999242 QUG 24D == e 999242 =999242 ; $99242. 999242

JOB NO. 999242 UNIVERSITY OF MICHIGAN TERMINAL SYSTEM (MOOEL CT137) 22:23.35 12-21-61
MMMMM AMMMM TITTUTTTIITTITIUINTINITTIIT SSSS555SS
MMMMMM MMMMMM TITTFTTITTTIRATITITINTINTT $S5555555555S
MMMMMMM : MMMMMMM TTTTITITTITTATIITITTITITY $SS55555555555558
MMMMMMMM MMMMMMMM TETTT $5S5SS 5555555
MMMMMMMMM MMMMMMMMM TITTT $SSSS S$55S
MMMMMMMMMM MMM AMMMMM TYTIT $SSSS
MMMMM MMMMM MMMMM MMMMM TTTTT $SSSSS
MMMMM MMMMM MMMMM MMMMM TITTT 5555555555858
MMMMM MMMMM MMMMM MMMMM TITIT $SS555555555S
MMMMM MMMMMMMMMMM MMMMM TTTTT 5555555555858
MMMMM MMMMMMMMM MMMMM TRTLT 555555S
MMMMM MMMMMMM MMM MM TTT7T 558SS
MMMMM MMMMM MMMMM TIITT 55555
MMMMM MMM MMMMM TTTTT $S5S5S $SSSS
MMMMM MMMMM TTITT 55555 55555SS
MMMMM MMMMM TITTT $55SSSSSSSSSSSSSS
MMMMM MMMMM TIITT SSS555555555S
MMMMM MMMMM TTTIT $S555SSSS

999242 99924 2-—~~ 999242 999242 999242 999242

$SIGNON Q0SV
TLLEGAL SIGNON I.D.

VOLUM

second edition

December 1, 1967

MICHIGAN TERMINAL SYSTEM

SECOND EDITION

December 1, 1967

This edition is a major revision of, and obsoletes, the first edition
(June 1, 1967).

This work was made possible in part by support extended to the
University of Michigan by the Advanced Research Projects Agency of the
Department of Defense (contract number DA-49-083 O0SA-3050 ARPA order
number 716 administered through the Office of Research Administration, Ann
Arbor) .

DISCLAIMER

These MTS writeups are intended to represent the current state-of-the-
systen. This publication must not be construed as an obligation to
maintain the system as so stated. The system is still being developed and
additions, extensions, changes, and deletions will occur. At times these
changes may result in some parts oif the new system being incompatible with

their corresponding parts of the oid systen.

Preface to the Second Edition

The first edition was published in June. In September we began
collecting corrections for issuing a set of changed pages and discovered
that we would be replacing two-thirds of the pages in the manual. Hence
this new edition.

In an attempt to make things easier for people acquainted with the first
édition, revision bars have been placed in the margin alongside of changed
lines. If a section is completely replaced or is new, a revision bar is
placed alongside of the section number only.

To keep the sizes manageable and to logically split the manual, a new
major section (MTS-500) was created and made Volume II. This section is
comprised of the IOH/360 and UMIST (change in name only) writeups, the bulk
of the Fortran G (*FORTRAN) and assembler (*ASMBLR) writeups, and four new
writeups. Also the two sections of subroutine writeups (253 and 254) were
combined into one section of subroutine descriptions (253). 1In addition, a
list of major differences from the first edition follows:

New Sections
Introductory and Usage Writeups
Calling Sequences
Data Concentrator Usert's Guide
General view of UMMPS and MTS
1050 User's Guide
2250 User's Guide

Language Processors
PIL writeup
SNOBOLY4 writeup
WATFOR writeup
8ASS writeup

Library File Descriptions

*ASA *ASMEDIT *BATCH
*CATALOG *¥*CONVSNOBOL *DOUBLE
*FILEDUMP *FILESCAN *GPAKDRAW
*GPAKGRID *GPAKLIB *GRAPHLIB
*GRAPHMAC *IHC *LINPG
*0SMAC *PAL8SS *PIL

*SDS *SNOBOLY *SQUASH
*SSP *UPDATE *WATERR
*WATFOR *WATLIB *2250EDIT
*8ASS *8SSPAL

Macro Descriptions

ACCEPT BAS,BASR DFAD,DFSB,DFMP
DFIX,EFIX DISMOUNT ENTER

EXIT FLOAT GETSPACE

MOUNT SCARDS,SPRINT,SPUNCH, SERCOM,READ,WRITE
SLT SWPR

Subroutine Descriptions

ATTNTRP Bitwise Logical Blocked I/0

EMPTY E7090,D7090,E7090P,D7090P

TI0OPMOD LINPG REWIND

REWIND# SETIOERR SETPFX

Extensively Changed Sections
Files and Devices (MTS-210)
I0H/360 (MTS-530)

Change of Name
UMIST (was TRAC)
LISTVTOC (was CATALOG)

Other major new features, in addition to +the new 1library files,
subroutines, macros and language processors listed above, are explicit and
implicit concatenation of files (see MTS-210), ability of the user to
specify a password (see descriptions of the $SET and $SIGNON commands), and
the ability of a batch user to specify time, page, and card limits for his
job (see limits Specification, section MTS-225).

Donald W. Boettmner
Computing Center
University of Michigan
Ann Arbor, Michigan
Dezember 1, 1967

PREFACE

This manual represents an attempt to document, for the benefit of both
users and the people working on it, a rapidly changing system. The systen
described here is essentially the system as it existed about June 1, 1967.
By the time anyone reads this, various parts of this manual will most
certainly be obsolete.

The Computing Center would like to acknowledge I.B.M. for sections,
primarily listings of error comments, from their Fortran IV ([G]
Programmer's Guide and Assembler F Programmer's Guide which are reproduced
here.

Acknowledgement should also be made to the numerous people who helped in
preparation of +this manual, especially Ronald Srodawa, for the Teletype
User's Guide and Loader Description; Leonard Harding, Fortran writeup;
Larry Flanigan, Concepts and Facilities; Charles (Kip) Moore, File Routines
Internals; Fred Swartz, Batch User's Guide; Allan Emery, 2741 Users Guide
and descriptions of debug commands and routines; Jay Jonekait, Tape User's
Guide; Vic Streeter, Assembler writeup and plotting routines descriptions;
Charlie Benet, for IOH writeup; Dave Mills, Data Concentrator User's Guide;
Michael Alexander, proofreading and revision of the manual; and last but
certainly not least, Karen Dymond, for keypunching this whole mess in
TEXT90.

Donald W. Boettner
University of Michigan
Computing Center

June 1, 1967

This comprises the first volume of the MTS manual. It contains writeups
concerned with use of MTS and use of the language processors within MTS,
whereas the second volume contains writeups concerned with the content of
the languages available.

A complete table of contents which covers the entire manual follows.

VOLUME I . ¢ ¢ ¢ « o o o o @« o o a = o &«
GENERAL INTRODUCTION « « o o o o o o o &
USAGE DESCRIPTION. ¢« o ¢ o « « o o« o o o
Concepts and FacilitiesS. « « « « « « o« &

Calling Conventions. « . « <« . « « « . .
Introduction. « « o« ¢ o« « ¢ & o o o o
Register and Storage Variants of Type
Parameter Lists ¢« « ¢« o o o o o o o o
Register Assignments.« <« « .
Returning Results « . . « « « ¢ o« & &
Save Area Format. « « « <« « .« o . .

Calling Program Responsibilities and Considerations
Called Program Responsibilities and Considerations.

Example Calling Sequences . « « « « .
Macros for Calling Sequences.

Batch User's Guid€ « « « o « o « o« « « o
BatCh JObS. v« ¢ ¢ o o o o o o « « o o
Advantages and Disadvantages of Batch

Differences Between Batch and Terminal Use. . . .

Useful Hints for Running a Batch Job.
Examples of MTS Batch Jobs.

Terminal User's Guides . « « « « « o « @
Teletype User's Guide . . . « « « « «
Introduction « « ¢« <« ¢« o o ¢ o o .
Initiation Procedure . . « « « « o«
Keyboard Operation . « « « « « « &«
AttentionsS « ¢ o o o @ o @ o o ° =
Normal Termination Procedure . . .
Sample Session . . <« ¢ . @ o o . .
Translation to and from ASCII. .
IBM Terminal Type 27471 User's Gulde .
Introduction « « 2« o « ¢ o o o o
Terminal Procedures: « « « « o« «
1050 User's Guide . « ¢ o « « « « « o«
2250 Model I Display User's Guide . .
Initiation « « « ¢ o ¢ ¢ o @ o o .
Conversational Operation

Tape Users Guide « « « « « « « o « & o &
Introduction. « « « ¢ « ¢ ¢ o o o o o
Basic ConceptsS. « o o <« ¢« o o o ¢ o o

COMPLETE TABLE OF

e ®© o ® e o ® e ® o e o
e ®© ® @ e ® © ® e e = e
e e e e e e ® & e o o o
e @ o e ® e @ e e e ® o
e e e ® e ©® © © ® e e e
o - e e ®© ® @ © ° o
Calls « = ¢ o o o o o =
e e @ e o ® ® ® e © e =
e e ® & o ® @ . e o & e o
e e @ e o e e & @ e e e
e ®© o ® ® ®© @& e @ o ® e
e« o e o o o

e e @ e o o

e« o o o *» e @ e e ° e
e« e @ o © ® e e & v o =
e @ ®» e e ® © e e o o
e ®© & e ® © @ ® 6 e ® o
e« e e o o e @ o @ o = o
e @ e ® e e -

e ®© e s o ® @ o ® e e o
e e o o o o - e = e o o
@« e e ® ©o @& ® & 8 o e =
@« ®© e e ®o e ®© © e s o o
e e ® © ©®© ®© @ ®© o o o -o
® @& @ o e e © e e o o
- L - . L) - - - - - ‘@ [
@ o ®o e e o e e e o e
®« e ® e e ® ® ®© s e e o
e & @ o e e ©®© © @ & o =
@« o @ e ® e e o & o o o
- - - - - - . - - - L -
e & ®© e @ e e e e o .
e ®o© e & ® @& @ e e ®© = =
e e @ 8 ® e @ ® & o * =
e © e 8 8 ® & e e e e o
e ®© ® ¢ @& & & e & e o o
e ® ® o e ®© e o o e o
e @ e e ® e & © @« o o =
e o ® ® @ @ e e e e o -
e & ®© © o @ ®© ®o @ o e

CONTENTS
. - - 6
« o o 21
« o o 22
« o <« 23
« « « 30
« « « 30
- « o 31
« o < 31
« o« o 32
- - - 34
« « « 35
« - « 36
« « < 37
« o o« 37
« « o 39
< « o 40
« o o« W40
« - o U0
« o - 41
o o o 41
. o o 41
o o o U4
e « o U5
e « o U45
.« o o U5
« « o U6
« o o 49
« « « 50
« o « 51
« « « 53
« o« o 57
« « = 57
- « - 57
« « « 60
<« « o 61
« « - 61
« « o 61
« o o 63
« « « 63
« « o« 63

COMPLETE TABLE OF CONTENTS 7

7 and 9 Track Tapes. . .
0dd and Even Parity. . .

Densities. . . .

Translator and Data Convertor

File Protect Ring.
Record Size. . . .
End of Tape Area .

Pseudo-Device NamesS. . .

Using Tapes . . « .+ .«
Mounting a Tape. .
Removing Tapes . .
Data Transmission.

Return Codes. .
Control Functioams.

Paper Tape User's Guide.

Data Concentrator User's
The Data Concentrator
MTS Interface. . .
Message Formatting

Use of Data Concentrator by

ATST Models 33/35.

-

(Teletypes

MTS Jobs.

IBM 2741 Typewriter Termlnal -

Remote Computer Terminal Transmission Facilities

UMMPS and MTS: A General
UMMPS o« & ¢ o« o o o @
MTS v o o« o o o o o @

EXTERNAL SPECIFICATIONS.

Files and Devices. . . .
Files o v v ¢ o o o @

Description

Implicit Concatenation. . .

File NameS. . « « « .
Device Names.
Pseudo-Device
¥*DUMMY*.,
¥SOURCE*
¥STNK . . . ¢ o
¥AFD¥®, . & o o o @
¥PUNCH*, . .+ o« o« &
MSINK,
MSOURCE.,
Modifiers
Line Number Ranges. .

Explicit Concatenation. . .

Usage « ¢« ¢« « o o « &

Input Lines. . . « « «
commands. « « « .« « .
Data Lines. « « « < .

of the Operating System

- - -
- - -
- e e
] - -
- - .
« o =
- . .
. - -
- . -
o e .
. e e
0y - .
. . -
. - .
Y . -
- . .
- - -
- - .
. . .
- - -
o - -
- 3 o
- . -

e e
e
« o
« e
o o
e e
e e
e e
e e
e &
e =
e o
e e
e e
e =

L]

Remote

- o
‘e ®
- -
e e
e o
e e
- e
e o
-
-«
. e
- e
e e
o e
. .
e o
o o
e o
e o
LY
* o
e
.

Computers).>

¢« & o (]

Prefixing

Editing

- - - - -

Continuation. . . .

Limits Specification .

Commands .
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

ALTER. . .
COMMENT. .
COPY . . .
CREATE . .
DESTROY. .
DISPLAY. .
DUMP . . .
EMPTY. . .
ENDFILE. .
ERRORDUMP.
GET. . . =

e« ® o o e
e ® o o
e« e ® o o
e o e o
e e ® e =
«a e & o e
e e o o
e o o o =
« e ® e =
e = o o =
e ® & e e
e e o o o
e« o » o =
a o e o o
e ® o o e
« e o o

HEXADD,HEXSUB. . . .

LIST . . .
LOAD . . .
NUMBER . .
PASSWORD .
RESTART. .
RUN. . . .

Library Fac111ty. e o o
Parameter Specification

Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

Data lLines

SET. . « =
SIGNOFF. .
SIGNON . .
SINK . . .
SOURCE . .
START. . .
UNNUMBER .

Line Numbers. . . .

User ProgramsS. . « . =
User Program Constraints. . .
I/0 Routines - Parameter Description.
subroutine Descriptions . . .

MTS System and Library External Symbols. « o o o s e e @

Name:

ATTNTRP. .

e e = o =
s @ e e e
e e o o e
e ® ® e e
e e o »
« e & o
e ® ® e o
e @ e e o
e e 8 o e
e« @ o o o

Bitwise logical Functions.

AND,LAND,OR,LOR,XOR,LXOR,CONPL, LCOMP,SHFTB,SHFTL./. .
Blocked Input/Output
Name: QGETUCB
Name: QOPEN .
Name: QGET. .
Name: QPUT. .
Name: QCLOSE.
Name: QCNTRL.

Name:

(QGTUCB) .

Routines.

- . - - - - . - -
. . - - - - - - -
- - - - - - - - -
- - - - - - - - -
. - - - - - - - -
. - - - - - - - -
- - - - - - L] - -
- s e - - . . e -
. - - - - LY - - -
. - - - - - - - -
. - - - - - - - -
- - - - - . . - -
. - - - - - - -
- - - - - - - - -
- e e - - - - - .
. . e - - . - - -
. - - - - - - - -
- - - e . . - - -
- . e - - 3 . - -
- - - . - - - - -
- e = . - - - - -
- - - - - - - - -
- - - - 3 - o - -
- e e . - 3 - - -
- - - - - . - - -
- e e - - . - - .
- - - - - . - - .
- - - - - - - - -
- - - - - . - - -
- o o - - - - - -
- e = - e - - - .
- - - - - - e e -
- . - - - - . - -
- - - - . - . o .
e e - - - - - e .
e e . . - - - - -
- - . - - - e - -

- - - - - -) - - -

- - - - . - - - -
- - - - - . - - -
- - - - - - - - -
- - L] - - - - - -
- - - - - - - - -
- . . - - - - - -
e - . - - - - - -

COMPLETE TABLE OF

98

e e o = < 99
« e - « 2102
e o = - <103
e « « o =105
- o « - <106

e -« - - 2107
e « « « <110
« . 112

« o o - 2113
e o « « <114
« « « « <115

e o « « <116
e o o « <117
e « « « 2118
e « « « <119
e o « « <120
P |
e o « o <123
e o e o <124
e « « o <125
e « -« o <126
. 128
- e e e« <129

« « <130

e o <131
e o o o <132

« - <133

e o - - <138
« o « = <134

« - o o o136
e o e e <137

.- - - - .138

e e e . o2
e - - . 2143
e e - . o146
I 'Y
. e e - 2147
U 7
.« - . 2150
. e - . 2151
.« - - 2152
e « « » .153
I BT
e - « - 2155

CONTENTS 9

10

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

Printer Plot

CANREPLY . . .
DISMOUNT . . .
EMPTY.
ERROR.

E7090,D7090,E7090P,D7090P.

FCVTHB
FREEFD
FREESPAC . . .
GDINFO
GETFD.
GETSPACE . . .
GUSERID. . . .
IoPMOD
LINK,XCTL,LOAD
LINPG.
MOUNT.
PGNTTRP. . . .
Routine

PLOTT
PLOT2
PLOT3
PLOTH
PLOT14.
STPLT1.
STPLT2.
SETLOG.
OMIT. -« .« . « . .

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

READ .«
REWIND .
REWIND#. . . .
SCARDS
SDUMP.
SERCOM

SETIOERR . . .

SETPFX « . .
SPRINT
SPUNCH
SYSTEM
WRITE.

Macro libraries .

System Macro

Name:
Names
Name:
Name:
Names:
Name:
Name:
Name:
Name:
Macro
Name:
Name:

Library
ACCEPT
BAS,BASR . . .
LFAD,DFSB,DFMP
DFIX, EFIX . .
DISMOUNT . . .
ENTER.
BXIT . «. « .« .
FLOAT. « « .«
GETSPACE . . .
Calls to
MOUNT. . . .

SCARDS,SPRINT,SPUNCH,SERCOM

IOE/360

. . - -
- L - -
- - - -

*SYSMAC

. e e e
e o o
« o e =
« e e e
« o o o
e o o @
“- = e =
« o o
“ o e =
e e e .
- e . .
“ e o e
« e e e
« e e e
e e e e
e o o =
« e e .
« o o .
« o e e
« e o .
« o e e
© o o e
- -) - -
c e o .
« e o
o . e .
o e e
e e e .
e e .
« e o e
v e e .
« e e
e . e
o« e o o
s - e e
“ e e .
« . o .
« e e .
- e e
« e e
o o e .
e e e
« e o
« e e .
« o e .
« o e
e . e .
o . e
. e e .
« o e .
« e e

+KEAD,WR

.
-
iT

.

. 156
.157
.158
.159
. 160
.161
.162
.163
. 164
. 165
. 166
.167
.168
. 169
L1171
.175
.176
2177
.177
.178
.178
<179
.179
. 180
.180
.180
. 180
.182
.183
.184
.185
. 186
.189
.190
.191
.192
.193
.194
.195
.196
.197
.198
.199
.200
.201
.202
.203
.204
.205
.206
.207
.216
.217

Name:
Name:

SLTe & « o« &
SWPR

MTS Assembly Language Testing Macros
Structure of a Macro Library .

Phone Numbers - Data Set Directory

Library File Descriptions

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

Compiler

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

*ASA
*ASMBLR. . .
*ASMEDIT . .
*ASMERR. . .
*BATCH . . .
*BCDEBCD . .
*CATALOG . .
*¥COINFLIP. .

*CONVSNOBOL.:

*DISKDUME. .
*DISMOUNT. .
*DOUBLE. . .
*DRAW. . . .
*EBCDBCD . .
*FILEDUMP. .
*FILESCAN. .
*FORTRAN . .
*FORTEDIT. .
*GPAKDRAW. .

*GPAKGRID. . .

*GPAKLIB . .
*GRAPHLIB. .
*GRAPHMAC. .
*HEXLIST . .
¥*IHC

*LINPG . . .-

*LISTVTOC. .
*MOUNT . . .
*NEWFORT . .

*OBJSCAN . .
*OSMAC . . .
*PAL8SS. . .
*¥PIL . . - -
*PLOT. - . -
*ROSSPRINT .
%SDS . . . -
*SNOBOLUY . .
*SQUASH. . .
*SSP
*STATUS. . .
*SYMBOLS . .
*TABEDIT . .
*UMIST . . .
*UPDATE. . -

Options

" 4 e 0

. . L I) .

- e - -
e o e -
o e e .
. - - -
- 3 . .
e . - -
e ® . .
- e e o
- o - .
o - < -
. . - -
- . . .
. - - -
e - .
. . - .
e - - -
- . - -
. . - -
- - - e
. - - e
. . - -
- . - -
- . . -
. . - -
e = . L]
- - . .
- w . -
- - - -
. . - -
« e . -
. 3 . -
. - - L]
- LI -
- - - .
- - - -
- . - -
e = - -
. 3 - e
e = - .
- - - -
- - - °
e @ - -
e - = -
. - - -
- . - -
e - -
e e - -
- - .
. - - -
- - e -
- - - .

COMPLETE

- - -
- 3 .
. - -
e e -
. - .
- 5y -
- - -
e e -
- - -
- - .
- . -
- - -
- - -
- - -
- - -
- - -
- - 3
- - -
- - .
- - 3
- - .
- - -
e e -
- - -
* L] -
L) - .
. - .
- - -
- - -
3 - -
- - -
- - .
- - -
* e -
- - -
) e o
- . .
- - -
[- -
. - -
- - e
- . -
- - -
- - -
. e -
- - .
- '- -
- o -
. . -
- - -
. - -

TABLE

- e e e e =
e ® ® e ° =
e © o ® e e
e o o o o o
- - - - - L
- - - - - L
e o e e o o
e« ® o e e o
e ® e o e o
e ® o o o =
e @ e e o o
e e o © o e
e e o @« e o
e o o « e o
e ®© o e & o
e e o e o o
® @ o e o
e @ o o o e
- o « e o
e 8 e @ e =~
e« o o e o e
e o e e« o o
e @ o o o o
e e o e« o o
- - - - .]
e @ o e o =
* e o e e &
- - L - o -
- - - - - -
e e e e o e
e e = @& e o
e e o e e o
@« e e e o o
e o o e e o
e e ®© e o =
e ® o @ e @
e e o « o o
e e @ e e =
e e @ e o =
e o o « o e
@« e e ® o o
e e o e e o
e« e o e o o
e e o e e o
e e o e e o
« e e e o
e o @ e e e
@« @ o e o o
e o e e e =
e s e « ® o
- o @ e o =

OF CONTENTS

«219
«220
«221
« 226

. 2217

. 231
«232
233
« 235
«236
. 237
«238
«239
240
- 241
243
. 245
2047
. 249
«251
253
«254
« 256
«257
258
259
«260
261
<263
. 264
« 265
-266
«267
<268
270
«271
<274
«276
277
.278
<279
. 283
.285
<295
.296
«297
. 298
«299
300
.301
302

11

Name: *WATERR. . «307

- L] -) - L) - - - - -
Name: *¥WATFOR. < . & & o o ¢ o o o o s « = o s o « o & o o« o« =« » «308
Name: *WATLIBe o o o o o o o o o « a o a & =« o » & o« o « s« « o « 2309
Name: *¥2250EDIT. ¢ o v o v o o o o o v o % o o o o o« = « o« = o = 2310
Name: *¥BASS. . . & & 4 ¢ o o 4 o o o 2 o o o o o = o o o e & o o 313
Name: *¥8BSSPAL. « ¢ o ¢ ¢ ¢ v o o 4 o o o @ s o =« o« » = o o o« o o <314
The DYnamic LOAAer « « v v & ¢ 4 ¢ ¢ o o o o o o o o o o« o o« 4« o« o o « «315
Description of the Loading ProCesSS. . « =« o « « « « = « = s« « « « » 316
INtroduction « o ¢ ¢ o ¢ 4 4 e 4 i e 4 e e e s e s s s 4. e o o o <316
Loader InPUL o ¢ & ¢ ¢ 4t 4 e 4 2 4 e 4 e 8 e o o 6 o = e o o o o 316
Resident System SYBDOLS. . v v ¢ ¢ ¢ v 4 o o o o o « o 4 o« o« « « 2316
Loader OUtput. o o o & ¢ ¢ ¢t e 4 4 e s e 2 8 s e e o 4 o o o & «317
Entry Point DeterminatioN. « « ¢ o ¢ 4 o o o « e o o o & = o o 317
Loader Processing Details. . . . & & o ¢ ¢ ¢ 4 ¢ o o « 4 =« « » « 318
Loader Invocation DetailS. « v v v ¢ ¢ ¢ o o o o « o« « » « « » =« «319
A. Invocation by a SRUN command. . « « « « « « « « » « « & o« <319
B. Invocation by a $LOAD command . « « « « « « « =« o« « « = o «319
C. Invocation by a call upon LINK: « ¢ ¢« ¢ « « « =« o =6 » » «319
D. 1Invocation by a call upon LOAD: « « ¢ « o = o « = = & o @ <320
E. 1Invocation by a call upon XCTL. « « ¢« « « « o« « = o« = « @ 320
Description of the Loader INPUt « ¢ ¢ «¢ & o « o o & o « % o o « o« = «321
1. Translator-generated Load RecordS. « . ¢« ¢« v « & o « « o« o« 321
A. ESD Input ReCOTd. v o v « v & « o o o o o « o« « = « « « 321
B. TXT Input Record (TeXt) e« ¢ o ¢ o & o « « o« o o « » <321
C. RLD Input Record (Relocation Dictionary)321
D. END Input RECOTA. © «e v 4 ¢ & o o o « o s o« « o« o « o = 322
E. SYM Input ReCOrd. - - ¢ ¢ o ¢ o o o o o o o« o =« o « o« & «322
2. User—-generated Load RECOTdS. v &« v o o o o o 2 « « « & « o 322
A. LDT Input Record (Load Terminate RECOrd). « o « o o « « 322
B. REP Input Record (Replace RECOLA) « o o « e = o o o o = 322
C. DEF Input Record (Define Extermal Symbol) ¢ . o .322
D. ENT Input Record (Entry Point Record) + . « ¢ « « =« « « «323
E. NCA Tnput Record (No Care RECOLA) « v o « « o o o o o« & «323
3. Library Control RecCOrdS. « + o« « o o 2 o v o « « « « = o & <323
A. LCS Input Record (Low Core Symbol Table). « v« « « « . » .323
B. LIB Input Record (Library record) . . « o o« o« « o o « o« 2323
C. RIP Input Record (Reference If Present Record).323
Record Formats — Dynamic Loader. . . . ¢ 4 &« ¢ v o o o « « = =« « «325
Loader Input Deck Ordering and Restrictions. « « « « & « « 2 « « 336
Description of the Loader Output. . ¢ ¢ & ¢ 4 ¢ ¢ ¢ v ¢ e o o o « « <381
IntroQUCtion « o o 4 o 4 ¢ b 4t 4 4 e 4 e e s e e o o e o o o o o <381
The PrOgralle « « o o o o o o o o o o « s o o o o o o« o o o o « « +341
Printed Output . . . o & & ¢ 4t 4 4 4 4 4 e e e e b e e o o o o o 342
Sample Loader Printed OUtPUt v .+ ¢ ¢ 4 ¢ 4 ¢ & o o o o o « o o o« <342
The Entry Poilt. . ¢ o & 4 4 o 4 6 4t o o o o o o o o « o o« » « « «343
The MapP. . < o o & o o o 0 v 0 0 it 4t e e e e e e e e e e .o o343
EITOr MESSAQgES « « o o o o « o o o o s o o o o s o o o = o-a =« o« <3044
MTS Errors or Program Interrupts During LoadinNg. « « « « « « . & 346
Loader Library FAacility « ¢« ¢ ¢ ¢ ¢ o ¢ 4 ¢ o o o o o o o o o o« o = 2347
The System (Public) Library. « o ¢ o 4 v ¢ v o e« o o « = o o o« « <347
Optional Libraries o o« v v ¢ 4 4 4 4 4 4 4 v o o o o o « o o » « <348
Pre-Defined Symbols and Low Core Symbol Dictionaries348

12

INTERNAL SPECIFICATIONS. . . . =«

File and Device Management . . .

Introduction. « « « « « « « =

Public Entry. =«

DSRY Prefix . « « « « =

DSR « ¢ o o e o o o o =

DSRI Postfix. . « « « =

FDUB Structures. « « « « =«
Structure of Device Tables.

Device Support

Common Information. . . .

1. INITIALIZATION. . « « =

2. DITCH ¢« « o o o « o o =

3. GETFROM . ¢ « « « o o =

4, WRITEON <« « « « o o o =«

S. ATTENTION . ¢« o o o « =«

6. WAITFOR @« o « o o o o @

7. RELEASE v o« o« « o o « =

Routines (DSR)

Processor Internal Specifications.
Loader Internal Specificationms.

Introduction . . . « « < =«
NaME « o o = = o o o o o« =
Fuanction . « « ¢« .« o o o .
Calling Sequence . . « « -«
Parameter List . . . « . .
Return Sequence. . -
External Symbol chtlonary
Error Recovery and Restart
Return Codes « « « « =« «
Loading Status Word Format

Format.
Procedures.

General Organization of the Loader Psect

More Details on the Loader Structure

The Loader-MTS Interface .

File RoutineS. .« o« o« o o o o «

File Format - General Description.

Allocation of
Files written
€tC) « o o o o o o e o .
Physical format of the
The Track 1Index . . .
The Line Directory. .
The Line File
How the
File size

space and

limitations. -«

components are

through systen

-

cataloging

subroutines

components.

tied

External File System Subroutines.

Name: CHKSUM . ¢ « « « <« =
Name: CLOSE. « ¢ « o« o =« =«
Name: CREATE . < « o « « &
Name: DESTRY « . . « « « =
Name: GETDSK « « « « « o =

-

together

COMPLETE

(SCARDS

]
e & & 0
.

L] .] []
[]
[]

TABLE

e 2 & & o & 0 0
.
.
[]
[]

.
)
)
.
L]
¢ 8 & & o s 3 s ¢

[] .
L] L]
.]
. .
. L]
o & o b &

[}

.

.

.
PP
* & & 0

.
.
D S I)

3

SPUNCH,

s 0 0 8 & N
e e & & &
s ¢ ¢ & s DB
o & @ e o
L] L]
]

»
]
.
]
| Y T S S

OF CONTENTS

- 351

. 352
.353
353
<353
354
.355
.356

«359

.361
.361
.362
<362
.362
.363
.363
.364
«364

365
.366
.366

.366

.366
.367
.367
.368
.369
-370
-.370
<371
<375
.376
376

.378
«379
.379

.379
.380
-380
.380
. 381
381
-382
.386
-387
.388
389
<391
.392

13

Name: OPEN v v ¢ v 4 o o o o o
Name: READ . ¢ & v o o o o o o «
Name: READL. v «v ¢ o e o 2 o o =
Name: READS. v v o ¢ o o o o o o
Name: RELDSK ¢ ¢ ¢ v v v o o o o
Name: SCRTCH . . . « . . ¢ . .
Name: WRITE. « « . o « . -
File Subroutines Internal Structure

VOLUME TII. &o 2 v 4 ¢ v o o o o o « o
LANGUAGE PROCESSOR DESCRIPTIONS. . . .

F-level Assembler.
Assembler Listing
External Symbol Dictionary (ESD)
Source and Object Program. . . .
Relocation Dictionary.

Cross Reference. . «
Diagnostics.
Diagnostic Messages « « . « o o . .

FORTRAN G:. v v v v v ¢ o o o o o o o =

Source Module Error/wWarning Messages

Fortran User's Guide. « « « o o . .
Files and Data Set Reference
Tape Support Statements. . . .
Sequential Files.

Numbers.

Record Format for Sequential Files . .

Default Record Length for Sequential Files

Record Format for Direct Access

The STOP Statement
The PAUSE Statement.
Execution Error Messages . . .
Program Interrupt Messages . .

Non-arithmetic Program Interrupts.

Arithmetic Program Interrupts.

TOH/360 - I,/0 with Conversion.
Specification Characters.
Usage - Normal Context
Literal Context.
Format-Gff Context
Default-Scan Context
Format-Variable Context.
Useful Entry Points to I0H/360. . .
Block-Addressing Section
Standard-Format Input Section. .

PIL - - Pitt Interpretive language . .
Desk Calculator Mode. «
Variables and Constants

ConstantS. « v v v v o ¢ w o . .

14

Files

& s & a

.393
-394
«395
-396
397
.398
-399
.400

500
-501

.503
-503
504
505
507
.508
-509
.51

.525
.525
+530
.530
530
« 530
. 531
.531
. 531
.533
«533
.533
.538
-.538
.539

542
.553
.553
.578
.579
.580
.584
.585
.588
.588

-591
.592
-593
-593

Variables. . « « « « « o« o o o o =«
Algebraic Expressions . . . « < <« «. .
Boolean EXpressions. . . « « « « =«
Interchange. « « o« « « o o o o = =«

stored Program Mode . . . ¢« 4 ¢ o o ..

Parts and StepS. « « « o o o o o .
Indirect Error Reporting .. .

