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Abstract

Differences in gene expression are thought to be an important source of phenotypic

diversity, so dissecting the genetic components of natural variation in gene expression is

important for understanding the evolutionary mechanisms that lead to adaptation. Gene

expression is a complex trait that, in diploid organisms, results from transcription of both

maternal and paternal alleles. Directly measuring allelic expression rather than total gene

expression offers greater insight into regulatory variation. The recent emergence of high-

throughput sequencing offers an unprecedented opportunity to study allelic transcrip-

tion at a genomic scale for virtually any species. By sequencing transcript pools derived

from heterozygous individuals, estimates of allelic expression can be directly obtained.

The statistical power of this approach is influenced by the number of transcripts

sequenced and the ability to unambiguously assign individual sequence fragments to

specific alleles on the basis of transcribed nucleotide polymorphisms. Here, using

mathematical modelling and computer simulations, we determine the minimum

sequencing depth required to accurately measure relative allelic expression and detect

allelic imbalance via high-throughput sequencing under a variety of conditions. We

conclude that, within a species, a minimum of 500–1000 sequencing reads per gene are

needed to test for allelic imbalance, and consequently, at least five to 10 millions reads

are required for studying a genome expressing 10 000 genes. Finally, using 454

sequencing, we illustrate an application of allelic expression by testing for cis-regulatory

divergence between closely related Drosophila species.

Keywords: cis-regulation, Drosophila melanogaster, Drosophila simulans, gene expression, hybrids
Received 9 June 2009; revision received 5 August 2009; accepted 8 August 2009
A major challenge in evolutionary biology today is

understanding the genetic and molecular mechanisms

that give rise to phenotypic differences within and

between species. Such differences can arise from muta-

tions affecting the function of gene products (i.e. pro-

teins or RNAs) or mutations that affect expression of

these genes. Historically, researchers have looked almost

exclusively for (and often found) changes in protein cod-
nce: Pierre Fontanillas, Fax: +41 21 692 4165;

e.fontanillas@unil.ch
ing regions that appeared to contribute to phenotypic

evolution; however, during the last decade, there has

been a dramatic increase in the number of studies show-

ing that changes affecting gene regulation can also bring

about diversity in ecologically relevant traits that affect

behaviour, physiology and morphology (e.g. Duda &

Remigio 2008; Giger et al. 2008; Voelckel et al. 2008; see

also for reviews Wray 2007; Hoekstra & Coyne 2007;

Stern & Orgogozo 2008; Pennisi 2008; Wolf et al. 2010).

Studies of gene expression have become routine with

the development of techniques that quantify transcript
� 2010 Blackwell Publishing Ltd
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abundance in a high-throughput way. Microarray stud-

ies, in particular, have produced valuable catalogues of

differences in transcript levels between individuals

(Oleksiak et al. 2002; Whitehead & Crawford 2006),

between species in diverse taxa (Rifkin et al. 2003) and

between ecological conditions (Reymond et al. 2000;

Carsten et al. 2005; Derome et al. 2006). Such studies

also show that inter-individual differences in gene

expression are often highly heritable (Wayne et al. 2004;

Gibson & Weir 2005; Hughes et al. 2006; Lemos et al.

2008; Ayroles et al. 2009).

Because of this heritability, quantitative trait locus

(QTL) mapping can be combined with microarray anal-

ysis to investigate the genetic basis of variable gene

expression (Vasemagi & Primmer 2005). When a QTL

affecting a gene’s transcription maps close to the

affected gene it can be classified as cis-acting, while a

QTL that maps further away on the same chromosome,

or to another chromosome, can be classified as trans-act-

ing (Brem et al. 2002). However, strictly speaking, ‘cis’

describes mutations that affect expression of only the

allele on the same chromosome as the mutation,

whereas ‘trans’ describes mutations that affect allelic

expression on both homologous chromosomes. Exam-

ples of cis-acting sequences include promoters and enh-

ancers, which are typically located close to the gene

that they regulate, while examples of trans-acting regu-

lators include genes that encode transcription factors,

which may be located anywhere in the genome. Classi-

fications of expression QTLs as cis- or trans-acting based

solely on their proximity to the affected gene are there-

fore only an approximation – and one that comes with

many caveats (Rockman & Kruglyak 2006).

Nevertheless, studies mapping expression QTLs

suggest that both cis- and trans-regulatory mutations

contribute to transcriptional variation, with a prepon-

derance of expression QTLs appearing to be cis-acting

(Wayne et al. 2004; Hughes et al. 2006; Osada et al.

2006; Bergen et al. 2007; Genissel et al. 2008; Gilad et al.

2008; Price et al. 2008; Lemos et al. 2008; but see Morley

et al. 2004), although this methodology generally has

less statistical power to detect trans-acting than cis-act-

ing variants (Cookson et al. 2009). In addition, QTL

mapping studies of variable gene expression require

microarrays suitable for studying the species of interest,

molecular markers that cover its complete genome, and

resources for genotyping these markers in a segregating

population. The lack of any one of these things can be a

significant impediment for mapping expression QTLs

outside well-established genetic model systems.

An alternative strategy for studying regulatory varia-

tion uses allelic transcript abundance and the fact that

cis-regulatory mutations have allele-specific effects on

gene expression while trans-regulatory mutations affect
� 2010 Blackwell Publishing Ltd
expression of both alleles in a diploid cell (Cowles et al.

2002; Wittkopp et al. 2004). One or more transcribed

differences in nucleotide sequence are used to discrimi-

nate between transcripts produced by each allele.

Asymmetric expression of two alleles, also known as

allelic imbalance (AI) that is observed between alleles

present in the same cell (i.e. exposed to the same trans-

regulatory environment) provides direct evidence of cis-

regulatory differences. Expression differences observed

between individuals homozygous for two different

alleles that are not also observed between these same

alleles in heterozygotes are attributed to trans-regula-

tory differences (Wittkopp et al. 2004).

This allele-specific approach has now been used to

decompose variable gene expression into its cis- and

trans-regulatory component parts for flies (e.g. Wittkopp

et al. 2008a,b), humans (e.g. Pant et al. 2006; Serre et al.

2008), plants (e.g. de Meaux et al. 2005; Guo et al. 2008)

and yeast (Tirosh et al. 2009). With the exception of Tir-

osh et al. (2009), who developed custom microarrays, the

methods used to measure allelic expression in these stud-

ies are not readily scalable to an entire genome. Further-

more, methods used in these studies, including Tirosh

et al. (2009), require polymorphic sites that differentiate

alleles to be known a priori. For these reasons, studying

allelic expression genome wide has been impractical for

nonmodel (as well as most model) species.

