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ABSTRACT
Given the importance of shear flows for astrophysical gas dynamics, we study the evolution of
the Kelvin–Helmholtz instability (KHI) analytically and numerically. We derive the dispersion
relation for the two-dimensional KHI including viscous dissipation. The resulting expression
for the growth rate is then used to estimate the intrinsic viscosity of four numerical schemes
depending on code-specific as well as on physical parameters. Our set of numerical schemes
includes the Tree-SPH code VINE, an alternative smoothed particle hydrodynamics (SPH)
formulation developed by Price and the finite-volume grid codes FLASH and PLUTO. In the first
part, we explicitly demonstrate the effect of dissipation-inhibiting mechanisms such as the
Balsara viscosity on the evolution of the KHI. With VINE, increasing density contrasts lead to
a continuously increasing suppression of the KHI (with complete suppression from a contrast
of 6:1 or higher). The alternative SPH formulation including an artificial thermal conductivity
reproduces the analytically expected growth rates up to a density contrast of 10:1. The second
part addresses the shear flow evolution with FLASH and PLUTO. Both codes result in a consistent
non-viscous evolution (in the equal as well as in the different density case) in agreement with
the analytical prediction. The viscous evolution studied with FLASH shows minor deviations
from the analytical prediction.

Key words: hydrodynamics – instabilities – methods: analytical – methods: numerical – ISM:
kinematics and dynamics.

1 IN T RO D U C T I O N

Shear flows are an integral part of many astrophysical processes,
from jets, the formation of cold streams, to outflows of protostars
(Diemand et al. 2008; Agertz, Teyssier & Moore 2009; Dekel et al.
2009; Walch et al. 2010), and cold gas clouds falling through the
diffuse hot gas in dark matter haloes (Bland-Hawthorn et al. 2007;
Burkert et al. 2008). Jets and outflows of young stars can entrain
ambient material, leading to mixing and possibly the generation
of turbulence in e.g. molecular clouds (Burkert 2006; Banerjee,
Klessen & Fendt 2007; Carroll et al. 2009; Gritschneder et al.
2009b), while the dynamical interaction of cold gas clouds with
the background galactic halo medium can lead to gas stripping of
e.g. dwarf spheroidals (e.g. Grcevich, Heitsch & Putman 2010),
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and the disruption of high-velocity clouds (Quilis & Moore 2001;
Heitsch & Putman 2009). The Kelvin–Helmholtz instability (KHI)
is believed to significantly influence the gas dynamics in all of these
different scenarios.

Moreover, viscous flows play a crucial role in e.g. gas accretion
on to galactic discs (Das & Chattopadhyay 2008; Heinzeller, Duschl
& Mineshige 2009; Park 2009), as well as in dissipative processes
like the turbulent cascade. Typically, the gas viscosity seems to be
rather low in the interstellar medium, with typical flow Reynolds
numbers of 105.

To describe these complex processes in detail, numerical schemes
are applied to follow the hydrodynamical evolution. Numerous sim-
ulations use smoothed particle hydrodynamics (SPH), (Gingold &
Monaghan 1977; Lucy 1977; Benz 1990; Monaghan 1992, 2005),
because its Lagrangian approach allows us to follow the evolu-
tion to high densities and small spatial scales. In combination with
N-body codes, it is a perfect tool for cosmological simulations
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(e.g. Hernquist & Katz 1989; Couchman, Thomas & Pearce
1995; Springel & Hernquist 2002; Marri & White 2003; Serna,
Domı́nguez-Tenreiro & Sáiz 2003) and galaxy formation and evolu-
tion (Katz, Hernquist & Weinberg 1992; Evrard, Summers & Davis
1994; Navarro, Frenk & White 1995; Steinmetz & Navarro 1999;
Thacker & Couchman 2000; Steinmetz & Navarro 2002; Naab,
Jesseit & Burkert 2006). SPH describes the physical properties of
a fluid by smoothing over a representative set of particles. How-
ever, this can lead to several problems. It can fail to correctly model
sharp density gradients such as contact discontinuities, or velocity
gradients occurring in e.g. shear flows (see Agertz et al. 2007), thus
suppressing shear instabilities such as the KHI.

An interesting problem to test the limitations of SPH as well as
grid codes is the passage of a cold dense gas cloud moving through
a hot and less dense ambient medium (Murray et al. 1993; Vietri,
Ferrara & Miniati 1997; Agertz et al. 2007). Such a configuration
would be typical for gas clouds raining on to galactic protodiscs,
for high-velocity clouds in the Milky Way and for cold H I clouds
in the Galactic disc. Murray et al. (1993) demonstrated using a
grid code that in the absence of thermal instabilities and/or gravity
clouds moving through a diffuse gas should be disrupted by hydro-
dynamical shear flow instabilities within the time they need to travel
through their own mass. Agertz et al. (2007) have shown that the
KHI, and therefore the disintegration of such clouds is suppressed in
SPH simulations. This problem, in particular the suppression of the
KHI, has been subject to recent discussion in the literature. Several
solutions have been proposed, e.g. Price (2008) discusses a mech-
anism which involves a special diffusion term (see also Wadsley,
Veeravalli & Couchman 2008).

Furthermore, Read, Hayfield & Agertz (2010) identify two effects
occurring in the SPH formalism, each one separately contributing to
the instability suppression. The first problem is related to the lead-
ing order error in the momentum equation, which should decrease
with increasing neighbour number. However, numerical instabilities
prevent its decline. By introducing appropriate kernels, Read et al.
(2010) showed that this problem can be cured. The second prob-
lem arises due to the entropy conservation. Entropy conservation
inhibits particle mixing and leads to a pressure discontinuity. This
can be avoided by using a temperature-weighted density following
Ritchie & Thomas (2001) (see also Price 2008). Recently, Abel
(2010) has shown to reduce the leading error problem by using a
novel discretization of the pressure equation, which smoothes the
force on the kernel scale and improves the stability.

