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INTRODUCTION

The formulation of the concept of finite automaton in terms of monadic
algebras is due to J. R. Buchi ([3], [5]). The author of these notes was
first introduced to this notion in a seminar conducted Jjointly by Buchi and
J. B. Wright in the fall of 1960. The equivalence with the usual definitions
(see, for example, Rabin and Scott [14]) is clear. But, in the author's
opinion, the present definition has definite advantages. In considering the
theory of the structure of finite automata (as opposed to the behavior), the
set of final states can be dropped from the definition. Here, results from
the study of abstract algebras yield directly, for example, the decomposition
theorems for finite automata to be found in Hartmanis [7].

But at least as important as the direct application of known results
from abstract algebra, is the insight and motivation that derives from such
a formulation within the domain of a well developed branch of mathematics.

The purpose of these notes is to present some of the basic concepts and
results of finite automata theory within this algebraic framework. Much of
this material is already available in the notes of the seminar [3] referred

to above.



I. MONADIC ALGEBRAS

Definition 1: A k-monadic algebra is an abstract algebra,

a = <A,aO,O£l,. 'e :ak>

with one distinguished element and k monadic operators. A pure monadic al-

gebra has no distinguished element.

The modifier "k-monadic"” will often be omitted. Also the letter @ will
denote an arbitrary k-monadic algebra with components as in Definition 1.

The following concepts are concepts of abstract algebra and are reviewed
here for the special case of monadic algebras.l

Let @ be a k-monadic algebra. The algebra,

@ = {A',a(;,ai,...,o%)

is a subalgebra on if A' ¢ A, o is the restriction of Q; to A’ (OCi = OﬁilA'),
and a5 = aj .

An element a € A is a generator of & if for every a' € A there exists an
operator & which is a composition of the C; such that ax = a'. (Suffix nota-
tion will be used for the operators of a monadic algebra.) An algebra is said
to be monogenic if there exists an element a € A such that a is a generator
of .

Let @ be a second monadic algebra,

@ = <B:bo;ﬁl:~ < :5k>



A function h from A onto B is a homomorphism of @ onto @ if:

i) h(ag) = Dby

ii) h(aaj) = h(a)B a€hd, j = 1,2,...,k.

We will write (L £ @3 if there exists a homomorphism from <z onto .

If h is a one-to-one homomorphism of C(Xonto (3then &is isomorphic to (3,
2

a3 -

A congruence relation on a monadic algebra ¢ is an equivalence relation,

Q
12

1, on A with the property:

ana' >ad;x a'aj J = 1L,2,...,k.

Every homomorphism h on a monadic algebra induces a unique congruence

relation denoted T,
am, a' e h(a) = h(a')

Further, given the conguence relation w on ¢Z, the natural homomorphism,hx is

defined

where i, 1s the congruence class to which a belongs. This homomorphism maps

({ onto the quotient algebra 7/ where,

A/ = {A/ﬂ,ﬂao,al/n,...,ak/ﬂ)



and,

Aln = (my:

a ¢ A)
(ng)ay/n = Tacis J = 1,2,...,k.

Definition 2: /7 is a reduced k-monadic algebra if a, is a generator of

(Z . For an arbitrary k-monadic algebra, /7, the reduced monadic algebra,

rd((), is the subalgebra of (X generated by a,. The domain of rd(¢Z) will
denoted rd(A).3

Alternatively ¢ is reduced if £ contains no proper subalgebra; rdQQZJ is
the smallest subalgebra of .

In the following discussionallmonadic algebras will be assumed to be

reduced. The term monadic algebra will mean reduced monadic algebra unless

stated explicitly to the contrary.



2. THE FREE MONOID - LATTICES OF CONGRUENCE RELATIONS

Iet Ny be the set of all words on k distinct letters, Zk = {l,2,...,k]
including the word N of zero length. The length of a word x is the number

of letters in x. Let “ﬂk be the free monoid on k generators;
My = <Nk,concatenation,k>.

Throughout this paper the variables, x,y,z,w,X1,y1,..., Will range over N .
Every homomorphism of 1nk determines a congruence relation on 17k'

Explicitly an equivalence relation n on Ny is a congruence relation if:
x 1ty > veywlzxw 1 zyw].

