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INTRODUCTION

ALS and SOD1

Amyotrophic lateral sclerosis (ALS) is the most common

motor neuron disease.1 Approximately 5–10% of ALS cases

are due to genetically linked mutations and are termed fami-

lial ALS (fALS), while the remaining cases are of unknown

cause(s), but present identical symptoms,2 suggesting a similar

underlying mechanism. The most common fALS type is caused

by any of the more than 100 known mutations of the enzyme

Cu-Zn superoxide dismutase 1 (SOD1).2 All of these mutations

maintain the enzyme’s natural antioxidant activity, suggesting

that a new, toxic, function is introduced by mutation. This

function, let alone its mechanism of action, is unknown.

There have been numerous studies of proposed disease

mechanisms and treatments.3–8 Toxic aggregation of disso-

ciated monomers has been implicated as a driving force in

disease progression. Ray et al.6 demonstrate that small mole-

cule docking at the dimer interface stabilizes several fALS

mutants by resisting aggregation and unfolding. However,

Rodriguez et al.9 identify several SOD1 mutations that are

more stable than the wild type (WT). There is no single prop-

erty (e.g., dimer stability, net charge, metallation) that correlates

mutation type with disease progression. It is thus assumed that

ALS results from multiple contributory mechanisms.7

The SOD1 mutations that cause ALS are unrelated, rang-

ing widely in their chemical nature and spatial distribution

within the structure. As further evidence of their diversity,

patient survival times range from 1 to 171 years, depending

upon the mutation. These factors lead to our:
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ABSTRACT

The most prominent form of familial amyotrophic lateral

sclerosis (fALS, Lou Gehrig’s Disease) is caused by muta-

tions of Cu-Zn superoxide dismutase 1 (SOD1). SOD1

maintains antioxidant activity under fALS causing muta-

tions, suggesting that the mutations introduce a new,

toxic, function. There are 1001 such known mutations

that are chemically diverse and spatially distributed

across the structure. The common phenotype leads us to

propose an allosteric regulatory mechanism hypothesis:

SOD1 mutants alter the correlated dynamics of the struc-

ture and differentially signal across an inherent allosteric

network, thereby driving the disease mechanism at vary-

ing rates of efficiency. Two recently developed computa-

tional methods for identifying allosteric control sites are

applied to the wild type crystal structure, 4 fALS mutant

crystal structures, 20 computationally generated fALS

mutants and 1 computationally generated non-fALS mu-

tant. The ensemble of mutant structures is used to gener-

ate an ensemble of dynamics, from which two allosteric

control networks are identified. One network is con-

nected to the catalytic site and thus may be involved in

the natural antioxidant function. The second allosteric

control network has a locus bordering the dimer inter-

face and thus may serve as a mechanism to modulate

dimer stability. Though the toxic function of mutated

SOD1 is unknown and likely due to several contributing

factors, this study explains how diverse mutations give

rise to a common function. This new paradigm for allos-

tery controlled function has broad implications across al-

losteric systems and may lead to the identification of the

key chemical activity of SOD1-linked ALS.
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Allosteric mechanism hypothesis

SOD1 mutants alter the correlated dynamics of the

structure and differentially signal across an inherent

allosteric network, thereby driving the disease

mechanism at varying rates of efficiency.

The methods discussed thus far have one thing in

common: they are external to SOD1 and observational,

in that they identify products of the disease, but not

causal components of the mechanism. To best under-

stand these contributory factors, and their potentially

compounding interactions, atomic level descriptions of

their respective modes of action are essential. In this

study, we utilize computational methods to elucidate a

group of atomic level interactions that support an allos-

terically modulated mechanism. Such a mechanism may

not be universally accessible to all SOD1 mutant forms,

but deriving the mechanism across a set of SOD1

mutants allows for the cohesive allosteric signal to stand

out from the noise.

Allostery

Allostery is most generally described as an event at one

structure location triggering a response at another (e.g.,

ligand binding at one location triggering a structure rear-

rangement that modulates the binding affinity at a sec-

ondary site). Allostery has been recognized as a regulator

of protein stability10 and a carrier of structure entropy.11

Gunasekaran et al.12 even hypothesize that all dynamic

proteins have the potential to be controlled allosterically.

