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Mixture cure model with random effects
for the analysis of a multi-center tonsil
cancer study

Yingwei Peng®?<*T and Jeremy M. G. Taylord

Cure models for clustered survival data have the potential for broad applicability. In this paper, we consider the mixture cure
model with random effects and propose several estimation methods based on Gaussian quadrature, rejection sampling, and
importance sampling to obtain the maximum likelihood estimates of the model for clustered survival data with a cure fraction.
The methods are flexible to accommodate various correlation structures. A simulation study demonstrates that the maximum
likelihood estimates of parameters in the model tend to have smaller biases and variances than the estimates obtained from the
existing methods. We apply the model to a study of tonsil cancer patients clustered by treatment centers to investigate the effect
of covariates on the cure rate and on the failure time distribution of the uncured patients. The maximum likelihood estimates
of the parameters demonstrate strong correlation among the failure times of the uncured patients and weak correlation among
cure statuses in the same center. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

Modeling survival data with a surviving or cure fraction is an important issue since there exist many examples in cancer
clinical studies, such as breast cancer, lymphoma, and head and neck cancer, in which a significant proportion of patients
are cured. The issue becomes even more complicated when patients in a study form clusters and the independence of
the patients within one cluster cannot be assumed or justified.

A motivating example of the study in this paper is a multi-institutional study of local recurrences of tonsil cancer
patients [1]. This retrospective study consists of 672 patients with squamous cell carcinoma of the tonsil who were
treated with radiation between 1976 and 1985 in nine centers in North America and in the United kingdom. The failure
time of interest is the time from initial treatment to local recurrence. Covariates in this study include age, sex, T stages,
total dose, treatment duration, and node status. The follow-up period of this study is about 14 years, and most of the
local recurrences occurred before 3 years. The objective of this study is to investigate the effects of some modifiable
factors of the radiotherapy, including dose per fraction, overall treatment duration, and total dose, on the outcome of
the radiation treatment of tonsil cancer patients. It is generally accepted that tonsil cancer is curable. The existence of
cured patients in this particular study can be seen in Kaplan—Meier survival curves of the failure times based on node
status, which is given in Figure 1. The curves level off beyond 3 years, indicating that patients not experiencing any
recurrences in 3 years may likely be cured. Thus, it will be interesting to examine the effects of the covariates on both
the time to recurrence of uncured patients and the probability of being cured.

This issue, however, is entangled by the fact that the time to recurrence or the probability of being cured for the
patients from the same institution may be correlated due to a shared environment. The nine participating institutions
are located in very different regions of North America and the United Kingdom. The shared (but unobservable or
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Figure 1. Kaplan—Meier survival curves of patients in the two node status groups.

not quantifiable) environment, treatment facilities, and other factors in one institution can be very different from other
institutions. The absence of information about the factors will lead to positively correlated time to recurrence or cure
status among patients in the same institution. When the correlation is strong, ignoring the correlation in an analysis could
lead to biased estimates of the covariate effects. Our goal is to understand the effects of total dose and treatment duration
as well as other covariates on both the time to recurrence for uncured tonsil cancer patients and on the probability of
being cured when the potential correlation among patients in the same institution is properly handled.

There is a great deal of recent interest in cure models for clustered or correlated data in the literature. Peng et al.
[2] proposed a semiparametric marginal cure model for clustered data. The model does not specify any correlation
structure for the data and thus is robust to misspecification of the correlation structure. However, it may not be useful
if the correlation is of interest. To model the correlation explicitly, random effects/frailty models are often considered.
For example, Chen et al. [3] extended the frailty model [4] for bivariate survival data with a cure fraction. The frailty term
is assumed to follow a stable distribution and the baseline distribution is assumed to be an improper parametric distribution
to accommodate cured patients. Yin [5] extended this approach to a general cluster setting with a semiparametric baseline
assumption. The authors considered Bayesian approaches to estimate parameters in the models. Chatterjee and Shih [6]
and Wienke et al. [7] extended the mixture cure model to bivariate survival data with a cure fraction by modeling the
distribution of the uncured patients with copulas, which are also frailty models. They proposed methods to obtain the
maximum likelihood estimates of the parameters. However, they do not consider covariate effects in their models and
the estimation methods become infeasible when cluster size is large. Yau and Ng [8] considered an extension of the
popular Weibull mixture cure model by adding random effects, respectively, to both parts of the model for the cure
proportion and for the failure time distribution of uncured patients. The authors assumed normal distributions for the
random effects and adapted the best linear unbiased predictor (BLUP) method and the residual maximum likelihood
estimator (REML) to estimate the parameters in the fully parametric cure model. Lai and Yau [9] extended this method
to correlated random effects and non-parametric baseline specification.

In this paper, we consider a generalization of the univariate semiparametric mixture cure model [10, 11] to clustered
failure time data with a surviving fraction. Two random effects are introduced to model the correlation between the cure
status and between failure times, respectively, in the same cluster. The model is quite general and includes the models
considered in Yau and Ng [8] and Lai and Yau [9] as special cases. We will consider maximum likelihood estimates of
the parameters in the model, and propose several estimation methods to obtain the estimates. Their performances will
be compared with the existing methods.