We will also be interested in right congruence relations which are equiv-

alence relations which satisfy
xny > vzlxz n yz].

Similarly a left congruence on 17k is an equivalence relation m for which
xny > vyzlex n zyl.

For equivalence relations =j,ns on any domain we will use the notation
11 € 1o for set theoretic containment of ordered pairs (wy refines mns). The

lattice operations will be denoted



]

1 U No lub(my,ns)

Ty N = glb(l‘[l,ﬁg).

The meet, 1 N2, is the set theoretic intersection of =; and n, as sets of
ordered pairs. The Join, w1 v w2 1s the smallest equivalence relation con-
taining w1 and wo. Alternatively, m; U mo is the transitive closure of the
set theoretic union of w1 and 7wo.

For two relations =mj,%o, the product of = and Ko (composite, relative

product or Peirce product) is the relation mimp defined by,
X o y & Tzlx 11 2z Az o yl.

Two relations wq,ns commute if winp = wonwy. Note that if this is the case
then nins = 71 v no.

The universal relation on a domain will be denoted /\, the identity will
be denoted é. Let Ry and ﬁk be the sets of right congruences and congruences
on Ny respectively. Then N and UV are lattice operations on R, and on ﬁk.5

We will denote the lattices by (R, and @%:

@zk < Rk)n:U:/\;$>

&jk <§k1f\:U;/\:d>>-

Definition 3: Let = be an arbitrary equivalence relation on Nk‘ The

relations %, x, and n are defined as follows:

i) x 7wy & vzlex n zy]



ii) xny e yzlxz n yz]

iii) x T y & yzywlzxw n zyw]).

T is the induced left congruence, 7 the induced right congruence, and E the

induced congruence of .

Theorem 1: =x (w,x) is the maximal right congruence (left congruence,

congruence) which refines .

This theorem in the form presented here is due to Buchi. It is the fun-

damental part of the minimality theorem for (finite) automata.



%. DERIVED MONADIC ALGEBRAS

Let‘qﬂ = <S,-,e> be an arbitrary monoid with identity e and generators

S1y+¢+,5g. Define for s € 5, the right translation, Ry of\a/by s by:

The dot will usually be omitted in the product operation.

Let

é%;/ = ((Rg:s € S} ,composition,R,)

It can easily be verified that ﬂ/7g &;ﬂ (Caley's theorem for monoids).
From the monoid,d/with k generators we define the k-monadic algebra,47

derived from_d/: 6

A = (8se,Rgyse-sRy)

Note that since s1,...,8; are generators of the monoid.@pz e will be a gen-
erator of the monadic algebra\@/%

The free monoid‘jyk was defined above. The associated monadic algebra is

7)71{ = <Nk5>\°:r,‘s.)° < )rk>)

the free k-monadic algebra. In the notation for 77k’ rj is the right transla-

tion of qu by the generator j:

X ry = xj, Je Zk.



4. CONGRUENCES AND TRANSITION ALGEBRAS

In the last section the free monadic algebra was derived from the free
monoid. Alternatively the standard method of constructing the free algebra
could have been employed, the result being isomorphic to %?k.

Suppose that @ is an arbitrary (reduced) k-monadic algebra. Since ??k
is free on the generator A, the mapping of A onto the generator ay of & can
be extended uniquely to a homomorphisnx%?lg onto¢d. This relationship is
important in both the theory of structure and behavior. Deriving %?k in the
manner above and associating a word in Np with every composition of functions
in a monadic algebra (Definition 4) we are able to use this property of the
free algebra conveniently.

Definition 4: Let Zbe a k-monadic algebra. For x € Ny, the transition

operator of x is the operator Qy on A defined by the recursion:

aOCh = g

Thus if x is the word, Jjijz...Jn, then Oy is the composition of functions

ajl’ajg" o ,an:

@, T %%y X
Jida. .. Jn

This correspondence indicates the motivation for the cholce of suffix notation



for the monadic operators.
The condition that an equivalence relation n be a congruence relation on
¢/ was stated in Section 1. A simple induction shows that this is equivalent

to the condition:
ana' >vz[lady nt a'dy,],

Similarly, the second condition for a homomorphism can be stated:
(ii) vx[h(aok) = h(a)By]

Proposition 1: If 5 is a congruence on 7ZK then n is a right congruence
on ) and conversly.
Proof: If n is congruence we have from the observation above that for

all x,y,z in Ng;
xny > [x Iy T Y Ty & XZ X yz!

