
Vegetation dynamics, coarse woody debris, and nitrogen cycling over 20 years in a virgin 
hemlock-hardwood forest recovering from catastrophic disturbance 

 
Maggie Wagner, B.S. Honors thesis 

University of Michigan 
 

Mentor: David Orwig, Harvard Forest 
 
Abstract 
Primary forests provide a valuable opportunity to study forest processes in a natural environment, 
uncomplicated by anthropogenic disturbance. We surveyed two transects covering 0.57 ha of the 
Harvard tract of Pisgah forest in southeastern New Hampshire, one of the few parcels of old-growth 
forest remaining in New England. The surveys were conducted in 1989 and 2009. In each 10x10 
meter plot, we measured and mapped every tree (live stems ≥ 2.5 cm diameter at breast height) and 
every piece of coarse woody debris (CWD; all downed wood with an average diameter ≥ 10 cm). In 
2009 we also surveyed the understory vegetation and analyzed the C and N contents of soil from 
under CWD and soil that has incorporated recently decayed CWD. Censuses showed natural 
thinning of all major tree species, with Eastern hemlock (Tsuga canadensis) suffering mortality at 
less than half the rate of the hardwoods (Acer rubrum, Fagus grandifolia, and Betula spp.). The 
CWD pool decreased from 354.6 m3/ha to 215.5 m3/ha, but is still much larger than is typical for 
old-growth forests in New England. The vast majority of this CWD is the legacy of a catastrophic 
1938 hurricane that destroyed the old-growth hemlock and white pine (Pinus strobus). As of 2009, 
white pine is almost completely absent from the forest. Between 1989 and 2009, total basal area 
increased from 35.5 to 41.8 m2/ha, while density decreased from 2793 to 1768 stems/ha. Plots 
differed in community structure, with tree density negatively correlated with average tree size. 
Trends over the topographic gradient indicates that slope and aspect influence both community 
structure and CWD stores. Nitrogen was scarcer in soil under CWD and in soil incorporating 
decayed wood than in control soil (p < 0.05), indicating that CWD effects on soil nutrition add 
another element of spatial heterogeneity to the forest floor. Finally, we found 20 species of herbs 
and shrubs covering 4.42% of the study area, as well as 10 species of tree seedlings covering an 
additional 5.45% of the site. Our results show that despite its recent history of catastrophic 
blowdown, Pisgah retains many structural features typical of old-growth forests (especially huge 
CWD pools and microtopography related to natural disturbances) and supports more diverse 
vegetation than is found in New England second-growth forests. These findings are useful for 
foresters wishing to design a balanced management plan that maximizes forest health, and for 
conservation biologists aiming to restore a damaged landscape as close as possible to its original 
pristine condition. 

 
1. Introduction 
 

Virgin forests are widely appreciated as study systems for basic forest ecology research as 

well as for their intrinsic value as habitat for plants and wildlife (Foster et al. 1996). Conservation 

biologists and restoration ecologists often use old-growth characteristics as a goal for the protection 
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and rehabilitation of disturbed ecosystems. For this reason, many studies have emphasized 

comparisons between old-growth or virgin forests and secondary growth, i.e., forests growing on 

abandoned agricultural land or recovering from intensive logging (Mladendoff et al. 1993, 

Angelstam 1998). Similarly, modern ecological foresters seek to develop selective logging regimes 

that imitate natural disturbance processes in old-growth forests in order to maximize forest health 

(Attiwill 1994, Franklin et al. 2002, Atlegrim and Sjojberg 2004). Among the most important 

features of virgin forests are their biodiversity (Halpern and Spies 1995, Angelstam 1998, Thomas 

et al. 1999) and their stores of dead wood, referred to as coarse woody debris (Sturtevant et al. 

1997, Siitonen et al. 2000).  

A diverse plant community has repeatedly been shown to be important for forest ecosystem 

functions (Hobbie 1992, Hooper and Vitousek 1997), so the preservations of biodiversity has 

become a priority for foresters and restoration ecologists. Comparative studies of old-growth, 

managed, and clear-cut forests have revealed major differences in community composition. Several 

studies have found that understory herb diversity is much lower in secondary forests than in old-

growth forests, even decades after the original clear-cut (Duffy and Meier 1992, Moola and Vasseur 

2004). Rare animals and specialists—including birds (Hansen et al. 1995), small mammals (Carey 

and Johnson 1995), and amphibians (Petranka et al. 1994)—are particularly dependent on old-

growth habitat. One study (Maguire et al. 2004) found a direct correlation between the persistence 

of many taxa of fungi and birds and the percentage of live trees spared during harvesting activities. 

Another (Marshall 2000) found that clear-cutting significantly reduces soil faunal and floral 

diversity. Even if alpha biodiversity is constant between clear-cut and mature forests, the species 

themselves may differ markedly (Gilliam et al. 1995), fundamentally altering the natural ecosystem. 

In contrast, the strategic creation of canopy gaps in wisely managed forests may actually increase 
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biodiversity by opening niches for fast-growing, shade-intolerant plant species and associated taxa, 

while preserving the old-growth characteristics and mature canopy that others depend on (Attiwill 

1994).  

Directly related to forest biodiversity is decaying wood, or coarse woody debris (CWD), 

defined here and in other studies (e.g., Foster and Lang 1982, Brais et al. 2006, Gough et al. 2007) 

as downed logs and branches more than 10 cm in diameter. Many studies have shown that CWD 

stores are much higher in old-growth forests than in secondary or harvested forests (Sturtevant et al. 

1997, McGee et al. 1999, Ziegler 2000, D'Amato et al. 2008). This is a major concern of restoration 

ecologists because CWD is an important structural feature of healthy forest ecosystems. CWD 

promotes biodiversity by creating microhabitats for a variety of flora and fauna (Harmon et al. 

1986, Carroll 1993, Freedman et al. 1996) and is a major source of fuel for wildfires (Uhl and 

Kauffman 1990), which also promote biodiversity in forests where fires were historically important 

disturbances (Angelstam 1998, Allen et al. 2002). Decaying CWD also is an important part of the 

global carbon cycle, returning vast amounts of carbon to the atmosphere and also sequestering a 

considerable amount in the soil as humus (Berg and McClaugherty 2008).  

