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Abstract 

Superconducting crystals of the compound BaFe2As2, which is a member of the recently 

discovered class of “122 structure” iron-arsenic superconductors, MFe2As2, were made.  Our 

group was the first to observe a complete superconducting resistive transition in the undoped 

compound BaFe2As2 (

 

Tc
onset = 22.5K ).  The resistive transition was measured before and after 

annealing one of the crystals.  No disappearance of the superconducting state after annealing was 

noticed (in fact the transition became sharper), which does not verify the standing idea that 

crystallographic strain is the source of superconductivity in undoped MFe2As2.  The current 

sensitivity of the resistive transition, the lack of a diamagnetic signal in magnetic susceptibility 

measurements, the superconducting state’s sensitivity to the removal of crystallographic layers, 

and upper critical field anisotropy consistent with the anisotropy of the crystal lattice, lead to the 

belief that the BaFe2As2 crystals are not bulk superconductors.  Rather, it is inferred that the 

superconductive state is filamentary or more probably planar in nature.  This evidence led to a 

search for a Kosterlitz-Thouless transition, which is known to exist in 2D superconductors.  

Three methods were used to probe for the presence of a Kosterlitz-Thouless transition, two of 

which yielded consistent answers for the transition temperature TKT.  From this it is believed that 

evidence of a Kosterlitz-Thouless transition and hence two-dimensional superconductivity has 

been found in BaFe2As2.    



 2 

Basic Introduction to Superconductivity: 

 Heike Kamerlingh Onnes successfully liquefied helium in 1908.  Shortly thereafter, in 

1911, he discovered that the pure metal mercury exhibits zero resistance when subjected to liquid 

helium temperatures.  He had discovered a new state of matter – superconductivity. 

 It took nearly half a century until Bardeen, Cooper, and Schrieffer (BCS) finally gave the 

scientific community a microscopic theory of superconductivity.  They found that electrons 

could form bound pairs by exchanging phonons in a material’s lattice.  That is, even though we 

think of electrons as intrinsically repelling one another, in the medium of a crystal lattice there 

can exist an attractive interaction.  Qualitatively the process is as follows, as one electron travels 

though the lattice it will distort the positions of the positively charged lattice around it, creating a 

higher density of positive charge in its wake.  This more densely packed region will then pull a 

trailing electron towards it and the two electrons can carry on in this fashion and are thus bound 

together with the lattice as a medium.  This situation is displayed in fig. 1. 

Fig. 1: Cartoon of a cooper pair. 
[1].   
 
 

  

  

 BCS theory provides a beautiful explanation for superconductivity in many simple 

compounds.  However, BCS theory does not accurately describe the forms of superconductivity 

found in most compounds of current interest (including those studied in this paper).  BCS theory 

provides an interesting qualitative picture but it is not strictly correct for our compound and, 

therefore, we are better served by a phenomenological description.   
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 Meissner discovered that the lack of electrical resistance was not the only hallmark of the 

superconducting state.  A superconductor (type I) also completely expels magnetic fields.  Do 

not mistake the significance of this statement.  This does not only mean that induction currents 

perfectly prevent changes in magnetic field, but that static magnetic fields will be expelled as 

well.   

 These two physical phenomena, lossless conduction of electrons and the expulsion of a 

magnetic field (Meissner Effect), are described by the London Equations. [2] 
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Eq. 1 describes perfect conductivity.  It states that an applied electric field will continually 

accelerate superconducting charges and that superconducting charges will move at constant 

velocity in the absence of an electric field.  This is in stark contrast to Ohm’s law.  Eq. 2, when 

paired with Ampère’s law, yields eq. 4 [2]: 
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This equation implies that magnetic fields are exponentially screened from the bulk of the 

superconductor, which is a restatement of the Meissner Effect. 

 The expulsion of a magnetic field from a superconductor costs energy.  We can recall 

from introductory E/M theory that the energy stored in a magnetic field is as shown in eq. 5. 
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The expulsion of a magnetic field is the same as the creation of a magnetic field of equal 

magnitude and opposite orientation.  Thus, the application of a magnetic field can easily make 

the superconducting state energetically unfavorable.  That is, the energy gained by entrance into 

the superconducting state can be overcome by the energy needed to generate a magnetic field.  

