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NOMENCLATURE

Symbols are defined where they first appear in the text.

Those which appear frequently are listed below for reference.

l——]QéD(@ =

a

energy dissipated through inelastic deformation
energy input

kinetic energy

duration of earthquake

energy dissipated in viscous damping
number of stories

resistance force

yield strength

undamped natural period

strain energy

shear resistance

yield shear strength

coefficient of viscous damping
acceleration due to gravity

time interval

index, floor, or story

stiffness

mass

resistance force per unit mass

yield level

ratio of base yield shear strength to total weight of building
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4
<

v > <

time

lateral displacement relative to the ground
total plastic displacement

residuval displacement

limiting elastic displacement

ground displacement

forward difference

fraction of critical damping

ratio of stiffness in the inelastic region to shiffness in
the elastic region

story deflection
limiting elastic story deflection
time parameter of integration

absolute value

xi



CHAPTER I

INTRODUCTION

Linear dynamic analysis of the response of bulldings to earth-
quake indicates that buildings subjected to strong-motion earthquakes,
even if heavily damped, will experience lateral loads considerably larger
than those specified by the current building codes. This is especially
true for buildings of small natural period. Yet, the history of earth-
quake damage shows that buildings designed for lateral loads lower than
those prescribed by codes have withstood major earthquakes while under-
going distortions causing cracking of concrete or masonry walls. The un-
calculated reserve strength of the structural and nonstructural elements
may not be sufficient by itself to explain the relatively small damage.

Energy dissipation has been recognized by engineers as an im-
portant factor in explaining the observed behavior of structures-during
strong-motion earthquakes. For low distortion values, energy dissipated
in the nonstructural elements may be more important than energy dissipated
in the structural elements through inelastic deformation in protecting the
traditional type of building (steel-frame with masonry or concrete walls).
With the present architectural trend towards lighter and lighter buildings
and the use of the modern type of fenestration, the ductile properties of
the structural elements become increasingly important until the energy dis-
sipated in the structural elements through inelastic deformation becomes
the predominant component of the total dissipated energy.

Current building codes are based largely on results obtained

from linear dynamic analysis. Yet the seismic lateral loads recommended

wla



for design purposes are numerically much lower than those calculated ana-
lytically. The codes rely upon the energy-absorbing properties of the
structural and nonstructural elements, although this is not stated ex-
plicitly. But the codes make no distinction between lightly and heavily
damped buildings, and also (with the exception of the proposal of the
Structural Engineers Association of California) do not take into account
the ductile preperties of the structural elements.

The history of earthquake damage, together with the experimental
work of several investigators on hysteretic properties of structural
materials,(l'3) suggest that an approach incorporating energy dissipated
through inelastic deformation may be advantageous for the design of
earthquake-resistant buildings. This study is concerned with the behavior
of buildings with hysteretic load-deflection relations during earthquakes.

Recent investigations on the inelastic response of structures
to earthquake motion comprise, among others:

(1) an analysis by R. 'I‘anabashi,(l1L> applicable to multi-

degree-of -freedom systems for several types of pulse
series representing idealized earthquake motion;

(2) a detailed analysis by G. V. Berg,(5) applicable to multi-
degree=-of-freedom systems for actual earthquake accelero-
grams;

(3) a study by G. N. Bycroft, M. J. Murphy, and K. J. Brown,(6)
giving inelastic results of an electric analog (simulating
simple damped structures) for an actual earthquake accelero-

gram;
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() a study by R. M. Sheth,(7) investigating the effect of
inelastic action on the response of simple structures
for actual earthquake accelerograms by means of a high-
speed digital computer; and

(5) a study by J. Penzien, dealing with the dynamic response
of simple(8) and multi-s’coxy@) elasto-plastic structures
for an actual earthquake accelerogram by means of a high-
speed digital computer.

Simplified design procedures based upon energy absorption

through inelastic deformation comprise:

(1) Housner's limit design,(loill) according to which a build-
ing can be designed for a seismic lateral load lower than
that calculated from linear dynamic analysis, provided
the structural elements of the building have the capacity
to dissipate an adequate amount of energy through inelas-
tic deformation; and

(2) Blume's reserve energy technique,(12’13) which attempts
to reconcile the seismic coefficients stipulated by cur-
rent building codes with those calculated from linear
dynamic analysis.

The purpose of this study is to analyze the effect of energy
absorption through inelastic deformation on the behavior of buildings
during earthquakes, in the hope that ultimately earthquake-resistant de-
sign procedures will be improved by making use of inelastic dynamic analy-
sis.

All the investigations have been carried out with the aid of a
high-speed digital computer using the accelerograms obtained from the

four strongest U.S. earthquakes recorded to date.
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The study comprises:

(1)

the translation of the accelerogram records, furnished by
the U.S. Coast and Geodetic Survey, into punched-card
accelerograms to be used as input data by the computer
(Chapter II);

a review of linear dynamic analysis and its deficiency when
applied to strong-motion earthquake-resistant design (a
brief account of the velocity spectrum technique is given
and the importance of inelastic action is shown) (Chapter
II1I);

the evaluation and interpretation of deflection spectra
showing the effect of elasto-plastic action on lateral
deflections of simple (one-story) buildings, followed by
an investigation of the residual lateral deflections at
the end of the earthquake (Chapter IV);

the evaluation and interpretation of energy input spectra
showing the effect of elasto-plastic action on the energy
imparted to simple buildings by strong-motion earthquakes
(Chapter V);

an analysis of the effect of elasto-plastic action in re-
ducing the seismic lateral loads (Chapter VI);

an investigation of the behavior of simple buildings with
bilinear (elastic-strain-hardening) hysteresis during
strong-motion earthquakes (Chapter VII); and

the extension of the above investigations to four-story

idealized shear buildings (Chapter VIII).



CHAPTER II

ACCELEROGRAMS OF STRONG-MOTION EARTHQUAKES

The strongest U.S. earthquakes for which accelerograms have

been recorded to date are the following:

El Centro, California, December 30, 193k
El Centro, California, May 18, 19%0
Olympia, Washington, April 13, 1949
Taft, California, July 21, 1952

The accelerogram records consisting of the three components
of motion for each of the above earthquakes were furnished by the U.S.
Coast and Geodetic Survey. Figure 1 shows a typical accelerogram record.

Bach accelerogram was approximated quite closely by a series of
straight-line segments. As there are no indications on an accelerogram
record from which the true base line (the zero axis) can be established,
a temporary base line, usually the reference line shown in the records,
was adopted. Then the time-acceleration coordinates corresponding to
the intersection point of every two successive line segments were scaled
to avconvenient scale and punched on IBM cards. The coordinates of
seven points were punched on every card, plus an index number so that
the machine could check the card sequence and identify the earthquake
component.

The number of points required to describe the significant part,
around 30 seconds, of an earthquake component accelerogram varied from

380 to 710. It was noted that, for all four earthquakes, the number of

-5-
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points required to describe the accelerogram corresponding to the verti-
cal component was larger than the number of points required by the
accelerogram of either horizontal component.

At first, it was expected that reasonable ground velocity and
ground displacement curves could be obtained upon integration of the
accelerograms, if the latter were modified by refefring the acceleration
ordinates to a new base line parallel to the temporary base line and
located so that, with zero initial ground velocity and zero initial
ground displacement, the terminal ground velocity would be zero.

To modify the accelerograms, the computer was first instructed
to calculate the terminal ground velocity by integrating numerically the

straight-line-segmented accelerogram, that is,

T
'_J

y(L) = (§i + §i+l)(ti+l - t5)

n |-

i=l

in which y is the ground displacement, dots define differentiation
with respect to time, L is the time duration of the accelerogram, 1t
is thebfime corresponding to the ground acceleration ordinate, and N
is the number of points which describe the accelerogram.

Then, to reduce the terminal ground velocity to zero, the com-
puter was further instructed to move the temporary base line by an amount
equal to -(¥(L)/L) and in a direction parallel to itself. In so doing
the computer referred the ground acceleration ordinates to the new base
line. It was then instructed to multiply the time-acceleration coordinates
by the appropriate scale factors and punch out the coordinates of four
points per card, plus a card sequence number, and an identification number

identifying the earthquake component.



Double integration of the straight-line-segmented accelerogram
was performed numerically by the computer in accordance with the equa-

tions given below:

ts -t
° e i+l i o6 s

Vil =¥y * - 5 (;Yi + Yi+l)
and

2
oo, (Bia - %)
Vigp = gt (B - b)Yy Z (

2y * Vi)

This generated curves showing high grouﬂd displacements and notably high
permanent ground displacements corresponding to the vertical earthquake
components, going up to 135 inches. Such high ground displacements did
not actually occur. To obtain more reasonable results, it was decided
to modify the accelerogram records further. The curves obtained from
the first modification will be referred to as preliminary curves.

With the purpose of reducing the ground displacements through-
out the earthquake duration, it was decided to fit to the preliminary

ground~-displacement curve a third-order polynomial, a, + a;t + a2t2 + a3t3,

L

make f[y(t) - (ao + a1t + a2t2 + a3t3)]2 dt a minimum (best fitting
o

in the sense of least squares), and let the modified ground motion read

as follows:

y*(t) = ;Y(t) = 8y - alt - 8.2t2 - 8.3t3 y*(O) = - ag
Jr(e) = §(x) - a1 - 2agt - 3a3t” y*(0) = - a
F*(t) = F(t) - 2ap - agt 7#(0) = 5(0) - 2ap

In the above equations, y is the preliminary ground displacement and

y¥* 1is the ground displacement as last modified. A third-order polynomial



was chosen because the shape of most of the preliminary ground displace-
ment curves was approximately that of a thirdforder polynomial. The
coefficients a4 (i =0, 1, 2, 3) were evaluated by the computer.

Figure 2 shows the preliminary and last modified ground-
velocity and ground-displacement curves for the vertical component of
the E1 Centro, California, earthquake of May, 1940.

The last modification is analogous to assuming that the true
base line has the ordinates (2ap + 6a3t) from the preliminary base
line; by this, the originally adopted temporary line is given a further
shifting, this time accompanied by a rotation. This modification also
introduces nonzero initial conditions. One cannot claim zero initial
conditions since the accelerometer has to be triggered by a ground mo-
tion before- it starts recording. Finally, this modification yields a
nonzero terminal ground velocity, which condition is possible since only
the first 30 seconds of the accelerogram record were used.

