

 M T S

 The Michigan Terminal System

 Volume 9: SNOBOL4 in MTS

 September 1975

 Updated June 1979 (Update 1)

 Updated May 1984 (Update 2)

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 1

 DISCLAIMER

 This manual is intended to represent the current state of the Michigan

 Terminal System (MTS), but because the system is constantly being developed,

 extended, and refined, sections of this manual will become obsolete. The

 user should refer to the Computing Center Newsletter, Computing Center _________ ______ __________

 Memos, and future updates to this manual for the latest information about

 changes to MTS.

 Copyright 1979 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each reproduction

 is done without alteration and (2) the volume reference and date of

 publication are included. Permission to republish any portions of this

 manual should be obtained in writing from the Director of the University of

 Michigan Computing Center.

 2

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 PREFACE _______

 The software developed by the Computing Center staff for the operation of

 the high-speed IBM 370-compatible computers can be described as a multipro-

 gramming supervisor that handles a number of resident, reentrant programs.

 Among them is a large subsystem, called MTS (Michigan Terminal System), for

 command interpretation, execution control, file management, and accounting

 maintenance. Most users interact with the computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative poli-

 cies of the Computing Center and the physical facilities provided are

 described in a separate publication entitled Introduction to Computing _________________________

 Center Services. _______________

 The MTS volumes now in print are listed below. The date indicates the

 most recent edition of each volume; however, since volumes are periodically

 updated, users should check the file *CCPUBLICATIONS, or watch for announce-

 ments in the Computing Center Newsletter, to ensure that their MTS volumes ___________________________

 are fully up to date.

| Volume 1: The Michigan Terminal System, January 1984 ____________________________

| Volume 2: Public File Descriptions, April 1982 ________________________

| Volume 3: System Subroutine Descriptions, April 1981 ______________________________

| Volume 4: Terminals and Networks in MTS, March 1984 _____________________________

| Volume 5: System Services, May 1983 _______________

| Volume 6: FORTRAN in MTS, October 1983 ______________

| Volume 7: PL/I in MTS, September 1982 ___________

| Volume 8: LISP and SLIP in MTS, June 1976 ____________________

| Volume 9: SNOBOL4 in MTS, September 1975 ______________

| Volume 10: BASIC in MTS, December 1980 ____________

| Volume 11: Plot Description System, August 1978 _______________________

| Volume 12: PIL/2 in MTS, December 1974 ____________

| Volume 13: The Symbolic Debugging System, November 1980 _____________________________

| Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________

| Volume 15: FORMAT and TEXT360, April 1977 __________________

| Volume 16: ALGOL W in MTS, September 1980 ______________

| Volume 17: Integrated Graphics System, December 1980 __________________________

| Volume 18: The MTS File Editor, September 1982 ___________________

| Volume 19: Tapes and Floppy Disks, February 1983 ______________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their appearance;

 however, in general, the higher the number, the more specialized the volume.

 Volume 1, for example, introduces the user to MTS and describes in general

 the MTS operating system, while Volume 10 deals exclusively with BASIC.

 3

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain amount of

 repetition. Public file descriptions, for example, may appear in more than

 one volume. However, this arrangement permits the user to buy only those

 volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 Contents ________

 Preface 3 Speed Considerations . . . 76

 Overview of SNOBOL4 in MTS . . 7 Running in MTS 78

 Introduction to SNOBOL4 9 Parameters 78

 SNOBOL4 Constants 10 I/O in MTS 82

 Variables 12 External Routines 83

 Assignment 14 Error Messages and Handling . 84

 Arithmetic Operations 16 Compilation Error Messages 84

 Concatenation 18 Execution Error Messages . 87

 Indirection 20 Error Codes 89

 Input-Output 22 Calling External System

 Success and Failure 23 Subroutines 98

 GOTOs 24 SNOSTORM 99

 Program Format 26 Introduction 99

 Simple Pattern Matching . . . 27 Definition of Terms 99

 Replacement 29 Statement Expressions . . . 99

 Function Calls 31 Control Structures 100

 The Complete Statement IF Structures101

 Format 34 Simple IF101

 More Sophisticated Pattern IF...ENDIF 101

 Matching 35 IF...ELSE...ENDIF102

 The Arbitrary Pattern - ARB . 36 IF...ELSEIF...ENDIF102

 Conditional Value Assignment 38 LOOP Structures102

 The Balanced Pattern - BAL . 40 LOOP 103

 The Fixed-Length Pattern LOOP FOR iteration 103

 Function - LEN(N) 41 LOOP WHILE sexp104

 Function definition 43 LOOP UNTIL sexp105

 Function Execution 45 ENDLOOP [REPEAT [while]

 SPITBOL 47 [until]] 105

 Introduction 47 EXITLOOP 106

 Summary of Differences . . . 48 NEXTLOOP 106

 Features Not Implemented . 48 CASE Structures106

 Features Implemented Procedure Structures 107

 Differently 48 PROCEDURE...ENDPROCEDURE .107

 Additional Features 49 EXITPROCEDURE108

 Other Incompatibilities . . 49 Initialization 108

 Datatypes and Conversions . . 50 Procedure and Case

 Datatypes in SPITBOL . . . 50 Initialization 108

 Datatype Conversion 50 INITIAL...ENDINITIAL . . .109

 Syntax 54 Comment Statements 109

 Pattern Matching 55 SNOSTORM Comment Lines . .110

 Functions 55 Listing Control Statements .110

 Keywords 70 EJECT [icon] 110

 Control Cards 72 TITLE ’text of title’ . . .110

 Listing Control Cards . . . 72 SUBTITLE ’text of

 Option Control Cards . . . 73 subtitle’111

 Programming Notes 75 SPACE icon 111

 Space Considerations . . . 75 LIST [keyword] 111

 5

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 SNOSTORM Listing 111 Registration 133

 Source Indentation 112 Block Organizations135

 PAR Options112 FIXing a Block 138

 SIZE=icon112 Adaptive Blocks139

 {COM|NOCOM}112 Iterated Blocks139

 {INDENT=string|NOINDENT} .113 Replicated Blocks144

 {LIST|NOLIST}113 Deferred Blocks148

 CONVERT113 Nodes and Mergers149

 DEBUG113 The &FILL Keyword154

 Running SNOSTORM in MTS . . .114 Surrogates 154

 Restrictions 115 Special Built-in Functions .156

 Multiple Statements115 Broadcasting 158

 Reserved Words 115 Carriage Control 158

 Labeled SNOSTORM Examples 159

 Statements 116 Appendix: Public File

 -COPY116 Descriptions 169

 Error Handling 117 *CONVSNOBOL171

 Obsolete SNOSTORM Statements 117 *SNOBOL4 173

 Examples 118 *SNOBOL4B175

 SNOBOL4 Blocks 127 *SPITBOL 177

 Introduction 127 *SPITDEBUG 180

 Definition 128 *SPITERR 180

 Printing 128 *SPITLIB 181

 Concatenation129 *TRANSNOBOL183

 Vacuous Blocks 131

 Index184

 6

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 OVERVIEW OF SNOBOL4 IN MTS __________________________

 The SNOBOL4 language was developed at Bell Telephone Laboratories as a

 tool for string and list-processing applications. As a consequence, the

 language contains many powerful facilities for solving problems which

 involve text analysis, text formatting, etc. On the other hand, SNOBOL4 is

 a poor choice for solving problems which are primarily numeric in nature.

 Such problems are handled much more efficiently with mathematically oriented

 languages such as FORTRAN.

 In MTS, there are four distinct SNOBOL4 language processors which are

 available in the public files *SNOBOL4, *SNOBOL4B, *SPITBOL, and *SNOSTORM.

 Each public file is described in detail in the appendix to this volume. A

 brief summary is given here.

 *SNOBOL4 contains the language processor developed at Bell Telephone

 Laboratories and accepts the basic SNOBOL4 language. This processor is an

 interpreter and is implemented in a machine-independent macro language.

 This processor tends to be rather slow and expensive to use.

 *SNOBOL4B contains the language processor developed at Bell Telephone

 Laboratories for an upward-compatible extension of the basic SNOBOL4

 language. This extension is called SNOBOL4 with Blocks and provides

 additional facilities for producing 2- and 3-dimensional printed output,

 such as is required for graphs and flowcharts. This processor is also

 implemented as an interpreter and tends to be expensive to use.

 *SPITBOL contains the language processor for a nearly compatible exten-

 sion of the basic SNOBOL4 language which was developed at the Illinois

 Institute of Technology. This processor is implemented as a true compiler

 and produces fast and efficient object module programs. Programs compiled

 with *SPITBOL can be run as much as ten times cheaper than programs run

 under *SNOBOL4.

 *SNOSTORM contains a preprocessor for an extended version of the SNOBOL4

 language allowing structured-programming types of control structures. This

 preprocessor passes the SNOBOL4 program it generates to the *SPITBOL

 processor for completion of compilation and execution.

 Documentation for the various SNOBOL4 languages and their associated

 language processors is available from several sources. The following

 information is included in this volume:

 (1) Introduction to SNOBOL4

 This section is a brief introduction to the basic SNOBOL4 language.

 It was written by Fred G. Swartz and and modified by Kenneth

 A. DeJong, both of the University of Michigan Computing Center.

 Overview of SNOBOL4 in MTS 7

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 (2) SPITBOL

 This section is the only SPITBOL reference manual available. It was

 written at the Illinois Institute of Technology and adapted for use

 at the University of Michigan. It assumes a working knowledge of

 the basic SNOBOL4 language.

 (3) SNOBOL4 Blocks

 This section is the only description of the SNOBOL4 Blocks extension

 available. It was written at Bell Telephone Laboratories and

 adapted for use at the University of Michigan. It assumes a working

 knowledge of the basic SNOBOL4 language.

 (4) SNOSTORM

 This section describes the language extensions to SNOBOL4 for

 structured programming provided by the SNOSTORM preprocessor. This

 section is the only description of SNOSTORM available. It assumes a

 working knowledge of the basic SNOBOL4 language.

 (5) Public File Descriptions

 *CONVSNOBOL - a conversational SNOBOL4 program.

 *SNOBOL4 - a SNOBOL4 processor.

 *SNOBOL4B - an extended SNOBOL4 processor.

 *SNOSTORM - a SNOBOL4 preprocessor.

 *SPITBOL - a fast SNOBOL4 processor.

 *SPITDEBUG - a debugging package for SPITBOL programs.

 *SPITERR - SPITBOL error messages.

 *SPITLIB - object-code support for SPITBOL programs.

 *TRANSNOBOL - a SNOBOL3 to SNOBOL4 conversion program.

 In addition, the following documentation is available through the local

 bookstores:

 The SNOBOL4 Programming Language, R. E. Griswold, J. F. Poage, and I. P. _________________________________

 Polonsky. Prentice-Hall (1971).

 This is the standard reference manual for the basic SNOBOL4

 language.

 A SNOBOL4 Primer, R. E. Griswold and M. T. Griswold. Prentice-Hall __________________

 (1973).

 This provides an introduction to SNOBOL4 without assuming any

 previous programming experience.

 SNOBOL - An Introduction to Programming, Peter R. Newsted. Hayden Book ___

 Co. (1975).

 This also provides an introduction to SNOBOL4 without assuming any

 previous programming experience.

 8 Overview of SNOBOL4 in MTS

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 List and String Processing in SNOBOL4, R. E. Griswold. Prentice-Hall ___

 (1975).

 This explores applications of the more sophisticated facilities in

 the SNOBOL4 language. It presumes a good working knowledge of the

 basic SNOBOL4 language.

 Algorithms in SNOBOL4, J. F. Gimpel. John Wiley & Sons (1976). _____________________

 This is an excellent text for the advanced SNOBOL4 user.

 Overview of SNOBOL4 in MTS 8.1

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 8.2 Overview of SNOBOL4 in MTS

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 INTRODUCTION TO SNOBOL4 _______________________

 This introduction is very limited in scope. It covers only a few of the

 very basic features of the SNOBOL4 language and leaves many areas uncovered.

 It is intended only to start the beginning user along the path of learning

 SNOBOL4.

 The philosophy of SNOBOL4 differs from that of other programming

 languages such as FORTRAN or PL/I. All of the functions that most

 programming languages perform are crowded into a single statement format:

 computation, decision making, and branching are all parts of the one SNOBOL4

 statement type. The strength of SNOBOL4 lies primarily in two areas:

 dynamic control (e.g., storage allocation) and pattern-matching (character

 manipulation) operations.

 SNOBOL4 has dynamic storage allocation, something which few of today’s

 programming languages have. Each SNOBOL4 variable does not represent a

 fixed area of storage; instead, as each variable needs more storage, it is

 acquired from a large pool of storage reserved for that purpose. If a

 variable no longer requires as much storage, the unneeded storage is

 released into the pool. The SNOBOL4 programmer remains blissfully ignorant

 of storage allocation problems and may assume that a variable may be of any

 size.

 In most programming languages, both the storage and the data type (e.g.,

 once an integer, always a integer) are assigned to a variable in a fixed

 manner. This is certainly not the case in SNOBOL4. A variable may have an

 integer value at one point in the program and a character string value in

 another part of the program. Moreover, not all the elements of an array

 need be of the same data type.

 Another feature, one which the novice might hardly be expected to use, is

 that of converting character strings representing SNOBOL4 statements into

 executable SNOBOL4 code.

 Arithmetic processing in SNOBOL4 is very slow. It would be sheer

 economic folly to attempt to solve a primarily numeric problem in SNOBOL4.

 The primary use of SNOBOL has been and will continue to be the manipulation

 of symbolic or structural data.

 Introduction to SNOBOL4 9

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 SNOBOL4 CONSTANTS _________________

 There may be several types of constants in a SNOBOL4 program. The two

 most commonly used constant types are integer and string. The user is

 referred to the discussion of real constants in The SNOBOL4 Programming _______________________

 Language by Griswold, Poage, and Polonsky. ________

 Integers in SNOBOL4 look very much like they do in any programming

 language: they consist of a string of digits.

 EXAMPLES: 0 12345 0909 2

 Illegal: ’234’ (this is a string, not an integer)

 1.3 (this is a real number, not an integer)

 The string is the most important element in SNOBOL4. A string is a ______

 sequence of characters. The characters may be any that can be represented

 on any of the various computer input devices attached to the system. The

 examples contained in this writeup are comprised only of those characters

 which can be punched on an IBM 029 keypunch. In a string, all characters

 are treated identically. No characters have special meaning. Even blanks

 are treated the same as other characters. Since SNOBOL4 statements are

 themselves strings of characters, there must be some way to separate string

 constants from the rest of the SNOBOL4 statement. To do this, a string

 constant (sometimes the word "literal" is used to mean a string constant) is

 surrounded by quotation marks--either single or double, but the ending

 delimiter must be the same as the starting delimiter. One must remember

 that the enclosing quotes are not part of the string. ___

 The delimiting character of a string constant may not occur within the

 constant. Since there are two possible delimiters, one can be used to

 enclose a string containing the other.

 EXAMPLES ________

 ’THIS IS A STRING’

 "THIS IS ALSO A STRING"

 Something which hardly seems worthy of the name string is the null string. ____________

 This is the string of no characters and can be written "". However, it

 turns out to be a very common string.

 10 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following are legal string constants?

 a) ’234’

 b) "ABC’

 c) "’"

 d) ’DON’T QUOTE ME.’

 e) " "

 f) ’@#$%&*() +:-=;,./"’ _

 g) 945

 h) ""

 ANSWERS _______

 a) OK.

 b) Beginning and ending delimiters are not identical.

 c) OK.

 d) The delimiting character may not occur within the string.

 e) OK; it is a string of two blanks.

 f) Yes; all of these characters are legal in a string.

 g) This is an integer, not a string.

 h) The famous null string.

 Introduction to SNOBOL4 11

 MTS 9: SNOBOL4 in MTS

 September 1975

 VARIABLES _________

 A programming language containing only constants would be of little value

 and so, as would be expected, SNOBOL4 also has variables. A variable name

 must begin with an alphabetic character and may be continued with a sequence

 of alphabetic or numeric characters or periods. The initial contents of all

 variables are the null string. Later we will see how any string of

 characters (except the null string) may be used for a name.

 EXAMPLES ________

 ABC

 DOT.DOT

 EXPO67

 S.O.S.

 12 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following is a legal string name?

 a) ALPHA-BETIC

 b) PART.NO.

 c) A

 d) THIS.IS.A.NAME

 e) .LT.

 f) 1FOR.YOUR.MONEY

 g) A...AL5)

 h) LAPHN@

 ANSWERS _______

 a) Illegal character.

 b) OK.

 c) OK.

 d) OK.

 e) A variable name may not begin with a period.

 f) A variable name must begin with an alphabetic character.

 g) Illegal character.

 h) Illegal character.

 Introduction to SNOBOL4 13

 MTS 9: SNOBOL4 in MTS

 September 1975

 ASSIGNMENT __________

 There are several ways in which values may be assigned to variables. One

 way is by means of a notation that looks very much like the assignment

 statement of FORTRAN, PL/I, etc. This is the form:

 VARIABLE = EXPRESSION

 For now, let us consider the simplest forms of expression, the variable and

 the constant.

 The value¹ of the expression is computed and this value replaces any

 previous value that the variable may have had. The expression may be of any

 type and need not be of the same type as the current value of the variable.

 SNOBOL4 is very strict in its punctuation requirements. The equal sign must

 have one or more blanks immediately on each side of it.

 EXAMPLES ________

 A = 3 assigns the integer value 3 to A

 A = ’3’ assigns a one-character string to A

 ¹The words "contents" and "value" are used interchangeably in this writeup.

 14 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following assignments is legal?

 a) GAMMA2 = ’TRALALA’

 b) BETA2=GAMMA2

 c) NOW = TIME

 d) ETERNITY = ""

 e) "THIS" = "THAT"

 f) VAR = 5

 g) 1HALF = ONEHALF

 ANSWERS _______

 a) OK.

 b) There must be at least one blank on each side of the =.

 c) OK.

 d) OK. This replaces any previous contents of ETERNITY by the null

 string. Another way to do this is to write ETERNITY = . If nothing

 is written to the right of the =, the null string is assigned to the

 variable on the left.

 e) You cannot assign a new value to a constant.

 f) OK.

 g) 1HALF is an illegal variable name.

 Introduction to SNOBOL4 15

 MTS 9: SNOBOL4 in MTS

 September 1975

 ARITHMETIC OPERATIONS _____________________

 The assignments we have seen so far tend to be rather dull. More

 interesting, although perhaps not more exciting, are expressions formed by

 combining several elements by means of operations. As might be expected

 from any reasonable compiler, SNOBOL4 allows the normal arithmetic opera-

 tions; they mean what one would expect and they are done in the order which

 one would expect (e.g., multiplication and division before addition and

 subtraction). It is possible to group the elements of an expression in

 parentheses to override or to make explicit the order of evaluation. It is

 also possible to use a string as an operand in arithmetic operations as long

 as the string represents a legal SNOBOL4 integer or real number. The null

 string can also be used arithmetically and is equivalent to zero.

 As another example of SNOBOL4’s picayunishness we find that all binary

 operators must have one or more blanks on each side of them. This

 distinguishes the binary operators from the unary operators, which cannot

 have blanks separating them from their operands and which must be preceded

 by either one or more blanks or another unary operator. Both + and - may be

 used as unary operators.

 EXAMPLES ________

 X = 2 + 3 assigns the integer value 5 to X.

 Y = 2 * ’3’ assigns the integer value 6 to Y.

 Z = ’15’ / ’2’ assigns the integer value 7 to Z. Notice that this is

 integer division and always gives an integer result.

 Although it is possible to do arithmetic using numeric strings, the

 conversion from numeric strings to integers requires considerable computa-

 tion and should be avoided whenever possible.

 16 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following assignments are legal and what do they do?

 a) SUM = -SUM

 b) TOTAL = 67 + A/2

 c) FOUR = TWO + TWO

 d) PI = 3.0 + 0.14159

 e) PI = 3 + .14159

 f) B = 2 + 4 * 5

 g) C = (8 - 1) * (5 + 2) + 2 ** 2

 ANSWERS _______

 a) This assigns the negative of SUM to SUM. This is legal only if SUM

 contains an integer, a real number, or a string of digits.

 b) Binary operators must have one or more blanks on each side of them.

 c) Legal only if TWO contains a number representation.

 d) Yes, these are legal real numbers.

 e) Another example of SNOBOL4’s eccentricity. It turns out that,

 although one could not have been expected to know, real numbers must

 begin and end with a digit.

 f) The result is 22.

 g) The result is 53.

 Introduction to SNOBOL4 17

 MTS 9: SNOBOL4 in MTS

 September 1975

 CONCATENATION _____________

 One operation SNOBOL4 allows us to perform on character-string data is

 the combination of two or more strings to make one longer string. This

 process is called concatenation. Concatenation is denoted, not by an

 explicit operator, but by the juxtaposition (placing adjacent) of two string

 expressions with one or more separating blanks.

 EXAMPLES ________

 STR = "ABC" "DEFG"

 assigns the string "ABCDEFG" to STR. Using this assignment of STR, the

 following statement

 B = STR "X" STR

 would assign the string "ABCDEFGXABCDEFG" to B.

 Concatenation has lower precedence than arithmetic operations, e.g., 2

 + ’3’ ’4’ is the same as 5 ’4’ which is the same as ’54’. If

 either or both of the operands of a concatenation is an integer, the result

 will be a string.

 18 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following concatenations are legal and what is the value of

 each?

 a) "A" ’A’

 b) 5 + 5 5

 c) ("-" "4") 3 - "1"

 d) If the value of M is the string "BOOLA",

 what is M M?

 ANSWERS _______

 a) "AA"

 b) "105"

 c) "-42"

 d) "BOOLABOOLA"

 Introduction to SNOBOL4 19

 MTS 9: SNOBOL4 in MTS

 September 1975

 INDIRECTION ___________

 Because of the dynamic nature of the SNOBOL4 storage structure, it is

 possible to do some rather strange (i.e., powerful) things, strange at least

 by ordinary programming language standards. One operation is the creation

 of new variables during execution. This is useful if some of the data being

 read in is to be used as a variable name. Any string of characters may be

 used as a variable name although variable names which occur in the source

 program must conform to the restricted syntax specified above.

 To use any string of characters as a variable name, the unary $ operator

 must be applied to it. This operation is called indirection. (Remember ___________

 that unary operators have no blanks following them.) The argument of the

 indirection may be any string expression except the null string. The result

 of applying the indirection operator to a variable or to a constant whose

 contents are a string is the same as if that string had appeared in that

 position as a variable name.

 EXAMPLES ________

 $"X" = FFM is the same as writing X = FFM.

 $(’ALP’ ’HA’) = 2 is the same as writing ALPHA = 2.

 20 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 What is the result of each of the following assignments? Assume that the

 following assignments have already been made.

 A = "B"

 B = "B"

 C = "A"

 AB = "*"

 a) R = $C

 b) R = $("A" $B)

 c) R = $A B

 d) $C = $A

 e) $AB = $$$$$B

 f) $(C $C) = "QQSV"

 g) $ B = $ A

 ANSWERS _______

 a) This is the same as writing R = A.

 b) This is the same as R = $("A" B), which is the same as R = AB, which

 is the same as R = "*".

 c) This is the same as R = B B, which is the same as R = "BB".

 d) This is the same as A = B.

 e) This creates a new string by the name of * and assigns to it the

 contents "B".

 f) The same as AB = "QQSV".

 g) Illegal. There cannot be blanks immediately following a unary

 operator.

 Introduction to SNOBOL4 21

 MTS 9: SNOBOL4 in MTS

 September 1975

 INPUT-OUTPUT ____________

 While most programming languages provide separate statements for perform-

 ing input and output, SNOBOL4, which has only one statement format, uses

 special variables for these operations. One variable, INPUT, always

 contains the next input line. If there are two references to the variable ____

 INPUT, then at the first reference the variable will contain the first input

 line and at the second reference it will contain the second input line.

 EXAMPLES ________

 NEXTSTM = INPUT

 will read the next input line and leave it in NEXTSTM.

 There are two predefined output variables: OUTPUT and PUNCH. Whenever

 either of these is assigned a new value, this value is written out as the

 next line. OUTPUT differs from PUNCH in that it puts a blank at the front

 of the line it is writing out; therefore, carriage control will not work

 with OUTPUT.

 22 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 SUCCESS AND FAILURE ___________________

 In SNOBOL4, as in every programming language, there must be a way of

 testing certain conditions and thereby controlling the flow of execution in

 the program. The execution of every SNOBOL4 statement results in one of two

 conditions: "success" or "failure".

 A failure condition can arise from a number of things. For example, a

 reference to INPUT after reaching an end-of-file (i.e., there are no more

 input lines) on input will result in a failure condition for that statement.

 Later, we will see other possible causes of failure. A statement which does

 not fail succeeds.

 Introduction to SNOBOL4 23

 MTS 9: SNOBOL4 in MTS

 September 1975

 GOTOS _____

 Now that we have seen that every SNOBOL4 statement may generate one of

 two conditions, let us see how this condition may be tested. The optional

 field on the end of every SNOBOL4 statement is called the GOTO field. It is

 separated from the rest of the statement by a colon. This field may contain

 one or more of the following:

 1) A success goto. This consists of the capital letter S followed _______

 immediately by a statement label enclosed in parentheses. If the

 statement to which this is attached succeeds, a transfer to the

 statement label enclosed within the parentheses is made.

 EXAMPLES ________

 :S(HOME)

 : S(PRES.)

 2) A failure goto. This consists of the capital letter F followed _______

 immediately by a statement label enclosed in parentheses. If the

 statement fails, a transfer is made to the statement label enclosed

 in the parentheses.

 EXAMPLES ________

 :F(BOTTOM)

 : F(CLERK)

 3) An unconditional goto. This is simply a statement label enclosed _____________

 in parentheses. Whether the statement fails or succeeds, the

 transfer will be made to the statement label.

 EXAMPLES ________

 :(ALWAYS)

 : (IMMER)

 More than just a simple statement label may occur between the parentheses

 of a goto. However, we shall not concern ourselves with the general form of

 the statement label field here. It will only be stated that any string

 expression to which the unary name operator may be applied can occur in

 place of a simple statement label. In fact, the transfer is made to the

 24 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 statement whose label is the same as the value of the expression with the

 application of the unary name operator. But enough of this confusion.

 Inside the parentheses in each case, there may be blanks between the

 statement label name and the parentheses; however, there may not be blanks

 between the S or F and the left parenthesis.

 There may be both a success and a failure exit on any SNOBOL4 statement.

 There also may be a goto on the null statement. Let us consider some

 examples.

 EXAMPLES ________

 a) LINE = INPUT :F(NO.DATA)

 If an end-of-file is reached on input, this statement will fail and a

 transfer will be made to the statement labeled NO.DATA. The contents of

 LINE will not be altered if INPUT fails. Assignment by means of the =

 operator is not made if any part of the right-hand expression fails.

 b) OUTPUT = "*" INPUT "*" : S(FINE)F(BAD)

 This statement will cause a line to be read in. If there is an

 end-of-file, the failure exit will be taken; otherwise, an asterisk will

 be concatenated to the beginning and end of the line and it will be

 printed, followed by a transfer to FINE.

 Introduction to SNOBOL4 25

 MTS 9: SNOBOL4 in MTS

 September 1975

 PROGRAM FORMAT ______________

 We are now ready to write an entire, although simple, SNOBOL4 program.

 But first we must find out what the format of a program is.

 Statement labels must start in column one if they are present. If there

 is no statement label on a statement, column one must contain a blank

 (exceptions: comment cards and continuation cards; see below). The body of

 a statement may start anywhere after column one, although it may not extend

 beyond column 72. If it is necessary to continue a statement from one line

 to the next, the statement must be broken at a place where a blank

 separating two elements may occur. This means, for example, that a

 statement could not be broken in the middle of a string constant, even

 though there may be a blank in that constant. All continuation cards must

 have a period or a plus sign in column one.

 Comment lines begin with an asterisk in column one. It is possible to

 place more than one SNOBOL4 statement on a line by using semicolons to

 separate the statements. The column immediately following the semicolon is

 treated as column one of the new statement. An asterisk indicating a

 comment may occur only in the first column of a line and not following a

 semicolon.

 The last statement of a SNOBOL4 program consists of the label END. If

 this statement is ever transferred to or reached by following the previous

 statement in execution, the execution of the program is terminated.

 EXAMPLES ________

 Let us write a simple program to read in a line and print it out;

 continuing this process until there are no more input lines, i.e., until

 INPUT fails.

 STARTER LINE = INPUT :F(END)

 OUTPUT = LINE :(STARTER)

 END

 This program could be written in even fewer statements as follows:

 STARTER OUTPUT = INPUT :S(STARTER)

 END

 If we wanted to do the above with the addition of a line number at the

 beginning of each line, the program could be written:

 BEG LINE = INPUT :F(END); NUM = NUM + 1

 OUTPUT = NUM " " LINE :(BEG)

 END

 26 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 SIMPLE PATTERN MATCHING _______________________

 So far we have seen one implicit operation, concatenation. Another

 operation that is not explicitly expressed but is indicated by its position

 relative to other expressions is the operation of looking through a string

 for some pattern of characters. This operation is fundamental to SNOBOL4.

 In a later section we will discuss the construction of more complicated

 patterns, but in this section we will be satisfied with the simplest of all

 patterns: the lowly string.

 Suppose we have a string which is the contents of the variable S. In

 order to search through the string S for some pattern, let us say the

 sequence of characters "THE", we simply write the string we are scanning

 followed by the pattern. In this example, we would write

 S "THE"

 If the pattern of characters is found, the scan will succeed, otherwise, it

 will fail. This particular scan will succeed only if the three characters

 "THE" occur together somewhere in the string. If these three characters do

 not appear in the string, or if they are not adjacent and in the proper

 order, the scan will fail. For example, if S contained the string

 "BROTHER", the scan would succeed. If S contained the string "MOTH EATEN",

 it would fail.

 We may write the following program to read in lines and print only those

 lines which contain the sequence of characters "END".

 BEG STM = INPUT :F(END)

 STM "END" :F(BEG)

 OUTPUT = STM :(BEG)

 END

 The string being scanned is called the subject. The string we are _______

 scanning for is called the pattern. The subject and pattern must always be _______

 separated by one or more blanks. Either of these may be more complicated

 than just a simple string name. Since both pattern matching and concatena-

 tion are indicated by juxtaposition, there is a potential ambiguity in the

 order of evaluation of expressions. The ambiguity is resolved by the

 SNOBOL4 compiler’s placing a higher priority on the evaluation of concatena-

 tion than it does on scanning. However, we may always use parentheses to

 group the operands to indicate the order of evaluation. Thus, the statement

 STM " " "END" " "

 is the same as

 STM (" " "END" " ")

 or

 Introduction to SNOBOL4 27

 MTS 9: SNOBOL4 in MTS

 September 1975

 STM " END "

 If we had three strings A, B, and C and wished to scan the contents of A

 for the contents of B concatenated with the contents of C, we could write

 A B C

 However, if we wished to scan the contents of A concatenated with the

 contents of B for the contents of C, we would write

 (A B) C

 28 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 REPLACEMENT ___________

 Now that we have seen that we can scan for a particular string of

 characters, we may wish to change that portion of the subject string which

 has been matched. SNOBOL4 allows the replacement of the matched substring

 in the subject string by any string expression. We would write this as the

 subject string, followed by the pattern, followed by an equal sign, followed

 by the string that is to replace the matched portion of the subject string.

 Let us consider an example. The following statement will replace the first

 occurrence of an "A" in the string named TEXT by an "E":

 TEXT "A" = "E"

 Since the SNOBOL4 scan proceeds from left to right, the first occurrence,

 if indeed there is more than one, is the leftmost. If TEXT contains the

 string "GREAT GREAT SCOTT" before this statement is executed, it will

 contain "GREET GREAT SCOTT" afterwards. The replacement string need not be

 restricted to the same length as the matched substring. To replace the

 first occurrence of the string "ALL" by the string "NONE" in the string

 named UNI, we would write

 UNI "ALL" = "NONE"

 If UNI contained the string "SHALLOW" at the beginning, it would contain

 "SHNONEOW" after the pattern match and replacement had been performed.

 Another example is a program which will read input lines, delete all

 blanks from each, and print them out.

 START IN = INPUT :F(END)

 HERE IN " " = :S(HERE)

 OUTPUT = IN :(START)

 END

 Note: The null string need never be written when it appears directly to the

 right of an = as in the second statement of the above example.

 Introduction to SNOBOL4 29

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 What will be the effect of each of the following replacements? Assume the

 following statements have been executed previous to each example.

 A = "AEIOU"

 B = "BOOGALOO"

 C = "CONCUBINE"

 D = "A+(B-23)/OVER"

 a) B "OO" = "U"

 b) B "OO" = "OO"

 c) C "CON" = "ANTI"

 d) A $B = A

 e) "THERAPIST" "THE" =

 f) D "(" ")" = ")" "("

 ANSWERS _______

 a) B will contain "BUGALOO"

 b) B will contain "BOOGALOO".

 c) C will contain "ANTICUBINE"

 d) The null string occurs in infinitely many places in any string. If we

 assume that the contents of the string BOOGALOO are the null string,

 then the null string will match in front of the first character and

 will be replaced by the contents of A. A will now have the contents

 "AEIOUAEIOU".

 e) It is not possible to change the value of a literal.

 f) There are not two adjacent parentheses in D. It will fail. Two

 concatenated literals may always be written as one, i.e., this

 statement could be written as D "()" = ")("

 30 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 FUNCTION CALLS ______________

 There are a number of predefined functions available to the SNOBOL4

 programmer. In addition, the programmer is allowed to define his own

 functions by means of the DEFINE function. Function calls may either fail

 or succeed. If a function call succeeds, it returns a value even if this

 value is just the null string. The item returned by a function call may be

 of any data type, not just string mode. Most of the predefined functions

 are concerned with pattern matching, and these will be discussed in a later

 section. We will consider a few of the more useful predefined functions

 here.

 Function calls are written in SNOBOL4 much as they are written in

 FORTRAN. The function name is immediately followed by a parenthesized list

 of arguments. The left parenthesis must immediately follow the function

 name. For example, let us consider the predefined function SIZE. SIZE

 returns an integer which is the number of characters in its argument. An

 example call might look like the following

 N = SIZE("ABC")

 which is rather useless, since we already know that the size of the string

 "ABC" is three. The arguments to a function may be arbitrarily complicated.

 We could write

 SIZE("X" SIZE($T) NNN)

 In this case, the inner function call would be evaluated first. The

 function SIZE never fails. Let us look at one which does.

 The function IDENT takes two string arguments. It fails if they are not

 identical and succeeds if they are identical. It returns the null string on

 success. The function call

 IDENT("STRING1","STRING2")

 would fail because the two strings are not identical. The function call

 IDENT("ABC","A" "BC")

 would succeed and return the null string. If an argument to a function is

 omitted, the null string is substituted for the missing argument. For

 example, to test the string name SDF to see if it contains the null string,

 we could write the function call either as IDENT(SDF) or as IDENT(,SDF).

 The null string is substituted for the missing second argument in the first

 case and the missing first argument in the second case. A function call is

 indicated by the presence of the parentheses which must be present even if

 there are no arguments.

 The function TRIM takes one string argument and returns a string which is

 the same as that argument with all trailing blanks removed.

 Introduction to SNOBOL4 31

 MTS 9: SNOBOL4 in MTS

 September 1975

 The functions which are used to test some condition and which return the

 null string are called predicate functions. The predicate functions may be

 used to cause the conditional execution of a statement, for as soon as one

 function call in a statement fails, the rest of the statement is not

 evaluated. Take for example, the statement

 A = IDENT(A,"CHANGE") INPUT

 If the previous contents of the variable A are the string "CHANGE", then the

 new contents of A are the null string concatenated with the contents of

 INPUT, i.e., the next input line. If the old contents of A are not

 identical to the string "CHANGE", then the rest of the statement is not

 evaluated and, in this example, the next input line will not be read.