The cause and effect of allosteric communication may

be readily observed, but the signal transmission mecha-

nism is frequently not well understood. A variety of tech-

niques have been employed, including solution NMR,13

molecular dynamics,14 Markov models15 and network

analysis metrics.16,17 The current study of SOD1 utilizes

the ‘‘static’’ and ‘‘dynamic’’ allosteric site prediction

methods recently developed by the authors.18 Both mod-

els were validated against the well studied dihydrofolate

reductase and generated allosteric control site predictions

with significance values of P < 0.005.

Ensemble representations

The ensemble representation of conformation space

and structure dynamics has advanced many modeling

approaches, with significant improvement coming in two

related areas. First, drug design has evolved from the

‘‘lock and key’’ and ‘‘induced fit’’ paradigms to a notion

of pre-existing conformation ensembles.19–22 The struc-

ture dynamics inherently captured by conformation

ensembles greatly improve binding models and have led

to better drug design methods.23–25 Second, transition

state modeling26–28 reveals intermediate structures that

serve as way-points along possible transition pathways.

The intermediates display structure dynamics that are

not locally accessible to the stable endpoints, but may be

most relevant to the biological function.

The drug design and transition state modeling meth-

ods are illustrative examples of how ensemble representa-

tions more accurately describe structure dynamics as they

pertain to molecular binding interactions. The ensembles

in these methods are of the traditional sense: samples in

conformation space around a single structure. In the

current SOD1 analysis, we take a different approach, but

with a similar motivation. The dynamics of SOD1 are

accessed with a mutation ensemble. Rather than sampling

conformations around a single structure, we are sampling

the dynamics across a family of related structures. The

cumulative result is an ensemble of dynamics, distributed

over an ensemble of structure variations.

Our use of mutation ensemble derived dynamics is

consistent with other approaches in the literature, par-

ticulary with respect to normal mode analysis (NMA)

based techniques. Van Wynsberghe and Cui29 establish

that correlated dynamics are most accurately identified

from an ensemble of normal modes, not just from

analyzing individual mode shapes. Petrone and Pande30

use NMA to study allosteric structure transitions and

conclude that localized residue motions are often

observed, thereby necessitating a large set of NMA modes

to capture the motions. Zheng et al.31 observe the

conservation of low-frequency normal modes that relate

to allosteric transitions. This conservation is quantified as

a robustness to sequence variation, a result which

strongly supports the current SOD1 approach.

METHODS

The mutation ensemble of SOD1 is assembled from

crystal structures available in the protein data bank

(PDB,32) and from computationally generated structures

produced by the mutagenesis tool in PyMOL (version

1.0r0,33). These procedures are given in the following

sections. The SOD1 structures included in this study are

listed in Table I, along with set names that are used

during the analysis to reference subgroups of structures.

The dimer is shown in Figure 1, with the mutation sites

highlighted and key structure locations labeled.

The allosteric mechanism hypothesis is tested with the

application of the ‘‘static’’ and ‘‘dynamic’’ allosteric

control site prediction methods. The static method

predicts control sites with a geometric analysis of a single

conformation and reveals the structural basis for an

inherent allosteric network. The dynamic method com-

pares the harmonic motions (i.e., normal modes)

between a WT and mutant; atoms that become substan-

tially more/less involved in correlated motion are identi-

fied as allosteric control sites. These allosteric prediction

methods are briefly discussed in the following sections;

complete details are available in Ref. 18.
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Structure preparation

Crystal structures

The SOD1 WT is available in the PDB as a crystal

structure of excellent resolution. Only four of the 1001

fALS causing SOD1 mutations are single residue

mutations with complete crystal structures of similar

resolution. Multiple mutations may introduce comp-

licating secondary effects and are excluded from this

analysis.