Type I superconductors have an upper critical field, Hc, which signifies the largest magnetic field 

to which a sample may be subjected without completely exiting the superconducting state.   

 Type II superconductors are able to remain superconducting in much higher applied 

fields.  This is possible because, instead of totally expelling an applied magnetic field, they allow 

it to penetrate in quantized flux vortices.  Type II superconductors have two critical fields: Hc1 

and Hc2.  At a field of magnitude Hc1, magnetic vortices begin to form, and at a field magnitude 

of Hc2 superconductivity is completely destroyed.  A cartoon of magnetic flux vortices 

penetrating through a sample is shown in fig. 2.  The magnetic field in flux vortices destroys 

superconductivity inside them, but the regions between flux vortices retain the superconducting 

state. 

Fig 2.  A cartoon of magnetic flux vortices penetrating 
a cylindrical superconductor [2]. 

 

While formation of magnetic flux vortices may allow the superconducting state to persist at 

higher applied fields, they can also plot the course of its destruction.  If transport currents are 

passed through a type II superconductor, they will impart a force upon the magnetic flux 

vortices.  If there are no other forces acting on the vortices (e.g. forces from the crystal lattice), 

then the currents will move them.  This causes energy loss, which can be interpreted as a finite 

resistance.  Thus the vortex state can cause a type II superconductor to exhibit a finite resistance.  

This fact will become crucially important when we discuss Kosterlitz-Thouless transitions later. 
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Experimental Technique: Sample Preparation 

 Before we can test theory, we must grow the crystals we wish to study.  We do this by 

dissolving at high temperature the correct molar amounts of the elements needed for the crystal 

into a metal flux.  Then we slowly lower the temperature until super-saturation is reached and the 

crystals precipitate out of the metal flux. This process is analogous to dissolving sugar or salt 

into boiling water and then lowering the temperature until crystals come out of solution with the 

water. 

 For a more detailed explanation, we may consider our specific example of BaFe2As2.  

First it is necessary to consult a binary phase diagram.  This diagram shows how much of the 

crystal constituents will dissolve into the metal flux at a given temperature.  It is important to 

look for any binary compounds that exist among the crystal constituents at high temperatures 

because these may limit crystal growth. 

 Fig. 3 tells us that Arsenic will easily dissolve in Indium for temperatures greater that 

500οC.  Additionally, we note InAs is very stable (melting point at 942οC).  We must hope that 

the crystals we are forming are more stable than InAs so that they preferentially form.  

 
 
 
 
Fig. 3: This is a binary 
phase diagram for In and 
As.  This plot indicates 
how much As will 
dissolve into In as a 
function of temperature.  
The melting point of the 
stable compound InAs is 
indicated. [4] 
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 Once an adequate metal flux is found (for BaFe2As2 we were the first to use In) the 

elements’ masses may be measured and placed in a sealed metal (Nb or Ta) crucible in 

preparation for placement in a tube furnace.  Typically, we used 20-40 more moles of metal flux 

than crystal elements to allow the crystal elements to dissolve.  The filled crucible is then 

subjected to a heating schedule in flowing argon to avoid oxidizing the crucible.  A typical 

heating schedule is as follows.  Start at room temperature.  Then heat to 500°C at a rate of 75°C 

per hour.  Then hold at 500°C for four hours.  Then heat to 700°C at a rate of 75°C per hour.  

Then hold at 700°C for four hours.  Then heat to 1000°C at a rate of 75°C per hour.  Then hold at 

1000°C for four hours.  Then cool to 800°C at a rate of 2.5°C per hour.  Then cool to 500°C at a 

rate of 5°C per hour.  Then cool to room temperature at a rate of 75°C per hour. 

 After the crucible and its contents have made it through this cycle once (after about 1 

week), we can remove the crucible.  At this point, the BaFe2As2 crystals we seek are embedded 

in the solidified metal flux.  The crystals are harvested by heating the crucible on a hot plate to a 

temperature above the melting point of the metal flux, which is below the melting point of the 

crystals we wish to harvest.  The crystals are removed from the molten flux with tweezers and 

are then ready for measurement.  Alternatively, the contents of the crucible may be centrifuged 

in a glass tube above (T>TM,Flux) with a piece of glass wool at the bottom.  The molten flux will 

pass through the glass wool but the solid crystals will be caught in the glass wool for easy 

harvesting. 