 There are predefined predicate functions to test for numeric equality and

 the other algebraic relations. The function names are LT, LE, EQ, NE, GE,

 and GT. The names should adequately suggest the relations that they test.

 Each takes two arguments which are integers, numeric strings, or real

 numbers and compares the first argument to the second. The function EQ

 differs from IDENT in two ways: first, IDENT takes string arguments and not

 numeric arguments; second, it is possible for two strings to represent the

 same number and yet be different strings. For example, IDENT("002", "2")

 would fail, but EQ("002","2") would succeed.

 There are two more predicate functions of interest. The function DIFFER

 takes two string arguments. It succeeds if they are not identical and fails

 if they are. Another function which is useful when manipulating integers is

 the function INTEGER. This function takes one argument, a string, and

 succeeds if the string consists only of digits with an optional preceding

 sign. It fails in all other cases.

 Note: No SNOBOL4 function changes its arguments!!!! In particular, the

 TRIM function does not change its argument: it returns a value. ___

 32 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 Which of the following function calls are legal and what effect will they

 have?

 a) A = " BLANKS "

 TRIM(A)

 b) B =

 A = IDENT(B) "SEVEN"

 c) A = IDENT(B,C) DIFFER(C,B)

 d) EQ("-2",6*8-50) :S(S)

 e) N = SIZE ()

 f) SIZE(S) = 10

 ANSWERS _______

 a) TRIM(A) will return the string " BLANKS" and will leave the string A

 unaltered. Since the returned string is ignored, the function call

 effectively does nothing.

 b) A will be assigned the string "SEVEN".

 c) Since both IDENT and DIFFER cannot succeed with the same arguments,

 the statement will fail.

 d) The binary operators must be surrounded by blanks! If it weren’t for

 this error, the statement would have succeeded.

 e) There must not be blanks between the function name and the following

 left parenthesis.

 f) Only functions defined by means of the DATA function may occur to the

 left of the =.

 Introduction to SNOBOL4 33

 MTS 9: SNOBOL4 in MTS

 September 1975

 THE COMPLETE STATEMENT FORMAT _____________________________

 We can now define the statement format. As we have already seen, there

 is only one statement format in SNOBOL4. To make this a workable scheme, it

 was necessary to make many parts of the statement optional. In fact, all

 parts of the statement are optional. We can use the following representa-

 tion of the SNOBOL4 statement (the brackets around an item indicate that

 this item is optional):

 [label] [subject [pattern] [= replacement]] [:goto]

 This representation does not tell the entire story. What form each of

 the parts may take may still be unclear. This will be left as an exercise

 for the reader.

 EXAMPLES ________

 I

 L5 A = A

 :(DEF)

 FCN(ARG)

 LIT PAT = TAP

 STRUNG STRING :F(GH)

 INPUT INPUT INPUT INPUT

 34 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 MORE SOPHISTICATED PATTERN MATCHING ___________________________________

 Much thought is not required before one realizes that simply scanning one

 string for a pattern which consists of another string is neither very useful

 nor very exciting. Perhaps we would like to look for two strings separated

 by any arbitrary string, or perhaps for a string of a fixed length. These

 and many more things are possible in SNOBOL4. It is also possible to assign

 a pattern to a variable. Along with the data types real, integer, and

 string, there is a pattern data type. _______

 Many patterns do not vary during execution. If there is such a pattern

 and it contains a function call or more than one element, execution time can

 be saved by assigning this pattern to a variable at the beginning of the

 program and using this variable in place of the pattern throughout the

 remainder of the program.

 Since the pattern matching capabilities are described in detail in The ___

 SNOBOL4 Programming Language, only a selected subset will be covered here to ____________________________

 provide some examples of relatively sophisticated patterns.

 Introduction to SNOBOL4 35

 MTS 9: SNOBOL4 in MTS

 September 1975

 THE ARBITRARY PATTERN - ARB ___________________________

 Variables may have patterns as their values. We have seen a trivial case

 of this, one in which the pattern has the form of a string. A pattern may

 be far more complex and can be thought of as something which matches a

 string of characters. The predefined pattern variable ARB contains a

 pattern that will match any sequence of characters. As with any pattern ___

 match, if more than one substring would satisfy the pattern, it is the

 leftmost shortest such substring that will be matched. That is, ARB will

 match the leftmost string of appropriate characters, and, if there are two

 or more such substrings beginning with the same character, it will match the

 shorter one. In the following example

 "ABRACADABRA" "B" ARB "B"

 the first "B" of the pattern will match the second character of the subject

 string and the second "B" of the pattern will match the ninth character of

 the subject string. The ARB matches the third through the eighth character,

 i.e., "RACADA". In all pattern matches, one element of a pattern must

 immediately follow another to constitute a match. Therefore, the pattern

 "B" "B" will match two adjacent "B"’s and not just any two "B"’s.

 In the previous example, we could have assigned the pattern to a variable

 before performing the pattern match. For example,

 PAT = "B" ARB "B"

 "ABRACADABRA" PAT

 would have yielded the same result. We could also have defined only part of

 the pattern previously, as in the following statements.

 PAT1 = "B" ARB ; "ABRACADABRA" PAT1 "B"

 Since ARB matches the leftmost shortest string, it is possible for it to

 match the null string. If the previous pattern had been

 MAGIC = "A" ARB "B" ARB "C"

 "ABRACADABRA" MAGIC

 the first ARB would have matched the null string and the second ARB would

 have matched the two characters RA.

 36 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 What will the predefined pattern ARB match in the following statements?

 (Many of the examples in this writeup use a pattern match on a literal.

 This is a rather unusual practice and is used here only to show conveniently

 the contents of the subject string.)

 a) QQSV = "Q" ARB "Q"

 "QQSV" QQSV

 b) "1...2...3" ".." ARB ".."

 c) X = ARB "C"; "THE TIME HAS COME" X

 d) "12 O’CLOCK" ARB "’"

 e) "9.5" ARB "." ARB

 f) ARB = "BABA"

 SIC = "A" ARB "B"

 "ABABAB" SIC

 ANSWERS _______

 a) ARB matches the null string.

 b) ARB matches the string ".2".

 c) ARB will match "THE TIME HAS ".

 d) ARB matches "12 O". Although a shorter pattern match is possible,

 this is the leftmost.

 e) The first ARB matches "9" and matches the second the null string.

 f) ARB is a variable like any other, and the value may be changed as this

 example shows. With its new value, ARB matches "BABA", of course.

 Introduction to SNOBOL4 37

 MTS 9: SNOBOL4 in MTS

 September 1975

 CONDITIONAL VALUE ASSIGNMENT ____________________________

 In a pattern match containing an arbitrary pattern element, the substring

 matched by the arbitrary element is often of interest. For example, if we

 wished to scan a string S for matched parentheses enclosing any string of

 characters, we might write a statement like

 S "(" ARB ")"

 How can we retain the string of characters matched by ARB? The binary

 period operator will do this for us. It takes as its left operand a pattern

 and as its right operand a variable name. It will assign to the variable

 name on its right a copy of the substring matched by the pattern element on

 its left. Let us take the previous example and suppose that we wish to

 assign the string of characters occurring between the parentheses to the

 variable OP. Let us also suppose that the value of S is the string "IF

 (A .LT. 50) GOTO 5". The pattern match

 S "(" ARB . OP ")"

 which matches the string S for a string of characters composed of a "("

 followed by an arbitrary string followed by a ")" will succeed. The

 previous value of OP will be replaced by "A .LT. 50". The contents of S

 will be unchanged. If the pattern match had failed, no new value assignment

 would have been made. The binary period, called the conditional value

 assignment operator, has the highest precedence of all operators. Thus, if

 the left operand is more than a single pattern element, it is necessary to

 group the pattern elements in parentheses.

 If we take the previous example and wish to assign not only everything

 between the parentheses but also the parentheses to the variable OP, we

 would write the statement as follows:

 S ("(" ARB ")") . OP

 This pattern match will succeed and the string "(A .LT. 50)" will be

 assigned to OP.

 38 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 What assignments will be made as a consequence of the following pattern

 matches?

 a) SENT = "NOW IS THE TIME ..."

 SENT " " ARB . WORD " " =

 b) SPQR = "CAVEAT EMPTOR"

 SPQR ARB . W " "

 c) "A...Z" ARB . LETTERS

 d) EXP = "P+((9-M)/F)"

 EXP "(" ARB . IE ")"

 e) "THE COST IS $54.02 " "$" ARB . DOLLARS "." ARB . CENTS " "

 f) "THERE IS ONLY ONE ." "." ARB . F "."

 ANSWERS _______

 a) WORD will be assigned "IS".

 SENT will be assigned "NOWTHE TIME ..."

 b) W will be assigned "CAVEAT".

 c) LETTERS will be assigned the null string.

 d) IE will be assigned "(9-M" .

 e) DOLLARS will be assigned "54" and CENTS "02".

 f) The pattern match will fail, and therefore no assignment will be made.

 Introduction to SNOBOL4 39

 MTS 9: SNOBOL4 in MTS

 September 1975

 THE BALANCED PATTERN - BAL __________________________

 Since many of the problems to which SNOBOL4 is applied have a portion of

 their data which is algebraic in nature, a special pattern, BAL, is

 provided, which matches any parenthesis-balanced string. To be parenthesis-

 balanced, a string must consist of at least one character and, if there are

 any parentheses in it, the parentheses must be paired in the usual manner.

 EXAMPLES of parenthesis-balanced strings: ________

 "()" "A" "NO PARENS" "A(5)" "(Q/2-(J*J))"

 EXAMPLES of parenthesis-unbalanced strings: ________ __

 "" "(" ")(" "A(5" "(A/2-(J*J)))"

 EXAMPLES of pattern matches using BAL: ________

 a) "IF (P .LT. (Q-J)) GO TO 23" BAL . X ")"

 The variable X will be assigned the string "P .LT. (Q-J)".

 b) ")(())))(" BAL . P

 P will be assigned the string "(())" .

 c) What will the following program produce as output?

 STRING = ")(())))("

 H STRING BAL = "(" :F(END)

 OUTPUT = STRING :(H)

 END

 The output will be

)())(

)()(

)((

 40 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 THE FIXED-LENGTH PATTERN FUNCTION - LEN(N) __

 One of the most useful of the pattern-valued functions is LEN. It takes

 one argument, an integer, and returns a pattern which will match that

 integer number of characters. The argument must be nonnegative.

 EXAMPLES ________

 "ABC" LEN(1) . LET

 will cause the string "A" to be assigned to LET.

 Here is a program which will read in a series of strings, trim them,

 reverse them, and print the reversed strings.

 L1 = LEN(1) . C

 BEG IN = TRIM(INPUT) :F(END)

 OUT =

 NC IN L1 = :F(PRNT)

 OUT = C OUT :(NC)

 PRNT OUTPUT = OUT :(BEG)

 END

 Introduction to SNOBOL4 41

 MTS 9: SNOBOL4 in MTS

 September 1975

 QUESTIONS _________

 What will the following programs and statements do?

 a) NL VOWEL = "AEIOU"

 TEXT = INPUT :F(END)

 J VOWEL LEN(1) . V = :F(OL)

 H TEXT V = :S(H)F(J)

 OL OUTPUT = TEXT :(NL)

 END

 b) "**(OPEN(5 - 2))**" (LEN(2) BAL) . X

 c) P = BAL LEN(1) BAL

 "(THIS)(HOME)" P . V

 d) X LEN(SIZE(X) - 1) . X

 ANSWERS _______

 a) This program will read input lines, delete all vowels in each line, and

 print the lines.

 b) The LEN(2) will match the first "**" and BAL will match

 "(OPEN(5 - 2))". Therefore, X will be assigned the string

 "**(OPEN(5 - 2))".

 c) The first BAL will match "(THIS)", LEN(1) will match "(", and the

 second BAL will match "H". Therefore, V will be assigned the string

 "(THIS)(H".

 d) The new contents of X will be the previous contents of X with the

 rightmost character removed. If X initially contains the null string,

 this will result in a fatal error.

 42 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 FUNCTION DEFINITION ___________________

 One of the most useful features of SNOBOL4 is its flexible function

 definition capability. A significant difference between SNOBOL4 and other

 languages is that SNOBOL4 function definition is dynamic. That is to say, a

 function may be defined and redefined during execution. Although this is a

 powerful feature, it is used only rarely in actual programming.

 All functions are defined by means of the DEFINE function. The DEFINE

 function takes two string arguments. The first string has the following

 format:

 fcn(fplist)lvlist

 fcn is the function name. ___

 fplist is a list of the formal parameters separated by commas. A formal ______

 parameter is the name by which the value of the actual parameter is

 referenced. The actual parameters are the particular arguments to the

 function at a particular function call. In the function definition, all

 references to the actual parameters are made through the formal parameters.

 At the time of the function call, the current values of the formal

 parameters are saved and the value of each actual parameter is assigned to

 the corresponding formal parameter. When the function returns, the previous

 values of the formal parameters are reinstated.

 lvlist is a list of the local variables separated by commas. It is often ______

 necessary to use variable names to contain intermediate results during the

 execution of the program. To avoid any conflict with variable names

 occurring in that section of the SNOBOL4 program which made the function

 call, the variable names which are used for temporary storage in the

 function may be declared local. When a function is entered, the current _____

 values of all local variable names are saved and the variable names are

 assigned null values. When the function returns, the old values are

 restored. An analogous treatment is made of the variable whose name is the

 same as the function name. As one can see, these procedures are similar to

 those in the case of the formal parameters, with the exception that the

 variable names which are the same as the formal parameters are given as

 contents not the null string, but the values of the actual parameters; all

 three processes occur immediately upon entry to the function.

 The second argument to the DEFINE function is a string which is the name

 of the entry point of the function (i.e., the label at which to start

 execution of the function). If the second argument is omitted, it will be

 assumed that the entry point will have a label which is the same as the name

 of the function.

 Introduction to SNOBOL4 43

 MTS 9: SNOBOL4 in MTS

 September 1975

 EXAMPLES ________

 DEFINE("F(X)","ENT")

 This defines a function named F with one formal parameter X and no local

 variables. The entry point is labeled ENT.

 DEFINE("SIZE(S)N")

 This defines a function named SIZE with one formal parameter S and one local

 variable N. The entry is at the label SIZE. Although the function SIZE is

 predefined, it may be redefined like any other function.

 DEFINE("QQSV(ABC,Z)Q1,Q2,THREE,UOI..." , "SESAME")

 This will define a function named QQSV with two formal parameters, four

 local variables, and the entry point SESAME.

 A = "Z)RN"

 DEFINE("P(" A "G")

 This will define a function named P with a formal parameter Z and a local

 variable RNG.

 Notes:

 1) There may not be blanks in either of the strings which are arguments

 to the DEFINE function.

 2) Remember that the DEFINE function is executable. A function is not

 defined until the appropriate DEFINE function call has been made. It

 slows down, but otherwise does not impair the execution of the

 program to have a DEFINE function call in the middle of a loop. Once

 a function has been defined it is not necessary to define it again.

 44 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975

 FUNCTION EXECUTION __________________

 After a function has been entered, we are faced with some new problems.

 How do we indicate the success or failure of a function, and how do we

 indicate the value to be returned if the function succeeds?

 A function return is made by transferring to one of two reserved labels.

 (We have already encountered the reserved label END.) If a transfer is made

 to the label RETURN, the function succeeds. If a transfer is made to the

 label FRETURN, the function fails.

 The value that is to be returned by the function is the value of the

 variable with the same name as the function. (A name may be used as a

 variable name, a function name, and a label with no conflict.) When the

 function is entered, the current value of the variable with the same name as

 the function is saved, and the null string becomes the new contents.

 Therefore, if no assignment is made to this variable and the function

 returns successfully, the value of the function call is the null string.

 Since, at every function call, the actual parameters are evaluated before

 the current values of variables with names the same as the formal

 parameters, the local variables, and the function name are saved, it is

 possible to write recursive functions, i.e., functions which call upon

 themselves.

 UNDERSTAND THE FOLLOWING EXAMPLES! __________________________________

 a) * THIS PROGRAM WILL READ IN LINES AND PRINT THE TRIMMED LENGTH

 * THE SIZE AND TRIM FUNCTIONS ARE REDEFINED HERE.

 DEFINE("TRIM(S)")

 DEFINE("SIZE(S)")

 L1 = LEN(1)

 *

 T OUTPUT = SIZE(TRIM(INPUT)) :S(T)F(END)

 *

 SIZE SIZE = 0

 ND S L1 = :F(RETURN)

 SIZE = SIZE + 1 :(ND)

 *

 TRIM TRIM = S

 H TRIM DIFFER(TRIM) LEN(SIZE(TRIM) - 1) . TRIM " "

 . :S(H)F(RETURN)

 END

 Introduction to SNOBOL4 45

 MTS 9: SNOBOL4 in MTS

 September 1975

 b) This function takes two arguments. All occurrences in the first

 string of any of the characters in the second string will be deleted.

 Only the statements relevant to the function definition and execution

 are shown here.

 DEFINE("DELETE(S1,S2)C","DEL")

 .

 .

 .

 DEL DELETE = S1

 UT S2 LEN(1) . C = :F(RETURN)

 H DELETE C = :S(H)F(UT)

 .

 .

 .

 c) Here are two examples of recursive functions. The first example is

 the SIZE function written recursively.

 DEFINE("SIZE(S)")

 .

 .

 .

 SIZE SIZE = 0

 S LEN(1) = :F(RETURN)

 SIZE = 1 + SIZE(S) :(RETURN)

 .

 .

 d) The next function takes one argument, a string containing a fully

 parenthesized arithmetic expression with one-character variables,

 constants, and binary operators, and returns the Polish prefix form of

 the expression.

 DEFINE("PPF(EXP)LOP,OP,ROP")

 .

 .

 .

 PPF EXP "(" BAL . LOP LEN(1) . OP BAL . ROP ")" :S(DEC)

 PPF = EXP :(RETURN)

 DEC PPF = OP PPF(LOP) PPF(ROP) :(RETURN)

 46 Introduction to SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 SPITBOL _______

 The SPITBOL compiler is available in the file *SPITBOL. SPITBOL (speedy

 implementation of SNOBOL4) was developed at the Illinois Institute of

 Technology as an alternative to the interpreter developed at Bell Telephone

 Laboratories (available in the public file *SNOBOL4). Programs run consid-

 erably faster under SPITBOL than they do under the BTL interpreter and can

 be saved in object module form. The language accepted by SPITBOL is very

 nearly a superset of SNOBOL4, but does have a few incompatibilities. The

 SPITBOL compiler itself is also more flexible than the BTL interpreters and

 has been implemented in MTS somewhat differently than the BTL interpreters.

 The following documentation was provided by the authors of SPITBOL and

 has been edited here to reflect the MTS implementation. It was written with

 the assumption that the users would have a knowledge of SNOBOL4 as developed

 by Bell Telephone Laboratories and reflects, to the best of our knowledge,

 the current state of SPITBOL. It is designed to be a reference manual

 rather than a tutorial guide.

 INTRODUCTION ____________

 SPITBOL is an implementation of the SNOBOL4 computer language for use on

 the IBM System 360/370. SPITBOL is considerably smaller than the implemen-

 tation from Bell Telephone Laboratories (implemented by the designers of the

 SNOBOL4 language -- R. E. Griswold and I. Polonsky) and has execution speeds

 up to ten times faster. For certain programs, notably those with in-line

 patterns, the gain in speed may be even greater.

 Unlike BTL SNOBOL4, SPITBOL is a true compiler which generates executable

 machine code. The generated code may be listed in assembly form. Of

 course, the complexity of the SNOBOL4 language dictates that system

 subroutines be used for many common functions. SPITBOL can be run as a

 compile-and-execute system like WATFIV, where jobs are executed as soon as

 they are compiled. Alternatively, the compiler can generate an object

 module for later execution.

 This section assumes that the reader is familiar with the standard

 version of SNOBOL4 (referred to as BTL SNOBOL4 in the remainder of the

 section). Version 3.4 of SNOBOL4 is the reference version for comparison.

 There are several minor incompatibilities and some features are unimple-

 mented. There are also several additions to the language in this

 implementation.

 In general, an attempt has been made to retain upward compatibility

 wherever possible. Most SNOBOL4 programs which operate correctly using BTL

 SNOBOL4 should operate correctly when compiled and executed using SPITBOL.

 SPITBOL 47

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 SPITBOL was designed and implemented by Robert B. K. Dewar and Kenneth

 Belcher at The Illinois Institute of Technology.

 SUMMARY OF DIFFERENCES ______________________

 This section contains a summary of the significant differences between

 SPITBOL and BTL SNOBOL4.

 Features Not Implemented ________________________

 At the current time, the following features of BTL SNOBOL4 are not

 implemented.

 (1) Array elements, table elements, and program-defined data types

 cannot be traced.

 (2) OPSYN for operators (third argument) is permitted only for normally

 undefined operators.

 (3) The BLOCK datatype (as implemented in SNOBOL4B) is not available.

 (4) The &STFCOUNT keyword is not implemented.

 Features Implemented Differently ________________________________

 The following features are implemented by SPITBOL, but the usage is

 different from that in BTL SNOBOL4, and changes in existing programs may be

 required.

 (1) Recovery from execution errors (see the description of the SPITBOL

 function SETEXIT).

 (2) I/O is somewhat different. The FORTRAN I/O routines are not used.

 However, a FORTRAN format-processing routine has been included for

 compatibility.

 48 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 Additional Features ___________________

 The following additional features (not in BTL SNOBOL4) are included in

 the SPITBOL system.

 (1) The datatype DREAL (7-byte real).

 (2) The additional functions BREAKX, LEQ, LGE, LLE, LLT, LNE, LPAD,

 REVERSE, RPAD, SETEXIT, and SUBSTR.

 (3) Additional flexibility in I/O. Format-free, variable-record-length

 I/O for simple string input/output. FDnames and logical I/O unit

 names are allowed in INPUT and OUTPUT statements.

 (4) The symbolic dump optionally includes elements of arrays, tables,

 and program-defined datatypes.

 (5) Both the pattern-matching stack and the function-call push-down

 stack may expand to use all available dynamic memory if necessary.

 Other Incompatibilities _______________________

 (1) The value of a modifiable keyword can be changed only by direct

 assignment using "=". Pattern assignment cannot be used to change a

 keyword value, and the name operator cannot be applied to a keyword.

 (2) SPITBOL allows some datatype conversions not allowed in BTL SNOBOL4.

 For example, a REAL value may be used in pattern alternation and is

 converted to a string. In general, SPITBOL converts objects to an

 appropriate datatype if at all possible.

 (3) The unary . (name) operator applied to a natural variable yields a

 NAME rather than a STRING. Since this NAME can be converted to a

 STRING when required, the difference is normally not noticed. The

 only points at which the difference is apparent is in use of the

 IDENT, DIFFER, and DATATYPE functions and when used as a TABLE

 subscript.

 (4) SPITBOL normally operates in an optimized mode which generates a

 number of incompatibilities. This mode can be turned off if

 necessary; see the description of the control cards -OPTIMIZE and

 -NOOPTIMIZE.

 (5) SPITBOL permits leading and trailing blanks on numeric strings which

 are to be converted to STRING.

 (6) Several of the built-in functions are different. These are identi-

 fied by an * appended to their name in the section "Functions."

 SPITBOL 49

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 (7) SPITBOL does not permit exponentiation of two real numbers.

 (8) The BACKSPACE function is not implemented.

 DATATYPES AND CONVERSIONS _________________________

 Datatypes in SPITBOL ____________________

 STRING strings range in length from 0 (null string) to 32758

 characters (subject to the setting of &MAXLNGTH). Any

 characters from the EBCDIC set can appear.

 INTEGER integers are stored in 32-bit form, allowing a range of

 -2**31 to +2**31-1. There is no negative zero.

 REAL stored as a 32-bit, short-form, floating-point number.

 DREAL stored using long-form floating-point. The low-order byte is

 not available and is stored as zero, thus giving a 48-bit

 mantissa (15 decimal digits).

 ARRAY arrays may have up to 255 dimensions.

 TABLE a table may have any number of elements; see the description

 of the TABLE function in the section "Functions" for further

 details. Any SPITBOL entity may be used as the name of a

 table element, including the null string.

 PATTERN pattern structures may range up to 32768 bytes. This means

 there is essentially no limit on the complexity of a pattern.

 NAME a name can be obtained from any variable. Note that in

 SPITBOL, the name operator (unary dot) applied to a natural

 variable yields a name, not a string as in BTL SNOBOL4.

 EXPRESSION any expression may be deferred via the unary * operator.

 CODE a string representing a valid program can be converted to

 code at execution time. The resulting object, of type CODE,

 may be executed in the same manner as the original program.

 Datatype Conversion ___________________

 As far as possible, SPITBOL converts from one datatype to another as

 required. The following table shows which conversions are possible. A

 50 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 dashed entry indicates that the conversion is never possible, X indicates

 that the conversion is always possible, and F indicates that conversion may

 be possible, depending on the value involved.

 Convert to

 S I R D A T P N E C

 ┌───────────────────────────────
 S | X F F F - - X X F F

 I | X X X X - - X X X -

 R | X F X X - - X X X -

 Convert D | X F X X - - X X X -

 from A | - - - - X F - - - -

 T | - - - - F X - - - -

 P | - - - - - - X - - -

 N | F F F F - - - - F F

 E | - - - - - - - - X -

 C | - - - - - - - - - X

 S -- STRING

 I -- INTEGER

 R -- REAL

 D -- DREAL

 A -- ARRAY

 T -- TABLE

 P -- PATTERN

 N -- NAME

 E -- EXPRESSION

 C -- CODE

 The detailed description of each of the possible conversions is given

 below.

 STRING --> INTEGER

 Leading and trailing blanks are ignored. A leading sign is optional.

 The sign, if present, must immediately precede the digits. A null

 string is converted to zero.

 STRING --> REAL

 Leading and trailing blanks are ignored. A leading sign, if present,

 must immediately precede the number. The number itself may be written

 in standard (FORTRAN-type) format with an optional exponent.

 STRING --> DREAL

 The rules are the same as for STRING to REAL. Note that a STRING is

 considered to represent a DREAL if more than eight significant digits

 are given, or if a D is used for the exponent instead of an E.

 SPITBOL 51

 MTS 9: SNOBOL4 in MTS

 September 1975

 STRING --> PATTERN

 A pattern is created which matches the string value.

 STRING --> NAME

 The result is the name of the natural variable with a name of the given

 string. This is identical to the result of applying the unary dot

 operator to the variable in question. The null string cannot be

 converted to a name.

 STRING --> EXPRESSION

 The string must represent a legal SPITBOL expression. The compiler is

 used to convert the string into its equivalent expression and the

 result can be used anywhere an expression is permitted.

 STRING --> CODE

 The string must represent a legal SPITBOL program, complete with

 labels, and using semicolons to separate statements. The compiler is

 used to convert the string into executable code. The resulting code

 can be executed by transferring to it with a direct GOTO or by a normal

 transfer to a label within the code.

 INTEGER --> STRING

 The result has no leading or trailing blanks. Leading zeros are

 suppressed. A preceding minus sign is supplied for negative values.

 Zero is converted to ’0’.

 INTEGER --> REAL

 A real number is obtained by adding a zero fractional part. Note that

 significance is lost in converting integers whose absolute value

 exceeds 2**24-1.

 INTEGER --> DREAL

 A DREAL is obtained by adding a zero fractional part. Significance is

 never lost in this conversion.

 INTEGER --> PATTERN

 The integer is first converted to STRING and then treated as STRING to

 PATTERN.

 INTEGER --> NAME

 The integer is first converted to STRING and then treated as STRING to

 NAME.

 52 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 INTEGER --> EXPRESSION

 The result is an expression which, when evaluated, yields the INTEGER

 as its value.

 REAL --> STRING

 The real number is converted to its standard character representation.

 Fixed-type format is used if possible; otherwise, an exponent (using E)

 is supplied. Seven significant digits are generated, the last being

 correctly rounded for all cases. Trailing insignificant zeros are

 suppressed after rounding has taken place.

 REAL --> INTEGER

 This conversion is possible only if the REAL is in the range permitted

 for integers. In this case, the result is obtained by truncating the

 fractional part.

 REAL --> DREAL

 Additional low-order zeros are added to extend the mantissa.

 REAL --> PATTERN

 The integer is first converted to STRING and then treated as STRING to

 PATTERN.

 REAL --> NAME

 The integer is first converted to STRING and then treated as STRING to

 NAME.

 REAL --> EXPRESSION

 The result is an expression which, when evaluated, yields the REAL as

 its value.

 DREAL --> STRING

 The conversion is like REAL to STRING except that 15 significant digits

 are given and a D is used for the exponent if one is required.

 DREAL --> INTEGER

 This conversion is possible only if the DREAL is in the range permitted

 for integers. In this case, the result is obtained by truncating the

 fractional part.

 DREAL --> REAL

 The low-order digits of the mantissa are truncated to reduce the

 precision.

 SPITBOL 53

 MTS 9: SNOBOL4 in MTS

 September 1975

 DREAL --> PATTERN

 The integer is first converted to STRING and then treated as STRING to

 PATTERN conversion.

 DREAL --> NAME

 The integer is first converted to STRING and then treated as STRING to

 NAME conversion.

 DREAL --> EXPRESSION

 The result is an expression which, when evaluated, yields the DREAL as

 its value.

 ARRAY --> TABLE

 The array must be two-dimensional with a second dimension of two, or an

 error occurs. For each entry (value of the first subscript), a table

 entry using the (X,1) entry as the name and the (X,2) entry as the

 value is created. The resulting table has the same number of hash

 headers (see TABLE function) as the first dimension.

 TABLE --> ARRAY

 The table must have at least one element which is nonnull. The array

 generated is two-dimensional. The first dimension is equal to the

 number of non-null entries in the table. The second dimension is two.

 For each entry, the (X,1) element in the array is the name and the

 (X,2) element is the value. The order of the elements in the array is

 the order in which elements occurred in the table.

 NAME --> STRING

 A NAME can be converted to a STRING only if it is the name of a natural

 variable. The resulting string is the character name of the variable.

 NAME --> INTEGER, REAL, DREAL, PATTERN, EXPRESSION, CODE

 The NAME is first converted to a string (if possible) and then the

 conversion proceeds as described for STRING.

 SYNTAX ______

 This section describes differences between the syntax in SPITBOL and BTL

 SNOBOL4. These differences are minor and should not affect existing

 programs.

 (1) Reference to elements of arrays which are themselves elements of

 arrays is possible without using the ITEM function. Thus the

 following are equivalent:

 54 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 A<J><K> = B<J><K>

 ITEM(A<J>,K) = ITEM(B<J>,K)

 (2) Up to 255 columns of input may optionally be used -- see the

 description of the -INxxx control card in the section "Control

 Cards."

 (3) The only way to change the value of a keyword is by direct

 assignment. It is not permissible to use a keyword in any other

 context requiring a name.

 (4) The compiler permits real constants to be followed by a FORTRAN-

 style exponent E+xxx or D+xxx, the latter signifying a double-

 precision real (DREAL).

 PATTERN MATCHING ________________

 Pattern matching is essentially compatible, however there are some minor

 differences and extensions as described in this section.

 The stack used for pattern matching can expand to fill all available

 dynamic memory if necessary. Thus, the diagnostic issued for an infinite

 pattern recursion is simply the standard memory overflow message.

 In SPITBOL, the values of &QUICKSCAN and &ANCHOR are obtained only at the

 start of the match. In BTL SNOBOL4, changing these values during a match

 can lead to unexpected results.

 The BREAKX function allows construction of an extended break pattern.

 See the description in the section "Functions."

 FUNCTIONS _________

 This section defines the functions which are built-in to the SPITBOL

 system. The functions are described in alphabetical order. In most cases,

 the arguments are automatically preconverted to some particular datatype.

 This is indicated in the function header by the notation

 FUNCTION(STRING,INTEGER,etc...)

 If the corresponding argument cannot be converted to the indicated datatype,

 an error with major code 1 (illegal datatype) occurs (see the section "Error

 Codes"). In some cases, the range of arguments permitted is restricted.

 Arguments outside the permitted domain cause the generation of an error with

 major code 13 (incorrect value for function or operator). The usage

 ’ARGUMENT’ implies that the argument can be of any datatype. ’NUMERIC’

 implies that any numeric datatype can occur (INTEGER, REAL, or DREAL).

 SPITBOL 55

 MTS 9: SNOBOL4 in MTS

 September 1975

 In the following descriptions, a single asterisk following the name of

 the function indicates that the implementation of the function differs from

 that in BTL SNOBOL4, or that the function is not available in BTL SNOBOL4.

 ANY -- Pattern to Match Selected Character

 ANY(STRING) or ANY(EXPRESSION)

 This function returns a pattern which will match a single character

 selected from the characters in the argument string. A null argument

 is not permitted.

 If an expression argument is used, then the expression is evaluated

 during the pattern match and must give a nonnull string result.

 APPLY* -- Apply Function

 APPLY(NAME,ARG,ARG,...)

 The first argument is the name of a function to be applied to the

 (possibly null) list of arguments following. Unlike BTL SNOBOL4,

 SPITBOL does not require the number of arguments to match. Extra

 arguments are ignored, and missing arguments are supplied as null

 strings.

 ARBNO -- Pattern for Iterated Match

 ARBNO(PATTERN)

 This function returns a pattern which will match an arbitrary number of

 occurrences of the pattern argument, including the null string (corre-

 sponding to zero occurrences).

 ARG -- Obtain Argument Name

 ARG(NAME,INTEGER)

 The first argument represents the name of a function. The integer is

 the number of a formal argument to this function. The returned result

 is the string name of the selected argument. ARG fails if the integer

 is out of range (less than one, or greater than the number of

 arguments).

 ARRAY -- Generate Array Structure

 ARRAY(STRING,ARG)

 The string represents the prototype of an array to be allocated. This

 is in the format ’LBD1:HBD1,LBD2:HBD2,..’. The lower bound (LBD) may

 be omitted for some or all of the dimensions, in which case a lower

 bound of one is assumed. The second argument (of any datatype) is the

 initial value of all the elements in the array. If the second argument

 is omitted, the initial value of all elements becomes the null string.-

 56 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 BREAK -- Construct Scanning Pattern

 BREAK(STRING) or BREAK(EXPRESSION)

 This function returns a pattern which will match any string up to but

 not including a character in the string argument. A null argument is

 not permitted.

 If an expression argument is given, the resulting pattern causes the

 string to be evaluated during pattern matching. In this case, the

 evaluated result must be a non-null string.

 BREAKX* -- Construct Scanning Pattern

 BREAKX(STRING) or BREAKX(EXPRESSION)

 BREAKX returns a pattern whose initial match is the same as a

 corresponding BREAK pattern. However, BREAKX has implicit alternatives

 which are obtained by scanning past the first break character found and

 scanning to the next break character. In other words, should the

 pattern fail, BREAKX will force scanning past the current break

 character and match (like BREAK) at the next break character, etc.

 Note that BREAKX may be used to replace ARB in many situations where

 BREAK cannot be used easily. For example, the following replacement

 can be made:

 ARB (’CAT’ | ’DOG’) ---> BREAKX(’CD’) (’CAT’ | ’DOG’)

 In the case of an expression argument, the expression is evaluated

 during pattern matching and must yield a nonnull string value. Note

 that the evaluation of the expression is not repeated on rematch

 attempts by extension.

 CLEAR* -- Clear Variable Storage

 CLEAR(STRING,ARGUMENT)

 This function causes the values of variables to be set to null. In the

 simple case, where both arguments are omitted, the action is the same

 as in BTL SNOBOL4; i.e., all variables are cleared to contain the null

 string. Two extensions are available in SPITBOL. The first argument

 may be a string which is a list of variable names separated by commas.

