THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

DEMAND DRIVEN EVALUATION
WITH EQUATIONS
Satish Thatte

CRL-TR-34-84

August 1984

Room 1079, East Engineering Buillding
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

'Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.

Demand Driven Evaluation with Equations
Satish Thatie
Depantment of ELectnical Engineening and Computen Science
The Univensity of Michigan
Ann Anbon, Michigan 48109

1. Introduction

Term rewriting systems, such as The A-calculus
(Barendregt, 1981), combinatory 1logic (Curry and Feys,
1958), and the FP system (Backus, 1978), are fundamental to
applicative programming. A recent trend 1is to permit a
programmer to describe term rewriting systems using sets of
first-order equations (Burstall, et af, 1980, Goguen and
Tardo, 1979, Hoffmann and O'Donnell, 1982, Turner, 1976).
These sjstems are the focus of this paper, and we refer to
them as First-Order Equational Systems (FOES). FOES expand
the expressive power of applicative programming in many
ways. They can be wused to directly define primitive
functions on tree-like data-structures (Burstall, et af,
1980). Hoffmann and O'Donnell (1982) describe their use in
succinct definitions of interpreters for languages such as
LISP and LUCID (Ashcroft and Wadge, 1977). Their reliance
on pattern matching in defining functions largely eliminates
the need for the explicit use of selectors and predicates
such as LISP's CAR, CDR and NULL, and greatly improves
clarity and readability. FOES readily admit a many-sorted
interpretation (Burstall, et af, 1980, Goguen and Tardo,
1979), and polymorphism (MacQueen, 1981, Milner, 1978), and

hence a very sophisticated form of strict static type-

checking. A lazy interpretation of FOES extends the notion
of computation with infinite structures to all tree-like
structures, and indirectly permits applicative definitions
of circular data structures such as doubly-linked lists,
which can be viewed as cyclically infinite binary trees.

An examination of the operational semantics of existing
term rewriting systems reveals that two approaches are
possible., The evaluation of an expression in any rewriting
system amounts to repeated application of the rewrite rules
until an irreducible (normal) form 1is reached. Most
expressions admit many alternative routes for the rewriting
process, not all of which may terminate. Those that do
terminate may not all reach the same normal form. Some
systems determine the correct route, or computation rule, by
decree. For instance, HOPE (Burstall, et af, 1980) uses
innermost first evaluation except for a special variant of
the cons constructor. FP (Backus(1978) and OBJ (Goguen and
Tardo, 1979) uniformly use the innermost first rule. The
advantage in choosing a rule based on operational
considerations 1is that efficiency and simplicity of
implementation can be built into the choice. Often,
restrictions on the permissible combinations of equations
are also avoided.

The other commonly used approach is to treat the rewrite
rules as the basis for a congruence relation and declare
congruence classes to be the meaning of the terms they

contain. The correctness or safeness of a computation rule

is judged by the requirement that it must reduce each term
to 1its unique normal form equivalent if one exists. This
more "mathematical” approach has been used for the
A—calculué, combinatory logic, and some FOES (see, e.g.,
Hoffmann and O'Donnell, 1982). Apart from the obvious
appeal of semantic elegance, the mathematical approach
coincides with lazy evaluation, which has been shown to be
an attractive way to deal with many programming problems
(Friedman and Wise, 1976, Henderson and Morris, 1976, Kahn
and MacQueen, 1977). One clear limitation of the approach
is that it can only be applied to systems which satisfy the
confluence property (Huet, 1977). More troublesome 1is the
need to find a safe and efficient computation rule for each
system.

The standard example of a safe and optimal computation
rule is the "normal order" rule for the)-calculus
(Vuillemin, 1974). The trouble with FOES is that they are
meant to be user-defined, therefore it is impossible to look
for an appropriate computation rule for each individual
system. The ideal solution would be a rule that is safe and
optimal for all confluent FOES. The "full substitution”
rule of Vuillemin (1974) is safe but not optimal, since it
requires all outermost redices in an expression to be
reduced, 1including, in general, many unnecessary ones. One
way to approach optimality is to look for a safe sequential
rule, 1i.e., a rule that selects exactly one redex at each

step. Such a strategy turns out to be optimal in number of

reduction steps in the so-called noncopying implementations,
in which expressions are represented by directed acyclic
graphs, and all residuals of a given subexpression share the
same representation (0'Donnell, 1977, Vuillemin, 1974).
Safe sequential evaluation is identical 1in spirit to the
less specific notion of demand daiven evaluation, and we use
the | two terms interchangeably throughout this paper.
Unfortunately, not only is a safe sequential rule for all
confluent FOES not known, it almost certainly does not
exist, since taking account of the right-hand sides of
equations amounts to unbounded look-ahead. The reported
work on the subject therefore confines itself to considering
sequentiality based only on the left-hand sides of equations
(Hoffmann and O'Donnell, 1984, Huet and Levy, 1979).

Our goal is to extend the notion of demand driven
evaluation to confluent FOES, i.e., to find a computation
rule for FOES that is both safe and sequential, even when
the right-hand sides of equations are disregarded. The most
commonly studied class of confluent FOES is the class called
negulan by Hoffmann and O'Donnell (1984), and nonambiguous
Linean by Huet and Levy (1979). We shall adopt the former
term. In this paper, we study a subclass of regular FOES
that is practically important and substantially easier to
deal with. The defining characteristic of members of this
class 1is that constructors and defined functions are
represented by disjoint sets of symbols. This restriction

is used in several actual 1languages incorporating FOES

(Burstall, et af, 1980, Subrahmanyam and You, 1983, Turner,
1976), and 1is analogous to the separation of function and
predicate symbols in logic programming (Kowalski, 1979). We
call this subclass constructon FOES to emphasize that
argument patterns in equations of this class contain only
constructor symbols and variables. It turns out that only a
subset of the class of constructor FOES admits the kind of
safe sequential rule we need. Along with the rule, we
therefore need a decision procedure to identify members of
this subset.

In Section 2 we informally describe our approach to the
problem, Section 3 contains the mathematical results, in
Section 4 we discuss possible applications and extensions of
the results, Section 5 describes related work, and Section 6
contains the conclusions.

2. Informal Description
Let us start with an example to show that the leftmost

outermost first rule is not safe for all FOES.

Example 1.

nil

pair_int(X,nil)

pair_int(X,A.L)

<X,A>.pair_int(X,L)
append(nil,L) = L

append(A.L1,L2) = A.append(L1,L2)

£ =f

evaluate: pair_int(f,append(nil,nil))

The syntactic convention in Example 1 and subsequent

examples is that identifiers beginning with wupper case
letters are variables and the rest are function symbols.
The symbols cons is represented by the infix operator "."
for brevity. It 1is clear that although both arguments of
pair_int in the expression are redices, choosing the
leftmost first leads to divergence, while choosing the
rightmost one quickly leads to the normal form nil for the
entire expression. The example suggests that, first, it is
necessary to infer the strictness or otherwise of a defined
function with respect to each of its arguments, and second,
a function is nonstrict with respect to an argument when
that argument is represented by a variable in some equation.

