed in approximating the boundary conditions.
Still others may be committed during computation. For example, during
the computation all intermediate results are represented as finite
decimal numbers having a given number of significant figures. No matter

what that number may be, some of the results may require a larger number,
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and these will be rounded off, introducing an error. During the com-
putation these errors will occur repeatedly and may change the results
significantly.

Before one can say that the numerical solution of the F.D.E, can
approximate the solution of the P.D.E., one has to show fthat the method
is convergent, that is the difference between the ftwo solutions vanishes
as the fTime and spatial increments become smaller and smaller. Lax and
Richtmyer (65) have presented a theorem which shows that a finite dif-
ference approximation of a linear P.D,E. is convergent if the method is
consistent and stable. Douglas (30), Friedman (47,48) and others have
extended this proof to certain non-linear problems. |t is not the ob-
ject of this study to show that the present problem can be transformed
to a problem for which this proof is or is not applicable, even if such
a procedure were available. |t was stated however that at present the
problem remains somewhat undefined because the function used for the
boundary condition is undefined, Therefore, only the linear portion of
the problem can be investigated. |t was stated above that convergence
requires that the method be stable. Let us take a look at this property
of the F.D.E.

A finite difference solution is stable if there is an upper limit
to which any error can be amplified as the increment size is decreased,
The error may already be present in the initial conditions; it may be
committed during the computation or may arise from the boundary con-
ditions. Stability in itself does not impfy that the error will be
small as the increment size vanishes, it merely means that it will re-

main bounded., One simple way to get a superficial check on stability
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is to assume that the solution at some time + has a Fourier series ex-
pansion in which the general term has the form

o) o BX SiYY (3.6.1)
where B and y are constants and i is the imaginary unit. Since the
F.D.E. acts on this error ferm the same way as it acts on any other

term, let us substitute (3.6.1) into the finite difference form of

equation (3.4.3) to obtain

(t) (1) ()
T(T+A+/2) - T(T) a X+Axyy 2 T><,y ¥ Tx—Ax,y
XsY X2 Y = __2_ [ +
At/2 o, sz
(3.6.2)
T(T+A+/2) _ T(T+AT/2)+ T(++A+/2)
X,y+thy Xpy Xpy=dy
¥ 7
Ay
T (THAT) L (1+41/2) (F+01) _ 5 L(TA1) | L (T+A1)
X, Y XY o, X+AX sy XYy X=AX Yy
= = I: i +
At/2 o, sz
(3.6.3)
(t+01/2) _ 2 T(T+A+/2) + T(++A+/2) |
X oy +Ay X,Y X,y-4y
+ J.
Ay2

Substitution of (3.6.1) into (3.6.2) and (3,6.3) results in the follow-

i ng equations:
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. . o AT . . . .
CoCtest/2)-0(1)Te X6V = 2 [ocrre! V(e BUFEN) o T8, o TBOCRA, 7,
Zule
(3.6.4)
azAT . Py (vHAY) . \
+ Coctint/2)e! B (o YVFAY) oe 1YY o TY(y=0y)
2d|Ay
iBx 1 i Yy, TB(xHAX) . iBx, iB(x=bx)
[octeat) - (t+at/2)Je e Y = —=—— [o(r+atre V(o' P T g0 Pe 11Xy
2a|Ax
(3.6.5)
a At Cao . . _
+ —2 Cocteat/2re PX (el VYD oo iV, V(Y=Y g
2alAy
Division of equation (3.6.4) by ¢(t) e %! YV and equation (3.6.5) by
¢(T+AT/2)eineiyy gives
oAt \ .
¢(lt$?/2) _ _ 2 , (elﬁAx_2+e-|BAx) +
ZuIAx
(3.6.6)
a,At . .
;2 , ¢(T;?1<2) (elyAy_2+e|yAy),
ZQKAT ‘
octtat) %8 e iemc ieax,
S(THAT/2) Zalez $(T35T/2)
(3.6.7)
oAt . .

ZaIAyz
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Note that

eW 24 eTWo cos(W) - 2 = - 4 sin? (%J

and introduce the following simplifying notation

2,a|d+ ‘ 2Aa{df
A= WV B = W

azAx aZAy

using the frigonometric identity of (3.6.8) and the notation of

(3.6.9), equations (3.6.6) and (3.6.7) can be rewritten as

. 2,BAx
oCteat/zy L T ASInSE)
(1) | + B sinz(l%l)
o (++aD) | - B sin“(X2Y)
o (T+A1/2) 7 BAx

+
>
[7)]
S.

Multiplying these two equations together

¢ (t+At) ["ASi”Z(-B-g—X)][I-BsinZ(X_gl) ]
. [|+Bsi”2(lg‘y‘)][I+Asin2(%>-<—) ]

Now it is possible To show that the method is stable.

the error term at time t = a is ¢(a). At a later time + = b

the modulus can be expressed as

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11)

(3.6.12)

The modulus of

a + n At



-46-

[l-Asinz(%)i)j[l—Bsinz(%b] n
6(b) = ¢(a)

R (3.6.13)

[|+Asin2<%’5>][|+ssihz(lél>]

>
where n = |,

It can be seen that the error term, no matter what its origin,
does not increase as n increases. The same can be shown for equation

(3.4.2), only A and B would not contain o, and a., I+ may be worth-

I 2

while fto mention at this time that the error introduced at time t+ = a
would tend to decrease as time (b) increases. It is important, however,
that for any given time t = b (>a) the error does not increase as A+t

is decreased (n increased). Thus the method would appear stable. Prob-
ably it is, but it must be pointed out again that this has not yet been
proven. The boundary conditions are part of the numerical method just
as the F.D.E. is. Since the boundary condition is not really specified,
this part of the proof remains to be done. In practice, however, when

a computer program is available, it is easier to use the computer to
test stability and convergence than to go back to the theoretical prob-
lem and try some transformation which would show the method to be stable.
When the boundary condi+ions are undetermined or complex this may be the
only sensible route to follow once one is reasonably assurred of success.

The question of convergence will be further discussed in Chapter V along

with the computed results.
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3.7 The System of Grid Points

In order to derive the system of F.D.E.'s representing the P.D.E.'s
and their boundary conditions, it is necessary to establish a system of
grid points in the region outlined in Figure 3.|. The rectangular sym-

metry of the problem and the rectangular coordinate system adopted for

Y3y
(a) G=tem
g:
Xy § X@
INTERFACE
X3 X
0,0 X=lLcm ™
. X= (z/h
J | - DIRECTION
heax—|
1 P,
(b) 9Q “iq Q
ZQ-]\ T
A
Fi
ZJJ]
2. X-DIRECTION
—_——
YA
1’1 : Pgl >{
Figure 3.3.

Coordinates used: (a) for the mathematical description,
(b) for the numerical solution.
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the mathematical description suggests the adoption of a rectangular grid.
For easy comparison of the various coordinate systems, Figure 3.3b,

which shows the proposed grid points, is placed below Figure 3.3a, which
shows the coordinates used fTo describe the mathematical problem.

The grid points are at the intersection of horizontal and vertical
lines. Let us call the horizontal lines "x-lines" as they are parallel
to the x axis, and call the vertical lines "y-lines" as they are parallel
to the y axis. Let us use P equally spaced y-lines and Q equally spaced
x=lines. The first and last of these lines coincide with the sides of
the rectangle. The interval separating the grid points is Ax on an
x-|ine, while it is Ay on a y-line, where

Ax = ———= and Ay = (3.7.1)

Rl(P-I) E&T’

Each grid point is identified by a pair of integers (i,j) where the

possibie values for the integers are i = 1, 2, ..., Pand j =1, 2,
.oy Q. The grid point identified by (i,j) corresponds to the point

having coordinates (x,y) where x = (i=1)Ax and y = (j-1) Ay.

The interface between the two regions can be specified most
readily by defining an extra set of interface points. These points
are piaced at fhe infersecfion of the interface with the grid lines.
In the set of problems under consideration the interface always inter-
sects all the x-grid lines and the exfra Q grid points defined at
these intersections will be called "x-interface points." The x-inter-
face points will have coordinates (zj,j), where Zj is a real number,

usually not an integer. When the interface intersects the y-grid lines,
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the intersection will be called a "y-inferface point." The number of
y interface points varies during the problem, but the largest number
which can occur in the problems under consideration is Q-1. These will
be defined during the computation as needed.

in future discussions, it will be useful to interpret the defini-
tion of the interface points in a broader sense than just as points
having given coordinates., Let us choose a suitable value for ¢ as the
radius of the surroundings of the interface point, and we will assume
that the interface point includes its surroundings. Using this defini-

ES

tion point (i,j) will be considered to be in region Rl if i zj—e, and

[\

in region R2 if o

to coincide with the interface point. In some parts of the problem

Zj+€' When zJ—e << zj+e, the point is considered

different values for € may be chosen, as will be pointed out in later
sections.

The temperature at any given point is identified by the subscripts
i,J denoting the location of the point to which it belongs. Since the
two regions occupying the rectangle are not overlapping, the location of
the point identifies the region to which it belongs. The interface belongs
to both regions, but the temperature at the interface is identical in both
regions and therefore the specific region does not have to be identified
even here, Ti . stands for T, if point (i,j) belongs to region R, and it

, I i

stands for T2 when the point (i,j) is in region RZ' Ti ] will have to be

computed by the F.D.E. corresponding the equations (3.4.2) or (3.4.3)
depending on whether point (i,j) is in region RI or R2. At this time, it
is also convenient to rewrite equations (3.4.2) and (3.4.3) in a common

form:
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o 2 2
T - 'r T T
T T o ( —5 + —5 ), (3.7.2)
2 ax ay
where the subscript r refers to the region, being | in region R, and

|
2 in region RZ' Equation (3,7.2) is applicable in either region. It

is not a new equation, only a new way fo write equations (3.4.2) and
(3.4.3),

Since the computation by the numerical method is carried out by
a marching Techﬁique where only the solution at time t = a is required
to compute the solution at time T = a + At/2, with some miscel |aneous
side information, it is offen sufficient to know only the temperature at
the present time, t = a, as the solution is computed for the next time
interval, t = a + At/2, Sometimes, however, it is expedient to record
the ftemperature distribution for three time levels, that is, for the
complete time interval At. This was done in the present computations,
and although it may not be necessary, if allows a certain degree of flex-
ibility which is very useful during the developmenT of procedures. LéT
us denote the temperature at time t = a as TIi .,* the temperature at

»J

time t = a + At/2 as T2, ] and The femperature at time T = a + At as

’

T3i j° As soon as all the T3i j's have been computed at the end of a

time interval and these computed results are printed out or preserved

otherwise, as needed, the T3i .'s become the starting Tli j'S for the
? s

*The symbols TI, T2, T3, Tli, TIP, TJI, TJQ, BT, GM, BU, BUU, BI
and Bll were used in the computer program and are adopted for the present
discussion. These are distinct symbols, not multiplication of several
separate symbols, To eliminate any confusion, whenever such a symbol
is multipiied by a constant or variable a "«" will be used to indicate
the multiplication.
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Since the old values of the T2i J's and T3i J's are no
)

longer needed, they are preserved only if they are prinfed out or saved

otherwise,

At this point the process is repeated and a new set of

values are computed for T2 and T3.

calculate time.

TIi ] designates the temperature at the point (i,j) at time t = To

H

+n At = a, where To stands for the time at which the computation was

A separate variable n is used to

In general at the beginning of each computational cycle

started. It is customary, but by no means necessary, to choose To to be

Zzero.

3.8 Approximation of the Derivatives

When the numerical method is used, the derivatives appearing in

the P.D.E.'s and in the boundary conditions are approximated by finite

differences.

In Section 3.5 it was already stated that the time deriva-

tive is given by

Equations (3

"l

H

FUPHAT) ()

At

(3.5.1)

.6.2) and (3.6.3) already used the following approximations:

27

+ T

A2 T = Tx—Ax,y R x+AX, Yy
X 2 '
Ax
T - 2T + T
A2 T = X,Yy=Ay XY Xy YAy

Ay2

)

(3.8.1)

(3.8.2)
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These and other finite difference approximations are obtained from the
Taylor series expansion of the function, Since the derivatives are
all partial derivatives with respect to one variable it is sufficient

to expand the function with respect fo one of the variables:

af(u) (Au)2 azf(u)

f(utbu) = f(u) + Au 50 + 5T 5 + ...t
ou
(3.8.3)
o™ e L o™ a"tm)
MR n-| Y n !
’ du ) du
where u £ n £ u + Au in the remainder term. In the approximations the

remainder term is assumed to be small and negligible. The fruncation

_aw” "t
n! n
u

error so introduced is € =0 (an". Equation (3.5.1)

is obtained by takingn =2, f =T, u=t:

Terat) = Ter) + ot 254 0(an)? (3.8.4)
and solving for fthe desired partial derivative. By using the same
approach similar formulas for the first order space derivatives can
also be derived.

In some cases this approximation is not sufficiently accurate. A

better approximation can be derived from the following two expansions

2 2
= oT (mAx)™ 37T 2
Tt A,y Tx,y +omax o= * 71 —5 + 0(&)7, (3.8.5)

39X
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2 .2
= - oT (sAx)™ 37T 3
TX-S Ax,y Tx,y sbx = 21 8x2 + 0(8x)7, (3.8.6)

where m and s have similar orders of magnitude. Multiplying equation
(3.8.5) by 52 and equation (3,8.6) by m2 and then subtracting the

latter equation from the former

2 2 2

oT 3
3 T><+mA><,y - Tx-sAx,y

= (%-mA)T_ + smis+m)dx ok + 0(Ax)>  (3.8.7)
X,Y 90X
is obtained., The remainder term in this equation is third order while

in equation (3.8.4) it was second order. The first order derivative

can be obtained upon rearranging equation (3.8.7):

S T _ Sm __m T
0T ~ m(s+m) X+mAx,y sm X,y s(mts) x-sbx,y

Ax

(3.8.8)

This approximation requires the use of three points, but these do noft
have to be spaced at equal intervals, thus the approximation is usable
near the interface.

The second order derivatives are obtained from the following

two expansions:

2 .2 3.3

_ 3T , (Ax)™ 3T | (Ax)™ 97T 4
T =T + AX — + . + T + 0(Ax) 7, (3.8.9)
x+AX,y X, Y IX 2! ax2 31 3x3
2,2 3.3
T ST o T T BT )T T gaf, (3.8.10)
x=Ax, Yy X,Y X 2! 3X2 3! 3x3
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Upon addition of these two equations, the equation

2
T + T =21+ 0?1+ om? (3.8.11)
x+Ax,y x=0X,y X,Y 3x2

is obtained and this can be solved to give equation (3,8.1). Equation
(3.8.2) is obtained by a similar derivation by using the Taylor series
expansion at point (x,y) to find the temperatures at the points (x,y+4y)
and (x,y-dy). These approximations of the second derivatives are used
whenever feasible, but when the grid points are not separated by even
grid spacing a different approximation is needed. This is again obtained
by the use of the Taylor series expansions at point (x,y) to find the
temperatures at points (x+m-Ax,y) and (x—s;Ax,y), which are given in
equations (3.8.5) and (3.8.6). |In this case, let us multiply equation

(3.8.5) by s and (3.8.6) by m and then add the two equations:

T = (mts) T + ms(m+s)(A><)2 BZT +O(Ax)4
X+mAx,y x=-SAX,y X,Y 2! ax2

s T

(3.8.12)

It can be seen that this equation is similar to (3,8.11), but the
truncation error in (3.8.11) is O(Ax)4 while in (3,8,12) it is only
O(Ax)3. Solving (3.8.12) to obtain the derivative:

2 2 2
3T » mimts) Tx+m~Ax,y " ms Tx,y ¥ s(mts) Tx-s’Ax,y (3.8.13)

[
sz (Ax)2
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This approximation is usable when the grid points are not evenly spaced,

and it can be noticed that when r =

identical to (3.8.1),

obtain the y derivative,

two grid points and the first derivative.

s = | equation (3.8.13) becomes

Again, similar derivation can be carried out to

In some cases the second order derivative is approximated using

by solving the Taylor series expansion itself,

2 .2
T =T + Ax 3T + (4x) §~I-+ O(Ax)3
x+AX,y X, Y ax 2 5 2
X
or
2 .2
T ' =T - Ax EI-+ (Ax) é—I-+ O(Ax)3
X=AX, Yy X, Y X 2 5 2
X
to get the desired derivatives:
82T 3 2Tx+Ax,y - 2Tx,y 2 T
6x2 Ax2 Ax  9x
or
T Phemxy "%y 2 ot
2 2 Ax  9x
ax Ax

This approximation is obtained

(3.8.14)

(3.8.15)

(3.8.16)

(3.8.17)
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3.9  The Equations Defining T' *A/2)

(T+AT/2))a+ each grid point

Before the equations defining T2 (=T
can be written down, it is necessary to point out that the equations
are slightly different at the various points. This is due fto the fact

that there are two different types of points:

l. Inferior points

2, Boundary points.

The boundary points can again be subdivided into groups, but let us
first define the interior points. |h Figure 3.4.(a) the system of
grid points are reproduced, while certain special features are empha-
sized in the other parts of the figure. An interior point (i,j) is
shown in 3.4.(b), |t is characterized by the four neighboring grid
points with coordinates (i+l,j), (i-1,j), Ci,j+1), (i,j=1), all of
which lie in fthe same region. Any grid point which is not an interior
point is a boundary point. A boundary point may belong to one or more

of the following eight classifications:

i

1. There is no grid point with coordinates (0, j).

Il

2, i P. There is no grid point with coordinates (P+1,j).
3. Point (i+l,]) does not belong to the same region as (i,j).
4, Point (i-1,]j) does not belong to the same region as (i,j).
5. j = 1. There is no grid point with coordinates (i,0).

6. J = Q. There is no grid point with coordinates (i,Q0+1).

1
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7. Point (i,j+1) does not belong to the same region as (i,j).

8. Point (i,j-1) does not belong fo the same region as (i,j).

These classifications are not exclusive, fthat is, a given boundary point
may belong to more than one group. |In the group of problems studied,
this statement may be restricted, The first four classifications are
exclusive among themselves (but do not exclude a point belonging to
any one of the first four groups also belonging to some of the latter
four).

Returning to the prcblem at hand, the method for solving the
problem is given by equation (3.5.5) and (3,5.6), the first one of
which is used to find T2. The problem is stated by equation (3.7.2)
subject to the boundary conditions stated in Section 3.4. Before writing
down the equations in detail, let us rearrange the approximation corres-

ponding to (3.5.5) from

T2, . =TI, o o
Ly L, - _r 2 _r 2
3773 oy Ax Tli,j + e Ay Tzi,J (3.9.1)
to the following form:
- @y (1) , @ - (1)
(AX)T AT T2, - 20 ——— T2.. = =(AX)"-A" TI, -2 —m—TI. ..
y i ar>AT iJ X iJ o At iJ
(3.9.2)
Let us introduce the notation
2
o, (Ax)
_ l 2 _ (Ax,2 P
L = —E:K¥— R R™ = (Ay) , BU = =2(R™+L) (3.9.3)



-59-

(Ax) 2 Ai T2, - 2LeT2, (3.9.4)

N J’

-n
1

, = - (02 A% TI. L - 2LeTI. L. (3.9.5)
X i, i,

-n
1]

Using this notation equation, (3.9.2) becomes FI = FZ' We will use the
approximations developed in the previous section to find FI and F2 for
the various types of grid points.

At an interior point (shown on Figure 3.4.b) equations (3.8.1)

and (3.8.2) can be used to obtain:

F o= R%.T2 -BU-T2,  + RZ.T2. (3.9.6)

| i, J-| ,J i, J+]

and

-n
1}

5 Tli_lfj S 2T Tl s 2LeTr (3.9.7)
AT the boundary points some modification of either equation

(3.9.6) or equation (3,9.7) or both may be necessary. To approximate

F2 in equation (3,9.6) equation (3.8.1) was used, but (3.8.1) had to

be replaced by some other approximation in compuTing F2 at boundary

points which fall into any of the first four classifications.
When i = |, as in Figure 3.4,(c) the boundary point has to satisfy

boundary condition (3.4.,4) in addition to equation (3.7.2). Let us de-

note the temperature of the surroundings near the boundary point (1, ])
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as TIIJ. Using equation (3,8.16) and the derivative given in the

boundary condition, we obtain

F, = (242H)TY, ., = 2T}, ., = 2HTVI, = 2L-TI. ., (3.9.8)
2 iJ i+l,] J i

where H stands for (AthRI/kr). Similarly, when i = P, equation

(3.8.17) is used to approximate A)2<T|i j along with the boundary con-
2

diftion given in equation (3.4.5) to obtain

F, = =2:Tl, .+ (2H+2) TIi

. = 2H-TIP, = 2L-TI,
2 =1, J J i

. (3.9.9)
J

s

where TIPJ is the temperature of the surroundings near the boundary
point (P,j) as can be seen on Figure 3.4.(d).
When the boundary point falls info group 3 or 4, equation (3.8.13)

is used in setting up F In each of these cases the equation uses

20
the femperature at one of the interface points where the temperature

is given by the boundary condition (3.4.8), and it is zero. When

point (i,j) belongs to group 3, which is illustrated on Figure 3.4.(g),

Foo= -2 7 + 271 - 2L

25 T Vet T " (3.9.10)

N

while if it belongs to group 4, which is illustrated on Figure 3.4.(h),

T, . =

2 2
s iy " T1es Thiwr,y 20T (3.9.11)

L4

where m = z.-i and s = i-z..
J J
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When a boundary point belongs to any one of the last four class-

ifications, equation (3.8.2) cannot be applied to compute F Let us

K
first see what F' is when the boundary point does not belong to more
than one of these last four groups.

When j = |, the arrangement of grjd‘poinfs is shown in Figure
3.4.(e), an approximation similar to the one given by equation (3.8.16)
can be used to set up F'. The necessary first derivative is given by
the boundary condition (3.4.6). Adopt the notation G = (Ayhrzl/kr)
and BUU = -2(R®+GR%+L) to obtain the equation

2 2

F, = BUU'T2i . + 2R oT2i I + 2R G-TJIi, (3.9.12)

)

where TJIi stands for the temperature of the surroundings near point
(i,1). The procedure at a point (i,Q) is similar; if the temperature
of the surroundings near this point is TJQi and the value of the de-
rivative needed in an approximation similar to the one given by (3.8.7)
is given in boundary condition (3.4.7), then

2 2

FI = 2R -T2i + BUU-T2i ] + 2R G-TJQi. (3.9.13)

’ ’

The grid points in this case are shown in Figure 3.4.(f).

Some of the grid points which belong to the last two boundary
group classifications are shown in Figure 3.4,.(i). Denote the coor-
dinates of the interface point (i,w) if w2 j, (i,v) ifv s j; letms=
w-j and s = j-v, When the boundary point, such as point | in the

figure, belongs to group 7,
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2 2
Fo= 2R o _oaR s, (3.9.14)
| [ +m i,J-I m I, J

while if it belongs to group 8, as point 2 on the figure does,

2 2
- FLS
FI = 2(S + L) Tzi,j + TS Tzi,j+|' (3.9.15)
Consider the case of the boundary point belonging to both groups 7
and 8, for example point 3 on the diagram. In this case
RZ
F.o=-2(—+ L) T2. .. (3.9.16)
| ms iyJ
When the boundary point belongs to both groups 5 and 7,
2 2 2
Fo=2+ BEy ) 2+ BE gy (3.9.17)
I m m IyJ m |
while if it belongs to groups 6 and 8,
2 2 2
F=28+ B8 +2RC g0, (3.9.18)
I s S i, s [

This completes the |ist of forms equation (3.9.2) can take at the
various types of points. Before reviewing this |ist, let us state again
the assumptions - some of them implicit until now - used in limiting*the
type of grid points which can occur. These include:

(a) P 24,022,

(b) the inferface intersects each x grid line exactly once, and
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Let us write the equation (3,9.2) in the form

AT2. . +B-T2., +C:T2. . = F_+E. (3.9.19)
i,J-I i,J i,Jtl 2

Table 3.1 summarizes the values of coefficients A, B, C, and E at grid
points which do not belong to the 7th or 8th group of boundary points.