Each crystal structure contains multiple copies of the

SOD1 dimer. The dimer selected for analysis is the one

most central to the ensemble and is determined as

follows:

1. Any dimers with missing atoms are excluded.

2. A set of RMSD values is computed for each dimer by

optimally aligning it to every other dimer.

3. The average RMSD is computed for each dimer’s set

of RMSD values.

4. The dimer with the minimum value is selected.

Computationally generated mutants

The 4 mutant SOD1 crystal structures constitute a

superb structure ensemble. In an effort to (i) probe the

applicability of this analysis approach to other systems

that may lack such an ensemble and (ii) extend the con-

sensus results of this analysis across even more fALS

forms, an additional fALS structure set is generated with

the mutagenesis tool from PyMOL. This tool uses a

rotamer library and is capable of generating any possible

mutation, but it only accounts for backbone rearrange-

ment local to the mutation site. Therefore, to produce

Table I
SOD1 Structures

X-ray structures from PDB

Structure PDB Res Ref Dimer RMSD Set name

WT 1HL5 1.8 34 BI – nALS-xray

A4V 1UXM 1.9 35 LK 1.03 yALS-xray
G37R 1AZV 1.9 36 BA 1.11
H46R 1OZT 2.5 37 MN 0.94
I113T 1UXL 1.6 35 GB 0.85

Computationally derived from WT

Mutations Set name

C6G V14G F20C E21G F45C yALS-comp
N65S N86S V87A D90A E100G
D101G I112T R115G D124G A140G
L144S A145G V148G I149T I151T

T39I nALS-comp

The crystal structures are listed in the top panel along with their PDB tags, crystal

resolution (Å), primary literature reference, ordered pairing of chain identifiers

defining the dimer and RMSD from WT (Å, taken between all common atoms).

The bottom panel lists the computationally derived mutant structures, which are

based on the WT crystal structure and produced with the mutagenesis wizard in

PyMOL33. The ‘‘set names’’ categorize the structures into 4 groups based on their

link to ALS and their method of derivation.

Figure 1
WT SOD1 and Mutation Sites. SOD1 contains 153 residues and is biologically active in a homodimer form shown here, with each monomer

containing a copper and zinc binding site. The bulk of the structure is a compact b-barrel and backs the active site. The residues associated with

the mutations listed in Table I, are shown with balls and sticks. Mutations with crystal structures are colored red and those that are computationally

generated are colored yellow. The copper and zinc atoms are shown as dotted spheres (Image prepared with PyMOL33).
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the highest quality set of structures the only mutations

considered are those whose heavy atom topologies are

equivalent to, or a subset of, the WT configuration.

These permissible mutations come in two forms. A

‘‘swap’’ is the substitution of one atom type for another

(e.g., in Asp ? Leu, both d-oxygens become carbons). A

‘‘clip’’ is the truncation of a WT residue into a smaller

residue type (e.g., in Ile ? Val, the d-carbon is

removed). This approach is applied to all applicable mu-

tant types and produces 20 additional fALS structures: 12

‘‘clip’’ and 8 ‘‘clip’’ 1 ‘‘swap.’’

The NCBI Single Nucleotide Polymorphism Data-

base38 lists three missense entries for SOD1. Two of the

entries are known fALS mutations: D90A (SNP tag

rs80265967) and N86S (SNP tag rs11556620). The

remaining entry is presumed to be a non-fALS mutant:

T39I (SNP tag rs1804450). This mutation is not of the

simple ‘‘clip’’ and ‘‘swap’’ variety and requires complete

side chain replacement. Given the rarity of identifying a

non-ALS mutant, it is included in the analysis and serves

as a powerful negative control.

Analysis techniques

Static method

Allosteric communication is the flow of a signal across

a molecular network. Any model must therefore define

the molecular network and derive a function for quanti-

fying signal transmission.

The static method defines its network such that all

atom pairs within a cutoff distance are considered linked.

This concept is expressed as the adjacency matrix (A)

where entry Ai,j 5 1 if, and only if, the distance between

atoms i and j is not more than the cutoff distance. Self

contact is not allowed (Ai,i 5 0).