Actually, the example is too simple to bring out the full
complexity of the situation. The distinction between
divergent and nondivergent arguments 1is not sharp. For
instance, the second argument of pair_int needs only as much
constructor structure as is necessary to match one of the

two patterns available for it, as Example 2 illustrates.

Example 2.
head(nil) = error, head(A.L) = A

evaluate: head(pair_int(1,append(1.nil,f)))

Although an attempt to complefely evaluate the second
argument of pair_int in the expression would diverge, any
outermost first strategy yields the normal form <1,1> for
the entire expression. Example 3 shows that even this

degree of strictness may be conditional.

Example 3.

pair_list(X,nil) = nil

pair_list(A.L1,B.L2) = <A,B>,pair_list(L1,L2)
pair_list(nil,B.L2) = <-1,B>.pair_list(nil,L2)

evaluate: (1) head(pair_list(f,nil))

(2) head(pair_list(f,1.nil))

Expression (1) leads to normal form "error" and (2) is
divergent, although both contain exactly the same divergent
subexpression in the same argument position. In other
words, pair_list tolerates a divergent first argument only
if the second argument is nil. Once the second argument
reveals sufficient constructor structure to preclude this
possibility, the structure of the first argument 1is needed
to make further progress.

The outlines of the overall evaluation strategy we need
have now emerged. As in any other demand driven strategy,
applications of defined functions are evaluated from the
outside inwards, as needed. Only the outermost applications
are needed a priori. The reason for selecting any other
application 1is that it stands in such an argument position
for a needed outer application that its evaluated
(constructor) structure must be made manifest in some
degree, and the only way to reveal constructor structure is
to reduce the application. In order to turn the application
into a redex, we must decide which equation is applicable to

it. We therefore choose an argument whose structure is

critical to that decision. When sufficient structure has
been revealed to narrow the choice down as far as possible,
we choose another argument to narrow it down still further,
and so on, until a single equation remains. Note that we
concern ourselves only with the left-hand sides of
equations. The structure of these must be such that we are
able to choose a "critical argument" at each step. 1f we
cannot, the strategy fails. Fortunately, it turns out that
in such a situation no strategy can succeed if it relies
only on the structure of the left-hand sides.

This somewhat simplified description has glossed over
two important details. First, in all our examples so far,
the argument patterns have consisted of at most one
constructbr. The approach generalizes to deeper patterns
with a 1little care, as 1illustrated by Example 4. The
example uses two equations for dual cases of AVL tree

rebalancing by single rotations (see Knuth, 1973, p.454).

Example 4.
rotate(node(Alpha,d_plus,node(Beta,plus,Gamma)))
= node(node(Alpha,balance,Beta),balance,Gamma)

rotate(node(node(Alpha,minus,Beta),d_minus,Gamma))

= node(Alpha,balance,node(Beta,balance,Gamma))

Let wus ignore the real significance of the balance
factors 4 _plus, etc., and consider an arbitrary application
of rotate. After ensuring that the outermost constructor of

the argument is "node", neither the 1left nor the right

subtree of the node can be safely evaluated since one of the
equations has a "don't care" attitude 1in each case. The
next critical structure is the balance factor for the node.
If this is d_plus, then the second equation does not apply
wvhile the first may, and vice versa for d_minus.

The reader will have recognized that the selection
process taking place here 1is commonly done manually in
languages 1like LISP, where the outermost structure of an
argument is first queried using a predicate such as NULL,
The argument may then be taken apart using selectors, and
the pieces further queried selectively, etc. it is
instructive to rewrite the rotate function using
conditionals, selectors, and predicates, in order to
appreciate the gain in clarity brought about by using
equations. The safe sequential computation rule we are
seeking can be interpreted as an automatic version of the
selection process based on the 1implicit 1logical necessity
described by equations.

The second detail to note is that all functions may not
be exhaustively defined, i.e., none of the equations may be
applicable for certain combinations of arguments. In such
an expression, which we call "root-stable" following
Hoffmann and O'Donnell (1984), the outer function symbol is
playing the role of a constructor. All applications
immediately subordinate to a root-stable expression are
therefore needed a priori, as in Example 5.

The outermost application of rotate cannot be dealt with

10

Example 5.

evaluate: rotate(node(head(el),balance,rotate(el,e2,e3)))

using either of the equations 1in Example 4, hence the
applications of head and rotate -immediately subordinate to
it become "outermost". Another way to describe the
situation is that the outermost rotate will be a part of any
eventual normal form for the expression.

We conclude this section with two further examples.
Example 6 shows that all confluent FOES do not safely admit
a sequential evaluation rule. The example uses the
"parallel" logical or function provided as a primitive in

certain applicative languages.

Example 6.

or(X,true) = true, or(true,X) = true
or(false,false) = false

evaluate: or(g,h)

Case 1: g=true, h=h. Case 2: g=g, h=true.

It is impossible to <choose either argument for
evaluation, Choosing the first argument is unsafe if g and
h are defined by the equations labeled Case 2, and the
second one is unsafe if Case 1 is used. Finally, we would
like to emphasize that FOES for which our approach fails may
actually turn out to be sequential, if the right-hand sides
are taken into account, as in the case of the "funny append"

in Example 7:

11

Example 7.
append(L,nil) = L, append(nil,L) = L

append(A.L1,L2) = A.append(L1,L2)

Although the first equation appears to add generality,
in fact it 1is redundant, since lack of structure for the
first argument still means lack of structure for an
application of append. Therefore, it 1is still safe to
evaluate the first argument first,

3. Mathematical Results
3.1 Preliminaries and Definitions
3.1.1 Preliminaries

Most of the material in this section 1is a review of
terminology and constructions commonly used 1in the
literature on term rewriting systems.

A reduction system operates in a non-empty #ranked
alphabet T which contains all symbols in the system. Ty
denotes the set of all ground I-terms for the alphabet.
I-terms, in general, may contain vaxndiabfes drawn from a
countable set X, A I-term 1is said to be Linean iff no
variable occurs more than once in it. We drop the prefix
signifying the alphabet and speak of terms whenever possible
without confusion.

A path p is a possibly empty string of integers. We say
that p ~neaches subterm t/p in term t. The empty string A

reaches the term itself, the string 'k' reaches the kth

argument, 'km' reaches the mth kth

argument of the argument,

12

etc. Given paths p and g, p.qg denotes their concatenation.
The symbols < and < denote the prefix and propern prefix
relations on paths respectively. Paths p and g are said to
be independent iff neither p<g nor gsp. Paths(t) denotes
the set of all paths that reach some subterm in t. Paths(t)
is partitioned into XPaths(t) and IPaths(t), where XPaths(t)
is the subset that reaches variables in t. We frequently
refer to a path pePaths(t) as an occunnence of the subtenm
t/p in t. The expression t[p«w] denotes the term obtained
by replacing t/p at p by w.