It is interesting to note that this last modification generated
maximum offsets from the preliminary base line ranging from 0.006 in. to
0.024 in., which, multiplied by their respective acceleration scales,
correspond to 0.001L g and 0.003 g, g being the acceleration due to
gravity.

Response calculations later showed that accelerogram modifica-
tions of the type and order of magnitude described above generally had
no significant effect upon the response of structures.

To verify whether the approximation of an accelerogram record

by a series of straight-line segments was sufficiently accurate, the
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response spectra of linear systems were calculated from the punched-card
accelerograms and the results were compared with those which had been
obtained by means of an electric analog computer.(lu) The comparison
showed close agreement.

Although there may be other ways to adjust the accelerogram
records, the above procedure was adopted for all accelerograms because
it generated acceptable ground-velocity and ground-displacement curves.
Also, the curves thus obtained for the El Centro, California, earthquake
of May, 1940, were compared with the curves published(l5> for that earth-

guake and were found to be reasonably similar.



CHAPTER III
REVIEW OF LINEAR DYNAMIC ANALYSIS; ITS DEFICIENCY WHEN
APPLIED TO EARTHQUAKE-RESISTANT DESIGN
If we assume (1) that a simple (one-story) building frame
with foundations rigidly built upon a firm ground can be represented
by a linear damped oscillating system, consisting of one mass, spring,
and a viscous damper, as shown in Figure 3; (2) that the spring and
damper are weightless; and (3) that all motion takes place in the di-
rection in which the spring and damper act, then, when the system is
subjected to an earthquake ground motion, the equation of motion will

read as follows:

m(%+5) + cx + kx = O (3.1)
or

mX + cx + kx = -my (3.2)
where

m 1is the mass, (FL-112) %

¢ 1is the coefficient of viscous damping, (FL”lT)
k is the spring constant (stiffness), (rL-1)
x 1s the displacgment of the mass rela-

tive to the ground, a function of time, (L)
y 1s the ground displacement, a known

function of time, (L)

and dots define differentiation with respect to time.

¥ Dimensions are shown in units of force, length, and time.

=10~
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MASS =m Y

VISCOUS DAMPING=C

STIFFNESS =k

SIMPLE DAMPED ELASTIC FRAME

.
—
N\ o
N\ m
N g
\ ©
N\
N
N c
\ T
N\ L

L——’Y( t) L myx

EQUIVALENT DAMPED SPRING AND MASS
SYSTEM

DISPLACEMENT | x

FORCE-DISPLACEMENT RELATION

Figure 3. Simple Building Frame Represented by a Linear Damped

Oscillating System.
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If we define

T = 2n'J_% = the undamped natural period (T) )
and. | , (3.3)
B = ZS_ = the fraction of critical damping i
T !
then, in view of Equations (3.2) and (3.3),
PESC R (3.4)

Mathematically, the solution to Equation (3.4), for zero initial

conditions, is given by Duhamel's integral as follows:

t - 2% g(t-7)
[ §(r)e

T
2nN1-pe ©

X =

sin %Jl.mﬁ'e (t-7idr (3.5)

where

t 1is the time
and

T 1is the variable of integration.

For the encountered values of damping, f < 0.20, the term
JE:EE can be considered to be very nearly equal to 1. Hence Equation
(5.5) can be rewritten as follows:

St

t
x 2 - = [ §(1)e sin 2% (4-1) ar . (3.6)
21x O T

The maximum absolute value of the integral in Equation (3.6)

is designated by sv,(16)

where the subscript v 1is used because the
physical dimensions of the integral are those of velocity. For small
damping values like the encountered ones, S, 1is practically equal to

the maximum absolute value of the velocity of the system relative to

the ground.
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Hence
., - 2L p(t-T)
Sy = [ 5(t)e T sin %;(t-T>dT (%.7)
o
max
2z maximum absolute value of velocity relative to the
ground
and
X n~r éE-Sv . (3.8)
s
max

If a number of values of S, are calculated for different
natural periods and different values of damping, the resulting family
of curves, plotted as Sy against natural period for fixed values of
damping, constitute the velocity response spectrum(l6> which 1s char-
acteristic of the considered earthquake.

Typical velocity response spectra are shown in Figure L,

These are plots of [ilmax’ computed from the punched-card accelerograms
by integrating numerically the differential equation of motion, that is,
Equation (3.4).

Response spectra for most of the strong-motion earthquakes of
record have been computed by means of an electric analog computer at the -
Earthquake Research Laboratory of the California Institute of Technologyﬂlw
Sy has a simple relation with the maximum strain energy de-

veloped in the structure during the earthquake action. If U designates

the maximum strain energy per unit mass, then

LR ()T ME WS (5.9
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In view of Equations (3.3) and (3.8), Equation (3.9) becomes:
1
U=5 8,°. (3.10)

From lemax’ the earthquake maximum base shear Vg can be

determined as follows:
Vg = k|x| : (3.11)

In the case of a multi-story bullding frame, for every mode
there is an equivalent one-story frame giving the same base shear as
the corresponding mode of the multi-story frame. The equivalent one-
story frame corresponding to the r-th mode of a multi-story frame has

the following properties:

2
( .Z mi¢ir] \
l:
Mey = N 5
izi mi¢ir
2
Koy = (%£> ey ’ , (3.12)
T
VBy = kerlxerlmax
where )

Meyr 1s the mass of the equivalent one-story frame giving
the same base shear as the r-th mode of the multi-
story frame, (FL'lTE)

mj is the mass at the i-th floor level of the multi-

story frame, (FL'lTe)
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fir is the r-th mode displacement of the i-th

floor level,
k is the stiffness of the equivalent one-story

frame corresponding to the r-th mode, (rr 1)
T. is the natural period of the r-th mode of

the multi-story frame, (T)
Vg, 1s the maximum base shear if the multi-story

frame vibrated in the r-th mode, (F)
Xer 1s the displacement of the mass mg, rela-

tive to the ground. (L)

The vertical distribution of the base shear Vg, over the floor levels

of the multi-story frame is determined from:

Fir = VBr — 181y (1 =1,2, ..., N) , (3.13
Ly mifir
in which Fip 1is the lateral load applied at the i-th floor level
if the frame vibrated 1in the r-th mode. The derivation of Equa-
tions (3.12) and (3.13) is given in Appendix A.

The velocity response spectrum as defined above is concerned
with maximum values of velocity acquired by systems of different periods.
Since, in general, these velocities do not occur at the same time, the
superposing of the individual mode maximum base shears as determined
from the response spectrum will yield an approximate (overestimated)
total base shear.

It has been suggested(IY) that magnifying the maximum response

of the first mode by a constant factor to account for the effect of
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higher modes is not entirely rational, because the higher modes have

a different effect at different heights. Instead, a better estimate
can be made if a certain fraction of the maximum response of the
second and third modes is added to the maximum response of the first
mode.

Sy 1is related to the seismic lateral load coefficient C

in the expression determining the earthquake maximum base shear as

follows:
Vg = Cmg = k|x| = k(X S )
B max 21 Vv
or
1 /k\,T
C = (g)(ﬁ)(zﬁ Sv)

In view of Equation (5.3), the above equation becomes:

c = DEF s - (3.14)

For each horizontal component of the four strongest U.S.
earthquakes on record, the seismic lateral load coefficients were com-
puted for systems of different natural periods and for different values
of damping. The results, plotted against natural period for fixed
values of damping, are shown in Figures 5-8.

These figures indicate seismic lateral load ceefficients as
high as 0.55 for buildings represented. by linear dynamic systems, even-
if damped as heavily as 0.20 of critical damping. Design for such
lateral forces may not be practicable because of the high cost entailed.
On the other hand, after an intensive study of the history of earth-
quake damage, it has been reported that buildings designed for con-

siderably lower seismic coefficients and subjected to major earthquakes
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did not reveal any structural damage. In such cases, damping alone
is not sufficient to account for the absence of damage in the struc-
tures. Energy dissipation through inelastic deformation, which is
ignored by linear dynamic analysis, is recognized by engineers as an
important factor in explaining the observed behavior of structures

during strong-motion earthquakes.



CHAPTER IV
EFFECT OF ELASTO-PLASTIC ACTION ON LATERAL
DEFLECTIONS OF SIMPLE BUILDINGS SUBJECTED TO EARTHQUAKES
With the present architectural trend towards lighter buildings,
in which lightweight materials with slight rigidity replace the tradi-
tional masonry or concrete walls, the flexibility of the building becomes
an important design factor if the building is to resist earthquake action
successfully. ILarge lateral deflections, besides causing property damage
such as plaster cracking, glass breakage, etc., are also a considerable
life hazard. The danger of broken glass falling from a tall building is
obvious. Moreover, in the case of nonlinear behavior, it could be ex-
pected that a building, designed for a seilsmic lateral load coefficient
lower than that indicated by linear dynamic analysis, might become un-
usable because of the possibility of resulting increased lateral deflec-
tions causing large permanent sets, even though the structural elements
might still have adequate strength for structural safety. Therefore the
following investigations were made:
1. The effect of inelastic action on lateral deflections.
The maximum lateral deflections of different buildings,
assumed to yield safely, were calculated and compared
with the corresponding ones calculated from linear dynamic
analysis.
2., The permanent sets. The residual lateral deflections at
the end of each earthquake analysis were calculated to

determine whether they were within acceptable limits.

-25.
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To simplify the proceedings, only simple (one-story) buildings

were considered. The study was based upon the following three assumptions:

1. The structural elements have a large capacity for energy
absorption through inelastic deformation, enabling build-
ings rigidly built upon firm ground to yield safely.

2. The building frame can be represented by an equivalent
nonlinear damped oscillating system as shown in Figure 9,
consisting of one mass, a spring, a viscous damper, and
a friction plate with a coefficient of slipping friction
L. The use of a simplified dynamic model reduces the com-
plexity of the building frame to the point where computa-
tions are practicable.

