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I. ABSTRACT

An elastically supported cylindrical shell is used to represent the
motion of a pneumatic tire in the plane of the wheel. This is an attempt
to utilize shell motion as an analog to the plane motion of the pneumatic
tire tread. This idea is suggested by the constructional features of a
pneumatic tire, both from the point of view of mass distributlon and the
distribution of elastic stiffness.

The equations of motion for such a model are derived by reference to
conventional energy methods. In this derivation, the influence of internal
pressure and elastic support of the shell is taken into account. The fre-
guencies are determined as functions of the mode shape, and 1t is shown that
nodes, as well as antinodes, rotate with an angular wvelocity somewhat less
than the angular velocity of the rotating pneumatic tire, to an extent de-
termined by the particular mode sghape in question. It is hoped that this
phenomena may be useful in explaining or understanding some vibratory or

acoustic interactions between a tire and suspension srstem.






II. FOREWORD

The problem of the vibration of a two dimensional cylindrical shell
has been treated by Rayleigh, Ref. L. A study of this type of shell under
rotation has been published by Bryan, Ref. 2. Both of these earlier papers
contain considerable information which may be used directly for the study
of this problem, and a great deal of the background material in this paper
is drawn from these sources.

In this particular paper, an attempt is made to utilize the circular
cylindrical shell supported on an elastic foundation as a model for the
motion of the tread of a pneumatic tire in the plane of the wheel. Such a

shell model is shown in Figure 1.
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Figure 1. Basic cylindrical shell model for a pneumatic tire.

Previous studies have shown that such a model may be used for the predic-
tion of contact patch lengths (Ref. 3), and of loads carried by a real

pneumatic tire (Ref. L). Thus, there i1s some reason to believe that such a



cylindrical shell model might be used to represent motion of the tread of
a tire in the plane of the wheel.

It should be pointed out here that this represents one path for the
idealization of the problem of the vibration of a pneumatic tire. In ef-
fect, this point of view says that we will consider the tread to be a ring,
or shell, elastically supported and capable of motion in its plane. An al-
ternate approach might be to attempt to study the vibration characterigtics
of a isotropic uniform torus, and eventually to generalize this to a problem
involving arbitrary mass and stiffness distribution similar to a pneumatic
tire., There is little question but what this second approach would in the
long run prove more fruitful. The Jjustification for the present method liesg
in the fact that observations seem to indicate that a great many pneumatic
tire problems can be attributed to motion in the plane of the wheel. The
particular mass and stiffness distributlon associated with the usual pneu-
matic tire, and in particular with the radial or belted tire, causes such a
model as shown In Figure 1 to be a reasonably good approximation to the
true structure. ©Since cylindrical shells have been s*%udied extensively,
it seems reasgsonable to attempt to utilize these results in gaining some

general insight into the form of the vibratory motion of such a model.



ITT. KINEMATICS OF MOTION

In order to define the displacements accurately, we consider a rotating

cylindrical shell such as shown in Figure 2.

Figure 2. Coordinate nomenclature.

We will first assume that all motion is independent of dimension z along the
width of the shell. Thus, no quantity will depend upon the dimension z nor
will any motion in the z direction be considered.

A moving coordinate system, designated by the unit vectors € e¢, €y
is attached to the shell at its axis. The shell is allowed to rotate with
angular velocity Q. A fixed coordinate system has its origin at point O,

the center of rotation of the shell, as shown in Figure 2. Displacements w



in the radial direction and v in the tangential direction are presumed to
take place away from the equilibrium position of the shell. Thus, these
guantities are small elastic displacements. The general radius vector to

any point on the midline surface of the shell in the deformed condition is

given by Eq. (1).

(1)

p = (a +w er+Vs¢

In Eq. (1), the radius vector ) represents the total displacement vector of
a point on the shell neutral surface as measured in the rotating coordinate
system using the unit vector directions €, and eé‘ By conventional methods,

the radius vector in a fixed, or inertial, reference frame is given by

T=R+p+2uxp+uxp+uwux (uxp) (2)
where
w=0 .
Z

This leads immediately to expressions for the velocity and acceleration of

this material particle in the form

T = [»:r - wle + [\./ + Q(a + w)]?¢ (3)
Tew-02aew) - 20V]E, ¢ [V - 9V + 204]F, (1)

Equation (3) is of considerable use since it gives the absolute velocity
vector of a particle on the rotating cylindrical shell, this particle

moving with velocities w and v with respect to the original shell configura-



tion. This may be immediately used to generate the total kinetic energy of
the shell in the form
27 .