Running A Stored Program. . . . ¢« - =
Program StopS. « . « o o s = o o .
Transfer of Control . . . « = « « « =
DO Statement « « ¢ « o ¢ o o o .
TO Statement « « ¢ « ¢ o o o o o o

IF Statement . « « o « o o o o o &
Simple Console I/0. « « « « o o » « =«
Output « « ¢ ¢ ¢ o o o o e o e . .
Input. « « « o o o ¢ o o e e e = .
Program Changes . « « « o « o« o o o =«
DEletion v « o o « o« o o o o o =
Variable Deletion =«
Part and Step Deletion.
Form Deletion « « « - &
Storage Clean-up . . . -«
Iteration Statements. . . « « <« < . .
Implied LoOpS. s « « « .
Explicit Loops « . « « . -«
Restart. ¢ ¢ ¢ o e o o o o o o o
For Control. <« « « o o ¢ o o o o &
Character Strings . « « « « o o o o
String Comparison. . . . « « « o« =«
string Functions . . . « .« . « . .
String Operations. « « « « « « «
Extended Console I/O. - = s =
A. Numeric Informatlon «
B. Alphabetic Informatlon. -
C. Other Characters.
Form Statement . . « « « « ¢ o o .
Type In Form n, List
TYPE FORM Do ¢ o« ¢ o o o o o o o o
TYPE ALL FORMS . <« o« ¢ o o o o o
Form Deletion. . « « « « o o o « &
User Directed Input. . « e e e
Extended I/0 List Features « o o o
Literal FOLMS. « « o o o o o o « o
Program Management. . .« <« < .« <« o =
Pagination . . « ¢ 4 o o . o e o .
Storage Acquisition. . . . « <« . .
PILmanship. . . - . - .
APPENDIX A: Summary of PIL Statements
APPENDIX B: Precision of Arithmetic .

SNOBOLU . &« « e o e o« s s« o o o s s o o o
1. IntroductioNe « « o « o = « o @
2. Differences between SNOBOL3 and

- - - - - .
- - - * e .
- e o - - .
- « o e e .
- e o = - 3
. . e - - .
- - - s e .
- - - - .
- - o e - -
- e o - - -
- . o - . -
-) - e o -
- . . - - -
- - . - - .
- - . - - -
. . - - - .
. - - . e -
. - . - . 3
o . . - - -
- - . . . -
- - . L} - -
. - - . . -
- . . - . -
- . - - - -
. e e ® - -
- e e . . -
. . . e e -
. - - . . -
- . . e e -
- .) - - -
. - - - - -
- . . - - -
. - . . - -
- o - - e -
- . e e - -
- . - . e -
- . - . - -
- - - - - -
- - - - L] -
3 3 - e e -
- - - - . .
. - - o e -
- - - .
. . - e e -
- . - o e -
- o - e e 03
- . - - - -
. . - . o -
. . - . e -
. - - - - -
- . - . . . -

SNOBOL4 . .

COMPLETE

- - .
. . .
- . L]
- . -
- . -
. - -
- o e
- - -
3 . .
- . -
- - -
- - -’
. - -
- o -
- 3 .
- . 3
- . L)
. o -
- - L3
- - .
- - .
- L3 -
- L3 -
- . -
- . -
. . 3
- . -
- . -
. - 3
- - -
. - -
- L) -
- L -
- . -
- - -
[- -
- - -
- - -
3 . -
- - -
- - -
- - -
- - -
. - -
- - -
- . -
- - -
- - -
. . -
L3 - -
- 3 -
° - -

e e o *« e e
e o o e e o
o e o e o o
» e s © & e
e o e e e e
o o o - e .
- o e - - -
.. e« . e =
* ® e e e o
e e o e o o
e o o o o =
- - - - LI
e o = * & e
- - - - - -
e ® & @ e o
-« ® e e o e
e o e « e e
e e e . o
e ® ® e o e
e ® e o e e
« o e . ® e
- s @ o o =
® e @ o e @
e o @ e e =
é o @ e e o
° - - - - -
e o e & e e

e e e o e
« o o ® o -
e @ ® o ® o

o ®© e ®o e =
e e e e w e
- - - - - -
e ©®© & e & o
- - - L] - L]
s e° e « ®
e ®© e o o o
e @ e o & =
e ® e e e o
e ® ®© ® e o
e« @ © e e o
e o e e e o
e e ® e e e
e @ e o e o
- - - - L -
« o o o o o
e e ®o e o =
« @ e e« e e
@« o e o o =
e e e o o o
e ® o o e ®
e @ e ® e =

OF CONTENTS

.593
.596
.598
.598
.602
.602
.603
-604
.605
.606
-606
.606
.607
.608
.608
.610
.612
.612
.612
.612
.613
.613
.613
-614

.61

«615
.616
.617
.617
.617
.618
.621
.621
.622
.622
.622
.623
.623
<6204
.624
. 624
625
.626
. 626
.626
.628
.628
.631
.632

.635

.637
.638

15

16

3.

11.

12.

13.

2.1 Changes in Syntax

2.2 Changes in Names and Functions.

Pattern Matching.
3.1 Pattern Construction.

3.1.1 Aiternation.
3.1.2 Concatenation.
3.1.3 Arbitrary Strings. . . .
3.1.4 Balanced Strings
3.1.5 Fixed-length Strings . .
3.1.6 Fixed Positions in String
3.1.7 Tabulation
3.1.8 Remainder.
3.1.9 Alternative Characters .
3.1.10 Runs of Characters. . .
3.1.11 Repetitions
3.1.12 Signalling Failure. . .
3.2 The Order of Pattern Matching
3.3 Deferred Pattern Definition .
3.4 Value Assignment.

3.4.1
3.4.2 Dynamic-Value Assignment
ATTAYS: o« « o o o o o « o o o o =
Real Numbers. ¢ . o« o .
Data TYPeS. v o o ¢ o o o o o o «

s

¢« ¢ s & @

Post-matching Value As51gnment

6.1 Data Types in Operations.
6.2 Concatenation with the Null String.
€.3 Data Type Determination

Programmer-defined Data Types . .
Compilation during Execution. . .

8.1 Creating Object Code.
8.2 Direct Gotos.
Keywords. « o o o ¢ ¢« ¢ ¢ o o o
9.1 Protected Keywords.
S.1. Internal Values.
°.1. Predefined Values. . . .

1
2

9.2 Unprotected Keywords.
c.2.1 Internal Switches. . . .
G.2.2 Internal Parameters. . .
Truth Predicates . . « . ¢« . o .
Negation
Affirmation.
Input and Output

11.1 I/0 Association Functions. .
11.2 Output . . «, . .
11.3 Input. ¢« &« ¢ ¢ ¢ ¢ ¢ & ¢ o .
11.4 Rewind
11.8 Back Space
11.6 End of File.

NAMESe o o o o o o o = o o o o «

12.1 Passing NamesS. . . ¢« « « . .
12.2 The Name Operator.
12.3 Returning by Name.

Additional Functions

. L] L]] L]

. .] . [

. L] . . L] L] [

e & 8 @

[] . ¢ 8 [2] * & o & o e 3 ¢ ¢ s 0 .

s & 8 @

* . L] .] e]

I T T

.638
. 640
.641
- 641
<641
-641
.642
642
«642
-642
-643
- 643
-643
<644
-644
<645
- 646
.646
-648
.648
- 649
.652
« 655
«656
- 656
- 656
<657
.658
. 661
. 661
.661
«663
. 663
. 663
.663
.664
.664
. 664
.666
.666
« 666
<667
.667
.668
.669
.669
« 669
.669
-.670
.670
.671
«672
<674

13.1 Character Replacement. .

13.2 Lexicographical Comparison

Acknovwledgements. «
References. .« « o« o ¢ o ¢ o o o o @
Appendix A: Operator Precedence . .

Appendix B: List of Functions with Section References .

Appendix C: Sample Progralms
Appendix D: Trace Facility.

OMIST. « @ o o o o o o o o o a o s s =

Preface . . o ¢ o @ o @ o o o o o
Chapter I: Introduction
TRAC o« ¢ o o o o o o o o« o o o =
UMIST. ¢ o o o o o o o o o o o =
Guide to this Manual
Chapter II: The UMIST Processor . .
Mode of Operation. . «
SYntax + v 4 e 4 4 e 4 e e e e .
Chapter III: UMIST Primitives . . .
Read String and Print String . .
Define, Call and Segment String.
The Form Pointer « <« . .
The Equal Function
Other Language Features.
Chapter IV: UMIST Variations. . . .
Input Functions. . « . « . « . .
Arithmetic Functions
Boolean Functions.
External Storage Functions . . .
Other Differences. . . . « « . .
Chapter V: UMIST Extensions
Special Symbols. « « . « ¢« . . .
Set Definition Function.
Class Membership « « « « « « .«
Parameter Setting.
Protection Parameters
Parameter Switches.
Special Character Parameters.
Integer Parameters.

Name Parameters . . . - -

Implicit Calling and Call Procedure.

External Functions
Status Recording
Chapter VI: Internal Structure. . .
Pushdown Stack « « « « o « o .
Scanning Algorithm
Storage Management < . .
Bibliography. . « « <« « « .« . .«

Appendix A. A Guide to Using UMIST 1n‘

Appendix B. Primitive Functions . .
print string function.
read string function
signoff function

-

MTS .

COMPLETE

TABLE

OF CONTENTS

- 674
-674
.675
.676
-677
.678
.679
. 715

.717
.718

»-719

-719
-719
- 720
.721
.721
722
.723
.723
<724
. 725
-726
<726
<727
727
<727
.728
.728
729
<730
«730
. 731
«731

=131

<732
<732
«733
.733
<733
733
<735
-735
737
. 737
.738
.738
<742
<743
- 745
. 745
745
- 745

17

18

define string function
define form function . «« .
segment string function.
call function. « + ¢« ¢ « ¢ ¢ o« o .
call procedure function.
print form function.
initial function . « & & « ¢ o o .
call segment function.
call character « « « « ¢ « ¢ « « =«
call n charactersS. « « « « o« « « =«
call restore function.
set function . .+ « ¢ 4 4 ¢ o o o
delete definition function
delete all function. . . . « . « =
equal function
decimal arithmetic functions . . .
add decimal. . . ¢« & o ¢ ¢ ¢ o o
subtract decimal . . . « .« .+ « + .
multiply decimal« . . .
divide decimal « . ¢ ¢ o .
test decimal . « ¢« ¢« ¢ ¢ o ¢ & . .
special symbol functions
parameter set function
print parameter functiom
load external functions function .
read character function. . . « .« .
read n characters function
dump function. . . .« ¢« ¢« + .+ o .o .
niull function. « ¢« ¢ ¢ ¢« « o o o .
restart function . . . <«
reinitialize function.
set form pointer function.
call form pointer function
call gap function.
call ordinal value . « . « « « « =«
erase segment gaps function. . . .
set protection classes function. .
list selected names function . . .
test character function.
length function. . « .« « « . « . .
hexadecimal to character function.
character to hexadecimal function.
hexadecimal arithmetic functioans .
add heX: o o o« o ¢ o o o o s o o o
subtract hex . . ¢« ¢ ¢ ¢ ¢ o o o =
test heéX o« o o ¢ ¢ o o o o = o o =
if functioNe.e « « ¢« o « = o o « « =
not function 4 & 4 & . o .
and, or, and xor functions
define special symbol function . .
date function. « ¢« « o« « o o o o =
time of day function
translate function . « « .« ¢« « o .

.

¢« o &

.745
.746
.746
.746
.746
.747
.747
. 747
.748
.748
.748
. 748
. 749
.749
.749
.749
.750
.750
.750
.750
.750
.750
.751
.751
.751
.751
.752
.752
.752
.752
.752
.753
.753
.753
.753
.754
.754
.754
.754
.755
.755
. 755
.755
.755
.756
.756
.756
.756
.756
.757
.757
.757
.757

translate print functiom .

hash history function. . <« . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o a a« o« o o
Appendix C. UMIST Line EQitOr « ¢ ¢ ¢ ¢ o ¢ o o o o « o o o« o o « o
WATFOR ¢ ¢ <« o ¢ o o o o o o o o o = o o a o o s o o-» ® @« a a s o o =
I WATFOR Control Cards « ¢« « ¢ « ¢ o o © o o o o o @« a2 o o o =

II Error Diagnostics and Running Modes . « ¢« o ¢ o o o a. o 4 o «
IITI Subroutine ReferencesS. . « o« ¢« ¢ o o o « o o« o « a o a o« o & «
IV-— WATFOR Subroutrine Library Structure. . . « ¢« o « o o « o « «

v Language EXtensSionsS. . ¢« v ¢ ¢ ¢ o o e o o 2 s o o a. o o o =

VI Language RestrictionS.. . o ¢ ¢ ¢ o ¢ ¢ ¢« « o o o o o o =« o @
WATFOR COMPILER ERROR MESSAGES. « v ¢« ¢ o e o o o o @ o o a o =« o« =
BASS —— PDP-8 AssemMbler. . .« « «c ¢ o ¢ o s o 2 o o = s o« o o s o« o a »
IntroductionN. « o ¢ ¢ ¢ o ¢ o o o« e o o s o o o s @ a o o 8 s o o =
Assenbly ProCesSSiNg o« « o « o o o « o o o o s’ o o o a o o o s s = =
BASS IN MTS ¢ v ¢ « o o o o o o s o o s s s a e« o o s o s s o o o @
Names and EXPTeSSIiONS ¢ v o o o « 2 o o o o o ¢ o o = o o o o o o o
Instructions and Procedure Calls. . . . ¢ ¢ e ¢ o « o o o o « o o =
Debugging AidS. o« ¢ o ¢ o o o o e ¢ o 2 = s o o s o s a s s o a w° o
Object DECKSe « ¢ ¢ o ¢ ¢ ¢« o o o o o o o o« s o s s s« s o o a.a s =
Appendix 1: 8ASS Standard OpcodeS. « « o e ¢« o o o« o o o o o & @«

COMPLETE TABLE OF CONTENTS

.758
758
759

<766
+766
767
.768
-.768
769
<772
- 773

.782
.782
782
-.783
. 784
.785
. 787
.788
<790

19

20

MTS

(MICHIGAN TERMINAL SYSTEMN)

"Hriteups are like watches; the worst is
better than none, and the best cannot be

expected to go quite true."

[with apologies to

Samuel Johnson]

MTS-000-1

12-1-67

GENERAL INTRODUCTION

MTS is a time-sharing system designed to be run primarily from remote
terminals. It also has a batch mode to allow batch processing of jobs.
The system allows the user at a remote terminal to create files consisting
of general text or program material, to call in processors to translate
these files, to run translated programs, to inspect and debug programs, to
obtain hard copy of files on high speed printers and punches, to
communicate between consoles, etc.

The system is described in a series of sections (of which this is the
first), labelled as follows: The upper left hand corner of each page of a
document contains

(1) the document number

(2) the date of issue

The document number is constructed as follows: The general fora is

MTS - <section number> - <level number>

for example: MTS-210-0

Section 230 covers the commands (in alphabetical order). The section
number for «commands is extended by adding a slash followed by the first 3
letters of the command. If this is not unique, a colon and distinguishing
letter (s) are added, and so on, e.g., MTS-230/CRE-0

Section 253 covers subroutines available to> user programs (in alphabeti-
cal order). The section number is extended there by adding a slash
followed by a five-digit number identifying the subroutine e.g., writeup on
SPRINT has the number MTS-253/62515.

Section 255 covers macro library descriptions amnd is handled 1like
section 253.

Section 280 covers library file descriptions and is handled like section
253.

General Introduction 21

22

MTS-100-0

12-1-67

USAGE_DESCRIPTION

This major section of the manual is concerned with presenting a general
overview of the system and usage guides for different types of users at
different kinds of terminals.

MTS-110-0

12-1-67

CONCEPTS AND_ FACILITIES

A present day computing system is a complex blend of hardware (the
actual physical components of a computer) and software (programs which
control the functioning of the hardware). The purpose of the software is
to provide to the user the full capabilities of the hardware without
requiring a detailed knowledge of the hardware, and in addition to provide
functions and facilities not directly available in the hardware. PFrom the
system viewpoint, on the other hand, the software provides for reasonably
efficient usage of the hardware by removing the user from the basic levels
of hardware function (such as I/0 and interrupt handling). In effect, the
user sees a computer which 1is the sum of the hardware and software
facilities, so that he 1is, in fact, not running on the actual hardware
computer which supports the software.

This manual is a description of the MIS (Michigan Terminal System); MTS
is a software system designed to run omn an IBM System 360 hardware
configuration. This manual introduces the basic concepts and facilities of
this software system; details and descriptions of the hardware must be
obtained from the appropriate IBM manuals.

MTS is designed to handle both interactive operations (terminal
operations) and batch operations. In interactive operations, the user is
situated at a terminal device (such as a teletype) and communicates with
the system in real tinme. Requests for system action are received,
performed, and the results immediately returned to the user, who may then
react and enter new requests. MTS is able to support several terminals at
a given time by giving each user a certain amount of time in sequence. In
batch operations, the user submits a deck to the Computing Center and waits
until this deck has been run to obtain output. The center collects these
decks into batches, and then runs a whole batch at once. Thus, tura-
around-time 1is 1longer for batch operations; but due to the need of
terminals and communication lines in interactive mode, batch operations are
normally significantly cheaper for the same processing.

MTS contains a number of facilities to make the computer more readily
accessible. The system contains an assembler (F level IBM assembler), two
Fortran compilers (Fortran IV G 1level and WATFOR), an interactive
calculator language (PIL), a symbol manipulation language (SNOBOL4), and a
symbol-macro processor (UMIST). Additional translators will be available
in the future. The system user is able to define, store, and use
collections of information (files-see later) either from terminals or in
batch. These collections are generally whatever the user wishes to file
away for 1later wuse. Once defined, such collections may be modified,
deleted, or reused at later times. The user from a terminal has full
facilities for running, interrupting, modifying, and restarting (i.e.,
debugging) programs which he has written and translated. The systen
includes both a macro library for assembler users and a subroutine library

Concepts and Facilities 23

24

MTS-110-0

12-1-67

for all users, thus easing many of the programming burdens. In addition to
these facilities, the user is able to communicate between terminals, to
copy files and make hard copy of them, and, in general, to obtain all those
services necessary to make the computer accessible as a tool.

This section will serve as a brief introduction to MTS. Basic
definitions will be given, and simple examples will explain some of the
functions of MTS. An understanding of the remainder of this section should
allow one to use the remainder of this manual with relative ease.

A file is a logically ordered set of lines, where each line is some unit
of information. For example, a line may be a source card of 80 characters,
an object card, an output print line, or any other unit of information
desired by the definor of the file. Files may be created, modified, or
destroyed as necessary; they may be permanent or temporary for a single
part of a job; they act as storage areas for collections of information
wvhich will be needed at some later date. There are three types of files in
the system: user files, library files, and scratch files. Library files
are files which are available to all users of the system; - the tramslators
are examples of such files. User files are private files defined by
individual users and cataloged under particular ID numbers; such files are
available only to those users who have the proper ID number. Scratch files
are files created for use in a single job and destroyed automatically at
the end of that job. All files in thne system bear distinct names for
reference purposes; in fact, a file must be named before it can be
cataloged. A library file has a name which begins with an asterisk (¥*) and
is followed by 1 to 15 <characters; this name nust be used for all
references to the file. User files have names consisting of 1 to 12
characters; it is strongly suggested that only alphanumeric characters be
used in naming user files, although other characters may work. To prevent
different users from defining files of the same name, the system prefixes a
four character ID to the file name given by the user; this ID is assigned
to each user by the computing center and is unique to each user. A scratch
file has a name which begins with a minus sign (-) and is followed by 1 to
8 characters. '

SXXXXX.XXX, where s 1is a sign (plus or minus), x is a decimal digit, and
the . is a period or decimal point. At the time a file 1is defined
(created), one may supply with each line its line number; alternatively,
one may simply supply to the system a beginning 1line number and an
increment, and 1let the system supply a line number for each line. Either
way, each line within a file has a unique line number. After a file has
been created, various parts of the file may be referenced or modified by
referring to the appropriate line numbers.

There is a set of special files in the system which may be used at any
time and which are always defined. Each of these special files has a file
name of the form *NAME*, where NAME specifies the particular special file.
Thus, for example, *DUMMY* is a system special file which is always empty.

MTS-110-0

12-1-67

. If one tries to read this file, an EOF (end of file) indication is
received. If one attempts to place information in this file, the
information is lost (an infinite garbage pail). This special file 1is
useful during debugging or as an easy way to ignore some particular output.
Other special files will be described later in this section.

; Another type of name recognized by the system is a device name. This is
the name of a particular physical device on the computer, and the built-in
device names are always 4 characters in length. These names are used when
one wishes to refer directly to some particular physical device (such as a
card reader, a printer, a disk, etc.) rather than to a logical file.
Under normal conditions, reference to device names would occur only durinmg
terminal operations. One difficulty does arise due to the presence of
these device names; a user may unwittingly use such a name as a file name,
causing problems in referencing the file. To prevent such problems, a
pound sign (#) may be prefixed to a file name to indicate that it is a file
name even if there is a device name of the same symbol.

There are a number of attributes or modifiers which may be attached to a
file name wherever a file name occurs. An attribute is attached to a file
name by prefixing the attribute with the character @ and placing the whole
construction after the 'file name. For example, FILE@I is the file name
FILE with the indexed (I) attribute. The various attributes which may be
designated with a file name are specified elsewhere in this manual and will

not be further discussed here.

Now let us consider how to run in the MTS system. The basic philosophy
of MTS is that at any given time tae system is either in command mode or
some particular program is being run. When in command mode, there are two
kinds of input lines to the system: command _lines and data 1lines. A
command line contains a $ in its first character position (columa 1 if on a
card) followed immediately by a command name, followed by whatever
parameters, if any, are needed by the particular command. - Any line which
is not a command line is, by default, a data line. Command lines are used
to provide commands to the system; that is, to provide information to the
system, to request information from the system, or to specify some
particular action to be taken by the system. Data lines are what the name
implies: a data line is a line of data to put in a file. Whenever MTS
finds a command line, the command is carried out. Whenever MTS finds a
data line, the line is added to some current file for later processing; the
particular file used here is whichever file the user is currently defining
(the current active file).

On the other hand, when some particular program is being rum, then all
input lines are data for the program. The data required depends upon the
program being run. If a translator is being rua, then the data is a source
program. If a loader is being run, then the data is an object module. If
a user program is being run, "~ then the data is whatever that progranm
requires as input. Thus, a data 1line may be any one of the above
possibilities. i)

To initiate a run (job) in MTS, the first line must be the command
$SIGNON id ' o

Concepts and Facilities 25

26

MT5-110-0

12-1-67

where 1id is a four character ID assigned to the user. If this ID is
acceptable, the user is signed on in the system and is ready to run. The
ID given in this command is the ID used to prefix all user file names
during the run. As part of the signon procedure, the system prints out the
last time this ID was used to signon in the systen. Furthermore, two
special files are opened for this job; these are *SOURCE* and *SINK*.
SOURCE is defined as the source of incoming lines; it is the terminal for
terminal operations or the input device for batch. *SINK* is defined as
the destination of outgoing 1lines; it is the +terminal for terminal
operations or the output device for batch. In addition, the special file
PUNCH is defined as the punch device if this is a batch run. These
special file names make it possible to refer to the pertinent devices
without knowing their actual device names. Since the actual devices used
for source, sink, and punch in batch runs varies from batch to batch, the
use of thése names is mandatory for references to the batch input and batch
output devices.

To introduce some basic concepts and procedures in using MTS, let us now
consider a simple use of the system. The examples in the remainder of this
section will be written as batch input decks; the primary distinction
between batch and terminal operations is that no interaction between the
user and the system is possible in batch.

The following deck causes the compilation and execution of a Fortran
program which computes square roots.

$SIGNON IDNO
$RUN *NEWFORT; 0=-LOAD
NAMELIST /NL/SQ,ROOT
10 READ (5,NL)
ROOT = SQRT (5Q)
PRINT (6,N)

GO TO 10
END
$ENDFILE
$RUN -LOAD *SINK*; 5=%SOURCE* 6=%SINK*

ENL SQ=10. &END
&NL SQ=20. SEND
$ENDFILE
$SIGNOFF

The signon statement has already been discussed. The next statement is the
run command, and it requests that MTS run the program whose name is
*NEWFORT. This 1is the Fortran compiler, so this statement effectively
requests a compilation. (The various MTS commands are described in detail
later in +this manual. This section will not go into the full details of
each command.) In order to understand the remainder of this command, it is
necessary to define the concept of logical I/O unit. A logical I/0 unit is
a name which may be used in a program to request I/0 (input/output)
activity. The name is not connected to any particular device or file by

MTS-110-0

12-1-67

the program, so the program is independent of the actual device or file
which eventually holds the information. The logical I/0 units available in
MTS are SCARDS, SPRINT, SERCOM, SPUNCH, and 0 through 9. If we look at the
Fortran writeup in this manual, we see that Fortran expects a source deck
on SCARDS and places a listing on SPRINT, error comments on SERCOM, and an
object module on unit 0. . Therefore, when a request is made to run Fortran,
it is necessary to specify which devices or files are actually to be used
for these purposes. The description of the run command shows that SCARDS
is taken as. the current source, if not specified; therefore we need not
specify it since our program is in the source stream. Further, SPRINT and
SERCOM are, by default, the current sink; again we need not specify these
since we desire this output to return via the system output devices. Unit
0, however, has no default assignment; thus, it is necessary to assign some
particular file to 0 to get an object deck for running. Since we want this
file only 1long enough to collect an object deck for execution, we really
need a temporary file which can be deleted at the end of the job. This may
be done by specifying a file name preceded by a minus sign. MTS declares
such a file as temporary and automatically destroys the file at the end of
the job. Thus, on our run command we have 0=-LOAD. This tells MTS that a
temporary file named -LOAD should be created, and all references to 0 in
Fortran should refer to -LOAD. Therefore, we run Fortran with the source
deck on *SOURCE*, the printed output on *SINK*, and our object module on
-10AD. In this particular case, we will have an unsuccessful = compilation,
since our PRINT statement has an illegal namelist name in it. Therefore,
we will not have an execution. To correct this, we would change our
erroneous statement to
PRINT (6,NL)

and resubmit the deck. On this run, compilation will be successful. The
$ENDFILE command simply signals to Fortran that it should quit reading the
source file and finish the compilation. The next command reguests running
the object module produced by Fortran by requesting that -LOAD be run. The
SINK requests that a loading map be placed on the output; a loading map
gives a list of the various programs loaded into physical memory and their
locations. This is handy for later debugging of the progran. To provide
input and output files for the program, 5 is defined as *SOURCE* and 6 as
SINK, where 5 and 6 are the data set reference numbers used in the READ
and PRINT statements. Note that these data set reference numbers are
simply the logical I/O units defined earlier. Thus, our program expects to
read from logical I/0 unit 5, and when we run the program we must tell the
system what file to use when 5 is referenced. In this case we chose
SOURCE since our data will be there. The $ENDFILE after the data tells
the vprogram that this is the end of the data. The final comnand $SIGNOFF
must be the physically last line of any run.

Now let us consider a slightly different version of the previous deck:

$SIGNON IDNO
$CREATE SOQRT
$NUMBER
NAMELIST /NL/SQ, ROOT
10 READ (5,NL)
ROOT = SQRT (SQ)
PRINT (6,N)

Concepts and Facilities 21

MTS-110-0

12-1-67
GO TO 10
. END
SUNNUMBER

SLIST SQRT

SRUN *FORTRAN; 0=-LOAD SCARDS=SQRT
$RUN —LOAD *SINK*; 5=*SOURCE* 6=*SINK*
ENL SQ=10. &END '

&NL SQ=20. &END

$ENDFILE

$SIGNOFF

Here, rather than compiling our source deck from *SOURCE*, we first place
it in a permanent user file. The $CREATE command requests that a user file
with the name SQRT be created; it also makes this file (SQRT) the current
active file. A special file named *AFD* is defined as the current active
file and may be used for references; hence, SQRT and *AFD* each refer to
the same file after this $CREATE command has been processed. The $NUMBER
command indicates that the system should supply a line number for each data
line which it encounters; it is possible to specify a beginning line number
and an increment in this command if one wishes, but here we have taken the
default case of startlng at line number 1 with an increment of 1. Now, as
the source program is read, each source program statement is a data line to
the system. Since data lines are always stored in the current active file,
the source program statements are successively numbered and placed in the
file SQRT. (If the $NUMBER command had not . been given, MTS would have
searched each 1line for a line number and used it if there; otherwise, a
line number of zero would have been assumed. Disastrous results vwould
obviously have followed.) Note that no $ENDFILE command is needed here
since the source deck is not being read by Fortran. The $UNNUMBER command
turns off the automatic line numbering by MTS. The S$LIST command requests
that a listing of the file SQRT be placed on *SINK* (by default). This
command would generate the following output:

- NAMELIST /NL/ SQ, ROOT
10 READ (5,NL)
ROOT = SQRT (SQ)
PRINT (6,N)
GO TO 10
~ END

AN EWN

The numbers on the left of each line are the line nunbers from the file
SORT. The remainder of this deck is as before, except that now on the $RUN
command for Fortran we must spec1fy SCARDS=SQRT so Fortran will take its
source deck from our new file. As before, this deck will not compile due
to the erroneous PRINT statement.. However, since the source deck is in a
pernanent user file, we need not read in the whole deck after removing our
program error. We can simply correct our file and run. The following deck
does this:

$SIGNON IDNO

$GET SOQRT

4 PRINT (6,NL)
$RUN *FORTRAN;....

MTS-110-0

12-1-67

where the dots indicate same as the previous deck. The $GET command makes
SORT the current active file. Note that we cannot use $CREATE again, since
the system would balk at creating two files of the same name. Since
$NUMBER was not given, MTS assumes the data line has jts own 1line number.
Thus, the 4 is stripped from the PRINT (6,NL) line, used as a line number,
and our data line replaces line number 4 in SQRT; this corrects our source
program in SQRT. If we had wanted to add statements to our file, we could
have picked line numbers between those in the file; in this case the new
lines would be inserted in the appropriate places. Thus, the following
deck would place a comment card after the NAMELIST statement in SQRT:

$GET SQRT
1.5C SQRT PROGRAM

There are a number of commands which have not been discussed here, but
the reader should by now have gained some basic understanding of the
concepts and procedures of MTS. It is possible to destroy or empty files,
to change the source or sink assignments, etc. There are also commands
which allow one to interrupt a running program, dump out pertinent
variables from the program, modify various of the locatiomns in the progranm,
and then restart the program. These capabilities are primarily of use to
those running from terminals; the debugging facility providing by this type
of interaction should be obvious.

This has been a brief introduction to the concepts of MTS. However, if
the definitions and procedures discussed here have been understood, one
should have little difficulty in obtaining more detailed information fronm
the remainder of this manual.

Concepts and Facilities 29

MTS-130-0

12-1-67

CALLING CONVENTIONS

INTRODUCTION

A calling convention is a very rigid specification of the sequence of
instructions to be used by a program to transfer control to another program
(usually referred to as a subroutine). It is very desirable although not
always practical to set up only one set of conventions to be used by all
programs no matter what language they are written in so that FORTRAN
programs may call MAD programs and assembly language programs and so forth.
In the MTS system the OS type I calling conventions have been adapted as
the standard. A complete specification of these standards can be found in
the TIBM System/360 Operating Systen Publication, Supervisor and Data
Management Services, Form C28-6646. This writeup shall try to bring out
pertinent details of these calling conventions.

Throughout this discussion we will refer to the terms calling program,
called program, save area, and caliing sequence. The calling brogram is
the program which is in control and wants to now call another progran
(subroutines) . The called program is the program (subroutine) which the
calling program wants to call. The Save area is an area belonging to the
calling program which the called program uses to save and later restore

general purpose registers. The save area has a very rigid format and is
discussed in more detail later on. A calling sequence is the actual

sequence of machine instructions which perform the tasks as specified by
the calling conventions.

The facilities that must be provided by the calling conventions are:

1. Establish addressability and transfer to the entry point.

2. Pass parameters on to the called progran.

3. Pass results back to the calling program.

4. Save and restore general purpose and floating point registers.

5. Re-establish addressability and return to the calling program.

6. Pass a return code (error indication) back to the calling program so
it knows how things went.

The remainder of this writeup will describe the 0S type I <calling
conventions to show how they are used and how the facilities listed above
are provided for.

MTS-130-0

12-1-67

REGISTER AND STORAGE VARIANTS OF TYPE I CALLS

The 0S Type.I calling conventions actually consist of two very similar
calling conventions, referred to as 0S (I) S Type calling conventions and
0S (I) R Type calling conventions. The two differ only in the way
parameters and results are passed between the calling and called programs.
The R refers to register and the S to storage.

The 0S (I) R type <calling conventions utilize the general purpose
registers 0 and 1 for passing parameters and results. This allows only two
parameters or results and cannot be generated in higher level languages as
FORTRAN. Its advantages are that calling sequences are shorter and take
less time to set up. These are very popular in lower-level systenm
subroutines such as GETSPACE or GETFD.

The 0S (I) S Type calling conventions require a pointer to a vector of
address constants called a parameter 1list (in register 1). Since the
parameter list can be of any required length, several parameters can be
passed using 0S (I) S Type calling comnvention. These conventions are used
by system subroutines such as SCARDS or LINK and are generated by all
function or subprogram references in FORTRAN. Results can be passed back
by giving variables in the parameter list new values or via register 0.

PARAMETER LISTS

As stated above a parameter list is a vector of address constants. The
parameter 1list must be on a fuil-word boundary and the entries are each
four bytes long. The address of the first parameter is the first word of
the 1list, the address of the second parameter the second word of the list,
and so on. For example the parameter list for the FORTRAN statement

CALL QQSV(X,Y,Z)

might ke written in assembly code as:

PAR DC A (X) address of X
DC A(Y) address of Y
DC A (Z) address of 2

Now this parameter list works well enouga when the parameter list for the
subroutine is of fixed length, but there is not enough information yet to
allow a subroutine to determine the length of the parameter 1ist and hence
accept variable 1length parameter 1lists. For this reason there are two
types of parameter lists, fixed length parameter lists as described above,
and an extended form of parameter list called a variable-length parameter
list which is described next.