3. Reverse loadings of complete buildings produce load-
deflection curves mirroring the curves for the first
loading and unloading cycle(l8> (neglecting softened fea-
tures and a decaying ultimate strength). This behavior was
represented by an idealized force-displacement curve of the
elasto-plastic type, chosen for its simplicity.

Assuming that the load-deflection characteristics of a complete

building can be described by an elasto-plastic curve, as shown in Figure
10, then the spring force-displacement relations for the equivalent sys-

tem will read as follows:

Q = kx if -Qy <Q<Qy

or if Q=Q, and x <0

or if Q=-Qy and X >0 i (k.1)
Q=0 if Q=Qy and x>0

°

or if Q = -Qy and x < 0]
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where
Q 1is the spring force, a function of time, (F)
Qy is the yield strength of the spring, (F)
k 1is the spring constant (stiffness), (FL”l)

X 1s the displacement of the mass relative to
the ground, a function of time, (L)
and dots define differentiation with respect to time.
Designating the slip of the friction plate by ¥, a function

of time, then, according to Figures 9 and 10,

.

¥ =0 if  -Qy < Q<@

or if Q@=Q, and x<0 . (4.2)

IA

or if Q=-Q amd x>0

If it is assumed that the spring, damper, and friction plate
of the equivalent oscillating system are weightless and that all motion
takes place 1n the direction in which the spring and damper act, then,
when the system is subjected to an earthquake ground motion, the equation
of motion will read as follows:

m(x +y) +cx +Q =0 (4.3)
or

mx + cx + Q = -my . (b.1)

From the second definition of Equation (3.3),

Hence Equation (4.4) can be rewritten as follows:

mx + #% mpx+ Q= -my (4.5)
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or
§+-)+—T£B>'<+-§ﬂ-=-§ (4.6)
Define
-9 -2
q == (LT-<)
and . (4.7)
4y = 9% = the yield level (Lr-2)

The yield level qy is the acceleration of the system that will just
cause the spring force to attain its yield strength Qy,

Based on Equations (4.6) and (4.7), the differential equation
of motion, reduced to a unit mass basis, will read as follows:

35+-1L;5>2+q=—§, (4.8)

In view of Equation (4.7) and the first definition of Equation

(3.3) which gives

k. @n®
m T

the spring force-displacement relations given by Equation (4.1), reduced

to a unit mass basis, become:

. 2n 2 .
q=(F) x if -q, <a<gy \

or 1f g =gy and x < O

or if g = -Qy and x> 0 . (4-9>
qg=0 if q = Ay and X >0

or if 9= -qy and x <0




-30-

Equation (4.8) was integrated numerically by the computer for
each earthquake analysis for specified values of yield level, damping,
and natural period. Since the maximum response was of primarv concern
rather than the complete time history of the response, the computer was
instructed to evaluate the response at small time intervals and record
the maximum response. The Runge-Kutta third-order procedure,(5>{19) a

single-step method well suited to high-speed digital compuiers, was used

for the numerical integration. This method is advantageous for the study

under consideration, because the functions at time t + b (h being a
specified time interval) are evaluated from those at time t, which
therefore permits one to change the time interval h at anv step of the
integration, and because it does not require any special starting proce-
dure for the initial steps of the integration. The formulas used in the
Runge-Kutta method are given in Appendix B.
To adapt the equation of motion to the Runge~Kutta procedure,

the second-order differential equation was replaced by the folliowing two

simultaneous first-order differential equations:

]
4

and , (L,

v=x=-(y+ b Bv +q)
T

To overcome the difficulty caused by the discontinuity of é
whenever the system was entering the plastic region, the differential
relations of Equation (H,9) were replaced by the following esvivalent

difference relations:
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2
T ,
i
Agq =gy -q if q+(2—j£>2AX>q ( (4.11)
Y T Y °
_ o @ T
qu-qy—q if q+(—T—) Ax<~qy 3

An exact solution cannot be claimed when finite differences
are introduced in place of differentials. Nevertheless, by making the
time interval small enough and by assuming that x does not change sign
during the interval, a close approximation to the exact solution can be
obtained.

A small time interval was also required to insure a sufficilent
accuracy in the numerical solution of differential equations; in fact,
it was specified that the time interval h was not to exceed the twen-
tieth of the natural period of the system considered. However, for the
undamped and lightly damped cases, when high yield levels were considered,
it was necessary to reduce the above limit considerably to bring the dis-
crepancies resulting from the numerical solution within the range of
tolerance.

At every step of the integration, the computer was instructed

to calculate the difference between the time at the end of the accelero-
gram segment involved in that particular step and the time at the begin-
ning of the same step; this difference was then compared to the specified
time interval h. Whenever the difference was found smaller than h, it
was used as the integration time interval; otherwise, the specified time
interval h was used. In. the latter case the ground acceleration at
time t + h was evaluated from that at time t Dby linear interpolation
between the two adjacent ground accelerations involved in that particu-

lar step of the integration.
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When the computer had completed an earthquake analysis by
advancing step by step through the solution, it was instructed to cal~-

culate the magnitude of the permanent set, which is given by:

|| = |x(1) - (g%)e q(L) (a,12)
where

Xy 1s the residual displacement (permsnent set) (L)
and

L is the time duration of the accelerogram
(around 30 seconds)

Equations (4.10) and (4.12) were solved for each horizontal
earthquake component for five yield levels, that is, Ay - 0.01 g, 0,03 g,
0.06 g, 0.12 g and «., Infinity represents a yield level high enough
50 that the same nonlinear damped system can serve as a iinear damped
system. The low yield levels 0.03 g and 0.0l g were considered for the
purpose of finding the extent to which the yield level can te lowered
without causing lateral deflections significantly larger than those cal-
culated from completely elastic dynamic analysis. For each yield level,
three values of damping, B = 0.03, 0.,10,and 0.20, were considered as
well as the undamped case. The undamped case served as a comparison
basis in investigating the effect of damping. The value 0,03 of criti-
cal damping was chosen because it is about as low as is encountered in
structures; the values 0.10 and 0.20 of critical damping were chosen
because they may correspond to moderately and heavily damped frame build-
ings, respectively. For the undamped case and for each value of damping,

natural periods ranging from 0.10 to 3.0 seconds were considered.
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The calculated maximum lateral deflections and permanent sets
were plotted against natural periods, for yield levels varying from
completely elastic down to 0.0l g and for fixed values of damping rang-
ing from O to 0.20 of critical damping. Maximum lateral deflection
is plotted in Figures 11-14 and permanent set, in Figures 15-18.
Figures 11-14 permit a comparison of the maximum lateral de-
flections calculated from elasto-plastic behavior with the correspond-
ing ones calculated from completely elastic behavior. The comparison,
at all levels of damping, shows that:
1. The maximum lateral deflections of buildings with a yield
level as low as 0.01 g are appreciably increased for
2ll the considered earthquake components, except for those
of the Olympia earthquake for which the increase is not
as noticeable as for the others.
2. The maximum lateral deflections corresponding %o a
0.03 g yield level are, in general, moderately increased.

3. Generally, the yield levels 0,06 g and 0.12 g do not
cause any significant increase in the maximum lateral de-
flections; moreover, they reduce the maximum lateral de-
flections of a great number of systems.

Contrary to what might have been expected, the atove observa-
tions indicate that, when subjected to strong-motion earthquake action,
simple buildings, designed for seismic lateral load coefficients lower
than those indicated by linear dynamic analysis but with yield levels
not lower than 0.06 g, will undergo lateral deflections seldom exceed-

ing those calculated from completely elastic behavior, and often lower.
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Figure 12, Iateral Deflection Spectra, El Centro, Californisa,
Earthquake of May 18, 1940. Components: N-S
(left), E-W (right).
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Figure 14, ILateral Deflection Spectra, Taft, California,
Earthquake of July 21, 1952. Components: N69°W
(left), 521°W (right).
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Figures 11-1L, studied with respect to the effect of damping
on the response of buildings, also show that the first increment of
damping, from O to 0.03, reduces very effectively the lateral de-
flections at all yield levels.

Figures 15-18 show that, for the values of damping and natural
period generally encountered in buildings, the permanent sets resulting
from yield levels not lower than 0,06 g seem to be within acceptable
limitéo

Thé results obtained from the above investigations indicate
that a strong-motion earthquake-resistant design incorporating energy
absorption through plastic deformation can be attempted, provided the

yield level is not lower than 0.06 g.



CHAPTER V
EFFECT OF ELASTO-PLASTIC ACTION ON THE ENERGY IMPARTED
TO SIMPLE BUILDINGS BY EARTHQUAKES

An earthquake in itself is caused by a release of energy due
to displacements on fault planes inside the earth's crust. Consequently,
a bullding subJjected to earthquake action is fed with energy. A part
of this energy is stored by the building in the form of strain and ki-
netic energy and the remaining energy is dissipated through damping.

At any time, the sum of the stored energy and the dissipated energy is
equal to the total energy input. When the energy imparted to the build-
ing is greater than its strain-energy capacity, then, there remains an
excess energy which will have to be absorbed in some way. For this
there are two possibilities:

1. If the capacity of the structural elements of the build-
ing is adequate for dissipating this excess energy
through inelastic deformation, the building will survive.

2. If the structural elements have no or only inadequate
capacity for energy dissipation through inelastic defor-
mation, then, this excess energy will be dissipated
through complete or partial structural damage.

As a relativelylarge capacity for dissipating energy seems
highly desirable in strong-motion earthquake-resistant design, knowl-
edge of the type and amount of dissipated energy becomes important.
Such knowledge could also explain damage or absence of damage in build-

ings that have been subJjected to earthquake action.

“h3-
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This chapter deals with the energy functions (energy input
and its components) as related to the three structural parameters,
namely, natural period, damping, and yleld strength. In particular,
it deals with the effect of elasto-plastic action on the energy im-
parted to buildings by strong-motion earthquakes. Again, to simplify
the proceedings, only one-story buildings were considered and the
study was based on the same assumptions stated in the previous chapter.
In fact, the computer evaluated the energy input and its components
while it evaluated the response of the system at small time intervals
and it was instructed to record the maximum values of the above func-
tions.

The equations of energy input and its components will be
derived on a unit mass basis from Equation (4.8).