T = % pbha g {lw - av]2 + [; + Q(a + w)]2?} de (5)

and by defining the quantity ¥ in the form

v e (6)
then one may expand Eg. (5) and write
1 2n
2 - 2
T 3 Dbha (f) { Wt - 2awat + Qzasz + aZth + zaZth + zagwwt
(7)

+ Q232 & ZQzaW + QZWZ} de






IV. ©STRESS STRAIN GECMETRY AND POTENTIAL ENERGY

First order approximations for fhe potential energy stored in the
shell due to bending and membrane effects are well known. For example,
the potential energy storage due to bending may be obtained by considering
the integral of the form

2n 1.,
Ela g (8 )% de (8)

<
(1}
Nof

and this has been shown by Bryan to be expressible in the form

2n

1 EI 32w 32w
V. = &= == [w2 + 2w — + (=527 4de
B 2,3 { 262 ez ] (9)

The extensional strain in a cylindrical shell is known to be of the form

1 v
e= = (w + 5-6') (10)

This immediately allows the strain energy of extension to be written in the

form

2w
1
V.= ~E 3y, » ")

The basic model considered here uses an elastic foundation for the
cylindrical shell in order to approximate the support of the preloaded side
walls of a real pneumatic tire. Here, for simplicity of analytical manipula-
tion, a purely elastic distributed foundation is introduced whose spring rate
is given as k units of pressure per unit deflection. Accordingly, arbitrary

displacements w around the circumference of the shell store potential energy

9



in this distributed elastic foundation in the form

27
v = | 3 kuba do (12)
S 0

Finally, the work done by internal pressure should be included since the
shell in question may be inflated. Considering the internal pressure to
be positive outward, the work done by the pressure forces may be integrated

in the form

2n

1
Wy = PG b (f) r2d¢ - ma2b) .

A point on the deformed midsurface is located by r = a + w and ¢ =¥ + 0.
Writing d¢ = (WQ + 1) d0, the work integral consistent to second order

terms becomes
27

=1 2 2
wp = > bP, é (a%yy + 2awp, + 2aw + w2) do (13)

10



V. EQUATIONS OF MOTION

The various integrations forming kinetic, potential energy and work
terms may be combined to form the total lagrangian density of the system

in the form
L=lpbha[w2-.=zag 2422 2, 2
7 t YW, + Q°ays + a I 2a12mpt + 2a9w\pt + 0232

+ 202aw + Q2w2] - _El (.2 2 Ebha 2

1 b 1 .
+ — w2] - 2 2

¥ ] 7 kaw? + 3 P,b [a2,4,e + 2awyy + 2aw + w2)
We now desire to minimize this functional according to Hamilton's principle.
Specifically, we desire to minimize

ts
I= [7Ldt (15)
tl

It may be shown by conventional means that the appropriate Euler-lagrange
differential equations for this case of two dependeat variables, w and YV,

expressed in terms of two independent variables © and t, are

3 92
L, - o I, * — ], =
w ot ’wt Y ""99 o, (16)
) )
L,w - ﬁ L.wt - ﬁ L’we - 0 ’ (17)

Applying these Euler-lagrange equations to the lLagranglan functional, one

obtains two equations of motion for the cylindrical shell.