The paper is organized as follows. In Section 2, we outline the proportional hazards mixture cure model with random
effects. Two estimation methods, one based on the Gaussian quadrature method and the other based on the Monte Carlo
EM algorithm, are proposed in Section 3 to estimate the parameters in the model. Section 4 presents simulation studies
to investigate the small sample properties of the proposed estimation methods. We apply the model to the tonsil cancer
data in Section 5. Finally, we provide conclusions and some remarks on the proposed model and estimation methods in
Section 6.

2. The model

Let t;; :min(z‘;‘j, cij), 0ij = l(t;;. <cij), Xij,zij.i=1,...,n, j=1,...,n;, be the observed failure time, censoring indicator,
and the covariates of the jth individual in the ith cluster that may affect the failure time distribution of uncured individuals
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and the cure proportion, where 1(A) is the indicator function of the event in the brackets and ¢ is the value of the
underlying failure time 7;; that may be subject to censoring with the censoring time c;;. Note that z;; and x;; may
include the same covariates. We assume that given covariates, the censoring time ¢;; is independent of the failure time
t;;‘ and the cure status y;;.

Let y;; be the cure status of individual j in cluster i, that is, y;; =0 if this individual is cured and 1 otherwise.
It is obvious that y;; is a partially observed latent variable. If 6;; =1, the individual experienced an event and y;; =1.
However, if 9; =0, the individual’s failure time is censored and the cure status of this individual is unknown. Therefore,
yij may be 1 or 0.

We assume that the failure times t;;‘ ’s and y;;’s from individuals in the same cluster tend to be correlated. The correla-
tion may be induced by, for example, shared environments for the members in the same cluster. For cluster i, we further

assume that the correlations between the ti*}’s and between y;;’s can be modeled by random effects &’ = (u1,uz, ..., u;)
and v/ =(v1, vy, ..., 1), respectively. Given u and v, ti";.’s and y;;’s are assumed to be independent and they can be

modeled by the mixture cure model
P (T3> 155l v) = S(175 ., v) = S (655 i B+ m(@ijy +259) +1 = n@iy +25v) (1)

where
St} 1xij B+xu) = P(Ty> 15w, yij = 1) = Suo(t;) PP i) 2)
2ij Y42V
.. * P— e — —_—

ﬂ(sz?-l-ZijV)—P(yu—UV)— l_f_ezij'YJrZ?jV’ 3)

S.0(+) is an arbitrary baseline survival function for uncured individuals, f and x;kj are the fixed effects and coefficients
for the random effect u in the proportional hazards model for S, (¢), y and z;; are the fixed effects and coefficients for
the random effect v in the logistic model for n. We usually require that E(u)=0 and E(v)=0. Let the density function
of the joint distribution of u and v be ¢[(u’,v')’, D], where D=D(o) with ¢ denoting a vector of unknown parameters.
The marginal likelihood function is

n n; .
L@ = [ [T [1[nGijy+ziv) futij |xijﬁ+x;kj”)]oij
i=1j=1

*[1 =11y +25;)+ 7y +250) St iy B+-x5w)1 =% pl(u, v), D1 d(u, v) @)

where f,(t;|x; B+u;) is the corresponding density function of (2), and 0=(f,7, S,0,6). The integral in (4) is usually
intractable, which makes a direct maximization of the likelihood function difficult.

A simple example of the above general mixture cure model with random effects is the model with simple shared
random effects where [ =n, and x;."j and zj‘j are vectors with 1 at the ith element and O at the other elements so that
x u=u;, z;;v=v;. It represents a shared environment situation. Yau and Ng [8] and Lai and Yau [9] considered this
special case of (1), (2), and (3) and assumed that (i;, v;) follows a bivariate normal distribution with zero means. The
estimation method for parameters in their model is based on a combination of BLUP and REML methods. In this paper,
we consider maximum likelihood estimates of the parameters in the general model (1), (2), and (3) via maximizing the
likelihood function (4).

3. Estimation methods

3.1. Gaussian quadrature method

To maximize log L(0), one can employ numerical integration methods to approximate the integrals in (4). The adaptive
Gaussian quadrature method as described in Pinheiro and Bates [12] is often used to approximate integrals in random
effects models and it can be used to approximate the integrals in (4). This approach is conceptually simple. It allows
non-normal random effects. The proportional hazard assumption (2) is not required. Other models, such as the accel-

erated failure time model S, (% |x;; B+x*.u)=S,o(t* " N and the proportional odds model S, (¢ |x;;ip+x .u)=
d failure del S, (13 Ixi; B-+xtu) = Suo(c € F5") and th I odds model S, (¢ |xi; B+xu)

Suo(tl.*.)ex"f pxiju /[1+ Suo(ti’;-)+ Suo(ti”})exi-f b +x7i"] are possible. However, the baseline survival function Suo(t;'}) in these
modefs has to be fully specified. In this paper, we will consider the Weibull and the piecewise constant hazard distribu-
tions, and the method discussed can be easily extended to other distributions. Under the Weibull baseline assumption,

|
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Suo(t)=exp[—(¢/A)*]. It reduces to the exponential baseline distribution when x = 1. The piecewise constant hazard distri-
bution is defined as follows: Let 1o=0<711<Tp<--- <tgx =00 and h,o(t)=exp(a;) if 7;_1<t<71j, where j=1,...,K
and K >1. Under this definition, the baseline survival function is

Suo(t)=expy > exp(oj+)min(z, tj11)—7;]¢ . (5

Jitj<t

When K =1, this distribution also reduces to the exponential distribution. We usually require that t{>min(#;;) and
Tk —1<max(f;;). By choosing a large K, the piecewise baseline distribution can increase the flexibility of the parametric
approach. The values 711, ..., Tg—1 in this method are often chosen to make equal-spaced intervals. Since the uncensored
times contribute essential information to the hazard estimation, we suggest that t; be the 100;/Kth percentile of the
uncensored times so that each interval has events to estimate the hazard accurately.