If f(t) is the force per unit mass exerted on the system

by the foundation, then from Equation (4.8)

£(t) = - (%’3 Bx+aq) . (5.1)

Therefore, the energy input per unit mass is

E(t)

It

- f(l—‘TEBiﬂl)dy,

but

*

ydt

]

dy

thus

t
B(e) = - J (Zpk+q)jar. (5.2)
0
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The stored energy is resolved into strain energy, recoverable
when the system returns to its equilibrium position, and kinetic energy.

The strain energy per unit mass is

From the first definition made in Equation (4.7),
Q = gm

and from the first definition made in Equation (503)

m_ (T)°
k 27

Hence Equation (5.3) can be rewritten as follows:
u(t) =3 (= a) (5.4)
2 \2n & - ’
The kinetic energy per unit mass is
l . .
K(e) =3 (x + 9)° . (5.5)

The dissipated energy is resolved into energy dissipated
through viscous damping and energy dissipated through plastic deforma-

tion. The energy dissipated through viscous damping per unit mass is

L(t) = f%aka,
but
dx = xdt
thus
%
L(t) = %? B [ x2ar . (5.6)
o]
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From Figure 10 and the differential relations given by

Equation (409), D, the rate of energy dissipated through plastic

deformation, has to obey the following relations:

D = i -
0 if qy <qg< %y )
or if 94 = Qy and X <0 f
or if g =-g; and x>0 | (5.7)
D = Ay X if q = qy and x> O E
D = —qyi if q = «-qy and x <0 !

The energy integrals, as given by Equations (5.2; and (5.6),
were adapted to the Runge-Kutta procedure of numerical integration by
replacing each energy integral by its rate of change.

From Equation (4.10),

X =V

and if we define

y =z,
then
E = - (%% BV +4q) z ? ﬁ
(5.8)
: by 2 R
L= 22 »
T v ’

To overcome the difficulty caused by the discontinuity of D
whenever the system was entering the plastic region, the differential
relations given by Equation (5.7) were replaced by equivalent difference

relations which read as follows:



iy

2
21
AD =0 ir -qy<a+ (F) Ax<q
AD =g (Ax - (ELQ2 Ad) if g + (EE)E Ax>q . (5.9)
Y an T J
= T \@ . 27\ 2
AD = —qy(A X - (55) AQ) if g + (ﬁT) A x< -Gy

The same conditions stated in the previous chapter made the use of
equivalent difference relations possible.

For each earthquake analysis, the computer, advancing step
by step through the solution and reaching the end of the accelerogram,
evaluated the response and energy functions of systems of different
natural periods for different values of damping and for a specified
yield level.

To check for any possible errors or inaccuracies that might
have occurred in the proceedings, the following tests were made:

Prior to any solution involving actﬁal earthquake data, checks
for digital errors were performed by using as input simple waves for
which the exact solutions were analytically worked out. These’digital
checks showed an accuracy to four significant digits.

The energy balance, i.e., the difference between the energy
input and the sum of the energy components, was calculated to serve as
a detector of any possible machine or numerical error that might have
occurred during an earthquake analysis run. For this, the computer was
instructed to calculate the energy balance at the end of each solution,
which balance theoretically should have been equal to zero. In most
cases the energy-balance discrepancy was below 5% of the energy input;

only in one or two cases did it go up to 7%. In trial solutions, it
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was found that reducing the integration time interval brought the dis-
crepancy almost down to zero. But as the above discrepancies were
found tolerable, it was considered unnecessary to reduce the integra-
tion time interval throughout all the earthquake analyses, as this
would have required considerably longer computer time for the comple-
tion of the study.

Since the study under consideration concerns a nonlinear prob-
lem, investigations were carried out to determine whether the problem
was not inherently ill-conditioned. If it were, small variations in
the punched-card accelerograms could induce significantly large varia-
tions in the response and energy components., Several solutions were
computed five times. In the first computation, the punched-card accelero-
gram was used without any modification, but for the other four computa-'
tions the computer was instructed to modify the accelerogram by insert-
ing a distinct perturbation in each computation. The first perturbation
consisted of a 10% magnification in all accelerogram ordinates, which
caused magnifications ranging from 2% to 25% in displacement response
and 17% to 21% in energy input. In systems with completely elastic bé-
havior, the same perturbation would have caused magnifications of 10%
in response and 21% in energy input. The second perturbation consisted
of a 21% magnification in all accelerogram ordinates, which caused mag-
nifications ranging from 5% to 46% in response and 36% to 49% in energy
input as compared to 21% and M6%, respectively, for completely elastic
behavior. The third perturbation increased the odd-numbered accelero-
gram ordinates by 0.0l g and decreased the even-numbered ordinates by

the same amount. The fourth perturbation differed from the third in
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that the odd-numbered ordinates were reduced and the even-numbered ordi-
nates were increased. These last two perturbations had practically no
effect. The results obtained from the above perturbations led to the
conclusion that the problem in this study is not inherently ill-
conditioned.

Figures 19-22 show the values of maximum energy input plotted
against natural period, for yield levels varying from completely elastic
down to 0.0l g énd for fixed yalues of damping ranging from O to
0.20 of critical damping.

These figures permit a comparison of the values of maximum
energy input calculated from elasto-plastic behavior with the corre-
sponding values calculated from completely elastic behavior. This com-
parison, at all levels of damping, shows:

1. that energy absorption through plastic deformation has

a remarkable smoothing effect upon the energy input
curves and that the lower the yield level, the smoother
the energy-input curve; and

2. that, on the average, a decrease in yleld level is

accompanied by a decrease in energy input. But, for
very short natural periods of about 0.4 seconds or
less, when the natural period decreases, the energy-
input curves of higher yield levels drop more rapidly
than those of lower yield levels.

The values of maximum energy input and total dissipated energy
are plotted on Figures 23 and 24 against natural period, for values of

damping varying from O to 0.20 of critical damping and at fixed
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Energy Input Spectra, E1 Centro, California, Earthquake

of December 30, 193k,
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UNDAMPED NATURAL PERIOD , SECONDS

Figure 20. Energy Input Spectra, E1l Centro, California,
Barthquake of May 18, 1940. Components:
N-S (left), E-W (right).
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Energy Input Spectra, Olympla, Washington, Earthquake
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(right).
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Figure 22, Energy Input Spectra, Taft, California, Earthquake

N6*W (left), S21°W
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yvield levels ranging from 0.0l g up to completely elastic. These
figures permit a comparison of the values of maximum energy input or
total dissipated energy calculated for the undamped case with the
corresponding values calculated for different values of damping. This
comparison shows the following.

1. For the undamped and completely elastic energy-input
curve, small variations in the natural period induce
large variations in this curve. At all levels of yield-
ing, damping has a smoothing effect upon the input- and
total dissipated-energy curves.,

2. At yield levels as low as 0.03 g and 0.0l g, an in-
crease in damping is accompanied by an increase in the
energies. At higher yield levels, especially for the
elastic case, variations in damping do not induce any
decisive variations in the input- and total dissipated-
energy curves.

Figures 23 and 24, studied with respect to the effect of varia-
tions in the natural period upon the input; and total dissipated-energy
curves, also show that the above functions are almost independent of the
natural period of the system at yileld levels as low as 0,03 g and
0.01 g and at all levels of damping.

Finally, these figures show that the input- and total dissipated-
energy curves are very similar qualitatively and quantitatively; hence,
the observations made from the energy-input curves of Figures 19-22 could
also be made from the total dissipated-energy curves, if the latter were

presented in the same fashion as»those shown in Figures 19-22.
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Spectrum (right), El Centro, California, Earthquake
of May 18, 19%0. Component N-S.
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CHAPTER VI
ELASTO-PLASTIC ACTION AS A REDUCING FACTOR OF THE
SEISMIC LATERAL LOAD COEFFICIENTS CALCULATED FROM
COMPLETELY ELASTIC DYNAMIC ANALYSIS

This chapter shows that elasto-plastic action can effectively
reduce the seismic lateral load coefficients which have been calculated
from completely elastic dynamic analysis.

Fach time an earthquake analysis was run and the end of the
accelerogram was reached, the computer evaluated the response and
energy components. It was then instructed to calculate the sum of the
absolute values of all displacements in the plastic region in both di-
rections. This sum, to be referred to as the total plastic displace-
ment, is obtained by dividing the energy dissipated through plastic
deformation per unit mass by the considered yield level.

Figures 25-28 show the values of total plastic displacement
plotted against natural period, for values of damping varying from O
to 0.20 of critical damping and at fixed yield levels of 0.06 g and
0.12 g. In each of these plots the limiting elastic displacemeﬁt, des-
ignated by Xy s is also plotted against natural period and is repre-
sented by a dotted curve.

These figures show that an increase in damping is aécompanied
by a decrease in the total plastic displacement at both yield levels of
0.06 g and 0.12 g; and also, that increasing the yield level from
0.06 g to 0.12 g reduces the total plastic displacement. This reduc-

tion becomes more appreciable at higher levels of damping.

-57-
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The results obtained from each earthquake analysis indicated
that in most cases yielding occurs in both directions, for the total
plastic displacement is generally larger than the maximum magnitude
of the displacement in the plastic region. As the permissible total
plastic displacement may be reached long before the displacement in
the plastic region reaches its permissible magnitude, it seems that
the total plastic displacement could be the controlling response pa-
rameter if energy absorption through plastic deformation is incorpo-
rated into earthquake-resistant design.

The effect of elasto-plastic action as a reducing factor of
the seismic lateral load coefficients has been analyzed by J. A,
Blume,(lzilB) R. M. Sheth,(7> and A. S. Veletsos and N. M. Newmark(2o)
with the maximum magnitude of displacement in the plastic region as the
controlling response parameter.

To make the total plastic displacement the controlling response
parameter in analyzing the reducing effect of elasto-plastic actlon on

the seismic coefficients, the following definitions are made.