Next generation sequencing technologies have the

potential to revolutionize studies of allelic expression.

Because they obviate the need for a priori sequence

information, molecular markers, and locus-specific

genotyping assays, next generation sequencing methods

can measure allelic abundance at a genomic level in vir-

tually any species. Only transcribed nucleotide differ-

ences between alleles and sufficient sequencing depth

for detecting AI are required. For these reasons, we

expect measurements of allelic expression based on next

generation sequencing will soon be acquired by many

researchers, not only to disentangle cis- and trans-regu-

latory variation, but also to quantify the heritability of

gene expression, examine dominance among regulatory

alleles, evaluate their contribution to morphological,

physiological, or behavioural changes, and reveal pat-

terns of allelic variation within and between species.

Not surprisingly, the benefits of next generation

sequencing come with a price – and often a high one. A

single ‘run’ of high-throughput sequencing can provide

up to hundreds of millions of sequences, but currently

costs thousands of dollars. The precise cost per base dif-

fers among technologies, as does the length of each

sequenced fragment and the total number of sequences

collected. Because of this cost, careful experimental

design that maximizes the data per dollar for allelic

expression studies using next generation sequencing is
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critical. Optimal experimental design is particularly par-

amount for studies in molecular ecology that seek to

examine allelic expression in multiple individuals, spe-

cies or environmental conditions.

In this study, we use mathematical modelling and

computer simulations to identify critical parameters

affecting measurements of allelic expression and the

detection of AI with high-throughput sequencing. We

show that the statistical power of this method depends

upon four crucial parameters (Fig. 1): sequence diver-

gence between alleles, the relative transcript abundance,

the average read length (i.e. amount of transcript

sequenced) and sequencing depth (i.e. average number

of reads per gene). The latter two parameters determine

the number of sequencing reads expected to map to

each gene. The former two parameters determine the

proportion of sequence reads per gene that are informa-

tive for allelic expression [i.e. contain one or more sin-

gle nucleotide polymorphisms (SNPs) that allow reads

to be unambiguously assigned to an allele]. We show

that this probability is strongly affected by the location

of SNPs within an mRNA as well as by the way in

which the cDNA library is prepared for sequencing.

Here, we derive a mathematical model that determines

the minimum number of reads required to test for sig-
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Fig. 1 High-throughput sequencing technology allows mea-

surement of relative allelic expression genome wide. The sche-

matic representation shown illustrates the steps require to

collect allelic expression data. Key parameters associated with

each step that ultimately affect the statistical power for detect-

ing significant allelic imbalance (AI) are also shown.
nificant AI given various levels of sequence divergence,

read lengths, and distributions of relative transcript

abundance, and we compare these results with simula-

tions. Finally, to illustrate the potential of this approach,

we describe an empirical study using measurements of

allelic expression in F1 hybrids between Drosophila mela-

nogaster and Drosophila simulans obtained using 454

sequencing (Roche 454 Life Sciences).
Materials and methods

Fly strains, rearing and crosses

F1 hybrids were produced by crossing 4-day-old virgin

Drosophila melanogaster Canton S females with Drosophila

simulans C167.4 males. Each mating vial contained 10

females and 10 males. Flies were reared on standard

cornmeal medium at 20 �C under a 10 ⁄ 14-h light ⁄ dark

cycle. Hybrid females were collected at emergence and

were stored for 5–6 days at room temperature and then

snap frozen in liquid nitrogen.
Preparation of cDNA libraries and 454 sequencing

Total RNA was extracted by homogenizing �500 hybrid

females in 4 mL of TRIZOL Reagent (Invitrogen). We

isolated mRNA using an Oligotex Direct mRNA Mini

Kit (Qiagen). One milligram of mRNA was used for the

first-strand cDNA synthesis (Superscript II; Invitrogen).

Reverse transcriptase reactions were performed with

biotinylated polyT primer. Second-strand synthesis reac-

tions contained 20 units of DNA ligase, 5 units of RNase

H and 30 units of DNA polymerase I (New England Bi-

olabs). The second-strand reactions were randomly

sheared by sonication. The cDNA fragment was blunt-

ended with T4 polymerase (New England Biolabs).

Finally, 3¢-end cDNA fragments containing the biotiny-

lated polyT primers were removed from cDNA frag-

ment pool by using Dynabeads (Invitrogen). Sequencing

was performed on a GS FLX Instrument following stan-

dard protocols (454 Life Science Roche Diagnostics).

Sequencing beads containing less than 30 bases with

high quality score (>20) were discarded. All sequences

are accessible in GenBank (genome project ID 41715).
Data handling and analysis of 454 sequences

A custom Perl script was used (i) to BLAST 454 reads

against genic and intergenic sequences from D. melanogas-

ter (Flybase release 4.1, http://flybase.org/) and against

the complete genome of D. simulans (Apr. 2005 assem-

bly, UCSC Genome Bioinformatics, http://genome.

ucsc.edu/), (ii) to assign to each 454 read to the most

probable species (i.e. D. melanogaster or D. simulans) as
� 2010 Blackwell Publishing Ltd
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well as to a specific gene or intergenic region and (iii)

to extract descriptive information from each read: num-

ber of basepairs (i.e. sequence length), extent of homol-

ogy identified by BLAST, genomic position in the D.

melanogaster and D. simulans genomes, number of gaps

in the sequence alignments, number of shared SNPs,

and number of species-specific SNPs. The first five of

these six parameters describe the quality of 454 reads,

while the final parameter was used to classify each

sequence read as derived from D. melanogaster or D.

simulans or to classify it as having an undetermined ori-

gin, which was most common for sequence reads that

matched either nonpolymorphic or extremely polymor-

phic regions. All statistical analyses and simulations

described in this work were performed using R (R

Development Core Team, 2005).
Pyrosequencing data collection and analysis

To validate measures of allelic expression based on 454

sequencing, pyrosequencing assays were performed for

14 genes (Table S2, Supporting information) using pro-

tocols described in Wittkopp et al. (2008a,b). For each

gene analysed, a custom pyrosequencing assay consist-

ing of three unique primers was developed and tested

for specificity (primer sequences available upon

request). Using these assays, we quantified AI in each

of eight replicate cDNA samples, each independently

synthesized from new mRNA extracted from flies col-

lected at the same time as those used for 454 sequenc-

ing. Genomic DNA was also extracted from flies

obtained in the initial collection and analysed in qua-

druplicate using pyrosequencing. From each pyrose-

quencing reaction, the ratio of D. melanogaster to D.