A substifution 1is a map from variables to terms. The
meaning of a substitution can be extended naturally to a map
from terms to terms. The application of a substitution a to
a term t is conventionally denoted by ta, where ta 1is the
instance of t produced by simuftaneously substituting a(x)
for every variable x in t. We wuse the notation t<u to
denote that u 1is an instance of t; t<u means t<u and t#u.
If neither t<u nor ust then t and u are said to be
independent. The relation < is clearly a partial order.

The wusual first-order unification algorithm of Robinson
(1965) is denoted by UNIFY. 1If two terms t and u have no
common instance, then UNIFY(t,u) fails, otherwise it
succeeds and returns a subétitution‘a such that ta=ua is the
Least common instance of t and u, i.e., in order-theoretic
terminology, their join.

Since we shall consider safety of computations

independent of the right-hand sides of equations, it is

13

natural for us to treat the collection of left-hand sides as
an independent entity with its own properties. We refer to
this collection as a base for a reduction system.

Definition 1: A base L for a reduction system in the

alphabet I is a finite set {li, m2i>1} of 1linear I-terms
such that:
(1) i#j implies 1, and 1j are independent.
(2) -}teTz such that liit, mix1,
(3) 1f l,/1, e L and peZPathé(l1), then UNIFV(11/p,12) fails
unfess p=A and 1,=1,.
Each member of L is called a (nedex) pattenn. m
Condition (1) states that there are no redundant left-
hand sides, (2) states that there are normal forms, and (3)
states that there are no "critical pairs" (Knuth and Bendix,
1970), which is used to ensure that any reduction system

based on L will be confluent (Huet, 1977).

Definition 2: A reduction system S in alphabet I is a finite

set {<li,ri>, m>i21} of pairs of I-terms such that:
(1) L = {li' m2i21} is a valid base.

(2) Each variable in r; appears also in 1;, m2ix1,
"

Throughout the following, we shall deal with a fixed set
¥ of function symbols, a fixed base L, and a fixed reduction
system S based on L, unless mentioned otherwise. In many
definitions, the entities being defined are qualified with
the subscript L or S signifying the context. These

subscripts are dropped whenever the base or syStem concerned

14

is the fixed one.

Any ueT2 such that u2l, for some lel, is called a nedex.
If t/p is a redex for some peXPaths(t), then p is called a
redex occunnence in t. The set of all redex occurrences in
t is denoted by ROL(t).

A simple neduction t—Ssu occurs in § iff t/s=lq for some
lel, <1,r>eS, and u=t[sfra]. We write t—>u iff t—=>u for
some segRO(t). Finally, t—su is called a reduction sequence
where —> is the reflexive transitive closure of —>. We
use the notation A:t—>u in order to attach a name (in this
case A) to a simple reduction, and similarly also B:t—>u.
A ambiguously denotes all empty reduction sequences. As
with paths, we use the notation A.B to denote the
concatenation of sequences A and B. Such concatenation is
meaningful only if the last term in A is identical to the
first term in B.

The set NFL_c_Tz is the set of noamal forms, and teNFL iff
ROL(t)=¢. If t—>u in S and usNFL, then t 1is said to
nonmalize to u in S, written as u=NORMS(t).

PcPaths(t) is said to be an independent sef of paths in
t 1iff all pairs of distinct paths in P are independent. 1If
PcRO, (t) then P is called an Jindependent set of redex
occunnences, denoted by 1PsISR0L(t). The significance of
independent sets of redices is that the order in which they
are reduced is immaterial to the result obtained by reducing
them all. This permits us to introduce the notion of a

multireduction.

15

Definition 3: Let QeISRO(t), and let {g4,..,q,} be an

arbitrary enumeration of Q, where t/qi=liai, <1i,ri>eS,
m2i21, Let ti=t, and ti+1=ti[qi+riai], m2&21. We say that
the muliineduction t—9>tm+1 occurs in S. The term t_, . is
clearly independent of the enumeration of Q. =

We treat a multireduction as a sequence of simple
reductions whenever convenient. Although the notion of
reduction sequence generalizes naturally to that of a
multiseqguence, we do not need the generalization. 1In fact,
our only serious use of multireductions occurs in
Proposition 35, where it 1is necessary to deal with the
forward migration of residual redices 1in rearranging a
reduction sequence.

The notion of residuals, which is introduced next, 1is
crucial 1in analysing the behavior of sequences of
reductions. Residuals describe the way in which different
parts of an expression are affected by a simple reduction,
The left-hand side pattern in the redex is destroyed. Parts
of the expression that are reached by extensions of the
redex occurrence going beyond the pattern are rearranged
according to the right-hand side. A possible rearrangement
is disappearance, which 1is how outermost reductions
sometimes make divergent inner expressions disappear. The

rest of the expression is essentially unaffected.

Definifion 4: Suppose A:t—§>u, where t/a=la, <1,r>eS. Let

qgePaths(t). The set g\A, called the nesiduals of g after A,

is defined as follows:

16

(1) if agg then gq\A = {q}
(2) if a=g then gq\A = ¢
(3) otherwise, let a=qg.s. if s € IPathsa(l) then qg\A = ¢.

Otherwise, 3s'e XPaths(l) such that s'<s. Let s=s'.w,
x=1/s', and R = {v | r/v=x}. Then q\A = {a.v.w | veR}

Proposition 5: If A:t—=>t' and gePaths(t), then g\A 1is an

independent set of paths.
Proof: Obvious from the definition of g\A. =

The following Proposition is a succinct statement of the
reason for excluding "critical pairs" in Definition 1.

Proposition 6: qeRO(t), A:t—>u, implies that g\AcRO(u).

Proof: Straightforward by condition (3) in Definition 1. =
Suppose A:t—>u and QcPaths(t). Then the set Q\A is

simply u{g\A | geQ}. This can be extended to sequences of

reductions by composition, i.e.,

Q\A = Q

Q\B.C = (Q\B)\C

I1f gePaths(t), we use the notation q\B instead of {qg}\B.

Proposition 1: If PeISRO(t), and A:t—>t', then

P\AgISRO(t"').

Provf: Simple consequence of Propositions 5 and 6. =

We conclude this section by stating a fundamental
property of our class of confluent FOES. This property is
called "closure" by O'Donnell (1977), and the "parallel
moves lemma" by Huet and Levy (1979). Another appropriate

name would be the "one step confluence" property.

17

Lemma §: Let A:t-S>u and B:t—2>v be multireductions. Let
R=P\B , S=Q\A, and u—§>w. Then, v—5>w.
Proof: By Proposition 7, SeISRO(u), and ReISRO(v). For the
rest, see the proof of‘Lemma 11 in Huet (1977) or the proofs
of Lemma 12 and Theorem 17 in O'Donnell (1977). =
3.1.2 Definitions

The first concept in need of a definition is the concept
of sequential evaluation itself. We are interested in
sequential evaluation because we believe it embodies the
prerequisites for efficient evaluation strategies for FOES.
As such, our definition excludes the possibility of using
look-ahead and/or memory in choosing redices.