Let
=%y
Cy 2
C
Cp = EX = the reduction coefficient ,  (6.1)
and.
X + X
Rq = —Y-—X—P- = the elasto-plastic ductility ratio
y /
where

Cy is the coefficient which, multiplied by the acceleration

due to gravity, determines the yield level of the system,
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r 1s the coefficient resulting from elasto-plastic action
which reduces the seismic lateral load coefficient,
C is the seismic lateral load coefficient as shown by
Equation (3.14) and is directly obtained from the plots
of Figures 5-8,

Xy is the limiting elastic displacement and is obtained
from the plots of Figures 25-28, (L)

Xp 1s the total plastic displacement consisting of the sum
of the absolute values of all displacements in the plas-
tic region in both directions and is obtained from the
plots of Figures 25-28. (L)

Cr and Rg were calculated from Equation (6.1) using the
results obtained from computer analyses involving yield ievels of
0.06 g and 0.12 g for accelerograms of the four strongest U. S.
earthquakes on record. Then the reduction coefficient was plotted
against the elasto-plastic ductility ratio (Figures 29 and 30).

Figure 29 shows the points plotted for all values of damping
varying from O to 0.20 of critical damping. The polnts are scattered
over a band falling generally between two curves, also shown in the
figure, which have been traced so as to enclose most of the plotted
points, and which have no theoretical background. Only a few of the
plotted points (about 12%) are found outside the two curves, which can
thus be considered as limiting the quantitative reduction effect of
elasto-plastic action for values of damping ranging from O to 0.20

of critical damping.



-6l -

*(Burdwrep jo senTes

PSISPLSUOD 9YZ TTB JOJ .mvmﬁ,o.mmv SHUSTOTIISO) UOTFoNpay °*fg aJan3Td
P4 ‘ OILVH ALINILONA JILSVd - OLSV13

(074 Gl ol S |

T I I _ I T T I T T I T I T T T I 1 0
« % - puoq a8y} jo abpa iamo|

*® . o o v ° 10 N 8 o " *
o o ® . o oo ooo b N
Y - .v

oz2o‘oo‘eo0 ‘0= ¢

6210 * 6900="b

puoq ay} jo abpa iaddn

Ol

45" IN3ID144300 NOILONG3YN



REDUCTION COEFFICIENT , Cy

-65-

T T 1 T T T 1 T | — T T
q,=006g , 0.12g

gro

] ] l ! l | | L ] 1 ] l ] l

+

q,=006g , 0I2g

:B =003

q,=006g 0129

,8 =0.10

0 } % T T T % T I T T T T | T T 1 T
10 q,=006g ,0.12g ]
s B B =0.20

0 L | I T TR N N | [ S SN NN R S !
I 5 10 15
ELASTO-PLASTIC DUCTILITY RATIO , Ry
Figure 30. Reduction Coefficients (plotted for fixed values

of damping).
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Figure 30, where the points are plotted for fixed values of
damping ranging from O to 0.20 of critical damping, shows that,
on the average, the points calculated from the undamped case seem to
approach the lower edge of the band, whereas those calculated for
0.20 of critical damping seem to approach the upper edge. This means
that elasto-plastic action is more effective at lower levels of damp-
ing.

Turning back to Figures 19-22, the observation referring to
the relation between yield level decrease and energy input decrease
confirms that Professor Housner's hypothesis, made in his limit design
approach, is on the average conservative. This hypothesis assumes that
the maximum energy imparted to an overstressed building (in which the
structural elements are stressed beyond the elastic limit) is not greater
than it would have been had that building behaved completely elastically.
On the basis of the above hypothesis, Housner's limit design criterion
is that a building should be capable of absorbing energy through plas-
tic deformation of the structural elements equal to the difference be-
tween the maximum strain energy that would have been stored in that
building were it behaving completely elastically and the strain energy
which the building can actually store when the yield point is reached.

Based on the above criterion and on a unit mass basis,

D=Ug - Uy (6.2)
where
D 1is the energy to be absorbed through

plastic deformation per unit mass, (LgT”Q)
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is the maximum strain energy that would have been
stored per unit mass were the building behaving
completely elastically,

is the actual strain energy capacity per unit

mass when the yield point is reached.

Equation (6.2) can be rewritten as follows:

Ug = Uy +D .

From Equation (3.10),

1 &2
Ué = § Sv

and from Equations (5.3) and (5.9), respectively,

and

L
Ua =35 3%y

D = AyXp -«

(1P172)

(L27~2)

(6.3)

(6.6)

Then, using Equations (6.4), (6.5), and (6.6), Equation (6.3) becomes:

L 82 -t X QX
5%y T Wy T Gyfp -
Multiplying both sides of Equation (6.7) by Q;;y gives:
2
L Sy =1l+e %E
AyXy ¥y

or

(6.7)

(6.8)



From Figure 10,

In view of Equations (6.10), (4.7), and (3.3),

Using Equations

With Equations (3.14) and (6.1) which give, respectively,

and

Equation (6.12)
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X

- Y
I ox

Gy T>2

= Gym T
xy = 2 =gy (5

(6.9) and (6.11),

2

a§ T Xy

gﬁva:Cg
T

Cly' = Cyg J
becomes:

() =Xy FXp
Cy Xy

According to Equation (6.1),

Hence Equation (6015) can be rewritten as follows:

or

+ x
c =1 and A S R

1.2
(E;)

1
Cr = 4 ————
2Rg -1

=2Rg - 1

d

2
(l) (ggrlsv) SQM-IQ

°

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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From Equation (6.15) C,. was calculated for different values of
Ra. Then Cp, the reduction coefficient, was plotted against Ry, the
elasto-plastic ductility ratio as shown in Figure 31.

Figure 32 is obtained by superposing the band of Figure 29 over
the curve of Figure 31 plotted from Equation (6.15). The new figure shows
that the curve of Figure 31 lies within the lower portion of the bkand.

From Figures 30 and 32, it appears that the reduction coefficient
as determined from Equation (6.15), is on the average conservative for the
undamped case and for values of damping not exceeding ©0.03 of critical
damping. But, at levels of damping between - 0.03 and 0©.20 of critical
damping, it appears that the reduction coefficient would be generally con-

servative if obtained from the upper edge of the band which,6ls given by:

.= [—3 . (6.16)
2Rg +1

In view of the above, if we assume that the load-deflsction
characteristics of a single-story building can be described by an idealized
curve of the elasto-plastic type, then energy absorption through inelastic
deformation can be incorporated into strong-motion earthquake-resistant
design simply by multiplying the seismic lateral load coefficient obtained
from completely elastic dynamic analysis by the reduction coefficient.

Admittedly, the reduction coefficient as determined quantitatively
from above has its limitations, since the complex load-deflection character-
istics of a building have been described by an idealized curve of the elasto-
plastic type. Nevertheless, the use of the reduction-coefficient concept

in strong-motion earthquake-resistant design seems realistic and practicable.
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Experiments have been conducted in the U.S5.A. and elsewhere in
which structural materials were tested in order to study the relationship
between load and deflection at the elastic and inelastic stages of loading.

In experiments conducted at Stanford Uhiversity;(lfg} the ulti-
mate strength of one-story shear wall panels (plain and reinforced concrete
as well as brick) was investigated. Conditions affecting the behavior of
the shear wall panels, such as plain or reinforced concrete panels, brick
panels with or without boundary frame, and panel proportions, were also
investigated. These tests have provided some useful and practical relation-
ships, permitting one to predict approximately the load-deflection relation
at the elastic and inelastic phases of loading when these walls are subjected

to static unidirectional shear loadings.

In experiments conducted at MIT,<§> the static and dynamic load-
deflection relations in the elastic and inelastic stages of loading were
investigated for more than 200 reinforced concrete beams simp.v supported.
The beams were loaded at midspan transversely with a static load or a step
load representing an idealized dynamic lcad; after a first downward loading,
the beams were turned over and a second downward loading (a reverse loading)
was applied. These tests have shown that the reinforced concrete beams had
greater resistance to a dynamic loading than to a static loading and that
the reverse loading was more critical in the case of a static loading than
in the case of a dynamic loading. The dynamic load-deflection curves for
the two directions of loading were almost similar.

In experiments conducted at Tokyo Universi‘ty;(5> 2% small models

of earthquake-resistant walls (consisting of reinforced concrete panels
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monolithically poured with bounding reinforced concrete frames) were tested
with the purpose of investigating how the load-deflection curve is affected
by varying the amount of reinforcing steel in the panels. For this, the
walls were loaded to within the inelastic region and then reverse-loaded to
within the negative inelastic region by using static loads; the loading and
reverse loading were carried for five half-cycles. Despite a visible crack-
ing in the panels, the yield load was not appreciably lowered in the suc-
cessive half-cycles, but there was a progressive decrease in the slope with
which the yield load was reached. An increase in reinforcing steel was
accompanied by an increase in yield strength.

The characteristics of some load-deflection curves obtained from
the above and other experiments can be reasonably represented by a curve of
the elasto-plastic type, while the characteristics of other load-deflection
curves can be only crudely represented by the above type of curve.

In the experimental study of locad-deflection relations, structural
materials have exhibited pronounced hysteretic properties. However, almost
none of the experiments reported to date invéstigated these hysteretic
properties when structural materials are subjected to reverse-loading cycles
after the limiting elastic displacement is far exceeded. Therefore, before
introducing the reduction-coefficient concept in actual design, more experi-

mental work is needed to determine permissible wvalues of Xpe



CHAPTER VII
AN INVESTIGATION OF THE BEHAVIOR OF SIMPLE BUILDINGS
WITH BILINEAR HYSTERESIS DURING EARTHQUAKES

After studying the behavior of simple buildings with elasto-
plastic hysteresis, it seemed of interest to investigate the tehavior
of the same buildings with another type of hysteresis and to compare
the results. Idealized bilinear (elastic-strain-hardening) hvsteresis,
described by the force-displacement curve shown in Figure 3%, was chosen
for study because it can be a reasonable representation of the lcad-
deflection characteristics of some structural materials and because of
its relative simplicity.

Idealized bilinear hysteresis could also describe the over-all
response of a steel-framed building with masonry walls when subjected to
an earthquake strong enough to cause relative sliding of the masonry
blocks<2l) (this presupposes that the load-deflection characteristics of
the masonry walls can be approximately represented by a curve of the elasto-
plastic type with hysteresis upon reversal of strain). In the early part
of the response when the amplitude of vibration is small, the steel frame
together with the masonry provide the restoring forces. Then, as the ampli-
tude of vibration increases causing relative sliding of the masonry blocks,
the burden of providing the restoring forces is thrown upon the steel frame;
during this part of the response, although the masonry does not contribute
any more to the stiffness of the building, the relative sliding of the
blocks (acting perhaps somewhat in the nature of Coulomb frictional forces),

will provide an additional source of energy absorption.