Since a standard 360 computer uses 24 Dbyte storage addresses the

left-most byte of an address conrstant is usually zero. 1In a variable
length parameter list bit zero of the left-most byte of the last parameter

Calling Conventions 31

32

MTS-130-0

12-1-67

address constant is set to 1 to show that it is the last item in the list.
The example above then would be written as:

PAR DC A (X) address of X
DC A (Y) address of Y
DC XL1'80°" turn on bit zero.
DC AL3 (Z) address of 2

if it generated a variable-length parameter list. As a nmatter of fact
FORTRAN does generate variable-length parameter lists. Note though that

_programs expecting a fixed 1length parameter 1list will work with a

variable-length parameter 1list, provided it is a least as long as the
fixed-length list they are expecting.

REGISTER ASSIGNMENTS

Of the sixteen general purpose registers, five are assigned for use in
the calling conventions. The use of the general registers differs slightly
depending upon whether an R or S type call is being made.

MTS-130-0

12-1-67

The following table specifies exactly what each register is used for during
a call:

Register Number Contents

0 Parameter to be passed in R type sequences.

Result to be passed back in R and S type sequences.

Parameter to be passed in R type sequences.

Address of a parameter list in S type sequences.

2-12 Not used as a part of the calling sequence. Must be
saved and restored by the called progranm. The save

area is usually used for this.

13 The address of the save area provided by the calling

program to be used by the called progran.

14 Address of the location 1in the calling program to
which control should be returned after execution of

the called progran.

o e o —— —— —— — —— o W oo (o ot o oot e)

15 Address of the entry point in the called program at

the time of the call.

A return code at the time of the return that indicates
to the calling program whether or not an exceptional
condition occurred during processing of the called
progranm. The return code should be zero for a normal
return or a multiple of four for various exceptional
conditions.

e e e e e e e o - e o — e e e e - e o —— e —]
e e e o o e o e e s e o e e ——— e — e

General Purpose Register Linkage Conventions

Notice that it 1is the called program's responsibility to save and
restore registers 2-12 in the save area provided by +the calling progranm.
There are two reasons for this. Pirst of all only the called program Knows
how many of the registers from 2-12 it is going to use. Since a register
need be saved and restored only if it is actually going to be changed, the
called program may be able to save some time by saving and restoring only
those ragisters which it will use. Secondly, the called program requires
addressability over the area in which it will save registers upon entry,
since any attempt to acquire the address of a save area would destroy some
of the registers which are to be saved. Furthermore, the save area should
not be a part of the called program since that would prevent it from being
re-entrant (shareable). This means the calling program should provide the
save area in which registers are saved and restored. And so we have the

Calling Conventions 33

34

MTS-130-0

12-1-67

called program saving and restoring registers 2-12 in a save area provided
by the calling prcgran.

The calling conventions are quite different with floating point reg-
isters. Since a 1large percentage of programs do not leave items in
floating point registers across subroutine calls it seems rather wasteful
to always save and restore the floating point registers. So the convention
has been established that the calling program must save and restore those
floating point registers which contain items which are wanted. Also,
programs which return a single floating point result quite frequently do so
via floating point register 0.

RETURNING RESULTS

Therea are in the 0S Type I calling conventions four ways in which a
subroutine can return a result. These are:

1. Value of result in general purpose register 0.

2. Value of result in general purpose register 1.

3. Value of result in floating point registers. (usually 0)
4. Value of a parameter from the parameter list changed.

The particular method used depends upon whether the R or S type convention
is used and whether the called program can be used as a function in
arithmetic statements.

The first three methods are used by R type calling conventions for all
returned results. The contents of eaca of the registers depends upon the
particular called program and are described in the subroutine writeup for
each subroutine using the R type calling conventions.

The first, third, and fourth methods are used by S type calling
conventions for all returned results. The first and third methods are used
by function subprograms whose calls can be embedded in FORTRAN and MAD
statements. The choice of general register 0 or floating point register 0
depends upon whether the result returned is integer or floating point mode,
respectively. An example of subroutines which return results in this
manner are the FORTRAN IV Library Subprograms, such as EXP, ALOG, or SIN.
The fourth method can be used by a subprogranm. An examnple would be a
subprogram called by the statement

CALL MATADD(A,B,C,M,N)

which might add the MxN matrices A and B together and store the result in
c.

MTS-130-0

12-1-67.

SAVE AREA FORMAT

The save area is an area belonging to the «calling program which the
called program uses to save and later restore general purpose registers.
The address of the save area is passed to the called program by the calling
program via general purpose register 13. The save area has a very rigid
format and is described in the table:

T ¥ L) 1
| Word | Displacement | Contents 1
[1 i '
L} T Ll L
{ 1 0 { Used by FORTRAN, PL/I, and other beasties for |
| | | many devious purposes. Don't touch! |
1 i i . |
F + i o
2 4	Address of the save area used by the «calling	
		progranm. Forms a backward chain of save areas
i	stored by calling program.	
[l [l [']
L] Ll 1 t
{ 3 8 | Address of the save area provided by the called |
l | | program for programs it calls. Forms a forward |
{ | | chain of save areas. i
[1 i I
1) 1 N T L}
| o | 12 | Return address. Contents of register 14 at time|
| | | of call. |
t } } —
| 5 i 16 | Entry point address. Contents of register 15 |
{ | | at time of call. |
F + } {
| 6 | 20 | Register 0 contents. i
L i Fl 4
. L} Ll) Ll
| 7 1 24 | Register 1 contents. {
- : : 1
I 8 | 28 { Register 2 contents. |
L i 1 " |
) Al) L
| 9 32 | Register 3 contents. {
L i 1 J
] 1 1) B
| 10 | 36 | Register 4 contents. |
L 1 l]
L) 1 T . |
| 11 40 | Register 5 contents. {
L 1 [l (]
t t T !
i 12 | oy | Register 6 contents. |
[i i i
1 1 1 L}
1 13 48 { Register 7 contents. {
L 1 1]
v - T T 1
L 52 | Register 8 contents. |
F + + 1
I 15 | 56 | Register 9 contents. |
1 1 4 i
1 L] 1 L}
| 16 | 60 | Register 10 contents. {
[H k| . - ¥ |
| o t T !
17 64 | Register 11 contents. |
L } i I
] T Ll L]

Calling Conventions 35

MTS-130-0

12-1-67

| 18 | 68 | Register 12 contents.

L [] 1 " |

SAVE AREA FORMAT

There are two things to be noted about the save area format, namely who
sets what parts of the save area and how these areas might be set up. The
calling program is responsible for setting up the second word of the save
area. This is to contain the address of the save area which was provided
when the calling program was itself called. Although this is technically
set up by the calling program as a part of the call, most programs set up
the save area they will provide to subroutines they call once and leave its
address in general register 13. The work then does not need to be repeated
for each call. The called program is responsible for setting up the third
through eighteenth words of the save area. The called program usually
saves the general registers which it will use as a part of its dinitializa-
tion procedure and restores the registers as a part of the return
procedure. Notice that the save area format is amenable to use of the
store multiple and 1load multiple instructions for saving and restoring
blocks of registers. All of this will be made clearer in the examples at
the end.

Some system subroutines (notably GETSPACE, FREESPAC, and a few others)
do not require that a save area be provided for thenm. For these
subroutines general register 13 need not be set up before a call and its
contents are preserved by the called subroutine. The subroutines which
need no save area are clearly marked as such in the MTS subroutine
writeups. Notice that it is all right to provide a save area to one of
these subroutine; it will simply be ignored.

CALLING PROGRAM RESPONSIBILITIES AND CONSIDERATIONS

The calling program is responsible for the following:

1. Loading register 13 with the address of the save area and setting up
the second word of the save area.

2. Loading register 14 with the return adaress.

3. Loading register 15 with the entry point address.

4. Loading registers 0 and 1 with the parameters in an R type call or
loading register 1 with the address of the parameter list in an S
type call.

5. Saving floating point registers, if necessary.

6. Transferring to the entry point of the subroutine.

7. Restoring floating point registers, if necessary.

8. Testing the return code in register 15, if desired.

After the return from a subroutine, the status of the program will be as
follows:

1. In general, the contents of the floating point registers will be
unpredictable unless saved and restored by the calling progran.
2. The contents of general registers 2 through 14 will be restored to

MTS-130-0

12-1-67

their contents at the time the called program was entered.
3. The program mask will be unchanged.
4. The contents of general registers 0, 1, and 15 may be changed.
5. The condition code may be changed.

Note that general registers 0 and 1 and floating point register 0 may
contain results in the case of R type subroutine calls or a function
subprogram. General register 15 will normally contain a return code,
indicating whether or not an exceptional condition occurred during process-
ing of the called progran.

CALLED PROGRAM RESPONSIBILITIES AND CONSIDERATIONS

The called program is responsiblie for the following:

1. Saving the contents of general registers 2 through 12 and 14 in the
save area provided by the calling program. These registers need be
saved only if the called program modifies these registers.

2. Setting up the third word ot the save area with the address of the
save area which will be provided to subroutines it will call.

3. Restoring the contents ot general registers 2 through 14 before
returning to the calling programn.

4. Restoring the program mask if changed.

5. Loading general registers 0 and 1 and floating point register 0 with
the result in the case of R type subroutine <calls or a function
subprogran.

6. Loading general register 15 with the return code.

7. Transferring to the return location.

EXAMPLE CALLING SEQUENCES

This section will describe and give the assembly language statements for
the typical machine instructions necessary to implement 0OS Type I calling
conventions.

A typical entry point might consist of the following statements:

USING SUBRA,12 12 wiil be a base register
SUBRA STM 14,12,12(13) save registers
LR 12,15 set up 12 as the base register
LA 11,SAVE this is save area provided for others
ST 11,8(0,13) set up forward pointer
ST 13,4(0,11) set up backward pointer
LR 13,11 set up for any calls we issue)
LR 11,1 get parameter pointer into noan-volatile
© reg.

Calling Conventions 37

38

MTS-130-0

12-1-67

o
SAVE DS 18F save area we provide for others

Inside a subroutine that began with the entry sequence given above, the
value of the second parameter in the parameter 1list could be put into
general purpose register 3 with the following sequence:

40,11 pick up second adcon from parameter 1list
0(0,3) pick up value of parameter

¢ 6 o HEto 00
S w
. N

Inside a subroutine that began with the entry sequence given above,
another subroutine, SUBRB, could be called using the following sequence.
Remember that register 13 already points to the correct save area:

La 1,PARLIST set up parameter list address
L 15,=V (SUBRB) set up entry point address
BALR 14,15 set up return address and branch to the
subroutine
B *+4 (15) test return code via a transfer tabie
B AOK RC=0
B BAD1 RC=4
B BAD2 RC=8
L J
[J
L]
AOK ece normal return to here
[]
L]
L J
PARLIST DC A (PAR1T) first parameter address

Finally, a subroutine that began with the entry sequence given above
could return to the program that called it with the following sequence:

LE 0,RESULT tloatingy point result to FPR 0.

L 13,4(0,13) use back pointer to get right save area.
LM 14,12,12(13) restore registers.

SR 15,15 indicate a zero return code (no errors)
BR 14 return to what called us

MTS-130-0

12-1-67

It should be pointed out that aithough the above sequence are typical of
the instructions used to implement the calling conventions, many variations
are possible.

MACROS FOR CALLING SEQUENCES

There are two sets of macro definitions in the MTS Macro Library which
can be used to help generate calling sequences. These are the 0S macros
SAVE, CALL, and RETURN; and the macros ENTER and EXIT. The more useful of
these macros are ENTER, CALL, and EXIT. Besides these there is a set of
macros which generate the entire calling sequences for many of the systen
subroutines and IOH/360. More details may be found in section MTS-255.

Calling Conventions 35

Lo

MTS-140-0

12-1-67

BATCH _USER'S_GUIDE

BATCH JOBS

MTS batch Jjobs are those which are turned in at THE WINDOW for amn MTS
receipt card and are run in the order that they are turmned in. The output
may then be picked up at THE WINDOW as soon as the job has been run. A
batch job must not require any interaction.

ADVANTAGES AND DISADVANTAGES OF BATCH

Although many users will need to have interactive capability, many users
will find that batch is satisfactory and perhaps even advantageous to then.
There will probably be few if any interactive users who do not make at
least occasional use of batch.

Batch has several advantages, even for those who have access to remote
terminals. There is at present no way to use a high speed line printer or-
card reader or card punch directly from a terminal. But when running in
batch mode one uses these devices at the Computing Center. Therefore, a
user who does =some of his work on a terminal may wish to create files
containing the information he wishes to be printed and then either turn in
a batch job to list these files or run *BATCH from his terminal to create a
batch job to do the listing (see the writeup on *BATCH in section 280).

Batch may often be more economical than an interactive use of MTS.
Since the charge for a job is based, in part, upon elapsed real-time, the
terminal user will find that he is being charged something for just sitting

and thinking. When running in batch, not only does the card reader not
have to think about the next line to input but the input-output rates are
much higher in Dbatch. A disadvantage may arise in batch when the user

wishes to compile and execute in the same job. Since there is presently no
way for a run command to be made conditional, every run command will be
executed even though the compilation which was to produce the object file
was not successful. Usually a program interrupt occurs early in the
execution of this file. This etfect may or may not be desirable but the
user should be aware of it.

MTS-140-0

12-1-67

DIFFERENCES BETWEEN BATCH AND TERMINAL USE

There are two commands which are not legal in batch ($SOURCE and $SINK)
and three commands which are slightly different ($EMPTY, $DESTROY, and
$RUN). SEMPTY and $DESTROY differ only in that no confirmation of the
command is needed. $RUN differs in that *SOURCE* is set to the card reader
containing the input stream, that *SINK* is the printer associated with
this batch run and *PUNCH* is the punch associated with +this batch run.
PUNCH does not exist for terminal users. In batch, if the user does not
specify global limits for time, pages, and cards on his $SIGNON card,
default values will be supplied automatically and his job will be held to
those limits. See the section Limits Specification, section MTS-225, for
details.

USEFUL HINTS FOR RUNNING A BATCH JOB

1. It 1is often necessary to create an end-of-file while running a batch
job. A SENDFILE placed at the point where an end-of-file is needed
will accomplish this. In addition there is an automatic end-of-file at
the end of each batch job.

2. Any object deck in the source stream should be terminated with either
an LDT card (see loader section) or a $ENDFILE.

3. It is strongly recommended that the user place his name enclosed by
primes as the last parameter on the $SIGNON card.

4. Occasionally it 1is necessary to rerun a batch job and a user should
take this possibility into account. For example, a user may create and
give contents to a file in the first part of his job and empty and give
new contents to the same file later. If it became necessary to rerun
this job after it had already given the second contents to the file, it
would not run the same if any of the line numbers in the second
contents differed from the line numbers in the first. To solve this
problem, instead of $CREATE use either $CREATE followed by $GET and
$EMPTY or $DESTROY followed by $CREATE.

EXAMPLES OF MTS BATCH JOBS

1. Sample FORTRAN compilation and run.

$SIGNON X007 Y*JAMES BOND'
$RUN *NEWFORT; 0=-0BJECT

Batch User's Guide 41

42

MTS-140-0

12-1-67

FORTRAN progranm

.

$ENDFILE
$RUN -OBJECT *SINK*; 1=*SOURCE* 2=%SINK*

Comments: This job will compile the FORTRAN program in the source streanm,
putting the 1listing on the printer and the object program in a temporary
file called -OBJECT. The object program is then run producing a map on the
printer. The program will use logical unit 1 for input from the job streanm
and write the output on logical unit 2 which will be the printer.

2. Batch job to initialize the file PHROG from cards in the input strean.

$SIGNON P314 'G.J. NOHOPE!'
$CREATE PHROG

$EMPTY PHROG

$GET PHROG

$NUMBER

cards to go into file

SUNNUMBER
$SIGNOFF

Comments: The $EMPTY and $GET commands are is only important if the job is
to be rerun. See above.

3. Batch job to list the file LISTING-B on the printer.

$SIGNON Q123 'FIFO STACK!'
$LIST LISTING-B
$SIGNOFF

4. Batch job to assemble a program, punching the object deck produced
(default case).

$SIGNON XXXX *L. USER!
$RUN *ASMBLR

MTS-140-0

12-1-67

assembly input

$SIGNOFF

5. Batch Jjob to run the object deck produced in the previous example. No
map is wanted, and the program will read from SCARDS and print on
SPRINT.

$SIGNON XXXX TIME=20 PAGES=62 'L. USER!
SRUN

object deck

$ENDFILE

data for the program

Batch User's Guide 43

Oy

MTS-150-0

12-1-67

TERMINAL_ USER'S GUIDES

This section contains usage information for the various types of console
and terminal devices supported by MTS, such as teletypes, 2741s, etc.

MTS-151-0

12-1-67

TELETYPE USER'S GUIDE

(For Teletypes through 2702)

Introduction

This document gives instructions for initiating, operating, and termi-
nating use of a teletype terminal calling in on numbers that go through a
2702 transmission control in MTS. (See section MTS-170 for a description
of teletype use through the Data Concentrator — which is being used depends
on the telephone number called.) The teletype terminal may be either a
model 33 or 35, ASR or KSR model connected to the Bell Telephone Systenm
dialable network through an upright data phone and must be capable of
half-duplex operation. A teletype with an inverted data phone or connected
to the TWX network cannot be used as an MTS terminal. Although am ASR
teletype with paper tape equipment may be used via the keyboard, MTS has no
provisions for receiving or transmitting information via paper tape.

Teletypes are connected to the IBM System/360 through an IBM 2702
Telecommunications Control using a Telegraph Type II adapter. The IBM 2702
is connected to the telephone system through model 103A2 data sets. These
data sets are assigned a block of telephone numbers in a trunk-hunting
sequence within the University Centrex System. The telephone number is
listed under 2702 - TELETYPE_PORTS in MTS-270.

Iritiation Procedure

To ready the teletype for use with MTS, proceed as follows:

1. 1If the teletype has the option to run in either half-duplex or
full-duplex mode, place it in aalf-duplex mode. On some model 35
teletypes this is accomplished by twisting the HDX switch, which is
located to the left of the keyboard, im a clockwise direction. On a
model 33 and some model 35 teletypes flip the toggle switch located
above the telephone dial to the HDX position.

2. Press the button labelled ORIG located beneath the telephone dial.
You should row hear a dial-tone over a speaker inside the teletype.
The volume control for the speaker is a knurled knob located to the
right of the keyboard of a model 35 teletype or on the front panel
of a model 33 teletype.

3. Dial the telephone number ot the IBM 2702 =~ TELETYPE PORT. The

Teletype User's Guide 45

46

¥TS-151-0

12-1-67

telephone number is listed in MTS-270. The first telephone number
listed will search all of the numbers and connect you to the first

available one. If your teletype 1is in the University Centrex
System, you need dial only the last five digits of the telephone
number.

4. If MTS is on the air and there is a free line, your call will be
answered. Either a busy signal or a ring with no aaswer indicates
that MTS is not on the air or there are no free lines.

5. After answering your call MTS types out:

UNIVERSITY OF MICHIGAN TERMINAL SYSTEM: ANN ARBOR,MICHIGAN.
WHO ARE YOU? ‘

If your teletype does not respond with an automatic answerback, you
must type one. To do this, press the K button to the 1left of the
keyboard and type: :

a. RETURN

b. LINE FEED

c. A sequence of up to ten characters.
d. RETURN

e. LINE FEED

f. X-OFF

6. If you have not already done so, press the K button to the left of
the keyboard. This connects the keyboard to the telephone line.

7. When MTS types the character #, it is operational and ready for a

command line. The first command you issue should be $SIGNON. For a
description of the commands see MTS-230.

Keyboard Operation

During normal operation, the teletype is in one of three modes: receive
mode, transmit mode, or idle mode. Since the teletype keyboard does not
lock or otherwise indicate the current mode, it is the user's
responsibility to be aware of the current mode and act accordingly. A
description of each mode and the action to be takem by the user in that

mode follows:

1. The teletype is in receive mode whenever a message is being typed on
the teletype by MTS or some program running under MTS. The first
character of the output line is a prefix character which indicates
"who is speaking". These prefix characters are defined in MTS-220.
The terminal user should not type on the keyboard while the teletype
is in receive mode.

2. The teletype is in transmit mode whenever MTS or some program
running under MTS is waiting for the terminal user to type imn a line

MTS-151

12-1-67

-0

at the teletype. A prefix <character is typed out as the omnly
character of the line to show that input is expected and indicate
"wvho has requested it". These prefix characters are defined in
MTS-220.

The terminal user should respond by typing in the requested line,
terminating it by typing the «character X-ON (control Q) or the
character X-OFF (control S). Note that the RETURN character is
treated Jjust as any other character and will not terminate a line.
There are two classes of characters which have special significance.
The first class are characters which can be used to edit the line as
it is typed in before it is given to the routine requesting it. The
characters are described briefly in MTS-220 and in more detail in
the table below. Characters of this <class will be treated as
ordinary characters if preceded by the "literal next character"
character. The second <class of characters are those whiéh are
treated peculiarly by the IBM 2702. These characters cannot be
treated as ordinary characters because of hardware limitatioas.

If a transmission error is detected while the teletype is in
transmit mode, the prefix character is retyped on the same line and
all characters typed up to this point are ignored. The teletype
remains in transmit mode waiting for the input line.

An input line may consist of up to 96 characters, not including the
line termination character. If this .count is exceeded, an attention
is assumed. See the next section of the writeup for details about
attentions.

The teletype is in idle mode when it is neither in receive mode nor
in tramsmit mode. That is, the teletype is in this mode when the
program or command -being performed is neither writing information on
the teletype nor waiting for a input line from the teletype. For
instance, the teletype will be in idle mode if the program the user
is running is computing with no input or output, or is imn an
infinite 1loop, and so forth. While in idle mode, the teletype will
"grunt" for about a second once each thirty seconds. This is meant
to reassure the user that MTS has not forgotten him. The terminal
user should not type on the keyboard while the teletype is im idle
mode.

Teletype User's Guide 47

48

MTS-151-0

12-1-67

r L 1
| CHARACTER | FUNCTION i
1 []
L Rl |
| CONTROL A | The previous character is deleted. i
| (SOH) | |
t } |
| CONTROL C { A logical end-of-file return is i
{ (EON) | presented to the program. Any other |
| | contents of the line are not returned. |
[1 'l
LB Ll Ll
| CONTROL N | The current input line is deleted. |
{ (s0) { The teletype returns to transmit mode |
| | for the line to be retyped. |
[l 1 ']
1) 1 |
| CONTROL Z | The next character typed is treated |
| (S2) | as an ordinary character, even i
i | if it is a CONTROL A, CONTROL C, |
| | CONTROL N or a CONTROL Z. |
| i This has no effect on characters |
i { below. |
b + !
| RUBOUT | This character is completely ignored |
| | by the IBM 2702. i
] 1 4
r T :
| CONTROL Q | This character terminates a transmit]
| (X-ON) | operation in a normal manner. |
[1 J
L] 1 '
| CONTROL S | This character terminates a transnmit i
| (X-0FF) | operation in a normal manner. }
i [)]
r 1 .]
| CONTROL E | This character terminates a transmit |
| (WRU) | operation in a normal manner, unless i
| | it is the only character typed, in which|
i | case it causes MTS to give its answer- |
| | back and the transmit to be retried. |
i i -]
L T) L]
| CONTROL D | This character terminates a transmit |
| (EOT) | operation by hanging up the tel- {
| | etype. This is not the approved |
| | way to terminate a session. |
L ' 3
Table I: Characters wanich have special significance dur-

ing tramsmit operatiomns. Control characters
are typed by holding down the control key while
typing the character, control-shift characters
by holding down both the control and the ghift
keys while typing the character

MTS-151-0

12-1-67

An attention is a signal to MTS to interrupt whatever it is doing for
you and return for further command lines. An attention can be used, for
instance, to interrupt a $LIST command after you have seen all which you
wish to see from the file, to interrupt a program which is executing to
check its progress and so forth. A program that has been interrupted via
an attention can be continued at the point of the most recent interrupt by
using the $RESTART command. There are a few times when an attention will
not interrupt MTS. These are: during the initial signon procedure, during
the signoff procedure, and if you have just issued an attention which has
not taken effect yet.

To issue an attention to MTS press the BREAK button. This button is
located to the left of the keyboard on a model 35 teletype and at the right
end of the keyboard on a model 33 teletype. After pressing the BREAK
button, press the BREAK RELEASE button located above the telephone dial and
the K button located to the left of the keyboard. MTS should now type out
the message:

ATTENTION ASSUMED.

The exact action taken next depends on what mode the teletype was in at the
instant the the BREAK button was pushed:

1. If the teletype is in receive mode, the exact action taken depends
on what MTS was doing at the moment of the attention. Three
situations are possible:

a. If MTS has already set up the next 1line of output and was
waiting for the «current line to finish so that it could type
this new line out, the new line is typed out before the
interrupt is taken.

b. If MTS was waiting tor the current line to finish so that it
could request a new line from the user, the new line 1is
requested before the interrupt is taken. This is necessary in
case the user decides to continue after the interrupt.

c. If MTS was not waiting tor an input or output 1line from the
teletype the interrupt is taken immediately.

2. If the teletype is in transmit mode, the line which was requested

must be entered before the interrupt is taken. This is necessary in
case the user decides to continue after the interrupt.

3. If the teletype is in idle mode, the interrupt is taken immediately.
When the interrupt is finally taken as described above, the message

ATTENTION INTERRUPT AT XXXXXXXX

Teletype User's Guide 49

MTS-151-0

12-1-67

is typed, where XXXXXXXX is the right half of the PSW at the time of the
interrupt. The teletype is then placed in transmit mode waiting for a
command line to MTS.

Normal Termination Procedure

If the teletype is not in transmit mode waiting for a command line,
issue an attention. When the teletype does enter transmit mode waiting for
a command 1line, type in a $SIGNOFF command. MTS will now close all your
files, type out several lines of statistics for this session, and turn off
the teletype.

MTS-151-0

12-1-67

Sample Session

Following is a sample session using MIS from a teletype. Because the
edit and control characters are non-printing, a control character is
indicated below by a lower-case letter, the letter being the one pushed
with the control key down. (e.g., X-OFF is CONTROL-S which is printed as
"s") At this session, a file was created and a FORTRAN progran typed into
it, the file was edited and then compiled, and finally the object deck was
Tun. Messages to the right in parenthesis are editorial conments.
Underlined characters were typed by the user.

UNIVERSITY OF MICHIGAN TERMINAL SYSTEM : ANN ARBOR,MICHIGAN.
WHO ARE YOUZe
UM CMPC B RA (Answerback code from teletype)

#$SIGNON_QQQs

#**¥LAST SIGNON WAS: 12:15:42 05-01-67
USER "0QQ." SIGNED ON AT 13:31.50 ON 05-01-67
#3SCREATE DEMOSs

TFILE "“DEMOS " HAS BEEN CREATED.
#3NUMBERS

1100 _FORMAT (AlU) s

2READ_(5,100) ALPHAS

3WRITE_ (6,100) ALPHAS

GO_T0_1s

5ENDs

63UNNUMBERS

D
1 100 FORMAT (AY4)
1.5 1 CONTINUE
2 READ (5,100) ALPHA
3 WRITE (6,100) ALPHA
3 GO TO 1
5 END
#END OF FILE
§$€RUN *FORTEDIT; SCARDS=DEMOS SPUNCH=-SQURCES
#EXECUTION BEGINS
*EXECUTION TERMINATED
#SLIST -SOURCES
> 100 FORMAT (A4)
1 CONTINUE

READ (5,100) ALPHA

WRITE (6,100) ALPHA

GO TO 1

END

VVVVVYV #&3# & H#H# HF H &
tA |
s

YU & W N -

>
>
>
>
>
#END OF FILE

Teletype User's Guide 51

52

MTS-151-0

12-1-67

#3RUN_*NEWFORT; SCARDS=-SQURCE 0=-OBJECT PAR=NO APs
#EXECUTION BEGINS

FORTRAN IV G LEVEL 0, MODE 0 MAIN DATE = 13:3
0001 100 FORMAT (A4)

0002 1 CONTINUE

0003 READ (5,100) ALPHA

0004 WRITE (6,100) ALPHA

0005 GO TO 1

0006 . END
FORTRAN IV G LEVEL 0, MOD 0 MAIN DATE = 13:3

TOTAL MEMORY REQUIREMENTS 000132 BYTES
#EXECUTION TERMINATED
#3RUN_~OBJECT —MAP_; 6=*SINK*s
#EXECUTION BEGINS

5 WAS CALLED BUT NOT SPECIFIED. ENTER UNIT NAME OR "CANCEL"

?XSOURCE*s

ABCDs

ABCD (Program types back its imnput)
ABCDnsDELETED (An example of deleting a line)
ABCa¥Zs (Example of deleting a character)
ABYZ

X (The break key was pressed here)
ATTENTION ASSUMED.

ABBAs (Line requested again in case of
ATTENTION INTERRUPT AT 4E0396AA restart)
#SRESTART

ABBA (Note interrupt was transparent)
CSENDFILE (End-of-file generated)

THC217I
#EXECUTION TERMINATED
#$SIGNOFF
#*x%%%* OFF AT 13:41.14
#*%%% ELAPSED TIME 564.593 SEC.
#*%*%%x CPU TIME USED 9.5 SEC.
#*%*¥% STORAGE USED 5051.616 PAGE-SEC.
#**%x% FILE STORAGE 1234 PAGE-MIN.

MTS-151-0

12-1-67

Translation to _and from ASCII

The IBM/360 computer represents characters internally in a code referred
to as EBCDIC which stand for Extended Binary Coded Decimal Interchange
Code. This code represents each character uniguely in eight bits, with a
hidden ninth bit for parity. Hefice there are 256 possible characters
within the encoding. Of these 256 possible characters, approximately 100
have been assigned commonly used graphics and meanings. The others are
more or less available for arbitrary use.

Model 33 and 35 teletypes, on the other hand, encode data imn a code
referred to as ASCII-8. This code represents each character in an eight
bit code, where seven of the bits are unique for each character and the
eighth bit is optionally used for parity checking. Hence there are two
representations for each <character, an even-parity representation and an
odd-parity representation. There are exactly 128 characters in ASCII-8 and
each is assigned either a graphic or some control function.

The teletype support routines in MTS then must translate every input
character from a teletype 1into the egquivalent EBCDIC character and must
translate every character going to the teletype into ASCII-8. 1In order to
accomplish - this, a mapping function was set up. The criteria used in this
function are:

1. Zvery unique ASCII-8 character typed in at the teletype is assigned
a unique representation within tae IBM/360.

2. Input characters are not checked for correct parity. This means the
teletype can generate even parity, odd parity, or arbitrary parity.

3. All characters sent back to the teletype are sent in their
even-parity representation.

4. Any EBCDIC character which does not correspond to an ASCII-8
character (there are 256-128=148 of these) will be converted to tae
ASCII-8 NULL chnaracter if sent as output to a teletype.

5. ®very ASCII-8 character 1s +transiated into amn EBCDIC character
having the same graphic or controli function 1if such exists. If
there is no EBCDIC character witn the same meaning, one of the
left-over EBCDIC characters was cnosen rataner arbitrarily.

Following is a table showing the correspondence between the ASCII-8
character and EBCDIC representation. The X in the eighth bit of the
ASCII-8 character can bes either 0 or 1 on input and is set to force even
parity on output.