 As alluded to in the abstract, we are testing the relationship between I and V or 

measuring the resistance of this crystal at low temperatures.  We, therefore, need to attach wires 

to the sample to apply currents and measure voltages.  Looking through a microscope, we attach 
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four 0.002’’ diameter platinum wires with silver epoxy to the edges of the crystal.  An image of 

this configuration can be found in fig. 4. 

Fig. 4:  A photograph of one of our 
 BaFe2As2 crystals taken under a microscope.  
 The crystal is at the center of the image and 
 is mounted on silicon substrate to make it 
 electrically isolated. Typical crystal              
dimensions are 1mm x 1mm x 0.1mm. 

 

 

 

 

In fig. 5 the BaFe2As2 crystal is located in the center.  Two of the wires are used to pass a dc 

current through the ab crystal plane and the other two are used to measure the voltage drop.  

Passing current through the crystal inevitably creates a heat gradient in the crystal, which creates 

a thermal voltage.  In order to ignore this thermal voltage and concentrate on the current 

transport voltage, the current direction must be switched back and forth and the absolute value of 

the measured voltages must be averaged.  Typically, each recorded voltage measurement is the 

average of 80-100 individual voltage measurements. 

 Once this wiring is completed, the crystal may be attached inside a sample probe in 

vacuum; the probe is then inserted into a liquid helium dewar.  Temperatures as low as 4.2K are 

reached by filling the dewar with liquid 4He.  If the 4He gas above the liquid in the dewar is 

pumped out, the crystal is cooled to about 1K. 
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Results and Discussion 

 Fig. 5 shows resistivity data for one of the BaFe2A2 crystals.  The black circles are data 

taken before annealing.  We are the first to observe a full superconducting resistive transition in 

undoped BaFe2A2.  After taking these measurements, we annealed the crystal at 300οC for 2 

hours under vacuum seal in Pyrex®.  Then we measured the resistivity again and these data still 

exhibit a superconducting transition.  These data (green triangles) are significant because they 

show that the superconducting transition has remained and, in fact, been made sharper.  This is in  

 

Fig 5.  Data on a BaFe2As2 
crystal before and after it 
was annealed.  The black 
circles are data taken before 
annealing.  The green 
triangles are data taken after 
annealing at 300οC for 2 
hours. 

 

 

 

 

 

contrast to Saha et al. [5] who found, in the similar compound SrFe2As2, that this annealing 

procedure destroyed the superconducting state.  Saha et al. have posited that superconductivity in 

SrFe2As2 and perhaps other “122 structure” iron arsenic superconductors may be the result of 

crystallographic strain.  The data presented in fig. 5 show that this is not consistent with our data 

in the compound BaFe2As2. 
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 The interpretation, that fig. 5 counters the strain model in BaFe2As2, rests crucially on 

one as yet unstated assumption.  It is assumed that nothing happened to alter the crystalline 

structure of the sample between annealing and cooling it back down for measurement.  We did 

have instances when cooling other samples caused the sample to fracture.  We know that the 

sample used for fig. 5 did not fracture but we cannot be sure, given this data, that cooling did not 

cause significant strain which, in turn, sharpened the superconducting transition in accordance 

with the strain model.  We can only be sure that fig. 5 fails to verify the strain model but not that 

it is a counterexample.  

 Our next significant finding was that the superconducting transition is highly sensitive to 

the amount of current passed through the sample and that the upper critical field shared the 

anisotropy of the tetragonal crystal lattice for BaFe2As2.  Fig. 6 shows three different samples of 

BaFe2As2, all of which have a noticeable superconducting transition.  From fig. 6, it is easily 

seen that higher currents cause the resistive transition to be much broader.  The resistivity for 

sample 1 with 1.5mA current does not even reach ρ=0 and, therefore, we can take 1.5mA as an 

estimate of the critical current (the current which destroys the superconducting state).  This, 

given the dimensions of sample, is a critical current density of 1.5A/cm2.  We can compare this 

number to those for bulk superconductors e.g., ~100 A/cm2 in YBCO [6] and ~104A/cm2 MgB2 

[7]. This rather small critical current density and the fact that we did not observe a diamagnetic 

susceptibility signal in a squid magnetometer led us to consider that the superconductivity in 

these crystals was not a bulk property and may be filamentary or planar in nature.   