Another characteristic of SPH is the implementation of an artifi-
cial viscosity (AV) term (Monaghan & Gingold 1983), which is nec-
essary in order to treat shock phenomena and to prevent particle in-
terpenetration. AV can produce an artificial viscous dissipation in a
flow corresponding to a decrease of the Reynolds number and there-
fore a suppression of the KHI (Monaghan 2005). To confine this
effect, a reduction of viscous dissipation was proposed by Balsara
(1995) and improved by Colagrossi (2004). Thacker et al. (2000)
studied different AV implementations in SPH and pointed out that
the actual choice of the AV implementation is the primary factor in
determining code performance. Recently, Cartwright & Stamatellos
(2010) showed that the use of the Balsara switch is not beneficial in
non-convergent shear flows. An extension of SPH which includes
physical fluid viscosities was discussed by e.g. Flebbe et al. (1994),
Takeda, Miyama & Sekiya (1994), Español & Revenga (2003),
Sijacki & Springel (2006) and Lanzafame, Belvedere & Molteni
(2006).

An alternative to conventional numerical schemes may arise from
a new class of hybrid schemes based on unstructured grids and

combining the strengths of SPH and grid codes (Springel 2010).
Some of the problems listed above might be solved with this type
of implementation.

In this paper we determine how accurate shear flows and the
corresponding incompressible KHI are described in common nu-
merical schemes. Therefore, in Section 2, we analytically derive
the growth rates of the KHI including viscosity. In Section 3 we
briefly describe the numerical schemes and outline how the sim-
ulations have been analysed. We then discuss our results. At first,
we concentrate on the standard SPH implementation, which does
not contain a physical viscosity but instead uses AV. However, as
mentioned above, AV does influence the evolution of the flow. In
Section 4, we discuss the ability of two numerical SPH schemes to
model the incompressible KHI, namely the Tree-SPH method VINE

(Wetzstein et al. 2009; Nelson, Wetzstein & Naab 2009), and the
SPH code of Price (2008).

By comparing to the derived analytical solution, we assess the
effects of AV in VINE and estimate the intrinsic physical viscosity
caused by AV (4.1). We then study the development of the KHI
for different density contrasts (4.2). We show that the instability is
suppressed for density contrasts equal to or larger than 6:1. We also
discuss the remedy suggested by (Price 2008, hereafter P08).

In Section 5, we then study the same problem with two grid
codes, FLASH (Fryxell et al. 2000) and PLUTO (Mignone et al. 2007).
As the intrinsic AV is negligible in these schemes, we study the
non-viscous as well as the viscous evolution of the KHI for equal
(5.1) as well as non-equal (5.2) density layers. We summarize our
findings in Section 6.

2 K H I – A NA LY T I C A L D E S C R I P T I O N

To derive the growth rate of the KHI in two dimensions including
viscosity, we follow the analysis of Chandrasekhar (1961) (for a
related analysis see also Funada & Joseph 2001 and Kaiser et al.
2005). The fluid system is assumed to be viscous and incompress-
ible. We use Cartesian coordinates in x and y, with two fluids at
densities ρ1, ρ2, and velocities U1, U2 moving anti-parallel along
the x-axis, separated by an interface layer at y = ys (see Fig. 1). We
neglect the effect of self-gravity. The hydrodynamical equations for
such a system are then given by the continuity equation

∂

∂t
ρ + ∇ · (ρv) = 0, (1)

and the momentum equation

ρ ·
[

∂v

∂t
+ (v · ∇) v

]
= −∇p + ρν� v, (2)

with the flow density ρ, velocity v, the thermal pressure p and the
kinematic viscosity ν.

Figure 1. Sketch of the initial conditions considered. Two fluid layers with
constant densities ρ1 and ρ2 flowing in opposite directions with uniform
velocities U1 and U2.
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2.1 Linear Perturbations

We linearize equations (1) and (2) with the perturbations

v → v + δv = [U (y) + u; w] (3)

ρ → ρ + δρ, (4)

p → p + δp. (5)

u, w express the perturbation in the velocity, δρ and δp in the den-
sity and pressure, respectively. This yields the system of linearized
equations as

ρ∂t u + ρU∂xu + ρw∂yU = −∂xδp + ν(ρ + δρ)∂2
yU

+ ρν
(
∂2

x + ∂2
y

)
u, (6)

ρ∂tw + ρU∂xw = −∂yδp + ρν
(
∂2

x + ∂2
y

)
w, (7)

∂t δρ + U∂xδρ = −w∂yρ, (8)

∂t δys + Us∂xδys = −w(ys), (9)

δxu + δyw = 0. (10)

Equations (6) and (7) represent the linearized Navier–Stokes equa-
tions, where the density may change discontinuously at the interface
positions denoted by ys. Equation (8) is the linearized continuity
equation. In equation (9) the subscript s distinguishes the value
of the quantity at y = ys (the interface layer). The last equation,
equation (10), expresses the incompressibility of the fluid. With
perturbations of the form

u,w, δρ, δp, δys ∼ exp[i(kxx + nt)], (11)

and assuming that the flow is aligned with the perturbation vector,
i.e. k = kx, we arrive at