-Th-
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For reasons of mathematical convenience and in the absence of
information on the behavior of structural materials subjected to reverse-
loading cycles after the limiting elastic displacement is far exceeded, it
was assumed that a system cannot yield safely when the magnitude of the
restoring force @Q exceeds twice the value of the y;eld strength an
Therefore all bilinear analyses were made with the limitation that Q]
was not to exceed 2Qy; to this effect the coﬁputer was instructed to
discontinue the solution whenever IQ\ exceeded 2Qy,agand to proceed to
the next solution.

The equations developed in the study of the behavior of simple
buildings with elasto-plastic hysteresis were used after certain modifica-
tions were made. The equations leading to these modifications are developed
below.

Assuming that the strength characteristics of the restoring force
Q can be represented by the bilinear curve shown in Figure 33, the restor-

ing force-displacement relations will read as follows.

Let
a = Q,y e k.2Xy \
then
Q = klk if -a + kox < Q <a + kpx
or if Q=a+kx and x<O0O
_ y o, (1)
or if Q = -a + kox and x>0
Q = kpx if Q =a+ kox - and X >0
or if Q = -a + kox and X <0
where ‘ 1
k; is the stiffness in the elastic region (FL™)
and

ko is the stiffness in the inelastic region. (rL-1)
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If we define

T = 2% {ﬁi = the undamped elastic period

and ) (7.2)

then the foregoing differential relations, reduced to a unit mass basis,

will read as follows:

. 2 . 2 2
q=(~%)x if —a+§(g£ x<q<a+§(g’£) X
T 5 T
or if q=a + Q(—ETE) X and X < O
or if q = -a + Q(%E)gx and x> 0 } . (7.3)
2
, 27, . .
qf:g(T)x if q=a+§( )x and x>0
2 .
or if q = -a + é(—f) X and x <0

From Figure 33 and the above equation, D, the rate of energy

dissipated through inelastic deformation, has to obey the following rela-

tions:
. 2 2
D=0 if —a+§(%7£) x<q<a+§(g§) X
2 -
or if q:a+§(2—ﬂ:) x and x<0
2 .
or 1if qQ = -a + §<2H) x and x>0 . (7.4)
‘ 2n 2 . 23-( .
D= (1~ g)[a*’b( ) xlx if g = C(——-) x and x>0
[ ] 2 . L4
D = (l~§)[-a+§(2T—ﬂ) x]x if @ = -a + Q(——) x and x < O ]

Again, to overcome the difficulty caused by the discontinuity of
51. and D vhenever the system was entering the inelastic region, the dif-

ferential relations which appear in Equations (7.3) and (7.4) were replaced
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by the following equivalent difference relations:

A
If |
g @ - 08 s ) <a
then ;
rq = B |
T ;
and f
o |
If 5 ]

g+ (B5) ax - UED (x + &) >a

T T . (7.5)
then T 2

Aq=a+§(?)(X+AX)'q 5
and ) ¢ on 2 T 2 T 2 ;
M = {q +2q S0 <) - () Aaljlox - () 2q) |
If
2 2 |
a+ () e LG (x + ) < s
then 2 i
Ny = -a + Q(%;) (x + &x) - q 3
and ' |
. t  on? T2 T 2 |
M ={q+2q - 0D (?) [Ax,-(E;) Al [ - (5}-) 2q] |

Bilinear analyses have been made for the N-S component of the
El Centro, California, earthquake of May 18, 1940, and the N69°W component
of the Taft, California, earthquake of July 21, 1952. The results were
plotted against natural period for fixed values of damping and yield level,
and for values of & varying from O (elasto—plastic hysteresis) to 0.25.
Only the plots for the El Centro component are shown here: because the plots

for the Taft component generally follow the same pattern.
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Figures 34-40 permit a comparison of the results obtained from
the bilinear solutions with those obtained from the elasto-plastic solu-
tions.

The spectral plots of lateral deflection presented in Figure 3k
show that, in general, bilinear hysteresis, as compared to e=lasto-plastic
hysteresis, slightly reduces the maximum lateral deflections of systems.

The plots of permanent set presented in Figure 35 show that, in
general, the first increment of Q, from O to 0.05, reduces the permanent
set effectively. As it was thought that the complete time history of the
response of a system might explain this reduction, the complete time history
of the response of a number of systems was generated. Among the systems
under study, the undamped system of period 1.2 sec responding to the El
Centro earthquake was selected as an illustration because a small increment
in § was accompanied by a large drop in permanent set; its compiete re-
sponses, elastic, bilinear (with § = 0.05, 0.25), and elasto-plastic
(Q = O), are plotted in Figure 36. These plots show that, as inelastic
deformation progresses, the elasto-plastic system oscillates about a posi-
tion of equilibrium which keeps shifting away from the zero position and in
the positive direction while the bilinear system oscillates about a position
of equilibrium which meanders less and less as § increases. This means
that for the elasto-plastic system most of the yilelding occurs in the posi-
tive inelastic region, whereas for the bilinear system the total inelastic
displacements in the positive and negative inelastic regions seem to become
nearly equal, which explains the smaller permanent set. From these obser-
vations, one could say that, as inelastic deformation progresses, *he bi-
linear system wanders less than the elasto-plastic system, thus causing a

smaller permanent set.
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9,:0249
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UNDAMPED NATURAL PERIOD , SECONDS
Figure 40. Total Inelastic Displacements, EL Centro, California,

Farthquake of May 18, 1940,

Component N-S.
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Incidentally, also in Figure %6, a comparison of elastic with
either type of inelastic response shows that inelastic action reduces the
magnitude of maximum lateral deflection effectively and the amplitude of
oscillation considerably.

The spectral plots of energy input, energy dissipated in viscous
damping, and energy dissipated through inelastic deformation presented in
Figures 37, 38, and 39 show practically no difference between the energy
curves of bilinear systems and the energy curves of elasto-plastic systems.

The plots of total inelastic displacement presented in Figure 4O
show that, in general, bilinear hysteresis, as compared to elasto-plastic
hysteresis, increases the total inelastic displacement.

The maximum magnitude attained by q 1n bilinear solutions of
a number of systems was used as yield level to run elasto-plastic solutions
for the same systems, as shown in Figure 41, The results, together with
the results obtained from the corresponding bilinear solutions, are tabu-
lated in Tables I and IT. A comparison of the results obtained from the
elasto-plastic solutions with those obtained from the bilinear solutions
shows that in general the elasto-plastic solutions generated slightly larger
values of energy input and lateral deflections, larger permanent sets, but
smaller total inelastic displacements.

As bilinear analyses were made for only two earthquake components
and limited combinations of structural parameters, no broad conclusions can
be drawn from the above observations. Nevertheless, for the particular
examples used in these analyses, there is practically no difference between
bilinear hysteresis (in which the yield strength of a system keeps increas-
ing within a certain limit) and elasto-plastic hysteresis (in which the yield

strength of a system remains constant).
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CHAPTER VIIT
AN INVESTIGATION OF THE EFFECT COF INELASTIC ACTION ON THE
BEHAVIOR OF MULTI-STORY BUILDINGS SUBJECTED TO EARTHQUAKES
The investigations described in the preceding chapters were re-
stricted to one-story buildings. To see whether inelastic action has
similar effects on the behavior of multi-story buildings, an attempt was
made to extend the study to multi-story idealized shear bullidings.

In this investigation the following simplifving assumptions were

made :

1. The building is rigidly built upon a firm ground.

2. The masses of the building are concentrated at the re-
spective floor levels,

3. The floors are infinitely rigid, whereas the columns are
relatively flexible; therefore all lateral deformation of
the building is due to the flexure of the columns.

4, The shear resistance-deflection characteristics within
each story can be represented by an idealized curve.

Two types of curves were considered: the elasto-plastic
and the bilinear.

5. The damping forces in the building are viscous; the co-
efficient of viscous damping is a linear comkination of
the mass and stiffness., It is also assumed that the
fractions of critical damping are equal in the first and

second modes.
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2. -0

Figure L2,

Idealized Shear-Deflection Diagram.
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Assuming that the shear resistance-deflection characteristics
within each story can be represented by a curve of the elasto-plastic type
or the bilinear type (the elasto-plastic type being a special case of the
bilinear type when ko = 0), as shown in Figure 42, then the shear resistance-

deflection relations for the 1-th story will read as follows.

Let
ai = Viy - ki2liy \
then
Vi = kyj8s if  -ay + kipby < Vi <ay + kipby
or if Vi = a; + Kiobs and g, < 0
or if  V; = -a; + kyjpb; and  E; >0 , (8.1)
Vi = kypby if Vi =a; + kipb; and &y >0
or if Vl = -ai + kiggi and El ‘_<_ 0
where
By =X - X
and where
Viy is the yield shear strength of the i-th story, (7)

Vi 1is the shear resistance of the i-th story, a

function of time, (¥)
kil is the stiffness of the 1-th story when in the

elastic region, (FL~1)
kio is the stiffness of the i-th story when in the

inelastic region, (FL~1)

x; 1s the lateral displacement of the i-th floor

level relative to the ground, a function of time, (L)



R

Ei is the lateral deflection within the i-th story, a
function of time, (1)
giy is the limiting elastic lateral deflection within
the i-th story, (L)
and dots denote differentiation with respect to time.