The details of using the Gaussian quadrature approach to approximate the integrals can be found in the literature and
thus are omitted. It is also used to approximate the negative second derivative of log L(#) with respect to 0 to estimate
the standard errors of the estimated parameters.

3.2. EM algorithm

The EM algorithm can be used to estimate the maximum likelihood estimate of € in (4). The random effects u and v are
usually treated as missing variables in the EM algorithm. Given the values of # and v, the complete data log-likelihood
function for model (4) is

~ n o nj
€01t u,v) =log pl(u,v),D(@)]+ 3 > {0ijlogn(zijy+z;;v)+0ijlog fu(tij|xi; B+x];u)
i=1j=1

+(1—0;j)log[1— n(z,-jy+z;‘jv)—I—n(zijy—i-zfjv)Su(t,-j |x,-jﬁ+xj-‘ju)]} (6)

The E-step of the EM algorithm computes the posterior expectation of Z(0|t, u,v) with respect to # and v, and the M-step
maximizes the posterior expectation with respect to f, y, and &, to update the estimates. However, we will also consider
y as the latent variable in the EM algorithm. Given the values of y, u, and v, the complete log-likelihood function of the
mixture cure model is

non;
Ol y, u,v)y =3 > {0ijloghy(tij|x;; B+x;u)+yijlog Sy (tij1xi; B+x];u)}
i=1j=1

+ Zl i:l{)’ij logn(z;jy+2;v)+ (1 —yij)logll — n(z;jy+2;;v)1} + Zl log [(u,v), D(o)] (7
1=1j]= 1=

The E-step of the EM algorithm computes the posterior expectation of £(0|t,y,u,v) with respect to y, u, and v given
the current estimates of the model parameters. Let the current estimate of 6 be 0, and the posterior density of (y, u,v)
given 87 be p(y,u,v|0"). The E-step in the rth iteration calculates

n n; x¥u r
Q107 = Y 3" {61l huo(ti))+xi; B+ ECef;ul0))] — Hyo(s; )Xo ELi € 77107y
i=1j=1

n n; *

+ 3 Y AEGi;10)zijv+ Elyijzf;v1071— Elogl1+¢7%0%1|0"))} +log E ([ (4. v), D(0)]1|0”)

i:lj:l
= 01(B, hu0l0")+ 02(¥10) + 03(a]0) (8)

where the expectation is taken with respect to p(y, u, |07,

3.2.1. Maximization step. The M-step updates § via maximizing (8). Maximizing y in Qz(y|0<r )) has to be solved
numerically. So does updating ¢ from Q3(c]0"”). Let cog)zlogE[y,-j ex?}”|0(’)]. It is easy to see that Q1 (B, h,uol0")) is
the log-likelihood function of the proportional hazards model, if the constant E(u;|0"”) is replaced with the constant
cug) A simple approach to update f and h, is to assume that 4,0(¢) is the hazard function of a parametric distribution,

. _______________________________________________________________________________________________________________|
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and then B and /(7)) can be updated easily by the Newton—Raphson method. For instance, if /,¢(t)=4 is the hazard
function of the exponential distribution, then

018 hoI0”)=log 7 3 3 3+ 3" 3 0yl Br o143 3 (g e Hl)

i=1j=1 i=1j=1 i=1j=1

It is easy to see that "= Y Z;” i/ > joptij€ ctiib ] Pluggmg in this estimate into the likelihood function,
we obtain

Ql(ﬂIO(r))— {log[z Z 5lj:| _10g|:2:1 X:]tz x,,[f+w :“ Z Z 5lj+2:1 2{511[x11p+w(r)]} 2:1 Z 51]
i=1j= i j i=1j=1 i j=1 i Jj=

which can be maximized via the Newton—Raphson method. If a piecewise constant baseline distribution (5) is considered,
then

K K
IAIGAOED SETIED SN TED SEND SR 1L S

I=1 7 1<tij<y I=111<tij<7y

K Bey®
=Y e IU<K)tu—1-1) Y Fii bl + X (tij—fl—l)exljﬁ+wij
=1 T <t T -1t <7

It is easy to see that

(r+1) Z‘Cl 1<1U<‘E[ 5]

el =
(r)
x, +w X;ip+w:.
II<K)(u—1-1)) < <ii; € ibres; +§ s tu<n(tij—rz—1)e it

Plugging this in the Q; function, we obtain

=1 T 1<t <7 1K1 <7 =1 T <tij

K X r
Q1(BlI0") =3 (10g > 5ij) > sii-Y {log [I(I<K)(rz—rzl) 3 Fibtor

Bt K .
+ Y @j—mope it “ Y sty X (0Bt - Z > 5

-1 <7 -1 <7 =17 1<tij<7 =17 1<tij<7

A slightly different way of using the piecewise constant baseline hazard can lead to Cox’s partial likelihood. Let
71,72, ..., Tk be the distinct uncensored times. Johansen [13] defined 4,0(t)=4; for ¢ in a small interval consisting of
7;, and O otherwise. Let D; be the set of d; subjects with uncensored times equal to 7;, and R; be the set of subjects
who are at risk prior to 7;. The O likelihood function can be written as

