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ABSTRACT

During the past two years, the faculty of the Engineering College of The University of
Michigan has been exploring the integration of computers into the various undergraduate curricula.
This report describes the Engineering Mechanics program at the University and discusses the role
which the faculty of the Department feels compubers should play in this curriculum. Digital
computer solutions to engineering problems have been demonstrated in Departmental courses,

although students have not been assigned digital computer problems as part of their hemework.,

The Department, which operates an analog laboratory of its own, uses analog computers

extensively for both demonstration and laboratory purposes.

This report contains a selected set of three example problems with complete computer solu-
tions prepared by a Departmental faculty member. These may be considered as a supplement to the
96 example engineering problems, including some related to Engineering Mechanics subject areas,

which have been published previously by the Project.
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USE OF COMPUTERS IN ENGINEERING MECHANICS EDUCATION*

I. INTRODUCTION

The Ford Foundation Project on the Use of Computers in Englneering Education at The
University of Michigan has enabled the faculty and students of the College of Engineering to
test on a falrly large scale the role of the computer in undergraduate engineering. ™he present
report attempts to set forth the views and efforts of the Department of Engilneering Mechanics in
this regard, in the hope that others can benefit in some measure from our experiences. It is
recognized that the makeup and aims of the departments of mechanics vary to a large extent from
school to school, and hence it i1s thought worthwhile to set forth our program and course offer-
ings first, so that a frame of reference is in the reader's mind from the start. Our conclusions
and opinions can then be modified to sult the conditions at the reader's institution. This report
should be read in conjunction with the final report of the project. It is not intended to be
self-contained. It should be appreciated also that due to changes which can be expected in the
expanding flelds of computer technology and numerical analysis, and the varying needs of science
and industry in general, any and all of the ideas and conclusions presented here can become
obsolete very rapidly. Whabever impression the reader receives as to the use of computers in
the mechanics curriculum, it behooves him to be aware of the possibilities and potentialities
as they develop, and to revise his ideas accordingly.

One speclal elaboration on these last two sentences is of particular note. Much of the

present use made of computers by engineers is of the "slide rule" type. That is, the same
methods are used on the high speed computer as were found effective on a desk calculator, and
the only advantage gained 1s in speed and relief from tedium. Recently in several areas of
sclence, users of the computer have broken away from utilizing just the arithmetical hardware
of the computer and have made extensive use of the logical or decision-making side of it.
In the long run, this is probably the most exciting side of the computer, and the one to watch
most closely. The direct application of this to mechanics is not immediately clear, but one
can percelve potentialities which could open doors now almost impenetrably closed (such fields
as the study of turbulence, fatigue, crack propagation, to name but a few of the possibilities).
Here, conslderable research is still necessary before any tangible rewards are gained.

In the following, when the word computer is used without any modifying adjective, it is

understood to mean digital computer.

* This report represents the group opinion of the Department. In particular, Professors
S. K. Clark, W. R. Debler, R. A. Dodge, J. H. Enns, W. P. Graebel, R. M. Haythornthwaite,
B. Herzog, and M. J. Kaldjian have made contributions to it. The report was prepared by
W. P. Graebel with their assistance.

_F3_



II. THE PROGRAM IN ENGINEERING MECHANICS

The undergraduate engineering student would normally elect the engineering mechanics
program at the beginning of his sophomore year. He would start with the usual elementary sequence
of courses (Table IFA). Following these courses, at the second semester of the junior or senior
level he takes a series of intermediate courses (Table IFB) which lay the foundations and give
an overall view of the main branches of mechanics. He is also required to select a minimum
of gseven credits of advanced subjects in engineering mechanics, in which he has considerable
latitude (Table IFC). These courses are usually offered at least once a year, SO that by proper
planning, a student can elect a sequence of c&urses in one particular area of mechanics., In
addition, the student can select seven to nine credits in any college of the University, and a
group option of twelve or fourteen hours from any other program in the College of Engineering.
(Frequent choices for the latter are aerodynamics, electronics, instrumentation, metallurgy,
naval architecture, nuclear engineering, physics, structural engineering, etc.) It 1s not
uncommon to find that a student obtaining a bachelor's degree in engineering mechanics will,
with perhaps an additional semester's work, receive an additional B.S. degree in applied mathe-
matics, engineering physics, or in various other curricula available to him in the College.

As is evident from the course outlines, the Engineering Mechanics Department does not
offer any design courses as such. The student is required to take design courses in other
departments, and can elect more in his group option if he so desires. The Department has felt
that its principal contribution is not that of producing designers, but rather the training
of the engineer in depth in the fundamentals of his field so that he is aware of the foundations
and reallzes the possibilities and limitations of mathematical models in his work. The student
wlth such training at the bachelor's level receives ready acceptance from industries dealing
with diverse technical interests. As might be expected, a large percentage of the students
decide to continue thelr studies in graduate schools throughout the country, most continuing
in mechanics, although a significant number go into allied fields such as mathematics, systems
engineering, communications, physics, nuclear engineering, space sclences, etc. Thé student
goling to these other fields usually finds that his early tralining allows him to compete with
his fellow students in these other disciplines at their level.

Since many of the students do enter graduate school upon completion of their bachelor's
training, our course work is designed with this in mind, and a brief description of this program
is perhaps necessary to glve a complete overall picture. E.M, 412, 422, 441 (Table IFB), while
intended as terminal courses at the B.S. level are beginning courses for students entering our
our -graduate program from other schools. Beyond these, no other specific mechanics courses are

required at the graduate level and the student 1s free to specialize as he and his advisor see f1it
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Use of Computers in Engineering Mechanics Education

TABLE IFA
Elementary Course Work Credits
E.M. 208 or 218 Statics 3
E.M. 210 or 219 Strength of Materials 4
E.M. 212 or 402 Laboratory in Strength of Materials 1 or 2
E.M. 343 or 345 Dynamics 3
E.M. 324 or 326 Fluid Mechanics 3 or 4
TABLE IFB
Intermediate Course Work Credits
E.M. 403 Experimental Mechanics 2
E.M. 412 Intermediate Mechanics of Materials 3
E.M. 422 Intermediate Mechanics of Fluids 3
E.M. 441 Intermediate Mechanics of Vibrations 3
TABLE IFC
Advanced Course Work in Mechanics on the Undergraduate-Beginning Graduate Level
Credits
E.M. 411 Structural Mechanics 3
E.M. 413 Photoelasticity 2
E.M. 416 Stress Analysis 2
E.M. 514 Theory of Elasticity I 3
E.M. 515 Theory of Plates . 3
E.M. 518 Theory of Elastlc Stability I 3
E.M. 519 Theory of Plastlecity I 3
Dynamics
E.M. 542 Advanced Dynamics 3
E.M. 543 History of Dynamics 2
E.M. 544 Dynamics and Stabillity of Rotors 3
E.M. 545 Vibrations of Continuous Media 3
E.M. 547 Theory of Gyroscopes 2
Fluid Mechanics
E.M. 522 Mechanics of Inviscid Flulds T 3
E.M. 523 Mechanics of Viscous Fluids I 3
E.M. 529 Advanced Laboratory in Mechanics 2
of Fluids
Thermodynamics
E.M. 527 Thermodynamics 2
TABLE IFD
Advanced Courses in Mechanlcs on the Graduate Level
Solid Mechanics Credits
E.M, 714 Theory of Elasticity II 3
E.M. 715 Theory of Shells 3
E.M. 718 Theory of Elastic Stability IT 3
E.M. 719 Theory of Plasticity II 3
Dynamics
E.M. 714 Theory of Vibrations 2
E.M. 745 Wave Motion in Continuous Media 3
Fluid Mechanics
E.M. 721 Mechanics of Inviscid Fluids IT 3
E.M. 723 Mechanics of Viscous Flulds II 3
Other
E.M. 707 Theory of Continuous Media 3
TABLE IFE
Advanced Mathematics Courses Frequently Elected Credits
Math. 749 Methods of Partial Differential Equations 3
Math. 750 Methods of Mathematical Physics I 3
Math. 751 Methods of Mathematical Physics IT 3
Math. 757 Special Functions in Classical Analysis 3
3

Math. 777 Tensor Analysis
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The Ph.D. candldate is, however, required to demonstrate proficlency in a written qualify-
ing examination in the subjects covered in Tables IFA and IFB. He also must take at a later
date, an oral examination in the area in which he majored plus two minor areas, one in the
Engineering Mechanlcs Department, the other outside of the Department. The minor in the
Department usually consists of two courses selected from one of the groups in Table IFC. The
major consists of course selected from groups in Tables IFC and IFD, plus individual reading
courses and advanced courses in other departments. Mathematics is heavily stressed, and the
student usually finds it desirable to elect several graduate mathematics courses as well.