 These represent the names of variables whose value is to be left

 unchanged. In addition, if a second nonnull argument is supplied, then

 all variables containing pattern values are left unchanged. For

 example,

 CLEAR(’ABC,CDE,GGG’,1)

 would cause the value of all variables to be cleared to null except for

 the variables ABC, CDE, GGG, and all other variables containing pattern

 values.

 SPITBOL 57

 MTS 9: SNOBOL4 in MTS

 September 1975

 CODE -- Compile Code

 CODE(STRING)

 The effect of this function is to convert the argument to type CODE as

 described in the section "Datatype Conversion." The STRING must

 represent a valid SPITBOL program complete, with labels and using

 semicolons to separate statements. The call to CODE fails if these

 conditions are not met.

 COLLECT -- Initiate Storage Regeneration

 COLLECT(INTEGER)

 The COLLECT function forces a garbage collection which retrieves unused

 storage and returns it to the block of available storage. The integer

 argument represents a minimum number of bytes to be made available. If

 this amount of storage cannot be obtained, the collect function fails.

 On successful return, the result is the number of bytes actually

 obtained.

 Note that although the implementation of COLLECT is similar to that in

 BTL SNOBOL4, the values obtained will be quite different due to

 different internal data representations. Furthermore, the internal

 organization of SPITBOL is such that forcing garbage collections to

 occur before they are required always increases execution time.

 CONVERT* -- Convert Datatypes

 CONVERT(ARGUMENT,STRING)

 The returned result is obtained by converting the first argument to the

 type indicated by the string name of the datatype given as the second

 argument. The section "Datatype Conversion" describes the permitted

 conversions. Any conversions which are not permitted cause failure of

 the CONVERT call.

 An additional possibility for the second argument is ’NUMERIC’, in

 which case the argument is converted to INTEGER, REAL, or DREAL

 according to its form.

 COPY* -- Copy Structure

 COPY(ARGUMENT)

 The COPY function returns a distinct copy of the object which is its

 argument. This is useful only for arrays, tables, and program-defined

 datatypes. Note that SPITBOL does permit the copying of TABLES, unlike

 BTL SNOBOL4.

 58 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 DATA -- Create Datatype

 DATA(STRING)

 The argument to DATA is a prototype for a new datatype in the form of a

 function call with arguments. The function name is the name of the new

 datatype. The ’ARGUMENT’ names are names of functions which represent

 the fields of the new datatype.

 Note that in SPITBOL a significant increase in efficiency is obtained

 by avoiding the use of duplicate field names for different datatypes,

 although SPITBOL does allow such multiple use of field function names.

 DATATYPE* -- Obtain Datatype

 DATATYPE(ARGUMENT)

 DATATYPE returns the formal identification of the datatype of its

 argument. In SPITBOL, the additional datatype names ’DREAL’ and ’NAME’

 are included in the list of possible returned results.

 DATE -- Obtain Date

 DATE()

 DATE returns an eight-character string of the form MM/DD/YY represent-

 ing the current date.

 DEFINE -- Define a Function

 DEFINE(STRING,NAME)

 The DEFINE function is used to define program-defined functions. The

 use of DEFINE is the same in SPITBOL as in BTL SNOBOL4.

 DETACH -- Detach I/O Association

 DETACH(NAME)

 NAME is the name of a variable which has previously been input- or

 output-associated. Use of the DETACH function does not affect the file

 involved.

 DIFFER* -- Test for Arguments Differing

 DIFFER(ARGUMENT,ARGUMENT)

 DIFFER is a predicate function which fails if its two arguments are

 identical objects. Note that DIFFER(.ABC,’ABC’) succeeds in SPITBOL

 since .ABC is a NAME. DIFFER, IDENT, and DATATYPE are the only

 functions in which the different implementations of the name operator

 (unary dot) may give rise to problems.

 SPITBOL 59

 MTS 9: SNOBOL4 in MTS

 September 1975

 DUMP* -- Dump Storage

 DUMP(INTEGER)

 The DUMP function causes a dump of the items specified by the integer

 argument. After the dump is complete, execution continues unaffected

 (the DUMP function returns the null string). The integer arguments are

 defined as follows:

 DUMP(0) dumps nothing.

 DUMP(1) dumps all nonconstant keywords and all nonnull natural

 variables.

 DUMP(2) dumps all of the above plus the values of the elements

 of arrays, tables, and program-defined datatypes.

 DUMP(3) causes a hexadecimal dump of the SPITBOL system and

 should be avoided. This is intended for system

 debugging.

 DUPL -- Duplicate String

 DUPL(STRING,INTEGER)

 DUPL returns a string obtained by duplicating the first (STRING)

 argument the number of times indicated by the second argument.

 ENDFILE* -- Close file

 ENDFILE(STRING)

 STRING is the name of a file (not the name of a variable associated ___

 with the file). The named file is closed, all associated storage is

 released, and all variables associated with the file are automatically

 detached. Thus, ENDFILE should be used only when no further use is to

 be made of the file. If the file is to be reread or rewritten, REWIND

 should be used rather than ENDFILE.

 EQ -- Test for Equal To

 EQ(NUMERIC,NUMERIC)

 EQ is a predicate function which tests whether its two arguments are

 equal. DREAL arguments are permitted.

 EVAL -- Evaluate Expression

 EVAL(EXPRESSION)

 EVAL returns the result of evaluating its expression argument. Note

 that a string can be converted into an expression by compiling it into

 code. Thus, EVAL in SPITBOL is compatible with BTL SNOBOL4 and handles

 strings in the same way.

 60 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 FIELD -- Get Field Name

 FIELD(NAME,INTEGER)

 FIELD returns the name of the selected field of the program-defined

 datatype whose name is the first argument. If the second argument is

 out of range (less than one, or greater than the number of fields), the

 FIELD function fails.

 GE -- Test for Greater or Equal To

 GE(NUMERIC,NUMERIC)

 GE is a predicate function which tests if the first argument is greater

 than or equal to the second argument.

 GT -- Test for Greater Than

 GT(NUMERIC,NUMERIC)

 GT is a predicate function which tests if the first argument is greater

 than the second argument.

 IDENT* -- Test for Identical

 IDENT(ARGUMENT,ARGUMENT)

 IDENT is a predicate function which tests if its two arguments are

 identical. Note that in SPITBOL, IDENT(.ABC,’ABC’) fails since .ABC is

 a name in SPITBOL. Otherwise, IDENT is compatible with BTL SNOBOL4.

 INPUT* -- Set Input Association

 INPUT(NAME,STRING,INTEGER)

 The first argument is the name of a variable which is to be

 input-associated. The second argument is the filename of the file to

 which the variable is to be associated. In MTS, a filename can be an

 FDname (MYFILE, *SOURCE*, etc.) or a logical I/O unit name (SCARDS, 7,

 etc.). If the second argument is omitted, it is assumed to be SCARDS.

 The third argument is either zero, in which case it is ignored, or a

 positive nonzero integer, in which case input records longer than the

 given limit are truncated.

 A restriction in SPITBOL is that only natural variables can be

 input-associated. It is not possible to input-associate array and

 table elements.

 SPITBOL 61

 MTS 9: SNOBOL4 in MTS

 September 1975

 INTEGER* -- Test for Integer

 INTEGER(NUMERIC)

 INTEGER is a predicate function which tests whether its argument is

 integral. It fails if the argument cannot be converted to numeric, or

 if it has a nonintegral value.

 ITEM -- Select Array or Table Element

 ITEM(ARRAY,INTEGER,INTEGER,...) or ITEM(TABLE,ARGUMENT)

 ITEM returns the selected array or table element by name. Note that

 the use of ITEM is unnecessary in SPITBOL because of the extended

 syntax for array references (see the section "Syntax").

 LE -- Test for Less Than or Equal To

 LE(NUMERIC,NUMERIC)

 LE is a predicate function which tests whether the first argument is

 less than or equal to the second argument.

 LEN -- Generate Specified-Length Pattern

 LEN(INTEGER) or LEN(EXPRESSION)

 LEN generates a pattern which will match any sequence of characters of

 length given by the argument, which must be a non-negative integer.

 If the argument is an expression, it is evaluated during pattern

 matching and must yield a nonnegative integer.

 LEQ* -- Test for Lexically Equal To

 LEQ(STRING,STRING)

 LEQ is a predicate function which tests whether its arguments are

 lexically equal. Note that LEQ differs from the IDENT function in that

 its arguments must be strings. Thus, LEQ(10,’10’) succeeds, as does

 LEQ(.ABC,’ABC’).

 LGE* -- Test for Lexically Greater Than or Equal To

 LGE(STRING,STRING)

 LGE is a predicate function which tests whether the first argument is

 lexically greater than or equal to the second argument.

 62 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 LGT -- Test for Lexically Greater Than

 LGT(STRING,STRING)

 LGT is a predicate function which tests whether its first string

 argument is lexically greater than the second string argument.

 LLE* -- Test for Lexically Less Than or Equal To

 LLE(STRING,STRING)

 LLE is a predicate function which tests whether its first string

 argument is lexically less than or equal to the second argument.

 LLT* -- Test for Lexically Less Than

 LLT(STRING,STRING)

 LLT is a predicate function which tests whether its first argument is

 lexically less than its second argument.

 LNE* -- Test For Lexically Not Equal To

 LNE(STRING,STRING)

 LNE is a predicate function which tests whether its arguments are

 lexically unequal. LNE differs from the DIFFER function in that its

 arguments must be strings.

 LOAD* -- Load External Function

 LOAD(STRING,STRING)

 LOAD is used to load an external function. The form of the LOAD

 function is the same as in BTL SNOBOL4 except that the datatype DREAL

 may be used and unconverted descriptors must be specified differently.

 In the case where the datatype is unspecified, the form of the

 descriptor passed is quite different from that in BTL SNOBOL4. The

 section "External Routines" describes the actual form that the argu-

 ments take.

 LOCAL -- Get Name of Local Variable

 LOCAL(NAME,INTEGER)

 The value returned is the name of the indicated local variable of the

 function whose name is given by the first argument. LOC fails if the

 second argument is out of range (less than one, or greater than the

 number of local variables).

 SPITBOL 63

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 LPAD* -- Left Pad

 LPAD(STRING,INTEGER,STRING)

 LPAD returns the result obtained by padding out the first argument on

 the left to the length specified by the second argument, using the pad

 character supplied by the one-character-string third argument. If the

 third argument is null or omitted, a blank is used as the pad

 character. If the first argument is already long enough or too long,

 it is returned unchanged. LPAD is useful for constructing columnar

 output.

 LT -- Test for Less Than

 LT(NUMERIC,NUMERIC)

 LT is a predicate function which tests whether the first argument is

 less than the second argument.

 NOTANY -- Build Character Select Pattern

 NOTANY(STRING) or NOTANY(EXPRESSION)

 NOTANY returns a pattern which will match any single character not in

 the string argument given. A null argument is not permitted.

 If the argument is an expression, then the expression is evaluated at

 pattern-match time and must yield a nonnull string.

 OPSYN* -- Equate Functions

 OPSYN(NAME,NAME,INTEGER)

 The first argument is to have the same definition as the second

 argument. OPSYN may be used to redefine operators as in BTL SNOBOL4

 using 1 or 2 as the third argument, subject to the following

 restrictions:

 (1) Only the first argument can be an operator name.

 (2) Only normally undefined operators can be redefined.

 OUTPUT* -- Set Output Association

 OUTPUT(NAME,STRING,STRING)

 The first argument is the name of a variable to be output-associated.

 The second argument is the name of the file or unit to which the

 association is to be made. In MTS a filename can be an FDname (MYFILE,

 PRINT, etc.) or a logical I/O unit name (SPRINT, 6, etc.). If the

 second argument is omitted, SPRINT is assumed.

 The third argument is the format. If it is omitted, the output record

 length is taken from the FDname definition. Strings are transmitted

 64 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 directly. If a string exceeds the specified length (maximum record

 length for variable length records), then it is split into segments as

 required.

 The second possibility for a format argument is a single character.

 This is used for print files. The character given is a control

 character which is appended to the start of each record. Thus, the

 definition of the standard print file is

 OUTPUT(.OUTPUT,,’ ’)

 A third possibility for the format argument is a FORTRAN format. This

 is supplied for compatibility with BTL SNOBOL4 and should not be used

 except where required since format processing is inherently time

 consuming.

 A restriction on the output function in SPITBOL is that only natural

 variables may be associated. It is not possible to output-associate

 array and table elements.

 POS -- Define Positioning Pattern

 POS(INTEGER) or POS(EXPRESSION)

 POS returns a pattern which matches the null string after the indicated

 number of characters has been matched. The argument must be a

 nonnegative integer.

 If an expression argument is given it is evaluated during pattern

 matching and must yield a nonnegative integer.

 PROTOTYPE -- Retrieve Prototype

 PROTOTYPE(ARRAY) or PROTOTYPE(TABLE)

 PROTOTYPE returns the first argument used in the ARRAY or TABLE

 function call which created the argument.

 REMDR -- Remainder

 REMDR(INTEGER,INTEGER)

 REMDR returns the remainder obtained on dividing the first argument by

 the second. The remainder has the same sign as the first argument

 (quotient).

 REPLACE -- Translate Characters

 REPLACE(STRING,STRING,STRING)

 REPLACE returns the result of applying the transformations represented

 by the second and third arguments to the first argument. REPLACE fails

 if the second and third arguments are unequal in length or null.

 SPITBOL 65

 MTS 9: SNOBOL4 in MTS

 September 1975

 REVERSE* -- Reverse String

 REVERSE(STRING)

 REVERSE returns the result of reversing the order of the characters in

 its string argument. Thus, REVERSE(’ABC’) = ’CBA’.

 REWIND -- Reposition File

 REWIND(STRING)

 STRING is the name of an external file (not the name of a variable ___

 associated with the file). The named file is repositioned so that the

 next read or write operation starts at the first record of the file.

 Existing associations to the file are unaffected.

 RPAD* -- Right Pad

 RPAD(STRING,INTEGER,STRING)

 RPAD is similar to LPAD except that the padding is done on the right.

 RPOS -- Create Positioning Pattern

 RPOS(INTEGER) or RPOS(EXPRESSION)

 RPOS creates a pattern which will match null when the indicated number

 of characters remains to be matched. The integer argument must be

 nonnegative.

 If an expression argument is used, it is evaluated during the pattern

 match and must yield a nonnegative integer.

 RTAB -- Create Tabbing Pattern

 RTAB(INTEGER) or RTAB(EXPRESSION)

 RTAB returns a pattern which matches from the current location up to

 the point where the indicated number of characters remains to be

 matched. The argument must be a nonnegative integer.

 If an expression is used, it is evaluated during pattern matching and

 must yield a nonnegative integer.

 SETEXIT* -- Set Error Exit

 SETEXIT(NAME) or SETEXIT()

 The use of SETEXIT allows interception of any execution error. The

 argument to SETEXIT is a label to which control is passed if a

 subsequent error occurs, providing that the value of the keyword

 &ERRLIMIT is nonzero. The value of &ERRLIMIT is decremented by 1 when

 the error trap occurs. The SETEXIT call with a null argument causes

 66 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 cancellation of the intercept. A subsequent error will terminate

 execution as usual with an error message.

 The result returned by SETEXIT is the previous intercept setting (i.e.,

 a label name or null if no intercept is set). This can be used to save

 and restore the SETEXIT conditions in a recursive environment.

 The error intercept routine may inspect the error code stored in the

 keyword &ERRTYPE (see the section "Keywords"), and take one of the

 following actions:

 (1) Terminate execution by transferring to the special label

 ABORT. This causes error processing to resume as though no

 error intercept had been set.

 (2) Branching to the special label CONTINUE. This causes execu-

 tion to resume by branching to the failure exit of the

 statement in error.

 (3) Continue execution elsewhere by branching to some other

 section of the program. Note that if the error occurred

 inside a function, we are still ’down a level’.

 The occurrence of an error cancels the error intercept. Thus, the

 error intercept routine must reissue the SETEXIT if required.

 SIZE -- Get String Size

 SIZE(STRING)

 SIZE returns an integer count of the length of its string argument.

 SPAN -- Create Scanning Pattern

 SPAN(STRING) or SPAN(EXPRESSION)

 SPAN creates a pattern matching a nonnull sequence of characters

 contained in the first argument, which must be a nonnull string.

 If an expression argument is used, it is evaluated during pattern

 matching and must yield a nonnull string value.

 STOPTR* -- Stop Trace

 STOPTR(NAME,STRING)

 STOPTR terminates tracing for the name given by the first argument.

 The second argument designates the sense in which the trace is to be

 stopped as follows:

 ’VALUE’ or ’V’ or null (omitted) value

 ’LABEL’ or ’L’ label

 ’FUNCTION’ or ’F’ function call & return

 ’CALL’ or ’C’ function call

 SPITBOL 67

 MTS 9: SNOBOL4 in MTS

 September 1975

 ’RETURN’ or ’R’ function return

 ’KEYWORD’ or ’K’ keyword tracing

 SUBSTR* -- Extract Substring

 SUBSTR(STRING,INTEGER,INTEGER)

 SUBSTR extracts a substring from the first argument, the second

 argument specifies the first character (1 = start of string), and the

 third argument specifies the number of characters. SUBSTR fails if the

 substring is not a proper substring.

 TAB -- Create Tabbing Pattern

 TAB(INTEGER) or TAB(EXPRESSION)

 TAB creates a pattern which matches from the current position up to the

 point where the indicated number of characters has been matched. The

 argument to TAB is a nonnegative integer.

 If an expression argument is used, it is evaluated during pattern

 matching and must yield a nonnegative integer.

 TABLE* -- Create Table

 TABLE(INTEGER)

 The TABLE function creates an associative table as in BTL SNOBOL4.

 However, in SPITBOL, the table is implemented internally using a

 hashing algorithm. The integer argument to TABLE is the number of hash

 headers used. The average number of searches is about M/2N where M is

 the number of entries in the table, and N is the number of hash

 headers. Since the overhead for hash headers is small compared to the

 size of a table element, a useful guide is to use an argument which is

 an estimate of the number of entries to be stored in the table.

 Since the use of even numbers of headers can cause anomalies in the

 hashing algorithm, TABLE forces its argument to be odd by incrementing

 even arguments by one.

 Note that this implementation of TABLE is compatible in that the call

 used in BTL SNOBOL4 works, though possibly not with maximum efficiency.

 TIME -- Get Timer Value

 TIME()

 TIME returns the integer number of milliseconds of processor time since

 the start of execution. Note that the values obtained will be

 different (smaller) than those obtained with BTL SNOBOL4, since most

 programs run faster under SPITBOL.

 68 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 TRACE* -- Initiate Trace

 TRACE(NAME,STRING,ARGUMENT,NAME)

 The TRACE function initiates a trace of the item whose name is given by

 the first argument. The second argument specifies the sense of the

 trace as follows:

 ’VALUE’ ’V’ or null (omitted) value

 ’LABEL’ or ’L’ label

 ’FUNCTION’ or ’F’ function call & return

 ’CALL’ or ’C’ function call

 ’RETURN’ or ’R’ function return

 ’KEYWORD’ or ’K’ keyword tracing

 Keyword tracing is available only for the keywords &STCOUNT, &FCNLEVEL,

 and &ERRTYPE.

 The third and fourth arguments are optional and are used to specify

 programmer-defined trace functions as in BTL SNOBOL4.

 Tracing of array elements, table elements, and program-defined data-

| types types is not currently allowed.

 TRIM -- Trim Trailing Blanks

 TRIM(STRING)

 TRIM returns the result of trimming trailing blanks from the argument

 string.

 UNLOAD* -- Unload Function

 UNLOAD(STRING)

 String is the name of an external function which is to be unloaded.

 The restriction in BTL SNOBOL4 concerning functions OPSYNed to loaded

 functions does not apply in SPITBOL. A function is not actually

 unloaded until all functions OPSYNed to it have been unloaded. SPITBOL

 also allows the names of ordinary functions to appear in calls to

 UNLOAD. In this case, the result is merely to undefine the function.

 VALUE-- Value Function

 VALUE(ARGUMENT)

 As in BTL SNOBOL4, the VALUE function returns the value of a string, a

 name, or a programmer-defined data type.

 SPITBOL 69

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 KEYWORDS ________

 The following is a list of the keywords implemented in SPITBOL. The

 notation (R) after the name indicates that the keyword is read-only, that

 is, its value may not be modified by assignment.

 A restriction in SPITBOL is that the only way to change a keyword value

 is by a direct assignment. Keywords may not appear in any other context

 requiring a name (for example as the right argument of binary $).

 &ABEND Initially set to zero. If it is set to one when execution

 terminates, a SPITBOL system dump is given. This is useful

 only for system checkout.

 &ABORT(R) Contains the pattern ABORT.

 &ALPHABET(R) Contains the 256 characters of the EBCDIC set in their

 natural collating sequence.

 &ANCHOR Set to zero for unanchored mode and to one for anchored

 pattern matching mode.

 &ARB(R) Contains the pattern ARB.

 &BAL(R) Contains the pattern BAL.

 &CODE The value in &CODE is used as a system return code if this

 job is the last in a batch. It is normally set to zero.

 &DUMP The standard value is zero. If the value is zero at the end

 of execution, then no symbolic dump is given. A value of one

 gives a dump including values of keywords and natural

 variables. If the value is two, the dump includes nonnull

 array, table, and program-defined datatype elements as well.

 The dump format is self-explanatory and deals with the case

 of branched structures including circular lists. If the

 value is 3, a core dump of the SPITBOL system is given. This

 is intended for system debugging and should be avoided.

 &ERRLIMIT The maximum number of errors which can be trapped using the

 SETEXIT function. &ERRLIMIT is initially zero and is decre-

 mented each time a SETEXIT trap occurs. SETEXIT has no

 effect on normal error processing if &ERRLIMIT is zero.

 &ERRTYPE If an execution error is intercepted with the use of the

 SETEXIT function, then the error code is stored as an integer

 in &ERRTYPE. The value stored is 1000*majorcode+minorcode.

 Thus, the error code 13.026 is stored as the integer 13026.

 &ERRTYPE may be assigned a value, in which case an immediate

 error is signaled. This may be useful in signaling program-

 detected errors. If such an error is intercepted, then

 either the standard error message appropriate to the major

 70 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 code assigned is printed, or a standard message USER ISSUED

 ERROR MESSAGE is printed if the major code is not in the

 standard range (1-14).

 &FAIL(R) Contains the pattern FAIL.

 &FENCE(R) Contains the pattern FENCE.

 &FNCLEVEL(R) Contains the current function nesting level.

 &FTRACE If the value is greater than zero, all function calls and

 returns are traced. If the value is zero or negative, no

 trace output is generated. Each line of the trace output

 decrements the value by one. The initial value is zero.

 &FULLSCAN The standard value is zero (QUICKSCAN pattern matching mode).

 The value is set to one to obtain FULLSCAN mode.

 &INPUT Set to one for normal input (standard value). If set to

 zero, all input associations are ignored.

 &LASTNO(R) Contains the number of the last statement executed.

 &MAXLNGTH Contains the maximum permitted string length. This value may

 not exceed 32758. The default is 5000.

 &OUTPUT Set to one for normal output (standard value). If set to

 zero, all output associations are ignored.

 &REM(R) Contains the pattern REM.

 &RTNTYPE(R) Contains ’RETURN’, ’FRETURN’, or ’NRETURN’ depending on the

 type of function return most recently executed.

 &STCOUNT(R) The number of statements executed so far.

 &STLIMIT The maximum number of statements allowed to be executed. The

 initial value is 50000. The maximum value allowed is 2**31-1

 = 2,147,483,647.

 &STNO(R) The number of the current statement.

 &SUCCEED(R) Contains the pattern SUCCEED.

| &TRACE If the value of &TRACE is greater than zero, all tracing

| specified by the TRACE function is performed. Whenever a

| tracing event takes place, &TRACE is decremented by one.

| This self-extinguishing trace counter prevents excessive

| debugging output. &TRACE is unaffected by tracing events

| caused by &FTRACE. The initial value of &TRACE is zero.

 &TRIM Set to zero for normal input mode (standard value). If the

 value is set to one, all input records are automatically

 SPITBOL 71

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 trimmed (trailing blanks removed) by the SPITBOL I/O rou-

 tines. Note that MTS may or may not trim all but one

 trailing blank depending on which device is being read and

 how it was attached in MTS.

 CONTROL CARDS _____________

 Control cards are identified by a minus sign in column one. They may

 occur anywhere in a source program and take effect when they are encoun-

 tered. Most of these control card types are special features of SPITBOL and

 are not implemented in BTL SNOBOL4.

 Listing Control Cards _____________________

 Listing control cards are used to alter the appearance of the listing;

 they have no other effect on the compilation or execution of the program.

 -EJECT

 The -EJECT control card causes the compilation listing to skip to the

 top of the next page. The current title and subtitle (if any) are

 printed at the top of the page.

 -SPACE

 The -SPACE control card causes spaces to be skipped on the current

 page. If -SPACE occurs with no operand, then one line is skipped.

 Alternatively, an unsigned integer can be given (separated by at least

 one space from the -SPACE) which represents the number of lines to be

 skipped. If there is insufficient space on the current page, -SPACE

 acts like -EJECT and the listing is spaced to the top of the next page.

 -TITLE

 The -TITLE card is used to supply a title for the source program

 listing. The text of the title is taken from columns 8-72 of the

 -TITLE card. The subtitle (if any), is cleared to blanks, and an eject

 to the next page occurs.

 -STITL

 The -STITL card is used to supply a subtitle for the source program

 listing. An eject occurs to the top of the next page and the current

 title (if any) and the newly supplied subtitle are printed. The text

 for the subtitle is taken from columns 8-72 of the -STITL card. Note

 that if both title and subtitle are to be changed, then the -TITLE card

 should precede the -STITL card.

 72 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 Option Control Cards ____________________

 The option control cards allow selection of various compiler options. In

 each case, there are two modes. Two control cards allow switching from one

 mode to the other. The mode may be flipped back and forth within a single

 program. The full names are given for each control card; however, only the

 first four characters are examined, and the names may thus be abbreviated to

 four characters. Several control options may be specified on the same

 control card by separating the names with commas (no intervening spaces

 should occur). For example

 -CODE,LIST,PRINT

 In each of the cases listed below, the default option is shown first in the

 control options listed.

 -LIST/-NOLIST/-UNLIST

 Normally, the source statements are listed (-LIST option). The

 -NOLIST option causes suppression of this printout. This may be useful

 for established programs known to work, or for terminal output. Note

 that line numbers are always listed on the left, which is convenient

 for terminal output. If compilation errors are detected, the offending

 statements are printed regardless of the setting of the list mode.

 -UNLIST is provided for compatibility with BTL SNOBOL4 and is equiva-

 lent to -NOLIST.

 -NOCODE/-CODE

 The -CODE option causes a printout of the generated code in assembly

 language type format. This listing may be useful in determining how

 SPITBOL handles the compilation of various types of statements. The

 -NOCODE control option resets the normal mode of no code listing. It

 is permissible to use these cards in combination to obtain listings for

 selected sections of the source program. The code listing occurs after

 the end of the source listing, starting on a separate page, so that the

 source listing is not affected.

 -NOPRINT/-PRINT

 Normally, control cards are not printed (-NOPRINT). The -PRINT option

 causes control cards to be listed (provided that the -LIST option is in

 effect). This option may be useful if serialization is used for

 updating purposes.

 -SINGLE/-DOUBLE

 The compilation listing is normally single-spaced (-SINGLE). The

 -DOUBLE option causes double-spacing to be used, with a blank line

 between each listed line.

 SPITBOL 73

 MTS 9: SNOBOL4 in MTS

 September 1975

 -OPTIMIZE/-NOOPTIMIZE

 The SPITBOL compiler normally operates in an optimized mode in which

 the following assumptions are made:

 (1) The values of BAL, ARB, FENCE, ABORT, REM, FAIL, and SUCCEED

 are not modified during execution.

 (2) The standard system functions (see the section "Functions"

 for a full list) are not redefined.

 (3) Function calls in a statement do not result in modification

 of values of variables referenced elsewhere in the same

 statement.

 Violating these assumptions in -OPTIMIZE mode will produce incorrect

 results in that references to those functions and variables listed

 above will not yield the current value. For example, the pattern

 match below will succeed when compiled in -OPTIMIZE mode because the

 value of ARB was compiled as a constant.

 ARB = ’A’ | ’B’

 ’123’ ARB :S(LOOP)

 The -NOOPTIMIZE control card specifies that the compiler should not

 make the above assumptions. This results in a higher level of

 compatibility with BTL SNOBOL4 at the expense of both space and speed.

 In some cases, the loss of speed may be as much as a factor of ten.

 The optimizing mode may be switched on and off so that only isolated

 statements are compiled in nonoptimized mode. Note that it is the

 references to redefined functions which cause the trouble, not the

 actual definition itself.

 -INxxx

 The right margin for the input source scanner can be set to any value 1

 < xxx < 255. The default value is the minimum of the pair (input _ _

 record length for SCARDS, 255). Programs which use columns 73-80 for

 sequential IDs should set the margin at 72.

 -NOSEQUENCE/-SEQUENCE

 This option is relevant only if -IN72 is in effect. The normal mode

 (-NOSEQUENCE) ignores any serialization occurring in columns 73-80. If

 the -SEQUENCE option is taken, then the SPITBOL compiler tests to see

 whether the serialization is in correct ascending sequence. If an

 out-of-sequence card occurs, a message is printed, but no other action

 is taken (unless -NOERRORS is also specified at the time of the

 sequence error).

 -ERRORS/-NOERRORS

 Normally, execution is allowed even if compilation errors occur

 (-ERRORS). If a compilation error or a sequence error (with

 74 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 -SEQUENCE on) occurs and the -NOERRORS option has been specified, then

 the execution of the program is suppressed.

 -FAIL/-NOFAIL

 In BTL SNOBOL4, and in SPITBOL with the -FAIL mode set, a failure in a

 statement with no conditional GOTO field is ignored, and the program

 execution resumes with the next statement in sequence. This convention

 often results in errors going undetected, particularly in the case of

 array references with out-of-range subscripts and pattern matches which

 are expected always to succeed. The -NOFAIL option changes this

 convention. If a statement having no conditional GOTO field is

 compiled under the -NOFAIL mode, and a failure occurs when the

 statement is executed, an execution error occurs and a suitable message

 is generated. The -NOFAIL option is particularly useful for student

 jobs and other situations where many small programs are being debugged.

 -EXECUTE/-NOEXECUTE

 Normally, execution is initiated following compilation. If the option

 -NOEXECUTE is set at the end of compilation, execution is inhibited.

 This is often useful in conjunction with the DECK and LOAD options used

 to generate object modules.

 -COPY filename

 The -COPY control card allows coding to be copied into the source

 stream from an external file. The compiler processes the text (lines)

 in the file, and then returns to the line following the -COPY card.

 In MTS the filename can be an FDname (MYFILE, *SOURCE*, etc.) or a

 logical I/O unit name (SCARDS, 7, etc.). The text copied may in itself

 contain -COPY cards up to a maximum nesting level of eight.

 PROGRAMMING NOTES _________________

 The internal organization of SPITBOL is quite different from that of BTL

 SNOBOL4. Consequently, the relative speed of various operations differs.

 This section attempts to give some idea of what is going on inside, so the

 SPITBOL programmer can achieve maximum efficiency.

 Space Considerations ____________________

 The SPAN, BREAK, and BREAKX functions use translate-and-test tables. For

 one-character arguments, the tables are built into the system and require no

 additional space. For arguments longer than one character, tables must be

 built for each call. Each such table requires 260 bytes of storage. If the

 argument is deferred, no storage is required, but the execution of the

 pattern is much slower.

 SPITBOL 75

 MTS 9: SNOBOL4 in MTS

 September 1975

 ANY and NOTANY allocate 16-byte tables (actually one bit position in a

 shared 256-byte table).

 The space required for each element of an array is 8 bytes, in addition

 to storage required for a string or other structure. All numeric items

 require no additional space beyond the 8-byte item.

 The space required for each nonnull element of a table is 24 bytes, in

 addition to space for a string or other structure. A table hash header is 4

 bytes. Thus, the number of headers can be made reasonably large without

 using much additional space.

 Program-defined datatypes require 8(F+1) bytes, where F is the number of

 fields. They are thus quite compact and can be used freely.

 The memory required for dynamically compiled code (CODE function) is not

 reclaimed efficiently in the current version. Improvements will be

 attempted in future versions.

 Each variable block requires 32 bytes. This space is a constant

 requirement, whether or not the variable name has a single use or multiple

 uses (label, function, variable, etc.). This space is never reclaimed once

 it has been allocated. Thus, it is inefficient to use variables to build a

 table with the $ operator. Instead, the TABLE datatype should be used.

 The COLLECT function can be used to obtain more detailed information on

 memory utilization for various structures.

 Speed Considerations ____________________

 To a greater extent than is the case with BTL SNOBOL4, SPITBOL sacrifices

 some efficiency in encoding complex structures as strings. Arrays, tables,

 and program-defined datatypes should be used where possible. The latter are

 particularly efficient in SPITBOL.

 A POS pattern may be used freely at the start of a pattern since SPITBOL

 optimizes this occurrence to prevent useless movements of the anchor point.

 This optimization (which is completely transparent) occurs in both QUICKSCAN

 and FULLSCAN modes.

 Time for datatype conversions is relatively more noticeable in SPITBOL.

 Where efficiency is important, unnecessary conversions should be avoided.

 For patterns which do not generate a large number of intermediate

 matches, the $ pattern assignment is, if anything, faster than the .

 pattern assignment and may be used freely.

 SPITBOL precomputes all constant expressions before execution. When the

 OPTIMIZE mode is in effect (normal case), most patterns can be precomputed;

 thus, no efficiency is lost by writing patterns in line rather than

 76 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 predefining them. Use of the unary * operator to defer computation is still

 useful in certain cases. For example, consider the following in-line

 pattern matches.

 X POS(0) ARB N ’X’

 X POS(0) ARB *N ’X’

 The second form is more efficient, since the compiler can precompute the

| entire pattern. The use of deferred operands in QUICKSCAN mode when the

| pattern may back up may produce unexpected results (see The SNOBOL4 ___________

| Programming Language for details). ____________________

 BREAK, BREAKX, and SPAN are very fast, except that deferred arguments

 having more than one character are quite slow. ARBNO is quite slow.

 ARB may be slow and should be avoided where fast patterns such as BREAK,

 BREAKX, and SPAN are possible.

 The actual matching process can be much faster in FULLSCAN mode than in

 QUICKSCAN mode since the heuristics require time-consuming tests. If a

 match does not back up much, FULLSCAN may well be faster. A program should

 be run both ways to determine which is faster.

 The SETEXIT error intercepts are fast and may be used for program control

 as well as debugging.

 If a variable is traced or I/O-associated, references to the variable are

 substantially slowed down even if the trace and I/O associations are later

 removed.

 The unary $ (indirect) operator applied to a string argument works

 differently in SPITBOL and corresponds to a hash search of existing

 variables. The process of applying $ to a name (including the name of a

 natural variable) is much faster, which is why SPITBOL returns a name

 instead of a string when the unary dot (name) operator is used with a

 natural variable. Thus, it is better to use names where possible, for

 example in passing labels indirectly.

 The REPLACE function is optimized when the second argument is &ALPHABET.

 In this case, the third argument can be used as a translate table directly,

 and there is no need to construct a table dynamically. The REPLACE function

 itself can be used to construct the necessary third argument. Thus, the

 call

 A = REPLACE(X,Y,Z)

 may be replaced by the two calls

 TBL = REPLACE(&ALPHABET,Y,Z)

 A = REPLACE(X,&ALPHABET,TBL)

 The first of these calls is slow and need only appear once. The second call

 is fast and could be executed repeatedly for various values of X.

 SPITBOL 77

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 RUNNING IN MTS ______________

 This section describes the implementation of SPITBOL in MTS and how this

 differs from the BTL SNOBOL4 implementation.