Teletype User's Guide 53

MTS-151-0

12-1-67

EBCDIC_ENCODING ASCII-8 ENCODING NAME TTY KEY FUNCTION

(HEXADECIMAL) (BITS 1...8)
00 0000 000X NULL C-S-P BLANK TAPE
04 0010 100X -TAPE C- T TAPE PUNCH OFF
05 1001 000X HTAB C- I HORIZONTAL TAB
07 0000 100X DL c- P
12 0111 111X ESC ESCAPE KEY
15 1011 000X RETURN CARRIAGE RETURN
17 1111 111X RUBOUT ALL HOLES PUNCH
18 1111 100X s7 c-S-0
19 0111 100X S6 Cc-S-N
1A 1011 100X S5 c-S-M
1B 0011 100X S4 c-s-1L
1c 1101 100X S3 Cc-S-K
1D 0101 100X s2 c- Z
1E 1001 100X S2 c- ¥
1F 0001 100X S0 c- X
21 1000 000X SOM C- A START OF MESSAGE
22 1011 111X ALT MD ALTERNATE MODE
25 _ 0101 000X LF LINE FEED
26 1100 000X EOM C- C END OF MESSAGE
28 0011 111X CN FM SPECIAL FORM
2c 1110 100X LEM c- W
2D 0110 100X SYN c- v
2E 1010 100X ERROR C- U
2F 1000 100X X-ON C- Q TAPE READER ON
30 1111 000X SI c- o0
31 0111 000X S0 c- N
32 0011 000X FORM C- L FORM FEED
33 1101 000X VT C- K VERTICAL TAB
34 0100 100X TAPE C- R TAPE PUNCH ON
35 1100 100X X-OFF C- S TAPE READER OFF
37 0010 000X EOT C- D END OF TRANSMN
3B 0001 000X FEO c- H
kl 1110 000X BELL C- G RINGS BELL
3D 0110 000X RU c- F ARE YOU?
3E 1010 000X WRU C- E WHO ARE YOU?
3F 0100 000X EOA C- B END OF ADDRESS
40 0000 010X SPACE BLANK SPACE
4B 0111 010X . PERIOD (DECIMAL)
4c 0011 110X < LESS THAN
4D 0001 010X (LEFT PAREN
4E 1101 010X + PLUS OR ADDITION
50 0110 010X & AMPERSAND
SA 1000 010X ! EXCLAMATION PT
5B 0010 010X $ DOLLAR SIGN
5C 0101 010X * ASTERISK
5D 1001 010X) LEFT PAREN
5E 1101 110X : SEMI-COLON

MTS-151-0

12-1-67

60
61
6B
6C
€E
6F
7A
7B
ic
7D
7E
7F
81
82
83
84
&5
86
87
88
89
91
92
¢3
o4
¢5
96
97
98
99
A2
A3
Al
A5
A6
A7
A8
a9
AD
BA
BB
BC
BD
C1
c2
Cc3
Cu
Cc5
C6
c7
Cc8
Cc9

D1

1011
1111
0011
1010
0111
1111
0101
1100
0000
1110
1011
0100
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
0111
1111
1011
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101

010X
010X
010X
010X
110X
110X
110X
010X
001X
010X
110X
010X
011X
011X
011X
011X
011X
011X
011X
011X

011X’

011X
011X
011X
011X
011X
011X
111X
111X
111X
111X
111X
111X
111X
111X
111X
111X
111X
101X
101X
101X
101X
101X
001X
001X
001X
001X
001X
001X
001X
001X
001X
001X

w0

QHEQWMUO&PH"‘./"NMNS<Cﬂ’lﬂHLQ"UObEI—WLJ.HB'LQH(DQOUQ SN =W oee WV ES N
H =

NEG. OR MINUS
ORDINARY SLASH
COMMA

PERCENT
GREATER THAN
QUESTION MARK
COLON

POUND SIGN

AT SIGN
APOSTROPHE
EQUAL SIGN
DOUBLE QUOTE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LEFT BRACKET

NKRMKEdORMPTOYOZIHNRUHIMRAEBO OWR

"BACKWARD SLASH

UPWARD ARROW

LEFTWARD ARROW
RIGHT BRACKET
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE

UHIIOHMEOD O P

Teletype User's Guide 55

56

MTS-151-0

12-1-67

D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
F0
F1
F2
F3
Fy
F5
F6
F7
F8
F9
FE
FF

1101
0011
1011
0111
1111
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
1101
0000

001X
001X
001X
001X
001X
101X
101X
101X
101X
101X
101X
101X
101X
101X
101X
101X
110X
110X
110X
110X
110X
110X
110X
110X
110X
110X
111X
011X

LXECNCUFRFUNSCNKRKESCHUIDO WO =2 & b X

UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER

NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

WCoOoONOCULEPEWNO

NMMEdadhnoonOo =it xR

MTS-152-0

12-1-67

IBM TERMINAL TYPE 2741 USER'S GUIDE

(For 2741s through the 2702)

Introduction

This guide gives instructions for the use of the 2741 as a remote MTS
terminal when connected through the 2702 (see section MTS-170 for descrip-
tion of use through thes Data Concentrator - which is being used depends on
the telephone number called). The transmission of information between the
2741 and the CPU is accomplished yia the 2702 Transmission Control and 2870
Multiplexor -Channel. Common carrier connections are utilized and require
the use of a standard data phone and a 103A aata set. The telephaone
numbers for 2741 terminals are_different tnan those for teletypes and are
1isted in the Data Set Directory MTS-270-1. :

The 2741 may be used as an ordinary electric typewriter when it 1is not
being used as a communications terminal. For this type of use the main
power switch (keyboard) should be M"ON" and the "LOCAL-COMMUNICATIONS"
switch (left side panel) should be set to LOCAL.

Terminal Procedures:

1. Initiation

A. For use as an MTS terminai tne LOCAL-COMM switch nmust be set to
nCOMM" and the main power switch must be "ON" before dialing the
computer telephone number. Tae position of tne "golf balil"
carrier is not important; it will Dbe reset automatically.

3. To make the telepnone connaction depress the "TALK" button on
the data phon2 panel, pick up the nand set, and dial the proper
number. Whan the high pitched tomne is heard depress the "DATA"
button and hang up the pana set. Either a busy signal or a ring
with no answer indicates thnat MTS is not available at that time
or that there are no free lines.

C. A completed call to the system wiil cause the message UNIVERSITY
OF MICHIGAN COMPUTING CENTER, ANN ARBOR to be typed out. This
is followed by a carrier return (with line feed) and then tae
typing of the character %. This: indicates that the first

Teletype User's Guide 57

58

MTS-152-0

12-1-67

command line ($SIGNON XXXX) can be entered. After entering
the "signon" command character string, the carrier return key
should be depressed to indicate the end of the message.

2. Conversation Operation

A.

Terminal modes: During operation the 2741 may be in one of three
modes: receive, control-receive, or transmit. The keyboard
(with the exception of the "attention" key) is locked except
when in transmit mode. Normally the 2741 is placed in tramsmit
mode only when MTS expects a line to be entered.

Entering MTS 1lines: Alphabetic characters in command lines are
always converted to upper case before the command line is
analyzed; thus $SIGNON and $signon produce the same effect.
Data lines, however, are entered exactly as they are typed at
the terminal. If automatic upper case conversion is desired for
keyboard entry of alphabetic characters, one may use the $SET
command to specify forced upper case conversion for lines read

by the MTS monitor, and the @UC modifier in all other cases.

A line may be deleted by depressing the "attention" key. 1In
addition to the 1line delete function three characters are
assigned special control functions for the 2741 communications
with MTS. These are:

1. Back space ~ this causes the preceding character of am input
line to be deleted. Consecutive backspaces may be used to
delete several previous characters or even an entire line;
however, if an entire line is wiped out with backspaces and
then the carrier return key is depressed a zero length line
is transmitted to the MTS routines. (Note that his differs
from a 1line delete via the attention key. A line deleted
via "attention" is never transmitted to the MTS routines.

2. Cent sign - this is used to indicate logical end of file;
the contents of the input containing a £ are not transmitted
to MTS, only the end-of-file signal is transmitted.

3. Exclamation point - this is used as the "literal next
character" character. Should it be desirable to actually
enter a backspace, cent sign, or exclamation point into a
command or data line, these characters can be preceded by
one "exclamation point" . In this context the pair of
characters is taken as a single character with the normal
graphic value of the second rather than as a sequence of
control characters.

The order for analyzing input lines is as follows.

a. A 1line is deleted if the attention key 1is depressed
Legardiess of the contents of the input line.

MTS-152

12-1-67

-0

b. Literal next characters are applied (note that literal next
characters have no meaning unless they precede one of the
three special characters and are ignored if out of context).

c. If any backspaces remain they are applied to delete the
appropriate previous characters.

d. If an end-of-file character remains, a logical end-of-file
is returned to MTS; otherwise the edited line is returmned.

Any length of time may be used to enter a single input line via
the 2741; however if there is no activity for a span of
approximately 15 minutes the user and terminal will be automat-
ically signed off. Actually a "timeout" occurs (in the 2702) if
no character is enterea within 28 seconds of the previous
character. in this event all characters transmitted are saved
and the 2702 is again prepared to receive text from the 2741 so
that another segment of tne input line can be entered. An input
line is +thus accumulated over a relatively long time interval.
It may occur that a user enters a character while the 2702 is
being reset for the next line segment (very unlikely but it can
happen) ; in this case tne message LINE DELETED: LOST DATA will
appear and the entire 1line will have to be reentered. Input
lines may contain up to 128 characters.

C. Attention interrupts: An attention interrupt is a signal to MTS
to interrupt whatever it is doing for you and to return for
another command line. One may interrupt the execution of a
program, the 1listing of a file, etc. by depressing the
attention key. If an attention interrupt is desired while the
2741 is in transmit mode the attention key should be depressed
twice; the first time to cause line deletion and the second time
during the typing of the "LINE DELETED" message. That is,
attention interrupts are possible only when the 2741 is in
receive mode, i.e. only when it is receiving a line from MTS or
during execution of some program. The 2741 will type out the
message ATTENTION INTERRUPT AT XXXXXXXX and return to transmit
mode after typing #. At this time you may enter a new command
including $RESTART which cause execution to resume where it was
interrupted.

mermiration Procedure: With the 2741 in transmit mode enter the
command $SIGNOFF. After this command line is scanned MTS will
properly close all of your riles (this may take a few seconds) and
then type out a summary ot your session at the terminal. The line
will be automatically disconnected.

Teletype User's Guide 59

MTS-153-0

12-1-67

1050 USER

It is
numbers
features
Guide is

'S GUIDE

possible to use an IBM 1050 terminal in MTS by dialing

the

same

as are used for an IBM 2741. The 1050 must have several special
and RPQ's, primarily send and receive break. A complete

in preparation and will be released as soon as possible.

User's

MTS-154-0

12-1-67

2250 MODEL I DISPLAY USER'S GUIDE

mhis writeup gives instructions for the use of the 2250 Model I Display
as a terminal running under MTS. Terminal and system interaction is
strictly in character mode using only the alphanumeric keyboard and the
programmed function keyboard. Various library files and user programs that
run via a RUN command may (and do) use the light pen and graphics features
of the 2250.

Initiation

Wwhen the 2250 is activated and ready for users, the screen is blank and
the programmed function keyboard lights are 1lit up in a Dblock npw,
Pressing any programmed function keyboard button causes the standard reply
WONTVERSITY OF MICHIGAN TERMINAL SYSTEM" to be displayed on the screen and
a cursor is positioned at the bottom of tne screen. The $SIGNON command
may now be entered via the alphanumeric keyboard.

Conversational Operation

In command mode and during RUN's that are not gJraphics programs, the
last 20 input or output 1lines are displayed on the upper half of tae
screen, and space for two lines (148 characters) of characters to be input
is provided at the bottom of tae screen, with a cursor when the program
(YTS or user program) r2quests input. These two 1lines <form one logical
line of up to 148 characters to be sent to the computer when reguested.

Alphanumeric Keyboard. Striking a character key on the keyboard (when
a cursor is displayed) causes that character to be input to the input
region which is displayed at the bottom of the screen. END (hitting the 5
key while holding down the ALTN CODING key) causes the contents of that
input region, up to the cursor, to be input to the program. CANCEL
(kitting the O key while holding down the ALTN CODING key) causes the
contents of the input ragion to be erased; nothing is sent to the program.
The ADVANCE and BACKSPACE keys position tué cursor along the input line.
The JUMP key moves the cursor back to tne first character in the input
line. The space bar is not the same as ADVANCE: it enters a blank into tae
irput 1line as well as advancing the cursor by one position. The CONTINUE
key, if held down when a character xey is hit, causes that character to be
repeated across the input line untii bota keys are released.

2250 User's Guide 61

MTS-154-0

12-1-67

Programmed__Function Keyboard. All keys except 28 and 29 are legal
only when they are 1it.

Key 0 causes an attention interrupt to be generated.

Key 3 causes the display to revert to the last 20 lines. (way to get
back to original position after scrolling)

Keys 11,16,18,23.

At any given time, up to the iast 2000 lines of input/output are
saved in virtual storage. (If this limit is exceeded, all but
the 1last 4096 characters are thrown away) These lines can be up
to 148 characters (input) or 255 cnaracters {output) 1long. The
display screen may be thougat of as a "window" 74 characters wide
and 20 lines deep, looking out over this region. 1In order to see
everything, it is necessary to be able to scroll (move back and
forth) the background up and aown, and right and left behind this
window. These four keys (11, 16, 18, 23) are arranged in a
diamond, and pressing the obvious key starts scrolling in that
direction. Pressing the key a second time stops it. Key 28 (see
description) controls speed.

Key 15 releases all previous input/output lines saved except the last
4096 bytes.

Key 27 when pressed causes a ‘'new output page" to be displayed. The
last 20 lines are saved and the 20 line display area is blanked.

Key 28 is a slow-fast key which controls the rate at which output is
displayed.
UNLIT: fast - as fast as can be received.
LIT: slow:- - about one line per second.

Each press of the key flips it between the fast and slow states.
It is initially unlit.

Key 29 is a stop-go key which controls the accepting of output lines
from the progranm.
UNLIT: go - lines are accepted and displayed at the speed
specified by key 28.
LIT: Stop - accept no more output lines for the time being.
Each press of the key flips it between the stop and go states.
It is initially unlit.

Key 31 gives an end-of-file.

MTS-160-0

12-1-67

TAPE USERS_GUIDE

INTRODUCTION

This document gives instructions for mounting and accessing data stored
or magnetic tapes. Nine track tapes and seven track tapes written at
either 200, 556, or 800 BPI with odd or even parity are currently
supported.

BASIC CONCEPTS

In order +to absolve any ambiguities which might arise the following
definitions are offered.

7 and 9 Track Tapes

A 7 track tape frame contains 6 bits of data and one parity bit; a 9
track tape frame contains 8 bits ot data and one parity bit. This property
of the tape is a direct function of the tape unit upon which the tape was
written; that is, all 7 track tapes must be read and/or written on 7 track
tape units, all 9 track tapes must be read and/or written on 9 track tape
units. All 7090 compatible tapes are 7 track tapes.

0dd and Even Parity

The above mentioned parity bit may be manipulated so that there are
either an odd (odd parity) or an even (even parity) number of bits set to
one in each tape frame. If binary records are to be written odd parity
must be used to prevent loss of data. Common usage also requires that 7
track BCD tapes be written with even parity.

Densiti=s
Tt is possible to write 7 track tapes in any one oi three densities:
(a) 200 BPI which corresponds to our 7090 low demnsity

(b) 556 BPI which corresponds to our 7090 high density
(c) 800 BPI which cannot be read by our 70690.

Tape Users Guide 63

e4

MTS-160-0

12-1-67

All 9 track tape drives write at 800 BPI density.

Translator and Data Convertor

Since 7 track tape characters contain only 6 bits of data and 360 data
bytes <contain 8 bits of data it seems like there is a problem getting from
ore to the other. To solve these problems the translator feature and data
convertor features are provided. By playing the appropriate games it is
possible to write a 7 track tape with either tramnslator on, data convertor
on, or both features off.

If translator feature is on an automatic conversion is invoked which
translates most 8 bit EBDIC characters into their corresponding 6 bit BCD
counterparts.

If data convertor feature is on 4 tape characters will be produced for
each 3 data bytes. All 8 bits in each byte are thus transmitted. Data
convertor on forces odd parity.

If neither translator or data convertor is specified the low order 6
bits of each data byte are transmitted to/from the tape. To insure
accurate data transmission odd parity snould be specified when both
translator and data convertor are off.

9 track tape users should just torget all that noise. All 9 track tapes
are written in odd parity at 800 BPI.

File Protect Ring

Since writing on a tape destroys any information which may have been
stored upon it a file protection device is provided to prevent accidental
erasure of save tapes. This device, hereafter called file protect ring, or
just ring for short, must be inserted in a groove in the back of the tape
reel to allow writing on the tape. Tihe user must specify at the time the
tape is mounted whether the ring is to be in (allowing writing) or out
({prohibiting writing).

Record Size

Every normal read or write operation transmits a block of data to/from a

tape unit. This block of data is called a record. Usually a record
corresponds to one line in a file; but it is also possible to vwrite very
large records. One of the attributes associated with a tape is an upper

bound to the size of a record.

MTS-160-0

12-1-67

End of Tape Area

Approximately 20 feet from the end of each reel of tape there 1is a
silver strip known as the end of tape marker. There is enough tape after
this marker to allow users who desire to write a short (5 records or 1less)
trailer label. Users will not be allowed to write more than 5 records in
this area.

Pseudo-Device Names

Because there will usually be more than one active user at any given
+time it is not always possible to predict with any great probability of
success what particular tape unit will be free. Therefore all references
to tapes should be made through pseudo-device names (PDN's). MTS will then
determine which unit the PDN refers to and the appropriate read/wvwrite
function will be performed. A PDN may be used exactly as if it were a
"FDname".

A PDN consists of an asterisk followed by a string of from one to
fourteen alphanumeric characters and terminated by another asterisk. For
example, *NAME* and *TAPE* are valid pseudo-device names. Note that MTS
preempts certain PDN's (see MTS-210). Those names may not be used as
PDN's.

USING TAPES

Mounting a Tape

Tt 1is possible to have a tape mounted while in execution or command
mode. Tn either case the file *MOUNT should be used - see MTS-280/44645,
MTS-255/40645 and MTS-253/44645. The user should specify at the time of
the mounting of the tape both the mode and record size of the volume if the
default parameters are not to be usea. A table of all legal modesets may
pe found later in this section. The current default mode is SEN for 7
track tapes (corresponding to 7090 aigh density BCD tapes). Users wishing
to write 7090 binary tapes should specify MODE=50F. 9 track tapes do not
have a mode associated with themn.

Tke default record size is 256 characters but susers reading and/or
writing large records may specify any maximum up to 32767 characters.

Tape Users Guide 65

66

MTS-160-0

12-1-67

]

Removing_ Tapes

There are three ways to have a tape removed from a tape drive:
(1) Mount another tape on the same pseudo-device - that is, invoke *MOUNT
using a PDN which has been used betore for another tape. The first tape
will be removed and the second mounted in its place. The mode and record
size of the first tape will be used for the second tape unless explicitly
reset.
(2) Invoke *DISMOUNT (see MTS-280/24627 and MTS- 253/24627)
(3) Sign off MTS.

In either case if the last operation performed on the tape was a write,
five end-of-file marks will be written on the tape to terminate it before
it is unloaded.

Data Transmission

To transmit data to/from a tape in a program attach the PDN associated
with the tape to any logical device. Then transmit to/from that logical
device as if 1t were a sequential tfile. For example,

SPRINT=*TAPE*
Ir commands, use the PDN for a FDname. For example,
$COPY FILE1 TO *TAPE*

RETURN_CODES

The return codes resulting from data transmission to/from tapes extend
beyond those returned from other devices. They are

0 Normal return

4 (from read operations) End-of-file mark detected.
(from write operations) End of tape strip sensed.

8 Tape load point has been sensed on backspace conmand.

12 User attempted to write more than five records in end of tape
area.

16 Permanent read/write error (on read, tape will be positioned past
bad record).

20 Attempt to write on a fiie protected tape.

24 Equipment malfunction.

Unless the device error exit has been set by the user, all return codes
greater than 4 will be intercepted by MTS and the current RUN will be
terminated. Control will be returned to the user in command mode. If the
device error exit has been set the user may recover from the error in any
way he chooses and still remain in execution. (see a description of the
SETIGERR subroutine)

MTS-160-0

12-1-67

Control Functions

Users may want to initiate such control functions as vrewinding and
backspacing tapes. This is done by attaching the logical carriage control
attribute to the tape. 1In this case the first three bytes of the ‘"region"
specified in the wuser's call are used to specify the control operation
desired. A complete table of the tape controls is given below.

This same procedure allows users to change modes during execution.
(perhaps to read a record Wwith bad parity) The legal modesets are also
listed below. In addition to <changing the mode, the data is also
transmitted on recognized modesets. In the case of a write the remaining
"length"-3 bytes are written; for read, the record is read into the region
beginning at the first byte of the region (and wiping out the modeset).

1f logical carriage control was specified but the first 3 bytes are

neither a legal control function nor legal modeset, the entire record is
written (or read) as if logical carriage control had not been specified.

Tape Control Functions

T.ogical Command Action Taken Non-Zero Return
Code Meaning

WTH End of file record written. none
WEF
FSF Tape spaced forward past next 4=in end of
end of file record. tape area
FSR Tape spaced forward one record. 4=tape mark
sensed
BSF Tape spaced backward past 8=loadpoint
next end of file record sensed
BSE Tape spaced backward ome record. 4=tape mark
sensed
8=loadpoint
sensed
REW Tape rewound to Loadpoint. none
RUN Tape rewound and unloaded. none
SRL Resets maximum record length. 4=jllegal
(the length should be the five length

characters foliowing the "SRL",
left-justified with trailing blanks)

"Mode Setting Commands
(for 7 track tapes only)

(1) Typ2 1 are of the form "4CV"
(2) Typ=2 2 are of tane form "dpt"

Tape Users Guide 67

63

MTS-160-0

12-1-67

where "d" is the code for density:
2 for 200 BPI
5 for 556 BPI
8 for 800 BPI
and "p" is the code for parity:
0 for odd
E for even
and "t" specifies whether or not the translator is on:
F for translator off
N for translator on

Since 7 track tapes can carry only 6 bits of information per tape

Character and 360 bytes have 8 bits per word a compromise was necessary.

Type 1 records, written with DATA CONVERTOR ON write 4 tape characters for
each group of 3 bytes, overlapping from one tape character to the next.
Type 2 records maintain a one-to-one correspondence between core bytes and
tape characters, but use only the low order six bits in each byte.

MTS-160-0

12-1-67

PAPER TAPE USER'S_GUIDE

The Computing Center has installed on the 360/67 a 2671 paper tape
reader (see IBM manual A24-3388) and a 1012 paper tape punch (see IBM
manual A26-5776 plus RPQ 834427 description "1012 Attachment to Systen
360") . Programming support for these is underway, and a full writeup will
be issued shortly. The routines are being constructed so that using paper
tape will be 1like wusing magnetic tape, and the MOUNT and DISMOUNT
subroutines will be used to mount and remove paper tapes.

Tape Users Guide 69

70

MTS-170-0

12-1-67

DATA_CONCENTRATOR_USER'S GUIDE (TELETYPES, 2741S, REMOTE COMPUTERS)

THE DATA CONCENTRATOR

Terminal equipment with unusual characteristics can be attached to MTS
using the facilities of the Data Concentrator, a special-purpose terminal
control attached directly to the Model 67. The Data Concentrator consists
of a Digital Equipment Corporation PDP-8 computer to which special
interface equipment has been attached. Due to its programmable nature the
specification of supportable terminal equipment is rather flexible, and
includes provisions for all available AT&T Teletype equipment including
Models 28,32 (45.45) baud), 33/35 (110 baud), and 37/38 (150 baud)
operating at speeds to 150 words-per-minute. Also supportable is all
announc=d IBM remote terminal equipment capable of operation on the
switched-telephone network at speeds to 2000 baud, as well as certain
special-purpose data transmission equipment including that intended to
interconnect remote computer terminals and the MTS systen.

All of the Data Concentrator equipment is sponsored by the Advanced
Research Projects Agency (ARPA) in support of the CONCOMP (Research in

Conversational use of Computers) project. Usage by the general user
population is possible after inquiry to the CONCOMP project and approval by
the Project Director, F. H. Westervelt, on an as-available basis.

Initially, the following terminals will be supported (about 1 December
1967): ATET Model 33/35 Teletype, IBM 2741 Typewriter Terminal, and remote
computer terminals wutilizing AT&T 2012 serial synchronous data sets.
Operating procedures for use with these terminals are discussed below. At
some future date, about 1 January 1968, ATST X403A Touch Tone digit
receivers and 801C3 automatic calling units will become available to MTS
users. Other data set eguipment may be added by arrangement with the
Computing Center and the ARPA project.

MTS Interface

The Data Concentrator appears to MTS as a collection of 32 devices, each
of which operates independently of all the others. One or more of these
MTS devices may be logically connected to one or more data set circuits for
use by the remote terminal. The MTIS devices serviced by the Data
Concentrator are all of +type PDP8 and are identified by names of the
generic class "DCXX", where XX is a two-digit decimal number in the range
00 through 31. These names can by used anywhere in MTS that a device name
is meaningful. Within the Data Concentrator itself all of these devices,
and, in addition, all of the attached data set circuits, appear as a
homogeneous collection of devices. Each of these Data Concentrator devices
is assigned an intermnal logical device number in the range from 00 through
77 (octal) as indicated in Figure 1. Each device may be used both as a

MTS-170-0

12-1-67

source and a sink without regard as to whether it is capable of full- or
half-duplex operation.

Generally, message formatting and error control are transparent to the
use of a device by MTS, and each such device can be characterized by the
ability to transmit an indefinite number of records (of 255 characters or
less) in one direction without regard to traffic in the other direction.
Although some of the data sets and terminal equipment can operate in a
full-duplex mode, that is in poth the MTS-outbound and MTS-inbound
directions sinultaneously, each ot the 32 devices interfaced with MTS and,
indeed, MTS itself can operate in only a half-duplex mode, that is in omnly
one direction at a time. If a particular device is constrained to
half-duplex operation, then the inpound and outbound traffic is interleaved
on a record-by-record basis by butfering the messages and turning the
transmission circuit end-for-end as reguired.

A pair of Data Concentrator devices can be interconnected by a copy
operation, which assigns to each source device a sink device to which all
message traffic produced Dby that source will be directed. Although only
one sink may be assigned to each source by such an operation, any number of
sources may produce traffic to the same sink. In this case the traffic is
interleaved on a record-by-record basis. Those particular copy operations
which define the configuration of the Data Concentrator at any moment are
‘changeable by commands directed to the Data Concentrator itself. In
addition, certain commands can cause the behavior presented by any one data
set circuit to be altered to fit a particular terminal. In this manner one
set of data set equipment can serve terninals of different -types, all of
which require the same data set type.

aAlthough it 1is possible to associate a copy operation between any two
devices and to change the configuratiom of any data set from any terminal,
and for that matter from MTS itselr, the obvious dangers associated with
the use of this feature require entorcement of a policy that all such
operations will be supervised by special MTS library programs. For the
present, the equipment will be operated in a rixed configuration providing
service to those IBM, AT&T, and special terminals as described in a later
section.

Data Concentrator User's Guide 71

MTS-170-0

12-1-67
FIGURE 1:
¥ T T i) L |
{ | | | i i
| l | | [l
| LDN | DATASET TYPE | TERMINAL TYPE | FUNCTION | PHONE |
| (OCTAL) | i | | NUMBERS |
| | [| i {
| | | | | |
+ + { } + 4
[| | | | |
| { | i | |
i 0 | =—==—-——— | mm————— e | DUMMY FILE | —-———- I
{ | | | i |
t t t t i 4
| { i | | |
I 1 I 103 | ASYNCHRONOUS; |MASTER | 4-4496 |
1 I | FULL DUPLEX |CONSOLE | i
] | | KEYBOARD | (4-9526) i |
| | | (SOURCE) | | |
I i | PRINTER | I i
| | | (SINK) ; { | |
I I | MODEL 33 TTY | | |
| | | (110 BAUD) | | i
| l | | I |
F } { + { —
| | | | | |
| 2 | mme—meee | HIGH-SPEED | SYSTEM | —————- |
| I | PAPER TAPE | RESIDENCE i |
| | | READER i i I
! | | (SOURCE) | | |
| I | PUNCH (SINK) | i |
| | { i | |
t } l } t 4
| | | | i |
I 3 | ——eeem— | ——————— {UTILITY FILE | ———=—=m i
| | i l | |
F } t + + —
| | | | | |
| 2014 | SERIAL-SYNCH- |HIGH-SPEED | 4-4481 |
| THRU | | RONOUS; i DATA TRANS— | 4-4482 |
b7 | HALF-DUPLEX; |MISSION I 4-4399 |
I i | (2000 BAUD) | BETWHEEN A | 4-6334 |
i i I | REMOTE COM- | i
I I i | PUTER OR I |
I | i | GRAPHICS | i
i I | i TERMINAL AND | i
| | | | MTS | |
| | i [| i
L 1 A1 1 1 |

MTS-170-0

12-1-67
FIGURE 1: (Continued)
L B L)] 1 L i
| { | | 1 i
10	1032	ASYNCHRONOQUS;	LOW-SPEED j 4-0200	
THRU	{ FULL DUPLEX;	DATA	THRU	
17		KEYBOARD	TRANSMISSION	4-0207
		(SOURCE)	BETWEEN A	
		PRINTER	REMOTE TYPE-	
		(SINK);	WRITER TER-	i
i { MODEL 33/35	MINAL AND i			
		TTY OR IBM	MTS i	
	i MODEL 2741		i	
{ I (UP TO 200		I		
		BAUD)		{
t t } + } 4				
i				
20	103A/202C	ASYNCHRONGOUS;	MEDIUM SPEED	4-4208
THRU		HALF DUPLEX	DATA TRANS-	4-4297
27] (103'S ARE i (1200 BAUD)	MISSION i			
i	DESCRIBED	{BETWEEN A	{	
1	ABOVE, INFO		REMOTE COM-	i
!	HERE IS FOR	{ PUTER, K i		
i 202's) { i GRAPHIC TER-	i			
i			MINAL, OR i i	
			PAPER TAPE/ i	
i			CARD DEVICE	T
{	{AND MIS. i			
]				
F ' } t i 4				
		i {		
30	X403A { ASYNCHRONOUS;	LOW~-SPEED	4-44384	
AND		HALF DUPLEX; {REMOTE TER-	4-4483	
1 31		10 CHARACTERS	MINAL FOR { i	
1	PER SECOND	TRANSMISSION	i	
i	[TWELVE BUTTON}	TO AND AUDIO		
i	TOUCH-TONE { RESPONSE i i			
	{ TELEPHONE { FROM A CEN- i i			
i	RECEIVER; {TRAL COM-	{		
i { AUDIO RESPONSEZ	PUTER. 1			
	{ URIT]			
i |] i i i
L i L 4 A]

Data Concentrator

User's Guide

74

MTS-170

12-1-67

-0

FIGURE 1:

(Continued)

32
THRU
36

801C3 ACU

(AUTOMATIC

CALLING UNIT)

ASSOCIATED
WITH A TOUCH-

L)

|
| USED FOR

| MAKING A

TONE TELEPHONE| PHONE CALL

RECEIVER

| UNDER COM-
| PUTER CON-
| TROL; TO
JINITIATE

| COMMUNIC-

| ATIONS

| BETWEEN A
{403 DATASET
{ (TOUCH-TONE
| RECEIVER)

{ AND THE

| CENTRAL COM-
| PUTER

(NOT
ASSIGNED)

37

(NOT
ASSIGNED)

[P S i e o D el St P m— e o e . S - G S — - ot T w———— — — — — — — -

40
THRU
77

o e b e ——— — —— —]

IBM 360/67

e e e e o e o o — o ——— — — ——— - — o —— o —

MTS DEVICE
NAMES DCOO
THROUGH DC31

| DIRECT LINES
| OF COMMUN-

{ ICATION BE-
| TWNEEN THE

{ MULTIPLEXOR
| CHANNEL AND
jTHE DATA

| CONCENTRATOR

’-—-—-————————-4———-—-—-,—_———_————————————-—-
b oo e — e o ot T ol e G — e ki — ——— ——— —— — — — p— G = — v — — — —)

MTS-170-0

12-1-67

Message Formatting

All transmission between devices within the Data Concentrator is
according to the ASCII code interpretation, with translation to that code
peculiar to any one terminal type provided in the Data Concentrator and MTS
itself. Thus, an automatic translation is effected between the MTS EBCDIC
codé and the Data Concentrator ASCII code as appropriate and unless
explicitly modified (see below). In addition the prefix characters
transmitted by MTS will be forwarded to the device unless explicitly
modified. Since the internal file structure of MTS permits only those
records up to 255 characters in length, any longer inbound message will be
automatically split into several records as necessary. In most cases the
splitting operation is transparent in the converse outbound operation.

A message between any pair of devices attached to the Data Concentrator
is constructed of a string of characters chosen from all those 8-bit
characters with the exception of certain control characters defined as in
Figure 2. Certain devices cannot recognize some of these characters, and
in such a case those characters may be part of the transmitted data streanm.
This particular choice of control characters reflects current ASCII-8
standards with the provision that all control characters are constrained so
that the high-order three bits are (100). This convention is adopted <for
convenience in the transmission of certain tape formats popular with remote
computer terminal equipment; and, in particular, allow transmission of a
message consisting of arbitrary 7-bit bytes if the high-order eighth bit is
forced to a zero.

The Data Concentrator resident supervisory program recognizes those
characteristics peculiar to each of its attached devices which are
logically equivalent to an occurrence of one of the control characters. BY
convention all of these characters, except the SOH and STX, end the record
of which they are a part. The ETB, ETX, and EOM are equivalent within the
Data Concentrator but have various interpretations to the particular
devices involved. The ENQ and EOT may occur asynchronously with traffic
between any pair of devices and are interpreted as the attention and the
halt conditions respectively. Both the ENQ and the EOT have the affect of
purging all buffers involved and forcing device resets. The ACK and NAK
are used in connection with circuit supervision and error recovery. The
SOH is used to precede a header, which is processed by the transmission
equipment itself (see below). The STX is used to precede a message under
certain conditioms.