Proposition 1 establishes the fact that the congruences on ?7£ are pre-
cisely the right congruences on “ﬂ%.
Let 4 be a k-monadic algebra. The mapping of A onto the generator ag

of L is extended to the homomorphism QZ,: 77k + L by

hy (x) = ag0x.

The congruence relation an on 77k will be denoted WZ’:

xn, ¥ by (x) = B, (v) ¢ag0x = ac0y.

10



From Proposition 1 and the definition of h, we have:

Proposition 2: Iet L be a reduced k-monadic algebra.
i) Wk s (L (the homomorphism is 59 )
ii) n, 1is a right congruence on \Wk'

Proposition 3: Let ¢(Z-and {J be reduced k-monadic algebras, then

s éBﬁna =

-7/’
with isomorphism if and only if T = nea
Proof: Let g be the homomorphism ¢z onto {3 . The homomorphism h

Bis

unique and gI&/ = hB since gha/ is a homomorphism Wk onto (3. Hence,

X Ty ¥ &b, (x) = B, (¥)
- gh(:(/ (X) = gh(;z, (.Y) & hf;ﬁ) (X) = h(g (y)
> X JT(:? Yo

If g is an lsomorphism then = J'IIG . Conversely, assume =, C :r(j . We de-

" 7 <

fine the homomorphism g: ¢ » (3 as follows:

sy (1)) = Bg (o).

g is well defined since h@ (x) is & homomorphism onto (.. We show that g is

a homomorphism by,
g, (x)oy) = glog (xry)) = hglary) = hp(x)By,

11



since hQ/ and h@ are homomorphisms. The mapping is onto since h/) is onto.
O

If T, = TA then,

and g is an isomorphism.
Proposition 4: ILet T be a reduced k-monadic algebra and let ¢ be a

congruence on )/ k*

(1) = = g

Wk/or
(11) @z N/, -

Proof: (i) the homomorphism hy from Wk onto Wk/c was defined in Sec-

tion 1 with hg(x) = o,. But,

Yy oy = cry'é*xoy.

WK/U

(i1) From (i) with 0 = n, we have = - . From Proposition 3
75 453

Wk/ﬂaj )
the equivalent congruence relations yield the isomorphism (ii).

Let mk be the partially ordered set of isomorphism types of reduced k-
monadic algebras. Proposition 4 establishes a one-to-one correspondence be-

tween /)/(k and /\i)k Let ¥ be this correspondence. Then

ﬂf(a/) = Tfa/

a
N
1]

T/

12



¥ and \Lf'l are well defined by Propositions 1 and 2. From Proposition 4 we

have:

() =

N

W) = n.

Further, V¥ is order preserving by Proposition 3. This one-to-one corres-

pondence induces lattice operations on Wk' In particular:

Proposition X Wk is a lattice with meetA and joinwv:

angB = g, B) 1y (v (B))

avsh - 1w(@,B) L (A (B)).

1l
Il

Propositions 4 and 5 may be interpreted to say that the theory of reduced
k-monadic algebras reduces to the theory of right congruences on ’)fk.

The set of functions @y for x € Ny forms a monoid é/ which will be called

the transition monoid of @:7

Fa = {axz X € Nk}
é = <FQ ,composition,oy ).

Note that the set Fa of transition operators is a subset of the set of all
functions from A into A. If A is finite FQ is finite. ©Since it is assumed
that ( is reduced, IFQ | > la].
Now the derived algebra of é can be formed. We will denote this by
15



a = <FQ/’O§\.’R(11"")R01}{>

Definition 5: A k-monadic algebra, ({, is a transition algebra if

~ ZZ: For an arbitrary k-monadic algebral , Zz:is called the transition
8
algebra of 7 .

The second part of this definition is justified by observing that

Zz;;gﬁl_ This follows from Caley's theorem. Note that since a transition
algebra is isomorphic to & derived algebra of a monoid it follows that a
transition algebra is always reduced.

Proposition é: Let (_be a reduced k-monadic algebra.