Courses which have been elected most regularly in recent years are given in Table IFE,

III. THE USE OF COMPUTERS IN THE MECHANICS CURRICULUM

During the period when the Project on the Use of Computers in Engineering Education was in
effect at The University of Michigan, several points involving the use of digital computers in
undergraduate educatlon became apparent. Since these apply to any student (and teacher) user of
the computer, they will be set forth first, serving then as a basls of discussion when the role
of computers in the mechanics curriculum is discussed. Discussions of other factors can be

found in the various reports of the project.

The Computer Requires a Precise Statement of the Problem

Since communicating with the computer is somewhat similar to communicating with a three-
year-old child, the student finds at an early stage that he must tell the computer exactly
what he wants to do in order to obtain the correct results. This requires an understending of
the mathematics of the problem by the student and also a clear statement of the problem in
mathematical language, desirable goals 1n the training of the engineer.

Of course, this clarity of problem statement should be the goal in all teachlng, whether
a computer 1s present or not. The teacher, however, as a human belng, will usually accept the
work 1f small errors are made. The computer 1s a much more stern taskmaster, and will produce
satisfactory results only if the problem is presented to it letter perfect.

Like’most good things in life, this need for preclseness 1s not a complete blessing.
First of all, it tests only one facet of the student's knowledge, that 1s, his problem solving
abllity in a particular subject. It does not in general test his understanding of the funda-
mentals, since he may be led to a solution by the fact that the problem appeared at a particular
part of the course. Also, after the first (usually relatively small) percentage of his time
spent on this particular problem, the student's concern is not in furthering his understanding
of the englneering involved, but rather with the detalls of computer programming. Even with a
problem-oriented computer language such as MAD, considerable practice, experience, and care are
needed to make sure that "punctuation" and similar details do not cause the computer to return
undeslrable results.
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Use of Computers in Engineering Mechanlcs Education

The Student Should Become Famillar wilth the Computer as a Mathematical Tool

Just as we expect the student to be familiar with techniques such as separation of
varlables, power serles solutions of differential equations, etc., so he should also recognize
that numerical methods are powerful tools in problem solving. Through experience he should learn
when one method has advantages over another, and what factors play important roles in determining
how accurate his answer is. This requires, then,that besides learning to program in a computer
language, the student learn numerical analysls as well, including error analysis along with numer
ical techniques. In fact thils knowledge of numerical analysis may be the most significant aspect
in the long run. Knowledge of a computer language is necessary in that it provides laboratory
experience, but it is the least permanent part of a student's education in that 1t is subject to

rapid obsolescence.

The Computer Serves as a Laboratory

An "exact" solution to a complicated problem provides some inherent satisfaction to many
people; however, it is not always possible to see just what role the varlous parameters play in
governing the behavior of the system to which the solution applies. The computer, either through
a numeriéal solution of the basic problem or through evaluation from the exact solution, can pro-
vide a graphical presentation of the solution which is frequently more easily understood. Thus
a computer can serve much the same function as, say, an elementary laboratory in strength of

materials does in the student'!s education.

Use of the Computer by Students Requires Considerable Availability of Knowledgeable Staff

An instructor considering the assignment of a problem for execution on the computer should
first be sure that someone (preferably the instructor himself, or at least someone familiar with
the engineering problems) is availlable to help the students interpret error returns, core dumps,
and the like. If the degree-of-problem-difficulty times number-of-students 1s at all large, 1t
should be anticipated that this help will be required for considerable periods of time over an
interval of several weeks per problem. Instructor time, not computer time, 1s perhaps then the

chilef "cost" factor involved.

Student Problems on a Computer Require Days if not Weeks from Assignment to Completion

During the existence of the Computer Project, the approach to the computer at The University
of Michigan was made relatively easy for the student. Carrier service from locations 1n the engin-
eering bulldings provided delivery of programs to and from the Computing Center twice a day.
Keypunches were provided in the engineering bulildings as well as at the Computing Center. Personnel
were available at several locations for consultation in case of student or faculty difficulty.

High speed printers and special services were provided at the Computing Center.
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In spite of all these, 24 hours seemed to be the minimum time from delivery to receipt
of the program. Breakdown of equipment and computer load at times lengthened this to as much
as one week or more, so that average delivery-receipt time at the middle or end of the semester
was probably at least 48 hours. Since the average number of passes through the computer for
students with some acqualntance with programming, running reasonably short programs, was estima-
ted to be in excess of three, it 1s easy to see the effect of this on the student. By the time
the majority of the students in a class ran a simple problem on the computer, the class would
have progressed to another topic, and hence the impact of the computer's contribution would be
somewhat dulled. If, in addition, some of the students are unfamiliar with the particular lan-

guage available, an appreciable amount of class time may be lost in an introduction to this languag

A Certain Number of Students Will Become Completely Engrossed in the Computer to the Point

of Losing Interest in Engineering

The computer can be an engrossing object in the student's life, so much so that he feels com-
pelled to devote much of his time and energy to this fascinating device, usually to the detriment
of his engineering studles. This is perhaps due to the fact that 1n a reasonably brief period of
time he may gain a high degree of proficiency and find himself in great demand by his teachers as
well as his fellow students. This success quite often proves hazardous to his other studies and

delays hils progress towards a degree.

The Computer Solution Gives only the "Expected" Answer

While this is true to some Qegree of any method, there is a further danger when the computer
is used. When a numerical method is decided upon, this pretty well fixes the type, or behavior,
of the solution which will be found. An "Answer" based on this meéthod will usually then be ob-
tained, which however, may have little bearing on the true physical problem. To illustrate,
suppose a problem in the form of a differential equation is to be solved which in some region has
either a boundary-layer type behavior (that 1s, the solution changes rapidly in almost a discon-
tinuous manner) or perhaps the family of solutions become so close togéther in a region that the
computer can jump easily from one solution to another. If the student is unaware of this, he
might start off with a mesh size of, say, 0.1, on the next trial chénge this to 0.05, and next to
0.01. The solution may turn out to be relatively insensitive to this size of change; ergo, the
student concludes that his method has converged to the solution. If, however, he would continue
to reduce his mesh size until it was of the order of the boundary layer thickness (or the
"distance" between radically differing solutions), he would find that his previous efforts were
deceiving, and gave him false confidence in his "solution." This seems to emphasize again the
need for proper training 1n error analysis and an understanding of the limitations of numerical
computation.

The above could happen even without a computer, and perhaps best serves as an indictment of

a cook book approach to numerical computation. The reason that this point is of particular danger
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Use of Computers in Engineering Mechanics Education

when a computer is used, 1s because when one is performing a hand computation, the relative size
of various terms in an equation quite often becomes apparent with 1little effort, and curiosity
as to where various terms become important is easily aroused. In the computer, however, the
inner intricacies of the computation are hidden, and unless the programmer is alert to the
dangers beforehand, the lack of imagination in the machine gives the wrong solution.

Based on the above considerations and others mentioned in the various project reports, the
Department of Engineering Mechanics presently makes only limited use of the digital computer in
its existing undergraduate and graduate courses. For the courses in Table IFA which perform a
service role besides glving an introduction to mechanics for our own students, there is simply
not sufficient time to introduce any computer work without reducing the amount of mechanics
taught in these courses. It may very well be desirable to use the computer in these courses,
and if additional time were made avallable to us we would be willing to do so. We do not, how=-
ever, believe it desirable to reduce the mechanics content of these courses below the level now
belng given.

For the other courses, instructors' computer solutions have been used to illustrate what
various ;olutions look like when numerical computations are carried out, and also the digital
computer has been used to replace some hand calculations which were previously used. So far 1t
has been left optional to the student as to whether he would use a desk calculator or the
IBM 709. Those familiar with programming choose the latter, and in the process, convince friends
as to the desirability of learning programming. When more students come to these courses with
the ability to program fairly involved problems, undoubtedly more use will be made of the digital
computer. However, the content of the existing courses were set up before the Computer Project
made the computer so accessible. The arrangement and content of these courses will soon come up
for review and it is likely that new courses decilded on will use the computer in a more integrated
fashion.