 Parameters __________

 In MTS the SPITBOL system is contained in two files: *SPITBOL and

 *SPITLIB. *SPITBOL contains the compiler for the SPITBOL language and

 *SPITLIB contains the execution-time routines required when running object

 modules produced by *SPITBOL. The behavior of *SPITBOL can be altered in

 two ways: via the PAR field on the $RUN command and via special control

 commands which appear as part of the source program (see the section

 "Control Cards"). The PAR field consists of a sequence of keywords and free

 verbs separated by commas or blanks. A semicolon may be used to terminate

 the PAR field; the text after the semicolon is not processed by the SPITBOL

 compiler but is available to the program via the SYSPAR external function.

 Free verbs may be negated by one of three prefixes: ’NO’, ’¬’, or ’-’. Any

 parameter may be abbreviated to a minimum substring (shown underlined

 below). The available parameters are:

 ALIST or NOALIST _ ___

 If ALIST is specified, an object-code listing will be produced on

 SPRINT. The default is NOALIST. This parameter replaces the OLIST

 parameter.

 BATCH or NOBATCH _ ___

 If BATCH is specified, the compiler will batch process input decks.

 The batch pseudo-end-of-file is "./*" in columns 1-3. The default is

 NOBATCH.

 CSTAT or NOCSTAT _ ___

 If CSTAT is specified, compilation statistics are printed on SPRINT.

 The default is NOCSTAT.

 DECK or NODECK _ ___

 If DECK is specified, an object module will be produced on SPUNCH.

 SPITBOL object modules must be run in concatenation with *SPITLIB. The

 default is NODECK.

 DUMP=nnn __

 At termination of execution, the SPITBOL dump function is called with

 "nnn" as the argument. The default is DUMP=0 which produces no dump.

 78 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 EDUMP=nnn __

 If execution terminates abnormally, the SPITBOL dump function will be

 called with "nnn" as the argument. If SPRINT is assigned to a

 terminal, the default is EDUMP=0 which produces no dump; if SPRINT is

 not assigned to a terminal, the default is EDUMP=1 which generates a

 dump of natural variables and keywords.

 ERRXEQ or NOERRXEQ __ ____

 If ERRXEQ is specified, the compiled program is executed even if errors

 were detected during compilation. The default is ERRXEQ.

 ESTAT or NOESTAT __ ____

 If ESTAT is specified, execution statistics are produced on SPRINT.

 The default is NOESTAT.

 EXECUTE or NOEXECUTE __ ____

 If EXECUTE is specified, the compiled program is executed. The default

 is EXECUTE.

 FAILCHK or NOFAILCHK _ ___

 If FAILCHK is specified, execution is terminated with an error if a

 statement is executed that fails and there is no conditional "goto"

 field. This is a useful debugging tool. The default is NOFAILCHK.

 INMGN=nnn _

 "nnn" is the right-hand margin for the compiler when scanning input

 source programs. The default is set to the minimum of the input record

 length for SCARDS and 255. Programs that have sequential IDs in

 columns 73-80 should compile with INMGN=72.

 LINECNT=nnn ___

 "nnn" is the number of lines per page for printed output. This must be

 in the range of 3 ≤ nnn ≤ 32767. The default is 58.

 LIST or NOLIST ___ _____

 If LIST is specified, a source listing of the compiled program is

 printed on SPRINT. The default is LIST unless SPRINT is assigned to a

 terminal. This parameter replaces the SLIST parameter.

 LOAD or NOLOAD __ ____

 If both LOAD and NODECK are specified, an object module will be

 produced on logical I/O unit 0. The default is NOLOAD.

 SPITBOL 79

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 OPTIMIZE or NOOPTIMIZE __ ____

 If OPTIMIZE is specified, the object code produced will be optimized.

 This can reduce the CPU time and storage required for program

 execution. The default is OPTIMIZE.

 PLIST or NOPLIST _ ___

 If PLIST is specified, a list of parameter values will be printed on

 SPRINT. The default is NOPLIST.

 SDUMP or NOSDUMP __ ____

 If SDUMP is specified, a storage dump of the SPITBOL work areas will be

 produced on SPRINT if an internal SPITBOL error is detected. This is

 useful only for system debugging. The default is NOSDUMP.

 SEQCHK or NOSEQCHK __ ____

 If SEQCHK is specified and INMGN=72, the sequential ID field (columns

 73-80) is checked for ascending order. Out-of-order cards will be

 flagged. The default is NOSEQCHK.

 SIZE=nnn ___

 "nnn" is the number of pages allocated for dynamic storage within the

 compiler. This must be in the range of 4 ≤ nnn ≤ 256. The default is

 20.

 TIMECHK or NOTIMECHK _ ___

 If TIMECHK is specified, SPITBOL will terminate execution of the user

 program 0.25 seconds before any specified time limit in order that a

 symbolic dump may be given. The default is TIMECHK.

 XREF or NOXREF _ ___

 A cross-reference listing of the symbols in the compiled program is

 printed on SPRINT. The default is NOXREF.

 The default mode of operation for *SPITBOL is "compile and execute,"

 exactly like *SNOBOL4. However, this can be altered to "compile and produce

 an object module" or "compile, produce an object module, and execute" as

 desired. The object modules produced are not stand-alone modules. They

 must be run with a collection of execution-time support routines which are

 located in *SPITLIB.

 Example #1 - running in "compile and execute" mode with the source program

 in PROG.S:

 $RUN *SPITBOL SCARDS=PROG.S

 80 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 Example #2 - running in "compile and produce an object module" mode with the

 object module saved in PROG.O:

 $RUN *SPITBOL SCARDS=PROG.S SPUNCH=PROG.O PAR=DECK,NOEX

 Example #3 - running a previously compiled module:

| $RUN PROG.O+*SPITLIB PAR=SIZE=4

 A limited number of parameters are also available when running *SPITLIB.

 These are:

 DUMP=nnn __

 At termination of execution, the SPITBOL dump function is called with

 "nnn" as the argument. The default is DUMP=0 which produces no dump.

 EDUMP=nnn __

 If execution terminates abnormally, the SPITBOL dump function will be

 called with "nnn" as the argument. If SPRINT is assigned to a

 terminal, the default is EDUMP=0 which produces no dump; if SPRINT is

 not assigned to a terminal, the default is EDUMP=1 which generates a

 dump of natural variables and keywords.

 ESTAT or NOESTAT __ ____

 If ESTAT is specified, execution statistics are generated on SPRINT.

 The default is NOESTAT.

 LINECNT=nnn ___

 "nnn" is the number of lines per page for printed output. This must be

 in the range of 3 ≤ nnn ≤ 32767. The default is 58.

 PLIST or NOPLIST _ ___

 If PLIST is specified, a list of parameter values is printed on SPRINT.

 The default is PLIST.

 SDUMP or NOSDUMP __ ____

 If SDUMP is specified, a storage dump of the SPITBOL work areas will be

 produced on SPRINT if an internal SPITBOL error is detected. This is

 useful only for system debugging. The default is NOSDUMP.

 SIZE=nnn __

 "nnn" is the number of pages of dynamic storage allocated. This must

 be in the range of 4 ≤ nnn ≤ 256. The default is 20.

 SPITBOL 81

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 TIMECHK or NOTIMECHK _ ___

 If TIMECHK is specified, SPITBOL will terminate execution of the user

 program 0.25 seconds before any specified time limit in order that a

 symbolic dump may be given. The default is TIMECHK.

 I/O in MTS __________

 Both *SNOBOL4 and *SNOBOL4B were designed to use the FORTRAN library I/O

 routines. SPITBOL, however, has its own I/O routines. As a consequence,

 several features of I/O are different.

 FIXED vs VARIABLE record format

 *SNOBOL4 and *SNOBOL4B read input via a FIXED record format, the record

 length being specified via the input association function INPUT(,,). This

 means that all records read in are padded with blanks (if necessary) to the

 specified record length. In SPITBOL, records are read via VARIABLE record

 format which means that records of length less than or equal to the

 specified INPUT length are transmitted as-is (i.e., no padding occurs). _____

 Hence, programs which run correctly under *SNOBOL4 may not run correctly

 under *SPITBOL if they depend on a fixed input record length.

 MTS logical I/O units

 *SNOBOL4 and *SNOBOL4B were designed to do I/O via FORTRAN data set

 reference numbers (1,2,...). The FORTRAN library I/O routines assign MTS

 logical I/O units to FORTRAN data set reference numbers in the following

 way: if the MTS logical I/O unit of the same number has been assigned on

 the $RUN command, it should be used; otherwise SCARDS should be used for

 input and SPRINT for output.

 SPITBOL uses MTS logical I/O units directly; no FORTRAN data set

 reference numbers are involved. The logical I/O units used are:

 SCARDS - SNOBOL4 source program to be compiled followed by the data read via

 the default variable INPUT.

 SPRINT - source listing, object listing, parameter listing, compiler diag-

 nostics, execution-time diagnostics, and output via the default

 variable OUTPUT.

 SPUNCH - object module if the DECK option was specified, and output from the

 default variable PUNCH.

 0 - object module if NODECK and LOAD are specified.

 82 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 SERCOM - prompting if a terminal.

 GUSER - user responses if a terminal.

 In *SNOBOL4 and *SNOBOL4B, the default associations for the pseudo-

 variables INPUT, OUTPUT, and PUNCH are FORTRAN data set reference numbers 5,

 6, and 7. These in turn default to SCARDS and SPRINT if the MTS logical I/O

 units 5, 6, and 7 have not been specified on the $RUN command. In *SPITBOL,

 the default associations for INPUT, OUTPUT, and PUNCH are SCARDS, SPRINT,

 and SPUNCH, respectively. Note in particular that in batch mode, strings

 assigned to the pseudo-variable PUNCH will be written by default to the card

 punch in *SPITBOL and the printer in *SNOBOL4.

 External Routines _________________

 As in SNOBOL4 there is no facility in SPITBOL for defining (and hence

 compiling) external routines. However, as in SNOBOL4 there is a facility

 for dynamically loading and linking to external routines which have been

 written in FORTRAN or assembly language.

 When calling external functions, SPITBOL conforms to standard OS/360

 S-type calling conventions, that is:

 GR1 = address of parameter list

 GR13 = address of a save area

 GR14 = return address

 GR15 = function address

 The external function being called must save and restore all general

 registers. For each argument being passed, the parameter list contains a

 pointer to the argument.

 SPITBOL 83

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──────┐ ┌─────────────┐
 | | | |

 | | | |

 GR1 ───→ | A1 | ─────→ | P1 |
 | | | |

 | | | |

 |──────| └─────────────┘
 | |

 | | ┌─────────────┐
 | A2 | ─────→ | |
 | | | |

 | | | P2 |

 |──────| | |
 | | | |

 | | └─────────────┘
 | . |

 | . |

 | . |

 | |

 | |

 |──────| ┌─────────────┐
 | | | |

 | | | |

 | An | ─────→ | Pn |
 | | | |

 | | | |

 └──────┘ └─────────────┘

 To cause an external function to be loaded, as well as to describe the

 characteristics and location of that function, it is necessary to call the

 SPITBOL LOAD function. The LOAD function takes two string parameters. The

 first gives the function name, parameter types, and returned-value type.

 The second is the name of a file containing the external function object

 code.

 LOAD(’fname(ptype,...)rtype’,’objectfile’)

 where "fname" is the name used both in the function calls in the SPITBOL

 program and the name of the entry point in the object module.

 Parameters

 Each "ptype" is the datatype that the corresponding actual parameter will

 be converted to for each call on "fname". Permissible values are given

 below, along with the corresponding internal representation for the call.

 84 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 ptype Representation _____ ______________

 INTEGER Fullword (4-byte) integer.

 REAL Fullword (4-byte) floating-point value.

 DREAL Doubleword (8-byte) floating-point value. The precision of

 this value is less than the normal 8-byte, floating-point

 value because the last byte is always zero.

 STRING Two words, the first of which is the address of the first

 character of the string and the second which is the length of

 the string.

 INTERNAL The doubleword internal SPITBOL descriptor. As there is no

 published description of the descriptor format, its use is

 limited.

 This limited range of the parameter types restricts the number of

 existing functions that can be called. FORTRAN routines are restricted to

 those which take INTEGER*4, REAL*4, and REAL*8 parameters. An additional

 restriction on parameter passing is that no value may be returned by the

 called function in a parameter. A single returned value may be given as

 specified below.

 Returned Values

 "rtype" is the datatype of the value the function returns. It may be

 specified as one of the following:

 rtype Where Returned _____ _____ ________

 INTEGER GR0 contains the integer value.

 REAL FR0 contains the floating-point value.

 DREAL FR0 contains the floating-point value; however, the low-order

 byte will not be used by SPITBOL.

 STRING GR0 contains the address of a two-word region. The first

 word contains the address of the first character of the

 string and the second word contains the length of the string.

 INTERNAL GR0 contains the address of an 8-byte, internal SPITBOL

 descriptor.

 omitted If no return type is specified, the function call will always

 return the null string.

 SPITBOL 84.1

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 Success and Failure

 Success or failure of an external function call may be indicated by

 making one of the two following return branches in the external function

 (after restoring the registers):

 BR R14 indicates success

 B 4(,R14) indicates failure

 FORTRAN programs consequently are only able to make successful returns. The

 nonstandard nature of the failure return can be exploited only by assembly-

 language programs written explicitly for the purpose of interfacing to

 SPITBOL.

 It should be noted that SPITBOL does not make use of return codes passed ___

 back in general register 15.

 Loading a Function

 The first step SPITBOL performs in loading an external function is to

 determine if it is already loaded. One reason that a function may already

 be loaded is that it is an alternate entry point to a function that was

 previously loaded. In this case no duplicate copy will be loaded. If one

 desires to load a new copy of a function, it is necessary to first unload

 the old copy with the built-in SPITBOL UNLOAD function.

 If a function is not already loaded, SPITBOL calls the MTS loader, giving

 the MTS file specified in the second parameter "objectfile" to LOAD as the

 location of the corresponding object. If "objectfile" is not specified, by

 default, the resident-system library (LCSYMBOL) and the Elementary Function

 Library <EFL> will be searched.

 Built-in External Functions

 Two functions, SYSTOD and SYSPAR, are loaded with the SPITBOL system and

 may be activated by calling on the LOAD function without specifying an MTS

 file to load from.

 The function SYSTOD may be used to obtain the time of day as a string of

 the form "HH:MM:SS". After LOADing, it may be called as follows:

 LOAD(’SYSTOD()STRING’)

 .

 .

 .

 TIME = SYSTOD()

 The function SYSPAR may be used to obtain the text which follows a

 semicolon from the PAR field of the $RUN command. For example:

 84.2 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 $RUN *SPITBOL ... PAR=SIZE=100;PLOUGH

 .

 .

 .

 LOAD(’SYSPAR()STRING’)

 .

 .

 .

 TEXT = SYSPAR() will assign "PLOUGH" to TEXT

 Other External Functions

 There is currently no Computing Center supported library of functions

 written specifically to interface with SPITBOL. However, there is a

 collection of unsupported functions which have proved useful to many SPITBOL

 programmers. These functions are in the library UNSP:SPITLIB and are

 documented in UNSP:WRITEUPS.

 Future development of the LOAD function is anticipated to extend the

 parameter types, interrogate return codes, and allow storing into

 parameters.

 ERROR MESSAGES AND HANDLING ___________________________

 Compilation Error Messages __________________________

 When the compiler detects an error, a flag is placed under the point in

 the statement where the error was discovered and processing of the statement

 in error is discontinued. Compilation continues with the next statement.

 Execution is not suppressed unless the -NOERRORS option has been set (see

 the section "Control Cards"). If an attempt is made to execute a statement

 found erroneous by the compiler, an execution error occurs. Compiler error

 messages are surrounded by ****** so they are easy to find. The following

 section describes the various error messages.

 ******ERROR IN GOTO FIELD******

 The goto field is incorrectly formed.

 SPITBOL 84.3

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 84.4 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 ******ERROR IN NUMERIC ITEM******

 A numeric item is illegally constructed.

 ******EXPRESSION IS TOO COMPLICATED FOR THE COMPILER******

 The expression being compiled overflows work areas in SPITBOL. The

 expression must be broken into two or more statements.

 ******ILLEGAL CHARACTER******

 The compiler detected a character which has no syntactic meaning in the

 SNOBOL4 language outside a string literal.

 ******ILLEGAL TRANSFER ADDRESS******

 The operand on an END card is not a simple variable. The operand is

 ignored and execution starts with the first statement.

 ******ILLEGAL USE OF , ******

 A comma has been used in an illegal context. The only legal uses of

 commas are to separate array subscripts and function arguments. Note

 that this error can be caused by accidentally inserting a blank between

 the function name and the left parenthesis.

 ******ILLEGAL USE OF < ******

 The character < (array left bracket) has been used in a context where

 an array left bracket cannot legally occur.

 ******ILLEGAL USE OF) ******

 A right parenthesis has been used in an illegal context.

 ******ILLEGAL USE OF > ******

 An array right bracket has been used in an illegal context. This

 character can only be used to terminate a list of array subscripts.

 ******ILLEGAL USE OF = ******

 An equal sign has been used in an illegal context. Only one equal sign

 may occur in a statement.

 ******INVALID -COPY CARD******

 A -COPY card has an incorrect filename, or -COPY has been nested more

 than eight levels. Compilation proceeds after ignoring the erroneous

 card.

 ******LABEL HAS BEEN PREVIOUSLY DEFINED******

 SPITBOL 85

 MTS 9: SNOBOL4 in MTS

 September 1975

 The statement has a label which has already been used. Compilation of

 the statement is discontinued and the earlier definition of the label

 is retained.

 ******MISSING END CARD SUPPLIED******

 An end-of-file was read on the SPITBOL input file (SCARDS) during

 compilation. The compiler supplies an END card and initiates execution

 unless the -NOERRORS option is set.

 ******MISSING OPERAND******

 This message is generated when the compiler expects an operand and does

 not find one. For example, A / / B, (C+)

 ******MISSING OPERATOR******

 The compiler expected an operator and no operator was found. This

 occurs in situations like (X)A, where an operator is expected after the

 right parenthesis. This message is also given when the blanks

 surrounding a binary operator are omitted.

 ******NON-RECOVERABLE INPUT ERROR******

 A nonrecoverable input error has been signaled on the SPITBOL input

 file (SCARDS). This is a fatal error which terminates compilation and

 prevents execution. Note that it also cancels any subsequent jobs when

 a batched run is being processed.

 ******PROGRAM TOO LONG FOR AVAILABLE STORAGE******

 The storage required by the program exceeds available storage.

 Increase the region allocated and/or the H parameter in the compiler

 parameter field. Note that storage for execution time use has not yet

 been allocated. This must be taken into consideration in deciding how

 much additional memory to allocate. This is a fatal error which

 terminates compilation and prevents execution.

 ******UNBALANCED () OR <>******

 This occurs if the parentheses or array brackets in a statement are not

 properly balanced.

 ******UNDEFINED TRANSFER ADDRESS******

 The label used on an END card is not defined. The operand is ignored,

 and execution starts with the first statement.

 ******UNMATCHED QUOTE******

 A string literal has been started but not properly terminated. Note

 that string literals cannot be split over continuation cards.

 86 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 Execution Error Messages ________________________

 The execution package performs extensive error checking. When an error

 is detected, execution is terminated with an error message unless the error

 is intercepted by means of the SETEXIT function. The message is accompanied

 by an error code of the form AA.BBB, where AA is the major code and BBB is

 the minor code. The major code refers to the message given (see below).

 The minor code further identifies the specific error. The following is a

 list and explanation of the error messages together with their major codes.

 MAJOR = 1 ILLEGAL DATATYPE

 In a context where a definite datatype is required, a value

 of the wrong datatype is given and the attempt to convert it

 to the correct datatype fails.

 MAJOR = 2 UNEXPECTED FAILURE

 A statement having no conditional GOTO failed with the

 -NOFAIL option set. This usually corresponds to an error

 such as an unexpected out-of-range subscript.

 MAJOR = 3 ERROR IN ARRAY REFERENCE

 An array reference is incorrect. Either the object

 referenced is not an array or table, or the wrong number of

 subscripts is given.

 MAJOR = 4 COMPILER DETECTED ERROR

 An attempt was made to execute a statement found erroneous by

 the compiler.

 MAJOR = 5 ERROR IN REFERENCE TO KEYWORD

 An error was made in a keyword reference. Either the operand

 of & is incorrect, or the value assigned to the keyword is

 incorrect.

 MAJOR = 6 MEMORY OVERFLOW

 Dynamic memory is exhausted. Note that this can occur as a

 result of runaway recursion in function references or pattern

 matching.

 MAJOR = 7 EVALUATION OF GOTO FAILED

 If a complex expression is used in the GOTO field, it is not

 allowed to fail. Such a failure within a GOTO expression did

 occur.

 SPITBOL 87

 MTS 9: SNOBOL4 in MTS

 September 1975

 MAJOR = 8 ERROR IN GOTO

 The operand of a GOTO must be a natural variable which is a

 defined label. Some other value was given. This error

 message is also given on a return from level zero.

 MAJOR = 9 CALL TO UNDEFINED FUNCTION OR OPERATOR

 A reference was made to an undefined function, or an

 undefined operator was used.

 MAJOR = 10 ERROR IN ARITHMETIC OPERATION

 This message covers a variety of arithmetic errors such as

 overflow, division by zero, etc.

 MAJOR = 11 KEYWORD OR SYSTEM LIMIT EXCEEDED

 This message is issued when any of the following limits is

 exceeded: time, page, or card system limits, &MAXLNGTH,

 &STLIMIT keyword limits. The minor code distinguishes the

 specific limit which was exceeded. (see the section "Error

 Codes").

 MAJOR = 12 INPUT/OUTPUT OR OTHER SYSTEM ERROR

 An error has been signaled by one of the operating system

 routines. Some examples are nonrecoverable: I/O error,

 attempt to load a nonexistent function, etc. Note that the

 minor codes for this message may differ from operating system

 to operating system, and have been edited here to reflect the

 MTS environment.

 MAJOR = 13 INCORRECT VALUE FOR FUNCTION OR OPERATOR

 An argument to a function or operand of an operator was of

 the right datatype, but was outside the range of values

 permitted for some particular use. For example, the null

 string is an illegal argument for the BREAK function.

 MAJOR = 14 VALUE RETURNED WHERE NAME IS REQUIRED

 This will occur in a context requiring a name (left side of

 =, GOTO expression, or right argument of unary $ or unary dot

 operators).

 If &ERRTYPE is assigned a value xxyyy greater than 14999 or less than

 1000, then it is assumed to be a user-defined error and the following

 message is printed:

 xx.yyy USER ISSUED ERROR MESSAGE

 88 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 Error Codes ___________

 This section gives detailed descriptions of the minor codes for all major

 codes. The public file *SPITERR also contains each error message at an MTS

 line number equal to its error-code number.

 1.001 Evaluated result of deferred argument to POS is not an INTEGER

 1.002 Evaluated result of deferred argument to RPOS is not an INTEGER

 1.003 Evaluated result of deferred argument to RTAB is not an INTEGER

 1.004 Evaluated result of deferred argument to TAB is not an INTEGER

 1.005 Evaluated result of deferred argument to LEN is not an INTEGER

 1.006 Evaluated result of deferred argument to ANY is not a STRING

 1.007 Evaluated result of deferred argument to NOTANY is not a STRING

 1.008 Evaluated result of deferred argument to SPAN is not a STRING

 1.009 Evaluated result of deferred argument to BREAKX is not a STRING

 1.010 Evaluated result of deferred argument to BREAK is not a STRING

 1.011 Evaluated result of deferred expression used in a pattern match is

 not a STRING or PATTERN

 1.012 Value to be stored in a keyword is not an INTEGER

 1.013 Real argument to loaded function is not a REAL

 1.014 Integer argument to loaded function is not an INTEGER

 1.015 String argument to loaded function is not a STRING

 1.016 Dreal argument to loaded function is not a DREAL

 1.017 Operand of unary $ is not a NAME

 1.018 Replacing right side in a pattern replacement is not a STRING

 1.019 Subject of a pattern match is not a STRING

 1.020 The pattern in a pattern match is not a PATTERN

 1.021 Subscript in reference to one-dimensional array is not an INTEGER

 1.022 Subscript in reference to a multi-dimensional array is not an

 INTEGER

 SPITBOL 89

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 1.023 A field function was applied to an inappropriate program-defined

 datatype

 1.024 The left operand for alternation or concatenation is not a STRING

 or PATTERN

 1.025 The right operand for alternation or concatenation is not a STRING

 or PATTERN

 1.026 The argument to a field function is not a program-defined datatype

 1.027 An operand of binary + is nonnumeric

 1.028 An operand of binary - is nonnumeric

 1.029 An operand of binary * is nonnumeric

 1.030 An operand of binary / is nonnumeric

 1.031 An argument to NE, EQ, LE, GE, LT, GT is nonnumeric

 1.032 An operand of binary ** is nonnumeric

 1.033 The operand of unary + is nonnumeric

 1.034 The operand of unary - is nonnumeric

 1.035 First argument to LEQ, LNE, LGT, LLT, LGE, or LLE is not a STRING

 1.036 Second argument to LEQ, LNE, LGT, LLT, LGE, or LLE is not a STRING

 1.037 Argument to SIZE is not a STRING

 1.038 Left operand of binary $ or . is not a PATTERN

 1.039 Argument to LEN is not an INTEGER or EXPRESSION

 1.040 Argument to POS is not an INTEGER or EXPRESSION

 1.041 Argument to TAB is not an INTEGER or EXPRESSION

 1.042 Argument to RPOS is not an INTEGER or EXPRESSION

 1.043 Argument to RTAB is not an INTEGER or EXPRESSION

 1.044 Argument to SPAN is not a STRING or EXPRESSION

 1.045 Argument to BREAKX is not a STRING or EXPRESSION

 1.046 Argument to BREAK is not a STRING or EXPRESSION

 1.047 Argument to NOTANY is not a STRING or EXPRESSION

 90 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 1.048 Argument to ANY is not a STRING or EXPRESSION

 1.049 Argument to VALUE is not a STRING, NAME, or correct programmer-

 defined datatype

 1.050 Argument to ARBNO is not a PATTERN

 1.051 First argument to APPLY is not the name of a function

 1.052 First argument to ARG is not a NAME

 1.053 Second argument to ARG is not an INTEGER

 1.054 First argument to ARRAY is not a STRING

 1.055 First argument to CLEAR is not a STRING

 1.056 Argument to CODE is not a STRING

 1.057 Argument to COLLECT is not an INTEGER

 1.058 Second argument to CONVERT is not a STRING

 1.059 Argument to DATA is not a STRING

 1.060 First argument to DEFINE is not a STRING

 1.061 Second argument to DEFINE is nonnull and is not the name of a

 label

 1.062 Argument to DETACH is not the name of a natural variable

 1.063 Second argument to DUPL is not an INTEGER

 1.064 First argument to DUPL is not a STRING

 1.065 Argument to ENDFILE is not a STRING

 1.066 Argument to EVAL is not an EXPRESSION (or a STRING which could be

 converted into an EXPRESSION)

 1.067 First argument to FIELD is not a NAME

 1.068 Second argument to FIELD is not an INTEGER

 1.069 First argument to INPUT is not the name of a natural variable

 1.070 Filename (second argument) to INPUT is not a STRING

 1.071 Record length (third argument) to INPUT is not an INTEGER

 1.072 Argument to LOAD is not a STRING

 SPITBOL 91

 MTS 9: SNOBOL4 in MTS

 September 1975

 1.073 First argument to LOC is not a NAME

 1.074 Second argument to LOC is not an INTEGER

 1.075 Third argument to LPAD is not a STRING

 1.076 Second argument to LPAD is not an INTEGER

 1.077 First argument to LPAD is not a STRING

 1.078 First argument to OPSYN is not the name of a natural variable

 1.079 Second argument to OPSYN is not a function name

 1.080 First argument to OUTPUT is not the name of a natural variable

 1.081 Filename (second argument) for OUTPUT function is not a STRING

 1.082 Format specification (third argument) for OUTPUT function is not a

 STRING

 1.083 Argument to PROTOTYPE is not an ARRAY or TABLE

 1.084 Second argument to REMDR is not an INTEGER

 1.085 First argument to REMDR is not an INTEGER

 1.086 Third argument to REPLACE is not a STRING

 1.087 Second argument to REPLACE is not a STRING

 1.088 First argument to REPLACE is not a STRING

 1.089 Argument to REVERSE is not a STRING

 1.090 Argument to REWIND is not a STRING

 1.091 Third argument to RPAD is not a STRING

 1.092 Second argument to RPAD is not an INTEGER

 1.093 First argument to RPAD is not a STRING

 1.094 Argument to SETEXIT is not a label name

 1.095 First argument to SUBSTR is not a STRING

 1.096 Second argument to SUBSTR is not an INTEGER

 1.097 Third argument to SUBSTR is not an INTEGER

 1.098 Argument to TABLE is not an INTEGER

 92 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 1.099 Argument to TRIM is not a STRING

 1.100 Argument to UNLOAD is not the name of a function

 2.001 Failure of a statement having no conditional GOTO with -NOFAIL

 option in effect

 3.001 Array reference with one subscript refers to an object which is

 neither a TABLE nor an ARRAY

 3.002 Multi-dimensional array reference refers to an object which is not

 an array

 3.003 Wrong number of subscripts in an array reference

 4.001 Attempted execution of a statement found erroneous by the compiler

 5.001 An attempt was made to reference the keyword attribute of a

 nonnatural variable

 5.002 Reference to an undefined keyword

 5.003 An attempt was made to change the value of a keyword associated

 with a nonnatural variable

 5.004 Attempt to change the value of an undefined keyword

 5.005 Attempt to change the value of a protected keyword

 6.001 Overflow in main dynamic storage area. This can occur as a result

 of runaway recursion in pattern matching or function reference, as

 well as from generation of too much data.

 7.001 The evaluation of a complex GOTO expression failed

 8.001 RETURN from function level zero

 8.002 Transfer to an undefined label

 8.003 A transfer to the label CONTINUE occurred, but no previous error

 had been intercepted

 8.004 A transfer to the label ABORT occurred, but no previous error had

 been intercepted

 8.005 Name used as a GOTO operand is not the name of a natural variable

 8.006 The operand of a direct GOTO is not code.

 9.001 Reference to an undefined function

 9.002 Use of the undefined operator -- unary /

 SPITBOL 93

 MTS 9: SNOBOL4 in MTS

 September 1975

 9.003 Use of the undefined operator -- binary &

 9.004 Use of the undefined operator -- binary ¬

 9.005 Use of the undefined operator -- binary @

 9.006 Use of the undefined operator -- unary |

 9.007 Use of the undefined operator -- unary #

 9.008 Use of the undefined operator -- binary #

 9.009 Use of the undefined operator -- binary ?

 9.010 Use of the undefined operator -- unary %

 9.011 Use of the undefined operator -- binary %

 9.012 Use of the undefined operator -- unary !

 10.001 Overflow in + - / or * of two DREALs

 10.002 Overflow in + - / or * of two REALs

 10.003 REAL division by zero

 10.004 DREAL division by zero

 10.005 Overflow in exponentiation of the form REAL ** INTEGER or DREAL **

 INTEGER

 10.006 Integer division by zero

 10.007 Integer addition overflow

 10.008 Integer subtraction overflow

 10.009 Integer multiplication overflow

 10.010 Negative exponent for INTEGER ** INTEGER

 10.011 Overflow in integer exponentiation

 10.012 Exponentiation of the form DREAL ** DREAL is not permitted

 10.013 Exponentiation of the form REAL ** REAL is not permitted

 10.014 Integer overflow for unary minus (happens only with largest

 negative number)

 10.015 Attempted division by zero in REMDR function

 94 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 11.001 Page limit (P parameter) exceeded

 11.002 Card limit (C parameter) exceeded

 11.003 Input record longer than &MAXLNGTH

 11.004 Attempt to set &MAXLNGTH to a value greater than the maximum

 allowed (32758)

 11.005 &STLIMIT set to a value less than the number of statements already

 executed

 11.006 Statement limit (&STLIMIT) exceeded

 11.007 Attempt to form a string longer than &MAXLNGTH by concatenation

 11.008 A pattern structure has exceeded the maximum permitted size (32K

 bytes)

 11.009 Time limit (T parameter) exceeded

 11.010 Attempt to form a string longer than &MAXLNGTH in call to DUPL

 function

 11.011 Attempt to form a string longer than &MAXLNGTH in call to LPAD

 function

 11.012 Attempt to form a string longer than &MAXLNGTH in call to RPAD

 function

 12.001 Filename given is null

 12.002 Referenced file is nonexistent or unavailable

 12.003 Function name for LOAD is > 8 characters

 12.004 Noncorrectable input error

 12.005 Noncorrectable output error

 12.006 Attempt to read past end-of-file

 12.007 Noncorrectable input error during loading of external module

 12.008 Module for external function not found

 12.009 Module to be unloaded is not currently loaded (this is probably an

 error in the SPITBOL system)

 12.010 Attempt to REWIND standard SPITBOL I/O units: SCARDS, SPRINT,

 SPUNCH

 SPITBOL 95

 MTS 9: SNOBOL4 in MTS

 September 1975

 12.011 Attempt to read from a file previously written on with no

 intervening REWIND

 12.012 Attempt to write on a file previously read from with no interven-

 ing REWIND

 12.013 Duplication factor or T operand (tab location) in an output

 (FORTRAN) format is zero

 12.014 Illegal character in output (FORTRAN) format

 12.015 Too many levels of parentheses in output (FORTRAN) format -- the

 limit is 10

 12.016 Too many right parentheses in output (FORTRAN) format

 12.017 T operand (tab location) is missing in output (FORTRAN) format

 12.018 Operand for H (string literal) in output (FORTRAN) format extends

 beyond the end of the format

 12.019 Output format containing more than one character does not start

 with a left parenthesis and cannot be interpreted as a FORTRAN-

 type format

 12.020 Output format containing more than one character does not start

 with a right parenthesis and cannot be interpreted as a FORTRAN-

 type format

 12.022 Error in opening file for output

 12.023 Error in opening file for input

 13.001 Evaluated result of deferred argument to POS is negative

 13.002 Evaluated result of deferred argument to RPOS is negative

 13.003 Evaluated result of deferred argument to RTAB is negative

 13.004 Evaluated result of deferred argument to TAB is negative

 13.005 Evaluated result of deferred argument to LEN is negative

 13.006 Evaluated result of deferred argument to ANY is null

 13.007 Evaluated result of deferred argument to NOTANY is null

 13.008 Evaluated result of deferred argument to SPAN is null

 13.009 Evaluated result of deferred argument to BREAKX is null

 13.010 Evaluated result of deferred argument to BREAK is null

 96 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975

 13.011 Operand of unary $ is null

 13.012 Argument for LEN is negative

 13.013 Argument for POS is negative

 13.014 Argument for TAB is negative

 13.015 Argument for RPOS is negative

 13.016 Argument for RTAB is negative

 13.017 SPAN argument is null

 13.018 Argument for BREAKX is null

 13.019 Argument for BREAK is null

 13.020 NOTANY argument is null

 13.021 ANY argument is null

 13.022 Null first argument in call to the ARRAY function

 13.023 An array bound in a call to the ARRAY function is null

 13.024 An array bound in a call to the ARRAY function is nonnumeric

 13.025 In the first argument to ARRAY, a subscript bound has two colons

 13.026 An array lower bound in a call to the ARRAY function is not in the

 range -32768 < LBD < +32768

 13.027 An array dimension (HBD-LBD+1) in a call to the ARRAY function is

 not in the range 0 < DIM < 32768

 13.028 Name in CLEAR first argument is null

 13.029 Array argument for CONVERT to TABLE is not two-dimensional.

 13.030 Argument to DATA is null

 13.031 Datatype name in argument to DATA is null

 13.032 Missing left parenthesis in DATA argument

 13.033 Field name is null in DATA argument

 13.034 DATA argument does not end with)

 13.035 Too many fields (more than 30) in argument to DATA

 SPITBOL 97

 MTS 9: SNOBOL4 in MTS

 September 1975

 13.036 First argument to DEFINE is null

 13.037 Function name in first argument to DEFINE is missing (null)

 13.038 First argument to DEFINE is missing a (

 13.039 Argument name in first argument to DEFINE is null

 13.040 First argument to DEFINE is missing a)

 13.041 Null local name in first argument to DEFINE

 13.042 Argument to ENDFILE is null

 13.043 Argument to LOAD is null

 13.044 Function name in argument to LOAD is null

 13.045 Missing (in argument to LOAD

 13.046 Missing argument to LOAD

 13.047 Too many arguments (more than 64) in function to be LOADed

 13.048 Argument to REWIND is null

 13.049 Argument to TABLE is zero or negative

 14.001 A function called by name returned a value

 14.002 An expression other than a function call returned a value where a

 name was required

 98 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| Calling External System Subroutines ___________________________________

|

|

| The file *SPITSYSLIB (previously UNSP:SPITLIB) contains a library of

| SPITBOL-callable system subroutines. These subroutines may be used as the

| first argument of the SNOBOL4 LOAD statement. This file name may be

| specified as the second argument, or the program *OBJUTIL may be used to

| extract individual subroutines and place them in another file which can then

| be specified as the second argument.

|

| The following subroutines are included in *SPITSYSLIB:

|

| ITR, ITS, OSINT, RTI, RTS, SCMD, SCREATE, SCREPLY, SGDINFO, SGETFD,

| SGETRC, SGUINFO, SMTSCMD, SPITATTN, SPUTRC, SREAD, SSETPFX, SSNS, STI,

| STR, and SWRITE.

|

| As stated above, the normal use of *SPITSYSLIB is to include the file name

| as the second argument in a call to the SPITBOL function LOAD. Documenta-

| tion for these subroutines is given later in this section. The use of

| subroutine libraries is described in MTS Volume 3, System Subroutine __________________

| Descriptions, and the MTS loader and the *OBJUTIL program are described in ____________

| MTS Volume 5, System Services. _______________

|

| The file-name argument need not be used when the desired routines have

| all ready been loaded (by the MTS loader).