. . I’)?
i) =m__ is a congruence on /.

N

ii) = ¢

N
Q:l

111) ‘N, s a s v

iv) n___ is the maximal congruence of ﬂ%& refining
U

the right congruence = __ .

a

Proof: (i) The homomorphism h : N (L is defined by h_ (x) = Oy.
a

Since h 1s a mapping of N. onto E, it is a candidate for a monoid

a
homomorphism i onto ﬁ;/ . Indeed,

h (xy) = « = a0, = h (x)h (y).

With h__ a homomorphism of“}ﬁ% we have (i). (ii) Iet x,y be elements of N.

a.

1h



X yeo =Oéy->aoOtX = aoayﬁxab/y.

Hence :ra_ (L (111) From (ii) we have (L s €& by Proposition 3. (iv)

Assume o is a congruence on %k refining =

bt Then for any x,y in Nk’

X Oy > yz z2X 0 zy

> V22X T, ZY

> yz a0, = aoo‘zay
= 04

d Vaa c A alx ady

> 0/3( = %f > X JTE y_

Hence ¢ refines ® and (iv is established).
From the homomorphism h : ?Zk > é we have the
7%
Corollary: For a k-monadic algebra, [/, /ﬂ/ = 721{/1(_.
a
Proposition T7: Let (1 be a reduced k-monadic algebra. The following

statements are equivalent:

i) @ is a transition algebra.

ii) Ty = Jra;

iii) =w, is a congruence on 771{'

a
i = > =
iv) a0 8oy > Oy a,

Proof: We will show (i) = (ii) = (iii) » (iv) = (i). By Definition 5,

if A is a transition algebra then d/;z/ and by Proposition 3 yra/ = ﬂw
Since =n is a congruence (Proposition 6, (1)) arcz/..is also congruence. If
n__ 1s a congruence then ﬁa/ = 1w by Proposition 6 (iv) and

15



= & < : =
ELOOLX a006y X ﬂ;/‘.{, ye x Jr_/_r y < OCX Oty.

Statement (iv) in turn implies HCJ n__ and by Propositions 3 and 4
v CL
aza-
We obtain a further characterization of finite transition algebras by

the following:

Proposition §: If @ is a finite reduced k-monadic algebra then (L is a

transition algebra if and only if ]Fa/ | = |a].
Proof: If !Fa/[ = IAI then the homomorphism (& onto (L'must be one-to-
one. Conversely if the homomorphism is one-to-one and A is finite, IFCLI = ]A]

Let 77?1{ be the partially ordered set of isomorphism types of k-transition
algebras. From Proposition 6 (i) ka is a partial order isomorphism between

%—k and Kjk. Hence withA and vas specified above 77—7}: is a sublattice of 77]1:'

16



5. THE DIRECT PRODUCT OF MONADIC ALGEBRAS

The direct product of two k-monadic algebras (Land (?is the monadic

algebra

a/XG = <AXB,<8.O,bO>,alXﬁl)"')akXBk>)

where A x B is the cartesian product of the sets A and B and for any pair

<a,b> € A x B the operations 05 x B; are defined by,

Let 74 be the operator 03 x Bi. From the recursive definition of yy we note

that:

= (Q .
N . * P

By induction assume that y, = 0y x By. Then

<O£,B> (ax X 5X)(ai X 51> = <aOiX,be> (O‘i X 51) = @axai’b5x3i>'

Hence 7,5 = Oy X Byy. And we have that for every x € N

Tx = Oy x By

Although both @ and (3 may be reduced (as is our general assumption) it

is not necessarily the case that L x (3 is reduced. We will use the notation
axfB = ralaxB).

17



Hence @ x (3 (the reduced direct product) is the smallest subdirect product

of (b and Q.

Theorem 2: (A generalization of a theorem of Birkhoff [1] applied to the
special case of monadic algebras.) ILet @ be a reduced k-monadic algebra and

let n,0 be two congruence relations on (. Then
(/mx Zlo = d/xno.

Proof: We first observe that the pair <wg,05'> is in the domain of
A/x x (3/0 if and only if gy MOyt # ¢. Suppose a"e my M 041 Then assume

1

ac0y = a'. We have
Qtao’ca0> ((xx/n X ax/d) = <;|-(an,0'an> = <:nja,o'at>.