A {nedex) sefection algorithm A is a function of a base L
and a ground term t such that, A(L,t) either fails or
returns some qaROL(t). If L is fixed then the specialized
or "curried" version of A is denoted by AL'

Definition 9: Given a selection algorithm A, and teT the

zl
evaluation sequence for t produced by A is the reduction
sequence to—>..—>t —>.. such that:
(1) tg =t
(2) if A (t) fails then the sequence teaminates in t,, else
r
A(L)(t) returns r and t_—>t ...
The sequence is denoted by oy S(t). If the sequence
7
terminates in t for some n, then we write ¢ (t)y = t_,
n A,S n
else we write oA's(t)T. N

Definition 10: A selection algorithm A is said to be safe

for a system S based on L iff given any ueNFL and any t such

18

that u=N0RMS(t), OA,S(t)* = u, =

Definition 11: A base L is said to be sequentiafl 1iff there

is a selection algorithm A which is safe for any S based on
L. In this case, A is said to sequentialize L. =

So far, we have been speaking of confluent FOES 1in
general. We now introduce the class of constructor FOES
which forms the subject of our study in this paper.
Definition 12: Suppose L = {li, m2i21}, Let 1, =

1

fi(“i1""“ini)' m2i>1, T = {fi' mzi21}, and A = EZ-Tp. 4

is called the set of constructons of L. A term f(u1,..,um)

is said to be a A -pattenn iff fel; and each u,; is a
AL-term, m2i21, L is said to be a constructon base iff all
lisL are A -patterns. A system based on such an L is called
a constructon sysiem, =

Notice that, by definition, applications of constructors
are always root-stable. In the following discussion, we
assume that our fixed base L is a constructor base, and the
alphabet I is accordingly partitioned into I' and A, where A
is the set of constructors.

We now have a precise definition of our problem. We
need
(1) A decision procedure to identify sequential constructor

bases, and
(2) A redex selection algorithm ("computation rule") that

sequentializes aff sequential constructor bases.

We still need a precise formulation of the demand driven

approach outlined in section 2. The critical notion is that

19

of a necessary redex, which 1is intuitively a redex that
helps narrow down the set of equations compatible with the
given term. The identification of compatible equations 1is
based on the known structure of a given term, which is
inferred using the fact that applications of constructors
are root-stable.

Given a ground term t, u = KNOWN(t) is the largest
linear A-term or A-pattern such that ust. Note that the set
of all linear A-terms or A-patterns w such that ws<t |is
nonempty and finite, and hence contains a largest member by
the properties of UNIFY. The variables in KNOWN(t) are
assumed to be new. For a ground term t, define
L, = {lel | UNTFY(1,KNOWN(t)) succeeds},
where Lt is the set of equations compatible with t.

Let PDONO(t)=XPaths(KNOWN(t)). Each pePDNO(t) is said to
be potentially dinectly necessarny for t. If, in addition,
pezPaths(l) for each leLt, then p is said to be directly
necessany for t, denoted by peDNO;(t). The notion of
necessary redex occurrences essentially iterates directly
necessary occurrences until a redex 1is reached. The
exception is the situation noted in section 2, when root-
stable outermost applications of defined functions must be
taken into account. The structure of the definition below
caters more to the needs of later proofs by structural
induction than to intuitive transparency.

Definition 13: peROL(t) is said to be necessary for t,

written as peNRO, (t), iff one of the following holds:

20

(1) p = A or p e DNO,(t)

(2) quNOL(t), p=q.r, and r ¢ NROL(t/q)

(3) iquNOL(t) such that RO, (t/q)=¢, rePDNO(t), p=r.s, and
s £ NRO (t/r)

Example 8 illustrates these definitions.

Example 8.

L = {f(X,a,b), £(b,X,a), f(a,b,X)}

t = f(a,f(b,a,f(a,a,b)),f(b,b,a))

u=1t/2 = f(b,a,f(a,a,b))

KNOWN(t) = f(a,¥1,Y2) PONO(t) = {2,3}
DNO(t) = {2} RO(t) = {2.3,3}
KNOWN(u) = £(b,a,¥3) PONO(u) = {3}
DNO(u) = {3} | RO(u) = {3}
NRO(u) = {3} NRO(t) = {2.3}

Our whole approach rests on the assumption that a
necessary redex can always be found in a reducible
expression. This is clearly not the case for all FOES, and
our conjecture 1is that onfy those FOES which satisfy this
assumption are sequential in the sense of Definition 11. We

say that the bases of such FOES are strictly sequential.

Definition 14: L is said to be stnictly sequential iff
whenever ROL(t) is nonempty, NROL(t) is also nonempty. =

It 1is clearly straightforward to write an algorithm
that, given a strictly sequential base and a reducible

expression, will always return a necessary redex occurrence.

21

It remains to show that:

(1) Strict sequentiality is decidable, and

(2) ordinary and strict sequentiality coincide for
constructor bases.

3.2 The Decidability of Strict Sequentiality

Our decision procedure Check is given in Algorithm 1.
Check uses the notation that for each feI, with arity k,
zf = f(x1,..,xk), all xieX are new.

LY = q1et | 2f <1} ana PP = {1,.. k).

As the structure of Check indicates, strict
sequentiality 1is a property of the group of equations
defining each individual function. In fact, fcheck is
simply an abstract version of a translator that transforms
each such group into a singfe equation involving nested
conditionals, selectors, and predicates. The path p chosen
in each call of fcheck corresponds to the argument or part
of argument whose structure needs to be queried next, given
that the structure of the application of f discovered so far
corresponds to z. The argument 2z plays no part 1in the
decision procedure. Its presence 1is solely a device to
facilitate statements and proofs of the properties of Check.
an example of a base rejected by Check is found in Example 9
below,

We first prove a few simple technical facts about Check.
A call fcheck(L,P,z) is said to be Legitimate iff it results

from the call Check(L).

Proposition 15: In any legitimate call fcheck(L,P,z) the

22

Function Check(L)
Let S¢ = fcheck(Lf,Pf,zf)

Return the conjunction of Seo fel

Function fcheck(L,P,z)
If |L|<1 Then Return True
Else Let Q = {qeP | gféXPaths(l), leL}
If Q = ¢ Then Return False
Else choose any p € Q
partition L into Lc, cel
where leL_ iff 1/p 2 c(x1,..,xk), k20,
and each x; is a new variable

correspondingly, for each c,

P, =P - {p} v {p.j, 15j<k}
Z, = zlpec(yqreeryy)]
where each y, is a new variable

Return the conjunction of fcheck(Lc,Pc,zc), cel

Algorithm 1

following statements hold:

(1)
(2)
(3)
(4)
(5)
(6)

P c Paths(l) for each leL.

z<]l for every leL.

for each 1 ¢ L-L, UNIFY(1l,z) fails.
P=XPaths(z).

|[L|>1 implies P#¢.

if fcheck(L',P',2') is also a legitimate call, then

23

either UNIFY(z,z') fails, or z and z' are not

independent.
Proof: Assertion (5) follows from (2) and (4). The proofs
of the rest proceed by 1induction on the 1length of the
calling chain resulting in the call fcheck(L,P,z).
Bas.is: The length is 1, and the call is fcheck(Lf,Pf,zf) for
some f. All assertions except (6) are obviously true. For
(6), it 1is sufficient to note that if a call
fcheck(L1,P1,21) results eventually from a call
fcheck(Lz;Pz,zz), then z,>z,, and also that UNIFV(zf,zg)
fails whenever f#g.
Induction: The 1inductive assumption is that the assertions
hold for all calls with <calling chains of 1length n21.
Suppose the call fcheck(L,P,z) has a chain of length n+1.
Clearly, the call results immediately from another call with
chain length n, and all assertions hold for the latter by
the inductive assumption. The inductive step 1is now
straightforward for all assertions except (6). For (6), the
same observations as in the basis case suffice. ®

Proposition 16: Check(L) terminates.