Related to its role in the carbon cycle, but less clearly understood, is its function as a long-

term nutrient source in forest ecosystems. CWD decays slowly; reported half-lives for CWD range 

from 7 years in tropical forests (Lang and Knight 1979) to 300 years in conifer forests of the Pacific 

Northwest (Sollins et al. 1987). Thus, CWD has the potential to store and supply nutrients for long 

periods of time. The extent to which CWD meets this expectation, however, is ambiguous. A review 

of the subject by Laiho and Prescott (2004) concluded that CWD contributes much of the biomass 

but only a small percentage of the total nitrogen input to the typical northern coniferous forest. This 

is likely due to the consistently low initial nitrogen concentrations in wood. For instance, Hart 
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(1999) found that only 4 to 6% of plant nitrogen uptake originated in CWD. In addition, mortality 

from normal senescence and self-thinning is not sufficient to generate large inputs of CWD on a 

regular basis (Fahey 1983). Thus, the role of CWD in the cycling of nitrogen and phosphorous is 

much less significant than its role in the carbon cycle (Laiho and Prescott 2004).  

The same review, however, identifies certain cases in which this pattern may not hold. CWD 

in old-growth forests, for instance, represents a more substantial nutrient pool than the CWD in 

younger forests, due to the relative 

immensity of the downed boles (Laiho and 

Prescott 2004). This view is shared by Lang 

and Forman (1978), who suggest that 

nutrient contributions from CWD are 

substantial but hard to detect because of a 

long time lag, during which wood carbon 

content slowly declines. Alternatively, 

young forests in the early stages of 

succession may also store larger amounts of 

nitrogen in their CWD pools, which are also 

unusually massive due to the numerous 

downed stems (Fahey 1983). These special 

cases, however, are precluded by salvage 

logging, which mostly negates these great 

pulses of CWD (Lindenmayer and Noss 

2006).  

 
FIGURE 1. Location of study site, Pisgah State Park, in  

the Monadnock region of New Hampshire, USA.  
Maps modified from the Nations Online Project  
(http://www.nationsonline.org) and the New  
Hampshire Department of Resources and  
Economic Development (http://www.visitnh.gov).  



5 

The current thesis investigates the relationships between vegetation dynamics, CWD flux, 

and nitrogen cycling. The study site is an unmanaged, unsalvaged hemlock-hardwood forest 

recovering from a catastrophic hurricane that replaced its old-growth stands in 1938. Thus, we 

expect this forest to contain an especially large amount of nitrogen in its CWD pool, due to the 

simultaneous input of numerous very large trees during the hurricane. Moreover, because this wood 

has been decaying for over 70 years, the effects of this pulse of nitrogen should be detectable. This 

would be impossible in more recently disturbed forests, because coniferous CWD must decompose 

for several decades before it begins to release its nitrogen back into the ecosystem (Alban and 

Pastor 1993). The results of this study will help resolve how CWD contributes to forest nutrition, a 

question with important implications for both foresters and conservation biologists. More generally, 

this thesis also attempts to create a cohesive picture of natural forest succession 60 to 70 years after 

a stand-replacing disturbance, including understory and overstory vegetation, coarse woody debris 

stores, and carbon-nitrogen contents of soil and downed wood. Such a description will provide a 

useful comparison for forests recovering from clear-cutting or regenerating from pastures or 

farmland.  

2. Methods 

Study site and ethical considerations 

The study area is located in the Pisgah State Park in southwestern New Hampshire (42°49' 

N, 72°27' W) (Figure 1). In 1927, Harvard Forest purchased an 8.1 ha tract near the center of the 

forest in order to protect it from logging, which was rampant in the early 20th century. The tract was 

chosen for its magnificent old-growth white pine (Pinus strobus) and Eastern hemlock (Tsuga 

canadensis), as well as for its isolated location and rugged terrain, which precluded logging in its 

immediate vicinity. The most prominent topographical feature is a low ridge (214 to 397 m above 
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sea level) running north-south through the tract (Henry and Swan 1974, Foster 1988). The soil is 

thin and rocky, and bare stone faces are exposed in some areas of high relief. The climate is 

temperate, with an average annual precipitation of 96.5 cm, distributed over all four seasons, and a 

typical growing season of approximately 120 days (U.S.D.A. 1941, Henry and Swan 1974).  

The great hurricane of 1938 destroyed most of the old growth in Pisgah (Figure 2), and 

Harvard Forest chose not to salvage the uprooted trees within its protected parcel. In contrast, the 

numerous fallen trees were quickly harvested from the rest of the forest. Post-hurricane succession 

was allowed to proceed naturally in the Harvard Tract, which now consists almost entirely of five 

species: Eastern hemlock, red maple (Acer rubrum), American beech (Fagus grandifolia), paper 

birch (Betula papyrifera), and black birch (Betula lenta). The tract remains untouched, a rarity in 

New England (Orwig et al. 2001, D'Amato et al. 2006), and is insulated from development by the 

5300 ha State Park that was established in the late 1960s after decades of decreasingly intensive 

management. As a well-protected remnant of virgin forest, it provides a valuable opportunity to 

study ecological processes in a truly natural setting, and is the site of several past and ongoing 

studies of its fifteen permanent plots (Henry and Swan 1974, Foster 1988, Schoonmaker 1992).    
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The natural purity of our study site introduced special ethical consequences to our research 

(Minteer and Collins 2005). Much of Pisgah’s value comes from its legacy as a native forest that 

has not been directly disturbed by humans. Out of respect for the entire ecosystem as well as the 

individual organisms that comprise it, we made every effort to minimize our impact as we worked. 

Our gravest concern was the spread of the hemlock woolly adelgid (Adelges tsugae), the exotic sap-

sucking insect that is decimating Eastern hemlock over much of its eastern range (Orwig and Foster 

1998), including a stand about 50 m from the parking lot at Harvard Forest, Petersham, 

Massachusetts, where our research team was based (M. Wagner, personal observation). The adelgid 

has been known to disperse via wind, animal, and automobile vectors (McClure 1990). We 

reasoned, however, that our odds of introducing the pest to Pisgah forest are no greater than those of 

any given visitor to the State Park. We recognize, too, that our daily 60-mile commute consumed 

more petroleum and emitted more carbon dioxide than should be allotted to such a small group of 

people. We sincerely hope that our research will support the development of practical knowledge 

that improves the health of Pisgah forest or of the Earth in general, so as to offset any damage our 

work may have caused.  