A standard metric in graph theory is degree, which is

the number of connections that radiate from a node in

a network. This quantity is the sum of values down

the corresponding column (or row) of A. The static

method generalizes this local description of contact

density to a network-wide description by considering

paths in the network that connect pairs of atoms. All

such paths of a given length (s) are obtained by comput-

ing As; these values quantify the relative connectedness

of each atom to the entire structure and serve as the

basis for quantifying signal transmission in the static

model.

Consider a structure location which is highly con-

nected to the surrounding structure (i.e., high values

down the corresponding column of As). Any allosteric

signal that flows out of this node is distributed across its

dense network of connected paths and diffuses. In con-

trast, a network location with relatively few radiating

paths, transfers a greater magnitude of its allosteric signal

down each path. This is the inverse contact path model

(iCPM) and it probes the network flow of an allosteric

signal. Residues are identified as control sites based on

how much their iCPM values deviate from the mean of

all residue iCPM values.

Dynamic method

The dynamic method assigns the known functional

differences between two structures to the differences

observed in their accessible motions. This comparison is

made on the foundation of elastic network based

NMA.39–41 Normal modes, which in this case are

obtained with the cluster-based cNMA42,43 approach,

provide two critical features. First, a structure’s complete

set of normal modes defines a coordinate system for the

motion space. That is, any structure motion can be

represented as some linear combination of the normal

modes. Second, through statistical mechanics, each

mode’s eigenvalue is used to assign a relative significance,

which indicates the importance of the mode to the over-

all fluctuations of the structure. As a consequence of

these properties, the normal modes of one structure,

along with their relative significance values, are decom-

posed over the normal modes of a modified structure.

This weighted mapping reveals the extent to which each

mode of one structure becomes more significant or less

significant when mapped onto the motion space of the

second structure.

Given two structures, a WT and a mutant, the

dynamic method partitions the normal modes of the WT

into two sets: WT1 5 {WT modes that become relatively

more significant when mapped onto the mutant} and

WT2 5 {WT modes that become relatively less signifi-

cant when mapped onto the mutant}. Similarly, the

mutant modes are partitioned into two sets: M1 5 {mu-

tant modes that become relatively more significant when

mapped onto the WT} and M2 5 {mutant modes that

become relatively less significant when mapped onto the

WT}. For each of these 4 sets, the dynamic method

quantifies how involved each atom becomes in positively

correlated motions and negative correlated motions. The

residues with the largest magnitudes of correlated

dynamics are identified as control sites on the allosteric

network.

Control site identification

The static method generates iCPM data and the

dynamic method generates eight channels of correlated

dynamics data. Each of these nine raw data sets is the

basis for predicting allosteric control sites. Let a candi-

date raw data set be given by the vector x, where each

entry in the vector corresponds to a residue in the

structure. The control sites are identified according to

the following procedure (as established in Ref. 18):

A.D. Schuyler et al.
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1. Compute the following ratio for each a-carbon: li 5
(xi 2 hxi)/hxi, where hxi is the mean value of x.

2. Identify all residues with l values at least as big as the

threshold cutoff, s.
3. Group the residues into runs of consecutive indices;

each group is the top of a peak in the data.

4. Pick the residue with the largest l value within each

grouping.

This procedure is parameterized by the s value,

which defines the threshold relative to the mean.

For example, a s value of 0.25 corresponds to data

that is 25% above the mean. As established in Ref. 18

the threshold cutoff for iCPM data is s 5 1 and the

threshold cutoff for correlated dynamics data is s 5 0.45.

The iCPM and correlated dynamics data are

fundamentally different quantities and are not scaled on

Figure 2
Dual Plot Series for WT SOD1. The interaction model is shown in the top panel of each dual plot and the normalized degree function is shown

in the bottom panel. Dual plots are shown for random walks of length s 5 {1,3,5,10,15,20}. Increasing the random walk length reveals long range

network interactions that are not directly captured by the adjacency matrix (s 5 1). All horizontal axes are according to residue index across the
dimer. The vertical axes of the top panels are also by residue index and the vertical axes of the bottom panels are degree metric values normalized

on the interval [0,1]. The dashed lines partition the monomers. The lower left and upper right quadrants of the interaction models correspond to

paths between residues within the same monomer. The upper left and lower right quadrants correspond to paths that connect across the dimer

interface.
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the same range; accordingly, they are subject to different

s values.