simulans alleles was calculated as described in Wittkopp

et al. (2008a,b). For each gene, the ratio of relative allelic

expression (i.e. D. melanogaster ⁄ D. simulans) was log

(base 2) transformed, and the average value from repli-

cate genomic DNA samples was subtracted from the

average value of replicate cDNA samples, effectively

correcting for any bias in PCR-amplification between

alleles (Wittkopp et al. 2004).
Quantifying allelic expression using short-read
sequencing: expectations and statistical power

Despite significant improvements in read length since

their release, current high-throughput sequencing tech-

nologies (e.g. Illumina Solexa, Roche 454 Life Sciences,

ABI Solid) remain ‘short-read’ (i.e. <500 bp) sequencing

methods. The length of sequences is particularly impor-

tant for studying allelic expression because, to be infor-

mative, a sequencing read must include one or more

SNPs that discriminate between alleles. If the distance
� 2010 Blackwell Publishing Ltd
between heterozygous sites within a transcript is

greater than the average sequence length, many reads

will include only invariant sites and thus be uninforma-

tive for allelic expression. A single ‘run’ of next genera-

tion sequencing generates hundreds of thousands to

millions of sequencing reads, but only the subset of

reads that are informative contribute to estimates of

allelic expression. The relative frequency of informative

and uninformative reads has a major impact on the sta-

tistical power for detecting AI in a given experiment.

In the following section, we derive the probability of

obtaining informative and uninformative sequences

depending on the number of total sequencing reads, the

read length and the sequence divergence between

alleles. The model assumes that informative reads could

be assigned unambiguously to alleles: it implies that

allelic reference sequences are known and read map-

ping procedures are without errors. For very short

reads, alignments against reference genome can be sen-

sitive to mismatches but a large number of new algo-

rithms have been recently released to deal with this

issue (see Bateman & Quackenbush 2009; Kofler et al.

2009). Nevertheless, in our model, confidence of allele

assignment can be controlled for by the number of

SNPs required (see below). We then relax the model

assumptions and discuss possibilities of measuring alle-

lic expression without reference genomes or a priori

sequences. We show that the total number of sequence

reads, in combination with the distribution of transcript

abundance among genes, determines the sequencing

depth (i.e. number of reads) needed per gene. The read

length and sequence divergence define the likelihood of

sampling one or more transcribed SNPs, which in turn

determines the proportion of informative reads. We

explore a wide range of parameter values that should

encompass most biological comparisons within and

between closely related species. These conditions also

reflect the current and anticipated output of multiple

high-throughput sequencing technologies. The ultimate

goal of this work was to provide guidance for research-

ers designing allelic expression experiments in their

favourite system.
The relationship between sequence divergence and read
length

When quantifying total levels of transcript abundance

by sequencing cDNA, reads from anywhere within the

transcript are informative as long as they are long

enough to map unambiguously to a single site in the

genome (Torres et al. 2008; Wang et al. 2009). By con-

trast, when measuring allelic expression, only the subset

of these reads containing one or more SNPs that distin-

guish transcripts derived from different alleles of the
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same gene are informative. Therefore, read length is a

critical parameter for sequencing-based studies of allelic

expression: longer reads increase the probability of

sequencing a polymorphic site. Sequence divergence

between the two alleles under study must also be con-

sidered: greater divergence increases the probability of

sequencing polymorphic sites for a given read length.

More formally, the probability of sampling at least x

SNPs in a read of length l can be approximated by:

PrðX � xÞ ¼
Xl

k¼x

l
k

� �
dk 1� dð Þl�k; ð1Þ

where d is the sequence divergence (i.e. the probability

of observing a SNP at each nucleotide position). The

probability of obtaining exactly n informative reads

with at least x SNPs in s randomly sampled reads from

a heterozygous gene is given by the probability mass

function:

PrðY ¼ nÞ ¼ s
n

� �
PrðX � xÞn 1� PrðX � x�Þð Þs�n: ð2Þ

The mean and the variance of this distribution are

EðYÞ ¼ s PrðX � xÞ ð3Þ

and,

VarðYÞ ¼ s PrðX � xÞð1� PrðX � xÞÞ: ð4Þ

Consequently, Pr (X ‡ x) is the expected proportion

of informative reads in a random sample.

If only one SNP is required to assign alleles unambig-

uously, eqn (1) becomes:

PrðX � 1Þ ¼ 1� ð1� dÞl: ð5Þ

For this special case, the minimum read length

required to observe a minimum proportion of Pr(X ‡ 1)

reads with at least one SNP is

l ¼ logð1� PrðX � 1ÞÞ
logð1� dÞ : ð6Þ

Hence, for mRNA sequences that differ at 0.5% of

sites, sequence reads longer than 138 bp are needed in

order to obtain ‡50% of reads with at least one SNP.

However, in some cases, more than one SNP may be

required to unequivocally discriminate between the two

alleles. For example, depending on the specific experi-

ment, recombination, homoplasy, or errors in transcrip-

tion or sequencing could lower the confidence of

assignments only based on a single SNP. Therefore, we

also calculated the expected proportion of informative
reads when more than one SNP is required for allele

assignment. By applying eqn (2), we show that this

parameter diminishes rapidly when the minimum num-

ber of required SNPs increases (Fig. 2A, B). Sequences

with little genetic divergence (i.e. <1%) are particularly

sensitive to the minimum number of SNPs required to

discriminate between alleles.

To determine how well this mathematical model pre-

dicts the proportion of informative reads, we randomly

sampled reads in silico with lengths ranging from 35 to

800 bp from pairs of virtual mRNA sequences 2000 bp

long that contained various levels of sequence diver-

gence. SNPs were distributed uniformly across the

length of each hypothetical mRNA sequence. In each

simulation, we counted the number of informative

reads, that is, the number containing one or more poly-

morphic sites. As shown in Fig. 2C, D, predictions from

our model are most accurate for sequence reads that

are £300 bp. For longer reads, our model underesti-

mates the mean as well as the variance. Large means

are inaccurately estimated because eqn (1) assumes that

mRNA molecules have infinite length and conse-

quently, that SNPs can be sampled with replacement.

