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}v. Introduction., Let Nk denote the set of words over the
AAAAAAAARAAAMAANAAMY

alphabet Z, = {1,..., k}. Nk contains the null word which is denoted
A. We consider decision problems for various first-order interpreted
predicate languages in which the variables range over Nk(k_>._ 2). Our
main result is that there is no decision procedure for truth in the in-
terpreted language which has the subword relation as its only non-
logical primitive. This, together with known results summarized in

Section 4, settles the decision problem for any language constructed

on the basis of the relations and functions listed below.

Concatenation u”"v= uv

Subword uev <+ 4gx4dy [v = xuy]

Prefix udve—ax[ux= v]

Suffix v?;u<—"';r[x[xu= v]

Reflection c(0‘1...<fn) =0 ey (o—iezk)

Right Successors r(r(u) = ug (cez )
k

Left Successors £ (u)=cu (O'GZk)

o
Equal length L(u,v) =—=u and v have the same

number of symbols.

i < € >, guag s
Nk( ¢ ) is the structure Nk, The language of Nk(s )

Lk( € ), is the first-order applied predicate calculus with equality



having individual variables u, v, w, X, Y2 Gyeee ranging over N
Mo A e Ay e el k

and having a single non-logical constant € interpreted as the
~y

corresponding relation on Nk. The theory of Nk( € ){or of Lk( <)),

. . . c
Tk( ¢ ), is the set of sentences of Lk( € ) which are true in Nk( < ).

: m . . : .
A relation R{_ Nk is definable over Nk( e )(or definable in Lk( <))

if there exists a formula F(.;&l, oo ’&{m) in Lk(s ) such that

R(x,5+ee,%x ) holds iff <x,,...;x > satisfies F(x.,...,x ) in
1 m m ~] ~m

m m

x A function f: Nk—’Nk

1)

Nk( ¢ ) for every m-tuple <xX. ;... xm> e N

1

is definable over Nk( ¢ ) iff its graph (the relation f(xl, coes xm) = vy)

is definable.

L)

By analogy, the meanings of the notations Lk( <, Z.), Tk(rl""’ I { )

(written Tk(r, %, L), for convenience) and Nk(l, «eer k, ™ Ywritten Nk(CT )

should be clear. We will say that L is an interpreted language over Nk if

L is the language of some structure with domain Nk.

3‘. li/l‘ethod of Proof. The schema for defining a function

. 4

¢(on Nk) by primitive recursion from functions ¢ and y X

is given by:

(1) (p(xlioo-:xn’x) = kll(xl,...,xn)

(p(xll-oo’xn, ro_(Y)):X o_(xl,...,xn,ﬁo(xl,...,xn,y),y) 0= 1,000 ke



The class of k-primitive recursive functions is defined to be the least

class of functions containing the constant function, q(x) = X\, the right
successor functions and the projection functions (wril(xl, oo xn) = Xi)
and closed under composition and primitive recursion according to

the schema above, Generalizing the concept for k= 1, we will define

the k-arithmetic relations to be the closure of the k-primitive recursive

(2)

functions under first-order definability.
Our undecidability proofs are based on:
Proposition 1, Let L be an interpreted language with theory T.
If all arithmetic relations are definable in L then T is undecidable.
The most direct argument for Proposition 1 would be Tarski's [7]:
under any effective numbering of L in Nl’ it can be shown that
the set of numbers correlated with T is not definable in L, But all
recursive subsets of N1 are arithmetic and therefore the set of
numbers correlated with T 1is not recursive.

Let U, V be arbitrary sets. For a relation B;_Un and

w €U, we will write Bw to denote the (n-1)-ary relation obtained

from B by fixing the first argument. B( VX U" is universal with

p ions 1 if R= (B v}
respect to V for a class (R of relations in u” if R={ W|w€ }

A relation B{ UX U is strongly universal for finite subsets of V__ U

if there exists a sequence V_= V, Vl’ cees Vn' «++ Of subsets of U

0

such that B is universal for finite subsets of Vi with respect to



It is well known that quantification over finite monadic functions
permits the conversion of recursive definitions into explicit ones.
This second-order quantification can be reduced to first-order
quantification if one has available a relation which is universal for

(3)

finite monadic functions. The extension of these ideas to the use

of finite binary relations offers no difficulty, Thus, the following
proposition provides a method of applying Proposition 1. (All

(1-) arithmetic relations are m-arithmetic for any m.)