K r
Q1</s,huo<t>|0<’>>=z[d g+ ¥ {ryBrol)l-y ¥ e""f’”“?f)}

j=1 (i,j)eD; (i.))ER;

It is easy to see that /l(r+1)—d /Z(l J)eR; ex”ﬁm Plugging this in the Q; function, we obtain Ql(ﬂ|0(r))oc

ijl[Z(i,j)eDj {xijﬁ-i-wg)}—dj 1083 ;i j)er, GFib+ol] ]. This is equivalent to using Cox’s partial likelihood method
and the Nelson—Aalen baseline survival estimator to update f and /,0(¢). Ripatti et al. [14] considered this approach
for the frailty model.

3.2.2. Expectation step. Evaluating function (8) in E-step requires evaluating the following expectations (E(y;;v; 107)
and E(u;]0") are not involved in M-step, thus are not considered):

E(yi;107),  Ely;;e"i*10"] )
E(log[14exp@jy+z;;v1107),  E($lu,v).D(6)]|0") (10)

. _______________________________________________________________________________________________________________|
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with respect to p(y, u, v|0(’)):

(7 )
n ni < ) ni yl_](sz'Y +zijv)
pQy.u, w00y oc [ § TT ettt i exptes B+ T £

42
i=1 | j=I J=1 1 4Py

Pl(u,v),D(6")]

Given u and v, it is obvious that y;; are independent, and y;; =1 if J;;=1 and y;; follows the following binomial
distribution if J;; =0:
—HD s, R 4
. . n(zijv(’) +z;_kjv) o Huo (i) expleij B +a;u)
vijlu,v~binomial | 1, p= = . (11)
1—n(z;y +Z;-ij)+TC(zij 'Y(r)‘f'ijV) e Huo (tij)expleij B +x;u)

Thus, equations (9) can be further simplified into:

_HD R
m(ziy") +2v)e” o (i) R BT o
(r) E o — 0 if 5ij =0

E()’uw ) = | 1—n(zijy(r)+z;f‘jv)+n(zijy(r) +Z;~ij)67 u0 (t,])exp(x,jﬂ +xiju)

1 otherwise

i xiu —H (1) explei; B +xt ) ©)
e i n(zijy(’) —|—z;k,v)e u0 1ij ) €XPlXij ij

x;iu ) a(r) E ’ ) (1) o 0" if 6;;=0
E[Yije 10V = i I—E(Zij')’(r) +z;.kjv)+7T(Zij7(r) +Z;~kjv)eiHM0 (1)) exp(xij B +x7u)

E(ex}kju |0(r)) otherwise

where the expectations are taken with respect to the distribution of (u,v). The E-step requires to update the expectations
above and those in (10) with respect to (u,v). Following (6), the density function of the distribution is c}(u,v|0(’))o<
q@u,v|07) and

ni

(. v|07) = PG, ). D) T

¥, BT x5,
I l[ex”un(zijy(r) +Z;<jv)S,ﬁr0)(tij )exp(xl/ﬂ +xlju)]5l]
i= j=

n; BT ¥ .
x T[] 1 =nzijy" +zv) + 7" +z}'}v)SL’0)(ti Jyexpte B 10 (12)
j=1

Unfortunately, the expectations do not have closed form because of the complicated form of G(u,v|07). We will rely
on Monte Carlo methods to generate random numbers from the distribution and evaluate the expectations. The details
of the Monte Carlo methods are provided in the Appendix.

3.2.3. Variance estimation in EM algorithm. The variances of the estimated parameters in the EM algorithm cannot
be obtained directly from the algorithm. There are several approaches suggested in the literature to estimate the

variances based on the EM algorithm [15-17], and they closely relate to Louis’ formula —é* log L(0)/(0000™) =
—FE (6215(0|t, y,u,v)/ (0000™)) — Var(o0(0|t, y,u,v)/00), where the expectation and the variance are taken with respect to
(y,u,v) [18]. It is easy to see from (7) that both 025(0|y, u,v,1)/(0000") and d¢(0ly, u,v,t)/00 are linear functions of y.
Hence, the expectation and the variance can be obtained easily from the binomial distribution (11) and the random
samples obtained in the EM algorithm.

4. Simulation

We conducted a simulation study to investigate the performance of the proposed method and to compare its performance
with the existing methods in the literature. In the simulation study, we generate data from a model specified by (2) and (3).
We assume that x}'}u:ui, z}'}v:vi, and u; ~N(O, 03), v; ~N(O, a%), the correlation coefficient of u; and v; is p (that
is, 6=(agy, 0y, p)). We consider two distributions for the baseline: the Weibull distribution with S,o(t) =exp[—(z/1)"]
and the lognormal distribution with f,o(r)=1/ («/Eot)exp{—[logt— 1t]?/(26%)}. The corresponding parameter values
are chosen so that the mean and the variance of the two different baseline distributions are comparable. Only a binary

covariate is considered, indicating treatment and control (baseline) groups for example, in both model (2) and model (3).