When read lengths converge to mRNA lengths, this

assumption then becomes invalid and eqn (1) should

be replaced by a hypergeometric form that includes a

parameter for mRNA length (see legend for Fig. S1,

Supporting information). Although this hypergeometric

model is indeed more accurate (compare Fig. 2 and

Fig. S1, Supporting information), it is also more com-

plex mathematically. For most experimental design

applications, we anticipate that the simpler binomial

model will be sufficient.

Note that both the binomial (Fig. 2) and hypergeo-

metric (Fig. S1, Supporting information) models under-

estimate the variance observed in the simulation study.

This is because these models do not take into account

the location of polymorphic sites within each mRNA.

The probability of sampling a SNP dependent upon its

position in the mRNA (Fig. S2, Supporting information)

can be described as:

PrðB ¼ iÞ ¼ wi

ðlg � lþ 1Þl ;
1 � i<lr : wi ¼ i
lg � lr þ 1<i � lg : wi ¼ lg � i
lr � i � lg � lr þ 1 : wi ¼ lr

8<
:

ð7Þ

where i is the nucleotide position in the mRNA

sequence, lg the mRNA length, and

l � lg
2 : lr ¼ l

l>
lg
2 : lr ¼ lg � lþ 1

(

The mean of this probability distribution is
� 2010 Blackwell Publishing Ltd
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EðBÞ ¼ 1
lg
; ð8Þ

and its variance is

varðBÞ ¼ lg
2lr � 1

3lrðlr � 1Þ � 1

� �
lr

ðlg � lþ 1Þl�
1

lg

� �2

: ð9Þ

Hence, considering the location of a SNP requires a

much more complex model and only special cases can be

easily derived. For instance, for the simple situation of

an mRNA sequence containing one and only one SNP,

the probability of sampling informative reads becomes

PrðX ¼ 1Þ ¼ l

lg
: ð10Þ

The model described above treats the read length l as a

fixed value even though (after filtering for base quality)

all sequencing technologies produce reads with a range

of alignable lengths. To incorporate this element of the

data, we represent the distribution of l as Pr(l),

and incorporate this new assumption into eqn (1),

resulting in
� 2010 Blackwell Publishing Ltd
PrðX � xÞ ¼
Xþ1
l¼1

PrðlÞ
Xl

k¼x

l
k

� �
dk 1� dð Þl�k: ð11Þ

Incorporating variable read lengths into the model

had little effect on the probability of sampling x SNPs

in a read. For instance, assuming a Poisson distribution

of read lengths, eqn (5) becomes

PrðX � 1Þ ¼ 1� e�dt ð12Þ

Finally, the proportion of genes with more than n

informative reads can be estimated by:

PrðI � nÞ ¼
Xþ1
t¼n

PrðT ¼ tÞ

1�
Xn�1

j¼1

t

j

� �
PrðX � xÞj 1� PrðX � xÞð Þt�j

0
@

1
A;
ð13Þ

where Pr(T = t) is the distribution of transcript levels t

across the genome. This distribution can be empirically

determined or approximated by either discrete decay or
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power law functions (e.g. Ogasawara et al. 2003).

Assuming a geometric decay and using eqn (5), we can

rewrite eqn (13) as:
PrðI � nÞ ¼
Xþ1
t¼n

1
�T

1� 1
�T

� �t

1�
Xn�1

j¼1

t

j

� �
1� ð1� �dÞl
� �j

ð1� �dÞl
� �t�j

0
@

1
A;
ð14Þ

where �T is the mean number of transcripts per gene

(i.e. the sequencing depth) and �d is the mean sequence

divergence. Although eqn (14) lacks some of the vari-

ance in parameter values discussed above (i.e. read

length and sequence divergence distributions as well as

SNP location within a sequence), the model neverthe-

less does an excellent job of predicting the simulated

proportion of genes with more than n informative reads

(Fig. 3).

Therefore, for a given number of transcribed genes

and total number of sequencing reads (from which �T is

derived), as well as a particular mean sequence diver-

gence and mean read length, the number of genes

expected to have more than n informative reads can be

robustly predicted. This number (n) is critical for

designing allelic expression experiments using next gen-

eration sequencing because it directly determines the

statistical power for detecting AI.
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Allelic imbalance and statistical power

If we specifically define AI as the ratio of allelic tran-

script abundance (i.e. number of transcripts from allele

1 divided by the number of transcripts from allele 2),

then the probability of observing na1 reads from allele 1

in a sample of n informative reads is given by:

PrðN ¼ na1Þ ¼
n

na1

� �
1

AIþ 1

� �na1

1� 1

AIþ 1

� �n�na1

: ð15Þ

Using this equation, we can determine whether an

observed AI value for a gene is significantly different

from a null hypothesis of no difference in allelic expres-

sion (AI = 1). As shown in Fig. 4, statistical power rises

quickly when the true value of AI is ‡2 (e.g. a sample

of only 50 informative reads provides 60% statistical

power). On the other hand, small imbalances (<1.25-

fold) require more than 500 informative reads to reach

this same power. Although statistical power to detect

significant AI can be achieved easily with small sam-

ples, large samples are generally required to produce

reasonably precise estimates of AI, especially when the

true value of AI is very large (Fig. S3, Supporting infor-

mation). Prior studies comparing allelic expression

within and between Drosophila species observed a med-

ian AI of 1.4 for all genes and samples examined and a

median AI of 1.7 for cases classified as having signifi-

cant AI (Wittkopp et al. 2008a,b). This suggests that 200
00 18 000 40 000

ne)

an sequence
ergence = 0.1 %

Predicted

proporti
ons

05 0.1 0.15 0.2 0.25

nce divergence (%)

Fig. 3 Predicted proportions of genes

with more than 200 informative reads

for a given sequencing depth are consis-

tent with simulated data. Predicted

values (lines) were obtained using

eqn (14), assuming a mean read length

of 150 bp and sequence divergence of

0.1%, .5%, 1%, and 5%, as indicated.

Simulated data (points) used distribu-

tions of transcript abundance, read

length, and sequence divergence, as

shown for the insets. Two replicate sim-

ulations were performed and found to

be highly correlated with each other

(Spearman’s Rho >99%).
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or more informative reads will generally be required to

detect a significant and precise AI values using high-

throughput sequencing.
Read sampling strategies

The number of transcribed genes and the mean

sequence divergence are both dictated by the species

and genotypes under study and cannot be altered. Fur-

thermore, the researcher can affect the average length of

sequence reads only in a limited way by choosing one

next generation sequencing technology instead of

another. The aspect of a sequencing-based allelic expres-

sion experiment that the researcher has the most control

over is the preparation of cDNA (or equivalent) libraries

used for sequencing. Two general types of cDNA

libraries can be used for measuring allelic expression.