RESULTS

Static method

The static method is applied to all structures listed in

Table I. Figure 2 shows a dual plot series for the WT.

The adjacency matrix (s 5 1 plot) morphs into a steady

state representation of network connections (s 5 20

plot). The normalized degree metric shown in the bot-

tom panel of each dual plot is the basis for computing

the iCPM data. The iCPM data are computed for all of

the structures in the SOD1 ensemble at a path length of

s 5 20, and, as expected, the profiles are nearly identical:

the average alignment between the WT profile and each

of the other 25 structure profiles is >0.99. Accordingly,

only the WT iCPM data are presented in Figure 3.

Residues are identified as control sites when their

iCPM values are 100% larger than the mean (i.e., s 5 1,

as established in Ref. 18) This yields five predicted con-

trol sites in each monomer. By visual inspection, the

iCPM data appears to have a secondary set of seven control

sites which do not pass the s threshold, but do clearly stand

out relative to the background data. Both tiers of predicted

control sites are highlighted in Figure 3. The complete

profile is color mapped onto the WT structure in Figure 4,

to give a three-dimensional view of the control sites and

their relative positions. The functional significance of this

network is addressed in the Discussion.

Dynamic method

The dynamic method is applied in several stages to

build up a comprehensive representation of the allosteric

activity. The first stage of the analysis applies the dynamic

method to each of the four yALS-xray structures paired

against the nALS-xray structure. This analysis establishes a

comparative baseline by (i) utilizing just crystal structures

to avoid introducing any potential error from computa-

tionally modeled structures and (ii) enhancing the signal-

to-noise ratio by averaging over several structures. The

data are shown in Figure 5, where each residue that passes

the threshold cutoff (s 5 0.45, as established in Ref. 18)

is identified as a control site and highlighted in yellow.

As with the static analysis, there is a prominent second

tier of control sites that fall below the s threshold; these

control sites are labeled and highlighted in red.

The second stage of the analysis introduces computa-

tionally generated structures: the dynamic analysis is per-

formed on the 20 yALS-comp structures paired against

the nALS-xray structure. The averaged data profile (not

Figure 3
Static Method. The iCPM values are shown for the s 5 20 dual plot of Figure 2. The horizontal axis shows residue indices across the dimer, while

the residue labels in the plot are given within each monomer to facilitate comparison. The control sites predicted by the s 5 1 cutoff (horizontal

line) are highlighted with yellow boxes. The second tier control sites are highlighted in red. The dashed line partitions the monomers.
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shown) is nearly identical to that shown in Figure 5.

Each of the four components (WT2, WT1, M2, and

M1) contains data for positive and negative correlations,

giving 8 total data sets. Comparing each of the data sets

from {yALS-xray vs. nALS-xray} with the corresponding

data set from {yALS-comp vs. nALS-xray} produces an

average alignment value >0.99. This demonstrates that

computationally generated structures are virtually indis-

tinguishable from the crystal structures under the

dynamic analysis technique. The consensus control site

identifications made in {yALS-xray vs. nALS-xray} are

also further corroborated.

The third stage of the dynamic analysis introduces a

negative control by comparing the nALS-comp structure

(T39I mutant) against the average profile taken across all

24 yALS structures (i.e., the 4 yALS-xray and the 20

yALS-comp). The average alignment value of this nega-

tive control with the consensus of the 24 yALS structures

is 0.95. To isolate the functional significance of this

difference, the negative control is subtracted from the

consensus profile. The WT2 and M1 components are

nearly identical (normalized alignment >0.99) and are

thus averaged to produce a single allosteric channel.

Similarly, the WT1 and M2 components are also nearly

identical (normalized alignment >0.99) and are averaged

to produce a single allosteric channel. This two channel

allosteric profile (Fig. 6) gives a cleaner representation of

the control site locations than the original analysis (Fig. 5).