Table 3.2 lists the values of F, at any grid point.

2

Table 3.1.

Values of A, B, C and E in equation (3.9.19)

Does not satisfy

conditions f” R2 BU R2 0
boundary point
class 5, 6, 7 or 8
= 0 BUU 2R _2R%G-TJ | i
2 | 2

=Q 2R BUU 0 -2R G-TJQi
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Table 3.2.

Values. of F2

[ F2
Does not satisfy conditions
in Boundary Roint Class - Tli J.+2(I-L)Tli '-Tlij
l, 2, 3or4
= =2H-TI I +2C|1+H-L)TI, .=2-TI, .
J N i+l,]

=P -2°Tli_ _.+2(|+H—L)Tlij—2H‘Tle

Iy J

Satisfies condition for 2 2
- —— T, L+ (== 2L) T1.,
f+m m i

Boundary Point in Class 3 i-1,J ’

2 2
(E'_ 2L) Tlij - Tis Tli+|,j

Satisfies condition for

Boundary Point in Class 4

Equation (3.9.19) can be solved for any of the unknown T2i JYs as

b
part of the solution of a system of equations. Since i is the same for
each unknown, the system contains at most Q unknowns, and there are af

least P sets of equations fo be solved. In some cases there may be more.
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This is so, because all the equations in a set contain unknowns only at
grid points belonging to the same region. If not all the grid points

on ay grid line |ie in one region, these points will give rise fo more
than one set of equations. In general, for any given values of i the
~equations can be set up in order of increasing j, that is j =1, 2, ...,
max. The value of max is the j coordinate of the first boundary point
encountered. When max is set, the equations can be solved. |f max = Q,
all the equations for the given i have been solved. |f not, min = max+l|
is defined, and a new set of equations are defined for j = min, mintl,...,
max where the new value of max is the j coordinate of the next boundary
point belonging to group 6 or 7. As | is constant for each set of equa-
tions, it can be suppressed once the equations are set up. The coeffi-
cients appearing in each equation can be identified by the subscript j

as fol lows:

A.T2, +B..T2.+C..T2. . =D.. (3.9.20)
NN o B R I R J

The method used for solving these equations is discussed in Section I1.

3.10 The Equations Defining T TTAT)

In this chapter equation (3,7.2) will be approximated by equations
corresponding fo equation (3.5.6), which was used fo illustrate the
method. The general form of the numerical equations used to approximate

equation (3.7.2) is
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i, ) - 0 42 LY
XY, oy A>< T3i,j + “I Ay Tzi,j’ (3.10.1)
which can also be written as
(8% A% T3, = 2LeT3, . = - (a2 A% T2, - 2L-T2. .. (3.10.2)
X 1 d Iy Y Iy Iy
Let us introduce the following notation:
_ 2 2 .
F, = (Ax) A T3, . = 2L+T3, . (3.10.3)
3 X iyJ iJ
and
_ 2 2
Fo= = (Ax) A T2. . - 2L*72. .. (3.10.4)
4 y iy J iyJ

It can be seen that FI is similar fo F4 with the exception of a nega-
tive sign in front of the term containing the spatial derivatives

approximation. Almost the same can be said about F2 and F,, but in

3}
this case Tl is replaced by T3 in addition fo the above mentioned sign
difference. Since the boundary and interior points remained the same,
and the derivative fo be approximated did not change, the equations to

be derived correspond to the ones derived in the previous section with

some modifications, |t is convenient at this point to introduce

Bl = -2 - 2L and BIl = -2 - 2L - 2H. (3.10.5)
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This is done to keep the coefficients simple in the expressions contain-

ing the unknown variables. Using equations (3.8.1) and (3.8.2) at an

interior point

F, = T3i ] + BI~T3i .+ T3 (3.10.6)
1

J i+1,]

and

2 . 2 2 ,
4 -R 'Tzi,j—l + 2(R™ - L) Tzi,j - R ‘Tzi,j+| (3.10.7)

-
i

is obtained. |f the similarity between equations (3.9.6) and (3,10.6)
is not immediately apparent, it is because of the difference in the
notation used. There is a |ike simijarity between equations (3.9.7) -
(3.9.18) and (3,10.7) - (3,10.18).,

Let us turn to the boundary points., The arrangement of grid points
when i = | is shown in Figure 3.4,(c). Using the boundary condition
(3.4.4) and equation (3.8,16)

F3 = BII'TBi,J + 2.T3i+!,j + 2H-T|IJ (3.10.8)

is obtained. When i = P the grid point arrangement is shown in Figure
3.4,(d). Application of the boundary condition (3.4.5) along with

equation (3.8.17) gives

F, = 273, L+ BITT3, , + 2H«TII ., (3,10.9)
3 i-1,]J i, J
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When the boundary point falls into group 3, which is illustrated in
Figure 3.4,(g), or group 4, which is illustrated in Figure 3.4.(h),
equation (3,8,8) is used fo obtain the required approximation. Boundary
condition (3.4.8) applies in either case. |f point (i,j) belongs to
group 3,

2

_ 2
Fe = T8 Tsi_l,J (= + 20) TSi,., (3.10.10)

while if it belongs to group 4,

2

_ 2
F3 = (§-+ 2L) T3i,' * T T3]+|,j‘ (3.10.11)
In the above equations m = zj—i and s = i—zj.
When j = | the arrangement of the grid points is shown in Figure

3.4.(e). In this case boundary condition (3.4,6) is used to derive

F, = 2(R% + R%G-L) 2, - 2R2aT2i o 2RZG‘TJ13. (3.10.12)

’

Figure 3.4,(f) shows the grid points in the neighborhood of point (i,Q).
Boundary condition (3.4.7) is used to arrive at

2 2 2

F,. = -2R2,-T2i ] +2(R™ + R"G - L) T2i ] -2R G-TJQF‘ (3.10.13)
H s

4 -

The remaining possibilities arise at grid points which belong fto the
last two boundary group classes. Use the definition adopted in deriving

equations (3.,9.14) - (3.9.18) for m and s in the following equations.



-69-

When point (i,j) belongs to boundary point class 7 but not to 5, 6, or

8,
2 2
Fo=-2R w2 &) o, (3.10.14)
4 [+m i,J-1 m i,d
while if it belongs to class 8 but not to 5, 6 or 7,
2 2
R S 2R
F4 2 (g— - L) Tzi,j - T T2i,j+|’ (3.10.15)
and if it belongs to both class 7 and 8,
RZ
F4_= 2 (ETE'— L) T2i ce (3.10.16)

»

| f the point belongs to both classes, 5 and 7, then both boundary condi-

tions (3.4.6) and (3.,4.8) are used in arriving at

2 2 » 2
Fo=2 -+ B8 ) o +2REC
4 m m i,J m

TJIi. (3.10.17)

Boundary condition (3.4.7) along with (3.4.8) is used in the event the

boundary point belongs to both classes 6 and 8, and in this case

2 2 2
Fo=2 & +RC_ ) 4+ RE
4 s s I yJ s

TJQi. (3.10.18)

This completes the |ist of possible boundary point arrangements. The
five expressions given for F3 and the eight for F4 will be used to

write an equation corresponding to (3.10.2) at every grid point.
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Some of the equations can be summarized in fabular form if equation

(3.10.2)

AT

is written as

3. .+ B-T3.
i=1,J [

]

j + CeT3i+

b

4

= F, +E.
J

(3.10.19)

When the point (i,j) is not a boundary point belonging to group 7 or

8, the values of A, B, C, E and F4 can be tabulated and are given in

Tables 3.

3 and 3.4,

Table 3.3,

Values of A, B, C, and E in equation (3.10.19).

i A B C E
Does not satisfy condi-
tions for Boundary Point Bl 0
Class |, 2, 3 or 4

= 0 Bl 2 -2 H-TII,

J

=P 2 Bl 0 -2’H-TIPJ°
Satisfies condition for |im - %._ 2L 0 0
Boundary Point Class 3
Satisfies condition for 0 _'%._ 2L |is 0
Boundary Point Class 4
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Table 3.4.
Values of F4.
J F4
Does not satisfy conditions
for Boundary Point Class 5, - RAT2. . +2(R%-L) T2, -RA.T2. |
i,J=1 PN Pyt
6, 7 or 8
) 2,2 ) )
- 2R4R" 6-L) T2, -2 RT2, |
-2 R? 6-TuI,
= Q 2 R%.T2. . +2(R4R% 6-L) T2, . -
i,J-l i,
- 2 R 6-TJQ,

For each value of j there are two sets of equations. One contains
the equations written at points in region Rl’ the other those in region
R2. The coefficients in the equation obtained at point (i,j) can all be
identified by the subscript i; also the subscript j can be suppressed in
the equations since it is known to be the same for the whole set. In
this notation each equation of eéch set has the general form

A «T3,  +B.*T3. + C.-T3., =D.. (3.10,20)
[ =1 [ P [ i+ |
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3.1l Solution of the Equations

In The previous sections systems of eq

uations were derived, which,

when solved, give the temperature distribution at time t+4t from informa-

tion that was available at time t. The set of equations derived had the
form
B.T.+4C . T. =D .
min min min min+l min
Amin+ITmin+Bmin+lein+|+Cmin+lein+2 - Dmin+|
o e L] ¢ . 4 e e e L] > (3.".')
A T +B T +C T =D
max-1 max-2 “max-! max-1 “max-] max max- |
AT +B T =D
max max-=| ~max max max
J

In the set there are max-min+| unknown T's and there are an equal num-

ber of equations.

coefficients is tridiagonal.

The Gauss-Seidel

The set is tridiagonal, that is, the matrix of the

iteration or the Gauss-

Jordan elimination methods are the ones most commonly used fto solve a

set of linear equations. The Gauss-Seidel

iteration method may take

many iterations to converge satisfactorily whenever it is convergent.

| f the usual algorithm is used in the Gauss-

it also requires a large amount of computat

Jordan elimination method,

ion, and in addition fhere is

the possibility that the round-off error may accumulate considerably.
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Peaceman and Rachford proposed a simpler method for solving a tri-

diagonal set of linear equations,

Their method is equivalent fto the

Gauss-Jordan elimination method, but it takes advantage of the special

characteristics of the set of equations:

its tridiagonality. Wilkes

(100), Carnahan, Luther and Wilkes (17) and others state the algorithm

in a slightly modified form, which is used here.

where

and

BT,

GM.

it

, With i=max-1, max-2, ..., min,

GM
max
CCiTi
BTi
B . and GM ., =
min min
A.C.
_ i=1
i BTi-I
E. - Ai'GMI-
5T , With i

Indeed, T satisfies

} (3.11.2)

} (3.11.3)

= mintl, min+Z2, ..., max.

/

|f the equations (3.11.1) are set up in order of increasing indexes,

it is not necessary to save all the coefficients until all the equa-

tions are set up.

BT and GM can be immediately calculated, and it is

sufficient fo retain all the BT's, GM's and C's, that is, three pieces

of information for each equation.

Once this information has been
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collected it is quite simple to calculate all the unknowns in fThe set

of equations using the formulas (3.11.2).

3,12 Motion of the Interface

In the previous two sections it was assumed that fthe location of
the boundary is known and is defined by the location of the interface
points. As a matter of fact, it was assumed to be known as a function
of time. In equations (3.9.10) and (3.9.11) the interface point was

the location where TIZ =0, that is, the location of the interface
1

J
was known at time t. |In equations (3.9.14) - (3.9.18) and equations

(3.10.14) - (3.10:18) the location of the interface points (i,w) and
(i,v) are assumed to be known at time t+At/2. In equations (3.10.10)
and (3.10.11) the interface location was assuﬁed to be known at time
++At, In Section 3.5 it was indicated that this information is obtained
from the explic}T solution of the boundary condition (3.4.9). At that
section it was also indicated that the accuracy of the method could be
improved by reéompuTing the location of the interface using the tempera-
ture distribution at time t and t+At as in a predictor-corrector compu-
tation., As a matter of fact, the process of recomputing the femperatures
and inferface location can be repeated several times until the change
in either or both is less than a preselected value. This refinement was
not used in the present work.

Let us first rewrite the boundary condition (3.4.9) in the

following form:
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X _ c kl(eh - em) BTI ) kz(eh - em) 8T2 ] | 2D
dt Ap Ix Ap X 2 : e
o, cos™y
In Section 3.3 the angle y was defined and illustrated in Figure 3.2,

It is also possible to define the angle by the following formula:

_dX _ dX _ Ax dz
tan y = ;3 " & 5 O (3.12.2)

provided that z is a continuous function of j. Since z is known only
at the interface points, tan y can be calculated from (3.12.2) using

equation (3,8.8) as fol lows:

tan y = Z§'0'5(ZJ+I - ZJ_I) when j # 1,0 (3.12.3)
or
. -
tan y = Iy ( I.52|+222 0.523), (3.12.4)
and
, _ Ax -
Tan y = ZV' (O.SZQ_2 ZZQ_|+I.5ZQ), (3.12.5)

when j is | or Q. Equation (3.8.8) is also used to approximate the
derivatives appearing on the right hand side of equation (3.12.1).
If the boundary point in region RI is (i,j), and the interface point

on the same x grid line is-(zj,j), then
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3T| S {+s
T = T1s Tli—l,j - T'i,j’ (3,12.6)

where s = zj—i. Using a similar procedure in region R2 when the

boundary point is (i,j) and the interface point is (zj,j), the deriva-

ftive is given by

oT
2 _ I+m m
> - Tli,j o T|i+l,j (3.12.7)
where m = i-zj. At this point it should be noted that using ftan y in
the identity
| = tan®y 4 | | (3.12.8)
cos” y

along with equations (3.12.6) and (3.12.7) makes the evaluation of
dX/dt possible., Once it is computed, the movement of the interface can
be calculated from the following equation:

TR 0 A At (3.12.9)

The location of the interface at t+At/2 is halfway between the location
of the interface at time t and t+AT.

At this time it is appropriate to discuss some of the questions
that may arise concerning this computation. One of the peculiarities
in the above computation is that Tl is used in evaluating equation

(3.12.1) for the whole time interval. It is possible fo imagine the
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same method with Tl being used to evaluate (3.12.1) for the first At/2
time interval, then computing T2. After this has been computed TZ can
be used to evaluate (3.12.1) for the second At/2 time interval.

Brian (15) encountered a similar situation when he considered
the development of a three-dimensional ADI technique. He pointed out
that in his computations - and this applies to the problem under con-
sideration as well as to most other ADI procedures - the results are
fundamentally the femperatures at time ft+At obtained from the data at
time t. All other temperatures are intermediate values in the computa-
tion and if used in any other way the computation may become more or
less equivalent to the explicit method. He also points out that in the
ADlI method the results are computed by solving a set of implicit equa-
tions. The results so computed will tend to be smoothed in the direc-
tion in which this last set of equations were solved. Since in the
problem under consideration the boundary condition (3.4.9) required the
evaluation of a derivative in the x direction, the ADl method was set
up to obtain the final results by solving the implicit equations in the
x direction and obtain the intermediate values by solving the implicit
equations in the y direction.

Another advantage of The'meThod is that when the rate of boundary
movement is calculated the length of the time interval can be chosen in
such a way that it will not lead to a boundary movement greater than
some prescribed value, Although the linear problem is convergent for
all values of At and Ax and the restriction on nonlinear problems is
not too severe in most cases, these increments have to be small before

the computational error becomes reasonably small, Usually the acceptable
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increment size is determined by frial computations and inspection; this
is certainly one procedure which must be used to verify each computa-
tion.

There is no reason for using the same time interval throughout
the computation. In certain parts of a computation the boundary condi-
tions may be almost invariant and the problem can be solved using very
large values for At. At other times the boundary conditions may change
very rapidly and a very small value is needed for At. There are at
least two possible ways to make sure At is not too large for any given
step of the computation: (a) to limit the temperature change at any
point in a given time interval, (b) to limit the movement of the boundary
in the time interval, Method (b) is better because it is easier to
assign the limits and because it signals the need for reducing At before

the computation of ftemperatures is carried out at every point.

3.13 Initial Conditions

The equations needed to compute a solution to the problem described
in Sections 3,2 - 3.4 at time t+At and at later times have been derived
assuming that the solution is known at some time +. When such solution
is available, it can be used to start the computation and there is no
special problem. The problem arises when the initial conditions are not
available, but have to be computed. Before the computation of the

initial conditions can be considered, however, a more precise problem
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statement is needed. As a matter of fact, we shall consider two possible
problems which can be solved by similar methods.

In the first problem we shall set up the initial conditions for a
bar which is placed in the furnace and i$ not moved until equilibrium is
reached. The initial condition is the equilibrium femperature distribu-
tion in a bar containing two regions, which can be computed either (a)
by assuming some temperature distribution which is relatively close to
the expected one or (b) by first assuming that the bar is at the phase
transformation temperature and it has constant properties for this part
of the computation. With assumption (b), it Is possible to calculate
how the temperature distribution would change. After a few (5, 10,
possibly 20) iterations the temperature throughout the bar will start
to converge to a temperature distribution whiéh could be observed in a
bar containing a single phase with the assumed constant properties.

The temperature distribution so computed can be used as assumption (a).

| f an assumed femperature distribution is available or has been
computed, it is possible to determine the location of the interface,
that is, the extent of the individual regions., Using this as an initial
condition, the transient problem can be solved with fixed boundary condi-
tions. This computation has to be continued until both fthe ftemperature
distribution and the location of the interfacial boundary reaches steady
state. This result corresponds to the temperature distribution in the
bar after it reached equilibrium and before it started fo move. It is
the initial condition of the remainder of the problem during which the
boundary conditions used in the computation describe the temperature of

the surroundings of the bar as it moves through the furnace.
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A second problem arises when a bar containing only one phase is
moved in a furnace with nonuniform temperature distribution; the problem
can be solved at this time by techniques used to solve the linear heat
conduction problem., Complications do not arise as long as only one
phase is present in the bar. Only when the second phase starts to
appear at one end of the bar do we need some method which can be used
untii the method described in the previous sections become applicabie.
There are several possibilities fo consider, but none are very satisfy-
ing.

One of the first thoughts one would tend to have is fo use an
approximation, When the boundary point belongs to both groups | and 3
or to 2 and 4 at the same time, an approximation similar to the one
used when the boundary point belongs fto both groups 5 and 7 or o 6 and
8 might be considered. This approach is similar to the one used by
Murray and Landis (76) in one dimension. |t is unfortunate that the
accumulated error in most cases is too great to allow one to specify
the shape or even the location of the boundary with reasonable accuracy.

Another possibility is to allow the conduction problem to be used
until some of the material is heated above or cooled below the frans-
formation temperature as if there were no phase fransformation to con-
sider. As a matter of fact, this is similar to the physical phenomena
of the material supercooling - i.e,, cooling below the ftransformation
temperature without the phase fransformation taking place. To be sure,
the amount of material allowed to "supercool" is small, but finite. At
this point it is possible to neglect the latent heat associated with

this small region or use a "temperature depression" type of computation
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to correct some of the error which would be committed by such an assump-
tion. In either case some error will be introduced, more than desirable
but not an unreasonable amount. The important thing is that there is a
narrow, small region which is in a different region than the rest of the
bar.

The rest of the process is the same as that used in one dimension
by Churchill and Teller (20) (which was a modification of one of Murray
and Landis's (76) methods). |t involves the introduction of a smaller
Ax and possibly smaller Ay, at least in the region having the smaller
size. |t may be necessary fo reduce the time interval and the spatial
intervals in the other region as well. These reduced intervals have to
be used until the smaller region becomes sufficiently large as compared
to Ax. When this occurs, the size of Ax can be doubled. This process
can be repeated as the size of the smaller region increases until the
size of the increments reaches the size desired for the computation as
a whole, It is important that during this whcle process there should
be at least two grid points in each region on each x-grid line; that is,
the process outlined in the previous sections couid be used with only
periodic recalculation of some of the constants. Not even this last
methcd was needed for the present investigation.

The above method is based on the principle that one can commit a
small error even in certain transient problems if the results are not
needed at the time the error is committed or shortly thereafter. In
examining the stability characteristics of this type of problem it was

pointed out in this paper and in many previous works that the error does
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not increase, indeed that it decreases as time increases. For this
reason a smal’l error committed in the initial conditions will effect
the resuits only for a short period of time, and if the initial error
is small enough, its effect will be insigniffcan+. But what happens
if the initial error is large? In Thfs case, it ftakes longer to cause
the effect of the error fto decay, but at a sufficiently later fTime its
effect will be negligible.
This principle can also be used fto set up the initial condition
in The second problem. One uses an extrapolation of the boundary con-
ditions for times previous to the desired initial condition. Then one
can assume almost any usable initial condition, although the better it
approximates the initial condiTion»which would be expected at that earlier
time, the better the final results will be. Using this initial condition
and the extrapolated boundary conditions at time t-nAt, one proceeds to
compute the results at time t. After one computation with a given n the
computation is repeated with larger n's., [|f the various values for n
are suitably chosen, the different computations converge to a solution,
which is the frue initial condition or the desired result at time t.
These considerations allow us fo use the procedure outlined for
setting up the initial conditions in the first-mentioned problem in the
beginning of this section, to be used for setting up the initial condi-
tions and calculating the desired. results for the second problem also.
It is necessary to have the bar in motion for a sufficiently long period
of time before reliable results can be expected for the second problem.

Some results confirming these observations will be presented in Chapter V.



‘CHAPTER IV

THE COMPUTER PROGRAM

4. | Introduction

‘The computer program used in this study is discussed in this
chapter. The problem to be considered, or rather the family of prob-
lems that may be considered, were described in the previous chapter.

The complexity and variety of some of the problems were discussed and

it was found to be convenient to break the whole problem up and con-
sider only certain aspects of it at any one time. The same idea was
carried over to the computer program itself, which is broken up into
individual routines, each doing only certain aspects of the computation.
The use of a main routine insures that the sequence of computations is
correct and corresponds to the problem being solved. There is another
routine for taking care of all the computer input-output functions; the
reading of data and the printing and/or punching out of computed results,
The other routines are used in the computation of the individual parts
of the problem itself: one to compufe'TZ, aanher to calculate T3, one
to find the movement of the interface, others to compute the boundary
conditions and other needed side-computations. There are several “con-

trol" variables that can be used to modify several of the routines.

-83-
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These variables can be set either by the routines themselves or they
can be read in during the computation as data.

The computer programs are written in the MAD (Michigan Algorithm
Decoder) compiler language. The routines are listed in Appendix A,
together with a brief statement on the role that each variable has in
the program. Let us, however, say a few words about the units used in
the program and define a few variables here in order to simplify the
following discussions.

In Chapter |l the problem was first defined in its natural form,
then a new set of variables was introduced and the problem restated in
dimensionless form., |In obtaining the numerical approximation a third
form was still needed, which referred to the system of grid points in-
troduced. All three sets could be used for one purpose or another,

The user can specify the problem in any consistent set of natural units,
leaving the task of conversion. to the computer. Some of the control
variables, however, refer to grid points and intervals and require an
understanding of the program and the function of the variables. The
results are printed in %heir dimensionless finite difference form, not
only to save some computation time but because these are eaéy to
visualize and compare. One exception fo this is time, which most people
can visualize most readily in natural units.

The user specifies in hié data the time increment to be used in
the computation, DT, and this is noT‘changed by the program at any
time. The actual time increment used however is DT/FACTOR, where
FACTOR is usually unity, but if necessary it is increased to insure

that no x-interface point moves more than MXST intervals in one time
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increment. Time, T, is calculated by the formula T = TSTART+N-DT, where
the initial values of T, TSTART and N are also fo be specified by the
user. In each time step N is increased by |/FACTOR.

In the program the subscripts are variables which are placed in
parenthesis, For example, in equation (3.9.9) the variable TIPJ was
defined, which in the program is written as TIP(J). By suitably defin-
ing the subscripted variables CB(J) it is possible to compute a single
subscript for a doubly subscripted variable: for example, Tli,j is de-
noted as TI(I+CB(J)) in the computer program for reasons of efficiency.
The more conventional notation of TI(l,J) is retained for doubly sub-
scripted variables in the following discussions,

In the previous chapter the same equations were said to be valid
in both subregions of the rectangle, provided the coefficients were
properly evaluated. To facilitate the proper evaluation of the co-
efficients, the variable PHASE is defined, which is | in region R| and
2 in R2; The definition of two sets of coefficients having the same
name, but having differénf subscripts, | in Region RI and 2 in R2 al fows
the use of the equations without change. In equation (3.9.3) for ex-
ample, the coefficients L and BU have been defined. In the computer
program L(1) and BU(I) aré used in region RI’ and L(2) and BU(2) in R2.
I+ is evident that L(PHASE) and BU(PHASE) can be used in both regions.