D{ρ(n + kU )(Dw) − kρ(DU )w} − ρk2(n + kU )w

= iD{ρνk2(Dw)} − iD{ρν(D3w)}
−D{kν(ρ + δρ)(D2U )} + iρνk2(D2w) − iρνk4w, (12)

where D ≡ d/dy. The term, iρνk2(D2w) in equation (12) can be
replaced with

iρνk2(D2w) = ik2D[ρν(Dw)] − ik2(Dw)[D(ρν)]. (13)

The boundary condition at y = ys is determined by an integration
over an infinitesimal element (ys − ε to ys + ε), for the limit ε →
0. Please note that with equation (8) it follows for δρ,

δρ = i
w

(n + kxU )
(Dρ). (14)

After integration, the boundary condition becomes,

�s {ρ(n + kU )(Dw) − ρk(DU )w}
= ik2�s {νρ(Dw)} − i�s{νρ(D3w)}

− k�s{νρ(D2U )} − ik�s

{
ν

w

(n + kU )
(Dρ)(D2U )

}

+ ik2�s {νρ(Dw)} − ik2 lim
ε→0

∫ ys+ε

ys−ε

(Dw)D(νρ) dy, (15)

where �s is specifying the jump of any continuous quantity f at
y = ys,

�s(f ) = f(y=ys+0) − f(y=ys−0). (16)

For ν ≡ 0, we retrieve the corresponding expression as given by
Chandrasekhar (1961).

2.2 Special case: constant velocities and densities

To simplify the derivation of the growth rate n further, we consider
the case of two fluid layers with constant densities ρ1 and ρ2,
and constant flow velocities U1 and U2 = −U1. In each region of
constant ρ1,2 and U1,2, equation (12) reduces to[
(n + kU1,2)ρ1,2 − 2iνk2

]
(D2w) + iν(D4w)

− k2
[
(n + kU1,2) − iνk2

]
w = 0. (17)

The layers are separated at y = ys = 0, and w/(n + kU) must be
continuous at the interface. Also, w must be finite for y → ∞, so
that the solution of equation (17) has the following form,

w = A(n + kU1)e+ky (y < 0) (18)

w = A(n + kU2)e−ky (y > 0). (19)

We assume that ν1 = ν2 = ν (which is the case if we consider
two media with the same viscous properties). Inserting this in equa-
tion (15), the characteristic equation yields,

n2 + 2

[
k(α2U2 + α1U1) − ik2ν

2

]
n (20)

+ k2
(
α2U

2
2 + α1U

2
1

) − ik3ν (α2U2 + α1U1) = 0. (21)

The parameters α1, α2 are defined by

α1 = ρ1

ρ1 + ρ2
, α2 = ρ2

ρ1 + ρ2
. (22)

Solving for n, we get the expression for the mode of the linear
KHI:

n = −
[
k(α2U2 + α1U1) − ik2ν

2

]

±
√

−k2α1α2(U1 − U2)2 − k4ν2

4
, (23)

applying U2 = −U1 = U leads to

n =
[
k2U 2(α2 − α1) + ik2ν

2

]

±
√

−4k2α1α2U 2 − k4ν2

4
. (24)

The mode is exponentially growing/decaying with time, if the
square root of n becomes imaginary,

n = [
k2U 2(α2 − α1)

]
+ i

⎡
⎣ νk2

2
±

√
ν2k4

4
+ 4k2U 2α1α2

⎤
⎦ . (25)

The first term describes oscillations (which is not of interest for
the growth), the second term the growth/decay, with a damping due
to the viscosity. We use this formula for the comparison with our
numerical studies for different density shearing layers. For equal
density shearing layers ρ1 = ρ2 = ρ, equation (25) leads to

n = i

[
νk2

2
±

(
ν2k4

4
+ k2U 2

)1/2
]

. (26)

In Sections 4 and 5, we use the velocity in direction of the per-
turbation, which in the above analysis refers to the y-direction and
therefore, to the vy-velocity component (w) when comparing with
simulations. The exponential term in equation (11) [∼exp(i · n ·
t)] describes the time evolution of the KHI. In the following, we
therefore compare ln (vy) with the analytical expectation ln(w) ∼
i · n · t.
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Table 1. Initial conditions in dimensionless units (first column)
and in cgs units (second column). In the text, we always refer
to dimensionless units. The (dimensionless) KHI growth time is
about τKHI ∼ 0.65 (equal density case) and τKHI ∼ 1.12 (density
contrast of DC = 10).

Physical parameters Dimensionless in cgs units

Box size 2 2 cm
Mass 4 2780.81 g

Velocity 0.387 0.40 km s−1

Time 1 9.8 · 10−6 s

3 K H I – N U M E R I C A L D E S C R I P T I O N

We use two independent numerical approaches – particle based
and grid based – to follow the hydrodynamics of the system. In
the following, all physical parameters are given in code units (see
Table 1 for conversion to physical units).

3.1 SPH models – VINE & P08

The parallel Tree-SPH code VINE (Nelson et al. 2009; Wetzstein et al.
2009) has been successfully applied to a number of astrophysical
problems on various scales (Naab et al. 2006; Jesseit et al. 2007;
Gritschneder et al. 2009a; Kotarba et al. 2009; Walch et al. 2010).
In VINE, the implementation of AV is based on the description by
Monaghan & Gingold (1983), and it includes the modifications
by Lattanzio et al. (1986). AV is not a real physical viscosity, but
implemented to allow the treatment of shock phenomena. A viscous
term, 
,


 = −ν

(
v · r

r2 + εh̄2

)
, (27)

is added to the SPH momentum equations. The quantity ε ∼ 0.01
prevents a singularity if r → 0, while h̄ presents the mean smoothing
length between two particles. For ν follows,

ν = h̄

ρ̄

(
αc̄ − β

h̄v · r
r2 + εh̄2

)
, (28)

ρ̄, and c̄ are the mean density and the mean sound speed, respec-
tively. The AV parameter α controls the shear and the bulk viscosity,
whereas the β parameter regulates the shock-capturing mechanism.
In the following, we set α = 0.1, and β = 0.2 if not otherwise
specified. AV reduces the Reynolds number of the flow, resulting
in the damping of the KHI (Monaghan 2005). Balsara (1995) pro-
posed a corrective term, improving the behaviour of the AV in shear
flows. Further improvements are discussed in Monaghan (2005) and
references therein. VINE can be run with and without the ‘Balsara
viscosity’.