Proposition 2. Let L be an interpreted language over Nk.

All m-arithmetic (m < k) relations are definable in L if (i) roﬂ Nm
is definable in L(c = 1,...,m) and (ii) there is a relation B_(:__ Nk>< Nrn
which is definable in L and universal for finite binary relations on
N i .

m with respect to Nk

To expand on the comments preceeding the statement of

Proposition 2, we observe that the following formula (with quantification
over finite binary relations) is an explicit definition of ¢(x,y)=z
(on Nm) defined by primitive recursion from { and Xpr ook

m

according to schema (1).

(2) AS[vwl S(\, w)+=—w = Ux)] A Sly,z)

m
A /\ wvuvwl S(ro_ (u), w) = vl S(u, v)a w= Xy (x,v,u)]1].
o= 1



If XG and Y are definable in L and if L satisfies the hypotheses
of Proposition 2 then (2) can be expressed in L., Thus the functions
on Nm which are definable in L are closed under primitive recursion
and we can immediately conclude that all m-arithmetic relations are
definable in L,
To simplify the specific undecidability proofs, we give the
following:
Lemma 1, If B is strongly universal for finite subsets of
V( U then a universal relation for finite relations in VXV is
definable over U(B).
Proof: Consider the following sequence of definitions:
Dlz o y) =g Blzog) s Blzps vl Blzw —u= xvg= gl
Tz % y) = g Tuawl D(z, u, w) 4 D(u, x, y) 4 D(Z.V’Z’Y)]"
ooy =g arllzna el
It is clear that <z, x,y> satisfies D iff B = {x,y}. T defines a

pairing relation on V. For any ordered pair <x, y> there exist u, w

(6V1) with Bu= {x,vy} and BW= {y}. Also there exists a z(eVZ)



with BZ = {u, w} and therefore <z, x, y> satisfies T. But for any
x', y' in V, if w,x',y' satisfy T then x'= x and y'= y because,
in effect, the definition, {{x,y}, {y}}, of the ordered pair <x, y> is a good
one., For any finite binary relation S it is now clear that there
exists a w (€V3) such that <w, x, y> satisfies R iff S(x,y). Hence
R is a universal relation for finite binary relations on V.,

The final form for the application of Proposition 1 can now
be stated as:

Proposition 3. Let L be an interpreted language over Nk
with theory T. If I‘U1 Nrn are definable (t=1,...,m) and if a strongly
universal relation for finite subsets of Nm is definable in L then

all m-arithmetic relations are definable.in L and T is undecidable.

3\' Hﬂr}decidability Results. The following definitions in

ASAAALN, AMA

Lk(o' , € ) will be useful (o= 1,...,Kk):

TG = g Valzezmza s ez
t (33)=x=dfTG(m).Z§(§AV3[TU(5)Ang*“z‘izl,

- - ~n - - S. _.X=ZVZ= ]o
s, (= y= (T (@) aT (y)axey velxeza.zay~x=zvz= y

T(r defines the set of o -tallys {\,0,00,...}; tg(z‘c)‘-':x is the graph
of the maximum ¢ -tally function - t_ (x) is the largest o -tally

contained as a subword in x; sU(x) = y is the graph of the successor
-~ -~



function on TU .

The concept of maximum tally which Quine [6] used to prove

the undecidability of TZ(O' » 7 ) plays the crucial role in defining a

(4)

strongly universal relation for finite sets,

Lemma 2. The relation,
B 2 - : 2
(w, u) tz(u) # tZ(W)/\ tZ(w)lultZ(w)g W

is universal for finite subsets of Nk with respect to Nk and is therefore

strongly universal for finite subsets of Nk.

Proof: Let S= {ul, oo un} be a finite subset of Nk and take

v to be any 2-tally larger than every one of the t (ui), i= 1,...,0,

2
Then for

w = vlu, lvlu_lvl,..lvlu lv,
1 n

2

we claim that BW= S. Certainly BW;_) S because, by construction,
tz(w) = vF tz(ui) and for each i, vluilv is a subword of w. But the
occurrences of v in w are uniquely determined (w is uniquely

decomposable in the form written above) and thus, for any subword of

the form vlulv, either veu(and u ¢ BW) or u is one of the u,.