Vegetation surveys 

This study focuses on two permanent transects that run magnetic west to east across the 

width of the Harvard tract, spanning the entire topographic gradient. The parallel transects, 20 m 

apart, are divided into 10 m x 10 m plots. One transect was 300 m long and the other was 270 m 

long, for a total of 57 plots covering 0.57 ha. All four corners of each plot were marked with upright 

PVC pipe. The southwest corners were labeled with aluminum tags inscribed with the number of 
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their respective plots. For analyses of spatial patterns, plots were pooled into 27 groups of two and 3 

groups of one based on their position along the topographic gradient (Figure 3).  

 
FIGURE 3. Diagram of sampling design—two transects, composed of 10 m by 10 m plots, with each plot’s 

position along the elevational gradient of the Harvard Tract. Modified from Schoonmaker 1992.  
 

To investigate the dynamics of the forest community over the past 20 years, we repeated the 

original surveys conducted by P.K. Schoonmaker (1992) when he established the transects in 1989. 

Schoonmaker inventoried every tree (stems ≥ 2.5 cm dbh) in the two transects, mapped their 

locations, and recorded diameter at breast height (dbh) and growing substrate. Schoonmaker used 

over a dozen different categories of substrate, but to simplify interpretation we condensed these into 

three major groups: soil, rock, and tip-up (i.e., the protruding roots of an older windthrown tree; see 

Figure 4). Schoonmaker’s maps also showed the major topographical features of each plot, such as 

rocks and the mounds and pits created by uprooted trees. We used these maps to locate each tree. 

We recorded any trees not listed in the 1989 data as ingrowth, mapped and measured them, and 

recorded their species. Trees listed in 1989 that could not be located were recorded as missing, and 

assumed dead. We noted a missing tree’s fate whenever possible (e.g., if it had become visible 

woody debris), but usually this was impossible and the tree was simply listed as missing. It should 
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be noted that because 20 years 

elapsed between surveys, our 

records of both mortality and 

ingrowth are probably 

underestimates—it is likely that 

some seedlings became 

established, died, and 

disappeared in between 

samplings. We take this fact into 

account when interpreting our 

data.  

By compiling and comparing our own data with Schoonmaker’s, we created a master dataset 

that describes the fate of every tree living in the transects in 1989. For those that were still alive in 

2009, we calculated their growth (as increase in dbh). By subtracting the trees that had died and 

adding the new trees, we created a second database that described the composition of these transects 

in summer 2009. We also constructed updated maps of the plots, showing all trees present in 2009 

(Figure 5). Using these data, we analyzed patterns of mortality and changes in overstory structure 

over the past 20 years. All statistical analyses were conducted using the programming environment 

R (R Development Core Team 2009).  

We also surveyed understory vegetation in each plot, which included saplings (stems < 2.5 

cm dbh), root sprouts, seedlings, ferns, and herbaceous seed plants. We did not inventory the non-

vascular flora. We used the Braun-Blanquet cover scale (Poore 1955) to characterize the understory 

in each plot. Plants occurring only once or twice in a plot were given the lowest ranking (r for rare), 

 
FIGURE 4. A paper birch growing on the exposed roots of a large  

white pine that was uprooted in the 1938 hurricane.  
Photographed in Pisgah forest by Tawny Virgilio, 2009.  
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and excluded from our final analysis of the community. All other plants were assigned to one of six 

categories depending on their estimated percent cover. Species that were sparsely present were 

presumed to cover 0.1% of a plot and grouped together; the other groups consisted of species 

covering least 1%, 5%, 25%, 50%, and 75%.  

Coarse woody debris surveys 

Schoonmaker’s original surveys also 

included inventories of all aboveground coarse 

woody debris. CWD included stumps (rooted 

dead wood shorter than breast height) and boles 

(downed wood). Snags (rooted dead wood higher 

than breast height) were tallied separately. 

Schoonmaker identified every piece of CWD to 

species (when possible), measured their volume, 

and drew them to scale on the vegetation maps. 

Snapped and uprooted trees of appropriate size and age (mostly large Tsuga canadensis and Pinus 

strobus), and lying at an orientation of 270 to 330°, were linked to the hurricane of 1938.  

Using these maps, we marked each piece of CWD on the 1989 list as either “missing” 

(assumed decayed) or “present.” A piece of wood was considered “present” if any part of it was 

visible. We also identified new CWD to species when possible; severely decayed CWD was instead 

identified to genus, as a hardwood or softwood, or recorded as unknown and excluded from analysis 

of species differences. We measured the volumes of new CWD and drew them onto the updated 

plot maps. Whenever possible, new CWD was cross-referenced to a tree that had died since 1989. 

New CWD was also assigned a decay class based on visual cues and physical traits, according to 
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the five-level system described by Sollins et al. (1987). Logs and stumps were assigned as follows: 

class I if the wood was newly dead or fallen, still solid with bark intact and possibly with twigs still 

attached; class II if the wood showed early signs of decay, with minimal missing bark, no twigs, and 

sapwood beginning to soften; class III if the wood retained its shape but was soft through to the 

heartwood, with bark sloughing off; class IV if the wood was losing its shape, missing its bark and 

at least some sapwood, and heartwood beginning to decay; and class V if the wood was extremely 

decayed, had lost all of its bark and much of its sapwood and heartwood, and was severely 

misshapen. We altered the system slightly for birch detritus, due to the unusual resistance of birch 

bark.  

We measured the dbh of snags using diameter tape. Volumes of stumps and boles were 

calculated from length and average diameter. For both boles and stumps, length from the tip to the 

base, or just above the root-ball if roots were also exposed, was measured using meter tape. Using 

50-cm calipers, we measured the width of the stump twice at each end, on perpendicular axes. The 

average diameter of the stump was calculated as the mean of all four measurements. The same 

approach was used to measure downed wood. We took two width measurements on perpendicular 

axes at each end of the bole, and averaged all four values to calculate the final diameter. If a bole 

fell partially out of the plot, we measured its end diameter at the point of intersection with the plot 

boundary, and only measured its length up to the plot boundary line. All downed wood with an 

average diameter of < 10 cm was considered fine woody debris, and was neither mapped nor 

recorded.  

This methodology deviates from both conventional and expertly recommended techniques 

for measuring CWD (Harmon and Sexton 1996). For instance, we had to exclude downed wood that 

was ≥ 10 cm diameter at one end but tapered so that its average diameter was < 10 cm. Our priority 
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in this study, however, was to compare data from 1989 and 2009, requiring us to be consistent with 

the methods used in 1989 (Schoonmaker 1992). As a result, we probably underestimated the 

amount of CWD that has entered the system since 1989. We take these consequences into account 

when interpreting our results. 