If Q; 1is the resistance force exerted on mj, the concentrated

mass at the i-th floor level, then
Qi = Vi - Vigp - (8.2)
If Py 1s the damping force exerted on mj, then, based on assumption 5,
Py o=amxy + 70k (y - &5o1) - k(gaa)n Gaan - %1)0 (8.22)

where Q 1is a constant of dimension Tt and Y is a constant of dimen-
sion T. Under the assumption that the fractions of critical damping are
equal in the first and second modes, the constants & and ¥ can be ob-

tained from:(5>

q = by 5
T + Tp )
) (8.3b)
T1To
7’ R e———
IE(T_‘J_ + Tg)
where
Tl i1s the fundamental (first—mode) elastic period (T)
and
T, 1is the second-mode elastic period. (T)

IT Ri is the restoring force exerted on my, then, in view of Equations
(8.2) and (8.3a),

Ry = om % + 7[ki1 Gy - %o1) - k(341)1G41 - k1)1 + Vg - Viap (8.4)
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and the equation of motion for the lateral displacement of the i-th floor

level will read as follows:
my (8347) + omyky + 70y G-y 1) = K(341)1 G2 ] + Vg = Vygq = 0. (8.5)

It f(t) is the force exerted on the structure by the foundation,

then
N

f(t) = = [Q°Zi miii + 7kllkl + Vl] (806)
i=

and the energy input is

N

t
E(t) = - [[a nZl miki + 7]:{115(1 + Vp] STdT . (8.7)
e} 1=

The strain energy is

N .2
y, L

u(t) = = .
2 5i=1 kil (808)

The kinetic energy is

N

Zomi Gyt )7 (8.9)

The energy dissipated through viscous damping is

t N

L(t) = of{{ng {Oémi.fiiE"i" ’}’[kil(}'{im)‘(i_l} - k(i"i-l)l(;{i“i-lmii)];{i}} ar. (8010)
i=1 :

D;, the rate of energy dissipated through inelastic deformation in the i-th

story, has to obey the following relations:
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Dy =0 if -aj + kjoti < Viy < aj + kipky ’:
or if Vi = ay + kiggi and §i <0 i
. {
or if Vi = -a; + kiot; and E; >0 §
. . ] .. (8.11)
Dy = (l-§i>(ai+kiggi)§i if Vi = ai + kijoty and &4 >0 i
Di = (1-8;)(-ai+kinti)Eg if Vi = -a; + kijpk; and & <O

where by definition {
;= a2 |
17 ki
Again, to adapt the equation of motion to the Runge-Kutta pro-
cedure of numerical integration, the second-order differential equation

was replaced by two simultaneous first-order differential equations. 1In

view of this adjustment, let

X =V

then - (8.12
° _ (A4 _ e 7 - _l_.
o= X o= - {Feavgs ap ki (vi-vi 1) =K (141)2 (Viaa-ve) ] + i (ViV}

The energy integrals (8.7) and (8.10) were adapted to the Runge-
Kutta procedure by replacing each energy integral by its rate of change.

From Equation (8.12)

i = Vi

and if we define

5’ =2,
then
o N ‘
E=-[a)Ymvi +7k11vi + V1] z
181
: N 5 . (8.13)
L= l"{ami vi + 7[ki1(vi-vi1) - k(141)1(vier-vi)] vi}

1=
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To overcome the difficulty caused by the discontinuity of %i
and D; whenever the i-th story was entering the inelastic region, the
differential relations of Equations (8.1) and (8.11) were replaced by

the following equivalent difference relations:

If
-aj < Vi + ki1B8; - Sikyq(E3+083) <ay
then
AV; = ki Dy
and
MD; =0
If
Vi + ki1081 - Gikiq (&1 + AE3) > ay ,
then
Ay = a5 + Gkyq(gg + D85) - Vg | . (8.14)
and {
My = [V; + AV -é%llf——iiT(Agi —%)](A&,i -fﬁ—) %
If
V. o+ ky10p - bikgp(Bg + A85) < - ag ;
jiﬁ
then {
Ay o= -ag + kg (6g + 285) - V5 :
and ‘ %
&D; = [Vy +AV1-5%'%(A§1 -%)](Aéi—% ’?

Without affecting the above developed equations, the following

additional assumptions were made: all stories of the building have equal
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height; all masses of the building concentrated at the respective floor
levels are equal; kp, the stiffness in the elastic region and Vy,
the yield shear strength, vary along the height of the building at the
same rate.

As prescribed by some current bullding codes, the hase yield
shear strength Viy was distributed over the floor levels of the build-
ing in proportion to the product of the mass at each level times its
height above the ground, and then from this distribution the vield shear
strength was established along the height of the building. This and the
above assumptions yielded a triangular first-mode shape.

Based on the above, if m 1is the mass concentrated at each
floor level, for a given fundamental period T, and for a given number

k
of stories N, the ratio _%;. was obtained from:

Ky ML) 2y

(8,15)

and the values of ki3 (i=2,3,...,N) and Viy (i:2,3,...,0- were ob-
tained in terms of kj7 and Vly: respectively, from:

ky = (- HS
(8.16)

Viy = (1 - ) ) iy (i=2,3,...,N) i

In this investigation, four-story idealized shear bulldings with
elasto-plastic or bilinear hysteresis were considered. Analyses were
made for the N-S component of the E1l Centro, California, earthgquake of
May 18, 1940, for different values of Ty, B, T (r denoting the ratio

of the base yield shear strength to the total weight of the building),
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and §. The results plotted against T; are shown in the figures which
follow.

Figure 43 presents spectral plots of lateral deflection within
each story and permits a comparison of the deflections calculated from
elasto-plastic behavior with the corresponding ones calculated from com-
pletely elastic behavior (r = w). This comparison shows that, on the
average, a decrease in r 1s not accompanied by an increase in lateral
deflection until r gets below 0.06. The same figure shows that damp-
ing reduces lateral deflections effectively for all values of r.

Figure 44 presents plots of the permanent set within each story,
resulting from elasto-plastic action. The permanent sets corresponding
to r = 0.06 with B = 0.05 (a possible value encountered in actual multi-
story buildings) seem to be within acceptable limits.

Figure 45 presents spectral plots of energy input per unit mass
and permits a comparison of the values of maximum energy input calculated
from elasto-plastic behavior with the corresponding values calculated from
completely elastic behavior. This comparison shows that, in general, a
decrease in r 1is accompanied by a decrease in energy input.

Figure 46 presents spectral plots of energy input per unit mass
and of total energy dissipated per unit mass. In this figure the curves
obtained from four-story elasto-plastic buildings are drawn in solid line
and the curves obtained from one-story elasto-plastic buildings are drawn
in dotted line. A comparison of the two sets of curves shows that the
curves of four-story buildings are in general above those of one-story
buildings, but qualitatively they are closely similar; when r gets as

low as 0.03, the curves tend to agree also quantitatively.
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Figures 47-52 present plots of results obtained from bilinear
solutions and corresponding elasto-plastic solutions. A comparison of
results shows that, in general, bilinear action reduces the lateral de-
flection somewhat and the permanent set effectively, but it increases
the total inelastic displacement; practically no difference in noted
between the energy curves obtained from either type of solution,

Figure 52 also shows that the inelastic deformation in the fourth
story is considerably larger than in any other story although the distri-
bution of the base yield shear strength was established from a triangular
loading.

Analyses were made only for one earthquake component, four-story
buildings, and limited combinations of structural parameters; yet, on the
basis of the above observations, 1t might be expected that under inelastic
action one~story and multi-story buildings will exhibit similar behavior.
But before extending the limit design concepts, discussed in Chapter VI,
to multi-story buildings, further investigations, beyond the scope of this
study, are needed to determine the relation between the structural parame-
ters and the distribution of inelastic deformation among the stories of a

building, because this distribution cannot be readily predicted.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

A study of the behavior of bulldings subJjected to earthquakes
has been presented, in which buildings with elasto-plastic or bilinear
hysteresis have been considered. All the investigatioﬁs were carried
out with the aid of an IBM-704% digital computer. The results were pre-
sented in graphic and tabular form.

In Chapter I, the obJject of the study was introduced and some
of the recent investigations on the inelastic response of buildings to
earthquake forces were described briefly.

fChapter II described the method adopted in this study for the
translation of the earthquake accelerogram records into punched-card
accelerograms to be used as input data by the computer. The accelero-
gram records considered were those of the four strongest U.S. earthquakes
on record.

In Chapter III, linear dynamic analysis was reviewed. The
seismic lateral load coefficient (ratio of maximum base shear to weight
of building) was evaluated for different buildings, for each horizontal
component of the earthquakes under study. The results indicated seismic
coefficients as high as 0.55 for buildings represented by linear dynamic
systems, even if the buildings were damped as heavily as 0.20 of critical
damping. The apparent discrepancy between the seismic coefficients ob-
tained from linear dynamic analysis and those stipulated by building codes

was attributed mainly to the fact that linear dynamic analysis ignores

-111-



-112-

energy dissipated through inelastic deformation. This dissipation of energy
is recognized by engineers as an important factor in explaining the observed
behavior of buildings during strong-motion earthquakes.

Chapter IV analyzed the response to earthquakes of simple build-
ings with elasto-plastic hysteresis. The effect of elasto-plastic action
on lateral deflections and permanent sets was investigated, hecause build-
ings with hysteresis might become unusable as a result of large permanent
sets, even though the structural elements might still have adequate strength
for structural safety. The maximum lateral deflections of different builc-
ings were evaluated for different levels of yield strength, for all hori-
zontal earthquake components. Levels of yield strength as low as 0.0% and
0.01 of gravity were considered to determine the extent to which the yield
strength of buildings can be lowered without causing lateral deflections
significantly larger than those calculated for the same buildings, had they
behaved linearly. The results were plotted, in the form of families of
curves, against natural period, for levels of yield strength ranging from
completely elastic down to 0.01 of gravity and for values of damping rang-
ing from O to 0.20 of critical damping.

In Chapter V, the energy relations for the energy input and its
components were developed for simple buildings with elasto-plastic hysteresis
subjected to earthquakes. The maximum values of the energy functions for
different buildings were evaluated for all horizontal earthquake components.
The computed values of energy input and total dissipated energy were pre-
sented in the form of families of curves as in the preceding chapter. The
curves permitted the study of the relation between the plotted energies

and the three structural parameters, namely, natural period (stiffness),
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damping, and yield strength. Significantly, these curves permitted a com-
parison of the values of the total energy imparted to bulldings with elasto-
plastic hysteresis with those values calculated for the same buildings had
they behaved linearly.

Chapter VI analyzed the effect of elasto-plastic action in re-
ducing the seismic lateral load coefficients calculated from linear dynamic
analysis. Based on the results of the investigations described in the pre-
ceding chapters, the reduction effect was evaluated, using the total plastic
displacement as the controlling response parameter. This parameter consists
of the sum of the absolute values of all displacements in the plastic region
in both directions. The results were expressed in terms of a reduction co-
efficient defined as the ratio of the actual yield strength of a building
to the strength that would have been required for that building if it were
to respond linearly to the considered earthquake.