When there are two phases present, on each x-grid line the inter-
face point is bounded by two bouridary points: the one belongs to group
3 and has coordinates (AZI(J),J), the other belongs to group 4 and has
coordinates (AZ2(J),J). Usually these are neighboring_grid points, but

the interface may coincide with the grid point separating them.  The
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variable PMINI will always have the value of the smallest AZI(J) and
PMAX! will be equal to the largest AZ2(J). The region where PMINI £ | £
PMAXI will be referred to as the boundary area.

Other variables will be defined during the discussion. Let us
turn to the individual routines, starting the discussion with the sub-
routines. Once the function and method of calculation in the individ-
ual routines is defined, it will not be difficult to describe how the

main routine and the program as a whole works.,

4.2 The Routine MOVEM

This routine is used to compute the location of the interface. It
uses the temperature distribution near the boundary at Time T, given by
TI(1,J) at the grid points, and the location of the interface given by
the x-interface points, (Z(J),J). The routine first computes the rate
of boundary movement of each x=-grid line, MVMTRT(J) which is really

(++AT) ()
. - Z,

(zJ )/At. Following this, the routine checks if the use of

the time inTervallDT durfng the computation (i.e., FACTOR=1) would resulft
in a greater boundary movement than the allowed MXST; if necessary,
FACTOR is increased until the movement on every x-grid line is less than
the specified MXST. The routine then computes the coordinates of the
x~-interface points at time T+DT/FACTOR: (ZPREDI(J),J); and at Time
T+DT/(2«FACTOR) : (ZHFPR(J),Jd). To define the neighboring boundary
points we use AZl, being the largest integer smaller than Z-EPS and AZZ,

being the smallest integer larger than ZPREDI+EPS.
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It must be pointed out that when the boundary point comes very
close to the interface point the accuracy of (3.12.6) and (3.12.7) de-
creases. To overcome this difficulty AZI and AZ2 are not used in
deciding which grid point is the boundary point for these equations.

I f the boundary point is (1,J), | is given in region R, by the largest

integer not exceeding Z-EPSI, while in region R, it is the smallest

2
integer not smaller than Z+EPSI. EPS and EPS| are expressed as frac-

tions of the spatial increment Ax and are to be specified by the user,

4,3 The Routine T2SOLV.

The routine T2SOLV. is used to find the temperature distribution
T2(1,J) at time T+DT/(2-FACTOR), that is, to set up equation (3.9.20)
at every grid point and solve the resulting sets of equations. In Sec-
tion 3.9 it was demonstrated that several factors decide the exact form
of the equation. The flow chart illustrating the organization of the
computer program is given in Figure 4.1, Since there is at least one
set of equations to be solved for each value of |, these sets are estab-
lished in order of increasing I. Once | has been sélected the set of
equations will start with J=I=MIN, When | is not in the boundary area,
there is only one set of equations fo set up, In this case the computer
first calculates D (which stands for F2 in Section 3.9), then it directiy
computes what was referred to in section 3,11 as BT(J), GM(J) and C(J).

Since the variable C is used fo denote the heat capacity in the program,

A(J) is used to denote the coefficient of T2j+|’ and the program saves
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Flow diagram of routine T2SOLV.



-89~

the computed BT(J), GM(J) and A(J) for each value of J 2 MIN, When
J = Q is reached, the last equation for a given | is set up, that is,
MAX = Q. The set of equations can now be solved using equations
(3.11.2) to give T2(1,J) for MIN £ J £ MAX.

When | is in the boundary area a |ittle more caution is needed.
For each value of J it is possible to set the value of PHASE and compute
D. Next the routine has to check whether the point (I,J+l) belongs fo
the same region as point (1,J). |f the two points belong To The same
region, then there will be more equations in the same seft (if J#Q) and
BT, GM and A is computed. |f the point does not belong fo the same
region, then MAX = J and after computing BT and GM the set of equations
can be solved., Following this a new set is starfted with MIN = J+1.
Computing BT and GM or the coefficients at a boundary point (J = MIN or
MAX) may require the determination of the location of one or two y-
interface points, that is, the location where the interface "inTeréest"
a y=grid line. This is‘compufed with the aid of the function ROOT.,
which uses the location of three boundary points in a second-order
curve—fining routine, To find the y-interface pofnT between J=| and
J=2 for example, one uses the points (1,Z(1)-1), (2,2(2)-1) and (3,Z2(3)-1).
The routine is used to find that root of fthe second-order pofynomial
through these three points which is closest to |.5. (the root is Z-1=0
or Z=1). The location of the y-interface point is needed to compute s
and/or m in (3.9.14) - (3.9.18). Otherwise, the computation is similar

to the one described in the previous paragraph.
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4.4 The Routine T3SOLV.

The routine T3SOLV. is used to compute the temperature distribution
T3(1,J) at time T+DT/FACTOR. The equations used by the routine were dis-
cussed in Section. 3.10. AlThough the equations derived seemed similar,
the procedure used in solving the set of equations is somewhat different,
The difference arises from the difference in the direction: in computing
T2 there were Q equations in the set when | was not near the boundary and
in the boundary area the number of equations depended on the shape of the
inferface. In computing T3 the number of equations does not depend on
the shape of the interface but only on whether there is an interface or
not, In either case, in region RI there are Q sets of equations each
starting with MIN=| as illustrated in Figure 4.2, |f there is no inter-
face, that is, the problem is a simple conduction problem with one phase
present, each set contains P equations. |f two phases are present, each
set in region Rl contains AZI(J) equations, and there are Q sets of

equations in region R These start with MIN=AZ2(J) and end with MAX=P.

o
| f there are grid points which coincide with the interface, the tempera-
ture at these points is zero,

Each set of equations is set up in T3COMR which is shown in Figure
4,2, For each value of | first the J dependent part of D (in Section

3.10 given by F,, equations (3,10.12) - (3,10.18)) is computed, In this

4’
computation it is necessary to decide whether the grid point belongs to
boundary points group 7 or 8 or both., |f it belongs to either or both

groups, the y-boundary points have to be located to compute m and s needed

in equations (3.10.14) - (3.10.18), Once the location of the y-boundary
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points have been determined, it is quite simple to compute the needed

ACl), BT(l) and GM(1). When these have been computed for the whole

set T3(MAX,J)...T3(MIN,J) can be calculated using the formulas (3.11.2).

4,5 The Boundary Temperature Routines

In the previous chapter the temperature of the surroundings near
the bar's surface was stated a known function of time and position, but
it was left undefined otherwise, Since the temperature distribution in
each problem is |likely to be different, the function has to be defined
and programmed for each problem or group of problems separately. This
is a relatively simple procedure and the user may specify the variables
needed to define the function. The routine has to be able to compute
the temperature distribution of the surroundings near each external
boundary point, To demonstrate this idea two functions have been written
and are |listed. One, referred to as BND, is a modified step-function,
while the other, referred fto as FIRST is a more complex function. Both
are shown in Figure 4.3,

In writing the program certain assumptions were made. At the out-
set, before the actual computation of the problem is started, the
boundary routine is entered as routine BNDSET. At this time the initial
temperature distribution is set and the necessary constants are computed.
The function is not used again until time T exceeds TMOVE., The routine
is entered as routine BOUND. in each time-cycle after this time. |In the

time cycle it is entered after the routine MOVEM., that is, after the
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location of the interface and the time increment to be used have been
determined. Another assumption is that the temperature of the surround-
ings at the ends of the bar is the same near every grid point, that is,
Tllj =TIl (which can be written TI1(0) as well) and TIPJ = TIP (or
TIP(0)). These assumptions are not necessary, but to change them would
require modification of certain other parts of the problem. The other
assumptions, or rather characteristics are part of the function defini-
tion, and can be changed simply by defining a different function.

Before discussing the two functions separately let us point out
the common characteristics. The temperature distribution on the side
where J=I| is the same as on the side J=Q, that is, TJI(l) = TJQ(I).

The relations TIl = TJI(1) = TJQ(I) and TIP = TJI(P) = TJQ(P) also hold.
In both routines the temperature distribution is set up relative to a
set of points whose location relative to the bar have to be determined.
In both routines the location of these points varies when T exceeds
TMOVE; the bar and its surroundings move relative fo each other. The
rate of movement is given by VELOC in Ax/unit time (i.e., intervals/sec)
units,

In routine FIRST. the temperature distribution is known relative
to points ITO, ITl, ..., IT5, IT6. (See Figure 4.3.) To compute the
location of these points another set of points are defined by TEO, TEI,

<oy IE6, which are the initial locations of the IT's and are compuTed
relative to THSTRT = TE2 specified by the data. In each entry the rela-
tive motion since the time TMOVE is computed and the locations of the
IT's are determined. In computing TJI(l) and TJQ(I) the relative loca-

tion of | to the IT's determines the temperature.
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In routine BND. the initial value of TE2 is THSTRT. By specifying
WIDTH the location of BOI=TE2-WIDTH can be computed. The location of
TE2 and BOl is defined each time the routine is entered. Knowing the
position of these points relative to | allows the computation of TJI(l)

and TJQ(I).

4,6 The Routine LOCATE.

The routine LOCATE. can be used to locate the x-interface points,
the neighboring boundary points and related variables. The routine uses
the femperature distribution TI(1,J) and routine ROOT. To find the loca-
tion where TI1(Z(J),J) would be zero. Once Z has been determined AZIl,
AZ2, PMIN|I and PMAX| are computed as in routine MOVEM.after assuming

that ZPRED|=ZHFPR=Z for each J.

4,7 The Input - Output Routines,

The actual transmission of information to and from modern high-
speed computers is very involved and most users do not actually concern
tThemselves with more +hén a minimum of technical details, The program
and the data is usually typed on a typewriter-like device which converts
the information to punched cards or tapes or may even be directly con-
nected with the computer. Before the computer can handle the information,

however, it must be converted to the coded form used by the computer.
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This process is called reading and it is carried out by a package of
programs available on the computer. The reverse process has to be
carried out to convert information available in the computer to the

form needed by the user, Depending on the end result, this process is
called printing or punching. These conversion routines are complex and
require a considerable amount of information to be specified either by
the programmer or automatically by the compiler. To reduce the required
storage area needed for this purpose all input-output functions are
carried out by one routine.

In writing a program it is desirable to give the user the oppor-
tunity to modify the computation while it is in progress by reading in
new data., |t is even more desirable to preserve as many of the computed
results as possible to prevent the need for repetition of identical com-
putations to find out some detail not recorded at first. |t must be
poinfed out that the present scientific computers handle input-output
information very slowly compared to their computing speeds. Handling
of large amounts of information just for the record is very expensive
and should be minimized. To overcome this difficulty, the program allows
the user a wide latitude to specify the input-output information he needs.

Whenever new data is to be read the routine is entered as INPUT,
In the data the user may specify the new values of those variables which
he wanfs to change, all the unspecified ones remain unchanged. In each
data set the user should specify the variable INTIME, When T exceeds
the value of INTIME another set of data will be read in. The data read

at any fTime are immediately printed for the record.
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The main output routine is entered through functions OUT. and OUTZ.
Function OUT. is used when the location of the interface may be unknown,
In this case, the printing of the variables related to the interface
location is bypassed, while using routine OUTZ, these variables may also
be printed. The routine is entered at the end of the computational
cycle, T already has the value of t+At, but TI, T2, T3, Z, ZHFPR and
ZPREDI! are as calculated in this last cycle. Whether or not printing
and/or punching is done, at the end of the routine Tl's take on the
value of the T3's, and Z's take the value of the ZPREDI's and a new
computational cycle is started.

The function of the control variables INSW and SWOUT are indicated
in the listing of the routine. The printing of the results are primarily
controlled by the activating switches INSW(10) and INSW(il). (The INSW
can have the value of IB or OB, which in the MAD language are the true
and false logical constants respectively.)

~ The temperature distribution in the bar as given by the Tl's,
T2's and T3's may be printed when INSW(10) is IB. The value of SWOUT(O)
determines which of these femperatures is printed. At the same time it
is also possible to print the variables used to describe the interface
and the boundary conditions. All the Z's are printed if INSW(I3) is IB,
all the AZI's and AZ2's if INSW(I7) is IB, all the TJI's if INSW(20) is
IB, all the TJQ's if INSW(23) is IB, and all the ZPREDI's and ZDEVIA's
if INSW(I5) is IB. The value of ZDEVIA(J) = ZPREDI(J) - ZPREDI(l) is
computed immediately before printing and is a measure of the curvature

of the interface.
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When INSW(II) is IB, the temperatures may be printed at selected
grid points. The temperature to be printed is conftrolled by the value
of SWOUT(!). The grid points are (DEX(2J-1), DEX(2J)) where J=1, 2,

ooy DEXMAX. AT the same time it is possible to print the boundary fem-
peratures in a selected interval:s the TJI(J)'s if INSW(19) is IB, the
TJQ(J)'s if INSW(22) is IB. Here J=TJMIN, TIMIN+I, ..., TIMAX. In
addition, it is possible to print the other variables connected with
the boundary conditions as indicated in the previous paragraph but using
different control variables. In this case the printing of the Z's is
controlled by INSW(12), the ZPREDI's and ZDEVIA's by INSW(14), the AZl's
and AZ2's by INSW(16), the TJI's by INSW(I8) and TJQ's by INSW(2l).

INSW(10) is turned on by the routine itself whenever T exceeds
TDUMP, at this time, TDUMP is also incremented by DTDMP. Similarly
INSW(I1) is fturned on when T > TPOINT, and then TPOINT is incremented
by DTPNT, This allows the user fo receive one kind of output informa-
tion at DTOMP time intervals and another kind at DTPNT time intervals.
The user may change any information the program has in any computational
cycle by reading a new set of data, thus he can change these control
variabies at his discretion fo get the information he deems important.

The temperature distribution and interface boundary information
needed to start a éompuTaTion with the ftemperature distribution and
inferface condiTionsxexisTing at time T may also be punched out for
later use. This is accomplished by setting INSW(5) or INSW(24) to OB.
it wiil be pointed out that INSW(5) is set by the main program in certain
instances. When INSW(5)=0B, the computation is terminated with the com-

pletion of punching.
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4,8 The Routines SETCF. and RESTCF,

The routine SETCF. is used fo calculate the values of certain
constants which depend on the variables used to describe the problem.
The routine is used when the problem is initialized or when the user
changes a significant variable during the computation.

The routine RESTCF. recalculates those constants which depend on
the value of At, and is used whenever the program itself reduces or

increases the value of At fto be used for the computation.

4.9 The Routine ROOT.

The routine ROOT. is used to compute the coefficients of the func-
Tion Y=A-X2+B-X+C, and to find one of the roots of this function. The
function sought passes through the points (XI,YI), (X2,Y2) and (X3,Y3).
The routine finds that root of the equation Y=0 which is closer to point

X4. |f only the coefficients are needed, the routine may be entered as

COEF,

4,10 The Main Routine

The calculations which are carried out in the various subroutines
were described in the previous sections. These routines can solve

several problems if the proper constants are set and the routines are



-100-

called in a certain sequence. The function of the main routine is to
keep Time and call the subroutines in fhe order needed to solve the
problem the user wants fo solve. A simplified flow diagram of the
routine is given in Figure 4.4,

The computation starts when the computer's executive program turns
the control of the computer over to the user's program for a |imited
time period. |f the computation requires less time than alloftted, the
program returns the confrol of the compufer to this supervisory program
at the end of the computation. [|f the computation is not finished in
the aljotted time, the supervisory program interrupts the computation
and takes control of the computer. When this happens some information
may be lost, therefore, it is desirable to preserve the data necessary
to restart the computation at a laTer time before such interruption
occurs. This program is set up to interrupt itself 20 seconds before
the supervisory prcgram interrupts, take some action and resume the com-
putation where it was inferrupted. The action taken depends on the
control variable INSW(4): if it is IB it is set to OB along with INSW(5),
if it is already 0B, INSW(5) remains unchanged. This allows the user to
take advantage of this feature or ignore it: if used the input-output
routine will act upon the information when received,

After the interrupt routines and some constants have been set up,
the routine cails INPUT. to read in the first set of data. These data
usual iy contain. the material constants and those variables necessary to
compute some of the constants used in the calculations and needed to set
up the initial boundary conditions. Unless the initial temperature dis-

tribution is available (INSW(2)=0B) it is assumed fto be zero at every
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Figure 4.4.

Simplified flow diagram of the main routine.
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grid point and the region is assumed fo contain only phase I. Two
typical data sets are given and explained in Appendix B. Once the
initial conditions have been set up the main computation can begin.

The computation of the problem is carried out in steps., In each
step or cycie of computation the time T is increased by increasing the
variable N by i/FACTOR. if T > INTIME, the user has data to be read
at this time and INPUT. is called. If INSW(3) is IB, some constants
may need recalcuiation by SETCF. and in this case the new constants are
also printed by OUTi. The rest of the computation in the step is

carried out in one of three modes:

. This mode is used as long as T < TTIMOV. In this mode, only
the temperature distributicn is computed. The boundary con-
ditions are not functions of time, This mode can be used to
compute pure heat conduction probiems. When the condition
T 2 TTIMOV is met, routine LOCATE. is usually used to find
the location of fthe interfacial boundary. This may be by-
passed by setting INSW(6)=0B., The computation then continues

in the next mode.

2. This mode is used while T < TMOVE. The external boundary con-
ditions are fixed but the interface may move. This mode can
be used to compute the steady state solution in a bar contain=-

ing two phases.

3. The computation in fthe last mode is carried out untii the con-

dition T < TEND is no longer met., In this mode all the boundary
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conditions are functions of time. When the computation of

the problem is finished, a new problem may be started or

the computation may be terminated.

4,11 Final Remarks

In writing the program several decisions had to be made. One of
the first was whether a self-contained program requiring very littie or
no external information should be written in preference to a more gen-
eral one, A self-contained program is restricted by its nature while a
general program is restricted to the specific task by the data it receives
at the time of execution. In the preceding sections it was shown that the
program is fairly versatile and is capable of solving several types of
problems. An understanding of the actual operation of the program is re-
quired if one is to be able to specify the required data. |In Appendix B
two sets of data are listed and explained in detail.

A person acquainted with programming and the MAD compiler can dis-
cover that there are places where the program could have been writtfen
more efficiently: a shorter program is possible, a faster program is

possible and a clearer program is also possible. The program is, however,

reasonably refined to fulfill its purpose: to demonstrate the method of
computation and the principles involved. |ts correctness and efficiency
will be demonstrated in the next chapter where the results of the sample

computations are discussed.



CHAPTER V

THE COMPUTED RESULTS

5.1 I ntroduction

In this chapter some of the computed results are presented. To
show the correctness and validity of the calculations several problems
had to be solved. The use of a very small bar and the modified step-
functTion boundary temperature distribution assisted in developing and
evaluating the computer program while using minimum amounts of machine
time. When these preliminary computations confirmed the correctness of
the program, realistic dimensions and conditions were adopted for fhose
compufaTions which are presented in this chapter,

At this time a word may be said about the computer time required
To solve a problem. No statistical analysis was cafried out to deter-
mine the amount of computation needed for the various parts of the pro-
gram, but an idea may be gained by observing the time required to solve
some of the sample calculations on the IBM 7090 computer. A problem,
containing 45x5 grid points, required 280 seconds for 600 itferations
when the temperature distribution was printed in every 20 iterations,
and it required 480 seconds for 1200 iterations when the temperature

distribution was printed in every 100 iterations.

-104-
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During the solution of the problem, a large amount of information
is obtained. Depending on the user's need most of this may be inter-
mediate results of little or no inferest and in such case it is possible
to record the final result only. In This investigation the shape and

location of the interface as a function of time is of prime interest.

THE INTERFACE LOCATION, Zy ,om

c.

G=2cm

-

|
~lale
Figure 5.1,

Definition of A.

The location of the interface is presented as the distance from the cold
end of the bar to the interface at the center of the bar. The shape of
the interface is presented with the aid of a new variable, A, which is
defined in Figure 5.1 as the difference between the X-coordinate of the
interface at the center and at the side of the bar. Plofting these two
variables as a function of time allows the presenfation of a large amount
of information in a compact but perhaps abbreviated form.

The problems solved are illustrated in Figures 5.2 and 5.3. A
bar, 22cm long and 2 cm wide, is placed in the furnace. The fTemperature
distribution in the furnace is shown in Figure 5.2. Since the tempera-

ture distribution in the bar is not known and the location of the interface
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is equally undetermined, the temperature of the bar is assumed to be
uniform at the transformation temperature. |t is further assumed that

the properties throughout the bar are the same as in region R After

|
caiculating the ftemperature distribution that would exist under these
assumptions 50 seconds later the location of the interface is determined.
The following computation finds how the temperature distribution, inter-
face location and shape would change in a bar placed in the same furnace
if tThe initial conditions calculated in the previous step were to exist,
As the temperature of the bar's surroundings do not change with time
during this phase of the computation a steady state is approached. The
temperature along selected grid lines of the reéTangle is presented in
Figure 5.2 at a ftime when the steady state conditions are almost

reached. After steady state, the bar's surroundings begin to move
relative to the bar., The position and the shape of the interface are
plotted in Figure 5.3, in which the whole computation can be followed.

As the bar approaches steady state the interface location and shape does
the same; when the bar begins fo move, the interface starts to move also.
First the motion is slow, but it accelerates until its speed equals that
of the surroundings. Thq shape of the interface starts to change when
the bar starts to move, but affer an initial change the shape does not
seem to vary with time. This can be explained by noting that the shape
of the inferface is a function of the temperature distribution in the
bar near the interface, which in turn is a function only of the external
temperature distribution and the velocity of the bar as long as this
interface is far from the ends. This is certainly true when the inter-

face is near the center of fthe bar as in these computations.
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In the following section the effect of the various furnace condi-
tions (heat transfer coefficients, velocity) and material properties
will be shown. In Section 5.3 the validity of the computations will

be discussed.

5.2 The Computed Results

The problem previously outlined was solved assuming a number of
material properties and external conditions., These are summarized in

Table 5.1, The properties of phase | and the boundary temperature

distribution is the same in all the examples.

TABLE 5.1

SUMMARY OF THE DATA

Run A oh KA KA Ky | %2
Number cal/gm cm/sec cm cm cal/cm-sec.°C cm”/sec
| 50 5.15 2.25 2.5 0.020 0.05
2 25 5.15 2.25 2.5 0.020 0.05
3 100 5.15 2.25 2.5 0.020 0.05
4 100 2.575 2.25 2.5 0.020 0.05
5 50 2.575 2.25 2.5 0.020 0.05
6 50 5.15 2.25 I .905 0.020 0.05
7 50 5.15 0.75 l.905 0.020 0.05
8 50 5.15 0.75 0.833 0.020 0.05
9 50 5.15 9.0 10.0 0.020 0.05
10 50 5.15 9.0 6.0 0.020 0.05
I 50 5.15 2.25 |.905 0,020 0.06
12 50 5.15 2.25 l.905 0.025 0.05
13 50 5.15 2.25 3,125 0.025 0.0625
14 50 5.15 2,25 2.19 0.023 0.0575

In all runs k., = 0.018 cal/cm.sec.°C

0.056425 cm?/sec
5.8 gm/cc

Q
i

©
i
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As The bar moves relative to its surroundings so does the equilib-
rium position of the interface. The interface will lag behind this
equilibrium position, more or less, depending on the magnitude of the
velocity and fthe laftent heat. The larger the lag, the more the inter-
face shape will differ from its equilibrium shape. This is shown in
Figure 5.4. The pertinent data used for these computations are summarized
in Table 5.2. It is interesting to note that the pseudo-steady state
interface shape seems to be the same whenever the product AV, the rate of
of heat liberation, is the same. This can be seen by comparing the re-

sults of runs | and 4 or 2 and 5.

