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Inseparable Sets and Reducibility*

Stanley Tennenbaum

Recursively inseparable sets have a number of interesting applications to
mathematical logic. For example, the existence of undecidable formulas in all
merely consistent extensions of classical arithmetic is an immediate consequence
of the representability of such sets in that formalism., This note contains a
construction of inseparable sets of s new type and a rather curious applica-
tion of these to the theory of machine reducibility initiated by E. Poste

Two disjoint sets A, B of non-negative integers (in the sequel, simply
"numbers") are inseparable if every pair of recursively enumerable sets A', B',
with ACA' and B£B', fails to be complementary. The most direct construction
of recursively enumerable sets with this property is as follows: Let D, be an
effective enumeration of all possible partial recursive definitions of O, 1
functions of one argument: Let F, (x) be the partial function defined by Dy.
Teen F,(x) is a partial recursive O, 1 function of the numbers n and x« Taking
addition mod 2, let A = x|F, (x) +1 =0 and B = x|Fy(x) + 1 = 1, A and B are
clearly recursively enumerable and disjoint. In fact, they are inseparables
For every pair of disjoint recursively enumerable sets A', B', with AcA' and
Bc.B', determines in a natural way a partial recursive O, 1 function, Fk(x)

such that A' = x|F.(x) = 0 and B' = x|F{x) = 1, Now kfA, For if keA' then
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F (k) = O and thus F, (k) + 1 = 1. But then keB and A' M3 # /\, contradicting
the choice of A'. Similarly k#B'. Thus keA' () B', i.e. A' and B' are not com-
plementary.

The two sets A and B enjoy a further property implicit in the above argu-
mento. If F, (x) and Fbi(x) are partial recursive characteristic functions for
A" and B' (i.es if Fyi(x) and Fy,(y) ave defined precisely when xeA' and yeB'
and. are equal to 1 when they are defined) then an "index" k of the partial
:ﬁ"ﬁ.lqction{9 Fk(x)‘ used above, can effectively be obtained from &' and b'. But k
is "witnese" to the fact that A' and B' are not complementary., More precisely,
there is associated with the inseparable sets A and B a recursive function h,
of two arguments. This function attaches to any pair of numbers a', b' which
bappen to be indices of partial characteristic functions of disjecint sets A',
B! with AcA' and BcB' a witness number hia’, b') = k such that keA'UB' . Be-
cause of the existence of such a function, A and B are called "effectively" in-
separsable.

The question whether there exist inseparable recursively enumerable sets
which are not effectively inseparable was raised by USPQHSkiil‘Fo Sc:,lbl.oenfie:Ld.,5
bhas given examples of such "non-effectively" inseparsble sets. The sets which
we construct are also examples. However, they are monmef.fectivély inseparable
in a most extreme sense. We shall call them S and T. They are recursively
enumerable, disjoint, and SUT is infinite, Their special feature is the fol-
lowing: if 8'; T' are disjoint recursively enumerable sets with Se S8' and Te T
then S' == 38 and T' — T are both finitel Thus S and T are obvliously inseparable.

Tc zee that they are not effectively inseparable, observe that SUT though in-
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finite, contains no infinite recursively enumerable subset. (Infinite sets de-
vold of infinite recursively enumerable gubsets are called ilmmune. Recursively
enumerable sets, such ag SUT, with immune complements were first discovered
by Post® and are called simple.) For if en infinite recursively enumerable set
X were contained in 517@, SUX would be recursively enumerable, disjoint from
T, and (SUX) = S would be infinite, contradicting the special feature of S.
However if S and T were effectively inseparable the "witnessing' function
h(xs, Xs) could trivially be used to produce an infinite recursively enumerahle
subset of SU To

To construct S and T, we set E, = x[Fn(x) = 1 and thus obtain in E_ an
effective enumeration of all recursively enumerable setso. We imagine E, as
being generated in the course of some fixed routine devised to compute Fn(x)
for all possible n and se As F (x) is computed we arrange for each n to have
all members of E greater than bn recorded in a list L, in the order in which
they are generated. Next we settle on a schedule of repeatedly lnspecting these
lists so that as the computation of En(x) goes on, we will sooner or later see
any number which is recorded in any list. Finally, we carry with us & sheet
divided into two columns in which we copy numbers from L, eccording to the fol-
lowing three rules:

(1) If 1, bears numbers and none of them appears in our columns, copy the

smallest number of L, into first column.
(2) 1r Ln bears numbers and some but not all of them eppear in one of
our columns, but none in the other, copy the smallest number in .‘Ln

not appearing in the one column into the others



(3) Otherwise, pass on to the next list in the schedule.