To prevent the so-called ‘artificial pairing’ in SPH
(e.g. Schuessler & Schmitt 1981), we implement a correction de-
veloped by Thomas & Couchman (1992). Details can be found in
Wetzstein et al. (2009) and Nelson et al. (2009).

The SPH code presented in P08 uses a different implementation
of AV as explained in Morris & Monaghan (1997) to prevent the
side effects of artificial dissipation. Additionally, a diffusion term
called ‘artificial thermal conductivity (ATC)’ is implemented (see
Section 4.2), which has been shown to prevent the KHI suppression
in shear flows with large density contrasts (P08).

3.2 Grid-based models – FLASH & PLUTO

We choose the publicly available, Message Passing Interface
(MPI)-parallel FLASH code version 2.5 (Fryxell et al. 2000).
FLASH is based on the block-structured Adaptive Mesh Refine-
ment (AMR) technique implemented in the PARAMESH library
(MacNeice et al. 2000). However, we do not make use of the AMR
refinement technique, but use uniform grids throughout this paper.
In FLASH’s hydrodynamic module the Navier–Stokes equations are
solved using the piecewise parabolic method (Colella & Woodward
1984), which incorporates a Riemann solver to compute fluxes be-
tween individual cells. We use a Riemann tolerance value of 10−7

and a Courant, Friedrichs and Lewy number (CFL) of 0.5. Due to
FLASH’s hydrodynamic scheme, the intrinsic numerical viscosity is
reduced to a minimum. This allows us to study the influence of a
physical viscosity on the growth of the KHI. We therefore modify
the hydrodynamical equations based on the FLASH module ‘diffuse’
to explicitly include a viscous term, which scales with a given kine-
matic viscosity (see Sections 5.1 and 5.2).

As an additional test, we apply the Godunov-type high-resolution
shock capturing scheme PLUTO (Mignone et al. 2007). It is a mul-
tiphysics, multi-algorithm modular code, especially designed for
the treatment of discontinuities. For the simulations described in
this paper, we employ different Riemann-solvers and time-stepping
methods on a uniform, static grid.

3.3 Initial conditions and analysis method

Our numerical initial conditions (ICs) are identical to the ones used
for the derivation of the analytical growth rates (see Section 2,
Fig. 1 and Table 1). To excite the instability, we apply a velocity
perturbation in y direction:

vy = v0 sin(k · x) · exp

[
−

(
y

σ0

)2
]

, (29)

where k is the wavenumber and v0 is the perturbation amplitude of
the y-velocity triggering the instability. The parameter σ 0 controls
how quickly the perturbation decreases with y (see discussion Ap-
pendix A). It is set to σ 0 = 0.1, if not otherwise specified. Initial
pressure and density are set to p0 ≡ 1 and ρ0 ≡ 1, resulting in a
sound speed of cs,0 = √

5/3 with an adiabatic exponent of γ = 5/3.
Since the analysis of Section 2 is only valid for an incompressible
fluid, the flow speed U must be subsonic. We chose U ≡ 0.3 ×
cs,0 ≈ 0.387, and the initial perturbation is v0 = 0.1 × U = 0.0387.
We tested the assumption of incompressibility by calculating ∇ · v,
which vanishes for incompressible flows. This is satisfied in the
linear regime, the primary focus of our work. The wavenumber k
is equal to 4 π/L, where L is the box length. The simulated box
ranges from [−1, 1] in both directions. We use periodic boundary
conditions. If not otherwise specified the AV parameters are set to
α = 0.1 and β = 0.2.

To analyse the SPH and grid simulations consistently, we bin
the SPH particles on a 642 grid, using the cloud-in-cell method
(Hockney & Eastwood 1988). For the grid codes, the same initial
conditions are used. A resolution of 5122 is adopted during the
calculation, but we rebin to a 642 grid for the analysis.

We measure the fastest-growing mode, which is the k = 4π/L
mode of the velocity perturbation in y-direction via a Fourier anal-
ysis. For more information see Appendix B.

We perform two sets of simulations with (i) equal density layers
(see Section 4.1 for SPH and Section 5.1 for grid codes) and (ii)
unequal density layers (see Section 4.2 for SPH and Section 5.2 for
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Figure 2. Time evolution of the vy-amplitude using VINE for different numbers of mean neighbours, n̄neigh, (left-hand panel) and for different particle number
(right-hand panel).

grid codes). In the latter case we assume pressure equilibrium. For
SPH, we investigate the effects of equal mass and different mass
particles (see Section 4.2).

4 SP H S I M U L AT I O N S O F T H E K H I

In the following, we model the evolution of the KHI in systems
with ρ1 = ρ2 (Section 4.1) and ρ1 �= ρ2 (Section 4.2). We apply
VINE, if not otherwise specified, and use the analytical growth rates
(equations 25 and 26) derived in Section 2 to determine the effect
of AV.