 SPITBOL 98.1

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| Type Conversion Routines ________________________

|

| Subroutine Description

|

|

|

| Purpose: To change the type of a SPITBOL variable without performing

| any data conversion.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| real = ITR(integer)

| string = ITS(string)

| integer = RTI(real)

| string = RTS(real)

| integer = STI(string)

| real = STR(string)

|

| Parameters:

|

| real a variable of type real. ____

| integer a variable of type integer. _______

| string a variable of type string. ______

|

| Description: These functions always succeed. The functions that return

| strings, ITS and RTS, always return four characters. The

| functions that take string arguments, STI and STR, return a

| fullword zero if they are passed the null string, return the

| first four bytes of strings that are four characters long or

| longer, or return four bytes right-justified with leading

| binary zeros for strings with lengths of one, two, or three.

| None of these functions perform any data conversion; rather

| the data is moved unchanged from a variable of one type to a

| variable of another type.

 98.2 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SCMD ____

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine CMD from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| SCMD(command)

|

| Parameter:

|

| command is the character string that is to be passed to _______

| CMD as an MTS command.

|

| Description: For a complete description of the CMD subroutine, see MTS

| Volume 3. SCMD normally succeeds and always returns the null

| string. A call to SCMD will fail if the command string is

| null or longer than 255 characters.

|

| Example: LOAD(’SCMD(STRING)’,’*SPITSYSLIB’)

| LOOP OUTPUT = "ENTER AN MTS COMMAND"

| COMMAND = TRIM(INPUT) :F(END)

| SCMD(COMMAND) :S(LOOP)

| OUTPUT = "COMMAND STRING TOO LONG OR SHORT"

| END

 SPITBOL 98.3

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SCREATE _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine CREATE from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| rc = SCREATE(file,size,type)

|

| Parameters:

|

| file is a nonnull string containing the file name of ____

| the file to be created (it will be truncated to

| 17 characters if necessary).

| size is an integer specifying the size of the file to ____

| be created.

| type is an integer indicating the type of file to be ____

| created and the units associated with the size ____

| parameter.

| rc is a string that will be set to the null string __

| to indicate a return code of zero from CREATE or

| to a four-character string representing the

| CREATE return code. A string of "0000" indi-

| cates that SCREATE was passed a null string for

| a file name.

|

| Description: For a complete description of the CREATE subroutine, see MTS

| Volume 3. A maximum file size may be specified by the

| appropriate choice of a size value (size = fsize + maxsize *

| 2¹⁶). The function SGETRC may also be used to obtain the
| CREATE return code.

|

| Example: LOAD(’SCREATE(STRING,INTEGER,INTEGER)STRING’,

| +’*SPITSYSLIB’)

| DIFFER(SCREATE(’-DATA’,1,256)) :S(OOPS)

| OUTPUT = ’FILE "-DATA" HAS BEEN CREATED’ :(END)

| OOPS OUTPUT = ’SCREATE FAILED’

| END

 98.4 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SCREPLY _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine CANREPLY from SPITBOL programs.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| SCREPLY()

|

| Description: For a complete description of the CANREPLY subroutine, see

| MTS Volume 3. SCREPLY always returns the null string. If

| the subroutine is called from batch mode it fails, otherwise

| it succeeds.

|

| Example: LOAD(’SCREPLY()’,’*SPITSYSLIB’)

| OUTPUT = SCREPLY() "ENTER YOUR NAME"

| NAME = INPUT

| .

| .

| .

| END

 SPITBOL 98.5

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SGDINFO _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine GDINFO from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| string = SGDINFO(name)

| string = SGDINFO2(unit)

|

| Parameters:

|

| name is a character string logical I/O unit name or ____

| number.

| unit is an integer FDUB-pointer (as returned by ____

| SGETFD) or an integer logical I/O unit number (0

| through 99).

|

| Value Returned:

|

| string is 44 bytes of information as described in MTS ______

| Volume 3.

|

| Description: See MTS Volume 3 for a complete description of the GDINFO

| subroutine. SGDINFO normally succeeds but if name is passed ____

| as the null string or if GDINFO gives a nonzero return code,

| SGDINFO will fail. The function SGETRC may be used to obtain

| the GDINFO return code.

|

| Example: LOAD(’SGDINFO(STRING)STRING’,’*SPITSYSLIB’)

| OUTPUT = "TYPE = " SUBSTR(SGDINFO(’SCARDS’),5,4)

| END

 98.6 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SGETFD ______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine GETFD from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| fdub1 = SGETFD(fdname)

| fdub2 = SGETFD2(fdname)

|

| Parameter:

|

| fdname is a character-string FDname terminated with a ______

| trailing blank.

|

| Value Returned:

|

| fdub1 is a FDUB-pointer returned as a string. _____

| fdub2 is a FDUB-pointer returned as an integer. _____

|

| Description: See MTS Volume 3 for a complete description of the GETFD

| subroutine. SGETFD normally succeeds and returns a FDUB-

| pointer. A failure return is made if the FDname string is

| null or GETFD gives a nonzero return code. The function

| SGETRC may be used to obtain the GETFD return code.

|

| Example: LOAD(’SGETFD(STRING)STRING’,’*SPITSYSLIB’)

| FDUB = SGETFD(’-LOAD ’) :F(OOPS)

| .

| .

| .

| OOPS OUTPUT = "CALL TO SGETFD FAILED"

| END

 SPITBOL 98.7

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SGETRC, SPUTRC ______________

|

| Subroutine Description

|

|

|

| Purpose: To allow SPITBOL programs to access the return code area used

| by several of the routines contained in *SPITSYSLIB.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| rc = SGETRC()

| SPUTRC(newrc)

|

| Parameters:

|

| rc is the integer value that was stored in the __

| return code area, SPITRCSA.

| newrc is an integer to replace the current value _____

| stored in the return code area.

|

| Description: Because external SPITBOL functions can only return a single

| value and a success/failure indication, it is not possible

| for many of the subroutines available in UNSP: SPITLIB to

| return both a value and a return code. To overcome this

| problem, the functions SGETRC and SPUTRC are provided.

| SGETRC always succeeds and returns the last return code

| stored in the return code area. SPUTRC normally succeeds and

| places an integer argument into the return code area. SPUTRC

| may fail if the return code area has not been defined.

|

| The return code area is part of the SGETRC function and is

| defined when that function is loaded. For this reason it is

| necessary to load SGETRC before any functions that require

| the return code area are called. Subroutines that use the

| return code area will not fail if SGETRC has not been

| defined, but their return codes will not be available.

|

| Example: LOAD(’SGDINFO2(INTEGER)STRING’,’*SPITSYSLIB’)

| LOAD(’SGETRC()INTEGER’,’*SPITSYSLIB’)

| INFO = SGDINFO2(0)

| RC = SGETRC()

| OUTPUT = ’TYPE = ’ SUBSTR(INFO,5,4) :S(END)

| OUTPUT = ’ERROR RETURN - RC=’ RC

| END

 98.8 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SGUINFO _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine GUINFO from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| string = SGUINFO(name,length)

| string = SGUINFO2(number,length)

| integer = SGUINFO3(name)

| integer = SGUINFO4(number)

|

| Parameters:

|

| name is a one- to eight-character item name. ____

| number is an integer item number. ______

| length is an integer in the range 1 to 24 that ______

| specifies the length of the string to be

| returned.

|

| Values Returned:

|

| string is a string from 1 to 24 characters in length. ______

| integer is an integer value. _______

|

| Description: For a complete description of the GUINFO subroutine, see MTS

| Volume 3. This subroutine normally succeeds and returns the

| requested value. A failure return is made if a length of

| zero is specified, a null string is given for name, or GUINFO

| gives a nonzero return code. The function SGETRC may be used

| to obtain the GUINFO return code.

|

| Example: LOAD(’SGUINFO(STRING,INTEGER)STRING’,’*SPITSYSLIB’)

| LOAD(’SGUINFO4(INTEGER)INTEGER’,’*SPITSYSLIB’)

| CCID = SGUINFO(’SIGNONID’,4) :F(OOPS)

| PAGES = SGUINFO4(80) :F(OOPS)S(END)

| OOPS OUTPUT = "OOPS"

| END

 SPITBOL 98.9

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SMTSCMD _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine MTSCMD from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| SMTSCMD(command)

|

| Parameter:

|

| command is a character string to be passed to MTSCMD as _______

| an command.

|

| Description: For a complete description of the subroutine MTSCMD, see MTS

| Volume 3. This subroutine normally succeeds and always

| returns the null string. A failure return is made if the

| command string is null or longer than 255 characters.

|

| Example: LOAD(’SMTSCMD(STRING)’,’*SPITSYSLIB’)

| OUTPUT = "USE $RES TO RESTART"

| SMTSCMD("$EDIT -SSF")

| END

 98.10 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SPITATTN ________

|

| Subroutine Description

|

|

|

| Purpose: To detect attention interrupts from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| SPITATTN(’string’)

|

| Parameter:

|

| string is one of three possible strings indicating the ______

| function to be performed.

|

| Value Returned:

|

| SPITATTN always returns the null string.

|

| Description: Three calls to SPITATTN are possible:

|

| SPITATTN(’SET’)

|

| will establish an attention trap and will always

| succeed, even if a trap was already set.

|

| SPITATTN(’CLEAR’)

|

| will clear any trap set by SPITATTN and will always

| succeed, even of no trap was set.

|

| SPITATTN(’TEST’)

|

| will succeed if no attention interrupt has occurred

| and will fail if an attention interrupt has

| occurred. This call also clears the internal flag

| that indicates that an attention has occurred.

|

| If an attention trap has been set using SPITATTN and a second

| attention interrupt is received before the first has been

| serviced by a call to SPITATTN(’TEST’), MTS will process the

| interrupt as if no trap had been established.

 SPITBOL 98.11

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| Example: LOAD(’SPITATTN(STRING)’,’*SPITSYSLIB’)

| NO = 0

| SPITATTN(’SET’)

| LOOP SPITATTN(’TEST’) :F(ATTN)

| .

| .

| . :S(DONE)F(DONE)

| ATTN OUTPUT = ’ATTN NO. = ’ NO

| NO = NO + 1 :(LOOP)

| DONE SPITATTN(’CLEAR’)

| .

| .

| .

| END

 98.12 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SREAD _____

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine READ from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| string = SREAD(unit,line,mod)

| string = SREAD2(unit2,line,mod)

|

| Parameters:

|

| unit is a string containing an MTS logical I/O unit ____

| name or FDUB-pointer.

| unit2 is an integer FDUB-pointer or logical I/O unit _____

| number.

| line is an integer MTS line number times 1000 to be ____

| used during indexed reads.

| mod is an integer representing the I/O modifier bits ___

| (see the "I/O Modifiers" description in MTS

| Volume 3).

|

| Values Returned:

|

| SREAD returns a character representation of the MTS line

| number times 1000, concatenated to the special character

| ’#’, and followed by the actual input line (if any).

| SREAD succeeds if a return code zero is giveon, other-

| wise it fails. The function SGETRC may be used to

| obtain the return code from READ.

|

| Description: See MTS Volume 3 for a complete description of the READ

| subroutine. If on a call to SREAD unit contains a null ____

| string, the unit, line, and mod values from the previous call ____ ____ ___

| will be reused. If there was no previous call to SREAD, MTS

| will print the message "Call to READ uses illegal parameters"

| and force execution to terminate.

|

| Example: LOAD(’SREAD(STRING,INTEGER,INTEGER)STRING’,

| +’*SPITSYSLIB’)

| INLINE = TRIM(SREAD(’GUSER’,)) :F(EOF)

| INLINE2 = SREAD() :F(EOF)S(END)

| EOF OUTPUT = ’ENDFILE READ FROM GUSER’

| END

 SPITBOL 98.13

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SSETPFX _______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine SETPFX from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| oldpfx = SSETPFX(newpfx)

|

| Parameters:

|

| newpfx is a character string, the first character of ______

| which will be used as the new user prefix

| character.

| oldpfx is the previous user prefix returned as a ______

| one-character string.

|

| Description: See MTS Volume 3 for a complete description of the SETPFX

| subroutine. SSETPFX normally succeeds, failing only if the

| argument string is null.

|

| Example: LOAD(’SSETPFX(STRING)STRING’,’*SPITSYSLIB’)

| OLD = SSETPFX("?")

| .

| .

| .

| SSETPFX(OLD)

| .

| .

| .

| END

 98.14 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| SSNS ____

|

| Subroutine Description

|

|

|

| Purpose: To return the "SNS" information for a given device.

|

| Location: *SPITSYSLIB

|

| Calling Sequence:

|

| snsinfo = SSNS(name)

| snsinfo = SSNS2(number)

|

| Parameters:

|

| name is a logical I/O unit name (e.g., SCARDS), or ____

| the character form of a logical I/O unit number

| (0 through 99).

| number is an integer logical I/O unit number (0 through ______

| 99) or a FDUB-pointer (as returned by SGETFD).

|

| Description: This subroutine calls the MTS CONTROL subroutine to obtain up

| to 72 bytes of "SNS" information. The information is

| returned as a character string. For information on the

| format of "SNS" data, see MTS Volume 4, Terminals and ______________

| Networks in MTS, or MTS Volume 19, Tapes and Floppy Disks. _________________ ______________________

| For information on the CONTROL subroutine, see MTS Volume 3.

|

| Calls to SSNS and SSNS2 normally succeed but will fail if the

| name string is null or a nonzero return code is given by the

| CONTROL subroutine. The function SGETRC may be used to

| obtain the return code from the control subroutine. The DSR

| (Device Support Routine) return code is not available.

|

| Example: LOAD(’SSNS(STRING)STRING’,’*SPITSYSLIB’)

| ANSBACK = SUBSTR(SSNS("GUSER"),25,24)

| .

| .

| .

| END

 SPITBOL 98.15

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

| SWRITE ______

|

| Subroutine Description

|

|

|

| Purpose: To call the MTS subroutine WRITE from a SPITBOL program.

|

| Location: *SPITSYSLIB

|

| Calling Sequences:

|

| SWRITE(unit,text,line,mod)

| SWRITE2(unit2,text,line,mod)

|

| Parameters:

|

| unit is a string containing an MTS logical I/O unit ____

| name or FDUB-pointer.

| unit2 is an integer FDUB-pointer or a logical I/O unit _____

| number.

| text is the string to be written. ____

| line is an integer MTS line number times 1000 to be ____

| used during indexed writes.

| mod is an integer representing the I/O modifier bits ___

| (see the "I/O Modifiers" description in MTS

| Volume 3).

|

| Values Returned:

|

| SWRITE always returns the null string. SWRITE succeeds

| if a return code of zero is given, otherwise it fails.

| The function SGETRC may be used to obtain the return

| code from WRITE.

|

| Description: See MTS Volume 3 for a complete description of the WRITE

| subroutine. If on a call to SWRITE, unit contains a null ____

| string, the unit, line, and mod values from the previous call ____ ____ ___

| will be reused. If there was no previous call to SWRITE, MTS

| will print the message "Call to WRITE uses illegal parame-

| ters" and force execution to terminate.

|

| Example: LOAD(’SWRITE(STRING,STRING,INTEGER,INTEGER)’,

| +’*SPITSYSLIB’)

| SWRITE(’SERCOM’,OUTLINE) :F(OOPS)

| SWRITE(,OUTLINE) :F(OOPS)S(END)

| OOPS OUTPUT = ’SWRITE FAILED’

| END

 98.16 SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 SNOSTORM ________

 INTRODUCTION ____________

 SNOSTORM is a SNOBOL (SPITBOL) preprocessor which accepts, in addition to

 standard SNOBOL statements, structuring statements (e.g., IF ELSE ENDIF).

 The SNOBOL language has extremely poor control structures and SNOSTORM adds

 a number of useful control statements to make structured programming much

 easier. There are also facilities for forming logical expressions and

 producing more readable listings.

 DEFINITION OF TERMS ___________________

 The following terms are used in the description of SNOSTORM:

 sexp = a statement expression (explained below) ____

 var = a variable ___

 nexp = a numeric expression ____

 ncon = a numeric constant ____

 icon = an integer constant ____

 xexp = any SNOBOL expression ____

 xcon = any SNOBOL constant ____

 Statement Expressions _____________________

 There are no logical operators for combining logical results in SNOBOL.

 Often some tricks are used which make use of the fact that the predicate

 functions return the null string, but there is no general way to combine the

 many tests into one expression. To fix this omission, SNOSTORM allows the

 use of the logical operators NOT, AND, and OR. These may be used to form a

 statement expression (sexp) by the following rules: ____

 sexp = any SNOBOL statement without a goto ____

 | (sexp) ____

 | NOT sexp ____

 | sexp AND sexp ____ ____

 | sexp OR sexp ____ ____

 SNOSTORM 99

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 These operators have the following meaning:

 NOT sexp succeeds if sexp fails. ____ ____

 sexp1 AND sexp2 succeeds if both sexp1 succeeds and sexp2 succeeds. _____ _____ _____

 sexp1 OR sexp2 succeeds if either sexp1 succeeds or sexp2 succeeds. _____ _____ _____ _____

 The precedence of these operators is such that NOT has the highest __________

 precedence, followed by AND, and then OR. The order of evaluation may be

 controlled with the use of parentheses.

 Evaluation of these statement expressions takes place from left to right

 among equal precedence operations. However, the evaluation is optimized so _________

 that only the minimum number of SNOBOL statements need be evaluated. For

 example, if the first statement operand of an AND fails, there is no need to

 evaluate the second.

 One or more blanks must surround each occurrence of AND, OR, and NOT.

 Example:

 IF NOT (STM "WIMPY" OR LT(I,1000) AND X = A<I>), Y = 1

 would generate

 STM "WIMPY" :S(aaa)

 LT(I,1000) :F(bbb)

 X = A<I> :S(aaa)

 bbb

 Y = 1

 aaa

 CONTROL STRUCTURES __________________

 Four types of control structures are supplied in SNOSTORM:

 (1) An IF structure for selecting groups of statements depending on one

 or more logical expressions.

 (2) A LOOP structure which provides a means to repeat sections of code.

 (3) A CASE structure which allows one of many sections of statements to

 be selected by some arbitrary value.

 (4) A PROCEDURE structure which allows functions to be defined in a more

 obvious manner than is possible in SNOBOL.

 The IF and LOOP statements may contain logical conditions which are

 expressed in terms of SNOBOL statements. The term sexp will be written to ____

 stand for these "statement expressions". The syntax of these is explained

 below.

 100 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 IF STRUCTURES _____________

 Simple IF _________

 The simple SNOSTORM IF is of the form

 IF sexp, s ____ _

 This is translated into

 sexp :F(aaa) ____

 s _

 aaa

 where s is any SNOBOL or nonblock SNOSTORM statement. This performs s only _ _

 if sexp succeeds. This statement eliminates the ugly practice of imbedding ____

 predicate functions in various parts of the SNOBOL statement to conditional-

 ly execute that statement.

 Example:

 IF IDENT(X,Y), S P = R

 IF...ENDIF __________

 The form of the simple block IF statement is:

 IF sexp ____

 statements to be executed if sexp succeeds ____

 ENDIF

 This is translated into

 sexp :F(aaa) ____

 statements to be executed if sexp succeeds ____

 aaa

 If the statement expression sexp succeeds, the statements enclosed ____

 between the IF and the ELSE will be executed, otherwise execution will

 proceed immediately after the ENDIF.

 SNOSTORM 101

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 IF...ELSE...ENDIF _________________

 The form of this statement is:

 IF sexp ____

 statements to be executed if sexp succeeds. ____

 ELSE

 statements to be executed if sexp fails. ____

 ENDIF

 This translates into

 sexp :F(aaa) ____

 statements to be executed if sexp succeeds. ____

 :(bbb)

 aaa statements to be executed if sexp fails. ____

 bbb

 If sexp succeeds, the first clause will be executed, if sexp fails, the ____ ____

 second clause will be executed. In both cases execution will then proceed

 with the first statement after the ENDIF.

 IF...ELSEIF...ENDIF ___________________

 A series of sequential decisions may be made using the following type of

 IF statement:

 IF sexp1 _____

 performed if sexp1 succeeds. _____

 ELSEIF sexp2 _____

 performed if previous test failed and sexp2 succeeds. _____

 ELSEIF sexp3 _____

 performed if previous tests failed and sexp3 succeeds. _____

 ELSEIF sexpn _____

 performed if previous tests failed and sexpn succeeds. _____

 [ELSE]

 performed if none of previous tests succeeded.

 ENDIF

 LOOP STRUCTURES _______________

 Many loops in SNOBOL are hidden within the execution of one statement.

 Nevertheless, it is often necessary to write multiple statement loops.

 SNOSTORM provides the LOOP...ENDLOOP statement for this. It is possible to

 add several clauses to these statements to control the type of looping.

 102 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

 The legal clauses are:

 LOOP [for] [while] [until]

 ENDLOOP [REPEAT [while] [until]]

 Clauses specified on the LOOP statement are tested at the beginning of

 each iteration of the loop. Clauses on the ENDLOOP statement are tested at

 the end of each loop iteration. If more than one LOOP or ENDLOOP clause is

 given, the looping continues only if all clauses would continue execution. ___

 When multiple clauses are specified, the FOR clause is always processed

 first and WHILE and UNTIL clauses are processed in the order specified.

 It is permissible to have clauses on both the LOOP and ENDLOOP

 statements.

 LOOP ____

 The unembellished LOOP statement makes no tests at the top of the loop.

 It is possible to specify conditions on the ENDLOOP to be tested at the

 bottom of the loop. Without termination conditions on either the LOOP or

 ENDLOOP statements, infinite looping must be avoided by a statement within

 the loop which branches out, such as: EXITLOOP or a goto. Of these,

 EXITLOOP would be preferable from a structured programming point of view.

 Example:

 LOOP

 *** COUNT TO INFINITY ***

 I = I + 1

 ENDLOOP

 LOOP FOR iteration __________________

 The LOOP...ENDLOOP structure with a for-clause provides a means of

 initializing an arithmetic variable, incrementing it each time through the

| loop, and stopping when it goes beyond a specified value. The FOR clause

| may also be used to traverse a list by making use of assignment in the BY

| clause (see the BY clause description below). Because the termination of

 loops in SNOBOL is often made on the basis of some condition rather than

 upon a fixed bound, it is possible to omit the final value and use a WHILE

 clause to give the termination. If there is a final value specified, the

 iteration variable is compared to it before every iteration, including the

 first.

 LOOP FOR var = nexp1 [BY nexp2] [TO nexp3] ___ _____ _____ _____

 statements in the body of the loop

 ENDLOOP

 SNOSTORM 103

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 where nexp1 is the initial value, nexp2 is the increment (default 1), and _____ _____

 nexp3 is the maximum value (default none). _____

 The exact translation depends on the nature of nexp2 and nexp3. Changes _____ _____

 to either of these values during the execution of the loop will have no __

 effect on the number of times the loop is executed. That is, if either

 nexp2 or nexp3 references a variable, copies of the initial values of these _____ _____

 expressions are made and then used in their places in the following

 generated code prototype.

 The previous syntactic prototype would produce code something like the

 following:

 var = nexp1 :(aaa) ___ _____

 bbb var = var + nexp2 ___ ___ _____

 aaa GT(var,nexp3) :S(ccc) ___ _____

 statements in the body of the loop

 :(bbb)

 ccc

 Regardless of the order of the FOR, WHILE, and UNTIL clauses, the FOR

 clause is always processed first because it requires an initialization.

 Because of this initialization, the FOR clause is not allowed on the ENDLOOP

 statement.

| The BY clause can have one of three forms:

|

| (1) An expression. The value of the BY clause expression will be

| computed at the beginning of the loop and this value will be added

| on each iteration to the iteration variable. This is similar in

| action to iterated loops in other languages. This type of iteration

| would typically be used in traversing arrays.

| (2) A negative integer constant. This special case of an expression can

| be used to cause the iteration variable to go from a high value to a

| low value. Just as with an expression, the value of the BY

| expression will be added to the iteration variable (thereby decre-

| menting it). However, unlike an expression, if there is a TO value,

| loop termination will occur when the iteration variable is LESS THAN

| the final value. Specification of a negative CONSTANT is the only

| way to force the iteration variable to descend in value and to

| terminate when the iteration variable is less than the TO clause

| value. If a negative valued expression (not a constant) is

| specified, the iteration variable value will also descend, but the

| TO clause termination will only be made when the iteration variable

| value is greater than it (undoubtedly an error).

| (3) An assignment statement. If the TO clause is a SNOBOL assignment,

| this assignment statement will be performed instead of any other

| form of incrementing. By also replacing the TO clause with a WHILE

| or UNTIL condition, this option allows for nonnumeric iterations,

| such as traversal of a linked list. A typical list traversal loop

| might look like the following:

 104 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised May 1984

| LOOP FOR X = HEAD BY X = NEXT(X) UNTIL IDENT(X,NULL)

| ...

| ENDLOOP

|

| This would generate code like the following:

|

| X = HEAD :(aaa)

| bbb X = NEXT(X)

| aaa IDENT(X,NULL) :(zzz)

| ...

| :(bbb)

| zzz

 Examples:

 LOOP FOR I=1 TO N

 OUTPUT = NAME(A<I>)

 OUTPUT = ’ ’ ADDRESS(A<I>)

 ENDLOOP

 LOOP FOR I=1 WHILE ELEM = A<I> Because subscript references

 OUTPUT = NAME(ELEM) outside the bounds of an array

 OUTPUT = ’ ’ ADDRESS(ELEM) cause a failure, this loop

 ENDLOOP will stop after last entry.

 LOOP WHILE sexp _______________

 The LOOP WHILE statement specifies a loop which is continued as long as

 the condition sexp succeeds at the beginning of each iteration. ____

 LOOP WHILE sexp ____

 statements to be executed within loop

 ENDLOOP

 SNOSTORM 104.1

 MTS 9: SNOBOL4 in MTS

 Page Revised May 1984 September 1975

 104.2 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 is translated to

 aaa sexp :F(bbb) ____

 statements to be executed within loop

 :(aaa)

 bbb

 LOOP UNTIL sexp _______________

 The LOOP UNTIL statement specifies a loop which is terminated at the

 beginning of any iteration in which the condition sexp succeeds. ____

 LOOP UNTIL sexp ____

 statements to be executed within loop

 ENDLOOP

 is translated to

 aaa sexp :S(bbb) ____

 statements to be executed within loop

 :(aaa)

 bbb

 ENDLOOP [REPEAT [while] [until]] ________________________________

 An ENDLOOP statement must be supplied to match each LOOP statement. The

 ENDLOOP statement may be written without any termination conditions, in

 which case it will generate a branch back to the top of the loop.

 A termination condition may be specified with either a WHILE or UNTIL

 clause on the ENDLOOP. In this case, the word REPEAT must be inserted after

 the ENDLOOP keyword and before these clauses.

 ENDLOOP REPEAT WHILE sexp tests the condition sexp at the end of each ____ ____

 iteration and continues with the next iteration of the loop only if sexp _________ ____

 succeeds.

 ENDLOOP REPEAT UNTIL sexp tests the condition sexp at the end of each ____ ____

 iteration and terminates execution of the loop only if sexp succeeds. __________ ____

 Both WHILE and UNTIL clauses may be specified on the ENDLOOP statement.

 The loop will be continued only if the WHILE sexp succeeds and the UNTIL ____

 sexp fails. ____

 SNOSTORM 105

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 EXITLOOP ________

 The EXITLOOP statement causes execution to continue with the statement

 immediately following the end of the immediately enclosing loop. The form

 of the EXITLOOP statement is:

 EXITLOOP

 NEXTLOOP ________

 The NEXTLOOP statement will cause execution to proceed with the test for

 the next iteration of the immediately enclosing loop. The form of the

 NEXTLOOP statement is:

 NEXTLOOP

 CASE STRUCTURES _______________

 The DOCASE statement permits the selection of one of a number of groups

 of statements depending upon the value of an expression given in the DOCASE

 statement. Although there is no restriction on the datatype of the control

 expression, the only practical values to use are strings, integers, and

 reals because other values are very difficult to use correctly.

 First, the control value specified on the DOCASE statement is evaluated.

 If this evaluation fails, control is passed to the ELSECASE clause. If the

 control value was successfully evaluated, a branch is made to the CASE

 clause which specifies the same value as the control value. If the control

 value is not specified in any CASE statement, execution proceeds with the

 ELSECASE clause.

 The ELSECASE clause is required because an erroneous control value is

 often a source of programming errors. It is a good idea to put some error

 message in the ELSECASE clause if execution is never expected to reach that

 point.

 Unlike a series of ELSEIF constructions, the DOCASE statement doesn’t

 test for each case sequentially, but instead uses a table of labels to go

 directly to the correct case.

 The DOCASE construction must always begin with a DOCASE statement. Next

 are one or more CASE statements, each preceding a group of statements to be

 executed for the control value specified on that CASE. The ELSECASE

 statement is next, and finally, the ENDCASE statement, terminating the

 DOCASE...ENDCASE structure.

 106 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 No label may occur on either the CASE or ELSECASE statements.

 Because the case structure is implemented using a table to select the

 appropriate clause to execute, SNOSTORM generates code to initialize this

 table at the beginning of execution. The method of making these initializa-

 tions is described in the section "Initialization."

 The form of this statement is:

 DO CASE xexp ____

 CASE xcon,... ____

 statements to be executed if IDENT(xexp,any xcon) ____ ____

 CASE xcon,... ____

 statements to be executed if IDENT(xexp,any xcon) ____ ____

 ...

 as many CASE statements as desired

 ...

 ELSECASE

 statements to be executed if xexp was not identical to ____

 any of the xcons _____

 ENDCASE

 PROCEDURE STRUCTURES ____________________

 PROCEDURE...ENDPROCEDURE ________________________

 Procedures may be defined in SNOSTORM in such a way that the scope may be

 clearly indicated and the necessity of either separating the DEFINE from the

 procedure body or generating gotos around the body is eliminated. Procedure

 definitions may occur anywhere in the source text. SNOSTORM insures that

 they are defined during the initial phase of the program’s execution. See

 the section "Initialization" for the details of this process. Additionally,

 SNOSTORM generates gotos around the body so it is not possible to

 accidentally flow into a procedure.

 The form of a procedure definition is as follows:

 name PROCEDURE [([params])[locals]]

 .

 .

 .

 ENDPROCEDURE [{SUCCESS|SUCCEED|FAILURE|FAIL|NAME}]

 where "name" is the procedure name, "params" the formal parameters, and

 "locals" the list of local variables. This is equivalent to the standard

 SNOBOL syntax for procedure definition of DEFINE("name(params)locals").

 Execution of the ENDPROCEDURE statement causes one of three types of

 returns. If nothing is specified after the ENDPROCEDURE, or if SUCCESS (or

 SNOSTORM 107

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 SUCCEED) is specified, a normal successful return is made (:(RETURN)).

 Specification of FAILURE (or FAIL) causes a failure return (:(FRETURN)) and

 specification of NAME causes a successful name return (:(NRETURN)).

 Procedure definitions may not be imbedded in any other SNOSTORM block

 structures.

 PROC and ENDPROC are the only acceptable abbreviations for PROCEDURE and

 ENDPROCEDURE, respectively.

 EXITPROCEDURE _____________

 The EXITPROCEDURE statement provides a means of exiting a procedure

 without execution of the ENDPROCEDURE statement. The options specified on

 the EXITPROCEDURE act in the same way as on the ENDPROCEDURE statement.

 EXITPROC is the only acceptable abbreviation of EXITPROCEDURE.

 EXITPROCEDURE [{SUCCESS|SUCCEED|FAILURE|FAIL|NAME}]

 INITIALIZATION ______________

 Since there are no declarations in SNOBOL it is necessary for SNOSTORM to

 insure that certain things are dynamically defined at the beginning of

 execution.

 Procedure and Case Initialization _________________________________

 Procedure (function) definitions are made by SNOSTORM at the beginning of

 execution of the program. Because SNOSTORM makes a single pass over the

 source program, it is not possible to produce these initializations at the

 beginning of the target program. Instead, a goto is produced at the

 beginning of the program that goes to the first place that needs initializa-

 tion. From there a branch is made to the next place that is to be

 initialized, etc. Procedure definitions need the DEFINE to be executed at

 the beginning and case statements need a table defined during this process.

 At the end of the program a goto is generated back to a label at the

 beginning of the program.

 108 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 INITIAL...ENDINITIAL ____________________

 One of the frustrations of SNOBOL programming is that a pattern may be

 written in the pattern-matching statement, in which case one pays for the

 extra execution time necessary to build the pattern repeatedly, or a pattern

 may be preassigned to a variable at the beginning, in which case it is often

 difficult to remember what it is while looking at the pattern-matching

 statement. By allowing the programmer explicit access to the initializing

 chain used for the PROCEDURE and DOCASE constructions the conflict may be

 resolved.

 An INITIAL construction may be used anywhere in the program and it is

 possible to specify as many INITIAL blocks as desired.

 The INITIAL block is of the form:

 INITIAL

 statements to be executed in the initialization phase

 ENDINITIAL

 Example:

 INITIAL

 PARPAT = OPTB VARIABLE . V OPTB ’=’ OPTB CONPAT . C

 ENDINITIAL

 LOOP WHILE BACK PARPAT =

 ...

 ENDLOOP

 COMMENT STATEMENTS __________________

 In addition to the regular SNOBOL comment statement beginning with an ’*’

 in column 1, two additional comment statements are provided in SNOSTORM.

 The SNOSTORM comments have three advantages: (1) they do not obscure

 program flow by cluttering the label field, (2) they do not interrupt the

 scope brackets which are printed when using the automatic indentation

 feature, and (3) they are indented to the current indentation level.