As we did for the vegetation surveys, we compiled data into two sets: one describing the fate 

of all CWD present in 1989, and another reflecting the current CWD pool in these transects. 

Missing CWD was excluded from the updated maps, while new CWD was added. Due to time 

constraints, we did not re-measure old CWD for partial volume loss or change in decay class. We 

consider the resulting underestimate of decomposition when interpreting our results. Again, we 

conducted all statistical analyses using the programming language R.  

Using our records of CWD that decayed completely between surveys, we were able to 

roughly estimate decay rates based on volume loss. We calculated the decay constant k from 

Olson’s (1963) single negative exponential model using the formula: 

V=V0*e-kt 

where V is the volume of CWD in 2009, V0 is the volume in 1989, and t = 20 years. The parameter 

k is used widely in the literature to describe decay rates, although it is almost always calculated 

from data on mass loss (Guo et al. 2006), density loss (Ganjegunte et al. 2004), or carbon dioxide 

efflux (Sollins et al. 1987) rather than volume loss. In addition, our values of k are almost certainly 

underestimates because they do not take into account volume lost from CWD that was still present 

in 2009, and also because they do not take into account mass and density loss that may have 

occurred without changing the apparent volume. Therefore, we do not attempt to compare these 

decay rates to those from other studies, but only use them to describe and predict CWD fluxes 

within our own study system, and interpret them accordingly. 
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Nutrient analysis 

 To examine the effect of CWD on soil richness, we took soil samples from 1) underneath 

CWD, 2) spots on the forest floor where CWD was present in 1989, but has since decayed 

completely, and 3) next to CWD, one meter away in a random direction. We also collected samples 

of the CWD itself, in order to examine nutrient dynamics of wood of different species, at various 

levels of decomposition. The individual pieces of CWD chosen for nutrient analysis were randomly 

selected from the 2009 pool of CWD on one of the transects. We only selected CWD belonging to 

three species: Tsuga canadensis (N=13), Pinus strobus (N=6), and Fagus grandifolia (N=4). 

Locations of soil samples from sites of completely decayed CWD were chosen in a similar manner, 

except that they were based on the pool of CWD that was present in 1989 but missing in 2009. 

These soils were from the former sites of randomly selected T. canadensis (N=6) and P. strobus 

(N=6) CWD, all originating in the 1938 hurricane (Schoonmaker 1992).  

 
TABLE 1. Population sizes of all tree species in two transects (0.57 ha total) of the Harvard Tract in 

Pisgah forest, NH in 1989 and 2009. 
 

Species 
 

1989 
population 

 
Deaths 

 
Ingrowth 

 
2009 

population 

 
Net % 
decline 

 
Annual % 

decline 
Tsuga canadensis 582 120 29 491 15.6 0.85 
Acer rubrum  350 169 7 188 39.9 2.55 
Betula lenta 272 149 2 125 46.3 3.11 
Fagus grandifolia 208 86 3 125 54.3 3.92 
Betula papyrifera 127 69 0 58 54.0 3.89 
Fraxinus americana 7 1 0 6 14.3 0.77 
Betula allegheniensis 10 5 0 5 50.0 3.47 
Acer saccharum 8 3 0 5 37.5 2.35 
Picea rubens 5 2 0 3 40.0 2.55 
Quercus rubra 3 0 0 3 0.0 0.00 
Prunus serotina 2 0 0 2 0.0 0.00 
Pinus strobus 1 0 0 1 0.0 0.00 
Ostrya virginiana 1 0 0 1 0.0 0.00 
Ulmus americana 1 1 0 0 100.0  
All species 1577 605 41 1013 35.7 2.21 
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All soil samples, taken from the organic layer only, were collected using a garden spade and 

taken back to the lab in labeled and sealed plastic bags. We filtered the soils through a 2 mm sieve 

to remove roots, wood chips, and other debris. Soils were dried at 60° C for 3 days and finely 

ground using the 110V heavy duty Wig-L-Bug grinding mill, which we cleaned with ethanol and 

de-ionized water between samples to prevent cross-contamination. Woods were dried at 100° C for 

one week, splintered using a razor blade, and finely ground using the Wig-L-Bug mill. Gloves were 

worn at all times while handling both soils and woods. We analyzed the carbon and nitrogen 

contents of the prepared samples with an Elementar Vario MICRO Cube. 

As for the vegetation and CWD surveys, statistical analyses were conducted with the R 

programming language (R Development Core Team 2009). To address whether CWD affects the 

nitrogen richness of soil in this forest, we compared the mean percent nitrogen, mean percent 

carbon, and mean C:N of the three soil treatments (away from CWD, under CWD, and formerly 

under CWD) with one-way ANOVA. Pairwise comparisons were made with Welch’s two-sample t-

test. We also compared the mean percent nitrogen, mean percent carbon, and mean C:N of CWD 

samples, using species and decay class as explanatory variables. For some CWD samples, nitrogen 

content was so low that the machine could not 

detect it accurately; these samples were excluded 

from ANOVA tests for percent nitrogen and C:N.  

3. Results 
 
Vegetation surveys 
 

Censuses of all species from 1989 and 

2009 revealed a 36.7% decrease in density from 

2793 stems/ha to 1768 stems/ha. The 615 deaths 

 
FIGURE 6. Total live basal area in 1989 and 2009,  

broken down by species.  
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were distributed unequally among species (Pearson chi-square, p < 0.001), ranging from 20.7% of 

hemlocks to 55.1% of black birches (Table 1). We recorded only 36 new stems, of which 26 were 

hemlocks. In both 1989 and 2009, over 97% of live stems belonged to one of the five dominant 

species (Eastern hemlock, red maple, American beech, paper birch, or black birch). Populations of 

all species declined over the 20-year interval, except for three sparsely present species, which 

remained stagnant (Table 1). The relative densities and basal areas of the five dominant species, 

however, shifted noticeably in favor of hemlock at the expense of the birches (Figure 6). This 

reflects both uneven mortality and uneven growth (Table 2; ANOVA, p < 0.001) among species. 

Total basal area increased from 35.5 m2/ha to 41.8 m2/ha. 

Preferential thinning of birches and red maple since 1989 (Table 1) suggests that shade-

tolerant Eastern hemlock is enjoying a selective advantage. This competition probably also explains 

the observed high mortality rates of trees growing on the exposed roots of massive windthrown 

trees (“tip-ups”); although tip-ups are an unstable substrate and are expected to cause mortality 

when they eventually degrade and collapse, as of 2009 most tip-ups were still quite solid. Therefore, 

death rates in these microhabitats were higher because most (72.2%) of the trees that established 

there were shade-intolerant birches. In contrast, only 14.9% of trees growing in soil and 18.2% of 

trees growing on bare rock were birches.  