Proof: Let zlength(z) = Jlength(p), pefPaths(z). By (2) in
Proposition 15, =zlength(z) has a finite upper bound in any
legitimate call fcheck(L,P,2) unless L=¢. Moreover,
zlength(zc)>zlength(z) by (4) in Proposition 15. Hence,
each legitimate call fcheck(L,P,z) terminates, either
because L=¢ or because each chain of recursive calls issuing

from it is bounded by the limit on the monotonic increasing

24

quantity zlength(z). =

The reason Check guarantees strict sequentiality is
that, whenever we have a term t that is neither irreducible
nor a redex, the path p chosen in the call fcheck(L,P,z)
with the largest 2z compatible with t reaches a directly
necessary subterm of t. This is the intuitive idea in the
next Proposition.
Proposition 17: Check (L), téNFL, and A£RO(t) 1implies
DNO(t)#¢.

Proof: Suppose the antecedents hold. If Lo=¢, then
condition (2) in the definition of DNO(t) is vacuous, and it
is easy to see that in that case, RO(t)#4¢ implies DNO(t)#¢.
Suppose Lt¢¢. Let 2 be the set of A-patterns u such that
us<t and fcheck(M,R,u) is a legitimate call for some M and R.
Since Lt¢¢, Z is cleérly nonempty, and also finite. By (6)
in Proposition 15, Z is linearly ordered, and hence contains
a maximal element z, which OCCUrs in some call
fcheck(L,P,z).

Let Q = {qeP | qfXPaths(l) for any 1leL}. By (3) in
Proposition 15, Lth. By the maximality of z,
QcXPaths (KNOWN(t))=PDNO(t). By (1) in Proposition 15, and
the above considerations, we have QcDNO(t). It remains to
show that Q#¢. If |L|>1 then since Check(L) we have Q#¢.
Since L #¢, the only other possibility is that L={1}. Since
AFRO(t), 1ZKNOWN(t). Since PcPaths(l) and P=XPaths(z) by
Proposition 15, if Q=¢ then the only way z<l is if z=1,

However, by (2) in Proposition 15, z<1, hence Q=¢ implies

25

z=1 and 1<t, contradicting the assumption that AZRO(t). =

It only remains to iterate this fact by structural
induction.
Lemma 1§: Check(L) implies L is strictly sequential.
Proof: We must show that whenever RO(t) is nonempty, NRO(t)
is also nonempty. The proof proceeds by induction on the
structure of t.
Basis: tel, where RO(t)=NRO(t)={A}.
Induction: The inductive assumption 1is that the required
property holds for all proper subterms of t. If t is a
redex then AeNRO(t). Suppose it is not, and reR0(t). By
Proposition 17 above we have DNO(t)#¢. Suppose peDNO(t).
If RO(t/p)#¢ then by the inductive assumption 3geNRO(t/p),
and p.qeNRO(t). 1If RO(t/p)=¢ then let sePaths(t) be the
nonempty path such that r=s.w and sePDNO(t). By the
inductive assumption NRO(t/s)#¢, and therefore by (3) in
Definition 13, NRO(t)#4. =

We show that Check is a complete decision procedure by
defining a function "strange" which constructs a counter
example to prove that L is not strictly sequential, whenever
Check(L) fails.

Definition 19: If a legitimate call fcheck(L,P,z) dinectly

returns false, being unable to find a suitable peP, then

strange(L,P,z) 1is a term defined as follows. Let L

{10,..,1m}, m>1, Partition P into PiveosP such that Pi c

ml
XPathA(li). This 1is possible by the failure condition in

fcheck. Let Vi={z/p | psPi}. By (4) 1in Proposition 15,

26

each V,cX. Let nx(i)=(i+1)mod(m+1). Define a substitution
a such that:

al(x) = if xeV, then a simple ground instance of 1
else x

nx(i)

where a simple ground instance of a term is an instance in
which each variable is replaced by a normal form. Note that
o is well-defined since v, are disjoint by the construction

of z. strange(L,P,z) =4ef 20- ©

Example 9.
Let L be as in Example 8. Clearly, fcheck(Lf,Pf,zf)
fails directly, and thus strange(Lf,Pf,zf) is well

defined. We have,

p = pf - {1,2,3}, z = zF = £(20,21,22)

1, = £(X,a,b), 1, = £(b,X,a), 1, = f(a,b,X)

0 1 2
Therefore, P0 = {1}, P1 {21}, P2 = {3}

Vo = {20}, v, = {z1}, v, = {z2]

With straightforward choices for simple ground instances,

strange(L,P,z) = f(f(b,a,a),f(a,b,a),f(a,a,b)).

Proposition 20: Whenever w = strange(L,P,z) is well-defined,

(1) w is a ground term.

(2) P = RO(w) # ¢

(3) DNO(w)=¢

(4) NRO(w)=¢

Proof: (1) 1is a consequence of (4) in Proposition 15. The
P=R0(w) part of (2) merely asserts that A#ZRO(w). To see

this, note that since w is well-defined |L|>1. Moreover,

27

AeRO(w) would mean 3lel. such that 1<z, and by (2) in
Proposition 15, 1=z, This would imply, again by (2) in
Proposition 15, that L 1is not an independent set,
contradicting (1) in Definition 1. P#¢ follows from (5) in
Proposition 15 since |L|>1. By the construction of w,
KNOWN(w)=z, hence by (2) and (3) in Proposition 15, L=Lw.
We know that each QePDNO(w)=XPaths(z) reaches a variable in
some leL=L by the construction of w, hence DNO(w)=¢. Since
PONO(w)=XPaths(z)=P=R0(w) by (4) in Proposition 15 and (2)
above, NRO(w)=¢ is obvious, =
Lemma 21: Check(L)=false implies that L is not strictly
sequential.
Proof: Check(L)=false 1implies that some legitimate call
fcheck(L,P,z) fails directly, and therefore w=strange(L,P,z)
is well-defined. Assertions (2) and (4) in Proposition 20
then imply that L is not strictly sequential., =

This concludes the demonstration of the decidability of
strict sequentiality.
Theonem 22: Check(L) iff L is strictly sequential, 1i.e.,
Check is a decision procedure for strict seguentiality of
constructor bases.
Proof: Immediate consequence of Lemmas 18 and 21. =
3.3 The Equivalence of Ordinary and Strict Sequentiality

The firét part of this proof shows that every strictly
sequential system is sequential. The proof proceeds in two
steps. The first stép is to show that all demand driven

computations for normalizable terms are essentially the

28

same. The second step is to show that the normal form
equivalent of each normalizable term can be obtained by some
demand driven computation. Together, the two steps show
that any demand driven computation obtains the normal form
equivalent of a normalizable term.
We first need to establish certain important properties
of necessary redex occurrences:
(1) A necessary redex 1is always an outermost redex
(Proposition 25),
(2) Necessary redex occurrences persist as such until they
are reduced (Lemma 29), and
(3) In a strictly sequential system, the last redex to be
reduced beforé reaching normal form 1is always a
necessary one (Lemma 31).
Note that (3) is really a corollary of (2). 1In .proving
(1) and (2), we start with properties of DN0, and extend
them to NRO by structural induction.