TABLE 5.2

DATA: EFFECT OF LATENT HEAT AND VELOCITY

Run No. A, cal/gm V,cm/sec ApV
Latent Heat Velocity cal/cm”.sec
| 50 5.15 x 107% 2.575 x 1072
2 25 5.15 x 1073 1.2875x 1072
3 100 5.15 x 1074 5.15 x 1072
4 100 2.575 x 1074 2.575 x 1072
5 50 2.575 x 1074 1.2875x 1072

The effect of the heat transfer coefficients was investigated next.
The pertinent data are summarized in Table 5.3 and the results are shown
in Figure 5.5. In these and subsequent figures only the transient part

of the results are shown; the bar starts to move relative to its
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Effect of latent heat and velocity.
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Effect of the heat transfer coefficients.
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TABLE 5.3

DATA: EFFECT OF THE HEAT TRANSFER COEFFICIENTS

Run K/ “2"My H. /H
Number cm cm 2
l 2.25 2.5 1.0
6 2.25 }.905 0.76
7 0.75 l.905 2.3
8 0.75 0.833 .0
9 9.0 10.0 .0
10 9.0 6.0 0.66
surroundings at TMOVE = 1000. In some sets of data, particularly in runs

9 and 10, this time was not sufficient for the bar fo reach equilibrium.
In the figures, time is zero when the bar starts to move.
An increase in HI fends to move the interface towards the hot end

of the bar (i.e., towards R,) and to increase under equilibrium conditions.

2

The reverse is true when H2 is increased: A tends to decrease and the
intferface moves toward the colder end of the bar. The increase response
to the change can be noticed for higher values of H in general: runs 8
and 9 best demonstrate this.

The effect of the properties of phase 2 is shown in Figure 5.6 with
the pertinent data summarized in Tabie 5.4, Notice first the practical
identity of the results obtained in runs 6 and Il. This tends to indicate

that thermal diffusivity, or at least the heat capacity portion of it,

does not have an effect on the results. |t must be pointed out that this
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TABLE 5.4.

DATA: EFFECT OF THE MATERIAL PROPERTIES

Run . 2 ko/Hy
Number cal/cmesec®C cm”/sec cm
| 0.020 0.050 2.50

6 0.020 0.050 1.905

I 0.020 0.060 I.905

12 0.025 0.050 1,905

I3 0.025 0.0625 3.125
14 0.023 0.0575 2.19

conclusion can be drawn only in this particular case; when the variables
have different values, this may not be true. The effect of changing the
thermal conductivity without changing any other variable can be seen when
the results of runs | and 13 or 6 and 14 are compared: the interface
moves toward the cold end of the bar and A decreases as k2 is increased.
This effect is even more pronounced when the other properties of phase

2 increase also, while holding o, and kZ/HZ constant; this is seen when
the results of runs 6 and |12 are compared.

Most of these effects are not new; they only confirm and clearly,
quantitatively demonstrate what was known previously from qualitative
reasoning. This coincidence of results along with the evidence shown
in the next section points toward the usefulness of this type of computa-
tion. The limitations and needed improvements of this computation are

mentidned in several other places.



-1 16-

5.3 The Validity of the Computations

In Chapter Il it was pointed out that the convergence of the
method remains fo be proved in full by computational techniques. First,
the effect of the time increment was investigated. The data used in
runs 15, 16 and |7 are given in Table 5.5 and the computed results are
shown in Figure 5,7, It must be stated that in run 15, the program re-
duced At in a few places and used a time interval of only 25 for 6
iterations, Even this is a large time increment, and the results
approximate the results obtained with lower time increments with a
surprising degree of accuracy. At lower time increments the results

converge: this can be seen by inspecting the results,

TABLE 5.5

DATA: EFFECT OF At

Run At At/ A2 Dlmensno;less
Number sec sec/cm At/ Ax

5 50.0 200 .28

16 12.5 50 2.82

17 5.0 20 l.128

In all of these runs the rest of the data is the same as in

Run #1.
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The next question is whether the spatial increments are small
enough to represent the-results accurately enough. This was fested by
making several runs with different values of Ax and Ay; the data are
given in Table 5.6 and the results are shown in Figure 5.8. The phy-
sical constants used for run 8 were chosen because the interface responded
rapidly to changes in the boundary condition; this required a more
accurate representation of fthe results. |f the resuits are accurately
represented for this run, as they seem to be, there is every reason to

believe that all the runs are accurately represented.

TABLE 5.6

DATA: EFFECT OF Ax AND Ay.

Run Ax Ay At
Number P Q cm cm sec
8 45 5 0.5 0.5 5.0

i8 45 9 0.5 0.25 2.5
19 45 I3 0.5 0.125 2.0
20 89 5 0.25 0.5 2.5
21 89 9 0.25 0.25 2.5

The rest of the data is identical with that of Run #8.

In the previous chapters it was shown that when the grid points
are not placed at equal intervals, lower accuracy approximations have
to be used. The accuracy of these approximations is even further com-

promised when the location of the grid points is not known accurately.
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This is the reason for the deviations which occur whenever the inter-
facial boundary is near a y-grid line. This difficulty can be partially
overcome by using a different spatial increment, in which case the loca-
tion of the y-grid iines are different in the two computations. Another
possibiiity is to vary the size of the variable EPSI and not to use

those grid points in determining the boundary motion at which the tem-
perature is not known with sufficient degree of accuracy. The corres-
ponding results are shown in Figure 5.9. The data for these runs are
given in Table 5.7. The physical constants of run |2 were used for these
computations as that run showed the most severe deviation when the

boundary was in the neighborhood of a y-grid line.

TABLE 5.7

DATA: EFFECT OF EPSI.

Run EPS|I Ax
Number intervals . P cm
12 0.1 45 0.5
22 0.3 45 0.5
23 0.5 45 0.5
24 0.05 45 0.5
25 0.1 56 0.4

The rest of the data is identical with that of
Run #12.
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The evidence presented in this chapter is sufficient to demonstrate
that the method is convergent at least for the problems investigated, and
that this method can be used to solve the Stefan problem in two dimen-

sions with the accuracy required to predict the shape of fthe interface.



CHAPTER VI

THE EXPERIMENT

The experimental work carried out in this investigation consisted
of building and operating a furnace capable of producing decanted solid-
liquid inferfaces. The furnace is described in Section | while the

operating procedure and the results are discussed in Section 2.

6. | Description of the Furnace

The furnace was designed to be usable for both zone refining and
normal freezing experiments. |t is shown on Figure 6.1. The 44-inch
long furnace was builf inside a 9-inch diameter pipe which rests on 8
ball-bearings and can be rotated around its axis. The furnace is tubular:
there is a 41 x 4] mm square opening along the axis. |t is made up of
three sections: the replaceable center zone and the fixed end zones.

The end zones are |8 inches long. The surface heaters were con-
structed by winding |8 gauge chromel wire around a rod which had a 41 x
41 mm square cross section. There are three such coils in each end
zone: the end coils are 5 inches long while the center one is 8 inches
long. The winding is made with a |/4 inch pitch; there are about 26

inches of wire in one inch of coil. These coils are surrounded by

=123~
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asbestos insulation until the outside diameter reaches 3.5 inches. It
is then surrounded by four 8 inch long "Heavy Duty" half shell heaters.
The assembly is placed in position inside the shell and the gap between
the heaters and the tube wall is filled with asbestos insulation. This
arrangement al lows the operator to maintain a fairly constant ftempera-
ture distribution throughout the end zones,

The center heater is a separate furnace which is fto be inserted
info the opening left for it between the fwo end zones., It is 8 inches
long and contains 5 equal coils. These coils were made in the same
fashion as the coils in the end zones and were surrounded by asbestos
insulation until the furnace reached the geometry of the opening. The
five individual coils allow the operator to set the temperature distribu-
tion according to his needs. |f some special temperature distribution
pattern is desired which cannot be obtained with the present center zone,
a new one can be easily constructed and inserted into the furnace quite
readily. The temperature distribution in the furnace is illustrated in
Figure 6.2, The portion of the furnace which was of greatest significance
during the experiment is indicated in Figure 6.2 and the temperature dis-
tribution in this region is shown in Figure 4.3 in a slightly simplified
form,

The furnace has a large time constant, and it tends to respond very
slowly fo changes in power input, Each coil has its own powerstat for
power regulation. The smaller coils have a low resistance and the power
has to be supplied at low voltage and high current levels. This is
accomplished by inserting fransformers between the coil and the power-

stat. The temperature distribution to be achieved determines the power
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requirements of the individual heating elements. In order to keep the
power input constant throughout the experimental period and avoid power
flucTuaTion$ due to changes in line voltage,a constant voltage trans-
former was inserted into the circuit., This arrangement allows the
operator to set up and maintain various temperature distributions in
the furnace without compiex instrumentation,

The furnace was erected next to a moving mechanism which was used
to push the samples through the furnace at a constant velocity. In the
experiments, 0.73 inches/hr velocity was used, although the mechanism
is capable of movfng with speeds as low as 0.15 inches/hr or as high as

5 inches/hr.

6.2 Procedure and Results

Indium Antimonide (InSb) was the material used for the experiments.
it was prepared from its elements by fusion under vacuum to preserve
purity. Foliowing the fusion operation the material was rebottled into
sample tubes made of General Electric type 204 clear fused quartz with a
ZO‘x 20 mm square bore, A 22 cm long sample fube contained approximately
300 gm InSb.

In The experiments the sample fube containing the InSb was placed
in the hot end of the furnace. It was left there for about five hours,
during which time the material heated, melfed and came to equilibrium,
The moving mechanism was started at this point and the material in the

sampie fTube was pushed toward the colider end of fthe furnace. In the
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first experiment the sample was pushed until the "expected equilibrium"
interface position would have been 9.5 cm away from the cold end of the
bar. The sample was then '"dumped." In the second experiment the sample
was pushed until the "expected equilibrium" interface position would
have been 9 cm away from the cold end of the bar. The movement of the
bar was stopped at this time, and the bar was left in the furnace for
six hours before the sample was "dumped."

The "dumping" procedure was used to preserve the solid-liquid
interface for later examination. The procedure consisted of rotating
the furnace 180 degrees and pushing the rod rapidly through the colder
end of the furnace info the open, where water was sprinkled on the
quartz tube. During this process the solidified portion of the bar
remained in its original position in the sample tube. The liquid flowed
to that part of the tube, which used to be its upper empty portion,
where it solidified very fast in response to the rapid cooling. Figure
6.3 shows the interface, still in the sample tube, in this position.

The data used in computer run | were an approximation of the
physical constants in the experiments. The position of the interface
agreed with the predicted results within the experimental uncertainty.
This uncertainty was 1/8 of an inch, therefore, the results show qualita-
tive agreement at most. Indeed, if the bar is cut by a plane which
parallels the longitudinal axis of the bar, the following observations

can be made:

(1) |f the plane is vertical, the inferface is not symmetrical
around the axis of the bar. This can be attributed to two

causes:
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Figure 6.4

Interface shape in the first experiment.
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Flgure 6.5
Interface shape in the second experiment.
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(a) heat is transferred by natural convection in the
liquid, i.e., movement of material does occur,

(b) the heat transfer coefficient at the top and at
the bottom of the bar are not the same.

(2) |f the plane is horizontal, the interface shape is sym-

metrical arcund the axis of the bar.

These observations and their explanation imply (a) that the two-dimen-
sional analysis does not strictly apply to any horizontal plane, as heat
is being ftransferred to or from this plane in the vertical direction;
(b) that although two-dimensional analysis does apply fto a vertical
plane, natural convection is not negligible and has to be taken into
account, These observations indicate that quantitative agreement cannot
be expected, and more refined measurements would only confirm the ob-
served discrepancy.

A closer look at the interface shape is still warranted, even
though it only confirms this view. The curvature of the interface does
not change appreciably with elevation. A photograph of the interface
shape at the bottom of the sample tubes is given in Figures 6.4 and 6.5.
The similarity of the interface shapes is immediately apparent. A
closer measurement discloses the dif%erences; A, which is marked on the
photographs is more negative in the first experiment than in the setond.
The differemce between the A values appears to agree with the calculated
differences. This agreement is in harmony with the conclusions drawn in

Section 5,2 from the computed results presented in Figure 5.4.
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TABLE 6.1,

COMPARISON OF RESULTS

A Location of the interface
Measured  Computed Measured  Computed
First Experiment - 0.13cm + 0.04 cm 8.9 cm 9.1 cm
Second Experiment - 0.2l ecm - 0.05 cm 8.7 cm 9.0 cm
TABLE 6.2,

PROPERTIES OF INDIUM ANTIMONIDE

Density of solid 5.8 gm/cc

Densify of fiquid | 6.4 gm/cc

Heat capacity of solid 6.6 cal/°K mole
Heat capacity of liquid 7.4 cal/°K mole
Therma| conductivity of solid 0,018 cal/sec cm®K
Melting point 525°C

Latent heat of fusion 50 cal/gm
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HEAVY DUTY CYULINDRICAL HEATERS

Figure 6.6,

Schematics of the experimental furnace.



CHAPTER V11

CONCLUS IONS AND RECOMMENDAT IONS

A method for the solution of a two-dimensional Stefan problem has
been developed. The computation based on this method is sufficiently
accurate to predict not only the temperature distribution and the loca-
tion of the interface but also the shape of the interface. |In addition,
a versatile furnace was constructed, which is capable of producing de-
canted solid-liquid inferfaces during normal freezing and zone refining
experiments, This feature allows the preservation of fhese interfaces
fof later examination,

The results of the experiments and computations cannot be compared
directly as the computations are based on a mathematical model contain-
ing assumptions which were not met in the experiments. The main dis-
crepancy in the computer program seems to be the assumption that no mate-
rial movement takes place, This now seems quite unnecessary in view of
Wilkes! (100) investigation, In future two-dimensional computations,
natural convection should not be neglected. Further improvements in
accuracy and general ity may be achieved by developing a computer program
in which the location of the y-interface points are preserved from itera-
tion to iteration and used to compute the movement of the interface and
the location of the new set of interface points. Future developmenTs of

this kind should be carried out in cylindrical coordinate systems as

-i30=
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experimental verification of the computed results can then be carried
out In a simple experiment. In some instances, when natural convection
does not take place, the present program is applicable, and It can be
extended to be applicable for three-dimensional brobiems as well. In
such an extension some modifications will have to be made, For example,
the temperature distribution will have to be computed In three dimen-
slons, Since the ADI method proposed by Peaceman and Rachford (77)
cannot be readily extended, It wlll have to be replaced, possibly by
Brian's (15) method.

Regular tubing usually comes with a clrcular cross-section. |f
the “temperature distribution around such a tube Is symmetrical and the
tube Is held In a vertical posltion, the cylindrical symmetry is pre=-
served. Normal freezing experiments (such as Bridgeman crystal growing)
can be carried out under such conditions. Since such an experiment ls
truly two-dimensional, It can be used to verlfy the results of computa-
tions. |f the physical constants are known and natural convection Is
taken Info account, the results of such an experiment should closely

check the results obtalined by the appropriate computations.
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REM
REM
REM
REM
REM

REM
REM
REM

REM
REM
REM

REM
REM
REM

FIRST

SECOND

REM
REM
REM

A0V A0RN

300

003

THE ROUTINE MOVEM.

EXTERNAL FUNCTION
REFERENCES ON
ENTRY TO MOVEM.

SUBROUTINE MOVEM.

COMPUTES THE MOVMENT OF THE INTERFACE AND REDUCES THE
TIME-STEP IF THE PRESET TIME-STEP WOULD RESULT IN TOO
LARGE MOVEMENT OF THE BOUNDARY.

MXMVRT =040

THROUGH FIRSTs FOR J=131sJ4G4Q
WHENEVER JeEol |
RHOL=-1¢5%Z(1)+2e0%Z(2)=0e5%2(3)

OR WHENEVER JeNE.Q
RHOL=045%(Z(J+1)~Z (J=1))

OTHERWISE o
RHOL=1¢5%Z(Q)~2¢0%Z(Q=1)+0e5%Z(Q=2)
END OF CONDITIONAL
RHOL=COEF 3+COE F4*RHOL*RHOL

COMPUTE THE SLOPE IN THE FIRST REGION (IelLeZ)

INI=Z(J)-EPS1

BO1=INI

INI=INI+CB(J)
BO1=(Z(J)=-BO1+10)/(B0O1-2(J))
SLP1=T1(INI)*BO1-T1(INI-1)/BO1

COMPUTE THE SLOPE IN THE SECOND REGION (IeGeZ)

INI=Z(J)+EPS1+140

BO1=INI

INI=INI+CB(J)
BO1=(Z2(J)-BO1-1.0)/(Z2(J)~BO1)
SLP2=T1(INI)*BO1-T1(INI+1)/BO1

COMPUTE THE VELOCITY OF THE INTERFACE AND CHECK TIME STEP

MVMTRT (J)=(COEF1*SLP1-COEF2#SLP2)*RHOL
WHENEVER (+ABSeMVMTRT(J))eGeMXMVRT s MXMVRT= (s ABSeMVMTRT(J))

STEP=MXMVRT#DT

THROUGH SECONDs FOR FACTOR=140s FACTORs STEP/FACTORsLeMXST
WHENEVER FACTOReNE«1¢0s INSW(1)=1B

PMAXI=0

PMINI=P

COMPUTE THE PREDICTED INTERFACE LOCATON

THROUGH THIRDs FOR J=1sls JeGeQ
ZPREDI (JU)=Z (J)+MVMTRT(J)*DT/FACTOR

-133-
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ZHFPR(J)=( Z(J)+ZPREDI(J) /240
AZ1(J)=Z(J)=EPS

AZ2(J)=ZPREDI(J)+1e0+EPS

WHENEVER AZ1(J)e L «PMINIy» PMINI=AZ1(J)
WHENEVER AZ2(J)e G o«PMAXIs PMAXI=AZ2(J)

THIRD
FUNCTION RETURN
REFERENCES OFF
INTEGER AZ19AZ2+sCBsINIsJsPMAXI sPMINISP»Q
BOOLEAN INSW
DIMENSION MVMTRT(30)
REM R FLOATING POINT BOlsCOEF19sCOEF2sCOEF3sCOEF4,
REM R DT» EPS,EPSI9FACTOR'MVMTRT:MXMVRT:MXSToRHOLo
REM R LPl9SLP2,STEP¢T19ZHFPR¢ZPREDIsZ
REM R STATEMENT LABEL FIRSTsSECONDsTHIRD
REM R FUNCTION NAME MOVEM
REM R PROGRAM COMMON AZ1sAZ2sCBsCClyCOEF1sCOEF29COEF3y
REM R COEF4sDT9EPSIEPS19FACTORs INSWeMXSTsPMAXI »
REM R PMINIsPsQoyRHOL s SLP1sSLP2sT1sZHFPRsZPREDI»Z

EQUIVALENCE (CClsEPS1)

PROGRAM COMMON AA15AAsAZ1(30)9AZ2(30)sBB1sBBsBII(2)sBI(2))
1BU(2)sBUU(2)+CB(31)9CC1yCCyCOEF19COEF29COEF33COEF4sCON(2)
2C(2) sDT9EPSsFACTORG(2) sHL1sH29sH(2) s INSW(50) s INTIMEsL 1y
BL2sLATFSNsL (2) sMXSTsNsPCNsPMAXI 9PMINI 9PQNsPsQCN9sQsRHOL
4RO(2)sRSQsSLP1sSLP2sSsT1(3000)sT2(3000)sT3(3000)sTEMPDF,
STENDs THIGHs THe THSTRTsTI1(O0) sTIMELFsTIP(Q)sTJ1(300)>
6TJQ(300) 9 TLOWsTL s TMELTsTMOVEsTs TSTARTsTWOL(2) sVELOC
TWIDTHsZHFPR(30) s ZPREDI(30)+Z2(30)+22(200)

INTEGER AZ14AZ2sPCNsPMAXTsPMINI sPQNsPsQCN»sQ

BOOLEAN INSW

END OF FUNCTION



[HE ROUTINE T2SOLVe

EXTERNAL FUNCTION T2SOLVe
REFERENCES ON

REM R
REM R SUBROUTINE T2SOLVe
REM R FOR ALL VALUES OF I THE FOLLOWING SET OF EQUATIONS ARE
REM R SOLVED IN EACH REGIONe THE PARAMETERS ARE DEFINED ELSEWHERE
REM R A#*T2(T1sJ=1)4B*¥T2(19sJ)+CH¥T2(19J+1)=D
REM R
THROUGH NEXTs FOR I=191ls IeGeP
MIN=1
THROUGH NEXTs FOR J=1lsls JeGeQ
JVCT=CB(J)
WHENEVER leEel
PHASE=1
INI=I+1
TSUB=TI1(0)
OVER
D(J)=2e0%( (H(PHASE)+1e0~L(PHASE) ) *T1(I+JVCT)~-H(PHASE)*
1 TSUB=~T1(INI+JVCTY))
TRANSFER TO HOME
OR WHENEVER IeNEeP
WHENEVER TeLePMINI
PHASE=1
FIRST
D(J)=(2e0=«TWOL(PHASE) ) %¥T1(I+JVCT)=TI(I-14JVCT)-
1 TI(I+1+4JVCT)
HOME
WHENEVER JsEal
A(l1)=2.0%RSQ
BT(1)=BUU(PHASE)
GM(1)=(D(1)~A(1)#G(PHASE)®*TJ1(1)}/BT(1)
TRANSFER TO NEXT
OR WHENEVER J«NE.Q
A(J)=RSQ
BT(J)=BU(PHASE)~RSQG*A(J=-1)/BT(J=-1)
GM(J)= (D(J)-RSQ*GM(J=-1))/BT(J)
TRANSFER TO NEXT
OTHERWISE
T2(I1+JVCT)= (D(Q)=20*RSQ*(G(PHASE)*TJQ(I)+GM(Q=-1)))/
1 (BUU{PHASE ) =2 0%¥RSQ*A(J=-1)/BT(J=-1))
MAX=Q
THIRD
THROUGH DONEs FOR INI=MAX=1s =1s INIeLeMIN
T2(I+CBOIND))=GM(INI)-ACINI)*¥T2(I+CB(INI+1))/BT(INI)
DONE

MIN=MAX+1
END OF CONDITIONAL
TRANSFER TO NEXT
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OR WHENEVER 1+GePMAXI
PHASE=2
TRANSFER TO FIRST
OTHERWISE
REM
REM
REM
REM

I IS NOT EQUAL TO 1s Py AND IS NEAR THE BOUNDARY
FIRST THE VALUE OF D IS COMPUTED

000D

WHENEVER I1eEeAZ1(J)
PHASE=1
INCR=Z(J) =1
INI=1=1
RUN
D(J)I=(20/INCR-TWOL (PHASE) } *T1(I+JVCT)~20*T1(INI+JV
1 /{1 .0+INCR)
OR WHENEVER IeEeAZ2(J)
PHASE=2
INCR=I=2(J)
INI=141
TRANSFER TO RUN
OR WHENEVER IeLeAZl(J)
PHASE=]
ANDYS D(J)=2(2.0-TWOL (PHASE} ) *#T1{14+JVCT)=T1{I=1+JVCT)
1 «TI(I+1+JVCT)
OR WHENEVER leGeAZ22(J)
'PHASE=2
TRANSFER TO ANDYS
OTHERWISE
T2(I+4JVCT)=0.0
MIN=J+1
TRANSFER TO NEXT
END OF CONDITIONAL
WHENEVER JeEel
WHENEVER PHASEe+Ee1l
WHENEVER  I1+LE«AZ1(2)s TRANSFER TO HOME
THIS '
IFL=1
ROOTe (1e0sZHFPR(1)~IFL»2¢0sZHFPR(2)-IFLs3+0sZHFPR{3
1 IFLs1e5) ‘
INCR=RHOL-140
TSUB=TJ1(1)
'HERE :
T2(I+JVCT)=(D(J)~2+0%¥RSQ*G(PHASE ) *TSUB/INCR) /(=2.,0%
1 (RSQ/ ( INCR#INCR)+RSQ#*G (PHASE) / INCR+L (PHASE ) ))
MIN=J+1
TRANSFER TO NEXT
OTHERWISE
REM
REM
REM