 The COM and NOCOM options (see the "PAR Options" section) are used to

 control the passage of source program comments into the SNOBOL target

 program. The default value is NOCOM which inhibits the passage of any

 comments into the target program. If COM is specified, comments will be

 passed on into the target program, replacing the first character with an ’*’

 if necessary.

 SNOSTORM 109

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 SNOSTORM Comment Lines ______________________

 Any statement that begins with an asterisk (’*’) beyond column 1 is

 treated as a comment by SNOSTORM. The advantage of these comment lines over

 those which begin with an ’*’ in column 1 is that these comments are

 indented to the current structure nesting depth and they do not interrupt

 the scope brackets. Use of these comments will, in general, produce a more

 readable listing than the use of standard SNOBOL comments.

 Blank lines are also considered to be comments. (SNOBOL treats blank _____ _____

 lines as statements.) This means that blank lines may be used freely

 without causing additional execution. Blank lines do not interrupt the

 scope brackets which are printed in the listing to show the beginning and

 end of SNOSTORM structures.

 LISTING CONTROL STATEMENTS __________________________

 SNOSTORM interprets the following statements which help in producing more

 readable source listings. None of these statements generates any executable

 code.

 None of the listing control statements may be labeled.

 The SPITBOL listing control statements (-SPACE, -TITLE, and -STITL) are

 still processed by SNOSTORM for compatibility with an earlier version, but

 should be changed to the new form since they may not be processed

 indefinitely.

 EJECT [icon] ____________

 The EJECT statement without the icon parameter causes the listing to ____

 continue at the top of the next page, if it is not already at the top of a

 page. The current title and subtitle, if any, will be printed at the top.

 When EJECT has the icon parameter, the EJECT action is only taken if ____

 there are fewer than icon lines remaining on the current page. This is ____

 useful where there is a section of code or comments which should not be

 broken across a page boundary.

 TITLE ’text of title’ _____________________

 The TITLE statement makes the text between the quotes into the current

 title and then causes the same action as the EJECT statement. The subtitle

 text is blanked by the occurrence of a TITLE statement.

 110 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 SUBTITLE ’text of subtitle’ ___________________________

 The SUBTITLE statement makes the text between the quotes into the current

 subtitle and then causes the same action as the EJECT statement. The EJECT

 action is not taken if the listing is already positioned at the top of the

 page as would be the case if a TITLE statement appeared immediately previous

 to this.

 SPACE icon __________

 The SPACE statement causes icon number of blank lines (or an EJECT to the ____

 top of the next page if there are fewer than icon lines remaining on the ____

 current page) to be generated at this point in the source listing.

 An all-blank line is to be preferred to a SPACE 1 because, although both

 produce a blank line in the SNOSTORM listing, a blank line makes the text in

 the source file more readable.

 Blank lines will not be printed at the top of a page.

 LIST [keyword] ______________

 The LIST statement may be used to turn the source listing switch on or

 off. When the listing switch is on, a source listing will be printed; when

 off, it will not be printed. This listing switch is initially on. If no

 keyword follows LIST, ON is assumed. The keywords have the following

 meanings:

 ON the listing switch is turned on.

 OFF the listing switch is turned off.

 PUSHON the listing switch is saved on a stack and turned on.

 PUSHOFF the listing switch is saved on a stack and turned off.

 POP the listing switch is restored from the stack.

 SNOSTORM LISTING ________________

 The listing produced by SNOSTORM contains the source line along with the

 statement number it will be given by SPITBOL and the line number of the

 source line.

 SNOSTORM 111

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 Source Indentation __________________

 Quick recognition of the structure of the source program is essential to

 good programming. Each source line is indented to its proper structure

 level with a series of periods connecting the beginning and end of each

 structure. This scope bracket of periods may be changed to any arbitrary

 string by means of the INDENT option in the PAR field. Comments beginning

 with an ’*’ in column 1 are not indented when the automatic indentation

 option is in use; however, the SNOSTORM form of comments may be used to give

 uninterrupted scope brackets and indentation.

 PAR OPTIONS ___________

 Options may be specified on the $RUN command for *SNOSTORM. If more than

 one option is specified, they should be separated by commas with no

 intervening blanks.

 If specified, the SIZE option must appear first among the options. The

 order of the other options is irrelevant.

 Examples:

 $RUN *SNOSTORM ... PAR=;COM

 $RUN *SNOSTORM ... PAR=;SIZE=100,INDENT=’| ’

 SIZE=icon _________

 Default: SIZE=20

 The SIZE parameter sets the amount of memory used by SNOSTORM and SPITBOL

 in the process of compiling the source program. It would not usually be

 necessary to increase this parameter, but it might be necessary for large

 source programs. The value of icon should not be less than 20 and may be ____

 increased as high as 256. If specified, this parameter must be placed

 before other parameters.

 {COM|NOCOM} ___________

 Default: NOCOM

 This option controls the passage of comments into the target module. If

 COM is specified, all comments in the source module are passed into the

 target module. If NOCOM is specified, no comments are passed to the target

 module.

 112 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 CASE statements will also generate comments in the target module if the

 COM option is in effect.

 {INDENT=string|NOINDENT} ________________________

 Default: INDENT=’. ’

 The INDENT option is followed by an ’=’ and a quoted string. This string

 is taken as the string to be replicated once for each indentation level.

 Automatic indentation may be turned off with the NOINDENT option.

 {LIST|NOLIST} _____________

 Default: LIST

 This option controls all further source program listing, either suppress-

 ing it with NOLIST or enabling it with LIST. It performs the same action as

 the LIST {ON|OFF} statement.

 CONVERT _______

 This option will cause SNOSTORM to convert obsolete SNOSTORM statements

 into a currently acceptable form. When this option is specified, SNOSTORM

 will read the old program from SCARDS and write a new version of the program

 on SPUNCH, preserving the line numbers above 1.000 as it does so. SNOSTORM

 will not translate during this process except for translating obsolete forms

 to new forms (see the section "Obsolete SNOSTORM Statements").

 DEBUG _____

 The DEBUG option is provided to aid in using *SPITDEBUG. This option

 causes SNOSTORM to put out a label for each unlabelled source statement.

 This label is based on the source statement file line number, and is only

 generated if the line number is at least one and is higher than any

 previously encountered file line number. The use of $CONTINUE WITH can

 cause labels not to be generated because of line number shifts. Leading

 zeros and trailing zeros and periods are omitted.

 SNOSTORM generates an unconditional goto immediately preceding each

 label. This is necessary for the proper operation of the *SPITDEBUG BREAK

 command.

 SNOSTORM 113

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 *SPITDEBUG will be included with the program with a -COPY *SPITDEBUG at

 the end of the initialization chain and a call on the *SPITDEBUG DEBUG

 function will be made immediately following that. Note that this call will

 be made after execution of the INITIAL structures, but before any execution

 of the rest of the program. This call will allow the user to make

 initializations or set breakpoints or enable tracing at the beginning of the

 program’s execution.

 See the *SPITDEBUG description for the details of its use.

 The use of this option will consume additional processor time both for

 compilation and during the execution phase of the final object program. For

 this reason, it would generally be a good idea to recompile the program

 without the DEBUG option once the program is running correctly.

 The execution time of an object program compiled with the DEBUG option

 will increase somewhat. However, there will be a substantial increase in

 the number of statements executed, about three times as many. This may

 necessitate an increase in &STLIMIT.

 RUNNING SNOSTORM IN MTS _______________________

 A SNOSTORM program may be translated to an object program as follows:

 $RUN *SNOSTORM SCARDS=source SPRINT=listing SPUNCH=object

 where "source" is the location of the SNOSTORM source program, "listing" is

 where the SNOSTORM listing should be written, and "object" is where the

 SNOBOL object program will be written. ______ ______

 Two processors are involved in the translation, first SNOSTORM, and then

 SPITBOL with the linkage automatically made between them if the SNOSTORM

 translation was without error. Using this combination of SNOSTORM and

 SPITBOL it is not possible to run the program in a "compile-and-execute"

 manner; an object program is always produced. The one difference in the

 object programs produced by *SNOSTORM and *SPITBOL is that a $CONTINUE WITH

 *SPITLIB will be appended to the object program produced by *SNOSTORM.

 There are two temporary files created in the translation:

 -PRINT* is a file which will contain the SPITBOL listing of the program

 produced by SNOSTORM. This name is chosen to correspond to the file that

 SPITDEBUG uses in printing the source file statement when errors are

 encountered. This file will be emptied before the listing is put into it.

 -SNOOBJ is the file that is used to hold the output of the SNOSTORM

 translation. This file then becomes the input to SPITBOL.

 Options may be passed to the SNOSTORM preprocessor in the PAR= field of

 the $RUN statement. See the section "PAR Options" for an explanation of how

 this is done.

 114 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 It may be necessary to increase the SIZE parameter in the PAR field when

 translating large SNOSTORM programs.

 RESTRICTIONS ____________

 There are several restrictions on the language accepted by SNOSTORM.

 Multiple Statements ___________________

 SNOSTORM doesn’t allow multiple statements on input lines. Errors may be

 caused by doing so.

 Reserved Words ______________

 Variable names which are identical to SNOSTORM keywords should not be

 used. Given below is a list of the reserved words and the context in which

 they are reserved. It is dangerous to use reserved words, even in a context

 in which they are not reserved. The use of such names may result in

 erroneous execution and may not necessarily be revealed by either SNOSTORM

 or SPITBOL compilation errors. Note that both parts of the two-word

 reserved words are reserved. The reserved words are:

 Context: at the beginning of a statement

 INITIAL

 ENDINITIAL

 IF

 ELSE

 ELSEIF

 ENDIF

 LOOP

 ENDLOOP

 DOCASE

 CASE

 ELSECASE

 ENDCASE

 DO

 ENDDO

 DOWHILE

 ENDWHILE

 DOUNTIL

 ENDUNTIL

 SNOSTORM 115

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 Context: in a sexp ____

 NOT

 AND

 OR

 Context: in a LOOP or ENDLOOP statement

 FOR

 BY

 TO

 WHILE

 UNTIL

 REPEAT

 Labeled SNOSTORM Statements ___________________________

 Statement labels may not occur on the following SNOSTORM statements:

 Listing control statements

 EJECT

 SPACE

 TITLE

 SUBTITLE

 LIST

 Statements with hidden branches

 CASE

 ELSE

 ELSECASE

 ELSEIF

 A label would not be very meaningful on any of the listing control

 statements, and a label is confusing on each of the other statements because

 a GOTO is the first part of the generated code.

 -COPY _____

 SNOSTORM does not interpret -COPY statements in the source. Because the

 -COPY command is not processed, the source statement numbering in the

 SNOSTORM listing will be in error in programs which use -COPY. Additional-

 ly, the copied file may not contain any SNOSTORM statements. Both of these

 problems can be avoided with the use of $CONTINUE WITH f RETURN in place of

 -COPY f.

 116 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 Error Handling ______________

 Error detection by the preprocessor is not performed on those portions of

 the source text which are presumed to be SNOBOL. This can result in SNOBOL

 errors on what were intended to be SNOSTORM statements because minor

 spelling or punctuation errors in the SNOSTORM statement were simply passed

 on to SNOBOL with no processing by SNOSTORM.

 Errors in a SNOSTORM structure may result in further errors as a result

 of structure mismatch propagation.

 Error messages are printed in the listing both at the point of detection

 and at the end. If SNOSTORM is being run in interactive mode, errors will

 also be listed on SERCOM.

 OBSOLETE SNOSTORM STATEMENTS ____________________________

 The preliminary version of SNOSTORM handled the following statements.

 Although they will still be processed by SNOSTORM, they should be converted

 to the new forms to avoid warning messages. Old programs may be converted

 to new programs by running SNOSTORM with the CONVERT option in the PAR

 field. See the section "PAR Options" for a description.

 Old Form New Form ___ ___ ____

 IFNOT s IF NOT s

 ELSEIFNOT s ELSEIF NOT s

 DO WHILE s LOOP WHILE s

 DO WHILENOT s LOOP WHILE NOT s

 ENDWHILE ENDLOOP

 EXITDO EXITLOOP

 EXITDO s IF s, EXITLOOP

 NEXTDO NEXTLOOP

 NEXTDO s IF s, NEXTLOOP

 DO UNTIL s...ENDUNTIL LOOP ... ENDLOOP REPEAT UNTIL s

 -TITLE TITLE

 -STITL SUBTITLE

 -SPACE SPACE

 -EJECT EJECT

 SNOSTORM 117

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 EXAMPLES ________

 Example A:

 The following is an example of a program to syllabify English words. (It

 needs a lot of work to be very useful).

 &ANCHOR = 1

 &TRIM = 1

 CONS = ’BCDFGHJKLMNPQRSTVWXZ’

 V = SPAN(’AEIOUY’)

 C = SPAN(CONS)

 SEP = ’B’ . C1 NOTANY(’LR’) . C2

 + | ’C’ . C1 NOTANY(’HLR’) . C2

 + | ’D’ . C1 NOTANY(’RW’) . C2

 + | ’F’ . C1 NOTANY(’LR’) . C2

 + | ’G’ . C1 NOTANY(’HLR’) . C2

 + | ’K’ . C1 NOTANY(’HLNR’) . C2

 + | ’M’ . C1 NOTANY(’N’) . C2

 + | ’P’ . C1 NOTANY(’FHLRST’) . C2

 + | ’R’ . C1 NOTANY(’H’) . C2

 + | ’S’ . C1 NOTANY(’CHKLMNPTVW’) . C2

 + | ’T’ . C1 NOTANY(’HRW’) . C2

 + | ’W’ . C1 NOTANY(’HR’) . C2

 + | ANY(’JLNVX’) . C1 LEN(1) . C2

 SUFFIX = (’TURE’ | ANY(’CGST’) (’IAN’ | ’ION’ | ’IOUS’) | ’MEN

 + | ANY(’CDMNT’) ’IAL’ | ’FUL’ | ’SHIP’ | ANY(’LN’) ’ESS’

 + | ANY(’CDGLMNTV’) ’ENT’ | ANY(’AI’) ’BLE’ | ’LY’

 + | ’ES’) (’S’ | NULL) RPOS(0)

 PREFIX = (’IN’ | ’CON’ | ’DIS’ | ’EX’ | ’PRE’ | ’NON’ | ’SUB’)

 REMWORD = (SEP ABORT | ((C V | V C) REM))

 AV1 = ARB ANY(’AEIOUY’) ARB

 AV2 = ARB ANY(’AEIOUY’) REM

 LOOP WHILE LINE = INPUT ’ ’

 LOOP WHILE LINE BREAK(’ ’) . WORD ’ ’ =

 IF DIFFER(WORD,NULL), OUTPUT = WORD ’: ’ SYL(WORD)

 ENDLOOP

 ENDLOOP

 SYL PROCEDURE (WORD)X,Y,Z,Q,C1,C2,SUFF

 *** THIS PROCEDURE SYLLABIFIES A WORD USING THE RULES:

 *** (1) NONE IF WORD IS OF FORM V | VC | CV | CVC

 *** (2) AFTER PREFIXES E.G., IN-

 *** (3) BEFORE SUFFIXES E.G., -TION, -CIOUS

 *** (4) OTHERWISE AFTER A VOWEL

 118 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *** BUT DON’T LEAVE NEXT SYLLABLE STARTING WITH A

 *** IMPOSSIBLE LETTER PAIR.

 IF WORD (V | V C | C V | C V C) RPOS(0)

 *** (1) NO SYLLABIFICATION IS NECESSARY ***

 SYL = WORD

 ELSE

 LOOP WHILE WORD PREFIX . X REMWORD . WORD

 *** (2) AFTER PREFIXES ***

 SYL = X ’-’

 ENDLOOP

 LOOP WHILE WORD ARBWORD . WORD SUFFIX . Y

 *** (3) BEFORE SUFFIXES ***

 SUF = ’-’ Y SUF

 ENDLOOP

 LOOP WHILE WORD (V | C V) . X AV2 . WORD

 *** (4) - BREAK AFTER A VOWEL ***

 IF WORD C . Q =

 LOOP WHILE Q SEP =

 *** SEPARATE THESE CONSTANTS ***

 X = X C1

 Q = C2 Q

 ENDLOOP

 WORD = Q WORD

 ENDIF

 SYL = SYL X ’-’

 ENDLOOP

 IF DIFFER(WORD,NULL)

 SYL = SYL WORD SUF

 ELSE

 (SYL SUF) ARB . X ’--’ REM . Y

 SYL = X Y

 ENDIF

 ENDIF

 ENDPROCEDURE

 END

 Example B:

 * From a program given in The SNOBOL4 Programming Language by ________________________________

 * Griswold, Poage, and Polonsky.

 *

 ...

 READ OUTPUT = INPUT :F(DISPLAY)

 TEXT = OUTPUT

 NEXT TEXT CHAR = :F(READ)

 COUNT<CH> = COUNT<CH> + 1 :(NEXT)

 DISPLAY OUTPUT =

 LOOP LETTERS CHAR = :F(END)

 SNOSTORM 119

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 OUTPUT = NE(COUNT<CH>) CH ’ OCCURS ’ COUNT<CH> ’ TIMES’

 + :(LOOP)

 END

 * Here is the same program, rewritten in SNOSTORM. The horrid

 * use of OUTPUT in the first two statements is also changed.

 *

 ...

 LOOP WHILE TEXT = INPUT

 OUTPUT = TEXT

 LOOP WHILE TEXT CHAR =

 COUNT<CH> = COUNT<CH> + 1

 ENDLOOP

 ENDLOOP

 OUTPUT =

 LOOP WHILE LETTERS CHAR =

 IF NE(COUNT<CH>)

 OUTPUT = CH ’ OCCURS ’ COUNT<CH> ’ TIMES’

 ENDIF

 ENDLOOP

 END

 120 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOSTORM 121

 MTS 9: SNOBOL4 in MTS

 September 1975

 122 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOSTORM 123

 MTS 9: SNOBOL4 in MTS

 September 1975

 124 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOSTORM 125

 MTS 9: SNOBOL4 in MTS

 September 1975

 126 SNOSTORM

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOSTORM 126.1

 MTS 9: SNOBOL4 in MTS

 September 1975

 126.2 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOBOL4 BLOCKS ______________

 INTRODUCTION ____________

 While strong in text analysis, SNOBOL4 has been traditionally weak in

 text composition (formatting, page layout, etc.). This section describes an

 extension to SNOBOL4 which is intended to provide a means of forming and

 manipulating printable output.

 The methods for forming printable output center around a new data type

 called a block. A block is a three-dimensional (height, width, and depth)

 extension to a string (the third dimension, depth, is used for over-

 striking). Blocks may be printed, concatenated in any of three dimensions,

 and merged on the basis of programmer-defined connection points. Some

 blocks adapt in size and shape to their environment.

 The extended version of SNOBOL4 is called SNOBOL4B. It is a fully

 supported, upward-compatible version of SNOBOL4.

 Output is normally produced in SNOBOL4 by printing strings. Any string

 may be printed, and, since a string may be the result of an arbitrarily

 complex computation, any output configuration can be produced. As a

 practical matter, however, the programmer who must specify the formation of

 printable output often prefers to do so in a manner more closely aligned

 with the way he visualizes its construction. For example, it is normally a

 troublesome procedure to place two separately constructed images side by

 side on a printout page, whereas it would be easy and natural to express

 this construct as a concatenation.

 As another example, consider writing a program which accepts a mathemat-

 ical equation in linear form (say a FORTRAN expression) and prints it in

 conventional mathematical notation such that numerators are above denomina-

 tors and exponents are superscripted. This represents a formidable program-

 ming problem when viewed as a sequence of printed lines. But, conceptually,

 the problem is neither intricate nor difficult. It consists of

 (1) parsing the equation into operands and an operator

 (2) obtaining the picture of each operand (by a recursive call)

 (3) juxtaposing the component pictures apropos the operator.

 Such problems can be solved relatively easily in a programming language

 which has data objects that can represent two-dimensional printable images

 and which has operations for directly manipulating these images. To

 correspond to the two-dimensionality of the medium, we extend the notation

 of a one-dimensional string of characters to two dimensions. To allow for

 SNOBOL4 Blocks 127

 MTS 9: SNOBOL4 in MTS

 September 1975

 overstriking, an added dimension of depth is given to our now three-

 dimensional object, which we will call a block.

 DEFINITION __________

 A block is a three-dimensional aggregate of characters in the form of a _____

 right parallelepiped. It has a height H, a width W, and a depth D and it

 contains HxWxD characters (see Figure 1 below). A string is regarded as a

 special case of a block in which the height and depth are 1 and the width is

 the length of the string. The null string (the string of zero length) is

 the one exception. It is regarded as having a height, width, and depth of

 0.

 This definition of a block is overly simplistic in much the same way that

 it is an oversimplification to say that a river is a body of flowing water.

 It will be seen later how a block may have attributes in addition to its

 component characters. These additional properties need not be of concern

 immediately but will be introduced as they become relevant to this

 discussion. A block, whatever it precisely is, is intended to represent a

 parallelepiped of characters.

 PRINTING ________

 If "b" is an expression for a block, then the statement

 PRINT(b)

 will print the block. When a block is printed, a rectangular array of print

 positions is covered whose height is the height of the block and whose width

 is the width of the block. Each print position is struck a number of times

 equal to the depth of the block. The character printed at position "i,j" at

 strike "k" will be the character which appears at the "i,j,k"th position in

 the block. Very often blocks have only a depth of 1. Underlining requires

 a depth of at least 2. The depth of blocks is characteristically small but

 there is no intrinsic limit to the height, width, or depth of a block.

 It should be emphasized at the outset that it was not intended that the

 third dimension of blocks provide a mechanism for representing three-

 dimensional objects in a computer. This is a natural and persistent

 misunderstanding. Rather, a block is primarily intended to represent a

 picture, i.e., a two-dimensional image. The third dimension provides an

 overstrike capability which considerably extends the variety of images which

 can be produced on a two-dimensional surface.

 128 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 Figure 1: A block of height 4, width 5, and depth 2.

 SNOBOL4 Blocks 128.1

 MTS 9: SNOBOL4 in MTS

 September 1975

 128.2 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 CONCATENATION _____________

 Analogous to the concatenation of strings, SNOBOL4B allows the concatena-

 tion of blocks, with the obvious extension that blocks can be concatenated

 in each of three dimensions.

 Vertical concatenation is represented by the binary operator "%". Thus, ________ _____________

 the expression

 b¹ % b²

 where b¹ and b² are any block expressions, places block b¹ above block b².
 If the horizontal and/or normal dimensions of the two blocks disagree, the

 joining takes place through the centers. For example,

 Q = ’300’ % ’-------’ % ’Z + 2’

 will assign to Q a block of height 3, width 7, and depth 1. If Q is then

 printed as

 PRINT(Q)

 the characters

 300

 Z + 2

 will appear on the output page.

 String concatenation is represented in SNOBOL4 by simply a blank binary

 operator. By extension, horizontal concatenation is denoted by an expres- __________ _____________

 sion of the form

 b¹ <blanks> b²

 where b¹ and b² are any block expressions and where <blanks> is one or more
 blanks. Thus, if Q is the quotient as defined above, then

 PRINT(’X = ’ Q)

 will print

 300

 X = -------

 Z + 2

 Normal concatenation (normal to the plane of the paper) is represented by ______ _____________

 the binary operator "#". Thus

 b¹ # b²

 SNOBOL4 Blocks 129

 MTS 9: SNOBOL4 in MTS

 September 1975

 will place block b¹ in front of block b². As an example,

 PRINT((’THIS’ # ’____’) ’IS UNDERLINED’)

 will print

 130 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 THIS IS UNDERLINED ____

 on the output page.

 Of the three concatenations, the operator with the highest precedence is

 <blanks>, followed by "%", followed by "#". Thus

 A B % C # D E % F

 is equivalent to

 ((A B) % C) # ((D E) % F)

 Within the SNOBOL4 hierarchy of precedence operators, all three are higher

 than alternation "|" but lower than the arithmetics operators.

 Notes on concatenation:

 (1) The null string is ignored in concatenation.

 (2) If blocks of unequal size are concatenated, a fill character is used ____ _________

 to pad out the block to a full parallelepiped. The fill character

 is by default blank. It can be modified by the programmer if

 desired (see the subsequent section describing the &FILL keyword).

 (3) In some cases the centers of concatenated blocks cannot be aligned

 exactly. For example

 ’X’ % ’YZ’

 cannot be a block in which the center of X is directly over the

 separation between the Y and Z. In such cases, the alignment will

 be off by 1/2 character. The algorithm used is as follows. The

 overall size of the resultant block of a concatenation is computed.

 If the difference between a component’s size and the overall size is

 even, then the component can be centered exactly. If this dif-

 ference is odd, the center is found and the component is placed one

 character closer to the left, the top, or the front, as appropriate.

 (4) Integers and real (floating-point) numbers are automatically con-

 verted to string when they appear in a context which expects a

 block.

 VACUOUS BLOCKS ______________

 The function reference

 VER(n)

 SNOBOL4 Blocks 131

 MTS 9: SNOBOL4 in MTS

 September 1975

 where "n" is any integer expression, will return a block of fill characters

 (blanks by default) whose height is "n" but whose width and depth are zero.

 A vertical line such as this is useful for specifying vertical separation

 between blocks. It can also serve as a convenient line skipper. For

 example

 PRINT(VER(20))

 will skip 20 lines on the output page.

 The function reference

 HOR(n)

 will return a block of fill characters whose width is "n" but whose height

 and depth are zero. For example

 PRINT(HOR(10) ’THIS IS INDENTED’)

 will print

 THIS IS INDENTED

 on the output page where 10 blanks precede the first character of ’THIS’.

 The function reference

 FRONT(h,w)

 where "h" and "w" are integer expressions, will return a block of fill

 characters of height "h", of width "w", and of depth 0. For example,

 PRINT(FRONT(60,130) # B)

 will center block B in the middle of a 60 by 130 area which is roughly the

 size of a computer printout page.

 The function reference

 BOX(h,w,d)

 will return a block of fill characters of height "h", of width "w", and of

 depth "d". The arguments to BOX should be non-negative integers. If one or

 more of the arguments to BOX is negative, the program will terminate in

 error.

 The functions HOR, VER and FRONT are actually special cases of calls to

 BOX. Thus, HOR(n) is actually BOX(0,n,0). Using the function BOX, one may

 obtain the two planes and one line having different orientation than HOR,

 VER, and FRONT.

 132 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 REGISTRATION ____________

 When blocks of unequal size are joined together, it is sometimes

 desirable to align, not the centers of the blocks, but one of the edges.

 For example, in printing a column of figures with a heading, we may want the

 heading centered above the data but the data itself aligned on the right in

 the case of integers and on the left in the case of strings. Such a column

 is given below

 COLUMN OF

 ARBITRARY DATA

 13

 216

 2

 412

 66

 300

 In the case of the data above, the horizontal registration is on the __________ ____________

 right.

 If a block "b" consists of a sequence of blocks joined vertically, or

 normally, then execution of the statement

 HOR_REG(b) = ’RIGHT’

 will cause alignment on the right. For example, the data above may appear

 on the input stream as

 13

 216

 2

 412

 66

 300

 end-of-file

 The following program will read in this data and print it aligned on the

 right (assume COL is initially null):

 L COL = COL % TRIM(INPUT) :S(L)

 HOR_REG(COL) = ’RIGHT’

 PRINT(’COLUMN OF’ % ’ARBITRARY DATA’ % VER(1) % COL)

 In this program the first statement reads in the sequence of integers and

 joins them vertically. The statement is repeated until the end-of-file is

 encountered. Control then passes to the second statement, which sets the

 horizontal registration to the right. Note that all of the blocks that have

 been joined together so far are aligned on the right. The third statement

 appends the title to the blocks. The primitive function VER is called with

 SNOBOL4 Blocks 133

 MTS 9: SNOBOL4 in MTS

 September 1975

 an argument of 1 so that 1 line will be skipped between the title and the

 data.

 Other statements can set the vertical registration or the normal

 registration of a block and the effect is similar to that of setting the

 horizontal registration. The following is a complete list of registration-

 setting statements.

 HOR_REG(b) = ’RIGHT’

 HOR_REG(b) = ’LEFT’

 HOR_REG(b) = ’’

 VER_REG(b) = ’TOP’

 VER_REG(b) = ’BOTTOM’

 VER_REG(b) = ’’

 NORM_REG(b) = ’FRONT’

 NORM_REG(b) = ’REAR’

 NORM_REG(b) = ’’

 Setting a registration to the null string indicates in an explicit way

 that the registration is to be centered. This is used to indicate that the

 blocks thus far joined together should be taken as a group in forming

 further joins. For example, if

 B = ’A’ % ’BCD’

 B = B % ’E’

 HOR_REG(B) = ’’

 then B has the value

 A

 BCD

 E

 Continuing, if

 B = B % FGHIJKL’

 HOR_REG(B) = ’LEFT’

 then B has the value

 A

 BCD

 E

 FGHIJKL

 If the first setting of the horizontal registration were not executed, then

 the last setting would have aligned the ’A’ and the ’E’ to the extreme left.

 It is possible to set the registrations of the same block in two

 directions. For example:

 134 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 B = FRONT(60,120) # ’*’

 HOR_REG(B) = ’RIGHT’

 VER_REG(B) = ’BOTTOM’

 places the asterisk in the lower right of the indicated field.

 If the argument to the registration-setting statements is not a block (or

 if it will not automatically be converted to an integer or real block), then

 the statement causes the program to terminate in error. If the argument to

 the registration-setting statement is a non-settable block (VER(3), a

 string, etc.), then the statement fails.

 BLOCK ORGANIZATIONS ___________________

 A block that is not a string is a block structure. A block structure can

 be organized in one of several ways. A block formed by vertical concatena-

 tion has vertical organization. A block formed by horizontal concatenation ________ ____________

 has horizontal organization, and a block formed by concatenation in the __________ ____________

 normal direction has normal organization. These three types of organiza- ______ ____________

 tions, as a group, are called contiguous organizations. By contrast, blocks __________ _____________

 returned by the functions VER, HOR, FRONT, and BOX have what is called

 physical organization. ________ ____________

 Any block organized contiguously contains a sequence of two or more

 pointers to other blocks. These other blocks are called its daughters. It _________

 is this set of blocks, i.e., the daughters, which is aligned when the

 registration of a block is specified. The contiguous block is the mother of ______

 these daughters.

 The block

 ’C’ % VER(2) % ’A+B’

 is organized vertically and has three daughters; the three daughters being

 the three operands shown. The statement

 C = ’A’ (’C’ % VER(2) % ’A+B’) ’’

 assigns to C a block, organized horizontally, with two daughters (the null

 string is ignored in concatenation). One of these daughters is a block,

 organized vertically, with three daughters.

 If a block, organized contiguously in a certain direction, is concate-

 nated in that direction, then the daughters of this block are incorporated

 as daughters of the resultant block. Thus, continuing from above, after

 executing

 D = ’B’ C HOR(7)

 SNOBOL4 Blocks 135

 MTS 9: SNOBOL4 in MTS

 September 1975

 D is a block, organized horizontally, with four daughters. For this reason,

 each concatenation operator is associative. Hence

 B1 % B2 % B3

 B1 % (B2 % B3)

 (B1 % B2) % B3

 are equivalent, i.e., the resultant blocks have the same daughters in the

 same sequence.

 A block organized contiguously is said to be set if the registration of ___

 the block has been set (by one of the 9 statements indicated in the previous

 section). Consider the application of a concatenation operator to an

 operand to produce a mother block. Normally, an operand becomes a daughter

 of the resulting mother. However, if the operand is organized in the same

 way as the mother, and if the operand has not been set, then the daughters

 of the operand (and not the operand itself) become daughters of the

 resulting mother. Two examples of this daughter-formation process are shown

 in Figures 2 and 3 below.

 136 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌────────────────────────────────┐
 | |

 | ’A’ # (’C’ % VER(2) % ’A + B’) |

 | |

 └────────────────────────────────┘
 |

 |

 |

 |

 |

 |

 |

 ┌──┐
 | |

 | ┌─────┐ |
 | | (#) | |

 | └─────┘ |
 | | |

 | | |

 | | |

 | ┌─────────────────────────| | ┘
 | | | |

 | | | |

 | | | |

 | ┌─────┐ ┌─────┐ |
 | | ’A’ | | (%) | |

 | └─────┘ └─────┘ |
 | | |

 | ┌────────────┼───────────┐ |
 | | | | |

 | ┌─────┐ ┌────────┐ ┌─────────┐ |
 | | ’C’ | | VER(2) | | ’A + B’ | |

 | └─────┘ └────────┘ └─────────┘ |
 └──┘

 Figure 2: The tree structure resulting from the evaluation of the expression

 shown.

 SNOBOL4 Blocks 137

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌───────────────────────┐
 | B = ’A’ % ’AA’ |

 | B = B % ’AAA’ |

 | HOR_REG(B) = ’LEFT’ |

 | B = B % ’AAAA’ |

 └───────────────────────┘
 |

 |

 |

 |

 |

 |

 |

 ┌──┐
 | |

 | ┌─────┐ |
 | | (%) | |

 | └─────┘ |
 | | |

 | | |

 | | |

 | ┌────────────────────────┐ | ┘
 | | | |

 | | | |

 | | | |

 | ┌─────┐ ┌────────┐ |
 | | (%) | | ’AAAA’ | |

 | └─────┘ └────────┘ |
 | | |

 | ┌────────────┼────────────┐ |
 | | | | |

 | ┌─────┐ ┌──────┐ ┌───────┐ |
 | | ’A’ | | ’AA’ | | ’AAA’ | |

 | └─────┘ └──────┘ └───────┘ |
 └──┘

 Figure 3: The organizational structure of B after executing the statements

 shown.

 FIXING A BLOCK ______________

 Prior to printing a block, characters are moved, strings are concate-

 nated, and blanks are added at appropriate places in order to develop

 completely the various parts of the block. This development of a physical

 counterpart to a given block can be done, without actually printing the

 block, by a call to the function FIX.

 The function reference

 138 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 FIX(b)

 where "b" is any block expression, will return a block whose organization is

 physical. A physical block has no daughters and therefore contains no ________

 information as to how the block was formed. Thus,

 FIX(’AB’ % ’CD’)

 and

 FIX((’A’ % ’C’) (’B’ % ’D’))

 are indistinguishable. FIX can be used to increase efficiency by insuring

 that a block is built into a physical object just once even though it may be

 used several times. For example, in the following:

 B = FIX(B)

 A = B HOR(20) B

 the block B is fixed prior to joining because otherwise it would be built

 into a physical object twice.

 ADAPTIVE BLOCKS _______________

 An adaptive block is a block whose exact character configuration is

 dependent upon its environment, i.e., the set of neighboring blocks joined

 together with the adaptive block to form a larger block. There are two

 kinds of adaptive blocks, iterated and replicated.

 Iterated Blocks _______________

 The function reference

 IT(b)

 where "b" is any expression for a block, returns a block whose organization

 is iterated; it has one daughter, i.e., the block "b". An iterated block ________

 will iterate its daughter a number of times in a direction orthogonal to the

 organization of its mother. The number of iterations will depend on and be

 limited by the size of the mother in the orthogonal directions. Several

 examples, shown in Figures 4 through 12, are intended to illustrate and

 clarify this definition.

 SNOBOL4 Blocks 139

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──────────────────────────────────┐
 | A = ’A’ |

 | C1 = A % A % A |

 | POLE = IT(’|’) |

 | C = POLE C1 POLE |

 | PRINT(C) |

 └──────────────────────────────────┘

 |A|

 |A|

 |A|

 Figure 4: The program in the box produces the output shown below the box.

 Here, C is the mother of 3 daughters, two of which are POLE, an

 iterated block. POLE iterates its daughter vertically 3 times to

 equal the size of C.