Proposition 23: AeRO(t) implies DNO(t)=¢.

Proof: AeRO(t) implies KNOWN(t)21 for some 1lel,, therefore
PONO(t)nZPaths(l) is clearly empty. ®

Conollany 24: A e RO(t) implies NRO(t) = {A}. =

Proposition 25: 1f peNRO(t) and seRO(t) then sgp.

Proof: By induction on the structure of t. The basis case
is that te}, which is trivial. For the 1inductive step,
assume that the proposition holds for all proper subterms of
t. There are three cases, according to Definition 13.

Case 1: p=A or peDNO(t). Recall that if peDNO(t) then by

29

Proposition 23, A£RO(t), hence s#A. The rest follows from
the fact that pePDNO(t).

Case 2: qeDNO(t), p=q.r, and reNRO(t/q). We have AZRO(t) as
before. By Corollary 24, if qeR0O(t) then p=q. Therefore,
s#A and s#g. The rest follows by the inductive assumption,
Case 3: Similar to Case 2, =

Conollany 26: NRO(t)eISRO(t). =

Proposition 27: Suppose peDNO(t), A:t—£>u, and p#r, then
p\A={p}, and peDNO(u).

Proof: Since DNO(t)#4¢, by Proposition 23, r#A. By the
antecedents and the definition of DNO, rgp, hence p\A = {p}.
Moreover, since r#j, Luth, and peDNO(u). n

Proposition 28: peNRO(t), A:t—=>u, and p#s implies that
p\A={p} and peNRO(u).

Proog: By Proposition 25, sg£p, therefore p\A={p}, and
moreover, S#A. peNRO(u) 1is then straightforward by
analysing the cases of Definition 13, using Proposition
27, =

A seguence Bit—>u is “said to presenve peRO(t) 1iff
p\B={p}.
Lemma 29: Suppose A:t-2>u and reNRO(t). Then either A
preserves r and reNRO(u), or A=A

*

1
preserves r, A2:v—£>w, and A3:w_i>u.
Proof: By induction on |A|. The basis |A|=0 is trivial,
Suppose |A|=n+1. Let A=A,.A,, where A :t-—>>t, is the first
reduction in the sequence. By Proposition 28, either r=s,

or r\A,={r} and reNRO(t,). The rest follows by the

30

inductive assumption, L]
Conollany 30: 1f geNRO(t), A:t—2u is a multireduction, and
g£Q, then g\a={g} and geNRO(u). =
Lemma 31: In a strictly sequential system, if A:t—S>u and
ueNF then reNRO(t).
Proof: By strict sequentiality, NRO(t) 1is not empty. By
Lemma 29, each member of NRO(t) 1is either reduced or
preserved, and since u 1is irreducible, it must be the
former., =

A reduction sequence tg—>t—>..—>t —>.. is said to
be noamal iff each simple reduction 1is a necessary one,
i.e., iff 1in each reduction t.—2st

i 1+1

seNRO(t,). A is normal by convention. Normal sequences are

in the sequence,

simply the formal version of demand driven computations in
our context. Using the properties of necessary sequences,

we now establish the properties of normal sequences.

Proposition 32: I1f Art—su is normal, ueNFL, reNRO(t), and
t-£>t', then there is a normal sequence B:t'—>u such that
|B|=|A|-1.

Proof: Since USNFL, A does not preserve r. Therefore, by
Lemma 29, A=A1.A2.A3 such that A1:t—i>v preserves r, and

A2:v—£>w. Proceed by induction on [A,

Basis: |A,|=0. Trivial.

Induction: Assume for |A,|{=n. Suppose |A,[=n+1. Let
- . __* v L3 __S. =
A=A, A, where Ajqit—>v', A12.v' >v. Clearly, |A11| n.
Since A, preserves r, reNRO(v'), and since A, is normal

seNRO(v'), therefore r and s are independent. The order of

31

reductions using r and s may therefore be reversed without
affecting the result, i.e., v'—Lsv"S5w, The rest follows
by applying the inductive assumption to Ayy. ®

Proposition 33: 1f Att—F>u and B:t—>w are normal sequences,

ueNF, , and |A]=|B|, then u=w,
Proof: Straightforward by induction on |A| using Proposition
32, =
Lemma 34: 1f A:t—>u and B:t—>v are normal sequences in a
strictly sequential system, and ueNFL, then there is a
normal sequence D = B.C such that |D|=|A|, and D:t—>u.
Proof: By Proposition 33, |[B|>|A| 1is impossible, and
whenever |B|<|A|, wgNF , hence NRO(w)#¢. B can therefore be
extended as a normal sequence to the same length as A. Let
this extension be C, and D=B.C. By Proposition 33,
Dit—>u, ®

Lemma 34 shows that all normal sequences for
normalizable terms are essentially the same. The next
Proposition contains our only real use of multireductions
and the so-called parallel moves lemma (Lemma 8). The
Proposition states that in a strictly sequential system, any
sequence which starts with an arbitrary multireduction, and
reaches normal form by a demand driven computation
thereafter, can be rearranged to an entirely demand driven
computation. The essential idea is to migrate the redices
in the initial multireduction forward as residuals until
they either become necessary or disappear. The parallel

moves lemma guarantees that the migration can take place

32

without changing the final result. The upper bound on the
length of terminating normal sequences is crucial in

ensuring that the migration process terminates.

Proposition 35: In a strictly sequential system, If A1:t—§>u
is a multireduction, A2:u—i>y is normal, and yeNFL, then
there is a normal sequence B:t—i>y.

Proof: The proof proceeds by induction on |A
2

Basis: |A,|=0. 1In this case, since S is an independent set,
and hence may be reduced in any order, Lemma 31 implies that
ScNRO(t), and B=3,.
Induction: Suppose |A2|=n+1. We may assume without loss of
generality that SaNRO(t)=4, since normal redices in S could
be included in A,. By strict sequentiality, NRO(t)#4. Let
reNRO(t). By Corollary 30, r\A1={r}, and reNRO(u). By
Proposition 32, if A3:u—£>u', there is A4:u'—i>y such that
A, is normal and |A,]=n. Let A5:t—£>t', R=S\Ag,
P=RaNRO(t'), and Q=R-P. By Lemma 8, t'—R,u'. Therefore
t'-E5t" and A6:t"—g>u'. The rest follows by applying the
inductive assumption to Ag and Ag. ®

Lemma 36: In a strictly sequential constructor system, if
u=NORM(t) then there is a normal sequence B:t—>u.