 Fig. 7 shows critical field anisotropies for our sample of BaFe2As2 and similar 

compounds tested by other researchers.  Critical field anisotropies mean that the critical field for 

the superconductor has different values depending on whether the field is applied parallel to the 
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plane of the crystal (the ab plane) or perpendicular to the plane of the crystal (the c-axis).  Since 

our critical fields exhibit the inherent anisotropy of the crystal, it is rendered less likely that the 

superconductivity arises from filaments, which may not share the anisotropy of the lattice.  

Additionally, we noticed after removing a couple of the micaceous layers from the top of a 

crystal that the transition became sharper and the temperature at which the resistivity went to 

zero increased by several degrees.  Moreover, the inset of fig. 6 shows the change in the resistive 

transition before and after a crystal was broken parallel to the c-axis.  The c dimension of the 

crystal was thus unchanged while the ab plane was changed.  All these results lead us to favor 

planar superconductivity over filamentary superconductivity.  

  

 

 

 

 

 

 

 

 

 

 
Fig. 6:  Resistivity versus temperature curves for five         Fig. 7:  Critical field data for BaFe2As2.  Our field 
different samples of BaFe2As2. Notably the resistivity        anisotropies are similar to those found in sample 1 
with I=1.5mA does not go to zero, indicating,                      BaFe1.8Co0.2As2 by Kano [8] and those in   
a critical current.  The inset shows the  resistivity of             SrFe2As2 by Saha et al. [5]. 
sample 3 before and after it was broken parallel to the 
c-axis. 
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 After we had this evidence, which suggests planar superconductivity, we decided to 

search for a Kosterlitz-Thouless transition, which is known to occur only for 2-D materials.  

Given the complex and subtle nature of a Kosterlitz-Thouless transition, theoretical introduction 

is given before diving into the data. 

Introduction to Kosterlitz-Thouless Theory: 

 As materials are cooled to lower and lower temperatures the disordered states give way to 

well-ordered phases.  At low temperatures, the ambient thermal energy is no longer great enough 

to dwarf the interaction energies between constituent parts of a system.  As a result, long-range 

order (or quasi-long range order in the case of two dimensions) forms.  A Kosterlitz-Thouless 

(KT) process is an example of such a phase transition. 

 The KT transition comes from considering the 2D XY model of solid-state physics.  The 

2D XY model consists of a system of spins located on a lattice (see fig. 8).  We may associate   

 

Fig. 8 An example of an XY model where all 
                                                                              the spins are aligned. [9] 
 

 

 

 

 

with this system an order parameter .  It has a magnitude,  , and a phase, θ.   

The mathematical model for the 2D XY model consists of the following Hamiltonian: 



 

H = −J
r 
s i •

r 
s j = −J cos θi −θ j( )

ij
∑

ij
∑  [11].  In this formula J is a positive constant, the sum is over 

all nearest neighbors and θi represents the angle of the spin at site i.  It is a well-known fact that 
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this 2D XY model possesses no long-range order phenomenon due to spin-wave excitations [11].  

Nonetheless, Kosterlitz and Thouless were able to describe a non-traditional phase transition that 

corresponded to vortices.  A vortex (as shown in fig. 9) is exhibited by a change of an integer 

multiple of 2π in the orientation of spins around a singularity.  The spins can rotate clockwise (a 

vortex) or counterclockwise (an anti-vortex). 

 

Fig. 9: A diagram of two vortices. 
Notice that the spins rotate about 
the center in two different senses. 
This is referred to as a vortex/anti- 

                                                                                    vortex pair. [10] 
       

  

 

In order to continue the analysis of 2D XY model with vortices the Hamiltonian is 

approximated near a minimum in the following way: 

 

H − E0 ≈
1
2

J θi − θ j( )2

ij
∑  [11]. Using this 

approximation, we can say that in the 2D XY model the energy of these vortices is given by eq. 6 

[11][12]. 