In summary, then, we believe that our duty as a department is to train the student in the
fuﬁdmentals of mechanics. We have adopted a walt and see attlitude as to whether the computer
can further these aims. It is becoming more apparent that 1t can do so, but at this time the ad-
vantages to be gained by widespread use in the undergraduate program do not seem to be economical
timewise. However, through the ald made possible by the Computer Project, our future courses can

expect to incorporate in varying degrees the use of the computer as a means of furthering our aims.

Analog Computers

The electronic differential analyzer (EDA) has been used by engineers long enough so that
it is a familiar teaching tool. These computers are commonplace enough so that little need be

said, but perhaps a brief comparison with the digital computer is in order.
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The EDA is sulted to a much smaller class of problems than the digital computer, namely,
the solution of ordinary differential equations. This lack of versatility goes hand in hand
with easier operation; hence the student can be introduced to the principles of EDA operations in
a few minutes, and can learn to operate a particular machine in an afternoon. The nuances of how
to handle infinities, two-point boundary value problems, and nonlinear terms takes more time, but
available manuals make such learning relatively simple compared with the digital computer.

The quickness and ease of solution and presentation makes the EDA a tool well adapted to
classroom demonstration. The Department of Engineering Mechanics presently owns two 10-amplifier
computers plus a 24—amplifier model (the latter was provided through the Computer Project and 1s
avallable to other departments in the College of Englneering). These are presently used to
demonstrate to appropriate classes the behavior of various multi-mass systems, uniform vibrating
strings and beams, flow in the boundary layer, the response of nonlinear materials, and other
problems with only one independent variable. The students are also encouraged to use the EDA
on their own for approprilate problems, and have relatively free access to it. Solutions on the
EDA can be made to exhibit some of the dangers of "numerical" solutions in a simpler and more
visual manner than on the digital computer. Thus, some of the benefits of the digital computer

can be obtained with relatively little financial or time expense.

Iv. EXAMPLE PROBLEMS
Included in this section are three problems and their solutions programmed in the MAD

(Michigan Algorithm Decoder) language. They are listed in Table IIF.

TABLE IIF
List of Example Problems

Number#¥ Title Author Page

o7 Numerical Solution of the Harmonic and W. P. Graebel F11
Biharmonic Equations

98 Joukowskl Airfoil W. P. Graebel F23

99 Principal Axes of a Second Order Tensor W. P. Graebel F27

* These problems may be considered as a supplement to problems 1 through 96 published
in previous reports of the Project.
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Example Problem No. 97

NUMERICAL SOLUTION OF THE HARMONIC AND BIHARMONIC EQUATIONS
by
William P. Graebel
Department of Engineering Mechanics

The Unilversity of Michigan

The harmonic and biharmonic equations appear many times in problems in mechanics. Poten-
tial flow, stress distribution, deflection of a membrane, steady-state temperature distribution
are examples. The solution of these by relaxation methods is well known due to the efforts of
Southwell and his followers, hence there seems to be little need in recapitulating the prob;em.
The techniques used by these workers to speed the convergence now seem to be of incidental inter-
est if machine computation is to be used, since the added complexity to the program would only
be worthwhile if there was need for an extreme number of mesh points.

The arithmetic operations here are trivial; the main problem is to identify whether a
point is interior, on the boundary, or exterior to the region of interest, and also how close
are the neighbors of the point if any of the neighbors are boundary polnts. The present programs
approach the problem by taking the simplest case, and then modifying this to meet more complex

boundaries.

Case 1 (Program Relaxati)

Here we consider the case where all mesh points for a square grid lie on the boundary,

hence all boundaries must be a series of straight line segments intersecting at prescribed mesh
points. The information necessary to the program is simply the locatlon of the boundary (given
by the BOUND vector) and also the value of the function (PSI) at the boundary. For convenlence,
we also read in the maximum number of times we will allow a point value to be relaxed (NMAX)
(to évoid a runaway program if something is wrong) as well as a means of stopplng the program
when we are content with the answer, that 1s, when the maximum change made in going through a
complete iteration is less than ERRMAX. To avoid programming complexities, a code 1s used on the
BOUND vector, and data is read 1n for every point on our net. The code used was a simple one,
BOUND=0 for an interilor point, 1 for points on the boundary, 2 for exterior points, and 3 for
interior points which have at least one nearest net neighbor which 1s an exterior point.
Actually, for Case 1, any integer other than zero wlll work instead of 1 or 2, and 3. The code ®
stated here for use in Case 3.

PSI is read in for every point, whether or not it is a boundary point. For nonboundary

points, any value will do as it is never used.
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Example Problem No. 97

The program now goes through each point in a rectangle XMAX by YMAX in a strailghtforward
manner, checking to see the nature of a point, then either going on if it is not an interior
point or else taking the average value of its neighbors if it i1s an interior point. If NMAX
relaxations are undergone without meeting the ERRMAX condition, the program prints ‘out the last
value of PSI at each point as well as the difference between this value and the one computed on
the previous iteration.

The problem presented represents the irrotational flow in a channel which suddenly increases
in width.

Program variables for quantities not described in the text are listed below and are appli-

cable to all four cases.

N - Number of iteration

NMAX Maximum number of iteratlons allowed

C Switch to stop iteration when change becomes small enough
PSIT Solution of harmonic or bilharmonic equation

PSIB New value of PSI

XMAX, YMAX Size of rectangle enclosing the boundary

PSR, PSL, PSU, PSD Value of PSIL to right, left, above, and below (I, J)
NUM Numerator of Equation (1)

DEM Denominator of Equation (1)

T Entry into random sequence

AVE Average number of throws needed to get to boundary

A flow dlagram for the program (RELAXATI) to solve problems of Case 1 is shown below.

XMAX, YMAX, PSI(0,0),... BOUND(0,0), ... -0
NMAX, ERRMAX PST (XMAX,, YMAX) BOUND xwu?x

Mo
1
X=1, ¥=1 BOUND (X, Y)#0
START e (X,Y)# )
T
@_, CALC PSIB | ERROR (X, ¥) ) . PSI(X,Y I :)
CALC ERROR(X,Y) > ERRMAX =1 ST(%aE)

¥ 4

T
@—— N > NMAX X=X+1

F
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Numerical Solution of the Harmonic and Biharmonic Equations

XY,
PSI(X,Y)
ERROR (X, Y)

T F
- ‘ =1
: ; +

LAST LAST Xy
0=1 X=0,1 ¥=0,1 PSTIX, Y)
X > XMAX Y > YMAX s

7

The MAD program is shown below,
RELAXATION MEIHOUG FOR 2D LAPLACE EQUATION

INTEGER Ny Cy X, Y, XMAX, YMAX, NMAX, BOUND
KREAD FORMAT ABLE, XMAX, YMAX, NMAX, ERRMAX

VECTOR VALUES ABLE = $3I5,Fl0.0%$%

UIMB(2) = YMAX + 3

DIMB(3) = YMAX + 1

READ FORMAT EASY, PSI(040)...PSI{XMAX,YMAX)

VECTOR VALUES EASY=$(8F10.6)#$
e DIMENSION PS1(625, DIMB(1)) : -
READ FORMAT FOX, BOUND(0,0)...BOUND(XMAX,YMAX)
VECTUR _VALUES FOX=$(4012)%#%
DIMENSION BOUND(625,DIMB(1)), DIMB(3)

... VMECTOR VALUES DIMB(L) = 2,27,11
N= 0
___START . X=4r B s
Y = 1
N =N+ 1
C =0
___ALPHA WHENEVER BOUNDI(X,Y) .NE.O, TRANSFER TO DELTA . _
PSIB = (PSI(X = LoY) + PSTI(X + LoY) + PSII{X,Y = 1) + PSI(X,Y
1+ 1))/4. )
TTERROR{X, Y)Y = JARS.(PSIB = PSI(X,Y1) T
LIMEMNSION ERROR(625, DIMB(1))
WHENEVER ERROR(X,Y) .G. ERRMAX, C = 1
e PSI(XyY) = PSIB - )
WHENEVER N.G.NMAX, TRANSFER TO BETA ) )
X = X + 1
TUTTTTTTTTTTTTTYRANSEER TO ALPHA T T
_____ BETA PRINT FORMAT INTER, NMAX B
VECTOR VALUES INTER = $18HO EXCEEDED NMAX = 15#%
... THROUGH MID, FOR X = Oy1, X.GoXMAX
THROUGH MIDy FOR Y = 0y1y Y.G.YMAX
MID _PRINT FORMAT ER, Xy Yy ERROR(XyY)y Xy Yy PSI{X,Y)




Numerical Solution of the Harmonic and Bilharmonic Equations

continued

VECTUR VALUES ER
1PST (4135 1Hyy13,4H)
TRANSFER TO FINAL

MAD Program,

$S2y, O6HERROR(I3,1H,13,4H)
1 FlU.6%%

yE11.44S51044H

~-LAST1

X

_ WHENEVER X.L.XMAX

X + 1

__TRANSFER TO ALPHA

END OF CONDITIONAL

WHENEVER Y.L.YMAX

TEST

X
Y

THROUGH LAST,

1

Y + 1

[RANSFER TO ALPHA
END OF CONDITIONAL
WHENEVER C.E.l, TRANSFER TO START

FOR X =

0919XeGoXMAX

L LAST

" VECTOR VALUES OUT

THROUGH LAST,

FOR Y

PRINT FORMAT OUT, X,Y,PSI(X,Y)

PRINT FORMAT @, N

OylyY.5.YMAX

$1HO+$24HPSI(I5,1H,[5,2H)=F10.6%%

VECTOR VALUES @

END OF PROGRAM

A typical set of computer output 1s shown below.