4.1 Fluid layers with equal densities

In the case of ρ1 = ρ2, we vary the following parameters: the
resolution, which can be either enhanced by using more particles or
decreasing the smoothing length h, and the AV parameters α and β.
We vary one parameter at a time, while the other ones are set to the
fiducial values (see Section 3.1). In the context of AV, we discuss
the importance of the Balsara viscosity. In Appendix A we also
discuss the influence of different σ 0, which determines the strength
of the initial vy-perturbation (equation 29).

(i) Dependence on resolution
According to the smoothing procedure in the SPH scheme, each
particle requires a certain number of neighbouring particles for
the calculation of its physical quantities. In VINE, these range from
nneigh,min to nneigh,max. The corresponding mean value of neighbours,
n̄neigh, determines the smoothing length h. For a constant particle
number, increasing n̄neigh leads to a larger smoothing length, while
at the same time the effective resolution is decreased.

In Fig. 2, we show the time evolution of the vy-amplitude, which
describes the growth of the KHI. For t ≤ 0.2 the amplitudes decrease
since the SPH particles lose kinetic energy by moving along the y-
direction into the area of the opposite stream (see Appendix A).
Therefore, we only consider t > 0.2 when fitting the growth rates
of the KHI. The left-hand panel of Fig. 2 shows the amplitude
growth for n̄neigh = 20, 30 and 40, respectively. (The commonly
used value in two dimensions is n̄neigh = 30.) All three cases appear
to be similar. Thus, different n̄neigh do not have a substantial impact
on the KHI-amplitude growth.

The right-hand panel of Fig. 2 shows the dependence on particle
number, for the fiducial case of 5122 (dotted line) and for an in-
creased resolution of 10242 (solid line). The difference for the fitted
viscosity is small (≤1 per cent).

(ii) Dependence of KHI on α, β
In Figs 3, 4 and 5, we show the KHI evolution for different values of
α and β without the Balsara viscosity. Increasing the AV parameter
α or β results in a successive suppression of the KHI. Values of
α > 2 and β > 1 lead to a decay of the initial perturbation. However,
β does not affect the growth as much as α. Therefore, we first
concentrate on α as the operating term on the KHI.

Can we assign an equivalent physical viscosity νSPH to the SPH
scheme, i.e. can we determine how ‘viscous’ the fluid described
by SPH is intrinsically? To quantify its value, the analytical slope
(equation 26), with the viscosity being the free parameter, is fitted
to the simulated growing amplitudes. We show the best fits for
α = 0.125 and 2 in the left-hand panel of Fig. 5, for which we find
the intrinsic viscosity of νSPH = 0.07 and 0.1. Here we assumed the
time range of [0.2, 1], for which we determine the fits, to be well in
the linear regime.

In Fig. 6 we present the derived values of νSPH as a function of
α. In summary, νSPH increases linearly with increasing α, and the
corresponding slope is 0.039. We also derive an offset of 0.065,
which is the remaining intrinsic viscosity for α = 0. For each
simulation, we also show the effective Re number of the flow (see
Fig. 6, right y-axis), which was computed from Re = L · U/νSPH. The
parameter L describes the characteristic scale of the perturbation, in
our case the wavelength and U is the velocity of the flow. Clearly,
the Reynolds numbers we reach with our models are well below the
commonly expected numbers for turbulent flows (Re > 105).

The effective viscosity of the flow is also influenced by different
values of β. Changing β by a factor of 2 (e.g. from β = 0.5 to
β = 1) results in an increase in effective viscosity by a factor of
0.01 (see right-hand panel of Fig. 5).

(iii) Dependence on the Balsara viscosity
We showed that AV leads to artificial viscous dissipation, resulting
in the damping of the KHI. To prevent this, we use the Balsara
viscosity, see also Section 3.1. In Fig. 7 we show the corresponding
amplitudes for three examples of AVs: (α = 0.1, β = 0.2), (α =
1, β = 2) and (α = 2, β = 2). Clearly, the Balsara viscosity reduces
the damping of the KHI, rendering νSPH almost independently of α

and β (see also Fig. 6).
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Figure 3. Time evolution of the KHI using VINE for increasing AV parameter α (top to bottom) and constant β = 2. The panels show the central region of each
simulation box, ranging [−0.5, 0.5]. The upper layer (grey area) is moving to the left, the lower layer (black area) to the right. Noticeable damping occurs for
α > 0.125 (see left-hand panel of Fig. 5).

Figure 4. Like Fig. 3 but for increasing values of the AV parameter β (α = 0.1). A noticeable damping occurs for of β > 1 (see right-hand panel of Fig. 5).

4.2 Fluid layers with variable densities

While the previously addressed case of equal densities helped us
to understand the detailed evolution of the KHI as modelled with
SPH, the astrophysically more interesting case are shear flows with
different densities. The resolution of the diffuse region is lower by

a factor of
√

DC, where DC is the ratio of the densities in dense and
diffuse medium (e.g. DC = 10 corresponds to a density contrast of
10 : 1). We return to our standard set of parameters, in which case
α = 0.1 and β = 0.2. For these low AV parameters we do not need
the Balsara viscosity (see Section 4.1). (None the less, we did run
test simulations with the Balsara switch, which we found to confirm
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Figure 5. Left-hand panel: time evolution of the VINE vy-amplitude for different values of the AV parameter α, where β has been fixed to β = 2. The thick
dot–dashed lines correspond to the analytical fit, shown for α = 0.125 and 2 (which correspond to νSPH = 0.07 and 0.1). Right-hand panel: like before, but for
different values of the AV parameter β, where α has been fixed to α = 0.1.