PHASE == 2

00220

WHENEVER 1eGEeAZ2(2)s TRANSFER TO HOME
TRANSFER TO THIS
END OF CONDITIONAL



REM
REM
REM

OTHER

REM
REM
REM
REM
REM

REM
REM
REM

REM
REM
REM

R
R

0 A0 AVD0DAOAD

D00

W
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OR WHENEVER JoNE«Q

J =/ 14Q

HENEVER JeNEeMIN
WHENEVER PHASE«E.1
WHENEVER IeLEeAZ1(J+1)s TRANSFER TO HOME
IFL=1
JFL=J
WHENEVER JeLo (Q-1)
W2=JFL+2.0
BO2=ZHFPR(J+2)-IFL
OTHERWISE

W2=JFL=1e0

BO2=ZHFPR(J-1)~IFL

END OF CONDITIONAL

MAX=J

ROOT e (JFL$ZHFPR(J)=IFLyJFL+1e0sZHFPR(J+1)~IFLsW2+B0O2,
JEL+0e5)

INCR=RHOL~JFL

ONLY IN THE FOLLOWING TWO STATEMENTS
A(J) STANDS FOR THE COEFICIENT 'A' OF THE EQUATION..
OTHERWISE IT STANDS FOR THE COEFFICIENT 'C'ecescess

A(J)=2e0%RSQ/ (1.0+INCR)
T2(I+JVCT)=(D(J)=A(J)%¥GM(I~1))/(=20%RSQ/INCR
~TWOL (PHASE)=A{J)*A(J=1)/BT(J=1))
TRANSFER TO THIRD

OTHERWISE

PHASE == 2

WHENEVER TeGE«AZ2(J+1)s TRANSFER TO HOME
IFL=1

JFL=J

TRANSFER TO OTHER
END OF CONDITIONAL

OTHERWISE

J

== MIN

IFL=1
JFL=J
WHENEVER JeGe2 e ANDePHASESE o1l
W2z JF{ «2.0
BO2=ZHFPR(J=-2)~1IFL
OTHERWISE

W2=JFL+1.0
BO2=ZHFPR(J+1)~IFL

END OF CONDITIONAL



DL1

CHANGE

ANN

REM
REM
REM

REM
REM
REM

03

0 0
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Wl=JFL=140
BO1=ZHFPR{J=-1)~IFL
SL=JFL=0e5

ROOT e (JFL s ZHFPR(J)-IFLsW1sBO1sW2sB0O2sSL)
WHENEVER SLeEeJFL=0e5

INCR=JFL-RHOL

WHENEVER PHASE«E.1

WHENEVER leLE«AZ1(J+1)

A(J)=2.0%¥RSQ/(10+INCR)
BT(J)==2+.0%¥RSQ/INCR-TWOL (PHASE)
GM(J)=D(J)/BT(I)
TRANSFER TO NEXT
OTHERWISE
WHENEVER (JeLeG~1)
Wl=JFL+2.0
BOl1=ZHFPR(J+2)-IFL
OTHERWISE

Wl=JFL=140
BO1=ZHFPR(J-1)-IFL
END OF CONDITIONAL
W2=JFL+1e0
BO2=ZHFPR(J+1)~IFL
SL=JFL+0e5
TRANSFER TO DL1
END OF CONDITIONAL
OTHERWISE

PHASE == 2

WHENEVER 1eGEsAZ2(J+1)s TRANSFER TO CHANGE
TRANSFER TO ANN
END OF CONDITIONAL
END OF CONDITIONAL
T2(I+JVCT)=D(J)/(~2+0%RSQ/ ( INCR¥ (RHOL-JFL))
~TWOL (PHASEY)
MIN=J+1
TRANSFER TO NEXT
END OF CONDITIONAL
OTHERWISE

J == Q

WHENEVER JeNE.MINs TRANSFER TO HOME

IFL=I

JFL=J

ROOTe (JFL9ZHFPR(J)=IFLsJFL=1e09ZHFPR(J=1)=IFLsJFL-209
ZHFPR(J=-2)~-1FLsJFL=04e5)

INCR=JFL-RHOL



REM
REM
REM

NEXT

REM
REM
REM

REM

REM
REM

REM
REM
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TSUB=TJQ(1)
TRANSFER TO HERE
END OF CONDITIONAL
END OF CONDITIONAL
OTHERWISE
R
R I ==Pp
R
WHENEVER PeGePMINIy PHASE=2
INI=T~1
TSUB=TIP(0)
TRANSFER TO OVER
END OF CONDITIONAL

FUNCTION RETURN
REFERENCES OFF
INTEGER AZ1sAZ23sCBsIsINIsJsJVCTsMAXIMINsPHASE sPMAXI
PMINI»P,sQ
STATEMENT LABEL ANDYSsANNsCHANGE sDL1+sDONESFIRSTsHERE sHOME
NEXT+OTHERSOVERSRUNSTHISs THIRD
FLOATING POINT AsBOl1lsBO2sBTsBUsBUUDGsGMeHsIFLs INCRsJFL
LyRHOL sRSQsSLsT1aT2sTI1eTIPsTJ1sTJQsTSUBY
TWOLsW1sW2eZ9ZHFPR
FUNCTION NAME ROOTsT2S0LV
ERASABLE ZZZ(7)sA(300)+BT(300Q)sD(300)sGM(300)
PROGRAM COMMCON AZ1sAZ2sBUsBUUsCBsGoaHsL oPMAXIsPMINI sP Qo>
RHOL sRSQsT1eT2sTI1sTIPsTJleTJQsTWOL sZsZHFPR
PROGRAM COMMON AA1sAA»AZ1(30)sAZ2(30)sBB1sBBsBII(2)sBI(2)
1BUL2)9sBUU(2)9CB(31)sCCLlsCCoyCOEF1sCOEF2sCOEF3+sCOEF4sCON(2)
2C(2) 9DTHIEPSsFACTORSG(2) sHL1 9H29H(2) s INSW(50) s INTIMEsL 1y
BL2sLATFSNsL(2) sMXSTasNsPCNsPMAXI sPMINI oPQANsP sQCN Qs RHQOL »
4RO(2)9RSQySLP1sSLP2sSsT1(3000)sT2(3000)sT3(3000)sTEMPDF»
STEND s THIGH s THe THSTRT o TI1(0) o TIMELFSTIP(O)sTJL1(300)
6TJQ(300) s TLOWs TL e TMELTsTMOVE sTeTSTARTSsTWOL (2) 9VELOCH
TWIDTHsZHFPR(30) s ZPREDI(30)sZ(30)+22(200)
INTEGER AZ1sAZ2+sPCNsPMAXI oPMINI yPANsPsQCN»Q
BOOLEAN INSW
END OF FUNCTION

DD D0D0A =

)



THE ROUTINE T3SOLV.

——

EXTERNAL FUNCTION T3S50LVe

REM R »
REM R SUBROUTINE T3SOLVe.
REM R FOR ALL VALUES OF J THE FOLLOWING SET OF EQUTIONS ARE
REM R SOLVED IN EACH REGIONe. THE COEFICIENTS ARE DEFINED ELSEWHERE
REM R A¥T3(I=19J)+B*T3(19J)+CH¥T3(I4+19J)=D
REM R
MIN=1
PHASE=1
WHENEVER PebLePMINI
REM R ’
REM R ONLY ONE REGION EXISTe ITS LIMITS ARE SET FOR EACH J.
REM R -
MAX=P
THROUGH CHANGEs FOR J=1s19JeGeQ
CHANGE EXECUTE T3COMP.
FUNCTION RETURN
OTHERWISE
REM R
REM R TWO REGIONS EXISTe THE LIMITS OF EACH ARE SET SEPARETLY.
REM R
THROQUGH FIRSTs FOR J=1s1sJeGe@Q
MAX=AZ1(J)
T3COMP
WHENEVER AZ2(J)eNEo(AZ1(J)+1)
T3(AZ1(JY+14CB(J}Y)=0.,0
END OF CONDITIONAL
FIRST
MAX=P
PHASE=2
THROUGH SECONDs FOR J=1l3ls JeGeQ
MIN=AZZ2(J)
T3COMP,
SECOND
END OF CONDITIONAL
FUNCTION RETURN
INTERNAL FUNCTION T3COMP,
REM R
REM R SETS UP AND SOLVES THE SYSTEM OF EQUTIONS FOR A GIVEN
REM R VALUE OF J INSIDE THE GIVEN REGION.
REM R '
JVCT=CB(J)
THROUGH THISs FOR I=MINs 1s 14GeMAX
REM R COMPUTE THE VALUE OF THE J DEPENDENT PART OF D
REM R
WHENEVER JeEel
W=RSQ*G ( PHASE)
WHENEVER (I eGEeAZ2(2) eANDePHASEeEe2)eORe (IaLEeAZ1(2)eANDe
1 PHASEeEe1l)
D(I)=2¢0% ({RSQ+W~L(PHASE)} ) *T2(I4+JVCT)~-RSQ*T2(I+CB(2))-W¥
1 TJI(IY)
TRANSFER TO HOME
OTHERWI SE

-140-
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IFL=1I
ROOTe(1e09ZHFPR(1)—~IFL92e¢0sZHFPR(2)~IFL 340>
1 ZHFPR(3)~IFLs1le5)
INCR=RHOL=140
TSUB=TJ1(I)
DONE
W=W/INCR
D(I)=240%((RSQ/{INCR¥*INCR)+W~L (PHASE} ) *¥T2(I+JVCT)-W*TSUB
END OF CONDITIONAL
TRANSFER TO HOME
OR WHENEVER JeNE«Q
REM J =/= 1.Q
REM

o)

WHENEVER PHASE+E.1
REM R PHASE == 1
REM R
WHENEVER ITeLEeAZl(J-1)
REM NOT BOUNDED ON J-1 SIDE

REM

X 0

WHENEVER TeLE«AZ1(J+1)

REM

REM
ANDYS

poa )

NOT BOUNDED ON EITHER SIDE

D(1)=260% (RSQ—~L (PHASE Y )1 *T2(I+JVCT)-RSQ*(T2(I+CB(J+1)1}+
1 T2(1+CB(J=1)))
TRANSFER TO HOME
OTHERWISE
REM R BOUNDED ON THE J+1 SIDE ONLY
REM R
JFL=J
IFL=1
WHENEVER JeNEeQ
BO2 = ZHFPR(J+2)~-1
W2 = JFL+2.0
OTHERWISE
DL1
W2=JFL=1e0
BO2=ZHFPR(J=-1)~1
END OF CONDITIONAL
SL=JFL+0e5
W=JFL+1le0
BO1l=ZHFPR(J)~IFL
BO3=ZHFPR(J+1)~IFL
ROOTe {JFLsBO1sW2eBO2sWsBO3,sSL)
INCR=RHOL-JFL
TSUB=T2(I+CB(J=1))
THIRD
D(1)=(RSQ/INCR-L(PHASE) )*240%T2(1+JVCT)-2+0%RSQ*
1 TSUB/({1«0+INCR)
TRANSFER TO HOME
END OF CONDITIONAL
OR WHENEVER 1eLEeAZ1{J+1)
REM R BOUNDED ONLY ON J-1 SIDE
REM R
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WHENEVER JeNEe2
W2=JFL~240
BO2=ZHFPR(J=-2)~1FL
OTHERWISE
ANN
W2=JFL+140
BO2=ZHFPR(J+1)~IFL
END OF CONDITIONAL
ROOTe( JUFL=1e0sZHFPR(J=-1)=IFLsJFLsZHFPR(J)=IFL>
1 W29BO2sJFL~0e5)
INCR = JFL=-RHOL
TSUB=T2(I+4CB{(J+1))
TRANSFER TO THIRD
OTHERWISE
REM R BOUNDED ON BOTH SIDES
REM R
IFL=1
JFL=J
WHENEVER JeEe2
WZ2=JFL+140
BO2=ZHFPR(J+1)~1IFL
OTHERWISE
W2=JFL=2¢0
BO2=ZHFPR(J=~2)y=IFL
END OF CONDITIONAL
Wl=JFL=~140
BOl1=ZHFPR(J=-1)~IFL
SL=JFL~=0e5
HERE
ROOTe (JFLsZHFPR(J)-IFLsW19BO)sW29B02sSL)
WHENEVER SLeEe(JFL=De5)
INCR=JFL~-RHOL
Wl=JFL+160
BO1=ZHFPR(J+1)~-IFL
SL=JFL+0e5
WHENEVER JeEeQ-1
WZ2=JFL=1+0
BO2=ZHFPR(J=1)~IFL
OTHERWISE
W2=JFL+20
BO2=ZHFPR (J+2)~IFL
END OF CONDITIONAL
TRANSFER TO HERE
END OF CONDITIONAL
RET
DII)={RSQ/{RHOL~JFL)¥*INCR) =L (PHASE))*2,0%T2( I+JVCT)
TRANSFER TO HOME :
END OF CONDITIONAL
OTHERWISE
REM R PHASE == 2
REM R
WHENEVER T14GEeAZ2(J~1)
REM NOT BOUNDED ON THE J=-1 SIDE
REM

Pl s )

WHENEVER TeGEeAZ2(J+1)
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REM R NOT BOUNDED ON EITHER SIDE
REM R
TRANSFER TO ANDYS
OTHERWISE
REM BOUNDED ON THE J+1 SIDE ONLY

REM

X

JFL=J
IFL=1
TRANSFER TO DL1
END OF CONDITIONAL
OR WHENEVER 1eGEeAZ2(J+1)
REM NOT BOUNDED ON THE J=-1 SIDE

REM

00

JFL=J
IFL=1I
TRANSFER TO ANN
OTHERWISE
REM R BOUNDED ON BOTH SIDES
REM R
JFL=J
IFL=I
W=JFL-140
Wl=JFL+1.0
BO1=ZHFPR(J~1)-IFL
BO2=ZHFPR(J)~IFL
BO3=ZHFPR(J+1)~-IFL
SL=JFL-0e5
OTHER
ROOTe (WsBOLl s JFL 9BO29W1sBO3sSL)
WHENEVER SLeEe(JFL=0e5)
INCR=JFL-RHOL
SL=JFL+045
TRANSFER TO OTHER
END OF CONDITIONAL
TRANSFER TO RET
END OF CONDITIONAL
END OF CONDITIONAL
OTHERWISE
REM R J == Q
REM R
W=RSQ*G(PHASE)
WHENEVER (IeGEeAZ2(J=1)eANDePHASEeEe2)eORe(IeLEeAZLl(J-1)
1 eANDePHASEEW1l)
D(I1)=2+0%((RSQ+W=L(PHASE) ) *T2(I+JVCT)~RSQ*T2(I+CB(Q-1))~
1 WETJQ(I))
TRANSFER TO HOME
OTHERWISE
JFL=J
IFL=1
ROOT « (JFL 9 ZHFPR(J)=IFL s JFL-1e09ZHFPR(J-1)~IFLsJFL=240>»
1 ZHFPR(J-2)-1IFLsJFL=045)
INCR=JFL—-RHOL
TSUB=TJQ(I)
TRANSFER TO DONE
END OF CONDITIONAL
END OF CONDITIONAL
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HOME
REM R COMPUTE THE COEFFICIENTSs GAMMA AND BETA
REM R
WHENEVER TeEel
A(l)=2.,0
BT(1)=BII(PHASE)
GM(1)=(D(1)=2+0¥H(PHASEY*TI1(0))/BT(1)
OR WHENEVER IeNE.P
WHENEVER leEeAZ2(J)
INCR=I-ZPREDI(U)
A(I)=260/(INCR+140) .
BT(I)=~2¢0/INCR-TWOL (PHASE)
GM(I¥=D(I)/BT(I)
OR WHENEVER I eNEeAZl(J)
A(I)=160
BT(I)=BI(PHASE)-A(I-~1)/BT(I~1)
GM(I)=(D(I)=-GM(I~1))/BT(I)
OTHERWISE
INCR=ZPREDI(J)~-1
T3(I+JIVCT)I=(D(I)~260#GM(I=1)/11e0+INCR))/(~2e¢0/INCR~
1 TWOL(PHASE ) =2e0¥A(I=1)/{{1e0+INCRI*BT(I-1)}))
END OF CONDITIONAL
OTHERWISE
T3(P+CB(J)})=(D(P)=2s0% (H(PHASE)*TIP(Q)+GM(P~-1)11}/
1 (BIT(PHASE)=2.0%A(P-~1)/BT(P=1))
END OF CONDITIONAL
THIS
REM R SUBSTITUTE BACK TO OBTAIN T3
REM R
THROUGH OVERs FOR I=MAX—=1s =13 IeLeMIN
T3(I4JVCTI=GM(I)=~A(I)*T3(I+1+JVCT)/BT(I])
OVER
FUNCTION RETURN
END OF FUNCTION
INTEGER AZ1sAZ2+CBslsJsJVCToMAXIMINIPHASE»PMINISPQ
REM R STATEMENT LABEL ANDYSsANNsCHANGE sDL1sDONE sFIRSTsHERE ¢HOME »
REM R OTHER»OVERSRET s SECOND s THIRD s THIS
REM R FLOATING POINT AsBIsBIIsBO1lsBO2sB0O3sBTsDsGsGMsHs INCReJFL
REM R IFLsLsRHOL sRSQsSLsT2sT3sTI1sTIPsTJU1sTJUQ>
REM R TSUB»TWOL sWeW1l s W2+ ZHFPRYZPREDI
REM R FUNCTION NAME ROOTsT3COMPsT3SOLV
ERASABLE ZZZ(7)sA(300)sBT(300)sD(300)»GM(300)
REM R PROGRAM COMMON AZ1sAZ2sBI+BIT1sCBsGsHsL sPMINIsPyRHOLIRSQY
REM R T29T3sTI1eTIPsTJLlsTJIQsTWOL sZHFPRsZPREDI

PROGRAM COMMON AA1sAA9AZ1(30)9AZ2(30)sBB1+BBsBII(2)+BI(2))
1BUC2) sBUU(2)9sCB(31)9sCCLsCCsCOEF19COEF29sCOEF39COEF4»CON(2)
2C(2) sDT9EPS9sFACTORSG(2) sHL19aH29H(2) s INSW(50) s INTIMEsL 1>
3L2sLATFSNsL (2) sMXSTsNsPCNsPMAXI sPMINI »PQANsPsQCN»QsRHOL o
4RO(2)sRSQsSLP1sSLP2sS5sT1(3000)sT2(3000)sT3(3000)sTEMPDF),
STENDsTHIGHs THes THSTRTsTI1{(0) s TIMELFsTIP(0)sTJ1(300)»
6TJQ(300) s TLOWsTL s TMELT s TMOVEsTs TSTARTsTWOL(2)sVELOC
TWIDTHsZHFPR(30) s ZPREDI(30)+Z2(30)+22(200)

INTEGER AZ1sAZ2sPCNsPMAXIsPMINI sPQNsPsQCN»Q

BOOLEAN INSW

END OF FUNCTION
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REM
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REM
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THE BOUNDARY TEMPERATURE ROUTINESSs

FIRST.

EXTERNAL FUNCTION BNDSETe

SETS UP THE BOUNDARY TEMPERATURE DISTRIBUTIONe A CALL ON
BOUNDe RESETS THE TIME DEPENDENT BOUNDARY VALUES.
THIS ROUTINE IS DESIGNATED FIRSTe.

REFERENCES ON
TE2=THSTRT

DELTA == THE NUMBER OF INTERVALS/INCH.
DELTA=2454%(P-1)/L2
TE1=TE2-243*DELTA
TEO=TE2-541%DELTA
TE3=TE2+0+9%DELTA
TE4=TE2+1+9%DELTA
TES5=TE2+340%DELTA
TE6=TE2+6« T*DELTA
HOLT=-33,0/2040

COMPUTE THE SLOPE OF THE TEMP-DISTANCE FUNCTION BETWEEN
POINTS O AND 15 1 AND 2s 3 AND 4» 5 AND 6.

SLO=(HOLT-TL)/(TE1-TEOQ)
SL1=(1e0-HOLT)/(TEZ2-TE1)
SL3=140/{TE3~TE4)
SL5=10/(TE6~TES)
MOVM=040

TRANSFER TO OVER

ENTRY TO BOUNDe

COMPUTE THE DISTANCE MOVED BETWEEN TMOVE AND THE PRESENT
TIME.

WHENEVER TeGe TMOVE
MOVM={(T-TMOVE) *VELOC
OTHERWISE

MOVM=0.0

END OF CONDITIONAL

ITO=MOVM+TEOQ
[T1=MOVM+TE1
IT2=MOVM+TE2
IT3=MOVM+TE3
[ T4=MOVM+TE4
IT5=MOVM+TES

COMPUTE THE TEMPERATURE OF THE SURROUNDINGe

THROUGH FIRSTs FOR I=1s 1ls IeGeP
IFL=1 -145-
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WHENEVER (IFLeGEeITO)«ANDe(IFLeLE«IT1)
TIJI(I)=TL+(IFL-ITO)*5SLO
OR WHENEVER (IFLeGE«IT1l)eANDe(IFLeLE«IT2)
TJI(I)=HOLT+({IFL=~IT1)#SL1
OR WHENEVER (IFLeGE«IT2) e ANDe{(IFLeLESIT3)
TJ1I(I)=140
OR WHENEVER (IFLeGEeIT3)eANDe(IFLeLE«IT4).
TJ1(I)=1e0+{IFL~IT3)*SL3
OR WHENEVER (IFLeGE«IT4)eANDe{(IFLeLECITS)
TJ1(I)=0,0
OTHERWISE
TAI(ID)=(IFL-IT5)%SL5
END OF CONDITIONAL
TJQ(IY=TJ1(I)
FIRST
TIL(O)=TJL(1)
TIP(O)=TJ1(P)
FUNCTION RETURN
REFERENCES OFF
INTEGER 1P
REM R FLOATING POINT DELTASHOLTsIFLsITOsITLlsIT2sIT3sIT4sITS59L2y
REM R MOVMySLO»SL]1 sSL3sSLSsTsTEOSTELSsTE2sTE3sTES
REM R TES5sTE6s THSTRTeTI1sTIPsTULlsTJUQs TLs TMOVESVELOC
REM R STATEMENT LABEL FIRST,»OVER
REM R FUNCTION NAME BNDSETsBOUND
REM R PROGRAM COMMON PsTHSRTsTIlseTIPsTJlsTJQsTLsTMOVEsTsVELOCC
PROGRAM COMMON AAl19AA9AZ1(30)sAZ2(30)sBB1sBBsBII(2)sBI(2)
1BU(2)sBUU(2)sCB(31)sCClsCCyCOEFL sCOEF29COEF39COEF4sCON(2) s
2C(2) oDTHEPSsFACTORSG( 2} sH1sH2sH(2) s INSWI(SO) s INTIMESL1
3L2sLATFSNsL(2) sMXSTaNsPCNsPMAXI sPMINI oPQNsPsQCNsQsRHOL »
4RO(2)sRSQeSLP1sSLP29SsT1(3000)sT2(3000)sT3(3000)sTEMPDF)»
STENDs THIGH s THo THSTRT s TI1(0) s TIMELFsTIP(O)sTJL1300)
6TJQ(300) s TLOWSTL s TMELTsTMOVE s Ts TSTART s TWOL (2) »VELOC
TWIDTHZHFPR(30) s ZPREDI(30)9Z(30)Z22(200)
INTEGER AZ1sAZ2sPCNsPMAXIsPMINI»PQNsPsQCN»sQ
BOOLEAN INSW
END OF FUNCTION

2e BNDo

EXTERNAL FUNCTION
REFERENCES ON

REM R THIS ROUTINE IS DESIGNATED BNDe

REM R

REM R SUBROUTINE BNDSETe

REM R SETS UP A MODIFIED STEP FUNCTION BOUNDARY TEMPERATURE
REM R DISTRIBUTION.