EXCEEDED NMAX = 10 e
ERROR{ O, 0) = +1885E-36 PSI( 0, 0) = . 000000
,,,,,,,,, ERROR( 0O, 1) = .1889%E-36 PSI( 0Oy 1) = .200000 _
ERROR{ 0y 2) = . 1885E-36 PSI{ 0y 2) = «400000
ERROR( 0, 3) = . L885E-36 PSI{ 0, 3) = 600000
ERROR( 0, 4) = < 1885E-36 PSIH 0, 4) = .800000
 ERROR( 0, 5) = .18856=36 ____ PSIL_0, 5) = 1.000000 _
ERROR({ 0, 6) = . 1885E-36 PSI( 0y 6) = 7.000000
 ERRORL 0, 7) = _ .18856-3¢ ___PSI{_ 0, 1) = 7.000000 __
ERROR{ 0y B8) = . 1885E-36 pSI( 0, 8) = 7.000000
_ERROR{ 0, 9) = . 18685E-36 PSIH 0y 9) = 7.000000
ERRORL 0O, 10) = .1835E-36 PSI( 0, 10) = 7.000000
_ERROR(_ 1, 0) =  .1885E-36 PSI( 1, 0) = _ .000000
ERROR( 1, 1) = «2906E~-06 PSI( 1, 1) = «139967
 ERROR( 1, 2) = .4917E-U6  ____ PSIL 1, 2) =  .399946
ERROR{ 1, 3) = «4694E-06 PSIH{ 1, 3) = + 599946
ERROR( 1, 4) = _ .2831E-06 PSI{ 1, 4) = .799967
ERROR( 1, 5) = . 1885€£-36 PSTH{ 1, 5) = 1.000000
ERROR( 1, 6) =  .188%E-36 _PSI( 1, 6) = 7.000000
ERRUR{ 1, 7) = . 1885E—-36 PSIH( 1y 7) = 7.000000
ERROR( 1, 8) =  .1885€-36 PSI( 1, B) =  7.000000
ERROR( 1, 9) = .1885E-36 PSI( 1, 9) = 7.0006000
__ ERROR( 1, 10) = .1885E-36 PSI( 1, 10) =  7.000000
ERROR( 2, 0} = . 1835E-36 PSI( 2, 0) = .000000
ERRUR( 24 1) = «bT43E-06 pPSI( 2, 1) = «199922
ERROR 2y 2) = «1043E-05 PST{ 2y 2) = +399873
ERROR{ 2y 3) = +1006E-05 PSI|( 2y 3) = «599874
ERROR( 2, &) = «H960E-06 PSIL 2, &) = « 799922
ERROR( 2, 5) =  .18856-36  ___  PSI( 2, 5) = 1.000000
ERROR( 2, 6) = +1885E-36 PSIC 2, ©6) = 7.000000
ERROR( 2, 7)) = .1835E-3¢6 PSI( 2y 7)) = 7.000000
ERROR( 2, 8) = . 1885E-36 PSI( 2, 8) = 7.000000
ERROR( 2, 9) = «1885E~36 PSIC 2, 9) = 7.000000
ERROR( 2, 10) = +1885E-36 PSTH 2y 10) = 7.000000
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Case 2 (Program Biharmon)

This program is essentlally the same as the preceding, except it 1s used for solving the
biharmonic equatlion with boundaries of the type given in Case 1. The main difference is in the
arithmetic operation necessary in computing a new value of PSI, and also the boundary conditions,
since the normal derivative of PSI 1s also given on the boundary. These data were incorporated
by simply inserting data in the form of MAD statement cards (cards 19-38) which took care of these
boundary conditions. All else i1s similar to the precéding case.

The example here was taken from Timoshenko and Goodier, Theory of Elasticity, McGraw-Hill,

1951, pp. 483-489., The flow diagram for Case 1 is to be used wlth the change indicated below
going from 1 to 2.

CALC PSI FOR

EXTERIOR OF
RECTANGLE

The MAD program for Case 2 1s shown below.
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Numerical Solution of the Harmonic and Biharmonic Equations

MAD Program, continued

TeTmmse oo WHENELER
Hoz oM o+
—f-"“v'"‘v’—*-"-'-'"—-——r—*“‘Tﬁr"’!Tr"g‘E""r—ﬁ"l TJI’_'F":{'F{ ————————————————————————————————————————————————————————————————————— S e
BETHA FRINT FOF ¥ :
TETTOR VATT
THROUGH 11
S THRIG
MID R
DELTA
T NGO
WHEHEVER
'Yl
_________________________ T iy
END ©
““““““““ TEET T HEREVE]
CLASTI THROUGH L

TAFLOLGH L
FRIMT FOENGT
VECTOR WEL
FRIMT FOER
""""""""""""""" VECTOR UG
FIMAL EHD OF FEOGE

A typical set of computer output is shown below.

EEDED

PorrEe e e

P N
itonfnon

i1

b b

L H N

- ERRTRT
ERRORC 2
T ERRORT 25
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Case 3 (Program Orelax)

This deals with the same problem as Case 1, except that arbitrary (but continuous) boundaries
are now acceptable. The maln problem now 1s getting the additional data on the curved boundaries
read into the machine. This is done in the rather awkward but effective manner of inserting
statement cards to take care of troublesome points indicated by 3 in the BOUND code. U, D, L, R
data tell the distance (zero to one) of the nelghboring points (mesh or boundary) above, below,
left or right of the point where BOUND=3, and PSU, PSD, PSL, PSR give the values of PSI at these
neighboring points. Statements must appear for all neighbors, to avold further complications in
input. Except for the other modification in the arithmetic computation of PSI at a point, every-
thing else is as in Case 1.

The problem here is the same as for Case 1, except that the area changes more gradually, in
that a quarter of a circle is substituted for the right angle corner. The flow diagram for Case 1

1s applicable with the indicated changes shown below in going from 1 to 2 and DELTA to ALPHAl.

CALC
BOUND(X,Y) < 3 PSR, PSL, » oo
PSU, PSD
F )

The MAD program for Case 3 is shown below.

W P GRAEBEL S146D 005 005 000 ORELAX
$COMPILE MADs EXECUTEs DUMP
RRELAXATION METHOD FOR 2D LAPLACE EQUATION
R
RDATA CARDS IN THE FOLLOWING ORDER
R
RXMAX(I5) s YMAX(I5) sNMAX(I5)sERRMAX(F10)
R
RPSI(0s0)eeePSI{XMAXPYMAX) (8F10)
R
RBOUNDARIES(090) ¢4 s BOUNDARIES (XMAX 9 YMAX) (8CI1)
R(THIS LAST CARD SHOULD HAVE ZEROS FOR INTERIOR POINTSs 1 FOR
RMESH POINTS WHICH LIE ON THE BOUNDARYs AND 2 FOR MESH POINTS
ROUTSIDE OF THE BOUNDARYs IF THE NEIGHBOR OF AN INTERIOR
RPOINT LIES OUTSIDE THE BOUNDARYs THAT POINT SHOULD HAVE A 3
RINSTEAD OF A ZEROQe)
R
RUIXsY)s DI(XsY)s L(XsY)s R(XsY) * (DATA)
R(Ls Ry Us D CARDS INDICATE DISTANCE FROM INTERIOR POINT TO
RNEIGHBORSs WHEN AT LEAST ONE NEIGHBOR IS AN EXTERIOR POINTe.
RALL 4 CARDS MUST BE PRESENT FOR EACH SUCH POINTs EVEN IF THE
RDISTANCE IS 1)
R
RPSL(XsY)s PSR(XsY)s PSU(XsY)s PSD(XsY) (MAD STATEMENTS)
RPSL(XsY)s PSR(XsY)s PSU(XsY}s PSD(XsY) INDICATE THE VALUES OF
RPSI FOR THE POINTS DESCRIBED OM THE PREVIOUS DATA CARDSe THEY
RBELONG IMMEDIATELY AFTER DELTA IN THE PROGRAM, )
R
DIMENSION  PSL {1000y DIMB(1))
DIMENSION PSR(1000s DIMBI(1))
DIMENSION PSU(1000s DIMB(1))
DIMENSION PSD(1000s DIMBI(1))
DIMENSION R{1000s DIMB(1}}) .
DIMENSION U(1000s DIMB(1))
DIMENSION D(1000s DIMB(1))
DIMENSION L(1000s DIMB(1})
DIMENSION PSI(1000s DiMB(1))
DIMENSION ERROR(1000s DIMB(1))
DIMENSION BOUND(1000s DIMB(1))s DIMB(3)
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Numerical Solution of the Harmonic and Biharmonic Equations