11



(X ] L] 2
w-Q[2a y + Q(w + a)] + Eh“ (va +2u" + W) 4+ g%.(w' + g;
12pa (18)
Py W kw
- Eﬁ'(w' +o+1) - -0
Ve -2w - ez i =0 (19)
a paz a phaz

Rather than dealing with both of the equations of motion just developed,
an attempt will be made here to simplify the development using the concept
that the outer elastic band of the cylindrical shell model is nearly inex-

tensible. Equation (19) may be written in the form
E " 1 o ° pO
oz (W' + W) = ay' - a(any’ - 2w') + V" (20)

which is obtained by one more differentiation of Eg. (19) with respect to O.
Differentiating Eq. (18) twice with respect to © and inserting Eq. (20) re-

sults in
oo" ." . 2
W' o~ Q[2(ay" - w') + Q(ay' + w')] + Eh [wVI + ZWIV + w"]
12pa"

e« P o (21)

+aw'_p1_(:_w|n_ah_= 0

We now draw upon the assumption of inextensibility. It would be possible to
carry on a somewhat lengthy argument concerning the true degree of extensi-
bility experienced in a real pneumatic tire tread, but as a first approxima-
tion it appears possible to consgider many modes of motion as primarily bending
in form. This would be particularly true of radial or belted tires. BEven in

the conventional bias ply tire, the distribution of cord angle is such that

12



the primary longitudinal stiffness occurs in the tread region indicating
that this is an area of high circumferential stiffness. For these reasons,
it is felt that this assumption is warranted as an approximation of some
validity to the real problem.

Mathematically, this may be accomplished by requiring that the exten-

tional strain defined earlier vanish, yielding the expression

ay' = -w (22)

from which one may obtain by direct differentiation

ay! = - w (23)

aw" 2 W'

(ek)

These latter equations may be substituted into Eg. (21) from which one may
finally obtain an equation of motion involving the radial displacement w

only in the form

) X3 . Ehz

W o= W' = 4Qw' + 92("" - W) - WVI v

+ w")

Py k (25)

13






VI. OSCILLATORY MOTION

Oscillatory motion may be studied by use of Eq. (25). For simplicity,
one may denote two of the coefficients occurring in Eg. (25) by the symbols

H and K in the form

Py k Eh2
He=maton® X*° 12007 (26)

and assume that the radial motion w is harmonic in the form
w = A sin(so + pt) (27)

Substituting this into Eg. (25), one obtains

- p? - s2p2 4+ 4Qsp - Q%(s2 + 1) - K(- s& + 2s* - s2) +Hs2 =0 (28)

from which one may solve for a frequency in the form

2 2 2052 . 112 2
( - 2Qs ) - _4qss . Ks4(s 1) . Hs® 02 (29)
s2 + 1 (s?2 + 1)2 s2 + 1 s2 + 1
or
22 2(e2 2 2
523_19_1_+K_S__§_S_____1_)__+H__5_____92 (50)
(s2 +1)2 s2 +1 sz +1

where the vibration frequencies are of the form

2Qs . =

P =-52 + 1 P (31)

From these solutions one sees that two possible frequencies are available,

one involving the use of the positive sign of Eq. (51), and the other the

15



use of the negative sign. These are given as Egs. (32).

W, = A sin[s8 + _2ast + pt] (32a)
s2 + 1
w, = A sin[se + 2ast pt]
2 " P (32p)
s¢ + 1

Following Bryan (Ref. 2) we will refer this motion back to a stationary
coordinate system. This may be done by letting the angle © represent the
difference between a position coordinate and the rotating angular position,

in the form

0 =6 -Qt (33)

where ¢ is measured from a fixed line in space. Using Eq. (33) in Egs. (32a)
and (32b), one obtains expressions for the radial displacement w in terms

of position coordinates measured from a line fixed in space, and this gives

2
w o= Asin[se - 852 = 1) o0, 5
1 (s2 + 1) pt] (3k4a)

o A < (s2-1 -
W, = A sin[s¢ « *——u-="2 sQt -
2 [ ¢ (52 N 1) S pt] (BLl-b)

One method of studying the seemingly dissimilar motions given in Egs. (3ka)
and (34b) is to consider the consequences of both occurring with equal

amplitude. If this is the case, then Egs. (34) take the form of

w, = A sin(a + B)

W, = A sin(a - B) (35)

16



where

2

a=sfp -1 g (36)
(s2 + 1)

B = pt (37)

The result of adding algebraically the motion generated by wy and wpo separately

ig given by
w = A[sinacosp + cosasing + sinacosg - cosasing] (38)
This may be immediately interpreted as
. (s2 - 1) -
w(é,t) = 2A sin s[¢ - ——= Qt] cos pt (39)
(s2 + 1)

where the frequency is given by

2 <2(s2 - 112 p 2 2 -
.52 _ _Eh% s (s 1) . '}ﬁ' (_52 + k) s . 92(_5_._1)2 (L0)
12pa" (52 + 1) p (52 + ]_) S2 +1

L7






VIT. DISCUSSION OF RESULTS

Equations (39) and (L0O) give expressions for the radial motion and
frequency of oséillatory movement of the cylindrical shell model represgent-
ing the tread of a pneumatic tire. Egquation (LO) represents perhaps the
simplest ideas conceptually and will be discuésed Tirst.