Figure 6. Derived physical viscosities (νSPH) corresponding to different AV
parameters α with (open points) and without (filled black points) Balsara
viscosity. We also show the corresponding effective Re numbers.

our former finding, since the growth of the KHI was not affected.)
In the following, we (i) analyse the growth of the KHI for different
values of DC (with equal mass particles) and address the problem
of KHI suppression, while in (ii) we test the influence of equal mass
or spatial resolution.

(i) KHI growth as a function of DC
We show the KHI evolution for increasing DC in Fig. 8. For DC ≥
6, the KHI does not develop anymore. This SPH problem of KHI
suppression has been studied in great detail (e.g. Agertz et al. 2007;
P08; Wadsley et al. 2008; Abel 2010; Read et al. 2010). SPH par-
ticles located at the interface have neighbours at both sides of the
boundary (i.e. from the dense and less dense region). Therefore,
the density at the boundary is smoothed during the evolution. How-
ever, the corresponding entropy (or, depending on the specific code,
the thermal energy) is artificially fixed in these (isothermal) setups

Figure 7. Time evolution of the VINE vy-amplitude for different values of
the AV parameters α and β, where the Balsara viscosity has been used. The
damping of the amplitudes is completely prohibited by the Balsara switch.

which results in an artificial contribution to the SPH pressure force
term, due to which the two layers are driven apart. One possible
solution is to either adjust the density (Ritchie & Thomas 2001;
Read et al. 2010), or to smooth the entropy (thermal energy) (P08;
Wadsley et al. 2008; Abel 2010).

A remedy has been discussed by P08, who proposed to add a
diffusion term, which is called ATC, to adjust the thermal energy.
(For a detailed study of ATC see P08.) With this method, the KHI
should develop according to the test cases of P08.

In Fig. 9, we test whether the P08 approach is indeed in agree-
ment with our analytical prediction. Note that P08 has a method
implemented to account for the artificial viscous dissipation caused
by AV (similar to the Balsara viscosity). Thus, the viscous effects of
AV are strongly reduced. For DC = 10 and using 5122 particles in
the dense layer, we indeed find good agreement between measured
and analytical growth rates. If the standard SPH scheme is used,
a correction term like ATC has to be included to obtain a KHI in
shear flows with different densities, which is consistent with the
analytical prediction.

(ii) KHI growth using equal and different particle masses
First, we investigate the development of the KHI for the standard
SPH case of equal mass resolution throughout the computational
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Figure 8. Like Fig. 10 top panel, but for different density contrasts. From top to bottom, we show DC = 2, 3, 6. For DC ≥ 6 the KHI does not develop anymore.

Figure 9. Time evolution of the KHI modelled with P08 for the DC = 10.
The dot–dashed line corresponds to the analytical prediction, equation (30),
which is in good agreement with the simulation.

domain, and therefore fewer particles in the low-density fluid layer
(see top panel of Fig. 10 for DC = 10, where the dense medium is
resolved with 5122 particles). This results in a varying spatial reso-
lution, due to the fact that SPH derives the hydrodynamic quantities
within a smoothing length h set by a fixed number of nearest neigh-
bours. This construct – as has been discussed in detail earlier in
e.g. Agertz et al. (2007) – specifically lowers the Reynolds number
of the shear flow across density discontinuities, thus affecting the
evolution of the KHI. As can be seen in the top panel of Fig. 10, the
KHI is completely suppressed.

Secondly, we test the case of equal spatial resolution in both fluid
layers, and therefore unequal particle masses within the computa-
tional domain (Fig. 10, lower panel). Again, we find the KHI to
grow too slowly with respect to the analytical estimate. However,
the suppression is less effective in the latter case.

5 G R I D SI M U L AT I O N S O F T H E K H I

For comparison to the SPH treatment of KHI, we study an identical
setup of fluid layers with the grid-based codes FLASH and PLUTO (see
Section 3.2). We reuse the previously specified initial conditions
with a grid resolution of 5122 cells in the standard case. For FLASH,
we additionally include physical viscosity of various strength in
some of the simulations (see Section 3.2). Note, that for the fol-
lowing examples we use σ 0 = 1 if not otherwise specified, which
does not affect the growth of the amplitudes in the linear regime
(for further information see discussion in the Appendix A).

5.1 Fluid layers with equal densities

5.1.1 Non-viscous evolution

The left-hand panel of Fig. 11 shows the non-viscous KHI evolution,
using FLASH (solid line), PLUTO (dotted line) and for comparison VINE

(dashed line). In the VINE example, the AV has been set to zero (α =
β = 0). The expected analytical growth (equation 26) reduces with
ν = 0 to n ∼ k · U = 2.43 (indicated by the thick dot–dashed line).
The FLASH and PLUTO amplitudes develop in a similar pattern and
are almost undistinguishable. Their fitted slopes within the linear
regime (which lies roughly between t = 0.3 and 0.6) results in
nfit = 2.49. FLASH and PLUTO show a consistent growth in agreement
with the analytical prediction. VINE on the other hand exhibits a
slightly slower growth. This deviation is due to the intrinsic viscosity
(ν int = 0.065) that was estimated in 4.1.

5.1.2 Viscous evolution

The right-hand panel of Fig. 11 shows the viscous KHI amplitudes
using FLASH. The corresponding analytical predictions (equation 26)
are shown by the thick dot–dashed lines for the examples with ν =
0.00003 and ν = 0.03. To quantify the growth of the KHI in the
FLASH simulations, we again fit the slopes of the KHI amplitude in
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Figure 10. KHI with VINE for DC = 10. Top: case of equal particle masses. Bottom: case of unequal particle masses and therefore equal particle numbers in
both layers. The KHI is suppressed in all cases.