 
TABLE 2. Species-specific and overall growth of trees in the Harvard Tract of Pisgah forest, NH from 1989 

to 2009. 
 

Net ∆ basal area 
(m2/ha) 

 
Species 

 
Mean dbh 

growth (cm) 
+ - 

 
% of total basal 

area in 1989 

 
% of total basal 

area in 2009 

Tsuga canadensis 2.99 5.93  45.6 52.7 
Fagus grandifolia 2.94 0.15  16.1 14.0 
Acer rubrum 2.05 0.17  15.3 13.3 
Betula lenta 2.44 0.20  11.7 10.4 
Betula papyrifera 2.28  0.39 7.0 5.0 
Other 3.71 0.25  4.3 4.6 
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All species 2.72 6.44  100.0 100.0 
 

Growing substrate also affected mortality rates (Pearson chi-square, p < 0.01). Trees 

growing on tip-ups suffered 50.0% mortality, compared to only 36.7% for trees growing in soil and 

35.4% for those growing on bare rock. Among all surviving trees, however, substrate did not affect 

growth (ANOVA, p = 0.2349).  

Both tree density and mean dbh changed in roughly opposite manners depending on location 

along the transect; as a result, their effects clashed so that basal area had no relationship with 

location (Figure 7). Single linear regression of density and mean dbh showed a strong negative 

correlation (Figure 8; p < 0.001 for data from both 1989 and 2009). Understory vegetation, 

however, was less predictable. Plots showed variation in both species richness and percent ground 

cover, but no trends were apparent along the transect (Figure 9). Furthermore, single linear 

regressions revealed that percent cover was not related to tree density (p = 0.293), tree basal area (p 

= 0.1703), or volume of CWD (p = 0.5248). Similarly, herb species richness showed no correlation 

with the same parameters (p = 0.179, p = 

0.5610, and p = 0.246 respectively).  

 A total of 26 species (including 16 

herbs and shrubs and 10 species of tree 

seedlings) were recorded in the understory. 

The most abundant were hemlock seedlings, 

ferns in the genus Dryopteris, beech 

seedlings, and lowbush blueberry. The most 

widespread (i.e., recorded in the most plots) 

were beech seedlings, red maple seedlings, 

 
FIGURE 7. Trends in tree density and size along the  
     topographic gradient (see Figure 3) in 1989 and 2009. 
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hemlock seedlings, and Indian pipe (Table 3). Notable areas for understory vegetation were the top 

of the ridge (plots 15-16), which were dense with blueberry, and the low end of the transect (plots 

28-30), which supported thick patches of ferns (Figure 9-b). The entire understory covered 9.87% of 

the available area in the study site; without woody seedlings, saplings, and root sprouts, this figure 

drops to 4.42%.  

CWD surveys  

Between 1989 and 2009, a total of 

153.7 m3/ha of CWD decayed completely, 

and only 14.7 m3/ha of new CWD were 

added to the system, resulting in a net 

decrease of 139.0 m3/ha of wood. Most 

(87.8% by volume) of the CWD that decayed 

completely between inventories was pine or 

hemlock. However, initial volumes of CWD 

of these species were so high that even in 

2009, they represented most of the CWD 

pool despite suffering the greatest losses to decay (Figure 10). They also accounted for the majority 

of new inputs to the CWD pool (Table 4), despite the fact that living pine was nearly absent from 

the community in 1989 and hemlock suffered the lowest mortality rates of any species since then. 

The large influx of pine CWD resulted from a few massive hurricane-killed snags that fell into one 

plot, causing the addition of 4 pieces of wood with an average volume of 0.69 m3—much higher 

than 0.02 m3, the average volume of all other new CWD (this event is visible as a spike in Plot 12 in 

Figure 11-c). The abundance of hemlock in the input CWD pool, in contrast, is an artifact of the 

 

  
FIGURE 8. Strong negative correlation between density  

and tree size, showing differences in community  
structure between plots. 
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initial abundance of this species in 1989 (45.6% of live basal area) as well as hemlock’s relative 

success at establishment since then (53.4% of ingrowth basal area). The basal area of snags 

increased slightly from 2.64 to 2.78 m2/ha. Both total CWD input and total volume varied by plot, 

but no trends along the transect were apparent (Figure 11). In single linear regressions, CWD input 

was not correlated with 1989 basal area (p = 0.882), 1989 tree density (p = 0.125), or mortality (p = 

0.161).  

TABLE 3. List of all species present in the understory, along with their abundances. 
 

Species 
 

Occurrence (% of plots) 
 

Coverage (% of transect area) 
Tsuga canadensis 66.67 3.62 
Dryopteris sp. 43.33 2.44 
Fagus grandifolia 86.67 1.40 
Vaccinium angustifolium 23.33 1.35 
Acer pennsylvanicum 13.33 0.25 
Polystichum sp. 13.33 0.25 
Polypodum vulgare 20.00 0.18 
Acer rubrum 80.00 0.16 
Monotropa uniflora 66.67 0.07 
Trientalis borealis 26.67 0.03 
Aralia nudicaulis 13.33 0.01 
Arisaema triphyllum 6.67 0.01 
Betula papyrifera 6.67 0.01 
Carex sp. 13.33 0.01 
Dennstaedtia punctilobula 6.67 0.01 
Gaultheria procumbens 6.67 0.01 
Lycopodium lucidulum 10.00 0.01 
Lycopodium obscurum 6.67 0.01 
Maianthemum canadense 10.00 0.01 
Medeola virginiana 13.33 0.01 
Mitchella repens 10.00 0.01 
Aster acuminatus 3.33 0.00 
Betula lenta 3.33 0.00 
Polygonatum commutatum 3.33 0.00 
Viburnum acerifolium 3.33 0.00 
Viburnum alnifolium 3.33 0.00 
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Nutrient analysis 
 
 In this study, CWD appears to 

decrease the nitrogen content of the soil 

beneath it. Percent N was lowest in “under” 

soil presently underneath CWD, intermediate 

in “incorporated” soil associated with 

recently decayed CWD, and highest in 

control soil with no recent exposure to CWD 

(Figure 12-b). Accordingly, C:N shows the 

opposite trend (Figure 12-c). The C:N of 

control soil was significantly lower than 

those of both “incorporated” and “under” soil (p < 0.05 and p < 0.01, respectively), but the C:N of 

“incorporated” and “under” soil was the same (p = 0.6586). There were no differences in % carbon 

between soil categories (Figure 12-a; ANOVA, p = 0.7002).  