The first is essentially a shotgun library, in which frag-

ments are randomly sampled from the transcriptome.

The second is more targeted, containing fragments only

from a predetermined region of each transcript. For

instance, the 5¢- or 3¢-end can be systematically sampled

from each transcript (e.g. Gowda et al. 2006). The sam-

pling strategy should be chosen carefully because, as

shown in eqn (7) and Fig. S2 (Supporting information),

the location of SNPs within the cDNA template used for

sequencing affects the probability of collecting sequence

reads informative for allelic expression.

For a given sequence divergence and read length, the

sampling strategy does not affect the expected mean
� 2010 Blackwell Publishing Ltd
proportion of informative reads; however, it has a large

effect on the variance among genes in the proportion of

informative reads (Fig. 5C). With a targeted sampling

approach all reads for a given gene will either be infor-

mative or uninformative, depending on the position of

SNPs in the transcript. Consequently, targeted sampling

maximizes the statistical power to detect AI for genes

that have at least one polymorphic site in the targeted

region, but provides no information about relative alle-

lic expression for genes that lack variation in this

region. With random sampling, the situation is

reversed: estimates of allelic expression can be obtained

for more genes, but the power to detect significant AI

for any given gene is reduced. Additionally, under ran-

dom sampling, gene length affects the relative esti-

mated expression among genes (i.e. more reads should

come from longer genes), but has a negligible effect on

measures of relative allelic expression because tran-

scripts from both alleles of a gene are usually the same

length. (For this reason, we did not include gene length

in the mathematical models described above.)

To compare the power of random and targeted sam-

pling, we simulated the proportion of genes with more

than 200 informative reads under different conditions.

As described above, 200 informative reads per gene

provides reasonable statistical power to detect reason-

ably small difference in allelic expression (see Fig. 4).

Results from this simulation show that random sam-

pling generally performs better than targeted sampling,

except when sequence divergence and the number of

sequences per gene are low, and especially when

sequencing reads are short (Fig. 5A, B). As an alterna-

tive, a ‘mixed’ sampling scheme that included 50% tar-

geted and 50% randomly located sequence reads

produced results most similar to targeted sampling

(Fig. 5C). Such a ‘mixed’ sampling strategy could be

employed by paired-end sequencing a cDNA library

containing fragments of variable length that all share

the same 5¢- or 3¢-end.

Based on these results, we conclude that, for allelic

expression experiments with at least moderate sequence

depth in species with reference genomes available (that

can be used to map sequencing reads to particular

genes), a random sampling strategy will almost always

provide the most information per unit cost. However, if

no reference genome sequence is available, or if

sequencing depth is limited, targeted sampling may

have advantages that offset the loss of information on a

genomic scale. For example, targeted sampling simpli-

fies the process of determining which sequence reads

come from the same gene. In the absence of a reference

genome, this is especially important because sequence

reads must be assembled into (hopefully, gene-specific)

contigs de novo and all reads from the same gene generated
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by targeted sampling should overlap. Alternatively if a

reference genome is available, but only low depth

sequencing is possible, a targeted strategy would pro-

vide more accurate estimates of allelic expression for

the subset of the genes with SNPs in the targeted

regions than random sampling. Finally, although there

may be some cases for which ‘mixed’ sampling would

be the best choice, in the two scenarios considered

above, reducing coverage in the targeted region and

distributing some of the reads more evenly across the

transcriptome does not offer any clear advantages.
Allelic expression in Drosophila hybrids

To illustrate one application of allelic expression mea-

surements, we quantified allelic expression in cDNA

pools derived from interspecific F1 hybrids and used

these data to test for significant AI (i.e. differences in

expression between the maternal and paternal alleles).

F1 hybrids used for this study were produced by cross-

ing Drosophila melanogaster females and Drosophila simu-

lans males, collecting virgin female progeny, and aging

them for 5–6 days. After extracting mRNA from these
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flies, a cDNA pool containing random fragments from

the transcriptome was constructed and analysed using

the high-throughput sequencing technology developed

by 454 Life Sciences (Roche).
Analysis of sequencing statistics, informative reads and
allelic expression

In all, 36 855 high-quality 454 sequencing reads were

obtained from the random interspecific hybrid cDNA

library (Table 1). The average length of these reads was

170 bp, with 74 and 250 bp for the 2.5 and 97.5 percen-

tile respectively. Eighty-eight per cent of these reads

had at least one homologous sequence in either the

D. melanogaster or D. simulans genome (BLAST, E-value

< 10)4), 5% of which showed homology to only one of

the two parental genomes. These reads mapped to 5591

genes and 975 intergenic regions. Sequences derived

from intergenic regions accounted for 7% of the

mapped reads, and might have resulted from transcrip-

tion of unannotated genes or exons, abnormal splicing

that generated unexpected splice junctions, transposable

elements or spurious transcription (e.g. Stolc et al.
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Fig. 5 Read sampling strategy affects

the proportion of informative reads per

gene and thus the number of genes for

which significant allelic imbalance (AI)

can be detected. (A, B) Simulated pro-

portions of genes with more than 200

informative reads using a random or a

targeted read sampling strategy are

shown for mean read lengths of 35 bp

(A) and 150 bp (B), with individual

reads sampled from a Poisson distribu-

tion. See Fig. 2 for a more detailed

description of the simulation parame-

ters. (C) The proportion of informative

reads per gene using random (left),

targeted (middle) and mixed (right)

sampling strategies are shown. Each

beanplot represents the distribution (500

replicates) of the proportion of informa-

tive reads among 500 sampled reads.

The horizontal bar shown on each

beanplot indicates the mean of these

distributions. For the mixed strategy,

fragments with sequence lengths drawn

from a Poisson distribution with a mean

of 500 bp were anchored to a fixed,

predetermined location (the 3¢ end), and

sequences of either 18 or 75 bp were

taken from each end to simulate

paired-end sequencing.

� 2010 Blackwell Publishing Ltd



Table 1 Number of reads, mean read and BLAST hit length, and average number of discriminating SNPs for Drosophila melanogaster,

Drosophila simulans and uninformative reads. Within brackets: 2.5 and 97.5 percentile. ‘Undetermined SNPs’ are polymorphic sites in

454 reads that do not match either reference genome

No.

reads

Mean reads

length

Mean

D. melanogaster

BLAST hit length

Mean

D. simulans

BLAST hit length

No.