MAD Program, continued

INTEGER Ns Cs» X» Ys XMAXs YMAXs NMAX
INTEGER BOUND

READ FORMAT ABLEs XMAXs YMAXs NMAXy ERRMAX
VECTOR VALUES ABLE = $3155F1040%%

SECTOR VALUES DIMB(1) = 2s27s1l
- DIMB(2) = YMAX + 3
DIMB(3) = YMAX + 1

READ FORMAT EASYs PSI(UsU)eeePSI{XMAXIYMAX)
SECTOR VALUES EASY=$(8F1046) %%
READ FORMAT FOXs BOUND(U9U) s e e BOUND(XMAKXSYYMAKX)
VECTOR VALUES FOX=$(80I1)*$
READ DATA Us Ds Ls R
N
START X
8
N
C
ALPHA WHENEVER BOUND(XsY) oNEeOUs TRANSFER TO DELTA
PSIB = (PSI(X = 1sY) + PSI(X + 1lsy} + PSI{XsY = 1) + PSI(XsY
1 + 1))/4.
ALPHA1 ERROR(XsY )= ABSe (PSIB=PSI(XsY))
.. WHENEVER ERROR(XsY) ¢Ge ERRMAXs C =1
PSI(XsY) = PSIB
WHENEVER NeGeNMAXs TRANSFER TO BETA

+ 1

O Zr = O

X =X+ 1
TRANSFER TO ALPHA
BETA PRINT FORMAT INTERs NMAX

VECTOR VALUES INTER = $18HO EXCEEDED NMAX = I5%%
3HROUGH MIDs FOR X = CUsls XeGeXMAX
THROUGH MILs FOR Y = Usls YeGeYMAX
MID PRINT FORMAT ERs Xs Y» ERROR(XsY) 9 X» Y» PSI(XyY)
VECTOR VALUES ER = $52s 6HERROR(I391HsI394H) = ELtled4s SI10s 4
IHPSI(13y 1Hs I3y 4H) = FlOe6%$
TRANSFER TO FINAL
DELTA 6HENEVER BOUND(XsY)sLe39sTRANSFER TO DELTAL
R
RPSLs PSRs PSUs PSD CARDS HERE
PSR(1095)=PSI(11s5)
PSL(10+5)=PSI(945)
PSD(1095)=PSI(10s4)
PSU(10s5)=10
PSR({1195)=PSI(12s5)
PSL(11+5)=PSI(10s5)
PSD(11s5)=PSI1(11s4)
PSU(11s5)=1s
PSR(1296)=PSI(1346)
PSL{12s6)=1s
PSU(1296)=PSI1(12s7)
PSD(1296)=PSI(1295)
PSR(1297)=PSI(13s7)
PSL(1297)=1a
PSU(1297)=PSI(1248)
PSD(12s7)=PS1{1296)
R
PSIB={PSL{XsY)/LIXIY)+PSRXsY)/R{X9Y)I+PSDIXsY)/D(XsY)+PSU{XsY
1I/ULXsY) ) /(1a/L{XoY)+1a/RIX9Y)+1a/U(X9Y)+1a/D(XsY))
3RANSFER TO ALPHAL
DELTAL WHENEVER XeLeXMAX
X=X+ 1
TRANSFER TO ALPHA
END OF CONDITIONAL
WHENEVER Yol o YMAX
7 =1
Y =Y + 1
TRANSFER TO ALPHA
END OF CONDITIONAL
6HENEVER Cebels TRANSFER TO START
THROUGH LASTs FOR X = OslsXeGeXMAX
3HROUGH LASTs FOR Y = UslsYeGeYMAX
LAST PRINT FORMAT OUTs XsYsPSI(X»Y)
VECTOR VALUES OUT = $1HUsS294HPSI(I3s1HeI394H) = Fl0e6%$
PRINT FORMAT Qs N
VECTOR VALUES @ = $1HU#S5224HNUMBER OF RELAXATIONS = I5%%
FINAL END OF PROGRAM
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A typical set of results obtained from the computer program is shown below.

EXCEEDED MMAX =
ERRORC Q. O3
ERRORC O
ERFEORC 0. 25
ERRORC 0O

ERFORS 0O,
ERRORYC 0.

~ 50000
L E00000
L BO0000

LI ol leg B3 s
R

ao= 1. 000000
ERRORC 0, &3 = TUUVLooghnn
ERRORC O, 72 = = T.O00000
ERRORC 0. 8 = 4 BT R 0nooon
ERRORC 0., 92 = 3 D= 7000000
ERFORC 0O, 102 = i 1o0s = T 0onoon
ERRORC 1. 0 = =10 0 = . QEOooD
ERROET 1. 13 = . ST B DR B30 =37
ERRORC 1. 23 = SOR0E-04 F=ic 1. 23 = L 399831
ERROREC Y, U33T=TLETRZESOR 0 OFSTOOlS i
ERRORL 1, 42 = L S20E-05 FSIC 1, 42 = D
EFRFEORT  T» e = FETC T =3 = T.ooooog
ERRORC 1, &2 = ; G2 o= T.oooooo
EERQORET Y. T3 = J188BE-EZR TV = v Joonood
ERRORC 1. 82 = L 1BE5E-34 22 = T 000000
TERRETORC T 9y = . TEE5EE- a0y o= T.000000
ERRORC 1. 103 = . 1885E 03 = 7. 000000
ERROEC Z. 0% = . TEEEE-C = L 0o0nog
ERRORC 2. 12 = L 12592E~-0 = 199754
TERRORC T E: T2 U195 3ESOE T =TT EmREnn
ERRORC 2 3> = LABREZE-05 ; _ . = . 599598
ERRORT - IR SIUTESE-OE T T U RRETO TN TT T TERTAET
ERRORC 53 = 188 p 1.000000
TERRORT™ O - = T.a00ona
ERRORC 2 doz 7. 000000
ERRORT R Y. Oaoono
ERRORC } o= T. 000000
TERFORCT T TE U0 TET LT T.oooooo

Case 4 (Program Random)

An interesting variation to the relaxation type solution is the use of random walk tech-

niques. By flipping a four-sided coin to declde which direction to move to next, the value of

PSI at the starting point is given by

MMAX

MMAX
Z ny (1)
i=1

where n; are the number of "flips" needed to reach the boundary, and PSI; 1s the value of PSI at

PSI =

the boundary point reached.

The program glven enters a random sequence by means of an entry point determined from the
time clock. As a safeguard, if 1t takes more than NMAX "flips" to reach the boundary, the trial
is restarted.

The program is sultable for the same boundaries as Case 1.

The flipping procedure is by no means as efficient as the relaxation approach, and probably
1s of merlt only if information is needed in a small reglon of a very large domain.
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Numerical Solution of the Harmonlc and Biharmonic Equations

A flow diagram of the program for Case 4 is shown below.