Figure 11. Evolution of KHI amplitudes for equal density layers. Left-hand panel: non-viscous evolution for FLASH (solid line) and PLUTO (dotted line).
Additionally, we show the example with VINE (dashed line), where the AV has been set to zero (α = β = 0). Right-hand panel: viscous KHI evolution using
FLASH. The thick dot-dashed lines correspond to the analytical prediction, equation (26).

the linear regime (between t = 0.3 and 0.6). The result along with
the corresponding error is plotted in Fig. 12. For small viscosities
(ν < 0.003), we find the growth rates of the KHI in FLASH to be
in good agreement with the analytical prediction. In this viscosity
range, the dominant term in the analytical prediction (equation 26) is
∼ kU. Therefore, any influence of ν is marginal, and the amplitudes
do not change considerably. FLASH treats the fluid as if ν ≈ 0.

However, with increasing viscosity, the amplitudes should be
damped. This behaviour is in fact visible in the right-hand panel of
Fig. 11 (as well as in Fig. 12). The growth rates of the KHI agree
very well with the analytical prediction.

5.2 Fluid layers with different densities

5.2.1 Non-viscous evolution

Finally, we investigate a density contrast of 10 : 1, similar to the
example studied with VINE (see Section 4.2). Fig. 13 shows the non-
viscous evolution of the KHI for the DC = 10 case (upper line for
FLASH, bottom line for PLUTO). It can be seen that for both codes the
interface layer starts to roll-up and the instability is developed. This
is in disagreement with the previously discussed case using SPH,
where the KHI is completely suppressed for DC > 6 (see 4.2).

The left-hand panel of Fig. 14 presents the corresponding am-
plitudes for FLASH (solid line) and PLUTO (dotted line) compared to
the analytical prediction (thick dot–dashed line), which in this case
reduces to

n = ±i
√

4k2U 2α1α2. (30)

For FLASH we show two different resolutions (5122 and 10242).
The amplitudes resulting in the case of low and high resolution
are effectively indistinguishable. This is an important result, as it
demonstrates that small-scale perturbations, which arises due to
numerical noise and which could violate the linear analysis (as we
then might follow the growth of higher order modes rather than the
initial perturbation) are not important. Therefore, we have shown
that our simulations are converged as we would otherwise expect
the growth of the KHI to be slightly dependent on the grid resolution
(see e.g. the recent findings of Robertson et al. 2010, who had to
smooth the density gradient between the two fluid layers in order
to achieve convergence in terms of grid resolution). Moreover, both
FLASH and PLUTO evolve similarly. For all three examples the slope
of the amplitude evolution can be approximated to 1.4, which is in
good agreement with the analytical expectation. Note that we do not
show the comparison with the VINE amplitude since the KHI does
not evolve for DC = 10 (see Section 4.2).
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Figure 12. Comparison of the analytical expectation and the models for DC = 1 (diamond shaped symbols) and DC = 10 (square symbols). The slopes
derived for FLASH correspond to the analytical fits. The lines represent the analytic prediction, for DC = 1 (solid line, see equation 26) and DC = 10 (dashed
line, see equation 25).

Figure 13. Time evolution of the KHI density in a simulation with ν = 0 and DC = 10 for FLASH (top row) and PLUTO (bottom row). The plotted box size is
from [−1, 1] in both directions, the resolution is 5122. The KHI develops, which is in contrast to the example simulated with VINE.

Many grid codes offer a variety of hydrodynamical solvers. We
therefore tested the influence of different numerical schemes on the
growth of the KHI using PLUTO (see right-hand panel of Fig. 14). We
show three different examples: ‘sim000’ is a Lax–Friedrichs scheme
together with a second-order Runge–Kutta solver (tvdlf); ‘sim001’
implements a two-shock Riemann solver with linear reconstruction
embedded in a second-order Runge–Kutta scheme; ‘sim002’ also

implements a two-shock Riemann solver, but with parabolic re-
construction, and embedded in a third-order Runge–Kutta scheme.
Both, ‘sim001’ and ‘sim002’ show a similar growth of the KHI
in agreement with the analytical prediction (see Fig. 14, top-right
panel). The more diffusive scheme used in ‘sim000’ causes a small
delay in the growth of the KHI, but results in a similar slope within
the linear regime (up to t = 0.6).
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Figure 14. The same as in Fig. 11 but for a DC = 10. Left-hand panel: non-viscous evolution for FLASH (solid line), PLUTO (dotted line) and the high-resolution
(10242) amplitude for FLASH (dashed line). Right-hand panel: non-viscous evolution using PLUTO, with different solvers, see text for more details.

Figure 15. Viscous evolution using FLASH. The thick dot–dashed lines cor-
respond to the analytical prediction, equation (25).

5.2.2 Viscous evolution

Fig. 15 shows the viscous KHI amplitudes using FLASH, which are
increasingly suppressed with ν. The corresponding analytical pre-
diction (equation 25) is shown for ν = 0.0003 and 0.03 (thick dot–
dashed lines). For ν < 0.03, the simulated growth rate is slightly
enhanced by a factor of ∼0.12 as compared to the analytical predic-
tion (see also Fig. 12). However, for higher viscosities (ν ≥ 0.03) we
find good agreement between simulation and analytical prediction.