Conversely if the above equation holds a"e na Nogr and g N oyt # ¢.

We define the natural mappings:
b: rd(A/x x AJo) > A/na g

by

$(ﬂa:ca) = Tg N Og ,

This is well defined and onto by the observation above. That $ is a
homomorphism follows from the fact that (naHGa)ax/ﬁnU = Taoy N Gaax . The
mapping is one-to-one since n, N o, = ﬂa,ﬂ Oyt if and only if =n, = ' and
Ga = Ga'

The following corollaries follow directly from Theorem 2:

18



Corollary 2.1: If (U is a reduced k-monadic algebra and x and O are

congruences on (J then:

®tOo

b /v x AJoz

Corollary 2.2: If (L is a reduced k-monadic algebra and x and o are

congruences on A then:

1o = /1 o Anx Afox A)xn o

The hypotheses of Corollary 2.2 may be restated by saying that = and o
commute and x UV O =/\. The following corollary is essentially the theorem
of Birkhoff ([2] Theorem L4, page 87) restricted to two factors which are
monadic algebras. Hartmanis [7] states this result as a necessary and suffi-
cient condition for the decomposition of a machine into the direct product
of simpler machines.

Corollary 2.3: For a reduced k-monadic algebra a,, with congruences

and w,d,
A)x x s = L
if and only if the following three conditions hold:

i) =,0 commute

ii) Vv o =/\

iii) #Nho = ¢.
Corollary 2.k4: Let a, and Gbe two k-monadic algebras. The induced

19



congruence ﬁﬁl X0 is precisely KCZ n n{?.

Corollary 2.5: The operation Ain the lattice of isomorphism types of

reduced k-monadic algebras is precisely the operation X (reduced direct

product ).

20



6. MONADIC ALGEBRAS - BEHAVIOR

Definition _6_: An interpreted k-monadic algebra is a system denoted

A [A'] were

@ = (A,80,01,.--,0)

is a monadic algebra and A' is a subset of A.
For any monadic algebra (@ and any subset A' € A there is the correspond-
ing interpreted monadic algebra (L [A'].

Iet CLIA'] and /3[B'] be two interpreted monadic algebras. A homomorphism

h from (L onto 8 is a homomorphism (LIA'] onto B[B'] if in addition

iii) a € A' > h(a)e B’

We say h is a strong homomorphism if we replace (iii) bpy:

iii') a € A' & h(a)e B!

ﬂ,ﬁA'] is isomorphic to [)’[B'] Jjust in case there is a strong homomorphism
from (I[A'] onto Q[B'] which is one-to-one. We will use the notation
(L] s (B(B'] for the existence of a homomorphism from (L[A'] onto I6i6: 10
(not necessarily a strong homomorphism).

Definition T7: ILet ﬂ[A'] be an interpreted monadic algebra. The behavior

of (LIA'] is a subset of MN:

21



A subset T of N is definable by a monadic algebra 62 if there exists an

A' € A such that th A" = r.?

Note that for a fixed algebra ({, bh_, can be viewed as a function from

L
PA into ka. In fact the range of b%Z: is a boolean algebra of subsets in
pl, with
b A') nbh_ (A") = bh, (A'Nn A"
hy (A1) N bh, (&%) = b, (470 A7)
N, -D A = b A - AV,

It should also be observed that every subset I' of N, is definable by some
monadic algebra. In particular I' is defined by 77£[F].

Definition 7 corresponds to the usual definition of behavior; the set of
all words which cause transition from the initial state to one of a set of
designated "final" states. Alternatively we obtain:

Proposition 9: For any monadic algebra (7 and any subset A' € A,

1 _ -1 1
bh@ A"y = h@ (ar).

With this characterization of definability we can indicate the cor-
respondence between definability and homomorphisms.

Proposition 10: (Buchi) let @ and (3 be two reduced k-monadic algebras
with @ s . Then if T c Ny is definable by‘(a, I' is definable by 61«

Proof: ILet g be the homomorphism & onto 0 and let I = héf(B’).
Since h , = gh_ we have I' = nol g'l(B') and hence I' is definable by (L with

G @ a
AY = g'l(B').