XMAX, YMAX, ﬁ’gl('o,o)... [ BOUND(0,0)... X=1, ¥=1,]
NMAX, MMAX PSI (XMAX, YMAX ) BOUND (XMAX , YMAX) CALC T ' (:)
@_, RAM2A M=0, DEM=0,
(T) NUM=0
T
I=X
J=y BOUND # O RI=RAM2B
— T T
@ O<RI<.25 I=I+1 —>@ 5<RI <.75 J=J+1 %
F i
F
T T
.25<RI <.5 I=I-1 —‘@ .T5<RIL] J=J-1

@——* N=N+1

: T
B

NUM = NUM + N * PSI ,<>
DEM = DEM + N
XJY:
PSI = NUM/DEM || PSI,
AVE = DEM/M PSIB

| X=X+1

Y < YMAX

) () o

| X=-1
Y=Y+1

o g
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The MAD program is shown below.
RANUDOM WALK FOR 20D LAPLACE EWQUATION

NORMAL MODE IS INTEGLR
FLUATING POINT PSIB, PSI, RI, RAM2H., NUM, DEM
REAU FORMAT ABLE, NMAX, MMAX, XMAX, YMAX
VECTUR VALUES ABLC=$41%%%
DIMB(2) = YMAX + 3
GIMB(3) =  YMAX + 1 L
READ FURNAT EASY, PSi(0,0)es.PST(XMAX,YMAX)
_________________ VECTOR VALUES EASY=$(8F10.6) %8 ) 5010
IIMENSION PSI(625, DIME(L))
READ FURMAT FOX, BOUND(0,0) .. BOUND(XMAX,YMAX)
VECTUR VALULS FOX=%(4012) %% 6012

GR OVALUES DIMB(L) = 2,27,11

X<l G013
Y=1 G014
T = 1IMELLO)
1T = T#34359738361(
o FXECUTE RAMZAL(T) .
ALPHA F=0 - G015
___________ BUM=C ) G019
''''' FEN=0 - - G020
BETA 1=% 6016
J=y GOl7
N=0
TGANMMA TWHENEVER BUOUNO(I,JY.NE. 0O, TRANSFLR TO OELTA
Pl RAMZB L (0)
TUTTTTTTTTTTTTTREREVER RT JGEV DL LAND. RI WL. 0.25
[=1+1 . G024
CR WHEMEVER RI oUFEas (e?5 <AND. RI L. 0.50
t=1~1
(P WHENEVER RT WGE. G50 <ANU. RI oL. 0.75
I L L2 . ) ) 6028
CR 7w SNEVER KT JUE. 0.75 JAND. RI JLE. 1.00
J=J-1
fivb UF LONUDIVTONAL G031
o 6032
FNEVER N.LE. NMAX, TRANSFER TO GAMMA
FORMAT DGG, X, Y
T T VALULS DUG=4%2721H0 EXCLEDED NMAX FOR X=T15, 7TH AND Y=T5+% G036
TRANSFUR TG EETA G037
DELITA WHLNEVER BOURD(L,J) <Fe-2s TRANSFER [0 MU
NUMsNUME NePST(E,y)
LEM= DEMFN T ' S N 7§ ¥ TV I
NLVLR MoL. RMMAX
TRANSTLR U hTTA
FND OF CONDITIUNAL
,,,,,,,,,,, FOHLUX Y )= HUM/DES _ R S
""""" FSIB = oUm/m S
PUINT FORMAT CHUGK, Xy Yy PST(XyYl, PSIB
VECTUR VALULLDS CHUCK=31HO, S2y 4HPSI(Ib,LHyI15,2H)=F10.6,55,46H
1 AVERALT NUMBEER UF THRUWS TU REACH BOUNDARY = ,Fl0.6%3$
MU xX=X+1

BOUNI(XyY) el o Oy TRANSFER TO_ALPHA
TRALSFER 10 MU
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Numerical Solution of the Harmonic and Biharmonic Equations

A typical set of computer output is shown below.

PSI( 1, 1)=_ .334311 AVERAGE NUMBER OF THROWS 10 REACH BOUNDARY =  3.410000
PSI{ 24 1)= . 315789 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY = 6.460000
PSI{ 3, 1)= .36771C AVERAGE NUMBER OF THRUWS TO REACH BOUNDARY = 6.070000
PSI{ 4, 1)= .296160 AVERAGE NUMBER OF THROWS 10 REACH BOUNDARY = 5.990000
PSI{ 5, )= .347952 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY =  8.300000
PSIt 6y 1)= .295181 AVERAGCE NUMBER OF THROWS TO REACH BOUNDARY = 9.960000
PSI( 1, 1)=  .300597 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY =  6.700000
PSI{ 6y 1)= « 354658 AVERAGE NUMBER OF THRUWS TO REACH BOUNDARY = 8.910000
PSIH 9, 1)= 287466 AVERAGE NUMBER OF THROWS TO REACH HOUNUAéY = 7.340000
EXCEEDED NMAX FUR X= 10 AND Y= 1
PSI{ 10, l1)= . 308601 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY = 7.790000
PS¢ 11, 1)= 2476510 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY = 8.940000
PSI( 12, )= .392925 AVERAGE NUMBER OF THROWS TO REACH BOUNDARY =  10.460000
PSIL__ 13, 1)=  .425653 AVERAGE NUMBER OF THRCWS 10 REACH BOUNDARY =  10.720000
PST{ 14, 1)= 418621 AVERAGE NUMBER (GF THROWS T0O REACH BOUNDARY = 11.606000
PSIC. 15, _ 1)= _ .39971s AVERAGE NUMBER OF THRUWS TO REACH BUUNDARY = 14.160000
PSI( 16, )= .275203 __AVERAGE NUMBER OF THROWS 10 REACH BOUNLARY = 14.760000
PSI{ 17, 1)= . 361626 AVERAGE NUMBER CF THROWS 10 RCACH KOUNDARY = 14.0620000
PSI( 18, _ 1)= _ .405120 AVERAGE NUMHER OF THRUWS TO REACH BOUNUARY = 12.890000
PSIC 19, 1)=__ .238183 AVERAGE NUMBER OF THRUWS 10 REACH HOUNDARY =  12.440000
PSI{ 20, 1)= . 383511 AVERAGE NUMBER hF THRUWS TO REACH BUUNDARY = 10.310000
_PSLL_ 21y 1)= 445896 AVERAGF NUMHER OF THRUWS TO RCACH BOUNDARY = 14.0100G0
PSIC 22, 1)= 26094 AVERAGE NUMHCR 0F THRUKS 1O REACH BOUNDARY = 6990000
PSI( 23, l)= 265636 AVERAGE NUMHBER OF THROWS T0O REFACH BOUNUARY = 5.820000

Case 3 has been used successfully in the Photoelasticity course for solving for the first
stress 1nvarlant to enable separation of the stresses. The instructor's program was used by all

students. None of the other programs have been class tested.
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Example Problem No. 98

JOUKOWSKI AIRFOIL
by
William P. Graebel
Department of Engineering Mechanics
The University of Michigan

Course: Mechanics of Inviscid Fluids I Credit Hours: 3 Level: Senlor

This 1s a problem which appears in all of the books dealing with classical hydrodynamics,

but has become of perhaps decreasing interest with the advent of high-speed aerodynamics. The
approach used in such books as Milne-Thomson (Theoretical Hydrodynamics, MacMillan, 1960) and

Streeter (Fluid Dynamlcs, McGraw-Hill, 1948), emphasizes the graphical method. The advantage

accrued by use of the computer 1s to emphaslze the fundamentals of the problem.
Baslcally, this is the problem of the mapping of a circle into a shape with one cusp point.
For potential flow with circulation around a circular cylinder in the complex 5 plane, the
complex potential is given by
-la a2 ia
= U(§ e T =—e ) + 1 g% An S (1)

where U and & are the free stream speed and direction, a is the radius of the cylinder, and [

1s the magnitude of the circulation. Transforming thls into the complex z plane by means of

z = g + am eié + agb?/(j +am eié) (2)
with b + 2 mb cos 0 + m° - 1 = 0, (3)
the airfoil 1s obtained. For the cylinder of radius a, ; = a eig on the cylinder, hence
z/a = (cos © + mcosé) (1 + bQ/R) + 1(sin 6 + m sind) (1 - b?/R), (4)
R = (cos @ +m cosé)2 + (sin © + m sin §)° (5)
The parameters governing the shape of the airfoil are then m and § . Using equations (1), (2),

and (3), the streamlines in the z plane could also be found.

In the present program, we have contented ourselves with plotting just the airfoils.
A given number (MAX) of ©'s are used to carry out the computations given by equation (4), comput-
ing the airfoil shape at points EW/MAX radians apart on the circle. For given m, é, the values
of these points are given numerically and then graphically, so that the computer can give the
shapes of many airfoils in less time than the best draftsman cén construct a single airfoil.
(The plots are scaled by a factor L =2 + (b + m cos ©), which estimates the chord length of
the alrfoil.) The effect of variation of m and § is thus easily grasped.