For CWD itself, species and decay class explained variance only in %C (ANOVA; p < 0.01 

for both). Analyses were hampered by small sample sizes; no pairwise comparisons could be made 

for CWD in decay class I. Comparisons of the remaining groups were ambiguous. Percent N varied 

significantly only between decay classes II and V, whereas mean C:N distinguished only decay 

TABLE 4. Flux by volume, estimated decay rate, and estimated half-life of CWD in the Harvard Tract of 
Pisgah forest, NH from 1989 to 2009. 

 
Species 

 
Input (m3/ha) 

 
Output (m3/ha) 

 
k (years-1) 

 
Half-life (years) 

Pinus strobus 4.87 19.73 0.04745 14.6 
Tsuga canadensis 3.47 115.21 0.00535 129.5 
Fagus grandifolia 2.49 3.54 0.01391 49.8 
Betula spp.  2.47 5.44 0.04319 16.0 
Acer spp. 0.86 2.15 0.03054 22.7 
Other 0.52 7.65 0.03925 17.7 
All species 14.68 153.72 0.02486 27.9 
  

 
FIGURE 9. Spatial variation in understory richness and  

abundance along the topographic gradient (see  
Figure 3). This figure includes both herbs and  
woody seedlings, saplings, and root sprouts. 
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class II from class IV (Welch two-sample t-

test, p < 0.05 in both cases). Percent C, in 

contrast, differed significantly between decay 

class V and classes II, III, and IV (Welch 

two-sample t-test, p < 0.05, p < 0.01, p < 

0.001 respectively). This reflects the low 

variance in percent C between the four lower 

classes (all between 47.0% and 49.0%) 

followed by the sudden spike in decay class 

V (Table 5). Anomalous behavior of decay 

class V is also evident in trends in percent N 

and C:N. Relative N content increases steadily with decay class from 15.5% to 49.1%, but then 

drops abruptly in class V. Similarly, C:N decreases steadily as decay class increases, but spikes 

again in decay class V (Table 5). Similarly, %C differed between American beech and both 

softwood species (p < 0.01 for pine, p < 0.001 for hemlock) but not between the softwoods 

themselves (p = 0.3799). No species differed significantly in either %N or C:N. In general, N 

content was highest in pine CWD, intermediate in hemlock CWD, and lowest in beech CWD (Table 

5). Percent C and C:N showed the opposite trend. Qualitatively we can say that N content is higher 

in CWD than in fresh wood; none of our fresh wood samples contained enough N for the elemental 

analyzer to detect, whereas we were able to obtain N data for most of the CWD samples.  

4. Discussion 

Even-aged succession in Pisgah Forest 

 
FIGURE 10. Total volumes of CWD in 1989 and 2009.  

See Table 4 for a breakdown of the change in  
volume for each species .  
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Over the past 20 years, the tree community in the Harvard Tract of Pisgah forest has 

changed in a predictable way, given the life histories and ecological requirements of the major 

species involved (Halpern 1989). Reconstructions (Henry and Swan 1974, Foster 1988) reveal that 

the old-growth vegetation in the early 20th century consisted mostly of massive Pinus strobus and 

Tsuga canadensis. 

 After the forest was leveled by the 1938 hurricane, white pine never recovered. Foster 

(1988) posits that some qualitative difference in the forest floor—possibly the absence of fire in 

recent decades—prevented white pine from re-establishing during early succession, when the light-

loving species could have thrived. Instead, a variety of hardwoods—notably opportunistic birches 

and red maple—rose to prominence under the newly wide-open canopy. Meanwhile, hemlock 

remained important, keeping up with the faster-growing hardwoods during early succession. It 

appears that the first hemlocks to reach the new overstory were already seedlings or saplings at the 

time of the hurricane, survived the devastating winds, and were released from suppression when the 

formerly dense canopy was opened by the storm (Foster 1988). Tree density skyrocketed 

immediately after the hurricane, and basal area plummeted; but as the overstory grew in, density 

gradually decreased while basal area increased, a pattern that has continued through 2009.  

 

TABLE 5. Nitrogen contents of CWD of different decay classes and species.  
 

CWD decay class 
 

Attribute 
I II III IV V 

mean % N 15.50 § 25.76 a 37.40 ab 49.05 ab 36.82 b 
mean C:N 303.87 § 207.42 c 158.99 cd 122.32 d  181.18 cd 
  

CWD species 

 Pinus strobus Tsuga canadensis Fagus grandifolia 
mean % N 43.72  37.35  29.89  
mean C:N 158.79 172.13 183.93 
Notes: For decay classes, different letters denote significance at p < 0.05 using Welch two sample t-test. 

No means were significantly different between species. 
§ Significance could not be tested for decay class I due to small sample size (N = 5). 
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The topographic gradient of our study site appears to play some role in overstory structure. 

The tree community is less dense in the eastern third of the transect, which corresponds to a 

pronounced slope with an eastern aspect (see Figure 3). In addition, the trees are also larger than 

average here. Because the 1938 hurricane approached from the east (Foster 1988), the thinner forest 

here is not unexpected. It seems that if this area suffered heavier casualties during the hurricane, 

some legacy of CWD should remain, especially at the bottom of the slope (where falling boles are 

naturally more likely to land). Instead, however, we see an unusually small CWD pool that 

decreases along with elevation (Figure 11). The distinctiveness of this part of the transect suggests 

some qualitative difference and merits further investigation.  

Because of the coarse temporal resolution of this study, we know only that the relative 

density and relative basal area of Eastern 

hemlock have increased over the last 20 

years. Sampling at a finer scale would 

allow us to determine whether rates of 

population change are increasing, 

decreasing, or remaining constant. In 

addition, a finer temporal resolution 

would prevent the underestimation of 

both ingrowth and mortality rates, thus 

allowing a more accurate and 

descriptive record of tree community 

dynamics. Based on these imperfect 

data, our best prediction for the future of 

 
FIGURE 11. Spatial variation in total CWD volume in 1989  

and 2009, and in CWD input between surveys, over  
the topographic gradient (see Figure 3). 
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Pisgah is decelerating mortality towards a climax community dominated by Tsuga canadensis, with 

significant populations of Fagus grandifolia and Acer rubrum. An intermediate disturbance regime 

may create canopy gaps that allow r-selected species such as Betula lenta and B. papyrifera to 

persist in small stands, eventually resulting in a forest with a more complex age structure (D'Amato 

et al. 2008). Succession is not completely understood and difficult to predict, but even subtle 

variations in disturbance history have been shown to impact vegetation patterns (Halpern 1989, 

McLachlan et al. 2000, Busby et al. 2008). Therefore, we expect that community dynamics will 

proceed differently in Pisgah forest than in forests with histories of clear-cutting or agricultural use.  