22



Proposition 11: Let (Z[A'] and (3[B'] be two interpreted reduced k-

monadic algebras.
ala'] s (B3[B'] »bh_ (A') € bh

with equivalence of behavior just in case the homomorphism is a strong
homomoxrphism.

Proof: Iet g be the homomorphism if (L onto 3. Then,

th (3) = nil(e) - By 87H(B) 2hI(A") = bh, (a1),

8

since g'l(B') € A' , where g 1s an interpreted monadic algebra homomorphism.
And g"}(B') = A" if g is a strong homomorphism.
The transition algebra of & was defined above. We can find a cor-

responding interpreted transition algebra as follows. Let

— . 1
A' = {ax. a0, €A }

The homomorphism from (% onto /L is not a strong homomorphism from Z[A']

omto QL.[A'] and hence bh (A') = bh:?/ (A') from Proposition 1l1. Hence we

J
2

v

have the
Proposition 12: Any subset I' ¢ Nk definable by a monadic algebra < is

definable by its transition algebra /Z.

For a subset I' ¢ Ny, the relation of I' is the dichotomy 7:
xyye (xeleyel).
Proposition 13: If QL is a k-monadic and T' ¢ N_ is definable by A then

k

23



7. .
s c 7

Proof: Let A' < A such that I' = b%Z)(A'). If x T ¥ then ag0ty = agQy
and hence a,0y € A' +a 0y, € A'. And by definition x € b%ay(A') >y € b%QL(A').

Proposition }5: If # is a right congruence on )%% refining the dichotomy

y then I' = bh (I'/x).

%?k/ﬂ
Proof': P/K is well defined since n ¢ 7. 3ﬁk/n 1s a monadic algebra

since & 1s a congruence on‘a?k. h_ is the homomorphism 22& > iﬁk/n and indeed

T
h, is a strong homomorphism\jﬁk[F] onto 7§£/n[P/ﬁ]. Hence Proposition 14
follows from Proposition 11.

From Propositions 13 and 14 we obtain the necessary and sufficient con-
ditions for a subset T ¢ Nk to be definable by a k-monadic algebra 3

Corollary: I is definable by CL if and only if ?Z/ C 7.

The existance of a maximal algebra (with respect §), for which T is
definable is insured by this Corollary and Theorem 1.

Theorem 3: I is definable by Zﬁk/l where 7y is the induced right congruence
of y. If I definable by (& then (L s qﬁk/z.

Proof: From Theorem 1, y is a right congruencecn1“%& hence iik/l is
well defined and y < Hence by the Corollary (and Proposition 4) I' is de-
finable by‘??#/z Y 1s the maximal right congruence refining y. By the

Corollary again and the partial order isomorphism of %?k andboﬁk,“zvk/z is

maximal among machines for which ' is definable.

2l



7. NON-DETERMINISTIC AUTOMATA - TRANSITION SYSTEMS

Definition Q: A pure k-transition system'f’is a relational system:

7 = (TyT1,e )

where Ti,...,Tkx are binary relations on T.
Note that the study of pure transition systems includes the study of
pure monadic algebras by restricting the relations to be functional.

Definition 9: For any x € N, the transition relation of x, 7%, of &

pure k-transition system 9/ is defined by the recursion:

T\, = {<t,t>: t € T)

The relation m, is the identity relation on T. In general the relation

T... i1s the product T

xy_ xTy.

Analogous to the case for monadic algebras, the set of transition re-

lations, T, for x € N, under product forms a monoid with identity, m . Ex-

plicitly, we define the transition monoid é_. of a transition systemTas

follows:

F_oo= {74 x € N}

é, = (]%,, product, ™).



Hence from the transition system 7~ we can form the transition algebra asso-

ciated with "/
T = <F7_ sTnsRy e+ Ry )
The direct product of two transition systems ,@pand Ofis the system
/ x7 = (S xTy) 01 X T1yee.,0k X Tk )

where, analogous to the case for algebras, the relations are analysed by

components:
<g,t> 01 x T{ <s',t'>% s 05 s' ALt T{ t'.

S x T is the cartesian product of the domain of /and 7-’

26



8. BEHAVIOR OF TRANSITION SYSTEMS

Definition 10: An interpreted transition system denoted 7 [T°,T'] is a

transition system

{ = <T,Tl)...,"rk>

where T°, T' and subsets of T.