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011,30211-223
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Table I. Parameter settings for simulation study.
Case n n; p Y0 71 o2 a2 Baseline
1 100 4 log(0.5) 2 —1 0.25 0.49 Weibull (k=2, A=1)
2 100 4 log(0.5) 2 —1 0.25 0.49 Lognormal (u=— log(ﬁ), o=./log2)
3 10 40 log(0.5) 2 —1 0.25 0.49 Weibull (k=2, A=1)
4 10 40 log(0.5) 2 —1 0.25 0.49 Lognormal (u=— log(«/f), o=./log2)
Table II. MSEs and biases of estimated parameters in simulation study.
Independent Weibull Piecewise
Case MSE Bias MSE Bias MSE Bias
1 p 0.027 0.098 0.017 0.010 0.016 —0.007
Yo 0.074 —0.149 0.054 —0.046 0.057 —0.072
71 0.085 0.058 0.079 0.067 0.087 0.122
oy — 0.011 —0.046 0.014 —0.085
Oy — 0.041 —0.096 0.054 —0.129
2 p 0.034 0.116 0.018 —0.051 0.024 —0.084
Yo 0.088 —0.193 0.030 —0.024 0.043 —0.049
71 0.087 0.027 0.050 —0.068 0.059 0.045
oy — 0.048 0.208 0.024 0.102
Oy — 0.014 0.109 0.025 0.075
3 p 0.028 0.090 0.014 0.004 0.013 0.030
Yo 0.113 —0.141 0.077 0.022 0.075 0.017
71 0.091 0.055 0.057 0.013 0.057 0.029
oy — 0.011 —-0.014 0.009 —0.028
Oy — 0.017 —0.001 0.016 0.006
4 p 0.039 0.138 0.025 —0.059 0.016 —0.009
Yo 0.138 —0.186 0.076 —0.011 0.078 —0.016
71 0.089 0.025 0.067 —0.057 0.064 —0.047
oy — 0.020 0.093 0.016 0.056
Oy — 0.025 0.055 0.022 0.005

We first consider cases with p=0. The values of the other parameters in the model are given in Table I. The values
imply that the hazard of uncured patients in the treatment group is only half of the hazard of uncured patients in the
control group, and the cure rates in the treatment and control groups are 27 and 12 per cent, respectively. In each cluster,
individuals are randomly assigned to one of the two groups. We consider two situations for cluster size and the number
of clusters: =100 and n; =4 for small cluster size situation and » =10 and n; =40 for large cluster size situation.
The latter is similar to the tonsil data described in Section 1. The censoring times are independently generated from a
uniform distribution, and the resulting censoring rate is about 43 per cent.

For each case, we generate 500 data sets and fit the mixture cure random effects model with the proposed methods
to the data sets. The Weibull distribution and the piecewise constant hazard distribution with K =4 are used as the
baseline distribution in the model. The model is fit to each data set in the simulation via the Gaussian quadrature method
because it is faster than the EM algorithm. We also fit the semiparametric mixture cure model [10, 11] that ignores the
correlation among individuals within clusters. The mean square errors and biases of the estimated f5, y, 71, ou, and a,
are summarized in Table II.

It is clear that ignoring the correlation within clusters lead to large biases in f3, 7y, and y;. The proposed method
with both baseline assumptions performs well. The method with the Weibull baseline distribution assumption is slightly
better in cases 1 and 2 (larger number of clusters and smaller cluster size), whereas the method with the piecewise
constant hazard baseline distribution assumption is slightly better in cases 3 and 4 (smaller number of clusters and larger
cluster size).

To examine the standard error estimation in these methods, we compute the coverage proportions of 95 per cent
confidence intervals of the five parameters based on normal approximation 84 1.96 x s.e.(@). The results are summarized
in Table III. It is obvious that ignoring the correlation makes the independent model underestimate the standard errors of
the parameters and the confidence intervals too short to cover the true parameter values with correct coverage proportions.
The proposed method, particularly with the piecewise baseline, provides the closest coverage proportions to the nominal
95 per cent in estimating f3, 7, and ;. However, the coverages of ¢, are sometimes smaller than the nominal 95 per cent.