Such disturbance-related differences in forest composition also extend to the herb 

community (Duffy and Meier 1992, Gilliam et al. 1995, Thomas et al. 1999, Moola and Vasseur 

2004). Currently, the understory vegetation at our study site is similar to that of other old-growth 

hemlock forests in the region. For instance, a recent article by D’Amato et al. (2009) reported a 

total of 26 herb species from 16 old-growth sites in western Massachusetts, covering on average 

about 4% of the forest floor. Sixteen of these species co-occurred in Pisgah, which had 20 species 

covering 4.42% of available area. It is worth noting that the Pisgah data represent a much larger 

sampling area (5700 m2 compared to 384-640 m2); the average of 14 species found in each 24-40 

m2 plot by D’Amato et al. is probably higher than what a similar sampling design would reveal in 

Pisgah forest. Nevertheless, the Pisgah understory is more similar to the old-growth vegetation than 

the secondary vegetation reported by D’Amato et al. This suggests that land-use history exerts a 

strong influence on the understory community, because a diverse herb and shrub community has 

persisted in Pisgah despite a catastrophic disturbance that opened the canopy and drastically altered 

the overstory, whereas many understory species have not repopulated forests that were cleared for 

agriculture. D’Amato et al. (2009) suggest that the availability of natural disturbance-related 
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microhabitats (e.g., CWD, pits, tip-ups, canopy gaps) promoted understory richness. Similarly, del 

Rio (2006) found that the herb community was altered by the salvaging of downed wood, resulting 

in clear differences even between forests disturbed by the same windstorm. In this thesis, however, 

we found no links between either CWD or basal area and understory composition in Pisgah forest.  

Coarse woody debris flux  

The CWD pool at Pisgah forest has 

diminished significantly since 1980, 

indicating the steady decomposition of the 

last major pulse of CWD in 1938. In 

pristine forests during succession, the 

CWD pool is logically expected to be 

representative of the climax vegetation at 

the time of the most recent major 

disturbance (excluding fires). Pisgah is no 

exception; even in 2009, the vast majority 

of the CWD pool is white pine and 

hemlock, which made up a similar 

proportion of the total woody biomass at 

the time of the hurricane (Foster 1988). As this wood continues to decompose and slowly 

disappears, it will no longer swamp new inputs to the pool, and CWD stores will begin to resemble 

more closely the post-disturbance community. Repeated surveys at this site, if conducted at a finer 

temporal resolution—about 5 year increments, recommended by Harmon and Sexton (1996)—are 

expected to reflect the process of succession. More generally, the size and species composition of 

 
FIGURE 12. Carbon and nitrogen contents of soil affected by  

association with CWD. “None” refers to control soil,  
“Under” refers to soil collected from beneath CWD,  
and “Incorporated” refers to soil collected from sites  
where CWD has completely decayed within the past  
20 years. Plots with different letters are significantly  
different (Welch two-sample t-test, p < 0.05). 
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the CWD pool should track the total biomass and species composition of the woody community at 

any given time, with a time lag of some decades depending on tree senescence rates, CWD decay 

rates, and the frequency and intensity of disturbance. A comprehensive model linking CWD stores 

and vegetation has not yet been developed, although such relationships have been used qualitatively 

to reconstruct forest history at the landscape level (Henry and Swan 1974).  

Even after 70 years of decay, the CWD pool in Pisgah forest is substantially larger than 

those in typical New England secondary hemlock forests, and even other primary hemlock forests 

(Table 6). Our recorded value of 215.8 m3/ha is particularly striking because it is almost certainly 

an underestimate, given our unusually strict definition of CWD (see Methods). The markedly high 

volume of CWD compared to similar old-growth forests is due to the relatively recent catastrophic 

disturbance and the slow decomposition of the resulting downed trees. As this major pulse of CWD 

gradually disappears, we expect the total volume of CWD at Pisgah to decline and reach 

equilibrium between decay and new mortality (Tyrell and Crow 1994). Because no trees are 

harvested and removed from this ecosystem, we expect its volume of CWD at equilibrium to remain 

higher than volumes in partially or entirely harvested hemlock forests. The frequency and intensity 

of future disturbances—particularly ice storms and small-scale windstorms—will likely be 

important controls on the CWD pool (D'Amato et al. 2008), because rates of standing mortality due 

to normal senescence are relatively slow among the long-lived Eastern hemlock, compared to 

species such as Betula spp. (Tyrell and Crow 1994).  

Our records of complete decomposition of CWD between 1989 and 2009 allow us to draw 

some broad conclusions about CWD decay rates in Pisgah forest. Between 1989 and 2009, white 

pine CWD decayed more slowly than any other species by an order of magnitude. If it continues to 

decay at the same rate, about four centuries will pass before only 5% of its volume remains. In 
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contrast, all red maple CWD currently in the system is expected to decay within just over 20 years. 

Because of our rough methodology, these CWD lifespans are probably overestimates (see 

Methods). Nevertheless, an impressively small proportion of pine CWD decomposed during the last 

20 years. This relatively low decay rate, coupled with the very high initial volume of white pine 

CWD, suggests that evidence of Pinus strobus will remain in Pisgah forest for many decades after 

its live population was wiped out.  