Proof: Suppose Ast—>u. If |A|=0 then B=A. Suppose |Al|>0.
Let A, be the longest normal suffix of A, and A=A .A,. By
Lemma 31, [A,|>0. Proceed by induction on |A,].

Basis: |A,|=0, B=A,=A.

2
Induction: Assume the result for |A,|=n. Suppose |A |=n+1.

= g L it
Let A1-A11.A12, A11.t >v, A12v >W. By Proposition 35,

33

there is a normal sequence A3:v—i>u. Applying the inductive
assumption to Ay, yields the rest. =

N is said to be a nowmal selection algornithm iff
whenever NROL(t)#¢, N(L,t)sNROL(t), and N(L,t) fails
otherwise.
Lemma 37: Any normal selection algorithm N sequentializes
alf strictly sequential constructor bases.
Proof: Suppose L is strictly sequential, S is based on L and
u=NORMS(t). By Lemma 36, there is a normal sequence
B:t—>u. From Lemma 34, it follows that loN'S(t)|=|B|, and
oN’S(t)+=u. u

Finally, if the decision procedure for strict
sequentiality rejects a base, that base 1is necessarily
nonsequential. The function strange 1is again wused 1in
constructing the necessary counter example.
Lemma 38: If L is a constructor base and Check(L)=false,
then L is not sequential.

Proof {sketch): Check(L)=false implies that w=strange(L,P,z)

is well-defined for some L={lo,..,1m}, P=Pyu..uP , and z,

m
where m21. Now suppose A sequentializes L. Clearly, w can
be normalized 1in some system based on L, hence A(L,w) must
succeed and return some path QgeP. Suppose qeP; . We now
construct a system S based on L for which A is not safe.
Let k=(i+1)mod(m+1), and let <1k,lk>eS. Since t/g 1is an
instance of L oAIS(w)T. By the construction of w,

QeXPathb(li). Let <1i,r>eS, where r 1is any normal form.

Clearly, w can be made an instance of 1i by suitably

34

"filling in" S (including a suitable choice for r), since
all instances of 1k in w are reached by paths that reach
variables in li' and the right-hand sides corresponding to
left-hand sides other than li and lk are unconstrained given
(3) in Definition 1. Thus, r=NORMS(w), and for A to be safe
for S, we must have oA,s(w)+=r. s Example 10 illustrates the

construction suggested in the proof above.

Example 10.
Let w=strange(L,P,z) as constructed in Example 9.
RO(w) = {1,2,3}. Suppose AL(w)=1eP0. Then i=0 and k=1.

The required counterexample S is:

f(X,a,b) = b, f(b,X,a) = £(b,X,a), f(a,b,X) = a

Theonem 39: A constructor base 1is sequential iff it is
strictly sequential.
Proof: Straightforward consequence of Theorem 22, and Lemmas
37 and 38, =
Conollany 40: Check is a decision procedure for the
sequentiality of constructor bases. =
Conollany 41: Any normal selection algorithm sequentializes
all sequential constructor bases. =
4, Applications

The obvious application of the results of the previous
section 1is an efficient evaluator for sequential FOES. A
first effort in that direction is the (nondeterministic)

normal selection algorithm Select given in Algorithm 2.

Although Select can be used to produce normal sequences

35

Function Select(L,t)

Return get(¢,{A},t)

Function get(L,P,t)
Let Q = {geP | gfXPaths(l), leL}
If Q=¢ Then Fail, Else Choose any p € Q
Let u = t/p
If u is a redex then return p
Else If u = g(u1,..,uk), k>0, gel
Then Let q = get(L9,P9,u)
If get is successful Then Return p.g
Else Return get(¢,P-{p},t)
Else Let u = c(u1n;.,uk), k20, ceA
Return get(Lc,Pc,t)

where Lc, Pc are defined as in fcheck

Algorithm 2

which are optimal in the abstract world where only the
reduction steps in a noncopying reducer count, its actual
use is obviously very expensive since the cost of §inding a
necessary redex far outweighs the cost of the reduction
step. The search cost can be reduced substantially if the
search does not begin at the root of the entire expression
each time. Instead, once a directly necessary subexpression
is identified, it should be worked on until it is reduced to

a root-stable form. Such a strategy reduces search cost by

36

increasingly localizing the search for the next redex. The
function Evaluate in Algorithm 3 realizes this modification.
Note that Evaluate is not a selection algorithm, it is an
actual evaluator that returns the normal form equivalent of

the given expression. The sequential system involved is S.

Function Evaluate(t) Function Root_Stabilize(t)
Let w = Root_Stabilize(t) Let t = £(t,,..,t,)
Let Q = PDNO(w) Return Spin(LE,PE, ¢t)
For geQ Do

w := w[g<«Evaluate(w/q)]

Return w

Function Spin(L,P,t)
Let Q = {geP | géXPaths(l), leL}
If Q=¢ Then t=la, <1,r>eS (see Proposition 17)
Return Root_Stabilize(ra)

Else Choose some q € Q

Let w = Root_Stabilize(t/q)
=clw,,.oo,v)
Let v = t[gew]

If ¢ ¢ T Then Return v
Else Return Spin(Lc,Pc,v)

where L.» P, are defined as in fcheck

Algorithm 3

37

The nondeterministic choice of an occurrence from set Q
in both Root_Stabilize and Evaluate suggests the possibility
of safe parallel evaluation. Safe parallelism is usually
associated with the notion of strictness. Conventionally,
the strictness of a function with respect to an argument is
understood to mean that it is safe to reduce that argument
to nonmal fonm before applying the function. 1In our case, a
finer-grained notion of strictness 1is appropriate. A
function is strict with respect to an argument in this sense
if it is safe to reduce that argument to roof-stabfe foam
before attempting to apply the function. This notion of
strictness is applicable to parts of arguments as well. We
believe that our notion of strictness and the parallelism it
offers may be practically significant, since root-
stabilization is clearly a much more substantial operation
than single step reduction, coinciding with complete
evaluation in the case of scalar types.

Other possibie applications 1include translation of
groups of equations to a single logically eqguivalent one, in
preparation for optimization as described by Hudak (1984),
and safe translation of lazy equational programs to logic
programming languages such as PROLOG (Subréhmanyam and You,
1983). Our results can also be used to derive a complete
"semantic wunification algorithm"™ for wuse 1in integrating
logic and functional programming as suggested by
Subrahmanyam and You (1984).