Chapter VII investigates the behavior of simple buildings with
bilinear hysteresis subjected to earthquakes. Only two horizontal earth-
quake components and limited combinations of structural parameters were
aﬁalyzed. Results from this investigation and those which preceded per-
mitted a comparison of bilinear with elasto-plastic hysteresis.

In Chapter VIII, an attempt was made to extend the above described
investigations to multi-story idealized shear buildings, to see vwhether,
under inelastic action, one-story and multi-story buildings would exhibit
similar behavior. Only one horizontal earthquake component, four-story
buildings, and limited combinations of structural parameters were analyzed.

From the results of the inveétigations presented herein, the

following conclusions can be drawn.
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The spectral plots of lateral deflection show that simple build-
ings with elasto-plastic hysteresis and values of yield level not lower
than 0.06 of gfavity will undergo lateral deflections seldom exceeding
those calculated for the same buildings had they behaved linearly, and
often lower. For the same buildings the plots of permanent set show that
the lateral deflections remaining at the end of the earthquake seem to be
within acceptable limits for the values of damping and natural period
generally encountered in buildings. Therefore it appears that strong-
motion earthquake-resistant design incorporating energy absorption through
plastic deformation can be attempted, provided that the yield level is not
lower than 0.06 of gravity. Lower values may severely affect the lateral
deflection dnd permanent set, and thus might make the building unusable,
even though the structural elements may still have adequate strength for
structural safety.

For all the considered values of damping, the spectral plots of
energy input show that, on the average, a decrease in yield level is accom-
panied by a decrease in the total energy imparted to simple buildings with
elasto-plastic hysteresis. This could explain the fact that buildings de-
signed for relatively low seismic lateral loads have withstood major earth-
quakes.,

The above relation between yleld level decrease and energy input
decrease confirms that Professor Housner's hypothesis, made in his limit
design approach, is on the average conservative. This hypothesls assumes
that the maximum energy inpuﬁ imparted to a building with hysteresis is

not greater than it would have been if that building had behaved linearly.
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The spectral plots of energy input also show that at high values
of yield level, especially in the case of linear behavior, variations in
the fractions of critical damping do not induce any decisive variations in
the energy-input curves. But at low values of yield level an increase in
damping is accompanied by an increase in energy input.

Finally, the same plots show that either type of energy dissipa-
tion, through plastic deformation or through damping, removes effectlively
the irregular peaks of the elastic undamped energy-input curves.

From the plots of the reduction coefficient it appears that, for
the considered values of damping, the quantitative reduction effect of
elasto-plastic action is generally limited by two curves bounding the band
over which the plotted points are scattered. Only a few of these polnts
are found outside the band. From the same plots it also appears that
elasto-plastic action is more effective at lower levels of damping. -

From linear dynamic analyses of past earthquakes, one can esti-
mate the maximum strain energy Ug that is likely to be stored in a build-
ing if the latter were to respond completely elastically to a future earth-
quake. Knowing the properties of the structural elements, one can estimate
D, the amount of energy which that building can dissipate through plastic
deformation. Housner's limit design criterion is that a building should be
capable of actually storing as strain energy the difference between Uj
and D. On the basis of this criterion, Equation (6.15) was developed.
This equation gives the reduction coefficient as a function of the per-
missible total plastic displacement.

By superposing the band of Figure 29 over the curve plotted

from Equation (6015), it appears that, for the earthquakes considered,



-116-

the reduction coefficient as determined from Equation (6,15) is generally
conservative for values of damping not exceeding 0.03 of critical damp-
ing, while at levels of damping between 0.03 and 0.20 of critical damp-
ing, the reduction coefficient would be generally conservative 1T obtained
from the upper edge of the band, given by Equation (6.16),

Based on the foregoing, energy absorption through inelastic de-
formation can be incorporated into strong-motion earthquake-resistant
design simply by multiplying the seismic lateral load coefficient obtained
from linear considerations by the reduction coefficient.

Admittedly, the reduction coefficient as determined quantitatively
from the above has its limitations since the complex load-deflection char-
acteristics of a building have been described by an idealized relation of
the elasto-plastic type. Nevertheless, the use of the reduction-coefficient
concept in strong-motion earthquake-resistant design seems realistic and
practicable,

In the experimental study of load-deflection relations;(1”§>
structural materials have exhibited pronounced hysteretic properties. How-
ever, almost none of the experiments reported to date investigated these
hysteretic properties when structural materials are subjected to reverse=-
loading cycles after the limiting elastic displacement 1s far exceeded.
Therefore, before introducing the reduction-coefficient concept to actual
design, more experimental work is needed to determine permissible values
of total plastic ‘displacement.

When the results obtained from buildings with bilinear hysteresis

are compared with those obtained from the same buildings with elasto-plastic
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hysteresis, 1t appears that, as inelastic deformation progresses, the elasto-
plastic system oscillates about a position of equilibrium which generally
keeps shifting away from the zero position while the bilinear system gener-
ally wanders less, thus causing a smaller permanent set. Otherwise, for

the particular examples used in the analyses, there is practically no dif-
ference between bilinear and elasto-plastic hysteresis.

On the basis of the results obtained after the study was extended
to four-story idealized shear bulldings, it appears that, under inelastic
action, one-story and multi-story builldings exhibit similar behavior. But
before extending the limit @esign concepts discussed above to multi-story
buildings, further investigations are needed to determine the relation be-
tween the structural parameters and the distribution of inelastic deforma-
tion among the sfories of a building, because this distribution cannot be
readily predicted. However, the results obtained in this study should con-
tribute to a better understanding of the behavior of buildings during earth-
quakes, which, it is hoped, will eventually lead to the improvement of

earthquake~-resistant design procedures.



APPENDIX A
EQUIVALENT ONE-MASS SYSTEM GIVING THE SAME BASE SHEAR
AS THE r-th MODE OF THE MULTI-MASS SYSTEM
The uncoupled equation of motion in the r-th mode of an undamped

multi-mass system subjected to an earthquake ground motion is given by:

N
. 2n 2 . izi mi¢ir \
U, + (T;) w, = - y-—ir————:;—— (A.1)
where
U, 1s the modal displacement. (L)

The displacement of the i-th mass relative to the ground if
the system vibrated in the r-th mode is

X3, = ¢irur . (A.2)
Dénoting by vsij the stiffness coefficient which is defined as the force
that would be exerted on the 1i-th mass when the configuration of the
system is xj =1 wunit length and all other x = O, the restoring force

exerted on the i-th mass in the r-th mode is

N
/
Qir = Z, Sij¢jrur o ‘Ao)‘L>
J=1
But as
N 2
21
jzl 14850 = (T;> mifir
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Equation (A.4) becomes:

2
2n
Qp = (ﬁ;) my B; u. . (A.5)

The base shear in the r-th mode is

N o2 |
VBr = izi Qip = <T;) izi mi¢irur ° (A°6>

The equation of motion for the equivalent one-mass system

corresponding to the r-th mode of the multi-mass system is

gz 2

The base shear for the equivalent one-mass system is

VBr = KepXer - (4.8)
From the first definition made in Equation (505),

2
21
('I:'D; mer o <A09)

With this, Equation (A.8) can be rewritten as follows:

2m\2
VBr = (T;)

MepXep (A.10)

From the differential Equations of motion (A.1) and (A.7),

N
1§l mir¢ir

Yr = >
igi mi¢ir

For equal base shears the right side of Equation (A.10) will

Xep (A.11)

be equated to the right side of Equation (AD6), after expressing u, in

terms of Xop 85 given by Equation (A.11).
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Hence
N 2
[ 2 myPs.)
@xy° e N
Ty MepXer = Tp N Xer
Y m,¢Z
i=1 171r
or
N 2
) [igi myB; ]
i = =
M., . (A.12)

d 2
izi my fir

According to Equations (A.5) and (A.6), the vertical distribution

of the base shear VBr is determined from:

ms Ds
Fir = Vpr —ﬁ—igiz—— . (A.13)
L m g,

i=1 +



FORMULAS USED IN THE RUNGE-KUTTA THIRD-ORDER PROCEDURE

APPENDIX B

In brief, the Runge-Kutta method for the evaluation of a variable

at time t + h (h being a specified time interval) from that at time t

is based on the use of suitably chosen slopes within the specified time

interval h. The third-order procedure uses three such slopes and by

multiplying each slope by h, three candidate increments in the variable

are obtained. The final choice for the increment is a weighted average of

the above three increments.

Let us assume the

%) =11 (%,

XE = f2 (Xl,
}'{n = fn (Xl,

where

1

t 1is the independent variable,

and dots define differentiation with respect to

differential equations to have the form

Xg,

X2,

Xg,

x, (1 =21,2, ..., n)

cosy Xy )

so0o0 Xn’ t)

are the dependent variables,

(B.1)

The three candidate increments in the variable are defined as

follows:

5io

ho £, (x50 e0,%5t)

Sil = h fi(xl-l-palo" @ ’}Xn+ psno’t +p h)

612 = h fi(xl+ (q-r>810 + rSll,o..,xn+ (q—r)ano + rﬁnl ,t + q h)

1 (B.2)



-122-

and the final increment in the variable obtained as a weighted average

of the above three increments is defined as follows:
?{i(t+h) - Xl(t) = )@610 + msil + n6i2 ° {Bci)

The symbols p, 9, r, £, m, and n which appear ir Equations
(B.2) and (B.3) are determined by expanding both sides of Egiation (B.3)
in powers of h by means of Taylor's series expansion and equating co-
efficients of the powers up through hd. 1In so doing, the following four

equations with six unknowns are obtained:

L +m +n =1 \
mp + ng = 1/2 /
(B.L)
mp® + ng®= 1/3
npr = 1/6

There are many solutions to Equation (B.4). The solution shown

below,
£ = 1/h
m =0
: j_;z : (5.5)
q=2/3
r = 2/3

is advantageous because the number of arithmetic operations is reduced as
aresult of m=q -r =0 and for this reason it has been selected for

use in this study.
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