Therefore Bw = Sand B is indeed universal for finite subsets of

Nk.



From the definition it is clear that B is definable over Nk((r " )
Since concatenation is k-primitive recursive it follows that all definable
relations of Lk(tr , € ) are k-arithmetic. Thus as a consequence of the previous
Lemma and Propesition 3 we obtain a slightly modified form of Quine's result:

Theorem 1. (Quine) A relation is definable over Nk(o )
iff it is k-arithmetic and Tk(cr , ™ ) is undecidable.

Lemma 3. The relation B as given in Lemma 2 is definable
over Nk(r,f_, € ),

Proof: The following formula is claimed to be a definition

(5

of B in L2(r,£, c) The expression lyl is used to abbreviate

(3) t, (@) # t(waazlze walule zavyllyls z —ye u]

Am, A

“ ez dhiws 2l

It is clear that if B(w, u) holds then z can be taken to be tz(w)lultz(w)
and <w, w> satisfies (3). On the other hand, if <w, u> satisfies (3) then

z = zllulzzs w for some z) and Z,e By the maximality condition

Z

on subwords of the form 1lyl, z. and z, must be 2-tallys. Zys 2y

1
must be at least as large as tz(w) by the second line of the definition

and no larger than tz(w) since z¢ w. Hence z= tz(w)lultz(w),

zew and tz(w) += tz(u), i.e., B(w,u) holds.



With Lemmas 2 and 3, we can apply Proposition 3 to obtain:

Theorem 2. A relation is definable in Lk(r,t, € ) iff it is
k-arithmetic and thus Tk(r,ﬁ, € ) is undecidable; Lk(r,l, € ) and
Lk(rr » ™) are equivalent as to definability.

The subword relation is definable in terms of the prefix and

suffix relations:
xey+~—gz[y2zaxiz].

Also it is easy to verify that the left and right successor functions
are definable in Lk(o, <{,}3 ). Thus we obtain the following corollary
to Theorem 2, the first part of which was conjectured by Buchi in [ 2] .
Corollary 1. 'I‘k((r , 4,2 ) is undecidable. The languages
Lk(rr , ") and Lk(cr , < , 2 ) are equivalent as to definability.
The reflection function c¢ is an automorphism of the structure
Nk(O' , € ) in the sense that c{(c)=0¢ and ue v «=—c(u)e c(v). Itis
evident that this automorphism property carries over to all relations
definable over the structure. Thus, if R(u,v) is a relation definable

in Lk(cr , € ), then
R(u, v) =—=R(c(u), c(v)).

Because the graph of concatenation does not have this property, it is

not definable over Nk(tr , € ) and therefore Lk(tr , € ) is weaker than



10.

Lk(r,ll, € ) with respect to definability, Any relation on Nl’ on the
other hand, is invariant under c since c1 N1 is the identity. Therefore
there is no reason to suspect that the arithmetic relations are not
definable over Nk(cr » € ). We will show in the sequel that these
relations are indeed definable,

Again we begin by giving a mathematical definition of a relation
on Nk which has the required universal properties and subsequently
show that it is definable over Nk(cr y €).

First we describe a set S N_ from which will be chosen the

=2
(6)

codings for finite sets and ultimately, finite binary relations. The

definition is given in levels:
-1
S = (2 12" t,(u) e 2"7" and 11€ lul},

and S is taken to be

U s.

n21l

Before defining a universal relation for finite subsets of N1

(as is required), we observe:

Lemma 4. The relation,

Ul(w, v) «—=weSa veSa tz(w) = r tz(v) AVEW,

2



11,

is strongly universal for finite subsets of Sl'

Proof: The sequence Sl' cees Sn, ... satisfies the definition
of strong universality for the relation U'. To verify this we must
show that U' is universal for finite subsets of Sn with respect to
Sn+1' Consider the subset {ul, coos um} of Sn. Each u, is of the

form vaiZn where the uniquely determined v, begins and ends with

1 and tz(vi)S' Zn-l. Then taking

w= 22%v. 2% ...20% 2"2,
1 2 m

it is clear that U'(w, ui) for each i and wesn But again, the

+1°
uniqueness of decomposition in the form above insures us that if
U'(w, u) then u is indeed one of the u.'s.
i
In effect, what we have in U' is a strongly universal relation

for encodings of finite subsets of N Any element of Sl is of the

1.
form 2v2 where v is a 1-tally of length greater than one, Clearly
we can associate with each element of S1 an element of

Nl(ZlmZ corresponds to 17" z) to obtain from U' a strongly universal

relation for finite subsets of Nl.
U(w, v) «— gz[ U'(w, z) a tZ(z) = 2a rlrl(v) = tl(z)] v U(w, V)a tZ(V) * 2.