Although the formal results presented in section 3 are

38

applicable to constructor FOES only, they can be extended to
cover all (regular) bases, using the simulation technique
described by Thatte (1984). The basic idea of the technique
is to treat the outermost function symbol in every root-
stable term as a constructor. It 1is <clearly possible to
extend our Evaluate function to accommodate this change.
5. Related Work
Safe and optimal computations with recursive equations

have been extensively investigated (Vuillemin, 1974, Berry
and Levy, 1979, Cadiou, 1972, Wadsworth, 1971). Confluence
and other properties of FOES are discussed by Huet (1977),
0'Donnell (1977), and Rosen (1973). Much of this work has
been influenced by the seminal study of confluencé by Knuth
and Bendix (1970). The issue of sequential evaluation with
confluent FOES has been addressed by Hoffmann and O'Donnell
(1979,1984), and by Huet and Levy (1979). Hoffmann and
O'Donnell's methods are applicable to a restricted class of
FOES for which a preorder examination of redices without
backtracking is safe. Huet and Levy have independently
arrived at results similar to ours for regular FOES using a
much more abstract approach. In contrast to their work, we
have chosen to tackle the simpler problem of constructor
FOES using a direct constructive approach which we feel is
more easily amenable to efficient implementation.
6. Conclusions

We have presented abstract algorithms for checking

sequentiality, and for safe sequential, i.e., demand driven

39

evaluation of expressions, in the context of constructor
FOES. Clearly, much work remains to be done on methods for
efficient implementation before the approach becomes a
serious practical alternative. We believe that a suitable
concrete implementation of sequential FOES must also be
amenable to smooth integration with an implementation of a
language with higher-order functions, since the two
paradigms bring complementary strengths to applicative
programming. We are currently investigating the possibility
of using a generalization of the implementation technique
based on combinators due to Turner (1979).

More work 1is also needed to explore the applications
discussed in Section 4, especially the possibility of using
our refined notion of strictness in parallel evaluation.
Finally, our results need to be extended to cover all
regular FOES.

1 am grateful to John Wiersba for suggesting a crucial
element of the current version of the decision procedure

Check.,

40

References

Ashcroft, E.A., and Wadge, W.W. (1977), "Lucid, a non-

Procedural Language with Iteration," Communications of the
ACM 20(7).

Backus, John (1978), "Can Programming be Liberated from the
von Neumann Style? A Functional Style and Its Algebra of
Programs," Communications of the ACM 21(8).

Barendregt, H.P. (1981), "The Lambda Calculus: Its Syntax
and Semantics," North-Holland, Amsterdam.

Berry, G., and Levy, J-J. (1979), "Minimal and Optimal
Computations of Recursive Programs," Journal of the ACM
26(1).

Burstall, R.M., MacQueen, D.B., and Sanella, D.T. (1980),
"HOPE: An Experimental Applicative Language," Tech. Rep.
CSR-62-80, Univ. of Edinburgh, Scotland.

Cadiou, J-M. (1972), "Recursive Definitions of Partial
Functions and Their Computations," Ph.D. Dissertation,
Stanford Univ.

Curry, H.B., and Feys, R. (1958), "Combinatory Logic,"
North-Holland, Amsterdam.

Friedman, D.P., and Wise, D.S. (1976), CONS Should Not
Evaluate Its Arguments, 4n "Proc. 3rd International
Conference on Automata Languages and Programming," Univ.
of Edinburgh, Scotland.

Goguen, J.A., and Tardo, J. (1979), An Introduction to OBJ:
A Language for Writing and Testing Software
Specifications, 4n "Proc. IEEE Conf. on Specifications of
Reliable Software," pp170-189.

Hudak, P., and Kranz, D. (1984), A Combinator-based Compiler
for a Functional Language, 4n "Proc. 11th ACM Symp. on the
Principles of Programming Languages," Salt Lake City.

41

Henderson, P., and Morris, J.M. (1976), A Lazy Evaluator, in
"Proc. 3rd ACM Symp. on the Principles of Programming
Languages," Atlanta.

Hoffmann, C.M., and O'Donnell, M.J. (1979), An Interpreter
Generator using Tree Pattern Matching, in "Proc. 5th ACM
Symp. on the Principles of Programming Languages," San
Antonio.

Hoffmann, C.M., and O'Donnell, M.J. (1982), "Programming
with Equations," ACM TOPLAS Vol. 4(1).

Hoffmann, C.M., and O'Donnell, M.J. (1984), Implementation
of an Interpreter for Abstract Equations, 4in "Proc. 11th
ACM Symp. on the Principles of Programming Languages,"
Salt Lake City.

Huet, G. (1977), Confluent Reductions: Abstract Properties
and Applications to Term Rewriting Systems, (n "Proc. 18th
IEEE Conf. on Foundations of Computer Science,"
Providence, RI.

Huet, G., and Levy, J-J. (1979), "Computations in
Nonambiguous Linear Term Rewriting Systems," Tech. Rep.
359, INRIA, Le Chesney, France.

Kahn, G., and MacQueen, D.B. (1977), Coroutines and Networks
of Parallel Processes, in IFIP 77 (B. Gilchrist, Ed.),
North-Holland, Amsterdam.

Knuth, D.E., and Bendix, P.B. (1970), Simple Word Problems
in Universal Algebras, 4n "Computational Problems 1in
Abstract Algebra" (J. Leech, Ed.), Pergammon Press.

Knuth, D.E. (1973), "The Art of Computer Programming,
Vol. 3, Sorting and Searching," Addison-Wesley.

Kowalski, R. (1979), "Logic for Problem Solving," North-
Holland, Amsterdam.

MacQueen, D.B. (1981), Structure and Parameterization in a
Typed Functional Language, 4n "Conf. Record of Symposium
on Functional Languages and Computer Architecture," Lab.
for Programming Methodology, Univ. of Goeteborg, Sweden.

AR -
3 9015 03526 8781

Milner, R. (1978), "A theory of Type Polymorphism in
Programming," Journal of Computer and Systems Sciences,
Vol. 17, pp. 348-374.

O0'Donnell, M.J. (1977), "Computing in Systems Described by
Equations," Lecture Notes in Computer Science 58,
Springer-Verlag.

Robinson, J.A. (1965), "A Machine-oriented Logic Based on
the Resolution Principle," Journal of the ACM 12,
pp. 23-41.

Rosen, B.K. (1973), "Tree-manipulating Systems and Church-
Rosser Theorems," Journal of the ACM 20(1).

Subrahmanyam, P.A., and You, J-H. (1983), "FUNLOG =
Functions + Logic: A Computational Model Integrating Logic
Programming and Functional Programming,” Tech. Rep.
UTEC-83-040, Univ. of Utah.

Subrahmanyam, P.A., and You, J-H. (1984), Pattern Driven
Lazy Reduction: a Unifying Evaluation Mechanism for
Functional and Logic Programs, {n "Proc. 11th ACM Symp. on
the Principles of Programming Languages,” Salt Lake City.

Thatte, S.R. (1984), "On the Correspondance Between TwoO
Classes of Reduction Systems," to appear in Information
Processing Letters.

Turner, D.A. (1976), "SASL Language Manual," Tech. Rep.,
St. Andrews Univ., UK.

Turner, D.A. (1979), "A New Implementation Technique for
Applicative Languages," Software Practice and Experience,
Vol. 9.

Vuillemin, J. (1974), "Correct and Optimal Implementations
of Recursion in a Simple Programming Language," Journal of
Computer and Systems Sciences, Vol. 9.

Wadsworth, C. (1971), "The Semantics and Pragmatics of the
Lambda Calculus," D.Phil. Dissertation, Oxford University,
England.