Data Concentrator User's Guide 75

745

MTS-170-0

12-1-67 -
v
Name Function ASCIi EBCDIC TIIY 2741
SOH start of header 001 01 ctl-A L\
STX start of text 002 02 ctl-B !B
ETX end of text 003 03 ctl-C RETURN
ETB end of text block 027 17 ctl-w W
EOM end of file 033 1B ctl-Y z
ENO enquiry 005 05 ctl-E ATTN
(WRU)
EOT end of transmission 004 o4 ctl-D D
(EOT)
ACK positive acknowledge 006 06 ctl-F IF
(RU)
NAK negative acknowledge 025 15 ctl-U 1u
DLE literal-next 020 10 ctl-pP !
line delete RUBOUT #
character delete <— backspace

Figure 2

USE OF DATA CONCENTRATOR BY MTS JOBS

Since the operation of the Data Concentrator is constrained in a
fixed-configuration mode from the viewpoint of the user, the internal copy
associations and device characteristics will not normally be modifiable
except on special request. The initial configuration will include support
for some quantity of each of the following terminals as master source/sink
to an MTS job: IBM 2741 Typewriter Terminal, AT&T Model 33/35 Teletype, and
serial-synchronous transmission circuits to remote computer terminals.
Support for some quantity of each of the above terminals will be available
for use as a utility device within MTS. These are obtained by any MTS job
as the result of the specification of one of the device names assigned to
the Data Concentrator (see above) in an I/0 operation.

MTS-170-0

12-1-67

A MTS-inbound or MTS-outbound record beginning with the SOH character is
directed to a small command language interpreter which is embedded in the
device support routines associated with the MTS devices. Such a record is
constructed within MTS by prefixing the SOH character to one of the command
lines Adescribed below. The same record can be constructed at the terminal
by prefixing the STX-SOH code combination to one of the command 1lines
described Dbelow. The first STX 1is necessary in the 1latter case to
differentiate the MTS - interpreted commands from those interpreted within
the Data Concentrator itself. Commands recognized at present include:

JOoB - Print MTS job number and device name for this I/O device.

PFX OFF

|

Turn off prefix character transmission from MTS. (equivalent
to @?SP modifier).

PFX ON - Turn on prefix character transmission from MTS (egquivalent to
@-~SP modifier).

BIN ON - Turn off both EBCDIC/ASCII code translation and prefix charac-
ter transmission from MTS (eguivalent to @BIN modifier).

BIN OFF - Turn on EBCDIC/ASCII code tramnslation (equivalent to @-BIN

modifier) .

These commands are erffective only if the MTS job is in condition to read
from or write on the device in question. If a command 1is not recognized
following the SOH the entire command line is deleted.

A reference to an MTS device name of type PDP8 may be followed by
modifiers of the form @M0OD or @-MOD (see elsewhere, this manual). Those
modifiers recognized in an wunusual manner in connection with the Data
Concentrator are:

aSP - Turn off prefix character transmission from MTS (equivalent to
PFX OFF).

?-SP - Turn on prefix character transmission from MTS (equivalent to PFX
ON) .

2RIN - Turn off both EBCDIC/ASCII code translation and prerix character

translation from MTS (eguivalent to BIN ON).

2-8BIN Turn on EBCDIC/ASCII code transiation (equivaleat to BIN OFF).

Other modifiers applying to the MTS device itself are given the standard
meaning.

ATET Models 33/35

The operation of the Teletype itseli is outlined elsewnere; oniy those
features differentiating the Data Concentrator operation from the conven-

Data Concentrator User's Guide 17

78

MTS-170-0

12-1-67

tional operation are summarized here. Operation of the Teletype is in a
full-duplex mode, so that separate data streams inbound to MTS from the
keyboard1 and outbound to the printer from MTS are possible. As characters
are passed from the keyboard to MTS they are echoed (repeated) on the
printer for operator verification unless the printer is active for some MTS
outbound function, in which case the accumulated echo characters are saved
until the end of the active line and then output on the printer.

The end-of-line code is the return key. MTS will respond by sending a
carriag=-return/line-feed to the printer. The end-of-file code is the
control-Y key. MTS will send a backslash and then respond as in the
end-of-line <case. An attention is transmitted using the BREAK key (or the
WRU key on Teletype equipment not provided with break feature) MTS will
send a exclamation point and then respond as in the end-of-line case. A
character may be deleted by the back-arrow key. A line may be deleted by
the RUBOUT key. MTS will respond in the latter case by sending a pound
sign "#" followed by a carriage-return/line-feed to the printer. See
Figure 2 for additional codes.

With some care it is possible to achieve a rather efficient utilization
of the Teletype terminal connected to the Data Concentrator. First, due to
a one-line print buffer maintained in the Data Concentrator, the MTS output
function is rather more efficient than thnat used with the standard Teletype
terminals. However, due to this feature, the response time £for an
attention dinterrupt to be acknowledged on the printer will be delayed by
the time it takes to empty this butfer. Second, due to a one-line input
buffer maintained in the Data Concentrator, it is possible to queue up to
72 characters for presentation to MTS before the MTS program calls for
thenm. Thus it is possible to enter a command to MTS while output is being
produced on the printer or while MTS is processing a previous comnand. If
this Dbuffer overflows, echoing of tane input characters will cease,
following which it is necessary to either delete the input 1line or to
backspace one character and enter +the end-of-line code. The attention
operation always purges this buffer concurrently with presentation of the
attention condition to MTS.

IBM 2741 Typewriter Terminal

Operation of the IBM 2741 is similar to that in connection with the 2702
transmission control (see elsewhere, this manual). Although the 2741 is
basically a half-duplex device, it is possible to enter a new command to
MTS while a previous command is being processed. When the printer is
active, use of the keyboard can be requested by the attention key. At the
conclusion of the current line of output the keyboard is unlocked. Use of
the attention key when the keyboard is unlocked causes an attention
interrupt to MTS.

Since this terminal operates in a half-duplex mode, no echoing operation
is possible. A character may be deleted by the backspace key, and a line
may be deleted by the pound sign "#". The end-of-line code is the return
key and the end-of-file code is the cent sign ("#") key. MTS will respond

MTS-170-0

12-1-67

to either the 1line-delete, end-of-iine, or end-of-file keys with a
carriage-return/line feed to the printer. See Figure 2 for additional
codes.

Remote _Computer Terminal Transmission_ Facilities

Interconnection between ¥MTS and a remote computer terminal is possible
using any data set attached to the Data Concentrator. Using the 1031 data
set normally associated with the AT&T and IBM Kkeyboard/printer terminals,
rates to 200 baud can be sustained in a full-duplex environment with
start/stop codes to 12 bits in length (including start and stop bits).
Using the 202C data set, rates +to 1200 baud can be sustained in a
half-duplex environment with codes similar to those of the 103A. The
fastest +transmission rate obtainable on the switched telephone network at
this time is provided by the 201A data set. Using this data set a rate of
2000 baud is sustained in a halt-duplex bit-synchronous environment with
codes to 12 bits in length.

Only the 2012 is supported initially by the Data Concentrator resident
supervisor. This equipment 1is operated with an eight-bit byte size
including no vertical parity bit. Longitudinal parity control is provided
with a 16-bit cyclic checksum in the form of +two bytes transmitted
immediately following the end-of-record (ETX, ETB) characters. All trans-
mitted records involving header or text transmission are acknowledged by
the intended receiver in the form of a single-character message, which may
be emb=2dded within header or text information proceeding from the intended
receiver back to the transmitter.

A message is transmitted, after a short 30 =millisecond synchronization
delay, at a rate of 250 characters per second. Data set turnaround for
acknowledgement purposes is accomplished in 20 milliseconds within the
on-campus Centrex telephone network and in 200 milliseconds outside the
immediate vicinity of Ann Arbor. This longer delay is necessitated by
certain repeater equipment used on intercity trunks.

Program support for tahe matcaing remote computer terminal can be
provided in either of two ways. It the remote machine is a PDP-8 or a
PDP-7 then an opportunity exists to use a scaled-down version of the
resident nultiprogramming supervisor used in the Data Concentrator itself.
At least three such versions are now 1n current University use in systems
whick include cathode-ray display equipment, card readers, high-speed paper
ard magnetic tape eguipment, RAND tablets, direct-access devices, and audio
switch =aquipment.

The scaled-down Data Concentrator supervisor is designed to operate with
201A interface equipment specially constructed for the purpose. Several
interfaces of this kind have been constructed for use at various campus
locatioas. A rather efficient remote batch-entry and terminal concentrator
can e constructed from these components attached to a PDP-8 running with
the multiprogramming supervisor. Botn the supervisor and the 201A inter-
face are described in references obtainaple from CONCOMP project offices.

Data Concentrator User's Guide 79

80

MTS-170-0

12-1-67

Alternatively, support for the remote machine can be developed for
special purposes by using the message formatting and transmission protocol
described in the references cited. These conventions have been established
to provide secure error recovery proceaures consistent with reasonably-
sized support progranms. Interface hardware can consist either of the
interface mentioned above or can be specially synthesized for the purpose.
With care, it is possible to connect an IBM SDA-II "blind pig" Transmission
Adaptor or any other IBM Binary Synchronous Communications equipment to the
Data Concentrator with suitable program support.

MTS-190-0

12-1-67

UMMPS AND MTS: A GENERAL DESCRIPTION OF THE OPERATING SYSTEM

UMMPS

UMMPS (University of Michigan Multi-Programming Systen) is a
nultiprogramming operating system for the IBHM System/360 series computers.
UMMPS executes jobs, which are initiated and controlled from the operator's
console typewriter. Each job runs in problem state and uses supervisor
calls for all its input and output operatioans.

A 4job program is the basic set of instructions which are executed when
an UMMPS job is run. Job programs are core-resident, along with the UMMPS
supervisor and subroutines. A reeantrant job progran can be executed at the
same time by more than one job. When a job program is written a set of
device types and a set of memory buffers of various sizes are specified.
Corresponding ‘actual devices and memory space are allocated for any job
initiated with that Jjob program, and these are retained until the
termination of the job. By means of supervisor calls, jobs may obtain and
release additional devices and storage space during their execution. A
single device (e.g. a card reader, communications terminal, or a disk
module) is available for at most one job at any given instant.

The most recent (November, 1967) versions of UMMPS wuse the dynamic
relocation hardware peculiar to the System/360 Model 67 in order to provide
a virtual memory buffer space of 256 pages (one page = 4096 bytes) for each
job. The supervisor manages real core memory Wwith a demand paging
algorithm, using an IBM 2301 Drum tor secondary storage. The policies for
using the queues are as follows:

(a) A channel program is constructed to read pages from as many of
the drum sectors as possible. Tne remaining sectors, if any, are
then used for servicing the first write requests. More than one of
these channel programs may be constructed at one time and chained
together, providing a compiete schedule of drum operations for the
next several revolutions ot the drum.

(b) Unless a page in real core enjoys a special "temporarily
resident" status, it is placed on the queue for page-out as soon as
it enters core. This queue will ©be reordered according to the
usage of the pages enqueued, by means of an algorithm expected to
undergo a great deal of moaification and adjustment.

(c) When the paging drum processor reguests a set of pages from the
supervisor to be written on the drum, those pages are made
available from the head ot the page-out gqueue only in case core is
sufficiently full.

UMMPS and MTS - General View 81

MTS-190-0

12-1-67

(d) The supervisor may also refuse to supply the drum processor
with an enpty page for a page-in request, if there are almost no
available empty core pages.

The main CPU queue is a list of jobs which are scanned in top to bottom
order, and are given the CPU if they are ready to use it. Whenever a job
initiates an I/O operation which makes it not ready for execution and
guarantees that an interrupt will occur when it again becomes ready, its

entry is removed from the main CPU queue. Other not ready Jjobs, e.gq.
those in terminal wait or in wait for a non-interrupting event, remain in
the CPU queue and are passed over when their turns come. (A job in

execution can also voluntarily place itself at the bottom of the CPU
queue.)

When an interrupt occurs for a job which aoes not have an entry on the
main CPU gqueue, this job immediately preempts the job currently allocated
the CPU (i.e. an entry is placed on the very top of the queue and the new
entry is dispatched, with the current job remaining interrupted). ©Each job
runs until it waits for some event or until a timer interrupt signals the
end of a time slice.

Each job has a personal CPU queue which is used to keep track of
multiple 1levels of execution. The top entry refers to the sub-task (if
any) currently in contention for the CPU. A lower-level entry represents a
sub-task which has been interrupted but may later be resumed. For example,
some I/0 interrupts cause a new entry on the queue for their processing.
And a Jjob may be given an atteantion interrupt by the operator (or MTS
user), and then later restarted.

A wait queue is maintained for each job which contains an entry for each
entry in the personal CPU queue wanich represents a sub-task curreantly
waiting. Thus a Jjob may be waiting at several of its lower levels,
executing at the top level, yet an interrupt signalling the end of such a
wait can be properly recorded by removing a wait queue entry for the
appropriate CPU queue level.

MTS

MTS (Michigan Terminal System) is a reentrant job program in UMMPS. It
provides the capability of loading, executing and controlling programs from
remote terminals and through a batch stream. Together with UMMPS, MTS
provides a simple but powerful time-shared computer system, whose salient
features are these:

(a) Command language. Several dozen commands are available to
cause the running and monitoring of programs, the nmanipulation of
line files, and other comnunication with the system.

(b) Line files. A system of information organized in units of
lines (1 to 256 characters) and files (0 to many thousands of
lines) 1is provided for the storage of programs and data. A file

MTS-190-

12-1-67

0

may be public or private, and a private file may be permanent or
tenporary. These files reside on direct-access storage devices.

(c) Logical _devices. When an MTS user specifies the origin or
disposition of data, he may give, interchangeably, the name of a
file 1location or a physical device. A logical device name or

number is then attached to it. It may refer, for example, to a
system (public) file, a new temporary private file, a card punch,
or the operator's console. ‘

(d) Dynamic loader. A program to dynamically load programs 1is an
integral part of MNTS. It may be invoked by both commands and
subroutine calls.

(e) Libraries. External symbols which have been referred to by a
set of loaded programs, but not defined, may be resolved by
reference to a private or system library, which is a file
containing object programs in a special format. Facilities exist
in MTS and the Loader to pass over a library and selectively load
only needed subroutines (and the subroutines that they need, etc.).

(f) Language__Dprocessors. The MTS system makes available the IBM
System/360 F-Level Assembler, the IBHM FORTRAN IV G-Level Compiler,
WATFOR (University of Waterloo Fortran load and go compiler), PIL
(Pitt Interpretive Language), SNOBOL4 (a string manipulation
language), and UMIST, a string processor based on the TRAC
text-processing language. These programs reside in system files,
and are executed in the same way as one's own programs produced by
their execution. Other powerful system features, such as the
TOH/360 input-output conversion subroutines, macro libraries, plot-
ting routines, etc., reside in the library and other system (files.

UMMPS and MTS - General View 83

MTS-200-0

12-1-67

EXTERNAL SPECIFICATIONS

This major section of the manual presents external specifications: those
details the user needs to know to use the systen.

MTS-210-1

12-1-67

FILES

A FILE is an ordered set of zero or more lines where each line comnsists
of from 1 to 255 characters. Each line has associated with it a line
number which is not part of the line. Externally a line number is of the
form "snnnnn.nnn" where "s" is a sign ("+" or "-") and "a" is a decimal
digit. Leading "+" signs and zeros, trailing decimal points, and trailing
zeros after the decimal point may be omitted. Internally in calls to
input/output subroutines (See MTS-252) a line number is a full-word binary
integer the value of which is 1000 times the external form of the 1line
number. For example the line number whose external form is 1.000 (which is
the same as 1) is stored internally as

000003E8[hex] (=1000{ decimal]])
A line number may also be written externally as LAST or LAST + line number,
where LAST stands for the line number of the last line currently in the
appropriate file (if the file is empty, the value is zero).

There are two methods of reading and writing a file: indexed and
sequential. An indexed 1I/O operation is one in which the line number is
specified explicitly in the call. A sequential I/0 operation is one in
which the line number is determined by the system as follows: If the first
reference to a file is sequential the 1line number is the initial 1line
number specified when the file name was entered (or 1 if none was given).
For a sequential read that is not the first operation the 1line number is
taken from the line immediately following the last line read or written in
a file. For a sequential write that is not the first operation -the line
number is found by adding the increment specified when the file name was
entered (or 1 if none was given) to the line number of the last 1line read
or written. ¢

When a file is created (see MTS-230/CRE) a size may be specified for it
and an amount of space sufficient to hold a file of this size is allocated
on some direct access device. If an attempt is made to put more linmes’into
a file than will fit in the space allocated to it, the system will try to
allocate more space for the file. If it is not possible to allocate more
space, the system will indicate that the size of the file has been exceeded
and will refuse to put more lines in it.

IMPLICIT CONCATENATION

Although the maximum size of any single file is limited to approximately
7000 +to 12000 lines, the amount ot data that may be referred to by a given

External Specifications 85

85

MTS-210-1

12-1-67

file name is effectively unlimited because several files may be automat-
ically chained together in two ways. Whenever a line beginning with the
character string "SCONTINUE WITH FDname", is read fron any file or device,
reading continues with the file or device FDname and the $CONTINUE WITH
line is not passed to the caller. (See MIS-230/SET for a way to override
the action.) This is called implicit_concatenation. The other method of
chaining several files together is explicit concatenation which is des-
cribed below in this section.

FILE NAMES

File Names are the names of logical files kept on the disk. There are
three types: user files, scratch files, and library files. The name of a
user file consists of from one to twelve characters. If more than twelve
characters are given, the first twelve are used. The name cannot contain
blanks, commas, or left parentheses, plus signs, or semicolons, and any
lover-case letters are automatically translated to their upper—-case equi-
valent. It is strongly recommended that names assigned be alphanumeric
only, i.e., no special characters, since the specification may change in
the future. Scratch file names consist of from two to nine characters the
first of which is a minus sign. They are automatically created the first
time they are mentioned and are destroyed when a user is signed off.
Library file names consist of an asterisk followed by from one to fifteen
characters the 1last of which is not an asterisk. 1In use, user names are
prefixed by the four character signon I.D. to make them unique. Library
files may be accessed by users but are password protected against
modification. Since it is possible to confuse file names and device names
(see Dbelow), there must be some way to indicate that a name is a file and
not a device. This is done by putting a # before the name of the file.
The # is not part of the nane.

DEVICE NAMES

Device Names are the names of physical devices as recognized by the

e e e

"UMMPS supervisor. The names are 4 characters long (padded with trailing

blanks, if necessary). If any of these names is used as a FDname it is
assumed to refer to the corresponding device unless the name is prefixed by
a #. In general pseudo-device names (see next section) are to be used
instead of device names when physical devices must be referred to. Some of
the device names currently recognized by UMMPS are:

Device Names Device Type
DT1 DISP

DCOO PDP8
through

DC31 PDP8

MTS-210-1

12-1-67

PCH1 PCH
PCH2 PCH
PCH3 PCH
PTPR PTAP
PTPP PTPP
PTR1 PTR
PTR2 PTR
PTK3 PTR
RDR1 RDR
RDR2 RDR
RDR3 RDR
TOCO 7TP or TP
TOC1 7TP or TP
TOC2 9TP or TP
TOC3 9TP or TP
TOCH 7TP or ‘TP
TOCS 9TP or TP
TOCéE 7T? or TP
TOC7 9TP or TP

In addition to these, MTS recognizes the name "OPER" as the name for the
operator's console.

PSEUDO-DEVICE NAMES

pseudo-device names are synonymns for other file or device names which
are assigned for a given user of MTS. They consist of an asterisk followed
by from two to fourteen characters the last of which is an asterisk. Seven
of these names described below are automatically defined for each user and
additional ones may be defined using the program *MOUNT (see MTS-160) . The
predefined pseudo-device names are:

DUMMY

The name *DUMMY* has a special meaning. It may be used as any FDpame.
For output files or devices it represents an infinite wastebasket: lines
are accepted and they disappear. For imput files or devices it represents

an empty data set: every time a line 1is requested an end-of-file condition
is returned. ‘

¥SOQURCE

mhe name *SOURCE* has a special meaning. It may be used as any input
FDname. It refers to the current source file or device.

File and Device Naming 87

38

MTS-210-1

12-1-67

SINK

The name *SINK* has a special meaning. It may be used as any output
FDname. It refers to the current sink file or device.

AFD

The name *AFD* has a special meaning. It may be used as any FDname. It
refers to the current active file or device (that file or device which vwas
obtained by $GET or $CREATE).

PUNCH

The name *PUNCH* has a special meaning in batch mode. It may be used as
any ouput FDname. It refers to the system card punch established for that
batch run.

MSINK

The name *MSINK* has a special meaning. It may be used as any output
FDnanme. It refers to the master sink file or device which is the terminal
for conversational operation and the printer for batch operation.

MSOURCE

The name *MSOURCE* has a special meaning. It may be used as any input
FDname. It refers to the master source, which is the terminal in
conversational operation and the operator's console in batch operation.
(It should not normally be used in batch operation.)

MODIFIERS

The action of a file or a device may be changed by appending to the file
or device name one or more modifiers. Each modifier consists of an at-sign
("@") [mnemonic for "attribute"™], ftollowed by the modifier name as given in
the following table. (For meanings of the modifier bits and further
explanation, see section MTS-252.) A modifier nanme may be preceded by a

MTS-210-1

12-1-67

not-sign ("-") to reverse its meaning. (Teletype users should use a minus
sign). JIf any modifier is given explicitly in a call to an I/0 subroutine
(see MTS-252) the setting given in the call overrides the setting given
with the FDname. :

Name Bit Set
S 31
SEQUENTIAL 31
I 30
INDEXED 30
EBCD 29
BIN 28
BINARY 28
LC 27
LOWERCASE 27
uc 26
CASECONV 26
NOCC 25
NOCARCNTRL 25
cC 24
CARRIAGECONTROL 24
SS 24
STACKERSELECT 24
PFX 22
PREFIX 22
PEEL 20
GETLINE# 20
RETURNLINE# 20
Mcc 18
MACHCARCNTRL 18
TRIM 16
SPECIAL 14
Sp 14

Examples of use: RDR12BIN

FILE232I2UC

File and Device Naming 89

90

MTS-210-1

12-1-67

LINE NUMBER RANGES

When files are written or read indexed, the 1line number is always
explicitly given. However, for sequential read and write of files, the
question of the starting and stopping line numbers and the 1line number
increments arises. If no specitication is made, for sequential read the
beginning line number is 1 and the ending line number, (the one that forces
an "end of file"™ condition if exceeded) is 99999.999. Similarly for
sequential write the default beginning line number is 1 and increment is 1.
Iif for a given usage a different set of specifications is wished, a line
numher range specification may be attached by following the name (or name -
modifier combination) with the construct:

(b,e,i)

where b is the beginning line number, € is the ending line number, and i is
the increment. Applying no range specification is equivalent to

(1,99999.999,1)

B, e, and i, like any line number reference, may each have one of <three
forms

linenumber
LAST
LAST+linenumber

For the last two forms, the value of LAST is the line number of the last
line in the specified file. If the file is empty, LAST has a value of
Zero.

Any combination of these three items may be left out: trailing commas
resulting from the omission of items may be left off; leading and intermal
commas are required.

Examples are: FILE (20)
FILE2(20,30)
NAMEEMAN(-1.359,477.2,.01)
OUT@MCC (322)
OUTT@PFXacC (10, ,10)
FYLE (LAST)
PHYLE (LAST-4,LAST-1)
PHILE (LAST-10)

Since devices are treated like sequential files--line numbers are faked
for them—--the above may also be applied to devices.

MTS-210-1

12-1-67

EXPLICIT CONCATENATION

Several files and/or devices may be chained together by using explicit
concatenation. This is done by giving the names of the files and devices
with their modifiers and line number ranges in the order desired separated
by plus signs. TFor exanmple

-LOAD(1,100) +*SSP

means the contents of lines 1 through 100 of -LOAD followed by the contents
of *SSP. If two or more consecutive names in an explicit concatenation are
the same, all but the first may be omitted. For example

A(1,1)+ (LAST)
is the same as
A(1,1)+A (LAST)

If one or more members of an explicit concatenation uses implicit
concatenation (i.e., contains $CONTINUE WITH FDname) the entire implicit
concatenation 1is used as that portion cf the explicit concatenation. 1In
this case the FDname in the $CONTINUE WITH may itself be amn explicit
concatenation. The processing of the next member of an explicit concatena-
tion is started whenever a return code of 4 (end-of-file) is received on a
read operation or the ending line number of the current member is exceeded
orr a sequential write operation. Care should be exercised when using
indexed operations on a concatenated file.

If some member of an explicit concatenation does not exist or is not
available and the user is not running in batch, he will be given a chance
to enter a replacement name the first time this member is used. This
replacement name may be any explicit concatenation of files or devices and
replaces only the one member of the original concatenation.

Some examples of explicit concatenation are:
MAIN+SUBR
DATA (1, 1)+ (3,10) dUC

SOURCE+DATA+ALLOC(1,10)
TAPE (1,10000) +*TAPE2¥

USAGE

File names and device names are interchangeable. That is, a £file name
may in gJeneral be used anywhere a aevice name may appear, and the converse.
The generic quantity

<FDname>

File and Device Naming 91

92

MTS-210-1

12-1-67

used in these writeups will signify such an interchangeable designation
which may be an explicit concatenation of file and device names, and

<Fname>
or
<Dname>

will be used if cases arise where a restriction to a single (i.e., no
concatenation) file or device name (respectively) is necessary.

The above interchangeability implies that those names which are listed
above as device names are preempted from being file names. If it is
desired to specify that a name is to be taken only as a file, the name
should be prefixed with a #. JFor example,

RDR1 refers to reader 1

QQSV refers to file QQSV
#RDR1 refers to file RDR1
#QQSV refers to file @QQSV

MTS-220-0

12-1-67

INPUT_LINES

In the normal course of processing, lines are input from +the current
source file or device and acted upon by the MTS monitor. In addition, if
the current source is not the user's console and the console has an
attention feature, source can be restored to the console.

An input line to the MTS monitor is either a command or a data limne. If
the first character is a dollar sign (%) and the second character is not a
dollar sign, the line is a command line; otherwise it is a data line.

COMMANDS

A command line starts with a dollar siyn, immediately followed Dby the
command. No blanks are allowed. The command may be followed by zero or
more parameters, depending on the command. These parameters are set off
from each other and the command by one or more blanks. Commas, semicolons,
equal signs, and parentheses are also used as break characters in various
places. A description of each command follows this section.

DATA LINES

Data lines are put into the current active file on disk. If the user
has not established an active file, ne will be so notified when a data line
is sensed. If automatic line numbering is off, tne line is inspected for a
line number, and what follows the line number is put in the file as the
line with that number. If there is no line number, zero will be assuned.
If automatic numbering is on, the 1line is not inspected but is taken
verbatim, except that, if the first two cnaracters are dollar signs, only
one is +transmitted to the file. See section MTS-240 for a description of
the format of data lines.

PREFIXING

So that the user can know "who is speaking" and so he knows . when iaput
is expected, the first <character of all 1lines on consoles (not card
readers, punches, or printers) except the operator's 1052 (device name
OPER) is a special prefix character. On output lines this is typed ahead

of the message. When input is requested, either the prefix character

Input Lines 93

94

MTS-220-0

12-1-67

(automatic numbering off) or +the prefix character followed by the line
number (automatic numbering on) is typed at the front of the 1line. The
prefix characters are:

issued by MTS monitor: #
issued by user's program at run time: blank
issued during loading:

issued during LIST or COPY:

issued to prompt user for reply:
issued by the PIL interpreter

issued by SDS (Symbolic Debugging Sys.)

+ 0wV

EDITING

To allow ease in using the system, means have been devised to allow the
user to delete the preceding character (i.e., backspace and erase), delete
the whole line and start over, tab to a given column, tell the system there
is no more data (EOF), and so on. In addition, the user needs some way to
indicate that "this is the end of the current 1line"™. This is done by
having a particular character indicate each function, such as 2 for
line-delete. To allow the user to actually feed in these control
characters as data, a literal-next character is defined, which says that
the following character is not to be interpreted as a control character.
For example, if ? means line-delete, and ! is the literal-next character,
then ! 2 would be considered as the single text character 2 (and of
course, to get a ! into the text, !! must be typed).

Due to the different character sets available on different terminals,
which character represents which function varies from device to device.
Also, due to differences in transmission controllers attached to the 360
(2701, 2702, and Data Concentrator), a single terminal will behave
differently depending which phone_ number_is called. A able of control
characters for devices currently supported as terminals is listed below.
(This is a summary of the information presented in the user's guides in
Section 100 of this manual. See those writeups for details.) '

MTS-220-0

12-1-67
End Delete Delete Literal
line Line Char. next Cause Cause
Terminal Character Character Character Character Attn. EOF
1052-0PER RETURN ? n {none) GOOSE CANCEL
EOB JOB
TTY X-OFF CONTROL-N CONTROL-A CONTROL-Z BREAK CONTROL-C
(THROUGH 2702)
TTY RETURN RUBOUT <- CONTROL-P BREAK CONTROL-Y
(THROUGH DATA CONCENTRATOR) CONTROL-E
2741 RETURN ATTENTION BACK- ! ATTN ¢
(THROUGH 2702) SPACE
2741 RETURN # BACK- ! ATTN ¢
(THROUGH DATA CONCENTRATOR) SPACE
1050 RETURN EOT BACK- ! RESET ¢
(2702) or EOB SPACE LINE
CONTINUATION
If the 1last character in the source stream (prefix char #) line is a

minus sign ("-"), then the next input line is assumed to be a continuation.
Continuation begins with the first character of the next line, which may be
assured to replace the "-" continuation character in the previous line. As
rany continuation lines as desired may be used, with the restriction that
their total 1length may not exceed 255 characters. This is effective only
for lin=s read by the MTS monitor, i.e., read when the prefix character is
#.

Input Lines 95

96

MTS-225-0

S 12-1-67

LIMITS SPECIFICATION

In order to prevent run-away Jjobs in batch runs, it is necessary to
provide some means for the user to limit the time a job may use and the
amount of output (paper and «cards) it produces. It 1is also often
desireable for users at a terminal to be able to limit a RUN of a progran.
To provide this facility, limit keyword-parameters are provided. They are
of tvwo types, global and local.

Global limits are limits for the entire job, from SIGNON to SIGNOFF.
They are to be placed on the $SIGNON card for batch jobs. Default values
are assumed for any omitted parameters. The current default values are
given in the table below.

Within the global 1limits imposed at SIGNON, the wuser may specify
separate local limits on any RUN, LOAD, RESTART, or START command. If a
RESTART or START command specitfies no limits, then what is left of the
limits specified by the orginal RUN or LOAD command is used.

The first 1limit to be exceeded, whether global or 1local, causes a
comment to be printed and the job to be terminated (in batch operation), or
a return to command mode (in terminal operation).

r T L} ki B 1
i | | | | |
| | KEYWORD PARAMETER I | GLOBAL | |
| QUANTITY | PROTOTYPE | UNITS | DEFAULT | EXAMPLES i
| | i | | |
F } } + t {
| | | | | |
| CPU | {T } {3 | seconds | | T=6]
| Time | {TIME}=n {S} | seconds | 10 | TIME=3.27S |
| | {M3 | minutes | | TIME=.1M i
| i | | | |
t t t t { {
| | | | | |
| Pages { {P } i | | P=10 |
| of | {rpP 31=1 i pages | 50 | PAGES=62 }
| Output | {PAGES} [i | |
i i | i | |
| } t + } {
| | i | | |
| Punched | {C 3} i | | C=12 |
| Card | {Ccp }=1i | cards | 1 | CARDS=400 {
| Output | {CARDS} i | | |
{ | | | | |
i L L L L [}

MTS-225-0

12-1-67
vhere i is an integer of up to 5 digits.
n is a number similar in form to a line number: up to 5 digits in
front of the decimal point; up to 3 digits after the decimal
point.

Limits Specification g7

98

MTS-230-0

12-1-67

COMMANDS

The following subdivisions of section 230 describe the commands availa-
ble, For each is given the name, a prototype explicitly giving the syntax,
descriptions of the purpose, usage, and effect, and examples.

For most commands, the first three letters suffice to identify it, so¢
only the first three need to be given. For those commands which may be
truncated, the unnecessary part will be identified by underlining in the
prototype.

Notation conventions used in the prototype are: lower case represents a
generic type which is to be replaced by an item (such as a file name)
supplied by the user. Upper case is to be repeated verbatim in the command
(although commands, and those parts repeated verbatim, can be upper-case,
lower-case, or mixed.) Material in brackets [] is optional. Material
listed in braces {} represents choices, from which exactly one must be
selected. Three dots following a syntactic unit indicates it may be
repeated indefinitely.

MTS-230/ALT-0

12-1-67

Name:

Purpose:

Prototype:

wvhere

Usage:

COMMAND DESCRIPTION

ALTER

To alter the contents of a general register, floating point
register, or specified core location (s).

SALTER pari parj ...

pari specifies what is to altered and may be any of the

following:
GRXx where x 1is a decimal (or hexadecimal)
integer from 0 to 15
FRy where y is one of the integers 0, 2, &4,

6

{ {RF=HHHH}] HHH where RF=HHHH specifies an optional
{RF=GRx } core storage relocation factor and HHHH
specifies the displacement from the
relocation factor. The relocation fac-
tor may be specified as RF=GRXx in which

case the contents of GRx is used.

parj specifies the new contents of the register or

location(s) to be altered and may be any of the
following:

CrYXXXX? character constant expression

X*HHHHH' hexadecimal constant expression

HHHA free form hexadecimal constant

F'YYYYY' fullword constant expression

H'YYYYY'! nalfword constant expression

Any number of items may be altered each time the command is
given. This requires the specification of one element fromn
the pari list and one irom the parj list for each item to be
altered. The default value for relocation factor is zero
(unless otherwise set by the $SET command); however, once
the user specifies a relocation factor, thnat value remains
in effect wuntil a subsequent "RF=HHHH" appears 1in the
command line.