Lemma 5. U is strongly universal for finite subsets of Nl.
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Proof. Now the sequence Nl, SZ’ coes Sn, «s+ works in the
definition of strong universality.

Lemma 6. The relation U is definable over Nk(tr , € ).

Proof: In consideration of the definitions of TU 1t and S,
and of U and U' it is sufficient for us to show that S is definable

over Nk(O' , €). First we introduce the definition:
M(z, %)= gps= zavylxs yay

M(z, x) holds when x is a maximal proper subword of z. Since X\
has no proper subwords, M(}\, x) holds for no x but for z # 1\, it
is easily seen that MZ is exactly the set consisting of the right and
left predecessors of z. We will prove the following formula is a

definition of S,

s M(x,, )
(4) s (s wamx ax, axl My, x)a Mlw, x.) a x, # 2,4 Mlx,, x)a M(x,, %)

noxERatlx) = £ ()= tw) = st )]

We must first show that every element of S satisfies the formula above,

-1
Let w= 27 1ul2™eS_(m>1). Thewords x = 2 lul2  and

m-1
:’s:2 = 2 1u12m are distinct maximal subwords of w and with

- -1
x= 2™ 11u12m it is clear that w satisfies (4). For the converse,



13.

assume that w=o0 0

170t satisfies (4). We know that n is greater

than two since x# \X. Then x1= crl...(rn_l and x2= crz...crn

(possibly interchanging x., x If x were not the ''middle'" of

1’ 2)'

w then we would have X =0 _.,.0 = 0 _eo0ol and this entails
1 n-2 3 n

0'l= 0'3= 0‘5... and th= 64=0‘6... . Butwith lle w we know

1= o . =0, for some i andthus 1= 0 _=0¢ = ¢ _... which contradicts
i i+l 1 2 3
. . _ .k
xl# X, Therefore x= o jeee0 ) asis desired. Let tz(w)—— 2 and

write w = Zmly. If m# k then tz(xl) = Zk implies that tz(x) = Zk

which is impossible. Thus, we must have m = k and with the same
k k .

argument for the other end of the word we get w= 2 lw'l2 and with

lle w we have weS.
From Lemmas 5 and 6 we know that a strongly universal

relation for finite subsets of N. is definable in Lk(c , &), Also,

1

the graph of r, restricted to N1 is definable as was indicated at

the beginning of this section. Therefore, applying Proposition 3 again
we have:
Theorem 3. All arithmetic relations are definable in

Lk(o- ,€) and T, (o, €) is undecidable.

k
A
Let & be any permutation of the symbols Zk and let & be

the extension of & to a concatenation automorphism. Any such mapping

is an automorphism of Nk( ¢ ). Thus definability over this structure is
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even weaker than that over Nk((r » € )s Of course, it is impossible

to define in Nk(E ) any specific symbol (o e):k) but the following

formula defines the set Zk of symbols:

Vz[z X—>z= xvv,y[ EY]]A:IZ"'[XQZ].
-~ .- m L) -~ -~ A A A ~ haad

$in

The first part of the definition is satisfied by elements of Zk v {\}
whereas the second part excludes . We will use Zk(?f.) to abbreviate
the formula above.

Theorem 4, Tk( < ) is undecidable.

Proof: Let A pe any formulain L (6,< ). We associate with

k
A the following formula of Lk( s ):

k
% = %
A (El’ ° oo:Ek) ‘A Z.k(gi) A ,/\Ei#z‘] N SZ A,
i=1 iFj

where Sg’ A is the formula obtained from A by substituting 2 for
~0

every occurrence of g (g=l, o ,1‘_5). It is assumed that Z“l’ cose ,_zk
do not occur in A, If A is a sentence true in Nk (0, € ) then clearly
A*(1,...,k) is true in Nk( € ) and, in particular TZpe oo :z{gkA* is
true in Nk(s ). Conversely, if this last sentence is true in Nk( <),

then by the construction of A%, A%(c preeer® k) is true where {o i}= Ek

Because permuting the symbols produces an automorphism of Nk( <),
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we also know that A%(l,...,Kk) is true in N, (€ ) and thus A is true

k
in Nk(rr » £ ). In this way we have a transformation * with the
property that AETk(U , ¢ ) if and only if TZy oo :_:[gq(A::: eTk(s ) and a

decision procedure for the latter theory would yield a procedure for the
former. By Theorem 4, Tk(s ) is undecidable.-

The proof applies equally well to the two other theories with
constants which were considered above.