REM R SUBROUTINE BOUNDe

REM R RESETS TIME DEPENDENT BOUNDARY CONDITIONS

REM R

ENTRY TO BNDSETe.
TI1(0)=TL
TIP(O}=TH



OVER
REM
REM
REM

FIRST

REM
REM
REM
REM
REM
REM
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TE1=(TH=-TL)/WIDTH
TE2=THSTRT
BO1=TE2~WIDTH
TRANSFER TO OVER
ENTRY TO BOUNDe
WHENEVER TeGe TMOVE
TE2=THSTRT+(T~TMOVE ) *VELOC
OTHERWISE
TE2=THSTRT
END OF CONDITIONAL
BO1=TE2-WIDTH

R THE TEMPERATURE IS TL WHEN I IS LESS THAN BO2s AND IT IS
R TH WHEN I IS GREATER THAN TE2.
R
THROUGH FIRSTs FOR I=1s1ls Ie¢GeP
IFL=1
WHENEVER IFLeGeTE2
TJ1(I)=TH
OR WHENEVER IFLeL.BOl
TJI(I)=TL
OTHERWISE
S TJI(I)=TL+(IFL-BO1)*TE1
END OF CONDITIONAL
TJQUI)I=TJ1(])

FUNCTION RETURN

REFERENCES OFF

INTEGER 1P

FLOATING POINT BOlsIFLsTE1sTE2sTHesTHSTRT s TI1sTIPsTJ1sTJQy

TLsTMOVE s ToVELOCIWIDTH ‘

STATEMENT LABEL FIRSTs OVER

FUNCTION NAME BNDSETsBOUND

PROGRAM COMMON PsTHesTHSTRTsTILlsTIPsTJIOLD»TJ1l»TJQOLD»TJQ)

TLsTMOVE s ToVELOCIWIDTH

PROGRAM COMMON AA1sAASAZ1(30)9sAZ2(30)sBB1+sBBsBII(2)9BI(2)>
1BU(2)9sBUU(2)sCB(31)9CClsCCyCOEF19COEF29COEF34COEF4sCON(2)
2C(2) sDTHsEPSesFACTORsG(2) sH19H2sH(2) s INSWI(S50) s INTIMESL 1
BL2sLATFSNsL (2) sMXSTsNsPCNsPMAXI osPMINI sPQNsP sQCNsQsRHOL »
4RO(2)9sRSQySLP19SLP2sSsT1(3000)sT2(3000)sT3(3000)sTEMPDF,
STEND s THIGH s THe THSTRT o TI1(O) o TIMELFoTIP(Q)sTJ1(300)»
6TJQ(300) s TLOWSTL s TMELT s TMOVE s T TSTART sTWOL (2) sVELOC
TWIDTHeZHFPR(30) s ZPREDI(30)92(30)s2Z2(200)

INTEGER AZ1sAZ2+sPCNsPMAXI+PMINI »PQNsPsQCN»sQ

BOOLEAN INSW

END OF FUNCTION

DOVO0VDD0R0



REM
REM
REM
REM

REM

FIRST

SECOND

THIRD

REM
REM
REM
REM

THE _ROUTINE kOCATEs

EXTERNAL FUNCTION
ENTRY TO LOCATE.

R THIS ROUTINE LOCATES THE VALUE OF Z(J) AT WHICH
R T1(Z(J)sJ)=0 FOR ALL VALUES OF Js THE PAIR OF INTEGERS
R NEAREST 7O Z(J) AND THE EXTREME VALUES OF THESE INTEGERS.
R
PMINI=P
PMAXI=0
THROUGH THIRDs FOR J=1sls JeGeQ
INI=CB(J)
THROUGH FIRSTs FOR I=291s IeGeP
SK= INI+I

R FOR EACH J FIND THE INTERVAL IsI-1 WHERE T1 CHANGES SIGNs

WHENEVER T1(SK)*T1(SK~1)eLE«QeO

BO2=1

BO1=B02-140

BO3=B02+1.0

INI= SK-1

W=(BO1+B02)/2.0

ROOT e (BO1sT1(INI)9sBO2sT1(SK)sBO3sT1(SK+1) W)
W1=RHOL

BO3=B02-2.0
ROOTe(BO1sTL(INI)sBO2sT1(SK)sBO3sT1(SK=1) W)
Z(J)=(W1+RHOL) /240

ZPREDI(J)=Z(J)

ZHFPR(J)=Z(J)

AZ1(J)=Z(J)-EPS

AZ2(J)=ZPREDI(J)+EPS+1.0

TRANSFER TO SECOND
END OF CONDITIONAL

EXECUTE NOTLOC.

WHENEVER AZ1(J)eLePMINIy PMINI=AZI1(J)
WHENEVER AZ2(J)eGePMAXI» PMAXI=AZ2(J)

EXECUTE FINLOC
FUNCTION RETURN
INTEGER AZ1+sAZ2+sCBoINI»I o JsPMAXIsPMINISPsQs5SK
FLOATING POINT BOlsBO2+BO3sEPSsRHOLsT1sWeW1lsZHFPRsZPREDISZ
FUNCTION NAME FINLOCSLOCATEINOTLOCSROOT
PROGRAM COMMON AZ1sAZ2+sCBSEPS+PMAXI+sPMINI»PsQsRHOL
ZHFPRSsZPREDI»Z
PROGRAM COMMON AAl13AASAZ1(30)sAZ2(30)»BB1sBBsBIT(2)sBI(2)>
1BUL2)sBUU{2)sCB(31)9CCleCCoCOEFLICOEF29yCOEF34COEF&4sCON(2)
2C(2) sDTsEPSsFACTORSG(2) sHL sH29oH(2) s INSW(50) s INTIME L1
BL2sLATFSNsL(2) sMXSToNsPCNsPMAXI oPMINI sPQNsP +sQCN9QosRHOL »
4RO(2) sRSQsSLP1sSLP2sSsT1(3000)sT2(3000)sT3(3000)sTEMPDF
STEND ¢ THIGH s THe THSTRTTIL1(O) s TIMELFsTIP(0O)sTJ1(300) >
6TJQ(300) s TLOWSTLsTMELT»TMOVEsTsTSTART»TWOL(2) sVELOC
TWIDTHsZHFPR(30) s ZPREDI(30)sZ{(30)+2Z(200)
INTEGER AZ19sAZ2sPCNsPMAXIsPMINI +PQONsPsQCNsQ
BOOLEAN INSW
END OF FUNCTION

D000
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REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

x:;o:o:o;n;v707021;070:0:0:07070;0JOJU:U;D:0;0;0:‘0;0;0;070:017;070m;om;c:o:omm;omxmmm;o:om:o

THE INPUT - OUTPUT ROWTINES.

EXTERNAL FUNCTION
REFERENCES ON

THIS ROUTINE IS USED FOR ALL INPUT-OUTPUT FUNCTIONS. SINCE
THE CONTROLL VARIABLES ARE USED MAINLY TO CONTROL THESE
I/0 FUNCTIONSs THEIR MEENING IS GIVEN HERE.

INSW 1B 0B
0 PsQ NEW OR CHANGED PsQ NOT CHANGED
1 FACTOReNEe«le0Os RESTCF. RESTCF 1S NOT EXECUTED
2 T1=0.0 Tl INPUT
3 EXECe SETCFe DO NOT EXECe SETCFe AFTER
AFTER INPUT INPUT
4 AFTER TTRAP SET INSW(5) AFTER TTRAP INSW(5)

REMAINS UNCHANGED
NO TTRAP OR INSW{4)=0B TTRAP OCCURED OR INPUT SET
NO PUNCHIG UNLESS BY 24 PUNCH RESULTS
EXECs LOCATE DO NOT EXECe LOCATEe.
TeLeTMOVE WHEN TESTED TeGe TMOVE
S IS GIVEN DT IS GIVEN

ONLY S OR DT CHANGED IN INPe.

W

TODUMPeLoT (SWOUTI(O0))
TPOINTeLeT (SWOUT(1})

6
7
8
9
10
11
12
13
14 PRINT ZPREDI IF INSW(11) DO NOT PRINT
15
16
17
18
19

PRINT Z WHEN INSW(1l1l) DO NOT PRINT
PRINT Z WHEN INSW(10) DO NOT PRINT
PRINT ZPREDI IF INSW(10) DO NOT PRINT
PRINT AZ1 IF INSW(1l1l) DO NOT PRINT
PRINT AZ1 IF INSW{(10) DO NOT PRINT
PRINT TJ1 IF INSW(11) DO NOT PRINT
PRINT TJ1 IF INSW(11l) DO NOT PRINT
PARTIALLY
20 PRINT TJ1 IF INSW(10) DO NOT PRINT
21 PRINT TJQ IF INSW(1l1l) DO NOT PRINT
22 PRINT TJQ IF INSWI(11) DO NOT PRINT
PARTIALLY
23 PRINT TJQ IF INSW(10) DO NOT PRINT
24 NO PUNCHIG UNLESS BY 5 PUNCH RESULTS
25 START AGAIN
SWOUT PRINTED
VALUE VARIABLE NO(S).
1 1+2+43
2 1+2
3 1+3
4 1
5 2+3
6 2
7 3
8 NONE
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REM

REM

REM

COMP1

REM
REM
REM

STLB(3)
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ENTRY TO INPWTs
SUBRUTINE INPUT HANDLES AkL THE DATA NEEDED.

WHENEVER TeEeQeOs PRINT COMMENT $19%

READ AND PRINT DATA

SWST(0)=SWOUT(0)

SWST(1)=SWQUT(1)

FUNCTION RETURN

ENTRY TO NOTLOC.

IN SUBRUTINE LOCATE THE BOUNDARY WAS NOT LOCATED.

ERROR RETURN

ENTRY TO FINLOC.

IN SUBRUTINE LOCATE THE BOUNDARY WAS SUCCESSFULLY LOCATED.

WHENEVER QeLe10

~CNT=1

OTHERWISE

CNT=2

END OF CONDITIONAL

SK=20~CNT

PRINT FORMAT ZHDs Qs Z(1l)eeesZ(Q)

SK=10=CNT

PRINT FORMAT ZPRHDs Qs ZPREDI(1)eeeZPREDI(Q)
I=(Q+1)/2

THROUGH COMP1l,s FOR J=2s 19 JeGel
ZDEVIA(J)=ZPREDI(J)-ZPREDI(1)

PRINT FORMAT ZDVHDs Is ZDEVIA(2)eseZDEVIA(T)

PRINT FORMAT AZ1HDs Qs Qs AZ1(1)eesAZ1(Q)9sAZ2(1)eeeAZ2(Q)
FUNCTION RETURN
OUT. OR OUT2 ARE USED AT THE END OF EACH COMPUTATIONAL
CYCLEs THEY ARE USED TO RESET THE THE T~S AND Z~S.

ENTRY TO OUT.

Sw=0

TRANSFER TO STLB(3)
ENTRY TO OUT2.

SW=1

WHENEVER TDUMPeLeT
INSW(10)=1B
TDUMP=TDUMP+DTDMP
PRINT FORMAT TFORMs T

OTHERWISE
INSW(10)=08B

END OF CONDITIONAL

WHENEVER TPOINTeLeT
INSW(11)=18B
TPOINT=TPOINT+DTPNT
WHENEVER oNOT.INSW(10)s PRINT FORMAT TFORMs T

OTHERWISE
INSW(11)=08B

END OF CONDITIONAL

WHENEVER INSW(10)
INI=P+CB(Q)

CNT=PQN



STLB(1)

COMP3

STLB
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SK=18=~CNT
WHENEVER SWOUT(0)eNE.S8
WHENEVER SWOUT(0)eLe5
PRINT FORMAT CT1ls INIs T1(0)essT1(INI)
SWOUT(0)=SWOUTI(0)+4
END OF CONDITIONAL
WHENEVER SWOUT(0)ele7
PRINT FORMAT CT2s INI» T2(0)eeeT2(INI)
SWOUT(0)=SWOUT(0)+2
END OF CONDITIONAL
WHENEVER SWOUT(0) «Ee7
PRINT FORMAT CT3s INIs T3(0)eeeT3(INI)
END OF CONDITIONAL
SWOUT (0) =SWST(0)
TRANSFER TO STLB(SW)
END OF CONDITIONAL

CNT=QCN

WHENEVER INSW(13)

SK=20-CNT

PRINT FORMAT ZHDs Qs Z(1)eeaZ(Q)
END OF CONDITIONAL

WHENEVER INSW(15)

SK=10-CNT

PRINT FORMAT ZPRHD»s Qs ZPREDI(1)eeeZPREDI(Q)
I=(Q+1)/2

THROUGH COMP3s FOR J=2s 1s JeGel
ZDEVIA(J)=ZPREDI(J)~ZPREDI(1)

PRINT FORMAT ZDVHDs 1Is ZDEVIA(2)eeeZDEVIA(I)

END OF CONDITIONAL

WHENEVER INSW{(17)s PRINT FORMAT AZ1HDs Qs Qo
AZ1(1)eseAZ1(Q)9AZ2(1)eeeAZ2(Q)

CNT=PCN

SK=16~CNT

WHENEVER INSW(20)

PRINT FORMAT TJ1HDs Ps TJ1(1)eeeTJ1(P)
END OF CONDITIONAL

WHENEVER INSW(23)

PRINT FORMAT TJQHDs Ps TJQ(1)eeoTJIQ(P)
END OF CONDITIONAL

END OF CONDITIONAL
WHENEVER INSW(11)

WHENEVER SWOUT(1)eNE«8
WHENEVER SWOUT(1)elLe5
STBOUN(4)=5ST1
PRINT FORMAT STBOUNs (J=1ly 1s JeGeDEXMAXj,
TL(DEX(2¥J=~1)+CB(DEX(2%J))) )
SWOUT(1)=SWOUT(1)+4
END OF CONDITIONAL
WHENEVER SWOUT(1)eLe7
STBOUN(4)=ST2
PRINT FORMAT STBOUNs (J=1y 1s JeGeDEXMAX,-
T2ADEX{2%J~1)+CB(DEX(2%J))) )
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SWOUT(1)=SWOUT{1)+2
END OF CONDITIONAL
WHENEVER SWOUT(1l)eEs7
STBOUN(4)=ST3
PRINT FORMAT STBOUNs (J=1ly 1ls JeGeDEXMAX)
1 T3(DEX(2%#J=1)+CB(DEX(2%J)1) )
END OF CONDITIONAL
SWOUT (1)=8SWST (1)
END OF CONDITIONAL
WHENEVER (SWeE«O)s TRANSFER TO STLB(2)
CNT=QCN
WHENEVER INSW(12)
SK=20-CNT
PRINT FORMAT ZHDs Qs Z(1l)eeeZ(Q)
END OF CONDITIONAL
WHENEVER INSW(14)
SK=10-CNT
PRINT FORMAT ZPRHDs Qs ZPREDI(1)eeeZPREDI(Q)
I=(Q+1)/2
THROUGH COMP2y FOR J=2s 1 JeGel
ZDEVIA(J)=ZPREDI(J)~ZPREDI(1)

COMP2

PRINT FORMAT ZDVHDs Is ZDEVIA(2)ee«ZDEVIA(I)

END OF CONDITIONAL

WHENEVER INSW(16)s PRINT FORMAT AZ1lHDs Qs Q»

1 AZ1(1)eeeAZ1(Q)sAZ2(1)eeeAZ2(Q)

sTLB(2)

CNT=PCN

SK=16=CNT

WHENEVER INSW(18)
PRINT FORMAT TJ1HDs Py TJLl(l)eeeTJ1(P)
END OF CONDITIONAL
WHENEVER INSW(21)
PRINT FORMAT TJQHDs Ps TJQ(1)eseTJQ(P)
END OF CONDITIONAL
WHENEVER INSW(22)sOResINSW(19)
WHENEVER TJMINeLs10
CNT=1
OR WHENEVER TJMIN.L.100
CNT=2
OTHERWISE
CNT =3
END OF CONDITIONAL
WHENEVER TJMAXeLe1l0
CNT1=1
OR WHENEVER TJMAXeL100
CNT1=2
OTHERWISE
CNT1=3
END OF CONDITIONAL
SK=17-CNT-CNT1
WHENEVER INSW(19)
PRINT FORMAT MTJLlsTUMINSTIMAXsTJI(TIMIN) eeeTJ1 (TUIMAX)
END OF CONDITIONAL



REM

FIRST

REM
REM
REM

w N -

=153

WHENEVER INSW(22)
PRINT FORMAT MTJQsTJUMINs TUMAXsTJQ(TIMIN) e e TJQITIMAX)
END OF CONDITIONAL
END OF CONDITIONAL
END OF CONDITIONAL
REPLACE THE OLD VALUE OF T1 WITH THE NEWLY COMPUTED T3.
INI=P+CB(Q)
THROUGH FIRSTs FOR J=0s 1s JeGeINI
TL(J)=T3(J)
WHENEVER JeLE«Q
Z(J)=ZPREDI(J)
END OF CONDITIONAL

WHENEVER (eNOTeINSW{(5))e0Re(sNOTeINSW(24))

INSW(24)=18B

INI=P+CB(Q)

CNT=(INI+1)/4

PUNCH FORMAT PNCH1sTsTMOVEsNs TTIMOVsPMAXI sPMINI
T1(0)eeeT1(INI)

CNT=(Q-3)/4

SK=Q-3-4#CNT

CNT1=Q

PUNCH FORMAT PNCH25Z(1)eesZ2(Q)sAZ1(1)eeeAZ1(Q)y
AZ2{1)eeeAZ2(Q)

WHENEVER oNOT<INSW(5)sEXECUTE ERROR.

END OF CONDITIONAL

FUNCTION RETURN

ENTRY TO OUT1.

PRINT RESULTS COEF1sCOEF29sCOEF33sCOEF4sCON(1)sCON(2)9RO(1)>
RO(2)sC(1)9sC(2)sHLsH2sH(L1)sH(2)sG(1)sG(2)sPsQsL1sL2s
LATFSNsDTsSsRSQaL{1)sL(2)+sBI(1)sBI(2)>BUL1)sBU(2)>
BIT(1)sBII(2)

CNT=QCN

RHOL=P~1

RHOL= (CON*¥DT#RHOL*RHOL )/ (RO*C®L2%¥2)

PRINT FORMAT SEEsRHOLSQsCB(1)eeeCB(Q)

FUNCTION RETURN

REFERENCES OFF

THESE ARE THE FORMATS USED BY THE ABOVE 1/0 STATEMENTS.

VECTOR VALUES TFORM=$1H0/S11+5HTIME=91PE16+8%%
VECTOR VALUES CT1=$1HOsS*SK's11HT1(0)eeeT1(sI?CNT's2H)=91P6

1E1648/(1P8E1648)#3

VECTOR VALUES CT2=31H0sS'SK"911HT2(0)eeeT2{(sI'CNT'»2H)=51P6

1E168/(1P8E1648) %3

VECTOR VALUES CT3=31H0sS'SK'911HT3(0)eeeT3(+sI'CNT's2H)=91P6

1E1648/(1PBE1648) %%

VECTOR VALUES ZHD=$1HO0»S'SK's9HZ(1)eeeZ (s I'CNT?s2H)=91P6EL6

1¢8/(1P8E1648)%*%

VECTOR VALUES ZPRHD=$1HOsS!'SK's19HZPREDI(1)eeeZPREDI(»I'CNT

1'92H)=s1P6E16e8/(1PBE1648)*3

VECTOR VALUES ZDVHD=$1HO+S*'SK'y19HZDEVIA(2) eeeZDEVIA{ I 'CNT

1'92H)=+s1P6E1648/(1PBE1648)*$
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VECTOR VALUES TJULHD=$1HOsS!SK'"s13HTJI1(1)eeeTJL1(sI'CNTts2H)=
1s1P6E16.8/(1P8E1648)*%

VECTOR VALUES TJQHD=31HO»SI1SK' 913HTJQ(1) eseTJQ(sT'CNT*s2H)=
151P6E1648/(1P8E1648)%%

VECTOR VALUES STBOUN=% 1HOs S13s 1BHSELECTED T1SOL{(J)=31P6
1E16.8/({1P8E1648) %%

VECTOR VALUES AZ1HD=314HOAZ1(1)eeeAZLI{sI'CNT's2H) s>
113HAZ2(1)eeesAZ2( s I'CNT'92H)=920(1391Hs)/30(I139s1Hy)*$

VECTOR VALUES ST1=% T1(I,%

VECTOR VALUES ST2=3% T2(I,%

VECTOR VALUES S5T3=3% T3(I,%

VECTOR VALUES MTJ1=31HOsSTSK'4GHTJL (s I'"CNT'"8H)eeeTJ1(»I'CNT1
1'92H)=31P6E1648/(1PBE1648B)*%

VECTOR VALUES MTJQ=31HOQ+sS'SKI4HTJQ(sI'CNT'8H)eeeTJQ(sI'CNT1
1'92H)=31P8E16¢8/(1P8E1668)*%%

VECTOR VALUES PNCH1=%2HT=91PE15¢898Hs TMOVE=91PE15e8s1H s/
12HN= 9 1PE154838Hs TTIMOV=9 1PE15e8sTHsPMAXI=9I13sTHsPMINI=,413,
21Hs/S1196HT1(0)=93(1PE16e8s1Hs ) /'CNT ' (4(1PE16e8s1Hs)/ ) %%

VECTOR VALUES PNCH2=%51295HZ(1)=93(1PE16e8y1Hs)/
1'CNT P (4 (1PE16e8s1Hs) /) s SKY(1PE16e8s1Hs)/THAZI(1)=s'CNT1 (I3
21Hs Y /THAZ2(1)=9 *CNT1'(I391Hy)%*$

VECTOR VALUES SEE=%1HO/He+0 ONE OF THE DIMENSIONLESS RATIOS
1 (DELTA T)/{(DELTA X)*{(DELTA X) IS «»1PEl16e8/ HeO THE LINEAR
2SUBSCRIPT OF THE TEMPERATURES ARE COMPUTED BY THE EXPRESSION
30 CB(J)I+] )y WHEREe /H=0 CB{l)eeeCB(=sI'CNT'92H)=920(1491Hs)/
41HO925(1441H, ) %3

DIMENSION DEX{100)sPT(20)+SWOUT(1)sSWST(1)sZDEVIA(16)
INTEGER AZ1HDs AZ1sAZ2sCBsCNT1sCNToCT1sCT2eCT3sDEXMAXsDEXS
INI s I oJsMTUIsMTIQsPCNsPMAXI sPMINI oPNCH1 o PNCH2 3PQN >
PsQCNsQsSEEsSKsST19ST29ST3sSTBOUN»SWOUT s SWeSWST s
TFORMeTJLIHD s TUMAX s TUMIN»TJQHD ¢ ZDVHD »ZHD » ZPRHD
FORMAT VARIABLE CNT1sCNTsSK
STATEMENT LABEL COMP1yCOMP2yCOMP34STLBsFIRST
FUNCTION NAME ERRORSFINLOCsSsINPUTsNOTLOCSOUT sOUT1»0UT2
FLOATING POINT BIsBIIsBUsCOEF1sCOEF2yCOEF3+COEF4,
CONsCsDTDMP sDTPNT sDT9sGsHL sH2sHsL1sL29L s
LATFSNsNsRHOLSROSRSQ9SsT1sT2sT3sTDUMPsTJI1
TJQs TMOVE s TPOINT s Ts TTIMOV s ZDEVIAZPREDI »2
EQUIVALENCE (CClsEPS1)s{(TTIMOVSZZ(1))
PROGRAM COMMON AA1sAAsAZ1(30)sAZ2(30)+BB1sBBsBII(2)sBI(2)s
1BU(2)sBUU(2)+CB(31)sCC1lsCCsCOEF1sCOEF29yCOEF3,COEF4,CON(2)
2C(2) sDTHEPSsFACTORsG(2) sH1 oH29H{2) s INSW(50) s INTIMESL]
3L2sLATFSNsL(2) sMXSTsNsPCNsPMAXI 4sPMINI sPQNsP sQCNsQsRHOL
4RO(2) sRSQsSLP19S5LP2+sSsT1(3000)sT2(3000)sT3(3000) s TEMPDF
STEND s THIGH s THe THSTRTsTIL(O) s TIMELF»TIP(Q)sTJ1(300) >
6TJQ(300) s TLOWSTL s TMELTs TMOVE s To TSTART»TWOL (2) s VELOC
TWIDTHsZHFPR(30) s ZPREDI(30)+4Z2(30)+22(200)
INTEGER AZ1sAZ2sPCNsPMAXIsPMINIPQNsPsQCN»Q
BOOLEAN INSW
END OF FUNCTION
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THE ROUTINES SETCFe AND RESTCF.