|
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Table III. Coverage of 95 per cent confidence intervals of the estimated parameters
from the independent and random effects models in simulation study.
Case Parameter Independent Weibull Piecewise
1 p 0.87 0.96 0.96
Y0 0.87 0.95 0.95
71 0.95 0.95 0.96
oy — 0.96 0.96
oy — 0.93 0.94
2 p 0.87 0.90 0.93
Y0 0.80 0.96 0.96
71 0.94 0.93 0.95
oy — 0.64 0.98
oy — 0.95 0.96
3 p 0.88 0.95 0.95
Y0 0.80 0.96 0.96
71 0.94 0.95 0.95
oy — 0.86 0.83
oy — 0.96 0.96
4 p 0.84 0.86 0.93
Y0 0.73 0.93 0.93
71 0.94 0.95 0.95
oy — 0.92 0.84
oy — 0.92 0.94
Table IV. MSEs and biases of estimated parameters for data with correlated and uncorrelated random effects.
Weibull baseline Piecewise constant baseline
Correlated Uncorrelated Correlated Uncorrelated
Case MSE Bias MSE Bias MSE Bias MSE Bias
1 p 0.016 0.029 0.024 0.030 0.014 0.001 0.022 0.019
Y0 0.051 —0.086 0.072 —0.048 0.049 —-0.079 0.078 —0.076
71 0.081 0.125 0.115 0.084 0.089 0.161 0.140 0.143
oy 0.004 —0.032 0.011 —0.030 0.003 —0.035 0.014 —-0.073
oy 0.047 —-0.212 0.036 -0.077 0.046 -0.210 0.052 -0.117
D 0.020 —0.058 — 0.017 —0.058 —
2 p 0.026 0.004 0.031 —0.009 0.033 —0.067 0.036 —0.036
70 0.070 —0.169 0.059 —0.069 0.076 —0.138 0.072 —0.020
7 0.061 —0.022 0.086 —0.100 0.090 0.120 0.119 0.023
oy 0.028 0.132 0.048 0.197 0.013 0.057 0.027 0.097
oy 0.022 —-0.113 0.015 0.098 0.030 —0.139 0.029 0.075
p 0.013 0.043 — 0.020 0.001 —
3 p 0.017 —0.003 0.017 0.002 0.016 0.026 0.016 0.026
Y0 0.082 —-0.013 0.106 0.013 0.086 0.033 0.107 0.016
71 0.073 0.021 0.080 0.015 0.071 0.031 0.080 0.029
oy 0.013 —-0.010 0.016 —0.010 0.011 —0.024 0.015 —0.026
oy 0.047 —0.083 0.032 —0.005 0.043 —0.079 0.029 —0.004
o 0.029 0.038 — 0.024 0.047 —
4 p 0.031 0.006 0.035 0.007 0.027 0.021 0.027 0.010
70 0.110 —0.064 0.116 -0.012 0.111 0.106 0.130 0.048
7 0.091 —0.098 0.102 —0.108 0.094 —0.060 0.099 —0.049
oy 0.020 0.059 0.025 0.059 0.021 0.051 0.033 0.080
oy 0.040 —0.001 0.040 0.082 0.043 —-0.018 0.033 0.038
o 0.024 0.072 — 0.028 0.055 —

Finally, we consider cases with p#0. The settings of the cases are similar to the four cases described in Table I
except that p is set to 0.7 instead of 0. We generated 500 data sets from each case and fit the mixture cure random
effects model with and without the assumption p=0 to the data sets. The Weibull distribution and the piecewise
constant hazard distribution with K =4 are used as the baseline distribution in the model. The mean square errors
and biases of the estimated f, yy, 71, 0u, 0y, and p are summarized in Table IV. The results show that the proposed
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method provides reasonable estimates of p. The inclusion of correlated random effects largely improves the esti-
mation of the parameters in the model. However, using the Weibull or the piecewise constant baseline distributions
makes little difference in the estimation. Therefore, we conclude that when the random effects # and v are strongly
correlated, a mixture cure model with correlated random effects provides more accurate estimation of fixed effects
on both cure fraction and on the distribution of the uncured patients than the model with independent random
effects.

5. Application to tonsil cancer data

We consider the tonsil cancer data set described in Section 1. The data were analyzed by Withers et al. [1] and Sy
and Taylor [11] with the mixture cure model without assuming possible correlation among patients from the same
center. Peng et al. [2] further investigated the data set using a marginal mixture cure model. This model assumes that
there is a correlation among the survival times of patients from the same center, but the model does not specify it.
Instead, the model adjusted the standard errors of the estimates from a marginal model where the correlation is ignored.
The disadvantage of the marginal model is that the correlation cannot be estimated and thus it is difficult to measure the
strength of the correlation. The model may not be fully efficient compared with a model that appropriately specifies the
correlation structure explicitly. Since the proposed model in this paper specifies the correlation structure, it is of great
interest to apply the proposed model and the estimation method to the data and to compare the results from the model
with those from the marginal model and the model for independent data.

When analyzing the data with the proposed model, in additional to neck node status, we also consider age,
sex, T stages (stages I, II, III, and IV), total dose, and treatment duration. We will investigate the effects of the
covariates on the time to local recurrence as well as on the probability of being cured under the proposed model by
taking the possible correlation within centers into account. The baseline distribution is assumed to be the Weibull
distribution or the piecewise constant hazard distribution with either K=2 or K =4 where t;’s are chosen to
be the 50th percentile of the uncensored times (K =2) or the 25th, 50th, and 75th percentiles of the uncensored
times (K =4).

Since we are interested in the potential correlation induced by the nine centers, we will consider the models (1),
(2), (3) with shared random effects x:‘ju =u; and z;-"jv= v;, and assume that (u;, v;) follows the bivariate normal distri-

bution with 6=(0,, oy, p). We observed that p=0.0001 is close to 0 and there is no evidence from the likelihood
ratio test to support p#0. Therefore, we only report details of the model under the assumption p=0 (i.e. inde-
pendent u; and v;) in this section. The results of the models with three baseline distributions are summarized in
Table V.