=

a
RkE s ln2 ρπ                                                      (6) 

Where R is the size of the system, a is the size of the core,  is the rigidity modulus, and k is 

called the winding number and its value indicates by which multiple of 2π the angles of the spins 

change around the center of the vortex (see fig. 9).  Positive winding number is called a vortex 

and a negative winding number is called an anti-vortex.  We can now look at the energy of two 

vortices.  It will not be strictly additive because vortices interact with one another [12]. 
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Where r is the separation of the two vortices.  We notice that if  ∑ =
i

ik 0   then the energy does 

not depend on the size of the system and thus the energy will not be arbitrarily large [11].  Thus 

the most energetically favorable state at very low temperatures will be one in which there are 

equal numbers of vortices and anti-vortices. 

 To continue this line of reasoning, we can consider the free energy, F=E-TS.  The entropy 

of the system with a free vortex will be as shown in eq. 8 [11][12]. 
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Therefore, the free energy for a single vortex (with k=1) will take the form shown in eq. 9 

[11][12]. 
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 From this equation we can see that there is a critical temperature, 
2

s
KTT

πρ
= [11][12].  

Below this temperature the energy term dominates and the free energy of the system is 

minimized by there being no free vortices.  Above this temperature, the entropy term dominates 

and the free energy is minimized by the presence of vortices. 

 Eqs. 7 and 9 are the heart of the description of the Kosterlitz-Thouless process.  Eq. 9 

tells us that it is not energetically favorable to form individual vortices below the critical 

temperature.  Eq. 7 tells us that to create a vortex-anti-vortex pair costs arbitrarily little energy.  

Moreover, from eq. 7 we can find the force,f21, exerted by vortex 1 on vortex 2: 
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f21 = −∇2E = 2πρsk1k2

r2 − r1( )
r2 − r1

2  [12].  This shows that the force is attractive if the winding 

numbers are of opposite sign.  Notice how this force law is the same as the force between two 

current-carrying wires placed at the center of the vortices, except with opposite sign [11].  

Therefore, we can interpret this to mean that below the critical temperature our system can have 

vortex/anti-vortex pairs and above the critical temperature these pairs can be broken up to form 

free individual vortices.  This is called a Kosterlitz-Thouless transition.  

 We have thus arrived at an understanding of a Kosterlitz-Thouless process but have yet to 

understand how it applies to superconductors.  The arguments previously presented for the 

standard XY model will translate immediately to superconductors if the superconducting system 

is 2-D, has an order parameter with a magnitude and phase, and if vortices have the same 

logarithmic energy dependence. 

 From the BCS theory, the microscopic theory of superconductors, we know that there 

exists an energy gap for electron pairs (Cooper pairs).  Moreover, this energy gap has a 

magnitude and a phase [13][14]. 

( )( )kk
kk

21 φφ −∆≡∆ ie                                                 (10) 

Where k∆ is the energy gap for an electron pair with momentum k±  respectively.  Therefore, 

the energy gap appears to be a prime candidate for an order parameter in superconductors.  In 

fact, Gor’kov showed that the order parameter in the phenomenological Ginzburg-Landau theory 

for superconductors is actually proportional to the energy gap. [15][16] 

 Moreover, it can be shown using Ginzburg-Landau theory that an individual vortex has 

an energy given by eq. 11 [15][17]. 
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E ≈
Φ0

4πλ
 
 
 

 
 
 

2

ln k( )                                                      (11) 

In eq. 11, Φ0 is the flux quantum and can be replaced by –Φ0 to account for an anti-vortex.  Thus 

Φ0 is the analog of the k, the winding number, in the XY model.  λ is the penetration depth, and 

κ is the Ginzburg-Landau parameter.  κ is the ratio of two characteristic length scales of the 

system – λ and ξ, the coherence length – and can be arbitrarily large.  Thus κ is an appropriate 

analog of (R/a) in the XY model.  Additionally, the interaction between two vortices in a 

superconductor can be shown to be of the form given in eq. 12 [15][17]. 

 

E int =
Φ0Φ0

8πλ2 ln
r
λ

 
 

 
 

                                                   (12) 

 
where r is the distance between the vortices.  The analogies hold as previously stated. 

 We are led to conclude that a superconductor has an appropriate order parameter and 

vortex interactions of the same form as in the XY model.  Therefore, we expect that, for a 2-D 

superconductor, a Kosterlitz-Thouless transition should be possible.   