Corollary 2. T (™) and Tk( £, 2 ) are undecidable.

k

il. Conclusion. The results of the previous section all apply
to Nk for k> 2. The analogous problems for the special case,
k= 1, corresponding to the natural numbers, have long been solved.
The structure Nl(") is simply the natural numbers under addition
and Tl(" ) is known to be decidable (Presburger [5] and Hilbert
and Bernays [ 4] ). Nl(r,,@, <), Nl(tr ,.{ , 2 ) and Nl(s ) are even
weaker being equivalent to the natural numbers under successor and
<. Indicative of the power of the additional generator is the fact that

only finite and cofinite sets are definable in L (r,{, & )(Hilbert and

1
Bernays [ 3] ) whereas all arithmetic sets (in fact 2-arithmetic) are
definable in Lz(r,ﬂ, ).

Applying the methods of Elgot and Biichi [ 3, 2] , J. C. Shepherdson

noted that the language Lk(r, <, L) is one in which definability corresponds
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(7) As a

to acceptance by finite automata, that is, to regularity.,
consequence of this correspondence it follows that the decision problem
for this language has a positive solution. Since Nk(r, {.,L) and
Nk(l ,2 ,L) are isomorphic under c, we also know that Tk(i, 2 » 1Y
is decidable. In addition, it is easy to verify that Lk(r,.l, <,L) and
Lk(r, f » L) are equivalent with respect to definability and thus
Tk(r,,@, 1£,L) and Tk(r,i,& , L) are both decidable.

By extending an elimination of quantifiers method which the author
applied to Lk(r), J. H. Bennett (personal communication) has
been able to characterize the definable relations in Lk(r,l, c, L)

and in particular he has shown that T (r,£,c, L) is decidable.

k
In summary, we now know that the following structures (and

all reducts) have decidable theories:

(a) (Shepherdson, Elgot and Buchi) N, (r,£, %, L) and

k
3
Nk(r,l » 2, L)
(b) (Bennett) Nk(r,ﬁ,c, L),

and the following structures (and all expansions) have undecidable theories:

(c) (Quine) Nk(")
(d) (Theorem 4) Nk(E)

(e) (Corollary 2) Nk( 5,2 ).
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Since every structure based on the objects listed in Section 1
is equivalent to either a reduct of (a) or (b) or an expansion of (c),
(d), or (e), it follows that the decision problem for the theory of any

such structure can be settled by reference to these cases.
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FOOTNOTES

(1) This paper is part of a Ph.D thesis submitted to the Program
in Communication Sciences at the University of Michigan and
was presented to the American Mathematical Society, NAMS
11, Abstract 64T-359 (1964) 582.

(2) Interpreting the set N, as the set of k-adic notations for the
natural numbers (¢ ....0 is the notation for Zo ,kl) Asser [ 1]
has shown that the k-prim?tive recursive functions correspond
to the (1-)primitive recursive functions and thus, under this
interpretation, the k-arithmetic relations are simply notational
variants of the arithmetic relations.

(3) The author is grateful to J. R. Bichi for pointing out that
there is a concise history of this method of converting recursive
definitions into explicit ones to be found in Hilbert and Bernays| 4] .

(4) J. R. Buchi obtained a universal relation for finite monadic
functions using similar techniques (personal communication).
This led to hi3 statement in [ 2] of the undecidability of
Tk(a , 3 Y).(See Corollary 1).

(5) We will give the definitions here and below for the case k= 2.
For undecidability results this is actually sufficient; for
definability it should be clear how to extend the definitions to

for arbitrary k> 2. In (3), for example, lyls z is replaced
by the disjunction of o 1Y 58 2 for o L 2# 2.

(6) See footnote 5,

(7) In a letter to C. C. Elgot (1959) Shepherdson described the
equal length theory and the theorem stated here.
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