D. melanogaster

SNPs

No.

D. simulans

SNPs

No.

unknown

SNPs

All reads 36 855 173 (74;250) 150 (45;259) 149 (43;259) 1.92 (0;5) 1.61 (0;4) 0.72 (0;2)

Nonattributed 4502 192 (71;305)

D. melanogaster BLAST hits only 1429 160 (68;282) 123 (22;261)

D. simulans BLAST hits only 271 138 (64;279) 98 (23;257)

D. melanogaster alleles (‡1 SNP) 13 770 176 (81;279) 160 (61;263) 154 (52;259) 4.7 (1;15) 0.24 (0;2) 0.78 (0;6)

D. simulans alleles (‡1 SNP) 12 269 177 (80;280) 156 (54;259) 159 (58;262) 0.39 (0;3) 4.45 (1;14) 1 (0;6)

Uninformative reads (‡1 SNP) 4614 140 (64;265) 110 (30;238) 107 (28;236) 0.28 (0;2) 0.28 (0;2) 0.76 (0;6)

D. melanogaster alleles (‡2 SNPs) 10 984 182 (86;281) 168 (72;264) 161 (61;260) 5.56 (2;15) 0.24 (0;2) 0.78 (0;6)

D. simulans alleles (‡2 SNPs) 9521 184 (86;281) 164 (63;261) 168 (69;265) 0.4 (0;3) 5.35 (2;15) 1.02 (0;6)

Uninformative reads (‡2 SNPs) 10 148 147 (67;266) 121 (34;246) 118 (32;244) 0.57 (0;3) 0.56 (0;3) 0.81 (0;6)

SNP, single nucleotide polymorphism.
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2004). More than 10 reads matched each of 577 genes,

while more than 50 reads matched each of 83 genes.

Despite this relatively low sequencing depth, our data

appear to correctly, albeit crudely, measure total levels

of gene expression: estimates of transcript abundance in

F1 hybrids measured using 454 sequencing correlated

significantly (Spearman correlation, Rho = 0.45,

P < 0.001) with expression levels reported for female D.

melanogaster that were obtained using microarrays

(Harbison et al. 2005).

In order to assign each read to a specific parental

allele, we determined the number of variable sites

among 454 reads for a particular gene (i.e. SNPs) that

were identical to the D. melanogaster and D. simulans

reference genomes. This analysis was performed only

for reads that showed a significant alignment with both

reference genomes. Sequences were assigned to the spe-

cies with the highest number of identical SNPs. For

instance, if three SNPs within a given read were identi-

cal to the D. melanogaster reference genome and two

(different) SNPs were identical to the D. simulans refer-

ence genome, the read was assumed to be derived from

the D. melanogaster allele. Reads were expected to differ

from the reference genomes because the strains of D.

melanogaster and D. simulans used to generate the F1

hybrids analysed by 454 sequencing were not the same

as the strains sequenced to assemble these reference ge-

nomes. As mentioned above, shared recombination,

homoplasy, or errors in transcription or sequencing

might also complicate the assignment of individual

reads to one species or the other. In all, 26 039 reads,

which is 71% of all high-quality reads, were assigned

to one species or the other. At least 10 informative

reads were identified for each of 465 genes, with 58 of

these genes having more than 50 informative reads each
� 2010 Blackwell Publishing Ltd
(Fig. 6B). As shown in Fig. 4, genes with 50 informa-

tive reads had 60% power to detect significant AI of at

least twofold, while genes with 10 reads had only 20%

power to detect changes of the same magnitude. Con-

sistent with both intuitive and mathematical predic-

tions, long reads were more often informative for allele-

specific expression than short reads (Fig. 6A), with the

average length of uninformative reads only �70% that

of informative reads (Table 1).

Intriguingly, more informative reads (53%) were

assigned to the D. melanogaster allele than to the D. sim-

ulans allele (13 770 and 12 269 reads, respectively; bino-

mial test: P < 0.001). The excess of D. melanogaster

alleles was greater among sequences from genomic

regions annotated as genic than those annotated as in-

tergenic (53.0% vs. 50.3%), although this difference was

not significant (v2 = 3, P = 0.08) and may be an artefact

of the much smaller number of reads classified as inter-

genic (93% vs. 7%). The overabundance of D. melanog-

aster alleles was observed not only across the whole

transcriptome analysed but also for subsets of genes

with different expression levels (Fig. 6C). The one (sur-

prising) exception to this was the subset of genes with

the highest overall expression levels, which showed an

excess of D. simulans alleles (Fig. 6C). This shows that

the greater abundance of D. melanogaster reads observed

in F1 hybrids cannot be explained by higher expression

of the D. melanogaster allele of only a few highly

expressed genes. In addition, this pattern is unlikely to

result from poor quality sequences or alignments

because (i) BLAST hit lengths are on average identical in

both reference genomes, (ii) there were on average 4.5

discriminating SNPs per informative read, in both spe-

cies, which makes nearly all assignments unambiguous

and (iii) the trend remained after applying a higher
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Fig. 6 Analysis of allelic expression and allelic imbalance (AI) in Drosophila F1 hybrids. (A) The distribution of sequence fragment

lengths for both informative and uninformative reads is shown. (B) The number of genes in different gene expression level classes

(as measured by the abundance of informative reads) are shown along with the number of genes in each class that showed signifi-

cant AI. (C) The top panel shows the proportion of genes with significant AI (see Table S1, Supporting information) for which the D.