Each of the channels in Figure 6, is color mapped

onto the WT structure in Figure 7, to give a three-dimen-

sional view of the control sites and their relative posi-

tions. The functional significance of these two networks

is addressed in the Discussion.

Figure 6, shows the WT2/M1 and WT1/M2 chan-

nels as combined, but Figure 5 shows all channels explic-

itly. It should be noted that the data in Figure 5 is also

suitable for a combined plot, but since it is the first plot

showing data from the dynamic method, all channels are

shown for completeness. The combined plot is used to

highlight the connection between the two channels of

Figure 6 and the two columns in Figure 7.

DISCUSSION

The static method evaluates network flow and estab-

lishes the existence of an inherent allosteric framework

in SOD1, which is observed across all 26 structures.

The iCPM data in Figure 3, are not exactly mirrored

between the monomers, but the predicted control sites

at the s 5 1 level are exactly the same between mono-

mers. The second tier control sites are also the same.

The matching control sites, despite the structural

variation between the two monomers, indicates the

robust nature of the method and supports the allosteric

mechanism hypothesis.

Figure 4
Structure Mapped Control Sites: Static Method. The control sites

identified by the WT iCPM (data from Fig. 3) mapped onto the solvent

accessible surface. Increasing iCPM values correspond to the color

progression: blue ? green ? orange ? red. Allosteric residues are

found on the top groove and around the bottom cavity, both of which

are adjacent to the dimer interface. In addition, these two locations are

connected by an allosteric path that runs along b-strand 6 (boxed in

central image). Several residues are marked by dots and labeled; these

serve as reference locations along the pathway. The central image is a

side view with the b-barrel of each monomer vertically oriented. The

top (bottom) image is rotated about the horizontal axis to show the

top (bottom) of the structure. In all views, the dimer interface is a

vertical plane perpendicular to the page.
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Figure 5
Dynamic Method: yALS-xray. The average values of the dynamic method over all 4 yALS-xray structures. The control sites that pass the s 5 0.45

cutoff are highlighted in yellow. The second tier control sites are highlighted in red. The residue indices on the horizontal axis are across the dimer,

while the residue labels in the plot are given within each monomer. The dashed lines partition the monomers.

Figure 6
Dynamic Method: yALS masked by T39I. The averaged allosteric profiles from all 24 yALS structures, masked by the T39I negative control. The

WT2 and M1 components are averaged to produce the top channel and the WT1 and M2 components are averaged to produce the bottom

channel. Residues that pass the s 5 1 cutoff are labeled and highlighted in yellow.
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Color mapping the iCPM data of Figure 3, onto the

structure in Figure 4, reveals critical insight into the

underlying allosteric network. The groove in the top and

the cavity in bottom of the structure are both lined with

allosteric residues and are connected by a path of alloste-

ric residues that run along b-strand 6 (residues 95–101).

Figure 7
Structure Mapped Control Sites: Dynamic Method. The control sites identified in the two channel plot in Figure 6, are mapped onto the

WT surface. Increasing magnitudes of correlated dynamics values (data from Fig. 6) correspond to the color progression: blue ? green ?
orange ? red. Left Column. The WT2/M1 channel (dominant in WT) shows circumferential bands of control sites (boxed) that, define a

cross-sectional plane in each monomer that passes through the active sites. Right Column. The WT1/M2 channel (dominant in yALS
mutants) shows a linkage between the solvent accessible a-helix near residue Gly130 and the dimer interface located around the central grouping

of Gly114 and Gly150. Surface transparency reveals the residues (space filled) that define the internal linkage. Structure views and labeling are

as in Figure 4.
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The groove and cavity are adjacent to the dimer interface

and suggest that the allosteric activity is a regulatory

mechanism for modulating dimer stability. This is con-

sistent with the leading hypothesis in the literature

involving toxic aggregation of dissociated monomers.

The multistage dynamic analysis is complex, but

produces several key pieces of evidence that add to the

understanding of allosteric regulation in SOD1. The T39I

non-ALS mutant is used as a negative control to isolate

the functionally significant allosteric activity (Fig. 6).