6 C O N C L U S I O N S

We have studied the KHI applying different numerical schemes.
We use two methods for our SPH models, namely the Tree-SPH
code VINE (Nelson et al. 2009; Wetzstein et al. 2009), and the code
developed by P08. The grid-based simulations of the KHI rely on
FLASH (Fryxell et al. 2000), while as a test for the non-viscous
evolution we also apply PLUTO (Mignone et al. 2007).

We first extended the analytical prescription of the KHI by
Chandrasekhar (1961) to include a constant viscosity. With this
improvement we were able to measure the intrinsic viscosity of our
subsequently performed numerical simulations. We test both SPH
as well as grid codes with this method.

We then concentrated on the KHI evolution with SPH. We per-
formed a resolution study to measure the dependence of the KHI
growth on the mean number of SPH neighbours (n̄SPH) and the total
number of particles, respectively. We found that our simulations
were well resolved and that a different number of n̄SPH did not
significantly influence the KHI growth rate.

In case of equal density shearing layers, we then measured the
intrinsic viscosity in VINE by evaluating our simulations against
the analytical prediction in the linear regime. Without using the
Balsara viscosity the AV parameters α and β effectively lead to a
damping of the KHI. The commonly suggested and used settings of
α = 1 and β = 2 result in a strong suppression of the KHI. More
quantitatively, we derive values of 0.065 < νSPH < 0.1 for 0 <

α < 1. Different values of β do not have a strong impact on νSPH.
By introducing the Balsara viscosity the dissipative effects of the
AV can be reduced significantly, effectively rendering the results to
be independent of α and β. However, the constant floor viscosity
of νSPH = 0.065 prevails. Furthermore for a given α, we estimated
the effective Reynolds number (Re) of the flow. For the minimum
SPH viscosity of νSPH = 0.065 we derive a maximum Reynolds
number of 12. This is very small compared to typical Reynolds
numbers of real turbulent flows (Re > 105). For different density
shearing layers, we confirmed the results discussed in Agertz et al.
(2007), i.e. the KHI is completely suppressed for shear flows with
different densities (in the case of VINE for DC ≥ 6). Here, using the
Balsara switch does not solve the problem. This indicates that other
changes to the SPH formalism are required in order to correctly
model shearing layers of different densities. To demonstrate this we
applied the solution of P08 to our initial conditions for DC = 10. In
this case the KHI was suppressed in VINE. However, we found good
agreement between the analytically predicted amplitude evolution
and the simulation of P08 for DC = 10.

The second part of this paper addresses the non-viscous and vis-
cous KHI evolution using grid codes. In the case of equal density
shearing layers, we found the non-viscous growth rates for shear
flows with FLASH and PLUTO to be in good agreement with the analyt-
ical prediction. In the viscous case, the FLASH amplitudes show only
a minor dependency on the viscosity if ν < 0.03. Increasing the
viscosity leads to a damped evolution, with the simulated growth
coinciding with the analytical prediction.

For non-viscous shear flows (with a density contrast of DC =
10), the KHI does develop for FLASH and PLUTO in agreement with
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the analytical prediction. In the viscous case FLASH (also analysed
with DC = 10) slightly overpredicts the corresponding growth rates
for ν < 0.03 by a constant factor of ∼0.12.

The comparison between VINE, FLASH and PLUTO in the equal den-
sity case, where AV = 0 and ν = 0, demonstrated that VINE does
have an intrinsic viscosity (which we estimated to ν int ∼ 0.065).
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A P P E N D I X A : D E P E N D E N C E O F K H I
AMPLI TUDES O N σ 0

Dependence of KHI on σ 0

This parameter determines the strength of the initial vy-perturbation
(equation 29). In Fig. 2 we show the time evolution of the vy-
amplitude, which describes the growth of the KHI. For t ≤
0.2 the amplitudes decrease since the SPH particles lose kinetic
energy by moving along the y-direction into the area of the oppo-
site stream. If the magnitude of the initial perturbation is low (i.e.
small σ 0), then the decrease in the amplitude is stronger than for
e.g. σ 0 = 1, where the initial perturbation is large and the decrease
less prominent. But independently of the value of σ 0, the subse-
quent growth of the instability is similar, and we obtain comparable
results neglecting the decreasing initial part. Fig. A1 shows the de-
pendency of the KHI amplitudes using different values of σ 0, for
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Figure A1. Variation of KHI amplitude in the case of equal density layers using VINE (left-hand side) and FLASH (right-hand side) for different values of σ 0.
For FLASH the viscosity has been set to ν = 0.3.

Figure B1. Method to measure the KHI amplitudes. The vy-velocity of the particles within the shaded region are subject to the Fourier transformation. The
maximum of the Back transformation gives the maximal amplitude.

VINE (left-hand side) and FLASH (right-hand side). For this example
we use equal density layers, where for FLASH a viscosity of ν = 0.3
has been taken. Clearly visible is the initial drop caused by a low
value of σ 0. This is the case for both codes, and arises due to the
transformation of energy to build up the KHI. The fitted slopes do
not vary much with σ 0. To extract the slopes, we concentrate on the
time evolution after this initial drop.

A P P E N D I X B: ME A S U R I N G T H E K H I
AMPLITU D ES

To measure the amplitude growth of the KHI, we apply a Fourier
transformation (FT) to the vy-velocity component of the grid points.

The FT allows to select the desired modes reducing the numerical
noise.

The region of our focus, x = [−0.5, 0.5] and y = [ − 0.5, 0.5]
contains one mode of the vy-perturbation (equation 29) triggering
the instability, see Fig. B1. The shaded regions comprise the par-
ticles subject to the FT (at x = −0.5 and 0.5). The maximum of
the FT gives the dominant mode k and its corresponding velocity
amplitude, which we compare with the analytical model.
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