melanogaster allele is most abundant. The bottom panel shows the proportion of informative reads in a given expression level class

that were assigned to D. melanogaster. In both panels, the dotted line corresponds to a balanced proportion (50%). (D) The relation-

ship between relative allelic expression as measured by 454 sequencing and by pyrosequencing is shown. For pyrosequencing, the

average of eight replicates is plotted and the 95% confidence intervals are indicated by the horizontal bars. For 454 sequencing, the

relative number of informative reads is shown, with vertical bars indicating the Clooper-Pearson 95% confidence intervals derived

from binomial sampling (see Supplementary Fig. S3). The dotted line indicates the slope of the nonparametric regression.
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stringency cutoff (‡2 SNPs, see Table 1). Based on all of

these observations, we conclude that the preferential

expression of D. melanogaster alleles observed in F1

hybrids is a real (biological) property of these flies and

likely results from a process that affects allelic tran-

scription on a genomic scale. This expression bias does

not appear to be caused by a particular tissue, a partic-

ular biological function, or a particular chromosomal

location (data not shown); however, deeper sequence
coverage is required to test these hypotheses defini-

tively.
Allelic imbalance in Drosophila hybrids

As described in the Introduction, quantifying AI in F1

hybrids provides a direct readout of relative cis-regula-

tory activity. We tested for significant AI of the 891

genes that show more than six informative reads
� 2010 Blackwell Publishing Ltd
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because it is impossible to reach significance (P < 0.05)

with a binomial test and less than six observations. One

hundred seven of these 891 genes (12%) showed signifi-

cant AI based on our data (Table S1, Supporting infor-

mation). For this analysis, we estimate the false

discovery rate to be c. 17% by resampling our observed

distribution of informative read abundance assuming

observed AIs are true or equal to 1. On the other hand,

we estimated c. 13% of false negative AI. Consequently,

the analysis suggests that more than 190 genes could

show true AI (21% of tested genes). In fact, despite the

low level of sequencing depth, we detected significant

AI for 35% of genes with more than 50 informative

reads and for 14% of genes with more than 10 informa-

tive reads. On average, the more abundant allele of a

gene was observed five times more than the less abun-

dant allele, with a minimum of 1.6 and a maximum of

15 (Fig. S4, Supporting information). Finally and per-

haps not surprisingly given the overall excess of reads

most similar to D. melanogaster, the D. melanogaster allele

was more abundant than the D. simulans allele for 73

(68%) of these 107 genes (binomial test: P < 0.001,

Fig. 6C).
454 sequencing and pyrosequencing produce similar
estimates of allelic expression

To determine whether 454 sequencing produces accu-

rate estimates of allelic expression, we used pyrose-

quencing to independently quantify AI in 14 genes and

compared the results to estimates obtained using 454

sequencing. The 14 genes selected for this analysis had

allelic expression differences that spanned the range of

AI values observed with 454 sequencing (compare

Fig. 6D and Fig. S4). Pyrosequencing permits quantifi-

cations of allelic expression for individual genes and

produces estimates of AI that are consistent with those

obtained using both quantitative real-time PCR and

microarrays (Wittkopp et al. 2006). Pyrosequencing

allows high levels of replication for a modest cost, thus

very precise estimates of AI can be obtained. Despite

the small number of informative 454 sequencing reads

for some of the genes analysed (Table S2, Supporting

information), we found a significant correlation between

estimates of allelic expression obtained using these two

techniques (Fig. 6D; Spearman’s Rho = 0.65, P < 0.05).

The effect of sequencing depth for individual genes on

the precision of allelic expression estimates is readily

visible by examining the gene-specific binomial sam-

pling confidence intervals shown in Fig. 6D. Because

precision improves with deeper sequencing coverage,

we also examined the correlation between measures of

allelic expression for the eight genes with at least 20

informative reads each. This subset of the data showed
� 2010 Blackwell Publishing Ltd
a stronger correlation (Spearman’s Rho = 0.74, P < 0.05),

as expected.
Discussion

Less than a decade ago, Gibson (2002) predicted that

microarrays would have a tremendous impact on

molecular and genetic research at the interface of organ-

ismal and population biology. Since then, this method-

ology has proven to be a formidable tool for examining

the extent of gene expression polymorphism within spe-

cies and divergence between species, as well as for

studying the evolutionary processes that generate and

act upon regulatory variation. Microarray studies have

revealed extensive inter-individual variation in gene

expression and showed that this variation is often heri-

table and its segregation within and between species is

primarily affected by neutral drift and stabilizing selec-

tion (see for review Whitehead & Crawford 2006). Per-

haps surprisingly, very little adaptive regulatory

variation has been identified. This may be because it is

uncommon or because we do not yet have the correct

theoretical framework for distinguishing the effects of

neutral and non-neutral evolution (Fay & Wittkopp

2008).

High-throughput sequencing technologies are now

poised to replace microarrays for measuring gene

expression on a genomic scale, especially for evolution-

ary and ecological studies that require analysis of many

species and ⁄ or individuals with divergent genotypes.

(Elmer et al., 2010) Compared to microarrays, a high-

throughput sequencing approach is more complex tech-

nologically, yet much simpler statistically and methodo-

logically. Furthermore, it does not require taxon-specific

probes or any a priori sequence information, making it

suitable for measuring expression profiles of virtually

any species. Arguably, its greatest advantage relative to

microarrays is that both total and allelic measures of

gene expression are obtained simultaneously. With

measures of allelic expression, there is a closer relation-

ship between an allele’s sequence and its activity, mak-

ing it easier to study the inheritance of gene regulation

phenotypes within and between species.

Indeed, using allelic expression rather than total gene

expression not only facilitates studies exploring the evo-

lutionary consequences of naturally occurring regula-

tory variation, but also simplifies mapping of

regulatory mutations variation, which is necessary to

elucidate the genetic architecture of gene expression.

Such studies allow researchers to more efficiently iden-

tify loci, genes and molecular processes that play

important roles in adaptation. We fully anticipate that

studies of allelic expression will soon produce novel

insights for the field of molecular ecology, as well as
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many other fields. We hope that the theoretical and

empirical information provided by this study helps

researchers design experiments that test specific

hypotheses efficiently and cost effectively.

To this end, we have developed a mathematical

model that allows researchers to estimate the minimum

sequencing depth needed to detect significant AI, based

on the average sequence read length of their chosen

next generation sequencing technology, the average

genetic divergence between alleles under study, the

approximate number of transcribed genes, and the

anticipated distribution of transcript levels across the

genome. For instance, eqn (14) shows that, for an

experiment that uses reads averaging 150 bp and com-

pares allelic expression in a polymorphic species with

0.1% sequence divergence, more than 4000 sequence

reads per gene are needed to achieve 60% statistical

power for detecting significantly AI larger than 1.5-fold

(see Figs 3 and 4). For a genome containing 10 000 tran-

scribed genes (and assuming an exponential decay dis-

tribution for expression levels), such a study would

require c. 40 million reads (Fig. 3). If the average

sequence length were increased to 500 bp, the number

of sequence reads required would be decreased fourfold

to c. 10 million reads. With only three million reads, a

statistical power of �20% would be achieved.
Caveats and considerations

We stress that these predictions should be treated as

approximate guidelines only because a number of fea-

tures of real transcriptomes violate our model and

cause our equations to over- or underestimate the requi-

site number of sequence reads. In the following para-

graphs, we discuss four such features and their impact

on study design.