The table includes the maximum log-likelihood and the Akaike information criterion (AIC=—2 x maximum
log-likelihood +2 x the number of parameters estimated) to demonstrate the goodness of fit of the models. It is obvious
that the model with the piecewise four constant hazards provides the best fit to the data among the three models based
on these values.

The proposed random effects model shows that except for sex, all fixed covariates effects are significant or marginally
significant in at least one of the two parts of the model. For example, age does not have a significant effect on the
probability of being cured, but among those uncured patients a higher age tends to imply a later local recurrence. Node
status only has a weak effect on both parts: patients having at least one positive node tend to have smaller probability of
being cured and shorter survival time if not cured than the patients with only negative nodes. The rest of the covariates
have significant effects on the probability of being cured, but have little impact on the failure time of uncured patients:
larger total dose, shorter treatment duration, and lower T stages imply better cure rates.

The estimated standard deviation of the two random effects are ¢, =0.246 and g, =0.047, respectively. It shows that
the correlation among the failure times of uncured patients from the same center is stronger than the correlation among
the cure statuses of the patients. In fact, the correlation among the cure statuses of the patients from the same center is
not significant. This can be seen from the fact the maximum log-likelihood and parameter estimates of the model do
not change very much (not shown in this paper) when g, is set to 0. However, the correlation among the failure times
of uncured patients from the same center is significant, which is demonstrated by comparing the results with those from
the model when both ¢, and g, are set to 0. Without the random effects, this model reduces to the proportional hazard
mixture cure model [10, 11] with the piecewise constant hazards baseline distribution for independent data. The results
from this model are also summarized in Table V. The likelihood ratio test for testing Hp: ¢, =0 produces a p-value
0.03 under the chi-square distribution with one degree of freedom. Since Hy is on the boundary of the parameter space,
this test may be conservative. Therefore, we conclude that ¢, #0 and the correlation among the failure times of uncured
patients is significant.
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Table V. Estimated parameters and model statistics from the proposed random effects model applying to the tonsil cancer
data with four different baseline distributions.
Random effects model Independent
Piecewise (4) Piecewise (2) Weibull Marginal Piecewise (4)

. ; b : 0 i 0 0 b 0 b
Covariate 0 s.e.(D) s.e.() 0 s.e.(D) s.e.(D) s.e.(D)
Fixed effects on the failure time of uncured patients
Node 0.308 1.696 0.302 1.714 0.348 1.998 0.339 2.25 0.299 1.662
Dose 0.009 0.520 0.012 0.719 0.018 1.008 —0.005 —0.33 —0.001 —0.039
Duration —0.038 —0.462 —0.044 —0.529 —0.057 —0.681 —0.006 —0.09 —0.027 —0.354
Age —0.261 —2.632 —0.242 —2.517 —0.261 —2.690 —0.308 —2.45 —0.283 —3.002
T stage 1T —0.581 —1.631 —0.656 —1.918 —0.650 —1.882 —0.628 —1.41 —0.612 —1.718
T stage III —0.122 —0.361 —0.261 —0.806 —0.251 —0.764 —0.110 —0.28 —0.157 —0.456
T stage IV 0.336 0.885 0.232 0.628 0.385 1.044 0.383 1.27 0.354 0.937
Sex: male 0.006 0.030 —0.073 —0.407 —0.075 —0.418 0.062 0.30 0.011 0.059
Random effects on the failure time of uncured patients
Oy 0.246 1.799 0.266 1.905 0.309 2.096 — —

Fixed effects on the cure probability

Intercept 0.075 0.074 —0.795 —0.564 —0.756 —0.570 —0.198 —0.29 —0.011 —0.011
Node 0.373 1.862 0.385 1.927 0.463 2.331 0.356 2.73 0.378 1.883
Dose —0.079 —4.292 —0.067 —3.011 —0.069 —3.220 —0.077 —4.42 —0.080 —4.387
Duration 0.468 3.694 0.474 3.395 0.462 3.408 0.464 2.95 0.479 3.778
Age 0.103 1.093 0.123 1.307 0.124 1.338 0.136 2.03 0.122 1.292
T stage 1T 0.805 2.281 0.767 2.186 0.821 2.321 0.854 242 0.826 2.331
T stage III 1.658 4.843 1.644 4.823 1.703 4.941 1.656 14.33 1.660 4.837
T stage IV 2.200 5.119 2.199 5.091 2.143 5.000 2.200 5.93 2.210 5.139
Sex: male 0.122 0.578 0.153 0.727 0.147 0.702 0.118 0.55 0.136 0.644
Random effects on the cure probability

Ty 0.047 0.456 0.234 1.058 0.191 0.911 — —

Model statistics

Log

likelihood —480.90 —495.65 —490.35 — —483.20
AIC 1007.8 1033.3 1022.7 — 1008.4

Comparing the estimated parameters between the random effects mixture cure model and the independent mixture
cure model, we can see that the fixed effects in the two models do not have substantial differences. The main difference
is on the presence of the significant random effect for the failure times of uncured patients. However, there is a noticeable
difference between the random effects mixture cure model and the marginal mixture cure model (also shown in Table V):
the effect of neck node status becomes significant in the marginal model. Although the two approaches may be equivalent
in certain special cases, the random effects mixture cure model considered in this paper is not equivalent to the marginal
model. Thus, it is not surprising to see the difference in the result.