Command Description (ALTER) 99

100

MTS-230/ALT-0

12-1-67

FPffect:

Examples:

Register

numbers and addresses are checked for validity and

complaint is made it illegal values are specified.

Content parameters are treated as follows:

1.

Character constants are placed, left justified, in
the register or location specified. Truncation or
padding with trailing blanks is applied whenever
appropriate for registers. Sixty-four bit length
is implieda for floating point registers. Any
EBCDIC character including blank may be given
between the delimiting primes; a prime in the
character string must be represented by two conse-
cutive primes.

Hexadecimal constants (whether free form or in the
format X'HHHH') are treated differently for gemeral
registers, floating point registers and core loca-
tions. For general registers there may be from one
to eight hexadecimal digits including leading zer-
oes. The integer value of the constant is loaded
into the register specified.

For floating point registers the constant is
placed, 1left justified with leading zeroes
retained, in the register. Truncation (or padding
Wwith trailing zeroes) is applied whenever it is
appropriate. Sixty-four bit length is implied.

For core storage 1locations the hexadecimal
digits are placed, two per byte with leading zeroes
retained, into comnsecutive core locations beginning
with the byte specified by the current value of the
relocation factor and the displacement given in
pari. If an odd number of hexadecimal digits is
given, the 1last byte of core storage altered will
have bits 4...7 set to zero.

Decimal constants whether fullword or halfword
consist of a sign followed by the decimal digits
all enclosed by primes and preceded by F or H,
respectively. - The "+" sign is optional; the %"-t
sign is required. For general registers the number
is loaded into the register specified. Decimal
constants may not be specified for floating point
registers. For core locations the value is 1loaded
into +the fullword (or halfword) whose high order
byte is specified by the current value of reloca-
tion factor and displacement. This is done without
regard to_boundary alignment.

MTS-230/ALT-0

12-1-67

SALTER
$ALT

SALTER
$ALTER

$SALTER

RF=18AE2

RF=14800

1A3E0 FR6 X'4110A"
2BE X'D502CC7E6000¢ 3E0 X'O0SEF! GRA 0

C'DON''T DO IT*

RF=18808 0150 1808 O02EA 1B97 RF=19600 2B6

AEC F*-1000"

Command Description (ALTER)

101

MTS-230/COM-0

12-1-67
COMMAND DESCRIPTION
Name: COMKEENT
Purpose: To allow insertion of comments.
Prototype: SCOMMENT any text
Usage: This command is completely ignored and does nothing at all.
Examples: $CCM This is a conment.

102

MTS-230/COP-0

12-1-67

Name:
Purpose:
Prototype:

where-

Usage:

Effect:

Examples:

COMMAND DESCRIPTION

CoPY
To copy an existing file into another one.
$coPY [FROM] [fromFDname] [TO] [toFDname]

fromFDname is the name of the file or device which is to be
copied.

toFDname is the name of the file or device which is to be
copied into.

This command causes the lines of a file or device to be read
and inserted into a file or device. I.e., it makes a copy
of the file. If an exact copy is wanted (i.e., each line
under the same line number as in the original file), then
the indexed modifier ('@I') must be appended to toFDname.
Note that if indexed is not specified, a renumbering always
occurs. Normal usage is to copy a file, but by making
toFDname a punch the file may be punched, and by making
fromnFDname a reader and toFDname a printer or punch an 80-80
list or reproduce is achieved.

If fromFDname is omitted, the active file is assumed and
if toFDname is omitted, the current sink is assumed. If
fromFDname is omitted or if toFDname precedes fromFDname
then the words "TO" or ®"FROM" must be included. Complaint
will be made if either fromFDname or toFDname specify a file
that does not exist, or a device that 1is either not
available or is the wrong type (is output device, oOr input
device, respectively). There exists one ambiguous case:

$COPY FROM TO toFDname

In this case, the wpon jis taken as the "noise" word and

— e S T e e —

Starting with the first line in the file, lines are read
sequentially from frogFDnanme until an EOF condition is read.
Each line is inserted as is into toFDname.

$COPY A TO B
$COPY FROM SNARK TO BANDERSNATCH

$COPY FILE1 FILE2

Command Description (COPY) 103

04

MTS-230/C0P-0

12-1-67

$COPY F1(1,20) F2aI
$COPY F1 TO F2(10,,10)
$COPY TO F2

$COPY TO F2 FROM F1

$COPY F1+F2(1,10)+ (25,100) TO F3

MTS-230/CRE-1

12-1-67

Name:
Purpose:
Prototype:

where-

Usage:

Effect:

Examples:

COMMAND DESCRIPTION

CREATE

to create a file, either a private file or a scratch file.
$CREATE Fname [SIZE=filesize] [VOLUME=volname]

Fname is the name of the file to be created.

Filesize is the estimate of the size of the file, expressed
in the number of 40 byte lines. If no size parameter is
given, a small file (approximately 50-100 such lines) is
assumed. In estimating the the size of a file, the total
number of bytes is important; hence 100 80 byte lines is
approximately equivalent to 200 40 byte lines, and so on.
The default size of a scratch file is equivalent to
SIZE=1300, so that the default size is generally 1large
enough and thus an explicit CREATE is not needed.

Volname is the name of the (presumably private) volume on
which the file is to be created. If it is omitted the file
will be placed on a public volume where there is space
available for it.

This command is used to create all files including scratch
files, except that it is not. needed for scratch files unless
a SIZE parameter is necessary. It also establishes the file
created as the current file. Complaint will be made if a
file by that name already exists.

Fname is created. Fname becomes the current file.

$CREATE QQSV

$CREATE FIT3STANZA7 SIZE=10

command Description (CREATE) 105

06

MTS-230/DES-1

12-1-67

Name:

Purpose:

Prototype:
where-

Usage:

Example:

COMMAND DESCRIPTION

DESTROY
To destroy a user's file.
$DESTROY Fname
Fname is the name of the file to be destroyed

This is wused to destroy user files only, not library
files.*files.*files.*Complaint is made if the parameter is
missing, the file specified does not exist or is a library
file. If the parameter is correct the name of the file and
an announcement that it is to be destroyed are given and
confirmation is requested. There are three positive confir-
mations: !, OK, or OQ.K. Anything else is a negative
confirmation. Appropriate response is made to the user
after the confirmation indicating that it has or has not
destroyed the file.

$DESTROY AARDVARK

*Library files may be destroyed only if the online operator's console issues

the command.

MTS-230/DIS-0

12-1-67

Name:

Purpose:

Prototype:
$DISPLAY

where aFDname

par i

par jJ

DISPLAY
To display an
1. genera

2. floati
3. a spec

[ON aFDname]

is the name
specified are

are parmeters
retrieved fro
format switch

COMMAND DESCRIPTION

y of the following

1 registers (any or all)
ng point registers (any or all)
ified region of core storage

[par 1] par j

of the file or device on which the iteas
to be displayed.

that govern the format of the display of items
m core storage. These may be used to turn
es on or off according to the following table:

Format_Feature Turn On Turn Off
hexadecimal conversion HEX NOHEX
mnemonic conversion MNEM NOMNEM
EBCDIC conversion EBCD NOEBCD
EBCDIC conversion BCD NOBCD
double spacing DSPC SSPC
double spacing DBLS SGLS
double spacing SP2 SP1
long output records ORL=L ORL=S
(130 characters)
short output records ORL=S ORL=L
(70 characters)

are parameters that govern the content of the display. They
may be chosen from the following list:

GRx

FRY

PSW

where x is the character "s" (if all general
registers are to be displayed) or a decimal (or
hexadecimal) integer from zero to fifteen. .

where y is the character "s" (if all floating
point registers are to be displayed) or one. of
the integers 0, 2, 4, or 6.

the PSW at the time of the last error return,
interrupt, etc. is displayed.

Comnmand Description (DISPLAY) 107

08

MTS-230/D1IS-0

12-1-67
RF=HHHH where HHHH is a hexadecimal relocation factor
for core storage locations specified in single
location or block foram.
RF=GRx where x is an integer between 0 and 15. The
relocation factor is set to the contents of
GRx.

HHHH the hexadecimal address of a single core loca-
tion to be displayed (address is relative to
the current relocation factor)

HHHH...HHHH the range of hexadecimal addresses of a core
region to be displayed (addresses are relative
to current relocation factor). The second
address given must not be less than the first.

Usage: Default cases for omitted parameters:
aFDname sink
par i ORL=L for line printers,
ORL=S for console typewriters
HEX
SSPC

par j The default value for the relocation

factor is zero (unless set otherwise
by the $SET command).

The only restriction on the order of parameters in the

command line is that "ON aFDname" must appear first if it

appears at all. Format parameters and relocation factors
assume and retain tne default values until a command line
entry specifies otherwise. Format parameters and relocation
factors may be changed by subsequent entries in the command
line. Whenever a content parameter is encountered in the
command 1line it is processed immediately using the format
parameters and relocation factor value in effect at that
time. If the last item in a command line is not a content
parameter, an appropriate comment is nade. Hexadecimal
entries in the command line may contain a maximum of eight
hexadecimal digits (including leading zeroes).

Effect: The parameters are inspected to see that the file, if

specified, exists or that the device, if specified, is an
output device which is free. If so the remainder of the
parameters are inspected in the sequence given and appropri-
ate action is taken. If an individual gemeral register or
floating point register, or the PSW is specified, it is
displayed in labelled hexadecimal format; all 64 bits of a

MTS-230/DIS-0

12-1-67

Examples:
$DISPLAY

$DISPLAY

$DISPLAY

Note:

floating point register are displayed. Complaint is made if
the register number is illegal. Similarly, if all of the
general registers (or floating point registers) are request-
ed they are displayed in labelled, hexadecimal format.

Blocks of storage are displayed by calling the subroutine
SDUMP. See the writeup on SDUMP for details concerning the
formats.

GR3 FRS EBCD 18E(08...18FA6 (see note below)
ON PTR2 MNEM RF=17AB8 000...2C8 NOMNEM HEX
RF=1AFB8 23C

ON DISPLAYFILE ORL=L GRS FR6

Two instances of ambiguity in parameters may occur. One of
these is EBCD (the other is BCD) which, when preceded and
followed by blanks, can represent either a format parameter
or the hexadecimal address of a single core location. The
ambiguity is resolved by interpreting both EBCD and BCD as
format parameters; to display the single location EBCD one
may use the block notation EBCD...EBCD.

Command Description (DISPLAY) 109

110

MTS-230/DUM-1

12-1-67

Name:
Purpose:

Prototype:

Usage:

Effect:

COMMAND DESCRIPTION

DUMP

Cause a Jump of the job to be given.

$DUMP [ON aFDname] [ORL=x] [par 1] [par 2]...

where aFDname is the name of the file or device on

Which the dump is to be written.

X takes the «character value "L" or ngm
to request long (130 characters) or
short (70 characters) output records.

par i are format parameters selected fronm
the following list:

HEX hexadecimal conversion
MNEM mnemonic conversion
EBCD EBCDIC conversion

BCD same as EBCD

DSPC double spaced

DBLS same as DSPC

SP2 same as DSPC

This command is wused to cause the dumping of general
registers, floating point registers, and core storage asso-
ciated with the job.
Default cases for omitted parameters:

aFDname sink

X I for line printers, S for coansole typevwrit-
ers and teletypes, S for files

par i HEX (only)

The parameters are inspected to insure that the file, if
specified, exists or that the device, if specified, is an

MTS-230/DUM-1

12-1-67

Examples:

output device which is free. If so, the remainder of the
parameters are inspected. None, any, or all of the command
parameters may be specified. The only restriction on the
order in which command parameters are given is that "ON
aFDname" must appear first if it appears at all. ORL=L may
be overridden by a subsequent ORL=S in the parameter list
(and vice_versa). Lf "MNEM" is among the format parameters

the specification ot "HEX" is implied and need not be given.

The parameters are used to construct the calling sequence
for the subroutine SDUMP and control is transferred to SDUMP
once to dump the general register (hex conversion) and
floating point registers (hex conversion) and subsequently
to dump successive storage blocks associated with the job.
The format parameters in the command line govern the format
of the core storage output information. For details con-
cerning formats for core storage dumps see the writeup on
SDUMP.

$DUMP
$DUMP ON PTR2 MNEM DSPC
$DUMP ON DUMPFILE ORL=L EBCD

$DUMP HEX BCD SP2

Command Description (DUMP) 111

MTS-230/EMP-0

12-1-67

Name:

Purpose:

Prototype:
where-

Usage:

Effect:

Examples:

COMMAND DESCRIPTION

EMPTY
to clean out a file without destroying it

$EMPTY Fname
Fname is the name of the file to be emptied.
This command is used to clean out a file when none of the
previous contents are wanted. Complaint will be made if a
file by that name does not exist. Library files may be
emptied only if the command is issued from the operator's
console. If the parameter is «correct, confirmation is
requested exactly as in $DESTROY (g.v.) unless the file is
a scratch file.
All current contents of Fname are discarded.

SEMPTY SV

SEMPTY FILEZ2

MTS-230/END-0

12-1-67

Name:
Purpose:

Prototype:

Usage:

Examples:

COMMAND DESCRIPTION

ENDFILE
Provide an end-of-file indication in the source strean.

$ENDFILE
[Note that there is no abbreviation allowed]

This card, if it appears in the source stream, provides a
local end-of-file indication. It is used to stop Fortran
from reading source cards, stop COPY or LIST coming from
SOURCE, and stop object programs from reading source
cards.

$ENDFILE

Command Description (ENDFILE) 113

MTS-230/ERR-0

12-1-67

Name:
Purpose:
Prototype:

Usage:

Effect:

Example:

COMMAND DESCRIPTION

ERRORDUMP

Allow automatic dumps in batch mode.

$ERRORDUMP

If this command 1is placed in a batch job and a subsequent
program executed as a result of $RUN or $LOAD/SSTART
terminates abnormally a dump of the registers and storage is
given. See also MTS-230/SET

Automatic dumps are allowed. This has no effect in terminal
usage.

$ERR

MTS-230/GET-0

12-1-67

Name:

Purpose:

Prototype:
where-

Usage:

Effect:

Exanples:

‘COMMAND DESCRIPTION

GET

To obtain a file, either private or library, as the curreat
file.

$GET Fname
Fname is the name or the file to be the current file.

This command is used to establish an existing file as the
current file. Complaint will be made if a file by that name
does not exist or if the name given is a device name. Both
library and private files may be obtained as the active file
in this manner, but a password must be provided to allow
changing of a 1library file. If the password has not been
established for the current file by means of $PASSWORD, the
first attempt to enter a 1line in the file will cause a
request for the password to be forthcoming.

Fname becomes the current file.
$GET QQSV

$GET FIT3STANZAS

"Command Description (GET) 115

116

MTS-230/HEX-0

12-1-67

Name:
Purpose:

Prototype:

Usage:

Example:

COMMAND DESCRIPTION

HEXADD,HEXSUB
to add or subtract two hexadecimal numbers.

SHEX {ADD} XXXXXXXX XXXXXXXX

{SUB}
Where XXXXXXXX represents either a hexadecimal number of one
to eight digits or GRx where x is an integer between 0 and
15.

The hexadecimal numbers are entered with one or more
intervening blanks as delimiters. If GRx is used for one or
both of them the contents of the appropriate general
register is used. For S$HEXADD the results appear in the
form :

SUM = XXXXXXXX.
For SHEXSUB the results appear in the form:

DIFF = XXXXXXX.
Overflows are ignored and negative results obtained fron
$HEXSUB are given with a minus sign preceding the absolute
value of the difference.
$HEXADD 1A2 2E81D
$HEXSUB 003BC8 1EA

$HEX GR3 3EF

MTS-230/11IS-1

12-1-67

Name:

Purpose:

Prototype:
$LIST

where-

Usage:

BEffect:

Examples:

COMMAND DESCRIPTION

LIST

To 1list, with line numbers, a file or section of a file.

{ON}
[fromFDname] [{, }] [toFDnane]

fromFDname is the name of the file or device which is
to be listed.

toFDname is the name of the file or device om which
the listing is to be done.

This command causes the lines of a file (or device) to be
copied onto a device (or file) preceded by their line
numbers. Normal usage is to list a file on a terminal or a
printer. Complaint will be made if either fromFDmame or

toFDname specify a tile that does not exist, or a device

that is either not available or is the wrong type (is output
device, or input device, respectively).

Default values for parameters that are omitted when the
command is used are:

fromFDname current file
toFDname sink (initially terminal)

If fromFDname is omitted or follows toFDname, either "ON" or
a comma must precede toFDnanme.

For the specified line number range (if any), lines are read
sequentially from fromFDname until an EOF condition is read.
For each line, the line number is converted to 12 characters
BCD. This is put on the front of the 1line, and this
extended 1line is written (according to the modifiers given
in the command) on to toFDname.

$LIST

$LIST FIT3STANZA7,PTR1
$LIST FILE(20,32)
$LIST OFILY(117,117)
$LIST ON LISTFILE
$LIST AFD *SINK*

Command Description (LIST) 117

118

MTS-230/LOAD-0

12-1-67

Name:

Purpose:

Description:

COMMAND DESCRIPTION

LOAD

To load a program but not to start execution of it, so that
parts of it may be altered (if necessary) before starting.

This command is identical to $RUN (q.v.) except that at the
point where execution of the program would begin, control is
returned to the user in command mode. The program can then
be displayed and altered, and finally execution begun with
the $START command.

§TS-230/NUM-1

12-1-67

Name:

Purpose:

Prototype:

wvhere-

Usage:

Examples:

COMMAND DESCRIPTION

NUMBER

Start automatic numbering of input lines from source to the
active file.

$NUMBER {[startingnumber] [,] [increment]}
{CONTINUE 3

startingnumber is the number the automatic 1line numbering
is to start with.

increment is the number that is to be added to a line
number to get the next one.

This command starts automatic generation of 1line numbers.
This is so data cards without numbers can be read into a
file, and so new programs can be entered from consoles more
easily.

Default cases for parameters:

startingnumber 1
increment 1

If CONTINUE is specified, numbering resumes from where it
left off at the last UNNUMBER command.

Both starting number and increment can take the usual three
forms of a line number

linenumber
LAST
LASTt+linenumber

In the last two cases, the value of LAST is the line number
of the last line in the current active file. If the file is
empty, the value of LAST is zero.

ENUMBER

$NUMBER 10,10
$NUMBER ,.1
$NUMBER CONTINUE
ENUM 1 .1

Command Description (NUMBER) 119

120

MTS-230/PAS-1

12-1-67

Name:

Purpose:

Prototype:
wvhere

Usage:

Effect:
Examples:

Note:

COMMAND DESCRIPTION

PASSWORD
Allow a library file to be chamnged.

$PASSWORD {IS] password
password is the required password.
This command sets a write-allow switch for library files.
When the current file is changed, this switch is reset in
order to protect the user from inadvertent modification of
succeeding files. If the password given was correct, the
fesponse "0.K." is given. If the password was wromng, a
negative response is given.
Write-allow switch is set for library files.
None, obviously.

This is not the user-password. See sections describing
$SIGNON and $SET for description of that facility.

MTS-230/RES-0

12-1-67

Name:
Purpose:

Prototype:

Effect:

Examples:

COMMAND DESCRIPTION

RESTART
To restart a program after an interrupt.

r h

$RESTART |[AT] [{RF=HHHH}] { HHHH]l [limit keyword pars]
| {RF=GRx } {
[N 4

The address to which control is to be given is determined
in the following manner:

1. If no parameters are given the program is restarted
with the PSW typed out at the time of the last
interrupt.

2. If parameters are given the restart address is found
by adding the relocation factor (default zero unless
changed by a $SET command) to the displacement
provided. The relocation factor must be given either
as a free-torm hexadecimal number or GRX in which
case the contents of the specified gemeral register
is used. The displacement value must be given in
free-form hexadecimal format.

Limit keyword parameters are described in the section on
Limits Spzcification, section MTS-225.

The program is restarted at the address determined as
described above. Complaint is made if the relocation factor
and displacement are not legal or if the relocation factor
is greater than the maximum core address. By appropriate
use of an eight digit displacement, one can set the
condition code or program mask when restarting a progranm;
that is, the sum of the relocation factor and displacement
is taken as the entire right nhand half of the PSW.

SRESTART
$RES AT RF=GR1S O
$RESTART AT 20A58

SRES RF=20800 258

Command Description (RESTART) 121

MTS-230/RES-0

12-1-67

$RES RF=20800 28000258

(In the last example the program is restarted at 20A58 witl
the condition code set to 2, the fixed point overflo:
interruption enabled, and the other program mask interrupt:
disabled.)

MTS-230/RUN-1

12-1-67
COMMAND DESCRIPTION
Name: RUN
Purpose: To load and initiate execution of a user's program
Prototype:
r {mapFDname} ¢
SRUN |([objectFDname] [{NOMAP } Jil; [logicalI/Ounit=aFDname J...
L 4L
.
{limit keyword parameters] [PAR=parameters] |
4
where objectFDname is the name of the file or device where
the object cards are to be found.
mapFDname is the name of the file or device on which
the loader will write the map. If NOMAP
is specified, printing of the map will be
suppressed; error comments (if any) will
be printed on the user's terminal.
logicalIQunit the name of a "logical I/O unit" the
object program has access to. Specifiable
names are:
SCARDS
SPRINT
SERCOM
SPUNCH
numbers 0 to 9
aFDname The actual file or device on which or from
which the data requested through the logi-
calIQunit is to go or come.
limit keyword parameters

These are tinme,
They are described in the
Specification, section MTS-225.
Parameters to be
executed. Everything from the first
acter after the "=" +to0 the end
command is passed as parameters.

Command Description (RUN)

cards, and page limits.
section Limits

passed to the program

char-

of the

123

124

MTS-230/RUN-1

12-1-67

Usage:

Effect:

The RUN command directs that an object deck is to be loaded
and then run. Certain parameters must be specified for
loading and certain parameters for execution; these are
separated in the command by the semi-colon: loading paramet-
ers to the left, execution parameters to the right. The
semi-colon may have one or more blanks before and/or after
it, but they are not necessary.

The loading parameters specify the input and output
devices for the loader. The execution parameters make the
connection between the logical IO units used by the user in
his program and the physical devices or files to be used for
them in this run.

Default specifications, when parameters are not supplied,
are:

objectFDnane source file or device
mapFDname NOMAP

SCARDS source

SPRINT sink

SERCOM terminal imaster sink)
SPUNCH none (if terminal usage)

¥PUNCH (if batch)

0 to 9 none

LIBRARY FACILITY

If, after loading all that the RUN command has specified,
there are still wunresolved external symbol references,
loading is continued from the system library, which is the
file named *LIBRARY. This file is set up with the appropri-
ate loader control cards so that only those pieces necessary
are loaded. If there are still unresolved external symbol
references after loading from this file, it is a fatal
loading error. '

The parameters are inspected to make sure that the files
specified exist and that the devices specified are free. If
not, an error comment is produced and the logical I/O unit
referring to the wunavailable file or device is set up in
such a way that the first time the program being run refers
to it either the user is given a chance to respecify the
name (if terminal usage) or the execution is terminated (if
batch wusage). The 1loader 1is called to load the object
program into a region in core. If there were no fatal
loading errors, control is transferred to the entry point of

MTS-230/RUN-1

12-1-67

Examples:

the program by calling it as a subroutine via GR15 with
return in GR14, parameter specification in GR1 (see below),
and save area location in GR13 (standard 0S CALL). The
comment "EXECUTION BEGINS™ is printed just before control is
transferred. If the program terminates by restoring the
registers and returning via GR14 (0S standard), the comment
WEXECUTION TERMINATED" is printed and the command is then
terminated by releasing all storage, files, and devices
used. If execution is terminated for any other reason (for
example the program calls ERROR) the storage, files, and
devices are not released until the next $RUN or SLOAD
command. This enables the terminal user to user to use
$DISPLAY, $ALTER, and $RESTART to debug the progranm. An
exception to this rule is if the first or only name in the
object FDname concatenation is a library file, storage,
files, and devices are always released at the end of
execution. If the program gets a program interrupt, the
comment:

PROGRAM INTERRUPT. PSW=XXXXXXXX XXXXXXXX

is printed, where the X's are the program 0ld PSW that was
stored because of the interrupt.

PARAMETER SPECIFICATION

The parameter (set up by the WPAR=" keyword
specification) is passed as follows. Register 1 contains
the 1location of a full-word adcon. This adcon is the

location of a half-word count (halfword aligned) which is
immediately followed by an EBCDIC character region (of the
byte-length specified in the count) which contains the
parameters. The left-most bit of the adcon will be 1.
(This is standard 0S setup.)

SRUN
$RUN -FYLE4 *SINK*
$RUN *FORTRAN

$RUN *ASMBLR NOMAP; SCARDS=SFILE SPRINT=LISTING
SPUNCH=SFILE

et

Command Description (RUN) 125

MTS-230/SET-0

12-1-67
COMMAND DESCRIPTION
Name: SET
Purpose: Set various global switches and quantities.
Prototype: $SET kywd=quan
where: kywd may be CASE quan may be UC or LC. (LC is normal)

RFP

IC

PW

ERRORDUMP

126

If UC is in effect, all data lines read
by the MTS monitor (See MTS-220 and
MTS-241) will have lower case letters
converted to wupper case. Useful for
terminals like 2741 and 1050 which have
both cases, to avoid having to use the
shift key so much.

quan is a hexadecimal number or GRx
where x is an integer between 0 and 15.
This sets a global relocation factor
quantity which is used in DISPLAY and
ALTER comnmands. If GRx is specified
the relocation factor 1is set to the
contents of the specified general reg-
ister. (value is zero initially)

quan may be ON or OFF (is ON
initially). If IC is on implicit con-
catenation is active as described in
MTS-210. If IC is off no check is made
for "PCONTINUE WITH" lines and they are
treated as any other lines.

quan is any sequence of zero to six
characters none of which are blank. If
at least one character is given the
character string becomes the password
for the current user and must be given
correctly before someone is allowed to
signon with his user id. If zero
characters are given the password is no
longer required. See description of
$3SIGNON for how to specify the password
when signing on.

quan may be ON or OFF (is OFF
initially). If errordump is on and an
execution in batch mode terminates

MTS-230/SET-0

12-1-67

Examples:

LNS

LFR

$SET CASE=UC

$SET RF=2B800

abnormally a dump is given. This has
no effect in terminal usage.-

quan is omne character specifying the
Line Number Separator (is a comma
initially). The LNS is that character
which, if it terminates the line number
at the beginning of an input 1line, is
not considered as part of the line but
only as a separator. Hence a 1linme
commencing with numeric information may
be easily entered. E.g., a line begin-
ning: 174,10LINE = 2

quan may be ON or OFF (is ON
initially). If ON, storage occupied by
library files during a RUN is always
released when they return to the sys-
tem, no matter what the reason. If
OFF, library files are treated the same
as any other file in this respect.
(See also PBRUN description)

Command Description (SET) 127

128

MTS-230/SIG:F-0

12-1-67

Name:
Purpose:
Prototype:
Usage:

Effect:

Txample:

Note:

COMMAND DESCRIPTION

SIGNOFF

Notify the system of the user's departure

$SIGNOFF

Obvious

All devices attached (and storage acquired) are released,
all files are closed, and the system quiescently awaits the
arrival of the next user on that terminal.

$SIGNOFF

If the abbreviation $SIG is used, its meaning is taken in

context: if no one is signed omn, $SIG means $SIGNON; if
someone is signed on, $SIG means $SIGNOFF.

MTS-230/SIG:N-0

12-1-67

Name:
Purpose:
Prototype:

wvhere

Usage:

Effect:

Example:

Note:

COMMAND DESCRIPTION

SIGNON

Identify the user to the systen

$SIGNON id ([PW=cccc] [1limit keyword parameters]]

id is the one to four character long user identification.
cccc is the password for id, if one is required.

limit keyword parameters specify limits on time, pages, and
cards. They are described in the section Limit Specifi-
cation, section MTS-225.

This must be the first command given. Complaint will be
made if id is omitted. If more than four characters are
given for id, only the first four will be used. See
description of $SET command for setting of user passwords.

Four characters are stored to use as the user prefix for
accessing files. If only ome, two, or three characters are
given as the I.D., this is padded out to four characters by
adding .$., $., or ., respectively, to the characters given.
If the I.D. given has a password and either nomne was given,
or an incorrect one was given the user will be given a
chance to enter the correct one (terminal usage) or will be
thrown off (batch usage).

$SIGNON Y025
If +the abbreviation $SIG is used, its meaning is taken in

context: if no one is signed on, $SIG means $SIGNON; if
someone is signed on, $SIG means $SIGNOFF.

Command Description (SIGNON) 129

130

MTS-230/SIN-0

12-1-67

Name:

Purpose:
Prototyp=:

where-

Jsage:

Effect:

Examples:

SINK

Changes the sink for "normal output”.

Dname
$SINK
PREVIOUS

FDname is the file or device name of the new sink.
Appearance of this command in the source stream causes the
next output directed to the sink device to be put on file or
device specified. The terminal the user 1is at always
remains connected as the master sink on which error messages
that require user action are given.

A one 1level pushdown of sink devices is maintained. If
"PREVIOUS"™ is given instead of a file or device name, the
previous sink device is restored.

This command is not allowed in batch operation.

File or device specified replaces sink. Msink remains
unchanged.

$SINK PTR1
$SINK PRINTSYSOUT

$SINK PREVIOUS

MTS-230/500-0

12-1-67

Name:

Purpose:

Prototype:

where-

Usage:

Effect:

Examples:

COMMAND DESCRIPTION

SOURCE

Changes the source tor command and data lines.

FDname
$SOURCE
PREVIOUS

FDname is the file or device name of the new source.
Appearance of this command in the source stream causes the
next input 1line to be taken from the file or device
specified. The terminal the user is at always remains
connected as +the master source from which attention (or
similar) interrupts occur and on which error messages that
require user actiomn are given.

A one level pushdown of source devices is maintained. If
WPREVIOUS" is given instead of a file or device name, the
previous source device is restored.

This command is not allowed in batch operation.

File or device specified replaces source. Msource remains
unchanged.

$SOURCE RDR1
$SOURCE *DO0JOB

$SOURCE PREVIOQUS

Command Description (SOURCE) 131

MTS-230/STA-0

12-1-67
COMMAND DESCRIPTION
Name: START
Purpose: To start execution of a program after 1loading it (via
$10AD).
Description: This command is identical to $RESTART, which see.

132

MTS-230/UNN-0

12-1-67
COMMAND DESCRIPTION

Name: UNNUMBER

Purpose: Turn off automatic numbering of input lines.

Prototype: SUNNUMBER

Usage: This command is used when it is desired to suspend the
automatic numbering of input lines that was turned on by use
of the PNUMBER command.

Examples: SUNNUMBER

Command Description (UNNUMBER) 133

134

MTS-241-0

12-1-67

DATA_LINES

LINE NUMBERS

All 1lines read by the MTS monitor that are not commands must start with
a line number (except when the automatic numbering mode is on). In its
full form, this line number contains a sign, five digits, a decimal point,
and three digits. The sign need not be specified; if missing it is assumed
positive. The decimal point and following fractional digits need not be
specified; if missing, the number is assumed an integer. Leading zeros
need not be specified in the integer part; trailing zeros need not be
specified in the fraction part. Complaint will be made if more than five
digits precede the decimal point or more than three digits follow it.

Examples of line numbers are:
5 5.1 5.13 5.137 32505.137 -32505.137

The first character following the line number is the first character of
the line. The end of the line number is determined as follows:

1. An alphabetic character terminates the number.

2. The second occurrence of . terminates the number (first occurrence
is the decimal point)

3. A + or - which is not the first character terminates the nunmber.

4. A blank terminates the line number.

5. Any other special character terminates the line number.
If the character which terminates the 1line number is a Line Number
Separator character (usually a comma), then this character is considered
only a separator and is not taken as either part of the line number or as
part of the 1line. For example, to put the three characters "123" in as
line one of a file,

1,123

would be typed. (See the $SET command for changing this character.)

Two other forms of line numbers are permitted. They are

LAST
LAST+linenumber

MTS-241-0

12-1-67

The value of LAST is the line number of the last line in the current active
file or device. Note that LAST-1 does not necessarily specify the 1line
number of the next-to-last 1line; it is merely a line number 1 less than
that of the last 1line.

Line Numbers 135

136

MTS-250-0

12-1-67

USER_PROGRAMS

This general section gives rules for writing programs so they can be run
under MTS. Section 251 lists general constraints, section 252 describes
how parameters and modifiers may be passed to the program, section 253
contains the subroutine descriptions for all of the subroutines available
to the wuser's program, and section 255 contains description of the macro
library available for the assembler.

MTS-251

12-1-67

USER PR

Prog
below:

._1‘

OGRAM CONSTRAINTS
rams run under MTS are subject to the rules and constraints listed

The program runs in problem state.

Storage protection (both store and fetch protect) is on, with each
user's program having a diftrerent key.

Programs are started up with an 0S CALL: parameter list in location
GR1, save area location in GR13, return address in GR14, entry point
location in GR15. .

Programs are expected to start by saving registers in the save area,
and when they wish to return, they are expected to restore all
registers and then branch to waere GR14 points. Alternatively, the
subroutines SYSTEM and ERROR are provided as means of exits.

A1l I/0 shall be done by cailing on subroutines provided.

No SVC instructions should be used.