 Extraction of the Kosterlitz-Thouless transition temperature, TKT, is a challenging task, as 

the measured properties of the material do not exhibit sharp features at the transition.  During my 

research program, I investigated no fewer than three separate methods to determine the transition 

temperature. 

 The first method investigated current-caused pair breaking.  As previously mentioned, an 

electrical current will impart a force on a magnetic vortex; moreover, the force will be equal and 

opposite on each member of the vortex/anti-vortex pair.  This means that the net force on the pair 

will be zero and thus it will not move, which maintains lossless conduction of electrons.  

However, the currents can impart a force so large as to break apart the vortex pairs.  Then these 

individual vortices are moved by the electrical currents, which create a finite resistance.  It can 
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be shown that a power law relationship between V and I holds near the Kosterlitz-Thouless 

transition in the limit that I goes to zero [22][18].  

)(TIV α∝  ⇔  ( ) .)log()(log constITV += α                                  (13) 

The power, α(T), in this relationship has the value 3 when T=TKT.  Therefore, a measurement of 

TKT can be found by measuring currents and voltages across the crystal and finding the 

temperature at which V goes like I3. 

 The second method of determining TKT requires measuring the resistive transition into the 

superconducting state.  In essence, this method measures temperature-caused pair breaking.  The 

resistance near the resistive transition should have the following functional form. 

   KTTT
const

eR −
−

~                                                              (14) 

By fitting the resistivity curve to this functional form, we should be able to determine the 

constant TKT  [19]. 

 The third method involved measuring the resistance of the crystal as an applied magnetic 

field was varied.  Just as transport currents can break up vortex/anti-vortex pairs, so can a 

magnetic field.  A magnetic field will place an equal and opposite force,


 

r 
F = −∇

r 
m •

r 
B ( ), on the 

respective members of a vortex/anti-vortex pair.  Measuring the resistivity of the sample as the 

magnetic field is varied can provide information about TKT.  With this method, we looked to 

satisfy the following equation [23][20]: 

1
ln
ln

=
= KTTTHd

d ρ                                                          (15) 
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Data and Analysis: 

A partial set of data for current-caused pair breaking is presented below in fig. 10.  

Applying Kosterlitz-Thouless theory, as described in the introduction, tells us that the transition 

temperature, TKT, is near 18K 

Fig. 10: VI curves for 
BaFe2As2.  Fitted lines are 
shown for linear regions of 
the data as seen on a log-
log plot.  The data are 
labeled by the temperature 
at which they were taken 
and next to the temperature 
is the slope of the fitted 
line. 

 

 

   

 

 These voltage versus current measurements are experimentally difficult to obtain.  To 

understand why we must remember that we only expect power law relationship between V and I 

(with power ~3) in the zero current limit.  However, our instrumentation allowed us to only 

measure voltages on the order of nV.  Moreover, once the current supplied reached ~0.8mA the 

power-law relationship disappeared.  This explains the fitting region that is less than one decade 

of current.  This small fitting region and apparent deviations from linearity on the log-log plot 

render this plot unconvincing.  However, the fact that we do observe linear regions whose slopes 

pass through 3 and approach Ohmic behavior as the temperature is increased suggests to us that 

KT behavior may be present.  To confirm this suggestion, we must corroborate with different 

measurement methods.   
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 After the inconclusive KT results from measuring current-caused pair breaking, we 

attempted to measure temperature-caused pair break by fitting the resistive transition to the 

functional form given in eq. 14.  In fig. 11, the fitted value for TKT was 19.48K.  We also noticed 

that the fit was significantly worsened if TKT was changed by 0.1K, which indicates the error in 

this method.  The agreement between measurement and theory is certainly better in this case. 

However, the large difference between the values of TKT provided by these two methods gives us 

cause for pause. 

 

 

Fig. 11.  A close-up of the 
resistive transition of 
BaFe2As2.  The fitted line is 
of the form of eq. 14.  The fit 
yields TKT=19.48. 