When using the EM algorithm to estimate the parameters, it produces a set of draws from the posterior distri-
bution of the random effects # and v as well as the estimates of the parameters. The draws are useful to examine
how the random effects vary in different clusters. For the tonsil data, the box-plots of the draws of the random
effects u and v are presented in Figure 2. Note that the widths of the box-plots are proportional to the sizes of the
clusters.

It is clear that v;’s do not vary significantly in different centers and that their variances are smaller. It indicates weak
correlation in cure rates within a center, as observed from the estimate of ¢,. However, u;’s from some centers, such as
centers 3, 4, 7 and 9, are substantially different from O and their predicted random effects are larger. It implies that the
shared environment in these centers has a substantial impact on time to recurrence of uncured patients in the centers.
The survival times of uncured patients in centers 4 and 7 tend to be shorter than the fixed effects suggested and those
in centers 3 and 9 tend to be longer.

One possible explanation of the differences in the failure time distributions between institutions is that exactly when a
recurrence is detected is strongly dependent on the schedule, frequency, and intensity of the follow-up for each patient.
The pattern of monitoring each patient after the initial treatment is likely to differ between institutions that are in different
continents. In contrast, the recurrence of cancer for each patient will eventually manifest itself if they are followed for
long enough and is thus not dependent on the follow-up procedures at each institution.
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Figure 2. Box-plots of simulated values of the random effect u; (top) and v; (bottom) for nine centers.

6. Conclusions

In this study, we proposed a novel generalization of the semiparametric proportional hazards mixture cure model for
clustered data. The extension allows different correlation structures for cure rates and for failure times of uncured
patients, and the correlation structures are modeled by random effects. The proposed estimation method is based on
the Gaussian quadrature approximation or the EM algorithm with the Monte-Carlo approximation, thus is compu-
tational intensive. However, the proposed method is very flexible and can be used for various random effect distri-
butions and correlation structures. For example, we considered shared random effects in the numerical studies. We
may also choose x* and z* such that the model is suitable for cluster data where the strength of correlation within
a cluster can be different (see [14,19], for more details). There are a number of distributions proposed in the
literature for the random effects/frailties, such as normal, student’s ¢, gamma/generalized gamma, positive stable,
compound Poisson, etc. The proposed method can easily use such distributions for ¢(-) in (4) for the mixture
cure model.

Compared with existing models and methods for clustered data with a cure fraction, the proposed estimation method
has a number of advantages: It allows covariates for both failure time distribution of uncured patients and the cure
proportion, can be semiparametric, and accommodates flexible correlation specification.

The model considered in Yau and Ng [8] and Lai and Yau [9] is similar to the model considered in this paper.
They considered normal random effects only while our model can accept non-normal random effects. Their estimation
method is based on BLUP and REML methods and thus is faster than the methods proposed in this paper. Our
methods, on the other hand, produce maximum likelihood estimates of the parameters in the model. A simulation study
demonstrates that the maximum likelihood estimates have small biases and mean square errors. The resulting maximum
likelihoods from the proposed methods can be used to form information criteria that are particularly useful in model
selection.

An R program was written for the proposed method and can be requested from the first author if one is interested in
using the model to analyze clustered survival data with a cure fraction.
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Appendix A: Monte-Carlo methods in E-step

In this appendix, we briefly outline two methods we used to generate random numbers from (12): rejection sampling
and importance sampling methods [20]. If we denote the expectations in (9°) and (10) generically by E[y/(u,v)], the two
sampling methods approximate the expectations by >, w™ @™ v/ 3w where @™, v™), m=1,..., M,
are a sample from the density ¢(u,v) and w"), m=1, ..., M, are weights for the samples. In the rejection sampling
method, w” =1 and the weighted average reduces to the simple average.

Our implementation of the rejection sampling is as follows. We sample from a multivariate normal distribution that
approximates g (u, v|0(’)). Particularly, we maximize logq(u, v|0(’)) with respect to (u, v) and let g(u, v) be the multivariate
normal density function with mean equal to (&, V) =argmax, ,logq(u, v|0(r)) and the variance equal to the inverse of
minus the second derivative of logq(u, v|0")) evaluated at (i, 7). We sample @™, y™) in the following steps:

1. Sample (u*,v*) independently from g(u, v).

2. Sample w from a uniform distribution in (0, 1).

3. If w<q(@*,v*)/(Cgu*,v*)), accept u* and v* as a sample (@™, v"™) from g (u, v). Otherwise, reject (u*, v*) and
return to step 1.

The constant C is an upper bound of the ratio q(u,v)/g(u,v). We set C to max{q@*,v*)/gm*,v*)} among those
sampled (u*,v*). The steps are repeated until M samples of # and v are obtained.
The importance sampling method to obtain (™, v(™ (™) is implemented as follows:

1. Sample (@, »™)) independently from g(u, v).
2. Compute weight w™ =g @™ v™)/g@™, y™).

The steps are repeated until M triples of (u™,»"™ w(™) are obtained. As in other applications, the importance
sampling tends to be faster than the rejection sampling, but the latter produces a sample from the conditional distribution
of (u,v).
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