User Program Constraints 137

38

MTS-252-0

12-1-67

I/0 ROUTINES - PARAMETER DESCRIPTION

All the I/O routines have the same types of parameters, and in the sanme
order. The exact calling sequences are given in later sectioas. The
calling sequence is designed in such a way that these routines may be
called from either assembly language or FORTRAN programs. The parameter
descriptions, being common, are given here:

1. REGION location of the core region to or from which data is to
be transmitted.

2. COUNT location of a half word integer which is the number of
bytes to be transmitted.

3. MODIFIERS location of a tull word of switches used to nodify
action of the subroutine. Each switch is represented
by two bits: an ON bit and an OFF bit. If either the
ON bit or the OFF bit, but not both, is set, the
modifier is or is not used, respectively. If neither
or both of the bits are set, but the given modifier was
applied to the FDname (See MTS-210), then what was

specified by tae FDname is used. If neither the
subroutine call nor the FDname specifies which to use,
a default specification is used. The modifiers and

their default specifications are:

Bit_ number Name) Default
31 OFF
indexed OFF
30 ON
29 OFF
binary OFF
28 ON
27 OFF
Case conversion OFF
26 ON
25 OFF carriage control ON for
ana printers and
24 ON stacker select terminals, OFF

for all else

MTS-252-0

12-1-67
23 OFF
prefix print OFF
22 ON
21 OFF peel
or OFF
20 ON return line nr
19 OFF
machine OFF
18 ON carriage control
17 OFF
trim ON
16 ON
15 OFF
special OFF
14 ON
Explanation ot the modifiers is later in this section.
4. LINE NUMBER location of a rull word which contains the line number
transmitted to or returned from the subroutimne. The
line number is stored internally as a full word integer
whose value is the line number times 1000.
S. UNIT_ NUMBER location of a full word which contains either the

logical unit number as a full-word integer or the
location of a FDUB (as returned by GETFD) as a
full-word.

Parameter Description 139

40

MTS-252-0

12-1-67

293
28}

27}
26}

25}
243

23}
22}

SEQUENTIAL
INDEXED

EBCD

BINARY

LC
uc

cC
SS

PREFIX

EXPLANATION OF MODIFIER BITS

Indexed and Sequential are opposites.

Indexed means the user is specifying the line number:
i.e., he says "put (or get) this line at (from) this
place". Sequential means that the user wants to get
(or put) the next line.

Normal mode is BCD. The binary modifier is
used to read or punch binary cards. It has nothing to
do with binary tape.

Normally characters are transmitted
unchanged. It this modifier is on, lower case lettets
are changed to upper case letters.

Controls carriage control or stacker select

(which is which depends on the device) Normal carriage
control is "logical carriage control®. Legal carriage
controls are:

blank single space
- triple space
0 double space
1 start new page
9 single space and suppress

overflow

If stacker select for punch is specified, first charac-
ter is taken as control:

0 for stacker 1
1 2
2 3

If first character is a legal control it is so used,
and characters 2 and on are punched in column 1 and on;
if not 1legal, the card is punched as is (character 1
and on into column 1 and on) and stacked in stacker 2.

For control functions for tapes, see Tape User's Guide
(MTS-160) .

If on, for both input and output, the current
line number is converted to external form and printed
as a prefix on the appropriate input or output line.

|

MTS-252-0

12-1-67

21}
203

19}

183

173
16}

15}
143

PEEL

MCcC

TRIM

SPECIAL

input If on, a line number is "peeled" off

the front of the 1line. The number is converted to
jnternal form and returned; the rest of the 1line is
returned as the input line.

output If on, forces the line number in the sequential
case to be returned to the spot designated in the
parameter list. (not normally the case).

If on, then machine carriage control is used.

In this case, for printers (and simulated for
terminals) , the first byte of the line is used as the
command in the CCW used for output, if legal, and the
first byte is blanked out. If not legal, the entire
line is printed single spaced. For all other devices
and for files, this modifier is ignored.

Normally TRIM is on.
This means that if a line has any trailing blanks, all
but one are deleted.

This modifier is reserved for device

dependent uses. Its meaning depends on the particular
device type it is used with.

Parameter Description 141

142

MTS-253-0

12-1-67

SUBROUTINE DESCRIPTIONS

This section lists those subroutines available to the user. Most of
them are in the system library (file *LIBRARY), which is automatically
searched when a program is run via the $JRUN command (and also when the
LOAD, LINK, and XCTL subroutines are called).

In addition to those described in this section, all of +the subroutines
described in "IBM SYSTEM/360 OPERATING SYSTEM: FORTRAN Iv Library
Subprograms",form C28-6596, are in the system library.

IBM's Scientific Subroutine Package (SSP), Version II, described in forn
H20-0205, 1is in the file *Ssp. 1If usage of any of the subroutines in SSP
occurs, this file should be concatenated onto the object file(s) loaded
when the progranm is run, e.g:

SRUN OBJECT+*SSP *¥SINK*;5=%SOURCE* 6=*SINK*

MTS-253-0

12-1-67

Following
corresponding subroutine descriptions are in this sectio

MTS System and Library External Symbols

are

the

lists

of

all

available

publications: System/360 Scientific Subroutine Package

sion IT,

Programmer's
FORTRAN IV Library

Subprograms

See

external

the

(MTS-280/62475) for details on referring to SSP entry points.

Pre-Defined External Symbols

ERROR
SPUNCH

Low-Core

CANREPLY
GETFD
MAKFFILE
SETPFX

SCARDS

ERRCOM

PGNTTRP

LCSYMBOL READ

SYSTEM WRITE
External Symbols
EMPTY ERR
GETSPACE GUSERID IN
ouT OUTPUT
UNLOAD XCTL

SDUMP

FREEFD
INPUT
PRINT

Library Entry Points and Module Names

#FPCON
ALMADR
AMIN1
CCOs
CDMPY #
CMPY#
DARCOS
DEBUG#
DLGAMA
DSINH
D7090P
FCDXI#
FCVZO
FPAUS#
GAMMA
IHCCLABS
IHCCSAS
IHCFCDXI
THCFDXPD
THCFMAXR
IHCLATNZ
IHCLSCNH
THCSERF

@TESTITP
ALMADW
AND
CDABS
CDSIN
COMPL
DARSIN
DERF
DLOG
DSOQRT
ERF
FCVAO
FCXPI#
FPC

GLAP
IHCCLAS
IHCCSEXP
IHCFCOMH
IHCFDXPI
IHCFOVER
IHCLERF
IHCLSQRT
IHCSEXP

ACCEPT
ALOG
ARCOS
CDCOS
CDSQRT
CcOos
DATAN
DERFC
DLOG10
DTAN
ERFC
FCVCO
FDIOCS#
FRDNL#
IBCON#
IHCCLEXP
IHCCSLOG
IHCFCOMM
IHCFEXIT
IHCFRXPI
IHCLEXP
THCLTANH
THCSGAMA

ADCON #
ALOG10
ARSIN
CDDVD#
CDVD#
COSH
DATAN2
DEXP
DMAX1
DTANH
EXIT
FCVEO
FDXPD#
FRXPI#
IBERH#
IHCCLLOG
IHCCSSCN
IHCFCVTH
IHCFIOSH
IHCFRXPR
IHCLGAMA
IHCLTNCT
IHCSLOG

ALGAMA
AMAXO
ATAN
CDEXP
CEXP
COTAN
DCOS
DGAMMA
DMIN1
DuUMP
EXP
FCVIO
FDXPI#
FRXPR#
IBEXIT#
IHCCLSCHN
THCCSSQT
IHCFCXPI
IHCFIXPI
IHCFSLIT
IHCLLOG
THCNAMEL
IHCSSCHN

SERCOHM

FREESPAC
LINK
PUNCH

ALMADGO
AMAX1
ATAN2
CDLG10
CLOG
CSIN
DCOSH
DIOCS#
DROPIOER
DVCHK
E7090
FCVLO
FIOCS#
FSTOP#
IBFERR#
IHCCLSQT
IHCDBUG
IHCFDUMP
IHCFMAXD
IHCIBERH
IHCLOGIC
IHCSASCN
IHCSSCNH

Subroutine Descriptions

SPRINT

GDINFO
LOAD
SETIOERR

ALMADP
AMINO
CABS
CDLOG
CLOG10
CSQORT
DCOTAN
DISMOUNT
DSIN
D7090
E7090P
FCVTHB
FIXPI#
PWRNL#
IBFINT#
IHCCSABS
IHCDIOSE
IHCFDVCH
IHCFMAXI
TIHCLASCN
THCLSCN
THCSATN2
IHCSSQRT

symbols.
n (MTS-253) and IBM
(360A-CM-03X)
Manual (H20-0205) and System/360 Operating System:

(C28-6596) . writeup

144

MTS-253-0

12-1-67

IHCSTANH
IOHLINK
LCLOSE
MINO
OWNCONVR
PLOT1
QCNTRL
QSAM
SERCLOSE
SHFTL
SQRT

TAN

JTHCSTNCT IHCUATBL IOHERP
JOHSFSET IOH360

IOHOUT
LCOMPL
MIN1
PCCLOSE
PLOT14
QDTAN
QSAMP
SEROPEN
SHFTR
STPLT1
TANH

LOPEN
MOUNT
PCLOSE
PLOT2
QGET
QTAN
SETEOF
SIN
STPLT2
XOR

LOR
OMIT
PCOPEN
PLOT3
QGETUCB
RCLOSE
SETERR
SINH
SYSC

SSP Entry Points and Module Names

ABSNT
ALT#
ATSM
AVDAT#
BESY
CANOR#
CEL2
CNP#
CROSS
CSPS#
CTIE
DALT#
DCEL1
DCNP#
DCSPs
DFMCG#
DGELS
DHEPS#
DJELF
DLBVP#
DMATX
DPECS#
DQA16
DQAL#
DQG24
DQGS8#
DQHSG
DQH32#
DQL12
DQL32#
DQTFE
DRKGS#
DTCNP
DTEUL#
EIGEN
EXPI#
FORIF

ABSNT#
ARRAY
ATSM#
BESI
BESY#
CCPY
CEL2#
CNPS
CROSS #
CSRT
CTIE#
DATSE
DCEL1#
DCNPS
DCSPS#
DFMFP
DGELS#
DHPCG
DJELF#
DLEP
DMATX #
DPRQD
DOA16#
DQAS8
DQG24#
DQHFE
DQHSG#
DQHUS
DQL12#
DQLY
DQTFE#
DRTMI
DTCNP#
DTHEP
EIGEN#
EXSMO
FORIF#

ACFI
ARRAY#
AUTO
BESI#
BOUND
CCPY#
CHISQ
CNPS#
Cs
CSRT#
DACFI
DATSE#
DCEL2
DCNPS#
DELI1
DFMFP#
DHARM
DHPCG#
DLAP
DLEP#
DMFGR
DPRQD#
DQA24
DQAS8#
DQG32
DQHFE#
DQH16
DQH4B#
DQL16
DOLu#
DQTFG
DRTMI#
DTCsSP
DTHEP#
ELI1
EXSMO#
FORIT

ACFI#
ATSE
AUTO#
BESJ
BOUND#
ccurt
CHISQ#
CONVT
CS#
CsuM
DACFI#
DATSG
DCEL2#
DCPY
DELI#
DGELB
DHARM#
DHPCL
DLAP#
DLEPS
DMFGR#
DQATR
DQA24 #
DQG12
DQG32#
DQHFG
DQH16 #
DQHb64
DQL16#
DQL8
DQTFG#
DRTNI
DTCSP#
DTLAP
ELI#
FMCG
FORIT#

IOHERR
I0PKG
LXOR
ONE®ATIN
PDUMP
PLOT4
QGTUCB
REWIND
SETFRVAR
SLITE
SYSL

AHI
ATSE#
AVCAL
BESJ#
CADD
CCUT#
CINT
CONVT#
cspe
CsuM#
DAHI
DATSG#
DCLA
DCPY#
DELIZ2
DGELB#
DHEP
DHPCL#
DLAPS
DLEPS#
DPECN
DQATR#
DQA32
DQG12#
DQG4
DQHFG#
DQH24
DQHOU#
DQL24
DQL8#
DRHARM
DRTNI#
DTEAS
DTLAP#
ELIZ2
FHMCG#
GAMNMA

IOHETC
I0OPMOD
MAXO

OR

PLOT
POPEN
QOPEN
REWIND#
SETIOHER
SLITET
SYSP

AHI#
ATSG
AVCAL#
BESK
CADD#
CEL1
CINT#
CORRE
CSP#
CTAB
DAHI#
DATSHM
DCLA#
DCSP
DELI2Z#
DGELG
DHEP#
DISCR
DLAPS#
DLLSQ
DPECN#
DQA12
DQA32#
DQG16
DQG4#
DQHSE
DQH24#
DQH8
DQL24#
DQSF
DRHARN#
DRTWI
DTEAS#
DTLEP
ELI2Z#
FMFP
GAMMA#

IOHIN
LAND
MAX1
OVERFL
PLOTP
QCLOSE
QPUT
ROPEN
SETLOG
SPIE
SYSR

ALI
ATSG#
AVDAT
BESK#
CANOR
CEL1#
CNP
CORRE#
CSPS
CTAB#
DALI
DATSM#
DCNP
DCSP#
DFMCG
DGELG#
DHEPS
DISCR#
DLBVP
DLLSQ#
DPECS
DQA12#
DQAY
DQG16#
DQG8
DQHSE#
DQH32
DQH8#
DQL32
DQSF#
DRKGS
DRTWI#
DTEUL
DTLEP#
EXPI
FMPP#
GAUSS

MTS-253-0

12-1-67

GAUSS#
GELS
GMSUB#
HEP
HPCL#
LAPS
LEPS#
MADD
MEANQ#
MOMEN
MSUB#
ORDER
PCLA#
PECN
PILD#
POLRT
PSUB#
0a10
QA4#
QA8
0G2#
0G6
0G9#
QHSG
QH3#
QH7
QL10#
QL5
QL8#
QTFE
RANDU #
RECP
RKGS #
RSUM
RTMI#
sCcLA
SICI#
SRANK
SUBMX #
TALLY
TEAS#
TLAP
TRACE#
VARMX

GDATA
GELS#
GMTRA
HEP#
JELF
LAPS#
LLSQ
MADD#
MFGR.
MOMEN#
MTRA
ORDER#
PCLD
PECN#
PINT
POLRT#
PVAL
QA10#
QA5
QOA8#
0G3
QG6#
QHFE
QHSG#
QHY
QH7#
QL2
QLS5#
QL9
QTFE#
RANK
RECP#
RK1
RSUM#
RTNI
SCLA#
SIMQ
SRANK#
SUBST
TALLY #
TEUL
TLAP#
TTEST
VARMX#

GDATA#
GMADD
GMTRA#
HEPS
JELF#
LBVP
LLSQ#
MATA
MFGR#
MPRD
MTRA#
PADD
PCLD#

- PECS

PINT#
POSD
PVAL#
QA2
QAS#
QA9
QG3#
QG7
QHFE#
QH10
QH4#
QH8
QL2#
QL6
QL9#
QTFG
RANK#
RHARM
RK1#
RTAB
RTNI#
SCMA
SIMQ#
SRMA
SUBST#
TCNP
TEUL#
TLEP
TTEST#
WTEST

GELB
GMADD #
GTPRD
HEPS#
KRANK
LBVP#
LOAD
MATA#
MFUN
MPRD#
MULTR
PADD#
PDER
PECS#
PMPY
PQSD#
PVSUB
QAZ#
QA6
QA9#
QG4
QG7#
QHFG
QH10#
QH5
QH8#
QL3
QL6#
QSF
QTFG#
RCPY
RHARM#
RK2
RTAB#
RTWI
SCHMA#
SMO
SRMA#
TAB1
TCNP#
THEP
TLEP#
TWOAV
WTEST#

GELB#
GMPRD
GTPRD#
HPCG
KRANK#
LEP
LOAD#
MCPY
MFUN#
MSTR
MULTR#
PADDM
PDER#
PGCD
PMPY#
PRQD
PVSUB#
QA3
QAG#
QG10
QGU#
QG8
QHFG#
QH2
QHS5#
QHY
QL3#
QL7
QSF#
RADD
RCPY#
RINT
RKZ2i#
RTIE
RTWI#
SDIV
SMO#
SSUB
TAB1#
TCsP
THEP#
IPRD
THOAV#
XCPY

GELG
GMPRD#
HARM
HPCG#
LAP
LEP#
LOC
MCPY#
MINV
MSTR#
NROOT
PADDM#
PDIV
PGCD#
PNORM
PRQD#
QATR
QA3#
QA7
QG10#
QG5
QG8#
QHSE
QH2#
QH6
QH9#
QL4
QL7 #
QTEST
RADD#
RCUT
RINT#
RSRT
RTIE#
SADD
SDIV#
SMPY
SSUB#
TAB2
TCSP#
TIE
TPRD#
UTEST
XCPY#

GELG#
GMSUB
HARM#
HPCL
LAP#
LEPS
LOC#
MEANQ
MINV#
MSUB
NROOT#
PCLA
PDIV#
PILD
PNORM#
PSUB
QATR#
QAL
QAT7#
QG2
QG5#
QG9
QHSE#
QH3
QHo#
QL10
QL4#
QL8
QTEST#
RANDU
RCUT#
RKGS
RSRT#
RTMI
SADD#
SICI
SMPY#
SUBMX
TAB2#
TEAS
TIE#
TRACE
UTEST#

Subroutine Descriptions

145

146

MTS-253/21635-0

12-1-67

Name:

Purpose:

Calling Sequence

Entry:

Description:

SUBROUTINE DESCRIPTION

ATTNTRP

To set things up so control will be returned to the user on
an attention interrupt (ATTN key on 2741, BREAK on teletype,
etc.) .

: 0s (1) R type
Register 13 save area is not required.

GRO should contain zero or the 1location to tramnsfer
control to if an attention interrupt occurs.

GR1 contains the location of a 72 byte save region inm
which are stored pertinent information (see below).

A call on this routine sets up an attention interrupt
exit for one interrupt only. When an interrupt occurs and
the exit is taken, it is reset so that another call on this
subroutine is necessary to intercept the next attention
interrupt.

When the attention interrupt exit is taken, the second
four bytes of the save region contains the interrupt
location, and the rest of it contains the general purpose
registers in order 0 through 15. The floating point
registers remain as they were at the time of the interrupt.
GR1 contains the location of the save region.

If, on a call to this routine, the first byte of the
region specified by G6R1 is X'FF', then in addition to
setting up the attention interrupt exit, the program is
restarted at the location specified in the region (using
that four bytes as the right-hand half of the PSW), using
the GPR's in the region.

MTS-253/22635-0

12-1-67

SUBROUTINE DESCRIPTION

Bitwise Logical Functions

For Fortran IV Users

AND,LAND,OR,LOR,XOR, LXOR,CONMPL,LCOMP,SHFTR,SHFTL

These simple functions do the bitwise 1logical operations which are
difficult to state in FORTRAN IV arithmetic formulas. If their names are
prefixed with an "L", they are integer; otherwise they are declared real.
The only exception to this rule is that SHFTR and SHFTL must be declared
integer.

Unless otherwise stated, the arguments of the functions may be either
real or integer provided that they are full words, i.e., four bytes lomng.

AND C
LAND IC

AND (A, B)
LAND (I3, IB)

([l

The result has bits on only if the corresponding bits of the
arguments are both on.

OR C = OR(A,B)

LOR IC = LOR(IA,IB)
The result has bits on only if either argument or both has
the corresponding bits on.

XOR C = XOR(a,B)

LXOR IC = LXOR(IA,IB)
The result has bits on only if the corresponding bits of the
two arguments are not the same.

COMPL B = COMPL (3)

LCOUPL IB = LCOMPL (IA)
The result simply has bits of the argument all reversed.

SHFTL IC = SHFTL (IA,IB)

SHFTR IC = SHFTR (IA,IB)

Subroutine Description (Bitwise Logical Functions) 147

MTS-253,/22635-0

12-1-67
As logical shift functions they are not equivalent to a
division or a multiplication by a power of two. The first
argqument is shifted right or 1left the number of bits
specified by the second integer argument.
Examples:

Zero out all bits or a full word.
WORD = XOR(WORD, WORD)
Examine the second byte of a full word.

DATA MASK/ZOOFF0000/
SCDBYT = AND (WORD, MASK)

Move the first byte of a fullword so that it becomes the
fourth byte of the word.

INORD = SHFTR (IWORD,24)
Pack the four characters together.

READ (5,4) (CHAR(I),I=1,4)
4 FORMAT (4A1)

DATA MASK/ZFF000000/

WORD = 0.

DO 6 I=1,4

WORD = OR (WORD,SHFTR (CHAR (I), (I-1)*8)
6 CONTINUE

148

MTS-253/22465-0

12-1-67

Name:

Purpose:

SUBROUTINE DESCRIPTION

Blocked Input/Output Routines

The blocked input/output routines have the following entry
points:

QGETUCB, QOPEN, QCLOSE, QGET, QPUT, QCNTRL

These routines will read and write blocked records consist-
ing of one or more fixed-length 1logical records. All
input/output requests are made for logical records; the
routine handles record blocking and deblocking automat-
ically. These routines are intended for use with tape
records although they are not restricted to tapes. More
than one input/output file or device may be handled at one
time. The type of processing done by these routines is
similar to that done by the Queued Sequential Access Method
(QSAM) within O0S and for this reason are sometimes referred

~.to as the MTS QSAM routines. They should not however, be

confused with the 0S routines of the same name because the
MTS routines provide only a subset of the features of the 0S
routines.

Several error messages can be generated. Each of these
begins with the pretix:

####% QSAM ERROR: <FDname>
which will be abbreviated as "eee" in what follows.
The error messages which can be generated by each routine

will be listed with that routine in the subroutine descrip-
tions which follow:

Subroutine Description (Blocked I/O) 149

150

MTS-253/22465-0

12-1-67

BLOCKED I/0 ROUTINE: QGETUCB (QGTUCB)

Name: QGETUCB (QGTUCB)

Purpose: To acquire a file or device which will be wused by the
blocked input/output routines and generate a table of
control information for that file or device. This table is
referred to as a UCB (Unit Control Block).

Calling sequence: 0S (I) S type

Entry: GR1 contains the location of a parameter list:

Word 1: Location of the name of the file or device
which 1s to used by the blocked input/output
routines, ending with a blank or comma. The
name may not be longer tham sixteen charac-
ters. :

Word 2: Address of a word in whica the pointer to the
UCB will be placed.

Return: RC=0 Successful return. File or device was acquired and
can now be used by the other blocked input/output
routines.

RC=4 File or device could not be acquired properly from
MTS. The subroutine GETFD or GDINFO returned a
non-zero return code.

Messages: eee COULD NOT BE ACQUIRED FROM MTS.

Description: A chain of all UCB'S acquired thus far is searched to see if

this file or device has been set up before. If so, the UCB
pointer is returned immediately. Otherwise, a UCB is built
and added to the chain, a pointer to it is returned, GETFD
and GDINFO are called for the file or device, and pertinent
information is set up in the UCB.

MTS-253/22465-0

12-1-67

Name:

Purpose:

BLOCKED I/O ROUTINE: QOPEN

QOPEN

To prepare a file or device which has been acquired by
QGETUCB for blocked input or blocked output operations.

Calling sequence: 0S (I) S type.

Entry:

Return:

Messages:

Description:

GR1 contains the location of a parameter list:

Word 1: Address of a word containing a UCB pointer as
returned by QGETUCB.

Word 2: Address of a full-word integer which indi-
cates whether information is to be read or
written:
1=Intormation is to be written.
2=Intormation is to be read.

Word 3: Address of the full-word integer maximun
number of logical records per physical block.

Word 4: Address of the full-word integer length of
each logical record (in bytes). Legal values
range from 2 tnrough 256 bytes.

RC=0 Successful return. File or device can now be read
from via QGET (if the second parameter value is 2) or
written via QPUT (if the second parameter value is
1.

RC=4 The file or device is already open, or the second
parameter is not a 1 or 2, or the maximum length of a
physical record for tape was rejected by the tape
device support routines (it probably was longer than
32767 bytes).

eee TS ALREADY OPEN. IT CAN'T BE OPENED TWICE.
eee READ/WRITE SPECIFICATION INCORRECT IN CALL TO OPEN.
see MAXTMUM RECORD LENGTH REJECTED BY TAPE DSR.

The parameters are cnecked for consistency. The information
from the parameters is placed in the UCB. The largest
possible physical record length is computed and a buffer of
that length is acquirea. If the device is a tape, the tape
device support routines are initialized to accept records up
to the maximum length.

Subroutine Description (QOPEN) 151

MTS-253/22465-0

12-1-67
BLOCKED I/0 ROUTINE: QGET
Name: QGET
Purpose: To acquire the next logical record from a file or device
which has been opened as an input file or device via QOPEN.
Calling sequence: 0S (I) S type.
Entry: GR1 contains the location of a parameter 1list:
Word 1: Address of the area in which the next logical
record will be stored. (input area)
Word 2: Address of a word containing a UCB pointer as
returned by QGETUCB.
Return: RC=0 Successful return. The next logical record has been
placed in the input area.

RC=4 End-of-file. The input area is sprayed with the
character having FF as its hexadecimal representa-
tion. This corresponds to the 12-11-0-7-8-9 punched
card code.

ERROR A message is printed and the subroutine ERROR called
if the file or device has not been opened for input
via the subroutine QOPEN, if am end-of-file indica-
tion has already been returned once for this file or
device, if a physical record is longer than the
maximum size computed from the parameters to QOPEN,
or an error indication wvwas received while reading the
next physical record.

Messages: eee USED IN GET ALTHOUGH NOT OPENED AS AN’INPUT FILE.

eee USED IN GET ALTHOUGH END-OF-FILE INDICATION GIVEN.

eee TNPUT RECORD IS LONGER THAN MAXIMUM SPECIFIED.

eee RETURN CODE GREATER THAN 4 FROM READ IN GET.
Description: Physical records are read from the file or device as

152

required. Bach physical record is broken into one or more
logical records of the length specified in the call to
QOPEN. One 1logical record is returned upon each call upon
QGET. The last logical record in a physical record may
actually be shorter than the length of a logical record, in
which case it is padded out with blanks. If there are no
more logical records the input area is sprayed with the
character having FF as its hexadecimal representation. All
necessary indices are maintained in the UCB.

MTS-253/22465-0

12-1-67
BLOCK I/0O ROUTINE: QPUT
Name: QPUT
Purpose: To write the next logical record to a file or device which
has been opened as an output file or device via QOPEN.
Calling sequence: 0S (I) S type
Entry: GR1 contains the location of a parameter list:
Word 1: Address of the area in which the next logical
record is stored. (output area)
Word 2: Address of a word containing a UCB pointer as
- returned by QGETUCB.
Return: RC=0 Successful return. The next logical record has been

placed into the current physical record.

ERROR A message is printed and the subroutine ERROR called

Messages:

Description:

if the file or device has not been opened for output
via the subroutine QOPEN or if a non-zero return code
wvas received from WRITE while writing out a physical
record.

eee USED QPUT ALTHOUGH NOT OPENED AS AN OUTPUT FILE.
eee APPEARS TO BE FULL. (RC>0 FROM WRITE)

Each logical record presented by a call upon QPUT is placed
jnto a buffer. When the buffer becomes full, it is written
out as one physical record. All buffers will contain the
maximum number of logical records specified in the call to
QOPEN except the last buffer which will be truncated if it
is only partially full whén QCLOSE is called. All necessary
indices are maintained in the UCB.

Subroutine Description (QPUT) 153

MTS-253/22465-0

12-1-67

Name:

Purpose:

BLOCKED I/0 ROUTINE: QCLOSE

QCLOSE

To terminate blocked input or output operations on a file or
device which has Dbeen opened via QOPEN. If the file or
device was used for output and a partial buffer of logical
records for it is present, it is written out as a part of
the closing procedure.

Calling sequence: 0S (I) S type.

Entrj:“

Return:
Messages:

Description:

Note:

154

GR1 contains the location of a parameter list:

Word 1: Address of a word containing a UCB pointer as
returned by QGETUCB for the file or device to
be cilosed. The word should contain a zero if
all the currently open files or devices are
to be closed.)

RC=0 All returns are successful, even though some error
messages may have been printed.

eee APPEARS TO BE FULL. (RC>0 FROM WRITE)
see FISHY RETURN FROM FREESPACE.

If the file or device was used for output and a partial
buffer of 1logical records for it is present, it is written
out. All information in the UCB is reset to +the normal
state of an unopened file or device. The file or device is
available for use and can be re-opened or positioned.

No tape mark is written whem an output file is closed. It
is the wuser's responsibility to see that a tape mark is
written on a tape before it is rewound to mark the end of
the information written. The subroutine QCNTRL can be used
for this purpose.

MTS-253/22465-0

12-1-67
BLOCKED I/0 ROUTINE: QCNTRL
Name: QCNTRL
Purpose: To position or write tape marks on a tape which has been
acquired for use by the blocked input/output routines.
Calling sequence: 0S (I) S type.
Entry: GR1 contains the location of a parameter list:

Word 1: Location of the three byte logical carriage
control used to perforn the function
required. See section MTS-160.

Word 2: Address of a word which contains a UCB
pointer as returned by QGETUCB.

Return: RC=0 Successful return. Operation was accepted by the
tape device support routines.

RC=4 The file or device is currently open, is not a tape,
was not successfully acquired by QGETUCB, or the
logical carriage control was rejected by the tape
device support routines.

Messages: eee CANNOT BE POSITIONED BECAUSE IT IS OPEN.

eee CANNOT BE POSITIONED BECAUSE IT IS NOT A TAPE.
eee DOES NOT HAVE A FDUB AND SO CAN'T BE POSITIONED.
eee RC>0 FROM "CARRIAGE CONTROLY TO WRITE.

Subroutine Description (QCNTRL) 155

MTS-253/23455-0

12-1-67
SUBROUTINE DESCRIPTION
Name: CANREPLY
Purpose: Find out if the user is at a terminal or if this is a batch
job.
Calling sequence: 0S (I)
Exit: RC=0 yes (conversational)

4 no {batch)

156

MTS-253/24627-0

12-1-67
SUBROUTIME DESCRIPTION
Name: DISMOUNT
Purpose: Allow users to dismount private volumes.
Calling sequence: 0S (I) S type
Entry: GR1 contains the location of a pointer to the parameter

list. The parameter list consists of a halfword length of a
character string immediately followed by that character
string. The character string should be those characters
which would immediately follow the "PAR=" if this subroutine
wvere being run as a library file. See the description of
the library file *DISMOUNT, MTS-280/24627, for details.

Subroutine Description (*DISMOUNT) 157

MTS-253/25475-0

12-1-67
SUBROUTINE DESCRIPTION
Name: EMPTY
Purpose: Do the same thing as the command $EMPTY, that is, remove all
the lines from a file without destroying it.
Calling sequence: 0S (I) R type

Entry: GRO contains the location of a FDUB (such as
GETFD returns)

Exit: RC=0 0.K.

=4 File does not exist.
=8 Something wrong with the file.

158

MTS-253/25515-0

12-1-67
SUBROUTINE DESCRIPTION
Name: ERROR
Purpose: Terminate execution with an error indication
Calling sequence: None - just branch
Effect: Returns control to MTS to terminate execution. The comment

"ERROR RETURN" is printed. In BATCH mcde, a dunmp is
automatically given, if SERRORDUMP or $SET ERRORDUMP=ON was

specified.

Subroutine Description (ERROR) 159

150

MTS-253/25005-0

12-1-67

Name:

Purpose:

Calling Sequence

Entry:

Description:

Exit:

SUBROUTINE DESCRIPTION

E7090,D7090,E7090P,D7090P

To allow users to convert 7090 floating point internal
representation to one of the two types of intermnal floating
point representations available on the 360.

: 0S (I) S type

GR1 contains the location of a parameter list which consists
of two adcons. The first adcon points to the area from
which the input is to be takenm (either twelve or six bytes
in length depending on the entry used) and the second adcon
points to the output region (either four or eight bytes
depending on the entry used).

D7090 and E7090 expect the input to be twelve bytes long ---
the low order three bits of each byte are taken as one octal
digit. The sign of the number is assumed to be the first
bit of the first octal digit. D7090P and E7090P assume a
six byte input area. The low-order six bits of each byte
are taken as two octal digits. The first bit of the first
octal digit is taken as the sign. D7090 and D7090P assume
the output area is eight bytes 1long. E7090 and E7090P
assume that the output area is four bytes long --- since the
mantissa of single-word floating point numbers in +the 360
contains only 24 bits and the mantissa in a 7090 floating
point number contains 27 bits, rounding (if any) is done for
the E-type conversioms.

RC= 0 conversion was successful

RC= 4 parameter list was not full-word aligned

MTS-253/26655-0

12-1-67
SUBROUTINE DESCRIPTION
Name: FCVTHB
Purpose: To alter the disposition of blanks with respect to FORTRAN

formatted-input on numeric fields.
Calling Sequence (in FORTRAN) : CALL FCVTHB (ARG)
If ARG is a full-word zero, all blanks are assumed to be

zeros on numeric input (tanis is the normal FORTRAN mode).
If ARG is non-zero, all blanks are ignored.

Subroutine Description (FCVTHB) 161

MTS-253/26255-0

12-1-67
SUBROUTINE DESCRIPTION
Name: FREEFD
Purpose: Free a file or device acquired with the GETFD subroutine.
Calling sequence: 0S (I) R type

Entry: GRO contains FDUB location as returned by GETFD or
GDINFO.

Exit: RC=0 successtul return.

=4 the FDUB wasn't or something else was fishy.