The results of thils program were shown in E.M. 522, and one student, experienced in program-

ming, voluntarlly developed hls own program for the problem.
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Joukowskl Alrfoil

A list of variables appearing in the program but not described in the text is glven below.

MAX

DELTA(I)

DELTA
DELMAX
M(1)
MMAX

B

XI, ETA
Xv, Yv

Number of
The angle
The angle
Number of

points on alrfoil to be computed

delta 1n degrees

delta in radians

DELTA's to be read in

M in the transformation (0 = M3 1)
Number of M's to be read in
Positive root of equation (3)

Coordinates in zeta plane

Coordinates of points on airfoll in Z plane

A flow diagram for the program is shown below.

/
MAX ggi%ﬁ%l) DELTA (DELMAX) ﬁ%ﬁ% «M(MMAX) gﬁggUEE "(Zi
(0,3,15,6,15)
FIN FIN DELTA=DELTA (P ) /180 s = ﬁéﬁ;:g
A=1, 1 bP=1,1 1C = COS (DELTA(P > B - _MiC ,< )
A > MMAX P > MMAX S = SIN (DELTA(P =
+ /1-(MAS)2
THETA=2TN/180
XI=COS(THETA )+MAC
1=2%(B DELTA(P) 2 FINISH ETA=SIN(THETA)
+ MAC) M(A),L BS =B N=0,1 +,_MAS
’ N=MAX R = (XI)2 + (ETA)2
BSOR=BS/R B
Oy EE it/ pil=iaa kS B .0, ()
Y =ETA(1-BSOR)/L - . s :0,5). »1.0,

EXECUTE PLOT 3

($+$,XV,YV,MAX)

EXECUTE PLOT 4
(3, LABEL)

LABEI=Y/L
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Example Problem No. 98
The MAD program is shown below.

_JOUKQOWSKI AIRFOIL

. READ FORMAT DATA1l,MAX
READ FORMAT DATA2,DELMAX,DELTA(1)...DELTA{DELMAX)
READ FORMAT DATA2 ,MMAX,M(1)...M{MMAX)
INTEGER MAX,DELMAX,MMAX,A,P,4N

VECTOR VALUES DATA1=$12%%

VECTOR VALUES DATA2=$12,15F5.5%%

 DIMENSION DELTA(15),M(15)

DIMENSION XV{100)}, YV(100)

DIMENSION_ IMAGE(2000)

VECTOR VALUES PI=3.14159
_VECTOR VALUES TWOPI=6.28318

EXECUTE PLOTL. (0,4,1546,15)

PI0180=P1/180.

TPOMAX=TWOPI/MAX
 THROUGH FIN _ 4FGR A=1,1,AsG.MMAX
THROUGH FIN  4FOR P=1,1,P.G.MMAX
 DELTA=DELTA(P)®*PIO180
C=COS.(DELTA(P))
S=SIN. (DELTA(P))
MAC=M(A) %C
___MAS=M(A)#S
R=—MAC  +SQRT.(l.- MAS#MAS)
L=2.%(B + MAC) ) o
PRINT FORMAT TITLE,DELTA(P),M(A) WL
 VECTOR VALUES TITLE=313H FOR DELTA = F10.5,16H DEGREES, M/A =
1 FL0.5,51H THE FOLLOWING ARE OBTAINED FOR X/L AND Y/LU. L/A
2F10.7%%
BS=H#H
THROUGH FINISH,FOR N=0,1,N.E.MAX
THETA=N#TPOMAX
)  XI=CODS.(THETA)#MAC
ETA=SIN. (THETA)+NMAS
R=XI*XI+ETARETA
HSOR=BS /R
X=X1%(1.+BSOR)/L

TY=ETA®(1.-BSOR) /L

i

) XVIN) = X
"""""""" YN EY T ) T T
FINISH PRINT FORMAT RESULT,X,Y

EXECUTE PLOT2. (IMAGE, 155 —1e55 Lo0y -1.0
PRINT COMMENT $1%
EXECUTE PLOT3. ($+$, XV, YV, MAX)
EXECUTE PLOT4. {3, LABEL)

TPRINT CTOMMENY "$1s

~ VECTOR VALUES LABEL = $Y/LS%
FIN CONTINUE

VECTOR VALUES RESULT =$1H S5,F10.6,5S5,F10.6%%
END OF PROGRAM
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Joukowskl Airfoil

A typical set of computer output is shown below.

FOR DELTA = 15.00000 DEGREES, M/A = «20000 THE FOLLOWING ARE
OBTAINED FOR X/L AND Y/L. L/A = 1.9830129
1.187256 -.050904
1.036732 -.126794
.788810 -.137762
. 487903 ~. 104112
o .165991 -.052068
-.153671 -.003271
~.452478 L029137
-.714320 . 040291
=.924972 .033028
-1.072219 .016012
N -1.146066 001777
-1.138655 . 004253
-1.043833 .035555
-.856800 .101641
_ -.575282  .196586
T T=.205076 296770
i 227432 .360709 o e o i}
. 661245 .345316
e 1.006939 . 239799
1.188652 . 085704
Y
7 1.000 #—~< TII2TITCIC YSITITIIIIIIIIL YOI i S S $ommmm eI IIIITIYTTT
L 1 I I 1 1 1 1
i 1 1 1 1 1 i
1 L 1 1 1 1 ) 1 I
I i I 1 I I 1
1 R S | I I SO SO I S
1 1 I 1 I 1 I
1 I 1 [ 1 I 1
1 1 I 1 1 1 1
i B S s . I | S S . B I S
I I I I I I 1
I I I I I 1 1
I I 1 1 I I I
I 1 I 1 L I 1
1 I [ 1 I 1 1
- B e —+ . + i i sttt -t
I 1 1 1 1 1 1
[ S S L I U SR I I
I 1 I I 1 e 1
1 1 1 1 + I I I
1 1 I I I + I 1
IR S SN (. SN SN SN S S
I I 1 I I 1 i
N S S 1 I | ) S - 1
I I + 1 1 1 I 1
I 1 I 1 1 I 1
1 I I 1 I 1 i
D S S, S 1 - | S I I + 1
I I 1 I I 1 i
____________ | St S SN S & 2 AU SO 1 . 1 | S
0.000 +--—--—~——~ tot—mm o Lt D D Dbt e —————— o ————— +
I I I 1 I 1 1
1 1 1 I + i 1 + 1
Y S R I SO S S S S I SR
I I I I 1 + I+ 1
IR S L - B SRR SN S | S
I 1 I 1 1 1 I
1 I I I I I I
1 I I 1 I 1 I
1 I 1 1 D 1 e
1 I 1 I 1 1 1
—
I i I 1 1 1 I
1 I 1 1 1 1 I
I I i 1 I I 1
~0e500 +--——-—mmo e e —+- - tommmmm e Fom e +
I I I I 1 I I
ISR SRR L ) I I I 1
i I I i I 1 I T I
I I 1 I 1 I I
i 1 I I I 1 I
1 I 1 1 I I I
I I I I I 1 1
- 1 1 I I I 1 I
T T T 1 . | 1 I 1
1 I I I I 1 1
I I i I 1 1 I
L 1 I 1 1 I 1 I
I I 1 1 I 1 I
1 1 I 1 I 1 I
-1.000 #-——---mmm——m o For o —— o A AR +
-1.500 -1.0C0 -0.500 0.000 0.500 1.000 1.500



Example Problem No. 99

PRINCIPAL AXES OF A SECOND ORDER TENSOR
by
William P. Graebel
Department of Engineering Mechanics

The Unlversity of Michigan

The problem of determining principal axes occurs frequently 1n mechanics in connection
with the stress, strain, and moment of inertia tensors. Using stress as an example, the law of
transformation when axes are rotated 1s

T..= 32 2 a;at T (1)
SIS R R A

where the a's represent direction cosines. As a consequence of the orthogonality of axes,

3. . s
J _ 0 if 1#j]
o M %S 1iar iij (2)

1
The problem is then to find a set of a's for which Tij = 0 when 1#j. (This problem is the same

as the problem of diagonalizing a matrix.) This is done for given Tkl by solving

3 3
> 2 a? a’Z
k=1 £=1

and any 3 of equation (2).