 ┌──────────────────────────────────────┐
 | B = ’B’ |

 | C2 = B % B % B % B % B |

 | C = C C2 POLE |

 | PRINT(C) |

 └──────────────────────────────────────┘

 | |B|

 |A|B|

 |A|B|

 |A|B|

 | |B|

 Figure 5: ...continuing from the previous figure. Two more daughters are

 joined to the mother C. The column C2 has a height of 5, giving a

 height of 5 to C. Each iterated block of C adapts to this height

 by iterating its daughter 5 times.

 140 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──────────────────────────────────┐
 | VER_REG(C) = ’TOP’ |

 | PRINT(C) |

 └──────────────────────────────────┘

 |A|B|

 |A|B|

 |A|B|

 | |B|

 | |B|

 Figure 6: ...continuing from the previous figure. The registration of a

 block having iterated daughters can be set as this figure

 illustrates.

 ┌───┐
 | POLE = IT(’ || ’) |

 | C = POLE C1 POLE C2 POLE |

 | PRINT(C) |

 └───┘

 || || B ||

 || A || B ||

 || A || B ||

 || A || B ||

 || || B ||

 Figure 7: ...continuing. The daughter of an iterated block need not be a

 single character as this example shows.

 ┌──┐
 | H = ’COLUMN OF’ % ’ARBITRARY DATA’ # IT(’_’) |

 | PRINT(H) |

 └──┘

 COLUMN OF ______________

 ARBITRARY DATA ______________

 Figure 8: In this example, the iteration takes place in two dimensions.

 Since the mother of the iterated block is organized normally, the

 iteration takes place vertically (twice) and horizontally (14

 times).

 SNOBOL4 Blocks 141

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──┐
 | U = IT(’_’) |

 | PRINT((’COLUMN OF’ # U) % (’ARBITRARY DATA’ #U)) |

 └──┘

 COLUMN OF _________

 ARBITRARY DATA ______________

 Figure 9: This figure demonstrates how the lines of a heading may be

 underlined separately.

 ┌───┐
 | E = IT(’*’) |

 | PRINT(E % E ’ ENCLOSED ’ E % E) |

 └───┘

 * ENCLOSED *

 Figure 10: A block may easily be surrounded by asterisks using an iterated

 block, as this example shows.

 ┌───┐
 | E = IT(’ *’ % ’* ’) |

 | B = ’DOUBLY’ % ’ ENCLOSED ’ |

 | PRINT(E % E B E % E) |

 └───┘

 * * * * * * *

 * * * * * * *

 * DOUBLY *

 * ENCLOSED *

 * * * * * * *

 * * * * * * *

 Figure 11: The example shown here illustrates that blocks other than strings

 may be iterated.

 142 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌───┐
 | POLES = IT(HOR(5) % ’|’) |

 | BARS = IT(VER(5) ’-’) |

 | PRINT(FRONT(20,55) # POLES # BARS) |

 └───┘

 | | | | | | | | | | |

 | | | | | | | | | | |

 ──┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼──
 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 ──┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼──
 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 ──┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼──
 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 | | | | | | | | | | |

 ──┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼──
 | | | | | | | | | | |

 | | | | | | | | | | |

 Figure 12: This example shows how a grid can be formed relatively easily.

 Notes on iterated blocks:

 (1) If an integral number of iterations does not completely fill the

 area in which the iterated block is to lie, then the block is placed

 within the aggregate just as any block is placed; that is, its

 alignment is subject to any registration commands placed upon the

 mother.

 (2) An iterated block will always occupy a fixed amount of space in a

 direction colinear with the direction in which its parent is joined,

 even if there are zero iterations of the block.

 (3) FIXing a block in which an iterated block is embedded sets the

 number of iterations of that block. Further joining will not affect

 the number of iterations.

 (4) IT(IT(b)) is equivalent to IT(b).

 SNOBOL4 Blocks 143

 MTS 9: SNOBOL4 in MTS

 September 1975

 Replicated Blocks _________________

 The function reference

 REP(b)

 where "b" is any expression denoting a block, returns a block whose

 organization is replicated. Like the iterated block, the replicated block __________

 adapts to its environment and consists of zero or more duplications of its

 daughter. A replicated block differs from an iterated block in that it

 causes a replication of its daughter in the direction of the joining of its

 mother, rather than in a direction orthogonal to the joining of its mother.

 The overall size of the mother, that is, the replicated block, is determined

 and limited by the size of the grandmother, i.e., the mother’s mother.

 These last two statements assume that both mother and grandmother are

 contiguous and have different types of organization. Consideration of the

 general case is deferred to the section on surrogates.

 Figures 13 through 19 illustrate the workings of replicated blocks and

 suggest some applications.

 ┌───┐
 | LINE1 = ’INTRODUCTION’ REP(’.’) 1 |

 | LINE2 = ’DEFINITIONS’ REP(’.’) 12 |

 | PAGE = HOR(40) % LINE1 % LINE2 |

 | PRINT(PAGE) |

 └───┘

 INTRODUCTION...........................1

 DEFINITIONS...........................12

 Figure 13: In the above example, LINE1 and LINE2 each have one replicated

 daughter. These expand in the direction of joining (horizontal-

 ly) until the sizes of LINE1 and LINE2 are equal to the

 horizontal dimension of their mother, PAGE. The width of PAGE is

 40 and there are 40 characters from the ’I’ of ’INTRODUCTION’ to

 the 1 inclusive.

 144 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌───┐
 | PAGE = ’CONTENTS OF’ % VER(1) % PAGE |

 | PRINT(PAGE) |

 └───┘

 CONTENTS OF

 INTRODUCTION...........................1

 DEFINITIONS...........................12

 Figure 14: ...continuing. PAGE is a block and can be joined with other

 blocks as this example suggests.

 ┌───────────────────────────────────────┐
 | A = ’A’ |

 | B = ’B’ |

 | C1 = A % A % A |

 | C2 = B % B % B % B % B |

 | C3 = A % B % A % B |

 | SP = REP(’ ’) |

 | C = C1 SP C2 SP C3 |

 | PRINT(HOR(20) % C) |

 └───────────────────────────────────────┘

 B A

 A B B

 A B A

 A B B

 B

 Figure 15: In this example, two replicated blocks SP are daughters of the

 same contiguous block C. These daughters expand equally (or as

 nearly equally as possible) in a horizontal direction until C is

 equal to the width (20) of its mother.

 SNOBOL4 Blocks 145

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──────────────────────────────────┐
 | VER_REG(C) = ’TOP’ |

 | PRINT(HOR(10) % C) |

 └──────────────────────────────────┘

 A B A

 A B B

 A B A

 B B

 B

 Figure 16: ...continuing. This figure illustrates that the registration of

 a block containing replicated blocks may be set, and also

 illustrates how the overall size of a block may be reset.

 ┌──┐
 | DEFINE(’OUTLINE(B,DH,DW)’) |

 | :(OUTLINE_END) |

 | OUTLINE |

 | B = VER(DH) % HOR(DW) B HOR(DW) % VER(DH) |

 | B = ’┌’ REP(’-’) ’┐’ % IT(’|’) B IT(’|’) % ’└’ REP(’-’) ’┘’ |
 | OUTLINE = FIX(B) |

 | :(RETURN) |

 | OUTLINE_END |

 | PRINT(OUTLINE(’ABC’,1,2)) |

 └──┘

 ┌───────┐
 | |

 | ABC |

 | |

 └───────┘

 Figure 17: Given the special corner characters (┐┘┌└) available on the TN
 print train, it is relatively easy to surround textual matter

 with boxes. A function which OUTLINEs any given block is defined

 above. It has 3 arguments, a block B to be outlined, the

 vertical separation DH between the sides of the box and the

 block, and the horizontal separation DW. The first executable

 statement of the function adds on the white border. After this,

 two iterated blocks are used to form the sides of the box. The

 top and bottom are formed by means of replicated blocks. The

 block is fixed to keep the replicated blocks from expanding any

 further as they might if the block were thereafter joined

 vertically.

 146 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌───┐
 | PRINT(OUTLINE(OUTLINE(’ABC’,1,2),,1)) |

 └───┘

 ┌───────────┐
 | ┌───────┐ |
 | | | |

 | | ABC | |

 | | | |

 | └───────┘ |
 └───────────┘

 Figure 18: The function OUTLINE, defined in Figure 17, can outline any

 block, even an OUTLINEd one, as this figure illustrates.

 ┌────────────────────────────────────┐
 | SP = REP(’ ’) |

 | S1 = ’A’ SP |

 | S2 = ’AARDVARK’ SP |

 | S3 = ’ABC’ SP |

 | PRINT(S1 % S2 % S3) |

 └────────────────────────────────────┘

 A

 AARDVARK

 ABC

 Figure 19: Appending a replication of blanks to a string as shown above has

 the effect of setting its horizontal registration to the left.

 This is less efficient than the registration setting statements.

 It is sometimes more convenient, however, to attach registration

 to the daughter rather than to the mother. This is especially

 true when not all daughters have the same registration.

 Notes on replicated blocks:

 (1) Replications of iterations and iterations of replications are

 permitted. In fact,

 REP(IT(b))

 is identical to

 IT(REP(b))

 (2) REP(REP(b)) is equivalent to REP(b).

 SNOBOL4 Blocks 147

 MTS 9: SNOBOL4 in MTS

 September 1975

 DEFERRED BLOCKS _______________

 The function reference

 DEF(name)

 where "name" is the name of a variable (the name of the variable V is the

 string ’V’), will return a block whose organization is said to be deferred. ________

 When this block or any block containing this block is printed, the

 variable’s value is printed. Examples are shown in Figures 20 and 21.

 ┌──┐
 | B1 = ’---’ % DEF(’B2’) % ’---’ |

 | B2 = ’*’ % ’*’ |

 | PRINT(B1) |

 └──┘

 *

 *

 Figure 20: In this example, the deferred block is a daughter of block B1.

 The variable in question is B2 (whose name is the string ’B2’).

 The value that B2 has at the time of printing is embedded in the

 printed image.

 ┌──┐
 | LOOP N = LT(N,5) N + 1 :F(DONE) |

 | TEST = TEST % ’PAGE NO.’ N ’ OF ’ DEF(’N’) |

 | :(LOOP) |

 | DONE PRINT(TEST) |

 └──┘

 PAGE NO. 1 OF 5

 PAGE NO. 2 OF 5

 PAGE NO. 3 OF 5

 PAGE NO. 4 OF 5

 PAGE NO. 5 OF 5

 Figure 21: In this example, control passes through the loop 5 times. Each

 time through, a new line is appended onto the growing block. The

 new line contains, in addition to some constant characters, the

 current value of N and the deferred value, i.e., the value that N

 will have when the PRINT is executed.

 148 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 Notes on deferred blocks:

 (1) A deferred block is evaluated when the block in which it is

 contained is either PRINTed or FIXed.

 (2) The effect of a deferred block is the same as if the deferred value

 had been originally used in place of the deferred block. If the

 deferred value is adaptive, then the block will adapt to whatever

 environment it finds at PRINTing or FIXing time.

 NODES AND MERGERS _________________

 Although the operations of concatenation and registration and the

 adaptive and deferred blocks offer powerful tools for forming and manipulat-

 ing printable output, there are yet a number of structures which escape a

 straightforward specification. Consider, for example, the block diagram

 shown in Figure 22. It is a relatively simple matter to construct the top,

 the bottom, or the sides of the diagram using concatenation alone. For

 example, if N1 is the block labeled N1, and N2 is the block labeled N2, then

 the upper part of the diagram can be specified as a horizontal concatenation

 of the form

 N1 ’----------’ N2

 However, it is not easy, by concatenation, to put together these four sides

 to form the indicated diagram. This is done by a process called merging.

 Merging blocks requires a means of specifying the subsections that are

 forced to coincide in the resulting block. These subsections form a kind of

 block called a node.

 If "b" is any expression for a block, then

 NODE(b)

 will return a block whose organization is node. It has one daughter, i.e., ____

 its argument. Its size, shape, characters, and degree of adaptability are

 the same as its daughter. It differs from its daughter only in that it has

 a property of individuality, i.e., it is a node, which its daughter

 presumably does not have.

 Two blocks containing the same node N can be merged so that the block N

 appears in the same position in the resulting block. For example,

 N = NODE(’O’)

 CROSS = ’CR’ N ’SS’

 WORD = ’W’ % N % ’R’ % ’D’

 PRINT(MERGE(CROSS,WORD))

 will print

 SNOBOL4 Blocks 149

 MTS 9: SNOBOL4 in MTS

 September 1975

 W

 CROSS

 R

 D

 on the output page. Here the one node serves to bind the 2 blocks together

 at the O.

 The value returned by MERGE is a block and can be used in any context

 that permits blocks, e.g., concatenation, iteration, etc. In general,

 MERGE(b¹,b²,...)

 where b¹,b²,... are block expressions, will return a block whose organiza-
 tion is merged (the block itself is sometimes referred to as a merger). The ______

 merging takes place in such a way that identical nodes are made to coincide.

 The resulting block, when formed physically, will be a parallelepiped just

 large enough to encompass all of the daughter blocks. There is no intrinsic

 limit to the number of arguments, or the number of nodes per argument.

 We are almost, but not quite, ready to specify the construction of Figure

 22. If we were to specify each side of the diagram rigidly and exactly,

 then we would have the responsibility of ensuring that the horizontal

 distances between nodes on the top of the diagram correspond in a precise

 way to the horizontal distance between nodes on the bottom of the diagram.

 A similar sort of difficulty would exist at the sides as well. To avoid

 this problem, it would be desirable to have an adaptive block which could

 automatically adjust to the spacing between nodes. This role is performed

 by the replicated block.

 It was mentioned in the section on replicated blocks that the number of

 replications is determined by the grandmother. This is true even if the

 grandmother is formed by a merger. However, if this is the case, the size

 of the replicated block is determined, not by the overall size of the

 grandmother, but by node spacing of other daughters in the merger that

 formed the grandmother. This adaptability is used to advantage in con-

 structing Figure 22. For example, the horizontal spacing between N3 and N4

 is not specified explicitly but simply given as a replication of hyphens

 (REP(’─’)). The actual resulting distance is deduced by the merging process
 on the basis of horizontal node information contributed by the three other

 daughters of the merger.

 150 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 ┌──┐
 | N1 = NODE(OUTLINE(’N1’,2,4)) |

 | N2 = NODE(OUTLINE(’N2’,1,2)) |

 | N3 = NODE(OUTLINE(’N3’,3,1)) |

 | N4 = NODE(OUTLINE(’N4’,2,8)) |

 | VERT = ’|’ % ’|’ % ’|’ |

 | B = MERGE(N1 ’───────────’ N2, N1 % VERT % N3, |
 | + N2 % REP(’|’) % N4, N3 REP(’-’) N4) |

 | PRINT(B) |

 └──┘

 ┌──────────┐
 | | ┌──────┐
 | | | |

 | N1 |───────────| N2 |
 | | | |

 | | └──────┘
 └──────────┘ |
 | |

 | |

 | |

 ┌────┐ |
 | | ┌──────────────────┐
 | | | |

 | | | |

 | N3 |────────| N4 |
 | | | |

 | | | |

 | | └──────────────────┘
 └────┘

 Figure 22: The formation of the block diagram shown is done by merging

 together 4 contiguous blocks. Nodes N1, N2, N3, and N4 are

 obtained by calls to the function OUTLINE (defined in Figure 17).

 These nodes serve to link the diagram together. The replicated

 blocks adapt to the space available between nodes.

 Notes on merging:

 (1) The function MERGE is associative and forms daughters in a manner

 analogous to the daughter formation process of contiguous blocks.

 Thus

 B = MERGE(B1,B2)

 B = MERGE(B,B3)

 will (assuming B1,B2 and B3 are not themselves mergers) assign to B

 a merger having 3 daughters, B1, B2, and B3.

 SNOBOL4 Blocks 151

 MTS 9: SNOBOL4 in MTS

 September 1975

 (2) Physical merging is deferred until the block is PRINTed or FIXed.

 For this reason intermediate merged blocks need not be well defined.

 If contradictory information is provided, some of the information is

 simply ignored.

 (3) A node may be embedded within a block to an arbitrary depth and it

 will still be effective for the purpose of merging.

 (4) If the information needed to bind nodes together is incomplete, a

 warning will be issued and a guess made.

 (5) The arguments to MERGE cannot have iterated or replicated

 organizations.

 (6) If a daughter of a contiguous block is a replicated block, then the

 contiguous block is not self-defined: it will adjust to its

 environment. By contrast, a merger is always self-defined.

 (7) The physical merger of several blocks is a two-step process. On the

 first pass the overall size of the resulting block is determined as

 well as the position of every node in the block. An aggregate of

 blanks of the proper size is created. Then, in left-to-right

 sequence, each daughter is called on to embellish the growing image.

 (8) If two daughters of a merger insert a character in the same

 location, the first insertion will be overwritten by the second

 unless the second happens to be the fill character (usually blank).

 For example, if block C has the characters

 CCCCCCCCC

 C C

 C N C

 C C

 CCCCCCCCC

 where ’N’ is node N and if B is

 BBBBB

 B B

 B B

 B B

 BBBBB

 then MERGE(C, N % B) will result in

 CCCCCCCCC

 C C

 C N C

 C BBBBB C

 CCBCCCBCC

 B B

 B B

 BBBBB

 152 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 (9) A replicated block will expand to fill the space between two blocks

 within a block diagram even if these blocks are not in the order

 indicated. For example, let D be a diagram containing nodes N1 and

 N2. Then,

 MERGE(D, N1 % REP(’|’) % N2)

 will draw a vertical line between N1 and N2 even if N2 is above N1. _____

 The only provision, of course, is that they be aligned vertically.

 If N1 and N2 are on the same plane, then a line of asterisks can be

 drawn from one to the other as follows:

 PIN = NODE(’*’)

 R = REP(’*’)

 D = MERGE(D, N1 R PIN, PIN % R % N2)

 Notes on nodes:

 (1) Each call to the NODE function returns a unique block. This block

 can be passed from variable to variable. Thus, if the statements

 below were executed

 N1 = NODE(B)

 N2 = N1

 then N1 and N2 would be identical. The above differs from

 N1 = NODE(B)

 N2 = NODE(B)

 in which N1 and N2 have different but equivalent nodes as value.

 (2) If two blocks containing the same node are concatenated, the

 location of the node in the resulting block is undefined.

 (3) An iterated or a replicated block contains no nodes even though the

 argument may.

 (4) A node may have an iterated or replicated block as an argument.

 Thus,

 N = NODE(IT(b))

 is possible. The iteration is done once per merger even though this

 node may appear in several contexts within the merger.

 (5) FIXing blocks with node information - FIXing a block "b" such as ___________________________________

 FIX(b)

 where "b" has nodes embedded in it, will return a physical block in

 which information concerning the location of all of its nodes is

 retained. The returned block can then be merged with other blocks

 SNOBOL4 Blocks 153

 MTS 9: SNOBOL4 in MTS

 September 1975

 on the basis of its node’s positions. For reasons of storage

 efficiency, it may be desired to remove this node information; this

 can be done by giving a second argument to FIX equal to 1. Thus,

 FIX(B,1)

 will strip all node information from B.

 Finally, it is possible to selectively retain some node information.

 This can be done by a call of the form

 FIX(B,n¹,n²,...)

 where n¹,n²,... are nodes. Here information pertaining to the
 location of nodes n¹,n²,... is retained, whereas all other node
 information is removed.

 THE &FILL KEYWORD _________________

 When blocks of unequal size are concatenated or when blocks are merged,

 the void areas are filled by a fill character. The fill character is

 specified by the keyword &FILL which is initially blank but which may be

 tested and set by the programmer. For example, the programmer may change

 the fill character to a period by executing the statement

 &FILL = ’.’

 Such a specification may be made for the purpose of debugging where it is

 desired to distinguish between the white of the paper and the fill character

 of a block.

 SURROGATES __________

 The assumption made in the section on adaptive blocks was that the mother

 of an iterated block was contiguous and it controlled the size of the

 iterated block. It was also assumed that the mother and grandmother of a

 replicated block were contiguous, with the grandmother controlling the size

 and the mother controlling the direction of duplication of the replicated

 block. In the section on mergers, it was seen that the grandmother of a

 replicated block could also be a merged block, but there also it was assumed

 that the mother was contiguous. It is, however, not necessary that the

 mothers of iterated and replicated blocks be contiguous for these to adapt

 appropriately to ancestral blocks. In this section we will define the cases

 that are allowed and attempt to describe the adaptive procedures when the

 more general cases occur.

 154 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 By the nature of the daughter formation process, only contiguous blocks

 can have 2 or more daughters. We will refer to these blocks as a group as

 multi-daughtered blocks. The iterated, replicated, and node blocks are, by ________________ ______

 contrast, uni-daughtered. The surrogate of a block is defined as the ______________ _________

 nearest multi-daughtered ancestor. It is, in general, the surrogate of an

 iterated block that will control the number of iterations. The grandsurrog- ____________

 ate is defined as the surrogates’s surrogate. It is the grandsurrogate that ___

 will control the number of replications and the surrogate that will control

 the direction of replications for a replicated block.

 For example, to draw a vertical line down the right-hand side of a block

 B, 3 characters in from the right-hand edge, the following statement can be

 executed:

 B = B # IT(REP(’ ’) ’|’ HOR(3))

 In the above line, the surrogate of the replicated block is the 3-daughtered

 contiguous block used as an argument to the IT function. Its grandsurrogate

 is the block formed by the concatenation in the normal direction. Hence,

 the number of replications is governed by the width of B, whereas the

 direction of replication is controlled by the horizontally organized block.

 The surrogate for the iterated block is the normally concatenated block.

 The number of iterations in the vertical direction is dictated by the height

 of B. The number of iterations in the horizontal direction will be 1. This

 is guaranteed by the adaptive behavior of the replicated block.

 As another example, let NUM and DEN be the pictures of the numerator and

 denominator, respectively, of an algebraic expression. Then the following

 merged block Q will represent the picture of the negative of the quotient of

 these two expressions:

 BAR = NODE(IT(’-’))

 Q = MERGE(NUM % BAR % DEN, ’- ’ BAR)

 The above merger will ensure that the minus sign is placed directly to the

 left of the bar. Note that the iteration is carried out just once (the

 leftmost occurrence in the merger) and that the surrogate of the iterated

 block (for this occurrence) is a vertically concatenated block with the 3

 daughters.

 Note on surrogates:

 (1) The grandsurrogate of a replicated block must be organized dif-

 ferently from the surrogate. Thus

 A = B % REP(’ ’) % C

 HOR_REG(A) = ’LEFT’

 A = A % D

 is not permitted.

 SNOBOL4 Blocks 155

 MTS 9: SNOBOL4 in MTS

 September 1975

 SPECIAL BUILT-IN FUNCTIONS __________________________

 EJECT() will eject a page and return the null string.

 DUP(b,dir,n) where

 b = any block

 dir = an integer expression specifying a direction as

 0 - vertical

 1 - horizontal

 2 - normal

 n = an integer expression (non-negative),

 will return a duplication of block "b", in the direction

 "dir", a number of times "n". For example,

 DUP(’|’,0,60)

 returns a vertical line of height 60. If n is 0, then

 BOX(0,0,0) is returned.

 HEIGHT(b) will return an integer equal to the height of block "b".

 WIDTH(b) will return an integer equal to the width of block "b".

 DEPTH(b) will return an integer equal to the depth of block "b".

 BLOCKSIZE(b,dir)

 will return an integer equal to the size of a block "b" in

 the direction "dir".

 Note: Determining the size of a block implies building it. _____

 Therefore, it is usually more efficient to FIX a block before

 determining its size.

 SLAB(b,dir,offset,length)

 where

 b = any block expression

 dir = a direction (as in DUP)

 offset = an integer expression

 length = an integer expression,

 will return a physical block equal to a cross-sectional cut

 of block "b". The cross-section is taken orthogonally to the

 direction "dir". The length of the cross-section (the

 thickness) in this direction is "length" and its offset from

 the start of the block is given by "offset". Thus,

 156 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SLAB(’STRING’,1,2,3)

 will return ’TRI’. If the offset and/or length are such that

 the resultant SLAB would extend beyond the boundaries of the

 original block, then only the intersection with the original

 block is returned. Thus,

 SLAB(’STRING’,1,5,20)

 returns ’NG’.

 CHAR(b) where "b" is any block expression, returns a two-dimensional

 array of strings. Each element of the array corresponds to a

 horizontal sequence of characters in the block "b". The

 array is dimensioned D x H where D is the depth of the block

 and H is the height of the block. The (i,j)th element of the

 array is the string of characters in the ith plane, counting

 from the front, and in the jth plane, counting from the top.

 For example,

 A = CHAR(FRONT(3,3) # ’ABC’)

 returns a 1 x 3 array. The element A<1,2> has the value

 ’ABC’. The elements A<1,1> and A<1,3> have the value ’ ’.

 DATATYPE(e) will return the data type of its argument "e", where "e" is

 any expression. If "e" is an expression for a block (other

 than string), DATATYPE will return the string ’BLOCK’. Thus,

 DATATYPE(’A’ ’B’)

 DATATYPE(’A’ % ’B’)

 return ’STRING’ and ’BLOCK’ respectively.

 LOC(n,b,dir) where "n" is a node, "b" is a block, and "dir" is a direction

 (as in DUP), will return the location of node "n" and block

 "b" in the direction "dir", i.e., the number of characters

 that the node is indented from the top, left, or front.

 Thus,

 N = NODE(’AB’)

 I = LOC(N, ’123’ N , 1)

 will set I equal to 3. Normally, the block should be FIXed

 prior to calling LOC in order to prevent building the block

 more than once. If the node "n" is not in the block "b",

 then the function fails.

 An example, using several of these built-in functions, is described

 below.

 Assume we are to print a block that is potentially larger than a

 printout page, which for the sake of this discussion is 66 x 132 print

 SNOBOL4 Blocks 157

 MTS 9: SNOBOL4 in MTS

 September 1975

 positions. Assume that we would be willing to paste the separate

 printouts together when we were finished. Also assume that block

 heights of greater than 66 do not cause any special problem but block

 widths of greater than 132 do. The following function will print a

 large block.

 DEFINE(’PRINTL(B)N,PW’) :(PRINTL_END)

 PRINTL

 B = FIX(B)

 PW = 132

 N = 1

 PRINTL_1

 GT(N,WIDTH(B)) :S(RETURN)

 EJECT()

 PRINT(SLAB(B,1,N,PW))

 N = N + PW :(PRINTL_1)

 PRINTL_END

 Broadcasting ____________

 Output can be broadcast to destinations other than the printer by an

 extended form of the PRINT function. The statement

 PRINT(b,i¹,i²,...)

 where "b" is a block expression and i¹,i²,... are integer expressions will,
 for each "i", do one of the following:

 (1) if i > 0: print "b" on unit number "i"

 (2) if i = 0 : print "b" on the printer (SPRINT)

 (3) if i < 0 : do nothing

 Similarly, EJECT has an extended form.

 EJECT(i¹,i²,...)

 will broadcast page-eject characters to the indicated unit numbers. As in

 the PRINT function, a negative unit number is ignored; specification of the

 unit number 0 broadcasts page-eject characters to the printer.

 Carriage Control ________________

 When a block is PRINTed, a carriage-control character is normally

 supplied to the printer (when unit 0 is specified) but not to other files.

 Thus, when

 158 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 PRINT(’THIS’ # ’____’, 0, 7)

 is executed, the two strings ’ THIS’ and ’+____’ are normally sent to the

 printer, but the two strings ’THIS’ and ’____’ are sent to unit number 7.

 It can be specified that the carriage-control character be supplied or

 withheld for any given unit number by a statement of the form

 CC(unit) = bit

 where "unit" is some unit number (possibly 0). If bit = 1, the carriage

 control is supplied; if bit = 0, the carriage control is withheld. If the

 unit number is negative, the statement will have no effect. For example,

 CC(10) = 1

 will supply carriage control for unit number 10. As another example,

 CC(N) = 1 - CC(N)

 will change the status of carriage control for unit number N.

 EXAMPLES ________

 The four examples depicted in Figures 23 through 31 illustrate the use of

 blocks in a variety of print-composition situations. Included are a

 table-of-contents generator, a function which returns the perspective view

 of a block, a bar-graph maker, and a function which transforms a FORTRAN

 expression into two-dimensional form. The program comments plus the figure

 captions are designed to fully explain the programs. Printouts depicting

 the result of running the indicated computations are also included.

 SNOBOL4 Blocks 159

 MTS 9: SNOBOL4 in MTS

 September 1975

 160 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOBOL4 Blocks 161

 MTS 9: SNOBOL4 in MTS

 September 1975

 162 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOBOL4 Blocks 163

 MTS 9: SNOBOL4 in MTS

 September 1975

 164 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOBOL4 Blocks 165

 MTS 9: SNOBOL4 in MTS

 September 1975

 166 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 SNOBOL4 Blocks 167

 MTS 9: SNOBOL4 in MTS

 September 1975

 168 SNOBOL4 Blocks

 MTS 9: SNOBOL4 in MTS

 September 1975

 APPENDIX: PUBLIC FILE DESCRIPTIONS ___________________________________

 The following public file descriptions have been extracted from MTS

 Volume 2, Public File Descriptions. Each of these descriptions pertains to ________________________

 the use of SNOBOL4 in MTS.

 Appendix: Public File Descriptions 169

 MTS 9: SNOBOL4 in MTS

 September 1975

 170 Appendix: Public File Descriptions

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *CONVSNOBOL ___________

 Contents: A conversational SNOBOL4 program that reads and executes

 SNOBOL4 statements.

 Use: The file contains commands to run the program. It should be

 invoked by the $SOURCE command, i.e.,

 $SOURCE *CONVSNOBOL

 Program Key: *EXEC

 Logical I/O Units Referenced:

 (Specified on a $RUN command in the file)

 5 - Input for SNOBOL4 initial compilation.

 6 - Output for SNOBOL4 error comments.

 8 - Input of conversational SNOBOL4 statements.

 9 - Output of conversational SNOBOL4 statements.

 Description: The SNOBOL4 program in this file reads SNOBOL4 statements

 from *MSOURCE*. These statements are to be either executed

 immediately or stored away as part of a program. If a

 statement which is entered begins with a number, it is

 compiled and the code stored in the array PROG, using the

 number as a subscript to the array. Otherwise, the statement

 is executed immediately. Any compilation errors detected

 while compiling the statements entered cause the comment

 "COMPILATION ERROR" to be printed. The error message itself

 is not printed unless execution of *CONVSNOBOL is terminated

 (by entering an end-of-file).

 To begin execution of a stored program, an immediate-

 execution unconditional transfer to one of its statements

 should be entered.

 Fatal errors detected during the execution of an immediate-

 execution statement or during the execution of a stored

 program cause execution of *CONVSNOBOL to be terminated with

 the appropriate error comment and a string dump to be

 produced (if one was requested).

 Example Session: (User input is in lower-case)

 $source *convsnobol

 $RUN *SNOBOL4 5=*SOURCE* 6=*MSINK* 8=*MSOURCE*@UC 9=*MSINK*

 EXECUTION BEGINS

 .

 .

 .

 ENTER SNOBOL STATEMENTS

 *CONVSNOBOL 171

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 output = "hello"

 HELLO

 $endfile

 NORMAL TERMINATION AT LEVEL 0

 •

 •

 •

 172 *CONVSNOBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SNOBOL4 ________

 Contents: The object module of version 3 of the SNOBOL4 interpreter

 (without BLOCKS).

 Purpose: To interpret SNOBOL4 source programs.

 Use: The program is invoked by the $RUN command.

 Program Key: *SNOBOL4

 Logical I/O Units Referenced:

 5 - source for the SNOBOL4 program to be translated,

 immediately followed by data read via the default

 "INPUT" string.

 6 - Output from compilation of the SNOBOL4 program and

 output via the default "OUTPUT" string.

 7 - Output via the default "PUNCH" string.

 Parameters: The following parameters may be specified in the PAR field of

 the $RUN command. The parameters must be separated by a

 comma.

 DUMP - causes a SNOBOL4 string dump only if a fatal

 error occurs during execution.

 XREF - causes a cross-reference dictionary of the source

 program to be printed after compilation.

 NOEX - prevents execution of a SNOBOL4 program if any

 compilation errors are present.

 SIZE=xxxx - specifies the amount of storage to be used for

 the compiled SNOBOL4 program and its variables

 (the SNOBOL4 interpreter itself uses about 40

 pages). "xxxx" may be any number specifying the

 number of pages to be reserved or the word MIN

 may be used to specify that 10 pages be reserved.

 If no SIZE parameter is present, the default

 value is 30 pages.

 Description: The language accepted by *SNOBOL4 is described in the

 publication The SNOBOL4 Programming Language, by R. Griswold, ________________________________

 J. Poage, and I. Polonsky (Prentice-Hall, 1971). See the

 descriptions of *SNOBOL4B and *SPITBOL in this volume for

 alternative language processors for the SNOBOL4 language.

 Examples: $RUN *SNOBOL4 5=*SOURCE* 6=*SINK*

 In the above example, the source program and data are

 read from *SOURCE* and the output is written to *SINK*.

 *SNOBOL4 173

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 $RUN *SNOBOL4 5=SNOPROG+*SOURCE* 6=*DUMMY*(1,20)+*SINK*

 7=*PUNCH*

 In the above example, the source program is read from

 the file SNOPROG and the data is read from *SOURCE*.

 The first twenty lines of output are discarded with the

 remainder being written to *SINK*. Punch output is

 written to *PUNCH*.

 174 *SNOBOL4

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SNOBOL4B _________

 Contents: The object module of version 3 of the SNOBOL4 interpreter

 (with BLOCKS).

 Purpose: To interpret SNOBOL4 source programs.

 Use: The program is invoked by the $RUN command.

 Program Key: *SNOBOL4B

 Logical I/O Units Referenced:

 5 - source for the SNOBOL4 program to be translated,

 immediately followed by data to be read via the

 default INPUT string.

 6 - output from compilation of the SNOBOL4 program and

 output via the default OUTPUT string.

 7 - output via the default PUNCH string.

 Parameters: The following parameters may be specified in the PAR field of

 the $RUN command. The parameters must be separated by a

 comma.

 DUMP - causes a SNOBOL4 string dump only if a fatal

 error occurs during program execution.

 XREF - causes a cross-reference dictionary of the source

 program to be printed after compilation.

 NOEX - prevents execution of a SNOBOL4 program if any

 compilation errors are present.

 SIZE=xxxx - specifies the amount of storage to be used for

 the compiled SNOBOL4 program and its variables

 (the SNOBOL4 interpreter itself uses about 45

 pages). "xxxx" may be any number specifying the

 number of pages to be reserved or the word MIN

 may be used to specify that 10 pages be reserved.

 If no SIZE= parameter is present, the default

 value is 30 pages.

 Description: For a description of the BLOCKS feature in SNOBOL4, see the

 section "SNOBOL4 Blocks" in this volume.

 Examples: $RUN *SNOBOL4B 5=*SOURCE* 6=*SINK*

 In the above example, the source program and data are

 read from *SOURCE* and the output is written to *SINK*.

 *SNOBOL4B 175

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 $RUN *SNOBOL4B 5=SNOPROG+*SOURCE* 6=*DUMMY*(1,20)+*SINK*

 7=*PUNCH*

 In the above example, the source program is read from

 the file SNOPROG and the data is read from *SOURCE*.

 The first twenty lines of output are discarded with the

 remainder being written to *SINK*. Punch output is

 written to *PUNCH*.

 176 *SNOBOL4B

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SPITBOL ________

 Contents: The object module of version 2 of the SNOBOL4 compiler

 developed at the Illinois Institute of Technology.

 Purpose: To compile and execute SNOBOL4 source programs.

 Use: The compiler is invoked by the $RUN command.

 Program Key: *SPITBOL

 Logical I/O Units Referenced:

 SCARDS - SNOBOL4 source program to be compiled followed by

 the data read via the default variable INPUT.

 SPRINT - source listing, object listing, parameter listing,

 compiler diagnostics, execution-time diagnostics,

 and output via the default variable OUTPUT.