In commenting upon Eq. (40), it may be seen that it represents the
square of the circular frequency, and is proportional to the usual bending
stiffness Eh3 which enters into most bending vibration problems. Membrane
effects do not appear directly due to the assumption of inextensibility.
Secondly, the frequency of oscillation is also directly proportional to
both internal pressure and to the elastic foundation modulus k. This is
reasonable physically since the inclusion of the elastic foundation modulus
can do nothing other than increase the potential energy of any possible
movement, hence increasing frequency. Internal pressure, on the other hand,
introduces membrane forces gimilar to the tension in a string, where it is
well known that frequency rises as tension increases. IHence, both of these
quantities should in their positive sense tend to increase the frequency of
oscillation, as 1s observed. Finally, frequency appears to be decreased by
the presence of rotating speed. This may be explained in part by the fact
that the positive displacement of a body in a rotating field introduces
additional centrifugal forces in the game direction as that of displacement,

thus providing what is in effect a negative spring rate associated with dis-

placement from some equilibrium position. This effect is indeed observed

19



in Eq. (LO).

Finally, in discussion of Eg. (MO), the wave number s is seen to cor-
respond exactly with the order of the harmonic involved in the oscillation.
Sketches of several mode shapes for small values of s are given in Figure 3,
where i1t should be noted that s = 1 corresponds to a rigid body translation
which is not of great particular interest here since neither the bending nor

rotational effects influence that frequency.

/’_\\ N
S =1 S=2 $S=3 S=4 S=5

Figure 3. Mode shapes.

Equation (39) represents the radial motion of the shell as a function of
the frequency p and mode shape s. This is a very interesting equation since
it indicates that nodal points, or antinodes, actually rotate around the peri-
meter of the shell at an angular velocity different than the rotating speed Q.
This was first pointed out by Bryan, and is again borne out here for this
particular case of the elastically restrained shell with internal pressure.

It may be seen that neither the elastic restraints nor the internal pressure
influence this velocity of node rotation, which is purely a function of the

mode number. First imagine that the cylindrical shell oscillates with the

20



frequency p and in one of the specific mode shapes shown in Figure 3, in
particular any involving s = 2 or greater. Associated with this oscillatory
motion will be nodal points, and it may be seen from the form of the Eg. (39)

that these will rotate with angular velocity given by the symbol Q'.

2 _
s 1‘9
s2 + 1

o = (b1)

It may be seen that this is some fraction of the angular velocity (2, and
again one may refer to Bryan to note that these may be expressed conveniently

in a small table, given here as Table TI.

TABIE T
5 Number of Nodes Q/Q
2 L 0.6
p) 6 0.8
L 8 0.882
5 10 0.923

It would seem reasonable on this basis to predict that low frequency
vibratory or acoustic phenomena should be observed at fractions of the angular
velocity of the rotating pneumatic tire, these fractions becoming closer to
the angular velocity as the mode shape becomes higher. So far as is known, no
experimental verification of these phenomena exists. It can be imagined that
the antinodes, representing the points of maximum vibratory amplitude, also
rotate around the moving shell with the same angular velocity as the nodes.
Imagine this idea applied to a pneumatic tire, and imagine a pure second

mode of oscillation. The points of maximum oscillatory motion will pass through

21



the contact patch of this tire at an angular velocity equal to 0.6 times
the angular velocity of the tire. Thus, one might predict that there
exists a relatively low fredquency oscillatory or acoustic phenomena
associated with the normal vibration states of a pneumatic tire, such
phenomena being associated with this backward, or retrograde, rotation of

the antinodes.

22
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