Now let S = set of numbers copied into our first and T = set of numbers copied
into our second column. S and T are recursively enumerable, It is an exercise
to construct partial recursive characteristic functions for them from the pre-
ceding intuitive sketch. (Unfortunately the formal definition of these func-
tions does not expose the simple idea which guides the construction of § and T.
In fact our construction is just a modification of Post's construction of a
simple set?, They are clearly disjoint. Now suppose S' is recursively enumer-
able and disjoint from T while containing S. S' would be generated by some Es"
If 8' — § were infinite sooner or later Lg: would contain a number xeS'-— S.
Rule (2) would apply and §' T # /A. Therefore 8'— S is finite. The same
argument shows that if T' contains T and is disjoint from S then T'— T is fi-
nites Finally §TTT is infinite since at most 2(n-1) of the numbers up to in
can be placed in SUT.

One set of numbers is said to be reducible to another set of numbers if
the characteristic function of the first is recursive in the characteristic
function of the second. This means that there exists a machine so programmed
that if an outside source supplies it successively with the correct values of
the characteristic function of the first set, the machine is able to compute
successively the correct values of the characteristic function of the second
set. It is readily shown that for recursively enumerable sets A and B, this
condition can be simplified so that A is reducible to B just in case there exists

a partlial recursive function lx(n) defined for all n when x€A such that



(vx) {XEK 3 ( ﬁn)(sz(n)C E)}

Herevfﬁlis ary effective enumeration of all finite sets of numbers. Intuitively,
this means that for a machine to discover whether xe€R it computes one by one a
sequence of finite sets attached to each x. For every finite set it "asks" the
outside source whether all numbers belong to ﬁ; If the answer 1s yes, the ma-
chine declares that xeA. If no, it computes the next "round of questions." 1In
this manner, i1f A is reducible to B, for each x the machine will receive the
answer "yes" to some round of questions in which case x€A or else x will turn
up in the auxillary process of generating the recursively enumerable set A. It
is important to recognize that, in general, if lx(n) supplies a "reduction" of
A to B there may be no a priorl effective upper bound to the number n of rounds,
F&x(l)’ f}x(g), ...f}X(n), the machine must compute before either it receives
the answer "yes" to some round or x turns up in A.

In case each round of a reduction contains just one question, i.e., if
f%x(n) is a single number for every x and each n, we call lx(n) a Q-reduction
of A to B. If B is the set of "indices" in some effective enumeration of those
diophantine equations, which have solutions, and if A is an arbltrary recursively
enumerable set, then A is reducible to B just in case there is a Q-reduction of
A to B. This follows immediately from that fact that there 1s a trivial mapping
which assigns to each finite set of diophantine equations a single equation
such that none of thé finite set has a solution if, and only if, the single
equation has no solution. It seems plausible that more generally for any pair

A and B of recursively enumerable sets A is reducible to B just in case A is



Q-reducible to B. Indeed, since the number éf rounds of single questions in a
Q-reduction has no a priori bound, what possible advantage accrues to rounds
with more than one question?

Nevertheless, there are recursively enumerable sets A and B with A re-
ducible to B but not Q-reducible to B. We first show that no simple set is
Q-reducible to S. To this end, let B be an arbitrary such set. To sya that B
is Q-reducible to S is equivalent (by birtue of the fact that in Q-reductions
each round contalns a single question) to asserting the existence of a recursive

function £(x) such that

(vx) (xeB ¢ Ey(x)1 5 # A)

vwhere E, is, as before, an effective enumeration of all recursively enumerable
sets.

Now to each xeB there belongs a recursively enumerable set El(x) (all the
rounds of single questions for x). Let By = x|E£(X)(\T 4 N. By is obviously
recursively enumerable, and by the definitdon of a Q-reduction, B3 B. But
gince B 1s simple, B contains no infinite recursively enumerable subset. There-
fore By is finite, and thus its complement B; is recursively enumerable. Let
(: = &E%iEf(x)' (: is recursively enumerable and disjoint from T. Therefore
considering the special feature of s, C:—— 8 if finite. It follows that
Bo = X|E£(x)f\c — 8 # /\ is a recursively enumerable subset of B and accord-
ingly finite., Yet B;UBs = B. In other words B is finite, so we have a con-
tradiction. Conclusion: There is no simple set Q-reducible to S.

1

On the other hand, Dekker~ has found a natural method of assigning to any



recursively enumerable and non-recursive set, a simple set which is reducible
to the given set: If A is the given set, let f be any 1-1 recursive function

ranging over A. Define

A = n|(Fk)(k >n Rr(k) < £(n)

It is easily shown that A' is simple and reducible to A. Consequently there
is a simple set which is reducible to 8. If follows that Q is not the most

general type of reducibility.
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