1
In the attached program, besides finding the a's, the Tij are also solved for as well as

the three principal invariants

ONE = 3 T, (4)
1= M
0.5 (0NE)® - % 3 3
™0 = 0.5 (ONE)* - = Tes Tu
2 1=1 j=1 ij if
THREE = det T
The input data is
XK= Too XY= T =T, X2 = Ty, =T,
YY:Tyy’YZZTyz:sz’ 22 = Ty

read in that order on two data cards with the format 3E14.8. The invariants, Tij, and a?'s are
then found in a straightforward manner. Tij is found as roots of the equation
73 - (oNE) 42 + (TWO) T - (THREE) = O (5)
As a check, the computed a?'s are then put into the remaining 6 of equation (2), and should
give a number much less than 1 if the axes are orthogonal. A possibility of trouble arises when
takin% the square root, as the program always takes the positive root even though for some input

data the negative root is required. No provision has been made to take care of this.
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The program can be easily adapted to show the need for carrylng sufficient figures.

Principal Axes of a Second Order Tensor

In the

THROUGH statement ending at ROOT, the value of one of the roots of equation (5) is found by

Newton's method to a greater number of significant places than 1s required for engineering work.

If, however, the number of significant figures retained were only two or three, the check will

show that the resulting principal axes are far from being orthogonal.

then is important for the computations which follow it.

This problem is sultable for introduction at the 412-422-542 level.

in the classroon.

This

"extra" precilsion

It has not been used

A 1ist of program variables for quantities not described in the text is given below.

AXX, AXY, AXZ, AVX, AYY, AYZ,

AZX, AZY, AZZ
TWOHAF
I1, I2, I3
I, IN
CHECK 1,...,CHECK 6

TEST

Direction cosines of principal axes.

Second moment of the tensor.
Three roots of cubic equation (5).

Temporary names

for Il.

Accuracy check for orthogonal axes.
These should all be zero.

Switch to stop iteration on Il

A flow dlagram for the program ls shown below.

( xx, xv, Xz, %’Z" XYYY’ [ carc one _ | TWO=0.5(ONE)2 0
YY, YZ, 72 > Y, CALC TWOHAF ~TWOHAF
'ROO‘I‘, N=1, }
() . 1-THIS TRIAL/LAST CALC I1 by
CALG THREE TRIAL| < 3><1O'é Newton's ' (:)
_ Method
Cl = ONE-I1 I2,T3=C12 CALC BX, O Ak o
@——012 = 0.5 C1 > > BY,BZ,GX, nvr Az amy. 4.@
C2 = TWO-I1¥%C1 1/(c12)2-c2 Y, GZ - 2K, 22X,
11, 12, CHECK1
@ CAL(.J. cgrgg}él:éé 13 .. .CHECK6

-F28-
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Example Problem No. 99

The MAD program 1s shown below.

PRINCIPAL VALUES aND DIRCCTIUNS UF A SECOND ORDER SYMMETRIC

TENSUR
INTEGER N, TesSr

READ FORIMAT INPUT 9 XXy XY 4y XZ4yYY,YZ,112
PRINT FIORMAT UATA XX3AY 1 XZ,YY,Y2,22

UONE=AX+4YY+ L2
TWOHAF =0 58 (XA XX+YYeYY+Z 7872V +XY XY +XL#XI+Y LY

TWU=C .5 #(NE#DNE~TwOHAF
THREE=XC# (YY R ZZ=NZuY L)+ XY #{ =228 XY+Y22XZ)+X2 % (XYRYZ=YY®XZ)

WHENEVER UNELNELO,.
[ =0ONL

GTHERWISE
I=iwe________

CND UF CONDITIONAL
TEST=0

THROUGH RODUT,FOR N=1,1,TEST.E.1
IN=T= (15 (TWO+I% (I-0ONE))-THREE)}/({1#{3.0%1-2,0%0ONE) )

WHENCVEY JABS.(1.0-1I8/1).L..00000003, TEST=1
[=IN

I1=1
Cl=0KE~T1

Cl2=0.%=%C1
C2=TwO-11%C1l

E=SQRT.{Cl2%C12-(2)
12=C124R

I3=C12-R
EX=(XZ%XY+Y 25 (=XX+11) ) /(XY#YZ=XZ%(YY-11))

EYS(XZeXY+Y L (=XK+T12) )/ {AY#YZ=-XZ* (YY~-12))
L= (XZx XY+YZ#{=XX+I13))/(XYrYZ=XZ¥(YY=13))

UX=(IXX=T1)#0YY=11)=XY=XY)/ (XY#Y2Z=-XZ%({YY-11))
CY=((XX=12)#(YY=-12)-iYeXY)/(XY#YZ-XZ#{YY-12))

GL=((XA=I3)»{YY=13)-XYuXY)/ (XY#YI-XZ%(YY-13))
AXX=1oO/SQRT {1, GHRXeBA+GA*GX)

AYX=LaCQ/SERT (L GHBY#BY+GY2GY)
ALX=1oG/SQRT (1 G+RZ5B2+G2%G)

AXY = BX#AXX

AYY=BYxAYX -

ALY = RI#A/LX

AXZ = GX#®AXX

AYL = GY®AYX

AZZ=0LZ&AZX

CHECKL = AXX#AYX 4 AXY#AYY + AXZ#AY]

CHECKZ2 = AXX#AZX + AXY#AZY + AXI%®AZ1
""" CHECKS =TAYX®ATZX + AYY#ALY + AYZI%A77Z

CHECKS = AXX®AXY + AYX®AYY + AZX®AZY

CHECKS = AXX#a X7 + AYX®AYZ + NIX#A72

LHECKE = AXY®AXI + AYY#AYZ + AIY#AZ1

PRINT FORMAT OUTL,11,12,13
PRINT FORMATOUTLYS,, OND , TWO, THREE

PRINT TORMAT UT?2
FRINI FORMAT OUT3,AX%,AXY,AXZ

PRINT FIORMAT QUT3,AYr,AYY,AYZ
PRINT FIRMAT OUT3,AZx,AZY,A2Z

PRINT FTORMAT uufTl
PRINT FORMAT 0UT3, CrHECKL, CHECKZ2, CHECK3

PRINT FIRMAT UOUT3, CHiFCK4y CHECKS, CHFCK6
VECTUR VALUES DATA=$1H0,52,5H XX = E14.,8y6H, XY = El4.846H, X

17 = El4.
28,6H, YY = E14.846Hy YZ = El4.8,6H, 27 = El4.8%%

VECTUOR VALUES OUT1=b1H0,52,42HTHE PRINCIPAL VALUES ARE, IN X,
1Yl GROER, Fl4.8,20H, Fl14.8,2H, C14.8%%

1 2110, 52,45H1THE THREE INVARIANTS ARE, IN 1, 2,

2 3y UROER 3{EL4.8y2Hy ) %%
VECTOR VALUES QUIZ2=b1H0,S52, TOHTHE BIRECTION COSINES AXX, AXY,

I AXZ, “YXy AYY, AYZ, ALX,y ALY, ANLZ ARL #9H
VECTUR VALUES OU13=51H0,5992(ELl4.86,2H, )yEl4.8 #%

VECTHOR VALUES (iUI=911iu,S2,521{THE CHECK ON URTHUGUNALITY OF TH
LE PRINGIPAL AXES IS

VECTUR VALUES INPUT =$3C14.8%%
LN UF PROGRAM
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Principal Axes of a Second Order Tensor
A typlcal set of computer output is shown below.

XX
YY

.10880952E 02,4 XY
«57380951E 01, Y

«2571428UE Oly XZ «42857140E 00,
.85714280E 00, 117 ~13738095E 02 OF
THE. PRINCIPAL VALUES ARE, IH X,Y,Z ORDER, _.11696239E 02, _.14031550F 02, .%46293523EF 01

i
1l

i
1]

THE THREE INVARIANTS ARE, IN 1, 2, 3, ORDER «30357143E 02, .28321937E 03,

« 15975236E 03,
THE DIRECTION CUSINES AXXy AXY, AXZ, AYX, AYY, AYZ, AZX, AlY, AZl AREL

88412448 DU,  .33466290E 00, —.32607464E 00

«21816949E OV, .18368832FE 00, .94280449EF 00

.37541855E_ 00, -.92426053E 00, .69306377E~01

THE CHECK ON ORTHUGOWVALITY OF THE PRINCIPAL AXES IS

-.145100G06E-0%y <13716099E-05, —.35120174E-05

-.44070184E-0%, ~.12225704E-04y -.60535967E-07
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