This analysis reveals that SOD1 has the capacity to

operate a pair of allosteric networks, which are shown in

Figure 7. Of particular significance, these networks are

disjoint, which is a critical feature consistent with the

observation that antioxidant and toxic functions simulta-

neously operate in fALS SOD1 mutants.

The WT2/M1 channel (illustrated in left column of

Fig. 7) corresponds to allosteric activity that is more

prominent in the WT than the yALS mutants. This chan-

nel shows control sites that form a cross-sectional plane

directly through the active site. The central axis of this

plane is defined by the pathway of adjacent residues:

Pro13, Asp11, Arg143, Val119, His46, Phe45, Leu84. The

WT2/M1 channel may regulate catalytic site activity

and control the normal antioxidant function of SOD1.

The WT1/M2 channel (illustrated in right column of

Fig. 7) corresponds to allosteric activity that is more

prominent in the yALS mutants than the WT. This chan-

nel shows a tunnel of control sites from the solvent

exposed a-helix fragment and surrounding residues to b-
strand 1 and its surrounding (buried) residues on the

dimer interface. The WT1/M2 channel may regulate

dimer interface dynamics and control dimer stability. Ray

et al.,6 approached dimer stability by targeting ligand

docking at the bottom cavity, which is part of the dimer

interface. The WT1/M2 channel indicates that dimer

interface dynamics can also be controlled via the alloste-

ric linkage to the solvent exposed locus of residues sur-

rounding Gly130.

The static and dynamic methods have a common goal,

but are based on fundamentally different principles.

There are observations to be made in comparing the

results of each method.

First, the control sites of the static method (Fig. 3)

appear similar to the WT2/M1 channel of the dynamic

method (Fig. 7, left column), but yet the control sites of

the static method are attributed to regulating dimer sta-

bility, while the control sites of the WT2/M1 channel of

the dynamic method are attributed to antioxidant func-

tion. The critical difference is that the WT2/M1 channel

of the dynamic method shows a path of allosteric resi-

dues running through the active site, while the static

method shows no allosteric activity in this area.

Second, the control sites of the static method and the

control sites of the WT1/M2 channel of the dynamic

method (Fig. 7, right column) do not appear similar, but

yet both are attributed to regulating dimer stability. The

static method identifies allosterically active residues along

the top groove and bottom cavity, while the WT1/M2
channel of the dynamic method identifies internal activ-

ity at the dimer interface. It is possible that these dimer

destabilizing networks may be dynamically linked. How-

ever, these networks are identified by vastly different

methods and elucidating such a linkage is nontrivial. The

other possibility is that two modes of dimer destabiliza-

tion may be active. This is not surprising, given the

spatial distribution of the known fALS mutants and the

diversity of observed biophysical properties.

Third, the data of the dynamic method naturally falls

into two groups: WT2/M1 and WT1/M2. It is rather

remarkable that these groups identify disjoint allosteric

networks and that each network is coherent and recog-

nizable as a possible mechanism behind each of the two

biological functions of SOD1. In contrast, the static

method reveals only a single allosteric network. The static

method is incredibly simplistic in design and is almost

certainly insensitive to single residue mutations. It is

therefore interesting to note that the static method iden-

tifies a potential dimer stabilization network, even in the

WT structure. This indicates that while the fALS muta-

tions may be required to activate the allosteric network,

the SOD1 structure appears to inherently support such

activity. This may explain why so many mutations are ca-

pable of triggering ALS.

In conclusion, the static and dynamic methods yield

compatible and highly detailed descriptions of allosteric

activity across the SOD1 structure ensemble. The follow-

ing characterization is made in support of the allosteric

mechanism hypothesis: Dual allosteric networks are inde-

pendently involved in (1) the normal antioxidant activity

of SOD1 and (2) the modulation of dimer stability. Con-

trolling multiple biological functions (or even multiple

components of a single function) via layered allosteric

networks may be the unifying mechanism underlying

ALS and may prove to be a feature of allosteric activity,

in general.
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