Definition 11: The behavior of an interpreted transition system

[T°,T7] is a subset of N defined as follows

o H — .
bg7,(T ,T') = {?. gtt c oY, o T‘t TX1{}b

A subset I' of Iy is definable by a transition system ‘7—if there exist subsets

o . o 10

T°, T' of T with bké]_(T ,T') =T.
Every monadic algebra (JA'] can be formulated as a transition system

<7 [T°,T'] vhere T° is chosen as the singleton set {ag} and T' = A'. Then

every behavior of a monadic algebra is the behavior of a transition system.

We will now obtain the converse.

Let;?:'be the transition algebra associated with a pure transition

system /. Define the set T' as follows:

T = {ry Eby ¢ opelYy ¢ it Tx u}.

The subset E' of the set F is the set of all transition relations which re-

7"

late an initial state with one of the final states.
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Theorem 4: Let “/[T°,T'] be any interpreted transition system and let

[q'f] be the interpreted transition algebra defined above. Then

th/_(T°,T‘ ) = bh‘?_’(-T-' ).

Proof: Let x be any word in NM.. We have by the definitions above:

X € bh7-(T°,T‘) @7, €T & xebh [T']
o7"

where we recall that:

X € bh_[T']<-> ™WTx € -T-‘ @ Ty € -‘f'

7*
Corollary: (Myhill) any subset I' of Ny definable by a transition system,
7: is definable by the transition algebra ”'_7—" Further if T is finite then
5:' is finite.
The second part of this Corollary follows from the fact that F__ is

finite if 7 is finite. In particular,

Lk
Ib;l_! <2,

since the number of relations in qu is no greater than the total number of

relations definable over the set T.
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3,

FOOTNOTES

See, in particular, Birkhoff [2], Forward on Algebra and Chapter VI and

Birkhoff [1].

When the binary transition function is used, as Weeg [16] observed, func-
tions which we would like to call homomorphisms are not quite such since
the alphabet is not effected by the mapping (this, of course, is not
always the case, for example, see Ritchie [15]). The "operation pre-
serving functions" are precisely homomorphisms in the formulation being

presented.

A reduced algebra is one in which every state is accessable. If L is

a pure monadic algebra then the property of being reduced corresponds to
that of strong connectedness (Moore [ll]). In a strongly connected
automaton every state is a generator. That homomorphisms preserve strong
connectedness follows from the fact that in any algebra the homomorphic

image of a generator is a generator.

Congruence relations which commute play an important role in the de-
composition theorems for algebras. The pioneering paper discussing the
importance and properties of such relations is Dubreil [6]. See also

Birkhoff [1,2].

Ek is the set of congruences on GQk and by Theorem 5, page Eh, Birkhoff
(2], a?k is a lattice. If =, ¢ are right congruences on fi:than one can
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10.

verify that  n ¢ is a right congruence as is = UV 0. Hence [?k is a
lattice. It will be shown below that /Qk is precisely the set of con-
gruence relations on the free monadic algebra and the lattice property

of R-k again follows from Birkhoff's theorem.

This construction was used by Medvedev [10] in specifying the automaton

defined by a semigroup.

This semigroup is called the semigroup of & by Myhill [13]. 1In this
paper some of the relationships between E; and the structure of & were

studied.

If Z is a transition algebra, {;/ is isomorphic to the monoid of
* .
endomorphism of ¢Z. Let /f%/ be the largest submonoid which is a group
*
(see Kimura [8]), then /f;, is the group of automorphism of 4¢. This

is called the group of (7 by Weeg [16].

In the terminology of [14] and [15], b%Z/[A’] is the set of tapes accepted
vy (A[A']. The term behavior is used by Kleene [9]. Also, "recognizable”
and "representable" are to be found in the literature in place of

"definable."

An interesting generalization of Definitions 10 and 11 suggested by Wright
is as follows: Iet P be an arbitrary relation on the domain T of the
transition system “J. An interpreted k-transition system is the system

‘7—Tp] (alternatively a relational system with k+1 binary relations) and
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bh (o) = (x|l7y p#9)

We obtain 10 and 11 as special cases with p = T° x T'.
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