 SPUNCH - object module if the DECK option was specified, and

 output from the default variable PUNCH.

 0 - object module if NODECK and LOAD parameters are

 specified.

 SERCOM - prompting if a terminal.

 GUSER - user responses to prompting if a terminal.

 Parameters: The following parameters may be specified in the PAR field of

 the $RUN command. The parameters must be separated by a

 comma or by one or more blanks. A semicolon may be used to

 terminate the PAR field; the text after the semicolon is not

 processed by the SPITBOL compiler but is available to the

 program via the SYSPAR external function. The parameters may

 be either keywords or free verbs. Free verbs may be negated

 by one of three prefixes: "NO", "¬", or "-". The underlined

 portion of the parameter may be used as a minimum abbrevia-

 tion. The legal parameters are:

 ALIST or NOALIST _ ___

 If ALIST is specified, an object-code listing will be

 produced on SPRINT. The default is NOALIST. This

 parameter replaces the OLIST parameter.

 BATCH or NOBATCH _ ___

 If BATCH is specified, the compiler will batch process

 input decks. The batch pseudo-end-of-file is "./*" in

 columns 1-3. The default is NOBATCH.

 *SPITBOL 177

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 CSTAT or NOCSTAT _ ___

 If CSTAT is specified, compilation statistics are print-

 ed on SPRINT. The default is NOCSTAT.

 DECK or NODECK _ ___

 If DECK is specified, an object module will be produced

 on SPUNCH. SPITBOL object modules must be run in

 concatenation with *SPITLIB. The default is NODECK.

 DUMP=nnn __

 At termination of execution, the SPITBOL dump function

 is called with "nnn" as the argument. The default is

 DUMP=0 which produces no dump.

 EDUMP=nnn __

 If execution terminates abnormally, the SPITBOL dump

 function will be called with "nnn" as the argument. If

 SPRINT is assigned to a terminal, the default is EDUMP=0

 which produces no dump; if SPRINT is not assigned to a

 terminal, the default is EDUMP=1 which generates a dump

 of natural variables and keywords.

 ERRXEQ or NOERRXEQ __ ____

 If ERRXEQ is specified, the compiled program is executed

 even if errors were detected during compilation. The

 default is ERRXEQ.

 ESTAT or NOESTAT __ ____

 If ESTAT is specified, execution statistics are produced

 on SPRINT. The default is NOESTAT.

 EXECUTE or NOEXECUTE __ ____

 If EXECUTE is specified, the compiled program is

 executed. The default is EXECUTE.

 FAILCHK or NOFAILCHK _ ___

 If FAILCHK is specified, execution is terminated with an

 error if a statement is executed that fails and there is

 no conditional "goto" field. This is a useful debugging

 tool. The default is NOFAILCHK.

 178 *SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 INMGN=nnn _

 "nnn" is the right-hand margin for the compiler when

 scanning input source programs. The default is set to

 the minimum of the input record length for SCARDS and

 255. Programs that have sequential IDs in columns 73-80

 should compile with INMGN=72.

 LINECNT=nnn ___

 "nnn" is the number of lines per page for printed

 output. This must be in the range of 3 ≤ nnn ≤ 32767.

 The default is 58.

 LIST or NOLIST ___ _____

 If LIST is specified, a source listing of the compiled

 program is printed on SPRINT. The default is LIST

 unless SPRINT is assigned to a terminal. This parameter

 replaces the SLIST parameter.

 LOAD or NOLOAD __ ____

 If both LOAD and NODECK are specified, an object module

 will be produced on logical I/O unit 0. The default is

 NOLOAD.

 OPTIMIZE or NOOPTIMIZE __ ____

 If OPTIMIZE is specified, the object code produced will

 be optimized. This can reduce the CPU time and storage

 required for program execution. The default is

 OPTIMIZE.

 PLIST or NOPLIST _ ___

 If PLIST is specified, a list of parameter values will

 be printed on SPRINT. The default is NOPLIST.

 SDUMP or NOSDUMP __ ____

 If SDUMP is specified, a storage dump of the SPITBOL

 work areas will be produced on SPRINT if an internal

 SPITBOL error is detected. This is useful only for

 system debugging. The default is NOSDUMP.

 SEQCHK or NOSEQCHK __ ____

 If SEQCHK is specified and INMGN=72, the sequential ID

 field (columns 73-80) is checked for ascending order.

 Out-of-order cards will be flagged. The default is

 NOSEQCHK.

 *SPITBOL 179

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 SIZE=nnn __

 "nnn" is the number of pages allocated for dynamic

 storage within the compiler. This must be in the range

 of 4 ≤ nnn ≤ 256. The default is 20.

 TIMECHK or NOTIMECHK _ ___

 If TIMECHK is specified, SPITBOL will terminate execu-

 tion of the user program 0.25 seconds before any

 specified time limit in order that a symbolic dump may

 be given. The default is TIMECHK.

 XREF or NOXREF _ ___

 A cross-reference listing of the symbols in the compiled

 program is printed on SPRINT. The default is NOXREF.

 Description: *SPITBOL is a SNOBOL4 compiler which is considerably faster

 than *SNOBOL4, and can generate object modules if desired.

 However, the object modules must be run with *SPITLIB. For

 further details, see the section "SPITBOL" in this volume.

 Examples: $RUN *SPITBOL SCARDS=PROG.S PAR=SIZE=50,BATCH

 In the above example, each of the programs in the file

 PROG.S is compiled and executed with a dynamic storage

 size of 50 pages.

 $RUN *SPITBOL SCARDS=PROG.S SPRINT=*PRINT* SPUNCH=PROG.O

 PAR=DECK,NOEX

 In the above example, the program in PROG.S is compiled

 without being executed. The object module is written

 into the file PROG.O; the source listing is produced on

 PRINT.

 180 *SPITBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SPITDEBUG __________

 Purpose: To assist in the interactive debugging of SPITBOL programs.

 Use: The following statement should be included in the SPITBOL

 source program at a place where it will be executed at the

 beginning of the program starting at column one:

 -COPY *SPITDEBUG

 If a copy of the SPITBOL-generated source listing is placed

 in the file -PRINT*, *SPITDEBUG will print the statement

 causing the error.

 Program Key: *EXEC

 Description: *SPITDEBUG contains a number of SPITBOL source statements

 that are invoked whenever an execution error occurs or the

 DEBUG function is called.

 Errors are trapped using the SETEXIT function and setting

 &ERRLIMIT to 1. When SPITDEBUG gains control after an error,

 the error number and associated error comment are printed.

 If the statement can be found in the file -PRINT*, it is also

 printed. After these messages are printed, the user is

 placed in SPITDEBUG command mode where he may enter SPITDEBUG

 commands or SPITBOL statements.

 If the DEBUG function is called, it may have a string as an

 argument which is printed at the time of the call. These

 calls may be placed in the source program in order to set a

 breakpoint and examine the status of variables using SPITDE-

 BUG. Processing may be continued with the SPITDEBUG CONTINUE

 command.

 The SPITDEBUG commands are given below. The underlined

 portion of each command is the minimum acceptable abbrevia-

 tion that may be used.

 BREAK label Sets an execution breakpoint at "label". _

 This breakpoint will be effective only

 on a goto to that label; it is not

 effective if execution of the previous

 statement falls into that label. Labels

 may be generated automatically on all

 statements via the SNOSTORM DEBUG op-

 tion. The breakpoint feature is imple-

 mented with the SPITBOL TRACE function

 and the keyword &TRACE is incremented by

 100 each time a BREAK command is issued.

 *SPITDEBUG 180.1

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 This inadvertently may enable other

 unrelated tracing in the program. When

 used with programs compiled with the

 SNOSTORM DEBUG option, it is possible to

 use the source-file line number in place

 of the label.

 CONTINUE Resumes program execution. _

 DISPLAY express Displays the program value "express", _

 e.g.,

 DISPLAY x<2>

 x<2> = "HELLO"

 DUMP {1|2} Produces a SNOBOL dump (DUMP(1) or __

 DUMP(2)).

 EXPLAIN Synonym for HELP. _______

 GOTO label Resumes program at the location "label"; _

 this is the same as ":(label)" in the

 program.

 GOTO START

 HELP Provides a list of the legal SPITDEBUG ____

 commands with a brief description of

 each.

 IGNORE ["msg"] n Causes the next "n" calls on the DEBUG ______

 function with parameter "msg" to be

 ignored. If "msg" is omitted, DEBUG

 calls with a null string parameter will

 be ignored.

 MTS [command] Enters MTS command and optionally ___

 executes an MTS command, e.g.,

 MTS $EDIT MYFILE

 REMOVE label Removes the breakpoint at "label". _

 RESTORE label Synonym for REMOVE. _

 STOP Terminates execution. ____

 $command Executes an MTS command, e.g.,

 $DISPLAY COST

 180.2 *SPITDEBUG

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SPITERR ________

 Contents: The SPITBOL error messages.

 Program Key: *EXEC

 Description: The file *SPITERR contains all of the SPITBOL error messages.

 Each message is located at an MTS line number that is the

 same as the SPITBOL error number for that message. The

 message may be obtained via the $COPY command.

 Example: $COPY *SPITERR(11.009,11.009)

 The above example copies SPITBOL error message 11.009 to

 SINK.

 *SPITERR 180.3

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 180.4 *SPITERR

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *SPITLIB ________

 Contents: The object module of the version 2 execution-time support

 routines for programs compiled by *SPITBOL.

 Use: *SPITLIB should be concatenated with the object file to be

 executed on the $RUN command, i.e.,

 $RUN object+*SPITLIB

 Program Key: *EXEC

 Logical I/O Units Referenced:

 SCARDS - data to be read via the default variable INPUT.

 SPRINT - execution-time diagnostics, and output via the de-

 fault variable OUTPUT.

 SPUNCH - output via the default variable PUNCH.

 SERCOM - prompting if a terminal.

 GUSER - user responses to prompting if a terminal.

 Parameters: The following parameters may be specified in the PAR field of

 the $RUN command. The parameters must be separated by a

 comma or by one or more blanks. A semicolon may be used to

 terminate the PAR field; the text after the semicolon is not

 processed by the SPITBOL compiler but is available to the

 program via the SYSPAR external function. The parameters may

 be keywords or free verbs. Free verbs may be negated by one

 of three prefixes: "NO", "¬", or "-". The underlined

 portion of each parameter may be used as a minimum abbrevia-

 tion. The legal parameters are:

 DUMP=nnn __

 At termination of execution, the SPITBOL dump function

 is called with "nnn" as the argument. The default is

 DUMP=0 which produces no dump.

 EDUMP=nnn __

 If execution terminates abnormally, the SPITBOL dump

 function will be called with "nnn" as the argument. If

 SPRINT is assigned to a terminal, the default is EDUMP=0

 which produces no dump; if SPRINT is not assigned to a

 terminal, the default is EDUMP=1 which generates a dump

 of natural variables and keywords.

 ESTAT or NOESTAT __ ____

 If ESTAT is specified, execution statistics are generat-

 ed on SPRINT. The default is NOESTAT.

 *SPITLIB 181

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 LINECNT=nnn ___

 "nnn" is the number of lines per page for printed

 output. This must be in the range of 3 ≤ nnn ≤ 32767.

 The default is 58.

 PLIST or NOPLIST _ ___

 If PLIST is specified, a list of parameter values is

 printed on SPRINT. The default is PLIST.

 SDUMP or NOSDUMP ___ _____

 If SDUMP is specified, a storage dump of the SPITBOL

 work areas will be produced on SPRINT if an internal

 SPITBOL error is detected. This is useful only for

 system debugging. The default is NOSDUMP.

 SIZE=nnn ___

 "nnn" is the number of pages of dynamic storage allo-

 cated. This must be in the range of 4 ≤ nnn ≤ 256. The

 default is 20.

 TIMECHK or NOTIMECHK _ ___

 If TIMECHK is specified, SPITBOL will terminate execu-

 tion of the user program 0.25 seconds before any

 specified time limit in order that a symbolic dump may

 be given. The default is TIMECHK.

 Description: Object modules generated by *SPITBOL must be run with the

 execution-time support routines in *SPITLIB. For further

 details, see the section "SPITBOL" in this volume.

 Examples: $RUN PROG.OBJ+*SPITLIB SCARDS=DATA1

 In the above example, the program in the file PROG.OBJ

 is executed with the data being read from the file

 DATA1.

 $RUN -OBJ+*SPITLIB 5=INFILE 6=OUTFILE PAR=SIZE=50

 In the above example, the program in the file -OBJ is

 executed with input from the file INFILE and output

 being written to the file OUTFILE.

 182 *SPITLIB

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 *TRANSNOBOL ___________

 Contents: A SNOBOL3 to SNOBOL4 translator.

 Purpose: To convert SNOBOL3 source programs into SNOBOL4 source

 programs.

 Use: The file *SNOBOL4 should be invoked by the $RUN command with

 the file *TRANSNOBOL assigned to logical I/O unit 5.

 Program Key: *EXEC

 Logical I/O Units Referenced:

 2 - translated SNOBOL4 program listing.

 3 - translated SNOBOL4 source program.

 4 - SNOBOL3 source program input.

 5 - input of translator (*TRANSNOBOL).

 6 - listing of translator (normally set to *DUMMY*).

 Description: The SNOBOL4 program in *TRANSNOBOL accepts as data a SNOBOL3

 program of any length and produces as output a SNOBOL4

 program (version 2, release 1). Any number of programs can

 be run in succession with an end-of-file following the last

 program, and each will be translated separately.

 Because SNOBOL3 uses tapes for all I/O operations and

 SNOBOL4, working in MTS, uses logical I/O units, slight

 changes will occur regarding the use of scratch tapes. A

 SNOBOL3 scratch tape can be simulated in SNOBOL4 using a

 temporary file attached to an I/O unit corresponding to the

 tape number. For example, if the assignment "3=-SCRATCH" is

 specified on the control card, the file -SCRATCH will be

 treated as scratch tape 3, and no changes need be made in the

 SNOBOL4 program regarding this tape. However, some SNOBOL3

 functions operating on this tape may not work in SNOBOL4 (see

 below). Logical I/O units 1-9 are available in MTS.

 (1) The translated program will use the following I/O

 units:

 4 punched output

 5 program input

 6 printed output

 7 data input

 The remaining I/O units 1-3 and 8-9 can safely be

 used for scratch files. The following example illus-

 trates a control card for a SNOBOL4 program:

 *TRANSNOBOL 183

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 $RUN *SNOBOL4 4=*PUNCH* 5=-OUTPUT 6=*SINK* 7=*SOURCE*

 (2) The following functions have no translation:

 BSR, BSF, COMPRS, DETACH, DUMP, EOF, MODE(INTEGER),

 MODE(TRUNCATION), SQUEEZ, TAPRD, TAPWR, and UNLOAD

 (3) Control cards will not be interpreted but will be

 considered as SNOBOL3 statements.

 (4) The following string names will be flagged during

 translation since they have special meanings in

 SNOBOL4:

 ARB, BAL, INPUT, OUTPUT, PUNCH, REM, and FAIL

 (5) The string name SYSLOK will be undefined.

 (6) Variables used in back-referencing will not retain

 their original values if the pattern-match fails.

 They will instead have the value of the last unsuc-

 cessful attempt at matching.

 Since *TRANSNOBOL will accept only decks punched on an 029

 keypunch (EBCD code), decks punched on an 026 keypunch (BCD

 code) must be converted before translation. This can be done

 on the IBM 360 Model 20 computer using a "#26REPRODUCE"

 control card or it may be done immediately before translation

 with the following sequence:

 $RUN *BCDEBCD SPUNCH=-DATA

 •

 •

 •

 deck (punched on 026 punch)

 •

 •

 •

 $ENDFILE

 $RUN *SNOBOL4 2=*SINK* 3=-OUTPUT 4=-DATA 5=*TRANSNOBOL

 6=*DUMMY*

 Example: $RUN *SNOBOL4 2=*SINK* 3=OUTPUT 4=*SOURCE* 5=*TRANSNOBOL

 6=*DUMMY*

 In the above example, the SNOBOL3 program from the

 source stream (*SOURCE*) is translated to SNOBOL4 and

 written to the file OUTPUT.

 184 *TRANSNOBOL

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 INDEX _____

 . operator, SPITBOL, 49, 76 % operator, SNOBOL4B, 129

 &ABEND keyword, SPITBOL, 70 # operator, SNOBOL4B, 129

 &ABORT keyword, SPITBOL, 70

 &ALPHABET keyword, SPITBOL, 70 ALIST parameter, SPITBOL, 78, 177

 &ANCHOR keyword, SPITBOL, 70 ANY function, SPITBOL, 56, 76

 &ARB keyword, SPITBOL, 70 APPLY function, SPITBOL, 56

 &BAL keyword, SPITBOL, 70 ARB function, SPITBOL, 77

 &CODE keyword, SPITBOL, 70 ARBNO function, SPITBOL, 56, 77

 &DUMP keyword, SPITBOL, 70 ARG function, SPITBOL, 56

 &ERRLIMIT keyword, SPITBOL, 70 ARRAY datatype, SPITBOL, 50-54

 &ERRTYPE keyword, SPITBOL, 70, 88 ARRAY function, SPITBOL, 56

 &FAIL keyword, SPITBOL, 71

 &FENCE keyword, SPITBOL, 71 BACKSPACE function, SPITBOL, 50

 &FILL keyword, SNOBOL4B, 151 BATCH parameter, SPITBOL, 78, 177

 &FNCLEVEL keyword, SPITBOL, 71 Blank operator, SNOBOL4B, 129

 &FTRACE keyword, SPITBOL, 71 BLOCK datatype, SPITBOL, 48

 &FULLSCAN keyword, SPITBOL, 71 BLOCKSIZE function, SNOBOL4B, 156

 &INPUT keyword, SPITBOL, 71 BOX function, SNOBOL4B, 132

 &LASTNO keyword, SPITBOL, 71 BREAK command, SPITDEBUG, 180.1

 &MAXLNGTH keyword, SPITBOL, 71 BREAK function, SPITBOL, 57, 75, 77

 &OUTPUT keyword, SPITBOL, 71 BREAKX function, SPITBOL, 57, 77

 &REM keyword, SPITBOL, 71

 &RTNTYPE keyword, SPITBOL, 71 CASE statement, SNOSTORM, 106

 &STCOUNT keyword, SPITBOL, 71 CASE structures, SNOSTORM, 100, 106

 &STLIMIT keyword, SPITBOL, 71 CASE, 106

 &STNO keyword, SPITBOL, 71 DOCASE, 106

 &SUCCEED keyword, SPITBOL, 71 ELSECASE, 106

 &TRACE keyword, SPITBOL, 71 ENDCASE, 106

 &TRIM keyword, SPITBOL, 71 CC statment, SNOBOL4B, 159

 CHAR function, SNOBOL4B, 157

 $ operator, SPITBOL, 76, 77 CLEAR function, SPITBOL, 57

 CODE control card, SPITBOL, 73

 * operator, SPITBOL, 77 CODE datatype, SPITBOL, 50-54

 *CONVSNOBOL, 171 CODE function, SPITBOL, 58, 76

 *SNOBOL4, 173 COLLECT function, SPITBOL, 58, 76

 *SNOBOL4B, 127, 175 COM parameter, SNOSTORM, 112

 *SNOSTORM, 112 Comments, SNOSTORM, 109

 *SPITBOL, 78, 177 CONTINUE command, SPITDEBUG, 180.2

 *SPITDEBUG, 113, 180.1 CONVERT function, SPITBOL, 58

 *SPITERR, 180.3 CONVERT parameter, SNOSTORM, 113

 *SPITLIB, 78, 181 COPY control card, SPITBOL, 75

 *TRANSNOBOL, 183 COPY function, SPITBOL, 58

 CSTAT parameter, SPITBOL, 78, 178

 Index 184.1

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 EXECUTE parameter, SPITBOL, 79, 178

 DATA function, SPITBOL, 59 EXITLOOP statement, SNOSTORM, 106

 DATATYPE function, SNOBOL4B, 157 EXITPROCEDURE statement, SNOSTORM,

 DATATYPE function, SPITBOL, 59 108

 DATE function, SPITBOL, 59 EXPLAIN command, SPITDEBUG, 180.2

 DEBUG parameter, SNOSTORM, 113 EXPRESSION datatype, SPITBOL, 50-54

 DECK parameter, SPITBOL, 78, 178 External functions, SPITBOL, 83

 DEF function, SNOBOL4B, 148

 DEFINE function, SPITBOL, 59 FAIL control card, SPITBOL, 75

 DEPTH function, SNOBOL4B, 156 FAILCHK parameter, SPITBOL, 79, 179

 DETACH function, SPITBOL, 59 FIELD function, SPITBOL, 61

 DIFFER function, SPITBOL, 59 FIX function, SNOBOL4B, 139

 DISPLAY command, SPITDEBUG, 180.2 FIXED record I/O, SPITBOL, 82

 DOCASE statement, SNOSTORM, 106 FRONT function, SNOBOL4B, 132

 DOUBLE control card, SPITBOL, 73 FULLSCAN mode, SPITBOL, 76, 77

 DREAL datatype, SPITBOL, 50-54

 DUMP command, SPITDEBUG, 180.2 GE function, SPITBOL, 61

 DUMP function, SPITBOL, 60 GOTO command, SPITDEBUG, 180.2

 DUMP parameter, SNOBOL4, 173 GT function, SPITBOL, 61

 DUMP parameter, SNOBOL4B, 175

 DUMP parameter, SPITBOL, 78, 178 HEIGHT function, SNOBOL4B, 156

 DUMP parameter, SPITLIB, 81, 181 HELP command, SPITDEBUG, 180.2

 DUP function, SNOBOL4B, 156 HOR function, SNOBOL4B, 132

 DUPL function, SPITBOL, 60 HOR_REG statment, SNOBOL4B, 133

 Horizontal concatenation, 129

 EDUMP parameter, SPITBOL, 79, 178 Horizontal registration, 133

 EDUMP parameter, SPITLIB, 81, 181

 EJECT control card, SPITBOL, 72 IDENT function, SPITBOL, 61

 EJECT control statement, SNOSTORM, IF statement, SNOSTORM, 101, 102

 110 IF structures, SNOSTORM, 100

 EJECT function, SNOBOL4B, 156, 158 ELSE, 102

 ELSE statement, SNOSTORM, 102 ELSEIF, 102

 ELSECASE statement, SNOSTORM, 106 ENDIF, 101, 102

 ELSEIF statement, SNOSTORM, 102 IF, 101, 102

 ENDCASE statement, SNOSTORM, 106 IGNORE command, SPITDEBUG, 180.2

 ENDFILE function, SPITBOL, 60 INDENT parameter, SNOSTORM, 112

 ENDIF statement, SNOSTORM, 101, 102 INITIAL statement, SNOSTORM, 108

 ENDINITIAL statement, SNOSTORM, 108 INMGN parameter, SPITBOL, 79, 179

 ENDLOOP statement, SNOSTORM, 103, INPUT function, SPITBOL, 61, 82

 105 INTEGER datatype, SPITBOL, 50-54

 ENDPROCEDURE statement, SNOSTORM, INTEGER function, SPITBOL, 62

 107 INxxx control card, SPITBOL, 74

 EQ function, SPITBOL, 60 IT function, SNOBOL4B, 139

 Error messages, ITEM function, SPITBOL, 62

 SNOSTORM, 116

 SPITBOL, 84.3-98 LE function, SPITBOL, 62

 Error messages, SPITBOL, 180.3 LEN function, SPITBOL, 62

 ERRORS control card, SPITBOL, 74, 84 LEQ function, SPITBOL, 62

 ERRXEQ parameter, SPITBOL, 79, 178 LGE function, SPITBOL, 62

 ESTAT parameter, SPITBOL, 79, 178 LGT function, SPITBOL, 63

 ESTAT parameter, SPITLIB, 181 LINECNT parameter, SPITBOL, 79, 179

 EVAL function, SPITBOL, 60 LINECNT parameter, SPITLIB, 81, 182

 EXECUTE control card, SPITBOL, 75 LIST control card, SPITBOL, 73

 184.2 Index

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 LIST control statement, SNOSTORM, PROCEDURE, 107

 111 PROTOTYPE function, SPITBOL, 65

 LIST parameter, SNOSTORM, 113 PUNCH function, SPITBOL, 82

 LIST parameter, SPITBOL, 79, 179

 LLE function, SPITBOL, 63 QUICKSCAN mode, SPITBOL, 76, 77

 LLT function, SPITBOL, 63

 LNE function, SPITBOL, 63 REAL datatype, SPITBOL, 50-54

 LOAD function, SPITBOL, 63, 84 REMDR function, SPITBOL, 65

 LOAD parameter, SPITBOL, 79, 179 REMOVE command, SPITDEBUG, 180.2

 LOC function, SNOBOL4B, 157 REP function, SNOBOL4B, 144

 LOCAL function, SPITBOL, 63 REPLACE function, SPITBOL, 65, 77

 LOOP FOR statement, SNOSTORM, 103 RESTORE command, SPITDEBUG, 180.2

 LOOP statement, SNOSTORM, 103 REVERSE function, SPITBOL, 66

 LOOP structures, SNOSTORM, 100, 102 REWIND function, SPITBOL, 66

 ENDLOOP, 103, 105 RPAD function, SPITBOL, 66

 EXITLOOP, 106 RPOS function, SPITBOL, 66

 LOOP, 103 RTAB function, SPITBOL, 66

 LOOP FOR, 103

 LOOP UNTIL, 105 SDUMP parameter, SPITBOL, 80, 179

 LOOP WHILE, 104 SDUMP parameter, SPITLIB, 81, 182

 NEXTLOOP, 106 SEQCHK parameter, SPITBOL, 80, 179

 LOOP UNTIL statement, SNOSTORM, 105 SEQUENCE control card, SPITBOL, 74

 LOOP WHILE statement, SNOSTORM, 104 SETEXIT function, SPITBOL, 66, 77,

 LPAD function, SPITBOL, 64 87

 LT function, SPITBOL, 64 SINGLE control card, SPITBOL, 73

 SIZE function, SPITBOL, 67

 MERGE function, SNOBOL4B, 150 SIZE parameter, SNOBOL4, 173

 MTS command, SPITDEBUG, 180.2 SIZE parameter, SNOBOL4B, 175

 SIZE parameter, SNOSTORM, 112

 NAME datatype, SPITBOL, 50-54 SIZE parameter, SPITBOL, 80, 180

 NEXTLOOP statement, SNOSTORM, 106 SIZE parameter, SPITLIB, 81, 182

 NODE function, SNOBOL4B, 149 SLAB function, SNOBOL4B, 156

 NOEX parameter, SNOBOL4, 173 SNOBOL3 conversion, 183

 NOEX parameter, SNOBOL4B, 175 SNOBOL4 parameters,

 Normal concatenation, 129 DUMP, 173

 NOTANY function, SPITBOL, 64, 76 NOEX, 173

 SIZE, 173

 OPSYN function, SPITBOL, 64 XREF, 173

 OPTIMIZE control card, SPITBOL, 74 SNOBOL4B functions,

 OPTIMIZE parameter, SPITBOL, 80, 179 BLOCKSIZE, 156

 OUTPUT function, SPITBOL, 64, 82 BOX, 132

 CHAR, 157

 PATTERN datatype, SPITBOL, 50-54 DATATYPE, 157

 PLIST parameter, SPITBOL, 80, 179 DEF, 148

 PLIST parameter, SPITLIB, 81, 182 DEPTH, 156

 POS function, SPITBOL, 65 DUP, 156

 PRINT control card, SPITBOL, 73 EJECT, 156, 158

 PRINT statment, SNOBOL4B, 128 FIX, 139

 PROCEDURE statement, SNOSTORM, 107 FRONT, 132

 PROCEDURE structures, SNOSTORM, 100, HEIGHT, 156

 107 HOR, 132

 ENDPROCEDURE, 107 IT, 139

 EXITPOCEDURE, 108 LOC, 157

 Index 184.3

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 MERGE, 150 ARRAY, 50-54

 NODE, 149 CODE, 50-54

 REP, 144 DREAL, 50-54

 SLAB, 156 EXPRESSION, 50-54

 VER, 131 INTEGER, 50-54

 WIDTH, 156 NAME, 50-54

 SNOBOL4B parameters, PATTERN, 50-54

 DUMP, 175 REAL, 50-54

 NOEX, 175 STRING, 50-54

 SIZE, 175 TABLE, 50-54

 XREF, 175 SPITBOL error messages, 84.3-98

 SNOBOL4B statements, SPITBOL functions, 55

 CC, 159 ANY, 56, 76

 HOR_REG, 133 APPLY, 56

 PRINT, 128 ARB, 77

 VER_REG, 134 ARBNO, 56, 77

 SNOSTORM control statements, 110 ARG, 56

 EJECT, 110 ARRAY, 56

 LIST, 111 BREAK, 57, 75, 77

 SPACE, 111 BREAKX, 57, 75, 75, 77

 SUBTITLE, 110 CLEAR, 57

 TITLE, 110 CODE, 58, 76

 SNOSTORM error messages, 116 COLLECT, 58, 76

 SNOSTORM parameters, 112 CONVERT, 58

 COM, 112 COPY, 58

 CONVERT, 113 DATA, 59

 DEBUG, 113 DATATYPE, 59

 INDENT, 112 DATE, 59

 LIST, 113 DEFINE, 59

 SIZE, 112 DETACH, 59

 SPACE control card, SPITBOL, 72 DIFFER, 59

 SPACE control statement, SNOSTORM, DUMP, 60

 111 DUPL, 60

 SPAN function, SPITBOL, 67, 75, 77 ENDFILE, 60

 SPITBOL compiler, 47 EQ, 60

 SPITBOL control cards, 72 EVAL, 60

 CODE, 73 FIELD, 61

 COPY, 75 GE, 61

 DOUBLE, 73 GT, 61

 EJECT, 72 IDENT, 61

 ERRORS, 74, 84 INPUT, 61, 82

 EXECUTE, 75 INTEGER, 62

 FAIL, 75 ITEM, 62

 INxxx, 74 LE, 62

 LIST, 73 LEN, 62

 OPTIMIZE, 74 LEQ, 62

 PRINT, 73 LGE, 62

 SEQUENCE, 74 LGT, 63

 SINGLE, 73 LLE, 63

 SPACE, 72 LLT, 63

 STITL, 72 LNE, 63

 TITLE, 72 LOAD, 63, 84

 SPITBOL datatypes, 50 LOCAL, 63

 184.4 Index

 MTS 9: SNOBOL4 in MTS

 September 1975 Page Revised June 1979

 LPAD, 64 &STNO, 71

 LT, 64 &SUCCEED, 71

 NOTANY, 64, 76 &TRACE, 71

 OPSYN, 64 &TRIM, 71

 OUTPUT, 64, 82 SPITBOL parameters, 78

 POS, 65 ALIST, 78, 177

 PROTOTYPE, 65 BATCH, 78, 177

 PUNCH, 82 CSTAT, 78, 178

 REMDR, 65 DECK, 78, 178

 REPLACE, 65, 77 DUMP, 78, 178

 REVERSE, 66 EDUMP, 79, 178

 REWIND, 66 ERRXEQ, 79, 178

 RPAD, 66 ESTAT, 79, 178

 RPOS, 66 EXECUTE, 79, 178

 RTAB, 66 FAILCHK, 79, 179

 SETEXIT, 66, 77, 87 INMGN, 79, 179

 SIZE, 67 LINECNT, 79, 179

 SPAN, 67, 75, 77 LIST, 79, 179

 STOPTR, 67 LOAD, 79, 179

 SUBSTR, 68 OPTIMIZE, 80, 179

 SYSPAR, 84.2 PLIST, 80, 179

 SYSTOD, 84.2 SDUMP, 80, 179

 TAB, 68 SEQCHK, 80, 179

 TABLE, 68 SIZE, 80, 180

 TIME, 68 TIMECHK, 80, 82, 180, 182

 TRACE, 69 XREF, 80, 180

 TRIM, 69 SPITDEBUG commands,

 UNLOAD, 69 BREAK, 180.1

 VALUE, 69 CONTINUE, 180.2

 SPITBOL keywords, 70 DISPLAY, 180.2

 &ABEND, 70 DUMP, 180.2

 &ABORT, 70 EXPLAIN, 180.2

 &ALPHABET, 70 GOTO, 180.2

 &ANCHOR, 70 HELP, 180.2

 &ARB, 70 IGNORE, 180.2

 &BAL, 70 MTS, 180.2

 &CODE, 70 REMOVE, 180.2

 &DUMP, 70 RESTORE, 180.2

 &ERRLIMIT, 70 STOP, 180.2

 &ERRTYPE, 70, 88 SPITLIB parameters,

 &FAIL, 71 DUMP, 81, 181

 &FENCE, 71 EDUMP, 81, 181

 &FNCLEVEL, 71 ESTAT, 181

 &FTRACE, 71 LINECNT, 81, 182

 &FULLSCAN, 71 PLIST, 81, 182

 &INPUT, 71 SDUMP, 81, 182

 &LASTNO, 71 SIZE, 81, 182

 &MAXLNGTH, 71 STITL control card, SPITBOL, 72

 &OUTPUT, 71 STOP command, SPITDEBUG, 180.2

 &REM, 71 STOPTR function, SPITBOL, 67

 &RTNTYPE, 71 STRING datatype, SPITBOL, 50-54

 &STCOUNT, 71 SUBSTR function, SPITBOL, 68

 &STLIMIT, 71 SUBTITLE control statement, SNOS-

 Index 184.5

 MTS 9: SNOBOL4 in MTS

 Page Revised June 1979 September 1975

 TORM, 110

 SYSPAR function, SPITBOL, 84.2 UNLOAD function, SPITBOL, 69

 SYSTOD function, SPITBOL, 84.2

 VALUE function, SPITBOL, 69

 TAB function, SPITBOL, 68 VARIABLE record I/O, SPITBOL, 82

 TABLE datatype, SPITBOL, 50-54 VER function, SNOBOL4B, 131

 TABLE function, SPITBOL, 68 VER_REG statment, SNOBOL4B, 134

 TIME function, SPITBOL, 68 Vertical concatentation, 129

 TIMECHK parameter, SPITBOL, 80, 82, Vertical registration, 134

 180, 182

 TITLE control card, SPITBOL, 72 WIDTH function, SNOBOL4B, 156

 TITLE control statement, SNOSTORM,

 110 XREF parameter, SNOBOL4, 173

 TRACE function, SPITBOL, 69 XREF parameter, SNOBOL4B, 175

 TRIM function, SPITBOL, 69 XREF parameter, SPITBOL, 80, 180

 184.6 Index

 Reader’s Comment Form

 SNOBOL4 in MTS

 Volume 9

 September 1975

 (May 1984 Reprint)

 Errors noted in publication:

 Suggestions for improvement:

 185

 Your comments will be much appreciated. The completed form may be sent to

 the Computing Center by Campus Mail or U.S. Mail, or dropped in the

 Suggestion Box at the Computing Center, NUBS, or UNYN.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 186

 Update Request Form

 SNOBOL4 in MTS

 Volume 9

 September 1975

 (May 1984 Reprint)

 Updates to this manual will be issued periodically as errors are noted or as

 changes are made to MTS. If you desire to have these updates mailed to you,

 please submit this form.

 Updates are also available in the memo files at the Computing Center, NUBS,

 and UNYN; there you may obtain any updates to this volume that may have been

 issued before the Computing Center receives your form. Please indicate

 below if you desire to have the Computing Center mail to you any previously

 issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or

 U.S. Mail, or dropped in the Suggestion Box at the Computing Center, NUBS,

 or UNYN. Campus Mail addresses should be given for local users.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _________________________

 British Columbia) should return this form to their respective installations.

 Addresses are given on the reverse side.

 187

 Addresses of other MTS installations:

 Publications Clerk

 352 General Services Bldg.

 Computing Services

 The University of Alberta

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 310 Voorhees Computing Center

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5950 Cass Ave.

 Detroit, Michigan 48202

 188