We modelled the distribution of transcript levels

using a standard decay function, yet the distribution of

transcript abundances in real organisms will virtually

never fit such as function perfectly. In particular, strong

deviations in distribution tails, such as many more

genes with extremely high or low expression levels, will

cause the model to underestimate the required mini-

mum sequencing depth. If the precise distribution of

transcript levels is known a priori for a particular

organism, however, this information can easily be incor-

porated into eqn (13) to improve the accuracy of the

predictions.

Another potential caveat comes from the imprecise

construction of cDNA pools. We found that the way

sequences are sampled from mRNA transcripts affects

the statistical power for a given set of parameters

(Fig. 5). We modelled cases only in which cDNA pools

contain completely random fragments and perfectly tar-
geted fragments; however, one or more of the technical

steps used to create cDNA libraries for sequencing may

often introduce imperfections. For example, an unex-

pected bias may arise during the production of ‘ran-

dom’ cDNA libraries caused by factors such as the

preferential ligation of adapters used for sequencing.

Alternatively, targeted libraries may include unwanted

sequence fragments that result from reads in untargeted

regions. However, our analysis of the ‘mixed’ sampling

strategy suggests that small errors in the ultimate com-

position of cDNA libraries will have little effect on the

power to detect AI for most genes. Paired-end sequenc-

ing, which is an option now available for some technol-

ogies, has no clear advantages for AI analyses, although

it could be used to evaluate read and sample quality.

Yet another factor to consider carefully is which

genes (with respect to expression level) are of utmost

interest. For example, if highly transcribed genes are of

primary concern, shallow sequencing may be sufficient;

increasing sequencing depth has little impact on the sta-

tistical power to detect significant AI in these genes. By

contrast, if lowly transcribed genes are of most interest,

sequencing the entire transcriptome may require such

high coverage as to make the experiment impractical.

Removing transcripts from genes with the highest

expression by subtraction or normalization is one way

to increase coverage of the more lowly expressed genes;

however, care must be taken not to alter the relative

abundance of alleles for the genes of interest. Methods

such as quantitative PCR or pyrosequencing may be

much more cost-effective and reliable for measuring

allelic expression of a few lowly expressed genes.

Finally, computer simulations showed that the posi-

tion of SNPs within a transcript increases variance in

the expected number of informative reads per gene. The

model assumes, however, that SNPs are distributed ran-

domly across the length of each mRNA. In reality, poly-

morphic sites are rarely distributed randomly within a

transcript. For instance, they are known to be more fre-

quent in 5¢ or 3¢ UTRs than nonsynonymous sites (An-

dolfatto 2005). Differences also exist in the amount of

sequence polymorphism and divergence among genes.

In general, regions of transcripts with greater sequence

variation are more likely to produce informative reads

than regions with fewer polymorphic or divergent sites.

Finally, our model assumes that transcript abundance

and sequence divergence are independent, but in fact,

they are often correlated (Subramanian & Kumar 2004).
Properties of allelic expression in Drosophila hybrids

Interspecific hybrids between D. melanogaster and

D. simulans show extensive misexpression relative to

either parental species (Ranz et al. 2004). The primary
� 2010 Blackwell Publishing Ltd
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cause of this misexpression is unknown, but it is gener-

ally attributed to incompatibilities between genomes

that disrupt gene regulatory networks (Landry et al.

2007). Consistent with this idea, prior work suggests

that the co-evolution of cis- and trans-regulatory factors

may contribute to misexpression when divergent alleles

meet in interspecific hybrids (Landry et al. 2005).

To compare the activity of homologous cis-regulatory

sequences between species, we used estimates of allelic

expression in interspecific F1 hybrids obtained using

454 sequencing. We measured allelic expression for

over 5500 of the most highly expressed genes and we

were able to test AI in �900 of these genes. Overall, we

detected significant AI for 12% of these genes; among

genes with the most informative reads (i.e. ‡50 reads

per gene), 35% of genes showed significant AI. Our

study almost certainly underestimates the percentage

of genes with differences in expression between

species-specific alleles in F1 hybrids because even 50

informative reads per gene provides only 25% and 60%

statistical power to detect significant AI for genes with

true allelic expression differences of 1.5- and twofold

respectively. Consistent with this interpretation, prior

studies of relative cis-regulatory activity between D.

melanogaster and D. simulans reported much higher per-

centages of genes with significant AI (Lemos et al. 2008;

Wittkopp et al. 2008a,b).
Genomic imbalance in interspecific hybrids

Widespread misexpression of genes is common in inter-

specific hybrids, and the genomic imbalance that we

observed in F1 hybrids between D. melanogaster and D.

simulans alleles may provide insight into the molecular

mechanisms responsible for this misexpression. Dro-

sophila melanogaster alleles are repeatedly overexpressed

in F1 hybrids despite the fact that both alleles are

expected to be regulated by the same pool of maternal

and paternal trans-acting factors. Long-range chromatin

effects that favour expression of D. melanogaster chro-

mosomes could contribute to this genomic imbalance,

as could interactions between the nuclear genome and

cytoplasmic components (especially mitochondria),

which were inherited from D. melanogaster in the

hybrids examined. It will be interesting to see whether

these same expression differences exist between the two

alleles if they are compared in cells containing only

trans-acting factors from D. melanogaster or D. simulans.

Such a comparison would provide a direct test for com-

plex interactions among divergent trans-acting factors

and cis-regulatory sequences. Although the prevalence

of such interactions remains an open question, a small

scale study of D. melanogaster found no evidence of

such cis-by-trans interactions (Wittkopp et al. 2008a,b).
� 2010 Blackwell Publishing Ltd
Concluding remarks

Comparing the activity of orthologous cis-regulatory

alleles, as described here for interspecific Drosophila

hybrids, is but one application of sequence-based mea-

sures of allelic expression. Quantifying heritability of

gene expression, examining dominance and imprinting

among regulatory alleles, or revealing patterns of allelic

variation within and between species are some of addi-

tional applications for quantitative measures of relative

allelic expression. By identifying parameters critical for

such experiments and exploring their impact on possi-

ble outputs, we anticipate that results from this study

will help researchers optimize their available resources

and generate data sets that are best suited for address-

ing their primary question(s) of interest.
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