 

 

Nitrogen cycling 

Because CWD is so abundant in Pisgah forest, we discuss here its possible effects at the 

ecosystem level, which might be missing from overharvested forests with unnaturally small stores 

of downed wood (Currie and Nadelhoffer 2002). Specifically, we go beyond the well-established 

impacts of CWD (creating microhabitats, promoting seedling establishment, fuelling wildfires, etc.) 

and address instead its ambiguous role in the nitrogen cycle. Unfortunately, without mass or density 

TABLE 6. Comparison of CWD stores and basal areas of New England forests differing in community 
composition and disturbance history.  
CWD 

(m3/ha) 
Basal area 

(m2/ha) 
Disturbance / 

succession level 
Forest type Location Source 

216 41.8 Pristine; even-aged 
maturing 

Hemlock/hardwood Southeastern 
NH 

This thesis 

135 44.8 Pristine; old-growth Hemlock Western MA D’Amato et al. 
2008 

33 41.2 Secondary growth Hemlock Western MA D’Amato et al. 
2008 

109 NA ‡ Secondary growth Hemlock/hardwood Central ME Fraver et al. 2002 
32 61.2 Pristine; old-growth Hemlock Central MA Orwig et al. 2001 

126 NA ‡  Old-growth 
 

Hemlock/hardwood Eastern NY Ziegler 2000 

63 NA ‡ Post-fire secondary 
growth 

Hemlock/hardwood Eastern NY Ziegler 2000 

65 47.0 Old-growth Hemlock/hardwood Northern MI 
and WI 

Tyrell & Crow 
1994 

69 18.2 Partially harvested, 
uneven-aged 

Hardwood Eastern NY McGee et al. 1999 

139 33.7 Old-growth Hardwood Eastern NY McGee et al. 1999 
61 29.1 Maturing, even-aged Hardwood Eastern NY McGee et al. 1999 

‡ Data not reported.  
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measurements we could not estimate the total amount of N stored in the woody litter in Pisgah 

forest. The %N by mass in CWD was quite low, but such a huge amount of even poor-quality CWD 

could represent a formidable N pool (Laiho and Prescott 2004). In addition, CWD appeared to 

accumulate N. Past studies also have found that the nitrogen content of CWD increases with time 

(Holub et al. 2001). In the current study, however, N content increased with decay class only for 

classes I through IV (Table 5). Possibly, decay class V describes the point at which the N in CWD 

begins to be released into the ecosystem. If this is so, future studies might concentrate on extremely 

decayed wood in order to describe the endpoint of the decomposition process, as far as N is 

concerned. 

 In this study, the effects of CWD on soil nitrogen are more interesting than the nutrient 

contents of the wood itself. Aber et al. (1989) identified soil C:N as an important indicator of forest 

N status, which in turn exerts an important control on many aspects of ecosystem functioning, 

notably primary productivity (Aber et al. 1995, Vitousek et al. 1997). CWD significantly decreased 

the amount of N in the organic soil layer, even after the wood had decomposed entirely. This shows 

that CWD’s effects are detectable both before and after it is incorporated into the soil, suggesting 

that its mere physical presence is enough to alter soil nutrition (although chemical or biological 

processes may also eventually come into play). Differences in soil nutrition add another element of 

spatial heterogeneity to the forest floor, and can therefore be expected to influence the spatial 

arrangement of future vegetation (D'Amato et al. 2009). More detailed research is necessary to 

investigate the possible mechanisms by which CWD decreases soil N: 

1) Logs intercept rain containing dissolved nitrogen, a common form of pollution in New 

England (Driscoll et al. 2003, Campbell et al. 2004). Experiments in other mixed forests 

(Schimel and Firestone 1989) and in nearby Harvard Forest (Micks et al. 2004) have 
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shown that decaying wood acts as a sink for anthropogenically supplemented N—

another potential mechanism for N accumulation in CWD. Another Harvard Forest 

study, however, indicated that soil stores more exogenous N than does wood or other 

litter (Magill et al. 2004), which would explain why less N was detected even in soil that 

has already incorporated the decayed CWD. This hypothesis merits further investigation, 

because N deposition has the potential either to enhance forest productivity (Nadelhoffer 

et al. 1999) or to damage ecosystem health (Aber et al. 1995, Magill et al. 2004).  

2) CWD blocks inputs of leaf litter, which tends to contain more nitrogen than woody litter 

(McClaugherty et al. 1985). Because humus consists largely of decomposed plant litter, 

the organic layer of exposed soil should contain much more leaf material than soil that 

has been sheltered by wood for decades. This observation explains not only why the 

control soil in our study was richer than soil associated with CWD, but also why soil 

currently under CWD had slightly less N than soil under totally decayed CWD (Figure 

12)—probably, the “incorporated” soil has recently had a few years of leaf input. In 

general, then, the N content of soil under CWD should decrease consistently with time 

and then increase after the log is gone—an hypothesis easily testable either in woody 

litter chronosequences or through long-term experimentation (e.g., intercepting and 

removing leaf litter). 

3) Fungi living in humus and on woody litter have been shown to move soil nitrogen into 

CWD (Schimel and Firestone 1989), a biological explanation for the scarcity of N 

beneath logs. The presence of CWD also affects the soil biotic community, especially 

organisms involved in the decomposition of plant litter. For instance, CWD promotes 

species richness of basidiomycetes and other soil fauna (Nordén et al. 2004), with 
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important implications for many ecosystem functions (Coleman and Whitman 2005). 

Spears et al. (2003) found that soil beneath CWD is warmer than control soil, and while 

microbial biomass was not affected, the metabolic rates and N utilization may have been 

enhanced by higher temperatures beneath logs.  

5. Conclusion 

The characteristics of Pisgah forest described in this thesis reinforce previous studies’ 

conclusions that land use history exerts a crucial influence on ecosystem processes. The old-growth 

stands that once dominated the forest were almost completely eliminated by the hurricane of 1938, 

and yet the structure of the forest today is very different from the structure of forests that suffered 

similarly intense disturbance at the hands of humans. In particular, the evidence suggests that 

completely natural forests such as Pisgah store much more carbon and nitrogen in the form of 

coarse woody debris and support a wider variety of herbaceous species than do second-growth 

forests in the same region. This study also shows that CWD is involved in nitrogen cycling and 

alters the nutrition of the soil beneath it. Thus, it contributes a great deal of spatial heterogeneity to 

the forest floor, not only as microhabitat for plants and animals, but also through its effect on soil N 

content even after it is completely decayed. Because biodiversity and N cycling are so crucial to 

ecosystem functioning, therefore, the impacts of land use resonate through many dimensions of 

forest health. Because of its recent history of catastrophic disturbance, Pisgah has provided an 

outstanding opportunity to observe succession in a totally natural setting, and an excellent case 

study in basic forest ecology and forest history. Its unique CWD pool, protected status, well-

documented history, and ownership by a Long-Term Ecological Research program also make it an 

ideal study site for more detailed CWD decomposition studies in the future. This thesis is the first 

attempt at quantifying decay rates at Pisgah, and has set a precedent for nutrient analysis as well. 
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More frequent surveys of CWD including density measurements, quantification of a wider array of 

nutrients, and more detailed soil profiling should yield valuable insights into relationships between 

disturbance, succession, and forest nutrition.  
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