EXTERNAL FUNCTION
REFERENCES ON
ENTRY TO SETCF.

REM R
REM R SUBRUTINE SETCF. COMPUTES THE VALUES OF THE VARIOUS
REM R CONSTANTS
REM R SUBRUTINE RESTCFe. RECOMPUTES THE VALUES OF THOSE CONSTANTS
REM R WHICH DEPEND ON FACTOR ( DT ) »
REM R
WHENEVER INSW
THROUGH ANNs FOR J=1lys ls JeGeQ
ANN » CB(J)=J*pP-P-1
WHENEVER PeLe10
PCN=1
OR WHENEVER PesL+100
PCN=2
OTHERWISE
PCN=3

END OF CONDITIONAL
WHENEVER (QeL+10)
QCN=1
OTHERWISE
QCN=2
END OF CONDITIONAL
INI=P+CB(Q)
WHENEVER (INI«L«10)
PQN=1
OR WHENEVER (INIeL«100)
PGN=2
OR WHENEVER (INIeL«1000)
PQN=3
OTHERWI SE
PQN=4
END OF CONDITIONAL
COEF3=(P~1)/L2
COEF3=COEF3%*COEF3
COEF4=({Q-1)/L1
COEF4=COEF4*COEF4
RSQ=COEF4/COEF3
END OF CONDITIONAL
X1=L1*L1%RO(1)%*C(1)
WHENEVER INSW(8)
DT=X1/(CON(1)%S5)
OTHERWISE
S=X1/(CON(1}*DT)
END OF CONDITIONAL
WHENEVER INSW(9)
TEMPDF=THIGH-TMELT
TL=(TLOW-TMELT)/TEMPDF
COEF2=TEMPDF / (LATFSN#*RO)
COEF1=CON(1)*COEF2
COEF2=CON(2)*COEF2
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Wl=H1/CON({1)
W2=H2/CON(2)
TEl=L1/(Q-1)
TE2=L2/(P-1)
G(1)=W1*TE1
G(2)=W2*%TE1
H(1)=W1*TE2
H(2)=W2*TE2
FACTOR=140
L=L1*L1*COEF3
BO3 = (RO(1)*C{1)*CON(2))/(RO(2)¥C(2)#CON(1))
BO1=—2+0%¥RSQ*(1.0+G(1))
BO2=-20%RSQ*{1.0+G(2))
END OF CONDITIONAL
R RESTCFe
ENTRY TO RESTCFe.
WHENEVER FACTOR eEe¢leOs INSW(1)=0B
L{1)=S*¥FACTOR/L
L2)=L(1)/B0O3
TWOL(1)=2.0%L (1)
TWOL(2)=2.0%L(2)
BU(1)==240%(RSQ+L (1))
BU(2)==240%(RSQ+L(2))
BUU(1) = BO1=-2.0%L(1)
BUU(2) = B0O2-2.0%L(2)
BI(1)=«260%({1es0+L(1})
BI(2)==2e0%(1e0+L(2))
BII(1)=BI(1)«2.,0%H(1)
BIT(2)=BI(2)=2.0%H(2)
FUNCTION RETURN
REFERENCES OFF
ERASABLE JsX19X2eX39X4
BOOLEAN INSW
INTEGER CBsINIsJsPCNsPQNIPsQCNSQ
STATEMENT LABEL ANN
FUNCTION NAME SETCFsRESTCF
FLOATING POINT BO1+sB0O2+B0O3+BI+BII1sBUsBUUSCOEF14COEF2,
COEF3sCOEF4sCONsCoDTsFACTORsGsH1sHZ2sHsL 1
L2sLATFSNsLsROsRSQsSsTEL1»TE2sTEMPDF s THIGH
TLOWsTLsTMELT s TWOL sW1leW2eX1
PROGRAM COMMON CBsCOEF1sCOEF29+COEF3sCOEF49sCONsCsDT»FACTOR
GeH1oH2sHs INSWsJsL1sL2sLATFSNsLsPCNsPQNsPy
QCNsQsRFOURSROIRSQsSsTEMPDF s THIGH s TLOWs TL »
TMELTsTWOL
PROGRAM COMMON AAl1sAASAZ1(30)sAZ2(30)sBB1sBBsBIT(2)sBI(2)
1BU(2)+BUUL2)sCB(31)9CC1sCCsCOEF19sCOEF29sCOEF39COEF4sCON(2)
2C(2)sDTsEPSsFACTORsG(2) sHIsH2sH(2) s INSW(50) s INTIME L 1>
3L2sLATFSNsL(2)sMXSTaNsPCNsPMAXI oPMINI sPQNsP sQCNsQ@sRHOL
4RO(2)9sRSQsSLP1sSLP2sSsT1(3000)sT2(3000)sT3(3000)sTEMPDF
STEND s THIGH s THo THSTRTsTI1(0) s TIMELFoTIP(Q) s TJL(300)»
6TJQR(300) s TLOW s TL s TMELT s TMOVE s ToTSTART s TWOL (2) o VELOC,
TWIDTHsZHFPR(30 ) +ZPREDI(30)4+2(30)sZ2Z(200)
INTEGER AZ1sAZ2sPCNsPMAXIsPMINI+PQNsIPsQCN»Q
BOOLEAN INSW
END OF FUNCTION
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THE ROUTINE ROOT.

EXTERNAL FUNCTION (XAsYAsXBsYBsXCeYCoX4)
REFERENCES ON

SUBRUTINE COEF FINDS THE COEFFICIENTS TO THE EQUATION
Y=AA*X*X+BB#X+CC USING THE THREE PAIR OF COORDINATES GIVEN.

SUBRUTINE ROOT FINDS THE ROOT CLOSEST TO X4e ( RHOL=X»Y=0)

ENTRY TO ROOTe

SW=1

TRANSFER TO ANN

ENTRY TO COEF.

SW=2

X1=XA

X2=XB

X3=XC

Yl=YA

Y2=YB

Y3=YC

X12=X1-X2

X13=X1-X3

X23=X2~X3

WHENEVER (6ABSe(X12))eLeA4eORe(eABSe(X23))eLaAb4sOR,

(eABSe(X13))eLeAb4sORo (eABSe {{(Y1~Y2)%*X23

/0(Y2-Y3)%X12))~1e0))eLe0s001> TRANSFER TO ANDYS

AA=Y1/7(X12%X13)~-Y2/(X12¥%X23)+Y3/(X13%X23)

BB=Y1¥({X2+X3)/(=X12%¥X13)+Y2*(X1+X3)/(X12%¥X23)~Y3*(X1+X2)/

(X13%#X23)

CC=Y1%X2%X3/ (X12%#X13)-Y2¥X1%X3/ (X12%X23)+Y3%X1*#X2/(X13%X23

WHENEVER SWeEe2s FUNCTION RETURN SW

WHENEVER( «ABSe(AA)) oL e (140E=10)>» TRANSFER TO ANDYS

X2 = (BB#¥BB-4.0%AA*CC)

WHENEVER X2eLe0s0s TRANSFER TO ANDYS

X3=-BB/(2.0%AA)

X2= (SQRTe( X2 ) 1/(2.0%AA)

WHENEVER (eABSe (X3+X2=X4 ))el e (eABSe(X3=-X2~X4 ))

RHOL=X3+X2

OTHERWISE

RHOL=X3-X2

END OF CONDITIONAL

FUNCTION RETURN SW

WHENEVER («ABSeX13)+GeA4

BB=(Y1-Y3)/X13

OTHERWISE

BB=(Y1-Y2)/X12

END OF CONDITIONAL
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AA=Q.0

CC=Y1-BB*X1

WHENEVER SWeEe2

SwW=3

FUNCTION RETURN SW

END OF CONDITIONAL
RHOL=-CC/BB

SW=4

FUNCTION RETURN SW
VECTOR VALUES A4=]1+0E~5
REFERENCES OFF

INTEGER SW

ERASABLE X12sX133sX13X23sY1sY25Y3

*%% THE SQRTe FUNCTION USES THE FIRST 2 ERASABLES (X12sX13)

FUNCTION NAME COEFsROOT +SART

STATEMENT LABEL ANDYSsANN

FLOATING POINT A43AAsBBsCCoRHOL sX129X133X19X239X29X39X4s XA
XBeXCsY1lsY29Y3sYAsYBsYC

PROGRAM COMMON AABBsCC»RHOL

DADBVAODDODAO00D00

PROGRAM COMMON AA13AASAZ1(30)9sAZ2(30)sBB1+sBByBII(2)sBI(2)>
1BU(2)sBUU(2)9CB(31)3sCCLlsCCyCOEF1sCOEF23sCOEF3sCOEF43sCON(2)
2C(2) sDToEPSsFACTORSG(2) sH19sH2sH(2) s INSW(50) s INTIMEsL 1y
3L29LATFSNsL (2) sMXSToNsPCNsPMAXI o PMINI sPQNsPsQCNsQsRHOL
4RO(2)sRSQsSLP19SLP2+SsT1(3000)sT2(3000)+T3(3000)sTEMPDF,
STEND 9 THIGH s THo THSTRT s TIL1(0) s TIMELFsTIP(0)sTJ1(300) >
6TJQ(300) s TLOWSTL s TMELTsTMOVEsTsTSTARTsTWOL (2) sVELOC
TWIDTHs ZHFPR(30)»ZPREDI(30)92(30)s22(200)

INTEGER AZ1sAZ2sPCNsPMAXIsPMINI +PQNsPsQCN»Q

BOOLEAN INSW

END OF FUNCTION



THE MAIN ROUTINE.

REFERENCES ON
REM
REM
REM
REM

THIS IS THE MAIN PROGRAM.
SET TIME TRAP AT 20 SEC. BEFORE SYSTEM TRAP TO

A0 N0

TIMER=0
REM

Py

TIMELF=TIMLFT«(TIMER)~2040

TIMER=1

WHENEVER TIMELFeGe0eO
REM R

EXECUTE TTRAP<(TIMERs TIMELF,HERE)

END OF CONDITIONAL
REM
REM

INITALIZE VARIABLES
REM '

203

VECTOR VALUES INSW(0)eeoeINSW(49)=18
ANDYS
TH=140
TSTART =040
T=0.0
REM R
EXECUTE INPUT.
EXECUTE SETCF.
EXECUTE OUT1.
REM R
BNDSET .
WHENEVER INSW(2)
PMINI=2%P
PMAXI=0
THROUGH HOMEs FOR J=1s 1s JeGeQ
AZ1(J)=PMINI
AZ2(J)=0
INI=CB(J)
THROUGH HOME,s FOR I=1s 1y leGeP
TI(I+INI)=040
HOME
OTHERWISE
REM R
EXECUTE INPUT.
INSW(2)=1B
WHENEVER «NOTINSW(5)
INSW(5)=18
WHENEVER INSW(3)
SETCF.
OUT1.
INSW(3)=08B
END OF CONDITIONAL
TRANSFER TO SECOND
END OF CONDITIONAL
END OF CONDITIONAL
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INPUT .



SECOND

REM

REM

REM

REM

THIRD

REM

REM

REM

REM

REM

RUN

REM
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WHENEVER TeleTT1MOV
WHENEVER T+Ge INTIME

EXECUTE INPUT.

WHENEVER oNOT«INSW(25)s TRANSFER TO ANDYS
WHENEVER INSW(3)

EXECUTE SETCFe

EXECUTE OUT1.

INSW(3)=0B

END OF CONDITIONAL
END OF CONDITIONAL

EXECUTE T2SOLVe.

EXECUTE T3SOLVe
N=N+1.0
T=TSTART+N*DT

OUTe

TRANSFER TO SECOND
END OF CONDITIONAL
INSW(7)=0B

WHENEVER INSW(6)s EXECUTE LOCATE.

WHENEVER TeLeTMOVE
WHENEVER TeGe INTIME

INPUT.

WHENEVER oNOT.INSW(25)s TRANSFER TO ANDYS
WHENEVER INSW(3)

SETCF

OuUT1l.

INSW(3)=0B

END OF CONDITIONAL
END OF CONDITIONAL

MOVEM,

WHENEVER INSW(1)s EXECUTE RESTCFe.
N=N+1.0/FACTOR

T=TSTART+N*DT

T2S0L V.

T3S0LVe

OUT2.

TRANSFER TO THIRD

END OF CONDITIONAL

WHENEVER TeLeTEND
WHENEVER TeGe INTIME

EXECUTE INPUTe.

INPUT.

T2SOLVe

T3SOLVe

LOCATE.

INPUT.

MOVEM.

RESTCF.

T2SOLV.

T3S0LVe

INPUT



REM

REM

REM
REM

REM

HERE

REM

REM
REM
REM
REM
REM
REM
REM
REM

ADDDODVDODDOAD
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WHENEVER oNOT«INSW(25)s TRANSFER TO ANDYS
WHENEVER INSW(3)
EXECUTE SETCF.
EXECUTE OUT1.
INSW(3)=08B
END OF CONDITIONAL
END OF CONDITIONAL

MOVEM.
EXECUTE MOVEM.
RESTCF.
WHENEVER INSW(1)s EXECUTE RESTCF.
N=N+1+0/FACTOR
T=TSTART+N*DT
BOUND.
EXECUTE BOUND.
T2S0LV.
EXECUTE T2SOLV.
T3S0LV.
EXECUTE T3SOLV.
EXECUTE OUT2.
TRANSFER TO RUN
END OF CONDITIONAL
TRANSFER TO ANDYS
TIMELF=040
TTRAP.,

EXECUTE TTRAP«(TIMERsTIMELFsRUN)
WHENEVER INSW(4)
INSW(4)=0B
INSW(5)=0B
END OF CONDITIONAL
EXECUTE TRTN.(TIMER)
TRANSFER TO ANDYS
REFERENCES OFF
INTEGER AZ1+AZ2sCBsINIsIsJosPMAXIsPMINI »P Qs TIMER
FUNCTION NAME BNDSETsBOUNDs INPUT sLOCATEsMOVEM,OUT1s0UT2)
OUTsRESTCF s SETCF s T2SOLVsT3SOLVsTIMLFTsTRTNy
TTRAP
STATEMENT LABEL ANDYSsHEREsHOMEsRUNsSECONDsTHIRD
FLOATING POINT DTsFACTORyINTIMEsNsT1sTENDsTHs TIMELF » TMOVE,
T+TSTART s TT1IMOV
PROGRAM COMMON CBsDTsFACTORsINIsINSWeINTIMEsI sJsNsPMINI P,
QsT1sTENDs THe TIMELF s TMOVE»T»TT1MOV
EQUIVALENCE (TT1IMOVsZZ(1))

PROGRAM COMMON AA19AASAZ1(30)9sAZ2(30)sBB1sBBsBII(2)sBI(2)>

1BU(2)sBUU(2)sCB(31)9sCC1sCCyCOEF1sCOEF29COEF39COEF4sCON(2)
2C(2)sDTIEPSsFACTORG(2) sHI1sH29H(2) s INSW(S50) s INTIME L1
3L2sLATFSNsL(2) sMXSTaNsPCNsPMAXI 9PMINI »PQNsP+sQCNsQsRHOL »
4RO(2)9RSQA9ySLP1sSLP2sSsT1(3000)sT2(3000)sT3(3000) s TEMPDF,
STENDsTHIGHs THe THSTRT»TIL1(0) s TIMELFSTIP(0)sTJ1(300)>
6TJQ(300) s TLOWSTL s TMELT» TMOVEsTo TSTART» TWOL (2) »VELOC,
TWIDTHsZHFPR(30) s ZPREDI(30)+2(30)+22(200)

INTEGER AZ13sAZ2sPCNsPMAXTIsPMINI sPQNsP»QCN»Q
BOOLEAN INSW
END OF FUNCTION



LIST OF SYMBOLS.

SYMBOL BRIEF DESCRIPTION

A VARIABLE USED IN T2SOLV AND T3SOLVe SEE TEXT.

A4 = 1¢0E=~59y A CONSTANT USED IN ROOT.

AA A COEFFICIENT IN Y=AA®#X®X+BB¥X+CC CURVE FITTING.
AAl EXISTS IN PROGRAM COMMON ONLY.

ANDYS A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

ANN A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

AZ1l THE LARGEST INTEGER SMALLER THEN Z-EPS.

AZ1HD FORMAT USED TO PRINT AZ1 AND AZ2

AZ2 "THE SMALLEST INTEGER LARGER THEN Z+EPS.

BB A COEFFICIENT IN Y=AA*X*¥X+BB*¥X+CC CURVE FITTING.
BB1 EXISTS IN PROGRAM COMMON ONLY.

BI = «2~2%Lys A CONSTANT (AS LONG AS DT IS CONSTANT).
BII = ~2-2% -2%Hy A CONSTANT (IF DT IS CONSTANT).
BNDSET THIS ROUTINE SETS UP THE INITAL BOUNDARY CONDITIONS.
BO1 A LOCAL VARIABLE IN SEVERAL ROUTINES.

BO2 A LOCAL VARIABLE IN SEVERAL ROUTINES.

BO3 A LOCAL VARIABLE IN SEVERAL ROUTINES.

BOUND RESETS THE TIME DEPENDENT BOUNDARY CONDITIONS.
BT VARIABLE USED IN T2SOLV AND T3SOLVe SEE TEXTe

BU = —2%¥RSQ-2%Ls A CONSTANT (IF DT IS CONSTANT).
BUU = «2#RSQ-2%¥L~2%¥RSQ*¥Gy A CONSTANT (IF DT IS CONSTANT).
C HEAT CAPACITY (CGS UNITS).

c8 IN SUBSCRIPTING INSTEAD OF T1(IsJ) USE T1(I+CB(J))e
cC A COEFFICIENT IN Y=AA®X#X+BB¥X+CC CURVE FITTINGs
cCl1 EQUIVALENT TO EPS1l.

CHANGE A STATEMENT LABEL USED IN T2SOLV AND T3S0LV.

CNT A FORMAT VARRABCE USED BY THE 1/0 ROUTINES.

CNT1 A FORMAT VARIABLE USED BY THE I/0 ROUTINES.

COEF PART OF ROOT. COMPUTES AAs BB AND CC ONLY.

COEF1 A COEFFICIENT USED IN ROUTINE MOVEM.

COEF2 A COEFFICIENT USED IN ROUTINE MOVEM.

COEF3 A COEFFICIENT USED IN ROUTINE MOVEM.

COEF4 A COEFFICIENT USED IN ROUTINE MOVEM. ‘

COMP1 A STATEMENT LABEL USED IN THE 1/0 ROUTINES.
COMP2 A STATEMENT LABEL USED IN THE I/0 ROUTINES.
COMP3 A STATEMENT LABEL USED IN THE 1/0 ROUTINES.

CON THERMAL CONDUCTIVITY (CGS UNITS).

CT1 FORMAT USED TO PRINT ALL THE T1(IsJ)e

CT2 FORMAT USED TO PRINT ALL THE T2(1IsJ)e

cT3 FORMAT USED TO PRINT ALL THE T3(IsJ)s

D VARTABLE USED IN T2SOLV AND T350LVe SEE TEXT.
DELTA THE NUMBER OF INTERVALS/INCH _

DEX SUBSCRIPTS OF THE SELECTED TEMP«-S TO BE PRINTED
DEXMAX THE NUMBER OF THE SELECTED TEMP.-S TO BE PRINTED
DL1 A STATEMENT LABEL USED IN T2S0LV AND T3SOLV.
DONE A STATEMENT LABEL USED IN T2SOLV AND T3SOLVe.

DT TIME INTERVAL USED TO INCREMENT Te SEE FACTOR.
DTDMP TIME INTERVAL USED TO INCREMENT TDUMP.

DTPNT TIME INTERVAL USED TO INCREMENT TPOINT.

EPS A CONSTANT USED IN COMPUTING AZ1l AND AZ2.

EPS1 A CONSTANT USED IN COMPUTING SLP1 AND SLP2.
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SYMBOL

ERROR
FACTOR
FINLOC
FIRST
G

GM

H

H1

H2
HERE
HOLT
HOME

I

IFL
INCR
INI
INPUT
INSW
INTIME
IT1
IT2
IT3
IT4
IT5
ITO

J

JFL
JVCT

L

L1

L2
LATFSN
LOCATE
MAX
MIN
MOVEM
MOVM
MTJ1
MTJQ
MVMTRT
MXMVRT
MXST

N

NEXT
NOTLOC
OTHER
ouT
OuUT1
ouT?2
OVER

p

PCN
PHASE
PMAXI
PMINI
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BRIEF DESCRIPTION

A SYSTEM SUBROUTINE USED FOR ERROR RETURNS TO SYSTEM.
USED TO REDUCE DT TEMPORARILY IF NECCESSARY.
OUTPUT ROUTINE USED IF BOUNDARY 1S FOUND

A STATEMENT LABEL USED IN MANY ROUTINES
=(HI*L1)/7(CON(T)*(Q~1))

VARIABLE USED IN T2SOLV AND T3S0LVe.

=(HI*L2)/(CON(I)*(P~-1))e
HEAT TRANSFER COEFFICIENT IN REGION 1
HEAT TRANSFER COEFFICIENT IN REGION 2 (CGS UNITS)e.
A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

= =33/20

SEE TEXTe

(CGS UNITS).

A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.
USUALLY THE GRID INDEX IN THE X DIRECTION.

FLOATING POINT VALUE OF I

A LOCAL VARIABLE USED IN T2SOLV AND T3SOLV.
AN INTEGER USED IN MANY ROUTINES.
USED TO READ DATA.

ROUTINE
CONTROL
IF LESS
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

»>>r > >

SWITCH.

THEN T

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

USED
USED
USED
USED
USED
USED

IN
IN
IN
IN
IN
IN

THE
THE
THE
THE
THE
THE

BOUNDARY
BOUNDARY
BOUNDARY
BOUNDARY
BOUNDARY
BOUNDARY

ROUT INE
ROUTINE
ROUT INE
ROUTINE
ROUTINE
ROUTINE

SEE I/0 ROUTINE PROGRAM LISTING.
DATA IS READ.

FIRST.
FIRST.
FIRST.
FIRST.
FIRST.
FIRST.

USUALLY THE GRID INDEX IN THE Y DIRECTION.
FLOATING POINT VALUE OF Je.

= CB(J)s USED IN T2SOLV AND T3SOLVe
DIMENSIONLESS DT/(DX*DX) OR DT/(DY*DY)s

LENGTH OF BARs CMe

WIDTH OF BARs CMe

LATENT HEAT GIVEN UP AT THE REGION BOUNDARYs CAL/GMe.
ROUTINE USED TO FIND THE LOCATION OF THE BOUNDARY.
A VARIABLE USED IN T2SOLV AND T3SOLV.

A VARIABLE USED IN T2SOLV AND T3SOLV.

USED TO COMPUTE THE MOVEMENT OF THE BOUNDARY.
THE DISTANCE MOVED SINCE TIME=TMOVE

FORMAT USED TO PRINT SOME OF THE TJl(J)e

FORMAT USED TO PRINT SOME OF THE TJQ(J)e
VELOCITY OF THE BOUNDARY AT POINT Je

THE LARGEST MVMTRT.

LARGEST ALLOWED BOUNDARY MOVEMENT/TIME STEP.
USED TO KEEP TRACK OF TIME (T)e SEE TSTART.

A STATEMENT LABEL USED IN T2SOLV.

USED WHEN LOCATE FAILS TO FIND THE BOUNDARY.

A STATEMENT LABEL USED IN T2SOLV AND T3SOLV
ROUTINE USED TO PRINT RESULTS

ROUTINE USED TO PRINT INITAL VALUES OF CONSTANTS
ROUTINE USED TO PRINT RESULTS

A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

THE NUMBER OF GRID POINTS IN THE X DIRECTION.
THE NUMBER OF DIGITS IN P

USED TO INDICATE REGION NUMBER.

EQUAL TO THE LARGEST AZ2(J)e

EQUAL TO THE SMALLEST AZl(J).