 

ρ T( )=1.71715 ⋅ e
−5.89
T −19.48  

 
 
 
 
 
 
 
  
 Our third and final method used to find the KT transition was to measure the resistance of 

the sample as a function of magnetic field at a given temperature (magnetic field induced vortex 

pair breaking).  The temperature at which eq. 15 is satisfied is TKT.  From fig. 12, we can see that 

TKT=19.8 K ± 0.1K. This seems a reasonable value, the value is close to that obtained from the 

fit to eq. 14, and the slopes are monotonically decreasing with temperature, which we expect 

from the literature [20].  The agreement to within 0.4 K for TKT is comparable to the 0.5K 

agreement found by Martin et al. [20], but they found the magnetic field calculation to provide 
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the lower approximation than the fit to eq. 14, which is opposite of our data.  However, there are 

some subtleties with the data presented in fig. 12.  Eq. 15 was derived under the assumption that 

the applied magnetic field was along the c-axis of the crystal.  Our first measurement with 

magnetic field was parallel to the ab plane.  This makes us wonder why we even saw Kosterlitz-

Thouless behavior at all.   

 
 

Fig. 12:  Plots of the 
resistivity versus the applied 
magnetic field on a log-log 
scale.  H || ab plane. Straight-
line fits were made after the 
initial rise in the resistivity, 
between 1T and 5T.  The 
legend indicates the 
temperature for each line and 
then a comma separates the 
slope of the line.  This plot 
indicates TKT≈19.8K± 0.1K .  
I = 0.1mA 

 
 
 
 

 Ando [21] also encountered this situation and postulated that the cause of KT behavior 

was the component of the magnetic field along the c-axis due to misalignment of the field in the 

ab plane.  We assume Ando’s explanation is correct, and we assume that there was a 

misalignment between the magnetic field and the ab plane by an angle θ.  This means that the 

only component of our applied magnetic field that matters is Hsin(θ).  Therefore we must adjust 

eq. 15 substituting our field parallel to the c-axis: 

     

 

d ln ρ( )
d ln H sin θ( )( )

T =TKT

= 1 ⇔   

 

d ln ρ( )
d ln H( )+ ln sin θ( )( )[ ]

T =TKT

= 1 ⇔   

 

d ln ρ( )
d ln H( )

T =TKT

= 1                  (16) 
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Since the end equation above is the same as eq. 15 we believe that our analysis is accurate.  

Nevertheless, these magnetic field measurements were taken over again with the field aligned 

with the c-axis to see if the value for TKT changes.  These data are displayed in fig. 13 and it too 

indicates that KKTKT 1.07.19 ±≅ , therefore, we feel that Ando’s explanation of the H||ab data is 

correct. 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Plots of the resistivity versus the magnetic field 
on a log-log plot. These plots are similar in appearance 
to those of Martin et al. [20]. I=0.1mA.  This plot was 
provided by the Stewart research lab. 

  

 Early in the paper, we discussed at length the current dependence of the resistive 

transition.  Therefore, the functional fit in fig. 11 also depends on the applied current.  Moreover, 

it should be noted that the slopes in the resistivity vs. H plots also depend on the current applied 

to measure the resistivity (any finite current will cause additional vortex pair breaking).  

Therefore, while we are encouraged that the two values for TKT agree, we must be careful.  We 
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claim that we have observed a Kosterlitz-Thouless transition because the two independent 

methods agree; however, the exact value of TKT determined by these methods will depend on the 

applied current.  

Conclusions 

 We have repeatedly observed a superconducting transition in BaFe2As2.  We have 

obtained data that fails to verify the model of strain-induced superconductivity for the compound 

BaFe2As2.  This is because the superconductivity in our crystals did not vanish after annealing, 

which is in contrast to Saha et al. for undoped SrFe2As2 [5].  

 Two of three of methods for measuring the Kosterlitz-Thouless transition yielded 

consistent results for the transition temperature TKT.  The inconsistency of the VI curve 

measurements is the subject of further investigation. 

 The consistency of the temperature-induced pair breaking and magnetic field pair 

breaking methods (for the same applied current, I =0.1mA) give us confidence that this sample 

does undergo a Kosterlitz-Thouless transition with TKT around 19.5K.  However, the current 

dependence of these data indicates our value for TKT is also current dependent.  Finally, because 

we have observed a Kosterlitz-Thouless transition we can say that we have observed two-

dimensional superconductivity in BaFe2As2. 
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