SYMBOL

PNCH1
PNCH2
PGN

Q

QCN
RESTCF
RET
RHOL
RO
ROOT
RSQ
RUN

S
SECOND
SEE
SETCF
SK

SL

SL1
SL3
SL5
SLP1
SLP2
SLO
SQRT
ST1
ST2
ST3
STBOUN
STEP
STLB
SW
SWOUT
SWST

T

T1

T2
T250LV
T3
T3COMP
T3sS0Lv
TDUMP
TE1l
TEZ2
TE3
TE4
TES
TE®
TEMPDF
TEND
TEO
TFORM
TH
THIGH
THIRD
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BRIEF DESCRIPTION

FORMAT USED IN PUNCHING RESULTS

FORMAT USED IN PUNCHING Zs AZ1 AND AZ2

THE NUMBER OF DIGITS IN P+CB(Q)

THE NUMBER OF GRID POINTS IN THE Y DIRECTION.

THE NUMBER OF DIGITS IN Q

A ROUTINE USED TO RECOMPUTE CONSTANTS IF FACTORWNE.1
A STATEMENT LABEL USED IN T3SOLV.

THE ROOT CLOSEST TO Xé4.

DENSITYs GM/CCe

USED TO FIND A ROOT OF THE QUADRATIC FITTING CURVE.
= {((L2*¥(Q=1})/(L1%¥(P=1)))ePe2s OR (DX/DY)ePe2

A STATEMENT LABEL IN T2SOLV AND IN THE MAIN PROGRAM.
DIMENSIONLESS 1/DTs =(L1¥L1¥RO*C)/(CON*DT).

‘A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

A FORMAT USED IN PRINTING.

ROUTINE USED TO COMPUTE VARIOUS CONSTANTS.

A FORMAT VARIABLE IN THE I1/0 ROUTINES.

A LOCAL VARIABLE USED IN T2SOLV AND T3SOLV.

A VARIABLE USED IN THE BOUNDARY ROUTINE.

A VARIABLE USED IN THE BOUNDARY ROUTINE.

A VARIABLE USED IN THE BOUNDARY ROUTINE.

SLOPE IN REGION 1s USED TO FIND MVMTRT.

SLOPE IN REGION 2s USED TO FIND MVMTRT.

A VARIABLE USED IN THE BOUNDARY ROUTINE.

THE SQUARE ROOT SYSTEM SUBROUTINE.

FORMAT USED TO MODIFY STBOUNe

FORMAT USED TO MODIFY STBOUNe

FORMAT USED TO MODIFY STBOUN.

FORMAT USED TO PRINT SELECTED TEMPERATURES.

USED IN COMPUTING FACTOR IN THE ROUTINE MOVEM.
STATEMENT LABELS USED IN THE 1/0 ROUTINES.

A CONTROL SWITH USED IN THE I/0 AND ROOT ROUTINES.
USED TO CONTROL WHICH TEMPERATURES ARE TO BE PRINTED.
USED TO PRESERVE SWOUT-S ORIGINAL VALUE.

TIMEs SECONDSe

DIMENSIONLESS TEMPERATURES AT TIME T,
DIMENSIONLESS TEMPERATURES AT TIME T+DT/2.

ROUTINE USED TO COMPUTE T2(IsJ)e

DIMENSIONLESS TEMPERATURES AT TIME T+DT.

AN INTERNAL ROUTINE IN T3SOLVe.

ROUTINE USED TO COMPUTE T3(IsJ)e

IF LESS THEN Ts INSW(10) CONTROLLED PRINTING STARTS.
LOCAL VARIABLE USED MAINLY IN THE BOUNDARY ROUTINE.
LOCAL VARIABLE USED MAINLY IN THE BOUNDARY ROUTINE.
LOCAL VARIABLE USED IN THE BOUNDARY ROUTINE.
LOCAL VARIABLE USED IN THE BOUNDARY ROUTINE.
LOCAL VARIABLE USED IN THE BOUNDARY ROUTINE.
LOCAL VARIABLE USED IN THE BOUNDARY ROUTINE.

= THIGH-TMELT

IF LESS THEN Ts COMPUTATION IS TERMINATED.

A LOCAL VARIABLE USED IN THE BOUNDARY ROUTINE.
FORMAT USED IN PRINTING THE TIME.

HIGH REFERENCE TEMPERATURE (DIMENSIONLESS)s =1l.
HIGH REFERENCE TEMPERATURE.

A LOCAL STATEMENT LABEL IN SEVERAL ROUTINES.

> r >



SYMBOL

THIS
THSTRT
TI1
TIMELF
TIMER
TIMLFT
TIP
TJ1
TJ1HD
TJUMAX
TJMIN
TJQ
TJQHD
TL
TLOW
TMELT
TMOVE
TPOINT
TRTN
TSTART
TSUB
TT1MOV
TTRAP
TWOL
VELOC
W

Wl

W2
WIDTH
X1

X12
X13

X2

X23

X3

X4

XA

XB

XC

Y1

Y2

Y3

YA

Y8

YC

Z
ZDEVIA
ZDVHD
ZHD
ZHFPR
ZPREDI
ZPRHD
2z

77
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BRIEF__DESCRIPTION

A STATEMENT LABEL USED IN T2SOLV AND T3SOLV.
DETERMINES RELATIVE POSITION OF BAR AND SURROUNDING.
WALL TEMP. (DIM.LES) WHEN I=1l

AMOUNT OF USABLE TIME BEFORE TTRAPe. TRAPS

THE CURRENTLY USED CLOCK CELL NO.

GIVES THE AMOUNT OF TIME LEFT BEFORE TRAP WILL OCCUR
WALL TEMP. (DIMeLES) WHEN I=P

WALL TEMP. (DIMesLES) WHEN J=1

FORMAT USED TO PRINT ALL TJ1(J)-S

LAST TJ1 AND TJQ TO BE PRINTED IN PARTIAL PRINTING
FIRST TJ1 AND TJQ TO BE PRINTED IN PARTIAL PRINTING
WALL TEMP. (DIM.LES) WHEN J=Q

FORMAT USED TO PRINT ALL TJQ(J)-S

WALL TEMP. (DIMeLES) AT THE COLD END

WALL TEMPERATURE AT THE COLD END

THE TEMPERATURE AT THE INTERFACE.

BAR STARTS TO MOVE AT THIS TIME.

IF LESS THEN Ts INSW(11) CONTROLLED PRINTING STARTS.
USED TO RETURN TO THE PROGRAM INTERRUPTED BY A TRAP.
REFERENCE TIMEe T=TSTART+N*DT

TEMPORARY STORAGE IN T2SOLV AND T350LV

IF GREATER THEN Ts THE BAR CONTAINS ONLY 1 REGION
ROUTINE USED FOR TIME TRAPING

= 2%Ly A CONSTANT (AS LONG AS DT IS CONSTANT).
VELOCITY,s INTERVALS/SEC

A LOCAL VARIABLE IN SEVERAL ROUTINES.

A LOCAL VARIABLE IN SEVERAL ROUTINES.

A LOCAL VARIABLE IN SEVERAL ROUTINES.

LENGTH OF THE BOUNDARY TEMPERATURE TRANSITION ZONE.
=XA

=XA~-XB

=XA=XC

TEMPORARY STORAGE IN ROOT

=XB-XC

TEMPORARY STORAGE IN ROOT

IF THERE ARE 2 ROOTSs THE ONE CLOSER TO X4 IS RHOL
THE X COMPONENT OF THE FIRST POINT USED BY ROOT

THE X COMPONENT OF THE SECOND POINT USED BY ROOT
THE X COMPONENT OF THE THIRD POINT USED BY ROOT

=YA

=YB

=YC

THE Y COMPONENT OF THE FIRST POINT USED BY ROOT

THE Y COMPONENT OF THE SECOND POINT USED BY ROOT
THE Y COMPONENT OF THE THIRD POINT USED BY ROOT
LOCATION OF THE INTERFACE AT TIME T (INTERVAL UNITS)
= ZPREDI(J)-ZPREDI(1)

FORMAT USED TO PRINT ZDEVIA

FORMAT USED TO PRINT Z

PREDICTED VALUE OF Z AT TIME T+DT/2

PREDICTED VALUE OF Z AT TIME T+DT

FORMAT USED TO PRINT ZPREDI

AVAILABLE FOR MODIFIED ROUTINES THROUGH EQUIVALENCE
NOT A VARIABLEs USED TO SAVE 7 ERASABLE LOCATIONS



THE FIRST DATA

APPENDIX B

SAMPLE DATA SETS

SET  (USED

$DATA

IN RUN

21)

T=0oN=0sTSTART=0sTT1IMOV=49093 TMOVE=999 s TEND=9900e1s INTIME=996,

TDUMP=-04000001s TPOINT= 994995

DTDMP=100e0s DTPNT=10e0s

INSW{8)=0Bs INSW(12)=0BsOBs INSW(16)=0Bs0Bs0Bs0Bs1Bs0Bs0Bs0OB»

SWOUT(0)=Ts85

EPS=0400001»

EPS1=0els MXST=0e05)

DT=2659P=899Q=99L1=2409L2=22609H1=0e0249sH2=0e024sVELOC=0400206>

RO=5¢835¢89548
THIGH=565409
INSW{3)=0B»
INSW(3)=0B>

THE

SECOND DATA SET

CON=0401820401850020>
TMELT=525409 TLOW=44640>
INSW(24)=0B>s
INSW(24)=0B»

(USED IN

$DATA

RUN &)

C=0e05530e055900689655
THSTRT=44469 LATFSN=50%
INTIME=2196.0%
INTIME=2201.0%

T=0sN=0sTSTART=0sTT1IMOV=49¢9 s TMOVE=1999 3 TEND=990041 s INTIME=3994,

TDUMP=1999.999

TPOINT=199949995

DTDMP=500»

DTPNT=10»

INSW{8)=0BsINSW(12)=0BsOBsINSW(16)=0Bs0OBs0OBsOBs1Bs0Bs0OBs+0OBy»
SWOUT(0)=T798ByEPS=0400001sEPS1=0e1sMXST=0405+sINSW(2)=0BsINSW(6)=0B»
DT=540sP=64530=540.12240s01.2222e¢0sH1=0+0089H2=0e008sVELOC=0+4000515>

R03568950895089
THIGH=565,05
T=2000,009

CON=0,018 00601890620
TMELT=525409 TLOW=44600>
N=400.00

PMAXI=19»

C=0e0559040555040689655»
THSTRT=2248y LATFSN=100%
PMINI=18,

T1(0)= =1.82896416E 009 ~1e81319176E 00s -1479230173E 00>

~176705405E QO0s
~1e61236973E 00>
~1:24186139E 005
~5415797436E~01>
2+33676806E~01
6¢94243526E-01
6+45005888E-01,
2064022177E~01>
1.09358713E=01)
1.49732517E-01
2069240886E~01
=1678489430E 00y
=1464716540E 009
=1434051023E 009
-7400115722E~01>
5.30243492E~02,
5.84514630E~01»
66¢63327050E-01>

=1e¢73734686E 00
-1455251122E 0QO0»
=1.07804120E 00>
=3,18680227E-01>
3¢90716144E-01)»
T¢23632258E~C1»
5¢57937008E~01>
16¢95635755E~01»
1,03432034E~01>
14 78843664E-01»
20¢91890621E~015
=1e75916447E 00,
-1459355813E 00,
-1420835969E 00>
-5011227202E-01>»
2¢13283691E-01>
6e48263043E-01»
6012616032E~01>5

~1470254382E 003
~1e47772430E 00>
~84¢99005234E~01
~1421689732E-01»
5428569895E~01
7427280098E~01
4e58545601E-01
1¢52749200E=01
1407530946E~01
24098 78865E~01
~1482154840E 009
~1472825140E 00>
~1¢52756757E 00>
-1405350426E 00
~-3419332936E-01
3460099146E-01
6¢81228143E~01>
5¢39779848E~01
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~1466148441E 00>
~1+38040116E 00>
~7¢10290384E~01»
649085975E~02>»
6+34510505E-01>
Te04304820E-01>
3¢57119510E~01>
1425266974E~-01»
1424870247E-01>
2¢40767205E-01>
~1480572905E 00>
~1+69137219E 00>
=1444504289E 00>
~8482315755E~01>
-1427838776E-01>
4486527032E~01>
6486046934E-01>»
4e54736412E~01>



3¢67213506E~01»
1e44533329E~01
1435867846E«01»
2¢37350777E~01y
~1480328184E 00y
~1468752839E 00
~1e¢43437050E Q0
~8e76641262E~01»
~1430050312E~01»
4472919005E~01»
6e72350717E~01>»
4e53406143E-01»
1¢83091629E«01
1e¢27163206E~01
2¢09781757E~01»
~1482154840E 00»

~1472825140E 00s

=1452756758E 00»

~1+405350426E 0Q0Qs

~3419332933E~01>
3060099146E=01
6¢81228143E~01»
5¢39779854E~01
2022012874E-01
1619105615E=-01
1682154287E-01
2¢83179972E-01
~1476705402E 00
~1661236973E 00,
~1¢24186139E 00»
~5¢15797436E~01>
2¢33676812E~01
6e94243526E-019
6¢45005888E-01
2¢64022177E=01
1609358713E~01»
1¢49732518E-015
2¢69240886E=01
Z(1)=
186793491E 01>

AZ1(1)=18+18+18,18518)

INSW(24)=0B»
INSW(24)=08B»
INSW(24)=0B»

INSW(3)=08»
INSW(3)=08B»
INSW(3)=0B»

1486238843F

2¢86675760E-01y
1¢26239622E~01
1456699061E~01»
24625832 T4E~0Q1
-1478238213E 00>
~1464224729E 005
~1632823855E Q0>
-64696634209E~-01»
4488591146E~02,
5¢68753839E~01
6¢50339133E~-01)»
3670321938E~01»
1¢51029789E~01>
1¢39485128E-01)»
2¢36261192E~0Q1
~16¢80572905E 00>
~1e69137219E 00»
~1644504289E 00>
~8482315767E~01>»
~16427838756E-01y
4486527032E~01»
6486046934E~01
L454736412E~-01»
14 75596799E~Q1
1622416916E-01»
2e09791425E«01
-1482896416E 00y
«1e73734687E 00
~1455251122E 00>
-1407804118E OO0»
~3¢18680221E-01»
3690716153E-01>
Te23632258E~01>
5657937008E~-01»
1695635758E-01»
1403432035E-01s
1,78843664E-01»
2¢91890621E~01»
Ols
1486238843E Ol

1486793494E 01y
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2¢22012874E«Q1
1¢19105613E=0Q1>
1682154287E~Q1>
2¢83179972E-01>
~1e75645827E 00
~“1¢58713044E 0QO0»
-1419756472E 00>
~5609669018E~01»
2¢06324774E=01
6¢33062798E~01>»
6402350360E=-01>»
2¢93454185E=01
1¢31960736E~01»
1¢59041564E-01»
2¢60561454E~01»
~1478489430E 00>
~1e64716540E 00
~1e¢34051023E 00>
-7400115728E~01>»
5030243742E~02
5084514630E~-01»
6e6332T7056E~01»
3¢67213506E-01>»
1644533329E-01>
1435867846E~01,
2¢37350777E~01»
~1e¢81319176E 00
~1e70254384E 00>
~1e&47T7T72430E 00>
~8e99005210E-01>
~1e21689723E-~01>
5028569907E~01>
Te27280098E~01>»
4¢58545601E~Q1l
1652749200E~01>»
1607530947E-01>»
2409878865E~01

AZ2(1)=19919919919919%
INTIME=5991.0%
INTIME=7991.0%
INTIME=8001.0%

187000467E

1¢75596799E~Q1>
1e22416916E~01>
2009791422E-0Q1>»
~1e81928734E 00>
~1e72512230E 00>
~1¢51915881E 00>
«1404530296E 00>
~3419594061E~01»
3e49862427E~01»
6466968B054E-01
5e¢33829242E~01»
2030142948E~01 >
1424333811E-01>
1¢83282979E~0Q1»
2¢80818069E~-01>»
~1e¢75916447E Q0>
~1e¢59355813E 00
~1e¢20835969E 00»
-5e¢11227202E-01
2¢13283700E~01»
6e48263043E-0Q1>
6e12616032E-01>»
2e866757T60E-01>
1626239623E-01>
1e56699061E~01>
2e¢62583274E=01>»
~1e79230171E 00>
~1e66148444E Q0>
~1e38040116E 00>
~T7e¢10290378E~-0Q1>
6649086058E~02
66¢34510517E~0Q1>
Te04304820E~01>
3¢57119510E-01>
1625266974E~Q1
1e¢24870247E-01»
2¢40767205E-01>

01s
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EXPLANAT | ON

The First Data Set

In the first data set the first seven lines of infqQrmation are
read at the beginning of the computation. The value of the variables
read at this time regulate the calculations carried out by the pro-
gram. The first line starts out . with information stating that the
computation wiil start at time T=0 (T=0, N=0, TSTART=0). The first
mode will be used until T becomes 50 (TTIMOV=49.9). The second mode
will be used until T becomes 1000 (TMOVE=999). The computaticn will

continue in the third mode until T exceeds 9900.1 (=TEND). The program

will read in more information when T will exceed INTIME=996. This will
occur at T=997.5, and will influence the input - output subroutine at
the end of the computational cycle, when T will already have the value
1000.

Information is printed whenever T exceeds TDUMP and INSW(10)
activates one set of print statements, or T exceeds TPOINT and INSW(II)
activates another set of print statements. T will exceed TDUMP at the
end of the first computational cycle, as TDUMP = -0.000001 originally.
After INSW(I0) is set fto activate the print statements, TDUMP is incre-
mented by DTDMP (=100)., [INSW(I10) becomes activated again when T becomes
100, At this time INSW(Il) also becomes activated and both TDUMP and
TPOINT are incremented, the former by DTDMP, the latter by DTPNT (=10).

Next, some of the other control variables are set., At the begin-

ning of the computation all the INSW's are IB unless otherwise set by
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the data. The information conveyed in the third line states that in the
data DT is available, that Z, AZI, AZ2, and TJQ should not be printed at
any time, that the printing of TJI should not be activated by INSW(II).
The individual [NSW's are defined in the listing of the input - output
subroutine, in Appendix A.

In the fourth line, SWOUT(O) is 7, indicating that whenever INSW(I0)
confrols the printing the temperature distribution given by T3 is printed;
while SWOUT(1) has the value 8, indicating that whenever INSW(II) con-
trols the printing, the temperature distribution is not printed in any
form. Next the radius of an interface point is set: EPS=0,0000! inter-
val units. EPSI| (=0.| interval) is used in determining which grid points
are used to calculate the femperature gradient at the interface. MXST
(=0.05 interval) is the maximum movement of any x-interface point in one
time interval.

In the fifth line the interval sizes are set: DT=2.5 sec; there
are 89 grid points (P) on a 22 cm (L2) long x-grid line and 9 grid
points (Q) on a 2 cm (LI) long y-grid line. The heat transfer coeffi-
cient at the surface of each subregion is 0.024 (H|,H2) and the relative
velocity of the bar and its surroundings is 0.00206 intervals/second
(VELOC) .

In the sixth line the material properties are set. RO is 5.8
throughout the region, while CON is 0.018 in R, and 0.020 in R,. The

! 2

| and 0.0689655 in R2 (this unusual value

was used fTo compare some results with earlier computations where the

heat capacity C is 0.055 in R

RO-C product was taken as 0.4).
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In the seventh line the latent heat of fusion (LATFSN=50) is given
along with the reference tfemperatures and THSTRT. This completes the
data received by the program at the time it starts the computation,

When T is 997.5, the program will attempt to read in more data,
and the eighth line of information is now received. This tells the
program that SETCF« will not have fo be executed, that the program
should read in more information when T exceeds 2196 and that a set of
cards should be punched. The cards punched contain information needed
to restart the computation using the calculated values available at
this time as an inifial condition. When T is 2197.5, the ninth line
is read. This line is similar fo the eighth line; it directs the pro-
gram to read the next data set at T=2002.5. Since no data are available

at That time, however, the computation is terminated.

The Second Data Set

The second data set starts out much like the first one; in the
first seven lines there are only ftwo major differences, in the fourth
line INSW(2) and INSW(6) are set OB. This tells the program that an
initial solution is available and the interface location will not have
to be determined by LOCATE., Later, when this initial condition is
read, the next 61 lines of information become available to the program.
The information obtained overrides some of the first-hand information,

i.e., T=2000, N=400 indicates that the calculation will start not at
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T=0, but at T=2000. The rest of the data give the location of the
interface (Z) and related variables (AZl, AZ2, PMINI, PMAXI|) along
with the temperature distribution Tl. The temperatures are arranged
in the following order: (I,1)...(P,1),0(1,2). .. (P,2),..,(1,Q...(P,Q).
The last three lines of information are data to be read as the com-

putation progresses as in the first data set.



APPENDIX C

SAMPLE OUTPUT

A portion of the printed output from run 2| is reproduced

on the next few pages as a sample.,
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NOMENCLATURE

NOTE: Certain quantities, which have only a localized significance,
and whose meaning is clearly indicated in the text, will not be defined

here,

The following variables, used in the computer program were discussed

in Chapter IV and are defined in Appendix A;

AZ| INSW N THSTRT
AZ2 I TO PMAX | TMOVE
BOI Tl PMINI TPOINT
CB cos SWOUT TSTART
D I'T5 T TTIMOV
DT IT6 TEO VA
DTDMP L TEI ZDEVIA
DTPNT MAX coe ZHFPR
EPS MIN TES ZPREDI
EPS | MVMTRT TE6

FACTOR MXST TEND

The following variables are defined here:

c,cP Specific heat,

h The heat transfer coefficient.
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Denotes a grid point whose x coordinate is (i-I)Ax.

J Denotes a grid point whose y coordinate is (J=1ay.
k Thermal conductivity.

2|, 22 Dimensions of the rectangle.

m, S Indicates the fraction of the interval an interface

point fs separated from a grid point.

T Dimensionless time.

t Time in natural units.

X, VY Dimensionless spatial coordinates.

X, ? Spatial coordinates in natural units.

A, B, C, D Coefficients in equations (3.9.,20) and (3.10.20),

*BI = =2-2L,

Bl = =2=2L-2H.

BT Defined in equation (3,11.3),.

BU = —2(R%4L).

BUU = 2(R%4GR%+L).

E Constant in equations (3.9.19) and (3.10.19).
F = (ax)? Ai T2, - 2uT2

*

The symbols TI, T2, T3, Til, TiP, TJI, TJQ, BU, BUU, BT, GM, Bl and
Bll were used in the computer program and are adopted for the present dis-
cussion., These are distinct symbols, not multiplication of several sep-
arate symbols, To eliminate any confusion, whenever such a symbol is
multiplied by a constant or variable a "." is used to indicate the
multiplication,



GM

Tl

T2

T3
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02 A% T - 2LeTl.
X i,] i

’ ’

- )2 a2 T3, - 2L-T3
X 7i,] i
- (002 A% 12, - 212, L.
y G0, i)
=h_ 1, Ay/kr.

Defined in equation (3,11.3).

hr QI Ax/kr.

al(Ax)z

o (A1)
r

The number of equally spaced grid points in the x

direction.

The number of equally spaced grid points in the y

direction.

Denotes a region or subregion,

= (Ax/Ay)2 .

The boundary of Ri'
Interface between regions Ri and Rj'
Dimensionless temperature.

_

T(++A+/2).

- T(T+A+).



TH THR TrXX
TH .
J
TIP,
J
TJIi

TJQi
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Intermediate approximations of T.

Temperature of the surroundings near the point (I,j).
Temperature of the surroundings near the point (P,j).
Temperature of the surroundings near the point (i,l).
Temperature of the surroundings near the point (i,Q).

Location of the interface in interval units.

Dimensionless location of the interface,

Location of the irnterface in natural unifts.

Thermal diffusivity, = k/pc,

An angle, defined in Figure 3.2.

Indicates an interval of the variable following it, or

a variable defined in Figure 5.1. )

Indicates numerical approximation of -3—7 .
ax

Radius of a grid point's surroundings.

Temperature in natural units.

The transformation ftemperature.

A reference temperature.

Latent heat of fusion.

Density.
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