162

MTS-253/26257-0

12-1-67
SUBROUTINE DESCRIPTION
Name: FREESPAC
Purpose: To release storage that was obtained with GETSPACE
Calling sequence: 0S (I) R type
Register 13 save area is not required.
Entry: GRO = 0 entire region allocated is released.
0 is length of region to be released. If not
a multiple of 8, next shortest multiple of
8 is used.
GR1 location of first byte of region.
Exit: RC = 0 ok
) (a) space was not initially allocated by

GETSPACE and cannot be released.

(b) region (LOC to LOC+LEN-1) specified
is not completely within a region.

Subroutine Description (FREESPAC) 163

164

MTS-253/27415-0

12-1-67
SUBROUTINE DESCRIPTION
Name: GDINFO
Purpose: Obtain information about a file or device.
Calling sequence: 0S (I) R type

Entry: either (a) GRO contains a FDUB location (such as
GETFD returns), and GR1 contains zero;

or (b) GRO and GR1 contain an 8 character
logical _I/0 _unit__name, left-justified
-with trailing blanks. [See the descrip-
tion of BRUN for list of logical I/0 unit
names. J

Exit: RC=0 ok. GR1 contains the location of a full word
aligned region of information. (Xf a conca-
tenation was specified in the original logical
I/0 unit setup or GETFD call, the information
returned in this region applies to the cur-
rently active member of the concatenation.)
The region contains:

WORD 1: FDUB pointer

WORD 2: 4 <character BCD type (Section
MTS-210 has list of device types.
For file the type returned is
FILE. For a non-existent file
the type is NONE.)

RC=4 Something wrong. If "(a) call", the FDUB
pointer wasn't. If "(b) call", either the
name given was not a legitimate 1logical I/O
unit name or else there was no file or device
assigned to that logical I/0 unit name.

Note: The storage pointed to by GR1 was allocated by
GETSPACE and the user may call FREESPAC (with GRO =
0) to release it when it is no longer needed.

MTS-253/27633-0

12-1-67
SUBROUTINE DESCRIPTION
Name: GETFD
Purpose: Obtain a file or device
Calling sequence: 0S (I) R type
Entry: GR1 contains the location of the first character of
the FDname of what is wanted. The name must be
terminated by a blank. The name does not have to
be aligned.
Exit: RC=0 successful return. GRO contains
the FDUB location.
=8 device is busy
=12 device is not operational
Effect: If a device, the device is acquired. If a file, the file is

not opened until the first wusage. Thus this subroutine
cannot tell if the tile exists or not. The caller can tell
if the file exists by calling GDINFO. The name may be a
concatenation of file or device names each followed by
modifiers or a line number range as described in MTS-210.
If the FDUB pointer returned is used in a call to READ or
WRITE the the modifiers or line number ranges will be used
and if a concatenation was specified, the usual sequencing
through the concatenation will take place.

Subroutine Description (GETFD) 165

166

MTS-253/27635-0

12-1-67

Name:

Purpose:

Calling sequence:

Entry:

Exit:

GETSPACE

SUBROUTINE DESCRIPTION

To obtain storage

0S (I) R type

Register 13 save area is not required.

GRO has switches

Bit 31

Bit 30

Bit 29

1

0

1

Return not made until space available.

Return always made with RC indicating whether
space available.

Storage obtained is associated with the current
level of LINK so that it is release at the next
return from a LINK or the next XCTL.

Storage obtained 1is associated with highest
level program so it 1is not release until
execution is terminated.

Attach storage obtained to system level.

Other bits in GRO must be zero.

GR1 has length desired. If not multiple of 8, next largest
multiple will be used.

GR1 has location of first byte of region obtained.

RC = 0

4

all ok; region returned.

space not available.

MTS-253/27645-0

12-1-67
SUBROUTINE DESCRIPTION
Name: GUSERID
Purpose: To obtain the current 4 character user id (from $SIGNON)
Calling sequence: 0S (I) R type

register 13 save area is pot required.

Exit: GR1 contains 4 character i.d.

Subroutine Description (GUSERID) 167

MTS-253/31475-0

12-1-67
SUBROUTINE DESCRIPTION

Name: JOPMOD

Purpose: To allow the user to set the modifier bits and line numbers
of the parameter lists used by the system supplied IOH360
OPEN-CLOSE routines
(ROPEN, RCLOSE,POPEN, PCLOSE, PCOPEN, PCCLOSE, LOPEN,
LCLOSE,SEROPEN,SERCLOSE) when such routines call
READ,WRITE,SCARDS, SPRINT,SPUNCH, or SERCOM.

Calling sequence: ‘05 (I) s type

Entry: GR1 contains the location of a parameter list which consists
of four adcons. The first adcon points to a full word which
contains the new set of modifier bits for the logical I/0
unit in question. The second adcon points to a full-word
location containing either a logical unit number or a FDUB
pointer. 1If the user wishes to set the modifiers for output
to SPRINT,SPUNCH, or SERCOM or input through SCARDS, then
the second adcon should be zero and the third adcon should
point to a four-byte region containing the characters SPRI,
SPUN, SCAR, or SERC. The fourth adcon points to a full word
containing an MTS line number. If this adcon is zero, then
no spe01a1 line number is assumed.

Example: CALL IOPMOD,(NEWHODS,O,SPRN,O)

NEWMODS DC A(X'2000') turn on machine carriage
control for SPRINT

SPRN DC C'SPRI!

168

MTS-253/43455-0

12-1-67
SUBROUTINE DESCRIPTION
Nare: LINK,XCTL,LOAD
Purpose: To effect dynamic loading
Calling sequence: 0S (I) S type. LINK and XCTL can be called from a
FORTRAN programe.

Entry: GR1 contains the location of a parameter list:

Word 1: Location ot the name of the file or device from
which to LINK, XCTL, or LOAD.

Word 2: If mnon-zero, 1location of initial ESD (external
symbol detinition) list which will be appended to
the built-in initial ESD 1list. See the loader
writeup for format of table.

Word 3 (LINK or XCTL): Address of a parameter list to be
passed in GR1 to the program LINKed to or XCTLed
to.

Word 3 (LOAD only): Address of a word of switches
bit 29=1 force private storage

30=1 use system level storage
31=0 use "highest level" storage
=1 use "current level" storage

Other bits must be zero.

Word 4 (LOAD only): If nomn-zero, is location starting at
which the loader is to put the ESD after loading.

Return (LOAD only): GR15 has the location of entry point of
what was loaded.

GRO contains the storage index number
(SI#) used:

0 to 7F private

80 to FF systen
100 to 17F public

Subroutine descriptiom (LINK - XCTL - LOAD) 169

170

MTS-253/43455-0

12-1-67

Function of LINK and XCTL

Either entry point will load the program specified using the same "map"
device as specified in the initial 'JRUN' command. The program loaded will
be called in such a way that if it returns (to GR14) then all storage it
occupies and all storage it has requested will be released and control will
be passed to the next higher 1level progranm. ‘The "next higher level
program" ‘is the program which called LINK or the program which LINKed to
the program which called XCTL.

If XCTL is called it will release all storage used by the calling
program before 1loading the specitied program. It will also set things up
to return to the program that LINKed to the calling program if the program
it 1loads returns. The parameter list for XCTL may be located in a section
of storage that will be released.

There are two different calls to tne GETSPACE routine that a progran
running under MTS can make to request a block of storage. The first type
associates the storage obtained with the current level of LINK so that it
is released at the next return or XCTL. The second type associates the
storage with the highest 1level program so it is not released until
execution is terminated.

MTS-253/4345-0

12-1-617
SUBROUTINE DESCRIPTION
Name: LINPG
Purpose: Solve linear programming problems
Calling sequence: 0S (I) S type
CALL LINPG(A,Y,M,N,M2,N2,SW)
or its assembly language equivalent.
Description Stated generally, the 1linear programming problem seeks an

extreme value for a linear function subject to linear
constraints. With a linear programming problem, by the
nature of the mathematics involved, two related mathematical
forms of stating the problem always appear. These two forms
are customarily designated as the primal and dual forms of
the problen. The problem can be stated mathematically in
its most general form as

Primal form
(1) Minimize A(M,1)¥(1) + ... + A(M,N+1)Y(N-T)

subject to the comnstraints
(2) 2(I,NY(1) + ... + A(I,N-1)Y(N-1) = A(I,N)
I=1,...,M2

(3) A(I,DY() + ... + A(I,N-1)Y(N=-1) £ A(I,N)
J=N2+1,...,N-1

M) Y@ =2 0
J=N2+1,...,N-1

or

Dual form
(1) Minimize X (1)A(1,N) + ... + X(M-1)A(d-1,N)

subject to the constraints
(2) X(HA(1,J) + ... + X(H-1)A(M-1,0)
J=1,...,82

A (M,d)
(3) X(HA(V,J) + ... + X(M-1)A(M-1,J) £ A(H,J)
J=N2+1,...,N-1

(4) X(1) =2 0
I=M2+1,...,M-1

where A(I,J) are real numbers. ©Note (2) above are equations
while (3) are inequalities.

Subroutine Description (LINPG) 171

172

MTS-253/4345-0

12-1-67

This statement of the 1linear programming problem is
designated the most general form because any problem whose
objective is obtaining an extreme value for a linear function
subject only to linear constraints can be put in this form.
It is obvious that this can always be done by simply changing
the signs of the linear functions and rearranging the rows
and columns as required. The roles of primal and dual can
always be interchanged in formulating the problemn. The
machiine code requires that the problem be presented in what
is designated as the primal form. 1In particular, this nmeans
that

A) The first M2 constraints must be equations, where M2
is between 0 and M-1.

B) The first N2 variables are free to assume either sign,
where N2 is between 0 and N-1, and the remaining
(N-1-N2) variables must be positive.

The situation with respect to the solvability of the
linear programming problem, as well as the general relation-
ship between the primal and dual problems, can be summarized
in a general theorem.

LINEAR PROGRAMMING THEOREM

With any given linear programming problen,

1) there exists a finite value V and solution vectors
(¥*) and (X*) such that

v min (A (M, 1) Y* (1) +...+A (M, N=1) Y*(N-1))

nax (X* (1) A(1,N) +. .. +X*(M-1) A (M-1,N))

/]

or

2) the constraints for the primal problem are inconsis-
tent, and the constraints for the dual problem are
either inconsistent or the dual extreme function is
unbounded,

or

3) thevprimal external function is unbounded, and the
constraints for the dual problem are inconsistent.

The machine code is complete in the sense that is provides
the solution for a linear programming problem in the event of
any of the three possibilities listed in the linear program-
ming theoren. It should be stressed that this machine code
does not make any non-degeneracy assumption or stipulate any
conditions on the consistency of the constraints or the

MTS-253/4345=0

12-1-67

Arguments

finiteness of the extremal value. The novel algorithm
employed in this machine code also has the following proper-
ties:

1) It does away with all augmentation for any reason, in
particular “artificial variables" for wjnitial feasi-
ble solutions".

2) It does not resort to any perturbation technique or
arbitrary cycling of ‘"basis"™ to cope with the
"degeneracy problem", but instead capitalizes on it by
concentrating on a greatly restricted subset of rows
and colunns.

3) It isolates and identifies inconsistent constraints in
a simple and natural way.

A general linear programming problem, it should be recog-
nized, is completely specified by the array of numbers,
hereafter called the augmented constraint matrix --

A(I,Jd) A(J,N) I=1,¢..,M-1

J=1,c..,N-1

A(M,J)

o ———— e -
| S e e

and the four parameters: 1) M, the number of rows, which
would be the number of constraints and one for the extremal
form; 2) M2, the specification that the first M2 con-
straints are equations; 3) N, the number of columms which
vould be the number of variables and one for the column of
"stipulations" of the constraints; 4) N2, the specification
that the first N2 variables can assume arbitrary signms.

A First element of the augmented floating point con-
straint Matrix. This must be a long real packed array
of maximum size 150 by 150. The array must be set up
column by column, as in FORTRAN.

Y First element of the long real solution vector.

M The integer number of rows in the matrix A. M is also
one plus the number of constraints. Must be less than
151.

Subroutine Description (LINPG) 173

174

MTS-253/4345-0

12-1-67

References:

M2

N2

SW

CW

The integer number of columns in the matrix A. N is
also one plus the number of variables. Must be less
than 151.

The first M2 constraints are equations. M2 is between
0 and M-1 inclusive.

The first N2 variables are free to assume either sign.
N2 is between 0 and N-1 inclusive. The remaining
(N-1-N2) variaples must be positive or zero.

Short floating point computation switch.

SW = 1.0, normal return, Y contains the solution, CT =
the value of the extremal function (short filoating
point).

SW = 2.0, the constraints of the problem are inconsis-
tent, CT= the index of the inconsistent constraint
(short floating point).

SW = 3.0, the extremal function is unbounded, CT = the
index of the inconsistent constraint of the dual
problem (short floating point).

Graves, Glenn W. "A Complete Comstructive Algorithm
for the General Mixed Linear Programming Problenm
That Does Not Require Augmentation or

Perturbation" doctoral dissertation, University of
Michigan, 1962

Graves, Glenn W. "A Constructive Algorithm for the
General Mixed Linear Programming Problen®
(condensation of doctoral dissertation) Report
ATR-64 (7040)~-1, 30 June 1964, Aerospace Corpora-
tion, El Segundo Technical operations, El Segundo,
California.

MTS-253/44645-0

12-1-67
SUBROUTINE DESCRIPTION
Name: MOUNT
Purpose: Allow users to mount private volunmes.
Calling sequence: 0S (I) S type
Entry: GR1 contains the location of a pointer to a parameter 1list.
The parameter list consists of a halfword length of a
character string immediately: followed by that character
string. The character string should be those characters
which would immediately follow the "PAR=" if this subroutine
were being run as a library file. See the description of
the library file *MOUNT, MTS-280/44645, for details.
Exit: RC = 0 volume was mounted successfully

4 volume was not mouhted.

Subroutine Description (*¥MOUNT) 175

MTS-253/47455-0

12-1-67
SUBROUTINE DESCRIPTION
Name: PGNTTRP
Purpose: to set things up so control will be returned to the user on
a program interrupt.
Calling sequence: 0S R type
Register 13 savearea is not required
Entry: GRO should contain zero or the 1location to transfer
control to if a program interrupt occurs.
GR1 contains the location of a 72 byte save region in
which are stored pertinent information (see below).
Description: A call on this routine sets up a progranm interrupt exit

for one interrupt only. When an interrupt occurs and the
exit is taken, it is reset so that another call on this
subroutine is necessary to intercept the next progranm
interrupt. A call on this routine with GRO containing zero
resets the exit.

When the program interrupt exit is taken, the first 8
bytes of the save region contains the PSW, and the rest of
it contains the general purpose registers in order 0 through
15. The floating point registers remain as they were at the
time of the interrupt. GR1 contains the location of the
save region.

If, on a call to this routine, the first byte of the
region specified by GR1 is X'PF', then in addition to
setting up the program interrupt exit, the program is
restarted as specified by the PSW in the region, using the
GPR's in the region. If the exit routine returns (to the
address in GR14) the normal program interrupt processing is
invoked.

The SPIE macro is also available and works exactly the
same as in 0S/360.

176

MTS-253/47465-0

12-1-67
SUBROUTINE DESCRIPTION
Printer Plot Routine
The printer plot routine has the following entry points:
PLOT1, PLOT2,PLOT3, PLOT4,PLOT14,STPLT1,STPLT2,0MIT, SETLOG.
Purpose: Produce plots in normal output stream.
Calling sequence: Each entry point is called with am 0S (I) S type
sequence
The standard approach to produce a plot is to call on
PLOT1,PLOT2,PLOT3, and PLOT4 in that order.
PLOT1
PLOT1 sets up the information required to construct the
graph. The calling sequence is:
CALL PLOT1, (NSCALE(1) ,NHL,NSBH, NVL,NSBV)

NSCALE (1) A full-word integer vector to supply information about
scaling and the number of decimal places to be printed
out. If NSCALE(1)=0, the values 0,3,0,3 are used for
NSCALE(2) through NSCALE(5) respectively.

NSCALE (2) If this = Y, numbers printed along the y axis are 10%*Y

NSCALE (3)

NSCALE (4)

NSCALE (5)

NHL

NSBiH

times their true value.
The number of decimal places printed for Y values.

If this = Y, numbers printed along x axis are 10%¥Y
times their true values.

The number of decimal place printed for x values.

The full-word integer number of horizontal lines. This
number must be 2 or greater. It is one larger than the
corresponding NHL in the 7090 plot routine.

The full-word integer number of spaces between the
horizontal lines. This number must be 1 or dgreater.
It is one less than the corresponding NSBH in the 7090
plot routine.

Subroutine Description (Printer Plot Routine) 177

MTS-253/47465-0

12-1-67

NVL

NSBV

Return codes

The full-word integer number of vertical lines. This
number must be 2 or greater. It is one larger than the
corresponding NVL in the 7090 plot routine.

The full-word integer number of spaces between the
vertical lines. This number must be 1 or greater. It
is one 1less than the corresponding NSBV in the 7090
plot routine.

0 Normal return

4 Improper argument, PLOT1 comnsidered to have been
not entered.

PLOT2 prepares the grid and sets up the information

required by PLOT3 to place a point correctly in the graph.
The calling sequence is

CALL PLOT2, (IMAGE,XMAX,XMIN,YMAX,YMIN)

If PLOT1 has not been entered by the time PLOT2 is called,
the following default configuration is used for PLOT1, to be
called the " standard grid:
NSCALE(1)=0,NHL=6, NSBH=9,NVL=11,NSBV=9 If the SPRINT device
is a teletype, NVL is set to 6.

IMAGE

XMAX
XMIN
YMAX

YMIN

Return codes

the first byte of an area equal or greater to in length
than (NSBH*NHL-NSBH+NHL)* (NSBV¥NVL-NSBV+NVL+8) +8 bytes.
For the standard grid this is 5567 bytes. This region
is used to hold the image of the graph.

The largest x value of the points to be plotted.

The smallest x value of the points to be plotted.

The largest y value of the points to be plotted.

The smallest y value of the points to be plotted

The preceding tour arguments are either short or long
floating point numbers.

0 Normal return

8 XMAX<XMIN or YMAXZ YMIN. PLOT2 considered not to
have been entered.

PLOT3 places the plotting character in the graph for each

point (X,Y). The calling sequence:

178

MTS-253/47465-0

12-1-67
CALL PLOT3, (BCD,X,Y,NDATA,INT)

BCD The plotting character to be used.

X The first element of a floating point vector of
X-values.

Y The first element of a floating point vector of
Y-values.

NDATA The full-word integer number of points to be plotted.

INT The full-word integer number of bytes between the

characteristics of numbers to be used as coordinates.
For a short form vector this is 4.

Return codes 0 Normal return
12 using log scale with negatve numbers (See SETLOG).

16 PLOT2 not yet entered.

PLOTY
PLOTY4 prints the completed graph with values along the X
and Y axes and a centered vertical label down the left side.
The calling sequence is
CALL PLOT4, (NCHAR,LABEL®
NCHAR the full-word integer number of characters in the
vertical label. If this is 0, no label will be
printed.
LABEL the location ot the first character of the label.

See OMIT for the possibility of deleting grid values
and the last graph line.

Return codes 0 ©Normal return
20 PLOT2 not yet entered.
PLOT1Y4
PLOT14 allows the user to combine successive calls on
PLOT1,PLOT2,PLOT3, and PLOT4 into one call on PLOT14. The
calling sequence is:
CALL PLOT14, (NSCALE,NHL,NSBH,NVL,NSBV,

IMAGE,XMAX,XMIN,YMAX,YMIN,BCD,X,Y,
NDATA,INT,NCHAR,LABEL)

Subroutine Description (Printer Plot Routine) 179

180

MTS-253/47465-0

12-1-67.

See the descriptions of PLOT1,PLOT2,PLOT3, and PLOTY4 for the
return codes used.

STPLT1 is called by the user who wishes the PLOT routine
to inspect his data and tnen make appropriate calls on PLOTI1
and PLOT2. The standard grid size is always used, but the
scaling and decimal places to be printed is determined by
STPLT1. The user will nhave to call on PLOT3 and PLOT4 to
get a graph printed out. The calling sequence is:

CALL STPLT1, (IMAGE,X,Y,NDATA,INT)

STPLT2 does the work of of STPLT1 and in addition calls
on PLOT3 and PLOT4 to obtain a graph. The calling seguence
is:

CALL STPLT2, (IMAGE,X,Y,NDATA,INT,BCD,NCHAR,LABEL)

The arguments given to STPLT1 and STPLT2 are described under
P1OT2,PLOT3, and PLOT4, as are the return codes used.

SETLOG 1is called by the user to specify whether he wants
a normal, semi-log, or log-log plot. The calling sequence
is:

CALL SETLOG, (ARG)

ARG a byte interpreted as follows:
bit 7 0 y scale is normal
1 Y scale is logarithmic
bit 6 0 X scale is normal
1 X scale is logarithmic.
The plotting mode is set initially to normal.

Return code always 0

OMIT is <called by the user to specify whether the last
graph line, the vertical grid values, or the horizontal grid
values will be printed. The calling sequence is:

CALL OMIT, (ARG)

ARG a full-word integer interpreted as follows: if ARG is
positive the function designated by the appropriate bit

MTS-253/47465-0

12-1-67

is turned off. To turn it back on, make ARG negative
and call on OMIT again.

bit 31 horizontal grid values
bit 30 vertical grid values
bit 29 the last graph line

Return code always 0

If one wished to produce a long graph, this could be done by producing the
graph in pieces, deleting the norizontal grid values and the last graph
line (ARG = 5) for each piece except the last, starting the next graph
segment where the last graph line would have been printed. When the last
segment was to be printed, OMIT could be calied with ARG = - 5 to restore
the functions. 1Initially, all three functions are turned on.

Logical Devices Needed: SPRINT

When using a printer as the SPRINT device, one normally issues a skip to
the next page before calling on PLOT4 to start the plot at the top of a
page.

Subroutine Description (Printer Plot Routine) 181

132

MTS-253/51215-0

12-1-67
SUBROUTINE DESCRIPTION
Name: READ
Purpose: Obtain input record from specified logical unit
Calling sequence: 0S (I) S type
Entry: GR1 contains location of a parameter list:
Wword 1: A (REGION)
2: A (COUNT)
3: A (MODIFIERS)
4: A(LINE NUMBER)
5: A(UNIT NUMBER)
Exit: RC = 0 VNormal return

= 4 EOF

The parameters are described in section 252.

Caller sets up Word 3 parameter and Word 5 parameter, and
if indexed is specitied, Word 4 parameter.

Subroutine reads record from unit specified into region
specified, puts count into place specified, and if sequen-—
tial, puts line number into place specified.

Notes 1. This subroutine may be called from FORTRAN as well

assembly code. E.g., CALL READ(REG,LEN,0,LUNIT,&30)

Note that LEN must INTEGER*2

2. There is a macro of the same name in the system macro
library for gemnerating the calling sequence to this

subroutine. See writeup in section 255.

Default specifications for units: None

MTS-253/51665-0

12-1-67

Name:

ourpose:

Calling sequence:

Description:

SUBROUTINE DESCRIPTION

REWIND

"Rewind™ a logical I/O0 unit in FORTRAN.

(in a FORTRAN program) CALL REWIND (ARG) where ARG is a

full word integer expression between 0 and 9.

If the 1logical I/0 unit
tape it is rewound. If it
so that the next reference
specified by the beginning
command. In all other
return code of 4 is given.

specified by ARG is attached to a
is attached to a file it is reset
to it will read or write the line
line number given in the $RUN
cases the call is ignored and a

Subroutine Description (REWIND) 183

184

¥TS-253/516567-0

12-1-67
SUBROUTINE DESCRIPTION
Name: REWIND#
Purpose: Reset a magnetic tape or a file to read from the beginning.
Calling sequence: 0S (I) R type

__Entry: either

Exit:

Description:

Note:

(a) GRO contains a FDUB location (as GETFD returns)
and GR1 contains zero.

or (b) GRO and GR1 contain an 8 character logical I/0

unit name, left justified with trailing blanks.
[See the $RUN command description for a 1list of
logical I/0 unit names.]

RC=0: Everything ok.

RC=4: Unable to rewind the device specified by GRO and gri.

If GRO and GR1 specify a tape it is rewound. If they
specify a file it is reset so that if the next reference to
this FDUB or logical I/O unit is sequential, it will read or
write the line specified by the beginning line number given
when the file was attached. For all other cases a return
code of 4 is given.

If the logical I/O unit or FDUB specified by GRO and GR1 is
part of an explicit concatenation, this subroutine affects
only the currently active member of the concatenation.

MTS-253/62215-0

12-1-67
SUBROUTINE DESCRIPTION
Name: SCARDS
Purpose: Read a "card" (input record)
Calling seguence: 0S (I) S type

Entry: GR1 contains location of a parameter list:
Word 1: A (REGION)
2: A (COUNT)
3: A (MODIFIERS)
4: A(LINE NUMBER)
Exit: RC = 0 Normal return
= 4 EOF
The parameters are described in section 252.

Caller sets up Word 3 parameter, and if indexed is
specified, Word 4 parameter.

Subroutine reads record into region specified, puts count
into place specified, and if sequential, puts line number
into place specified. ‘

Notes: 1. This subroutine may be called from FORTRAN as well as in
S assembly language. E.g., CALL SCARDS(REG,LEN,0,LNR,&30)
Note that LEN must be INTEGER*2.
2. There is a macro of the same name in the system macro
library for generating the calling sequence to this
subroutine. See the writeup in section 255.

Default specification for unit Source.

Subroutine Description (SCARDS) 185

186

MTS-253/62643-0

12-1-67
SUBROUTINE DESCRIPTION

Name: SDUMP

2urpose: Produce a dump of any or all of the following:
(1) general registers
(2) floating point registers
(3) a specified region of core storage.

Calling sequence: 0S (I) S type

Entry: GR1 contains the 1location of a fullword aligned parameter

list:
Word 1: A (SWITCHES)
2: 1A (OUTSUBR)
3: A(WKAREA)
[4: A(FIRSTLOC)]
[5: A(LASTLOC)]

RC=0 normal return
RC=4 bad parameters

The parameter words must be aligned on consecutive
fullword boundaries. The caller sets up words 1-3 for all
calls on SDUMP; words 4 and 5 are also required if the
switches indicate that a region of core storage is to be
dumped. All parameters must be addresses within addressable
core and the first three must be aligned as indicated below,
otherwise return with RC=4 occurs.

Parameter Description

Word 1 is the address of a fullword aligned fullword of switches that

govern the

content and format of the dump produced. The switches are

assigned as follows:

Bit 24:
25:

26:

on if a core region is to be dumped
on if floating point registers are to be dumped

on if general registers are to be dumped

MTS-253/62643-0

12-1-67

27: on if long output records (130 characters) are to be formed;
" off if short output records (70 characters) are to be formed

28: on if double spacing is desired; off if single spacing is
desired

29: on if EBCDIC conversion of the core region is desired
30: on if MNEMONIC conversion of the core region is desired
31: on if HEXADECIMAL conversion of the core region is desired

The default case (all switches off) produces a dump as though bits
24,25,26, and 31 were on. Furthermore, if bit 30 (mnemonics) is on bit 31
(hexadecimal) is implied. Note that bits 24,25, and 26 specify what is to
be dumped, bits 27 and 28 specify the page format, and bits 29,30, and 31
specify the interpretation(s) to be placed on the region of core specified.
Bits 29 through 31 have significance only if bit 24 is on.

Word 2 must give the half-word aligned address of a subroutine (e.g.,
SPRINT) that causes the printing, punching, etc. of ouput 1line 1images
formed by SDUMP

Word 3 is the address of a doublileword aligned area of 400 bytes that may
be used by SDUMP as a work area.

Word U4 is the address of the tirst byte of a core region to be dumped.
There are no boundary requirements ror this address.

Hord 5 is the address of the last byte of a core region to be dumped.
There are no boundary requirements for this address; however, an address in
Word 5 which is less than that in Word 4 will cause a return with RC=4.

Output_Formats

Registers:

General and floating point regasters, if requested, are always given in
labelled hexadecimal format. The length of the output record is governed
by the setting of bit 27 of the switca.

Core Storage:

Although any combination of switches is acceptable, the appearance of
the dump output for a region of core is determined as follows:

1. If, and only if, the mnemonic switch is on the unit of core storage
presented in each print item is a halfword aligned halfword.

2. TIf, and only if, the nmnemonic switch is off and the hexadecimal

switch is on (througn intent or default), the unit of core storage
presented in each print item is a fullword aligned fullword.

Subroutine Description (SDUMPF) 187

138

MTS-253/62643-0

12-1-67

3. TIf, and only if, the mnemonic and hexadecimal switches are off but
the EBCDIC switch is on, the unit of core storage presented in each
orint item is a doubleword aligned doubleword.

In all cases the output includes (1) the entire core storage unit
(halfword, fullword, or doubleword) in which the first specified core
location (parameter word 4) is found, (2) the entire core storage unit in
which the last location (parameter word 5) is found, and (3) all
intervening storage. That is, the first and last printed items of a core
storage dump may include up to a maximum of seven core bytes more that
actually requested in the parameter list.

If mnemonics are requested and SDUMP discovers a byte that cannot be
interpreted as an operation code, then, instead of a legal mnemonic, the
characters "XXXX" appear directly below the hexadecimal presentation of the
halfword in core that should have contained an operation code. When this
occurs, the mnemonic scanner jumps ahead as though the illegal operation
code specified an RR type instruction (i.e., two bytes) and tries to
interprast the byte at the new location as an operation code, and so forth.
Any mnemonic print 1line that contains the "XXXX" for at least one of its
entries is also marked with a single "X" directly below the line address
that prefixes the hexadecimal presentation of that same region of core.
(The mnemonic conversion routine includes the universal instruction set and
also those instructions exclusively used by Model 67). To facilitate the
location of particular items in the output, line addresses always have a
zero in the least significant hexadecimal position and column headers are
provided. The column headers give the value of the least significant
hexadecimal digit of the address of the first byte in each-print item.

A line of dots is printed to indicate that a region of core storage
contains identical items. The core storage unit used for comparisons is
halfword, fullword, or doubleword, depending on the type(s) of conversion
specified. In all cases the core storage unit corresponding to last item
printed before the line of dots and that for the first item after the line
and all intervening core storage units have identical contents. The last
line is always printed (even if all of its entries exactly match the
previously printed line).

MTS-253/62513-0

12-1-67
SUBROUTINE DESCRIPTION
Nane: SERCOM
2urpose: Print an error comment (output record)
~alling sequence: 0S (I) S type
intry: GR1 contains location of a parameter list:
Word 1: A (REGION)
2: A (COUNT)
3: A (MODIFIERS)
{4: A(LINE NUMBER)]
Exit: RC = 0 Normal return

= 4 oOutput device full

The parameters are described in section 252.

Caller sets up all parameters. Word 4 of parameters is
needed only if the modifiers specified indexed or return
line number (peel). A word 3 of zero is assumed equivalent
to a Word 3 containing the location of a zero word.

Subroutine writes out a record of length specified from
region specified.

Yotes: 1. This subroutine may be called from FORTRAN as well as

assembly code. E.g., CALL SERCOM(REG,LEN,0) Note that
LEN must be INTEGER*2

2. There is a macro of the same name in the system macro
library for generating the calling sequence to this
subroutine. See tne writeup in section 255.

Default specification for unit: Master sink (terminal)

Subroutine Description (SERCON) 189

190

MTS-253/62255-0

12-1-67
SUBROUTINE DESCRIPTION
Name: SETIOERR
Purpose: Allow the user to regain control when I/0 errors that would
otherwise be fatal occur during execution.
Calling sequence: 0S (I) S type.
Register 13 save area is not required.
Entry: GR1 contains the location of an adcon containing either the

location of a subroutine to transfer to when an I/0
€rror occurs or zero, in which case the error exit is
reset.

When the error routine is called, registers 0 and 1 both
contain what was in GR13 upon entry to the I/0 routine,
i.e., the location of the save area in which the I/0 routine
saved registers at the time of the call.

If the error routine returns, return is made from the I/0O
routine as if no error had occurred.

The error exit is reset at a normal termination of execution
(return or call on SYSTEM), or just prior to executing the
next $RUN command, if abnormal termination of execution
occurred. (call on ERROR, attention or program interrupt,
etc) .

MTS-253/6257-0

12-1-67
SUBROUTINE DESCRIPTION
Name: SETPFX
Purpose: To set the prefix character issued during execution as the
first character of every input or output line.
Calling sequence: 0S (I) S type
callable from Fortran and assembly code.
Entry: GR1 contains the location of a parameter list
word 1 1is the location of the prefix characters
word 2 is the location of a fullword count of the number of
characters.
BExit: GRO contains the previous prefix character, right-justified
with leading hexadecimal zeros.
Restriction: Currently only one character may be used. Hence only the
first character at the location specified is used.
Exanmple: OLD = SETPFX('/',1)

Subroutine Description (SETPFX) 191

192

MTS-253/62515-0

12-1-67

Name:

Purpose:

SUBROUTINE DESCRIPTION

SPRINT

Print a "line"™ (output record)

Calling sequence:

Notes:

Entry:

Fxit:

0S (I) S type

GR1 contains location of a parameter list:

RC

Word 1: A (REGION)
2: A (COUNT)
3: 1 (MODIFIERS)
[4: A(LINE NUMBER)]

0 Normal return

4 Output device full
The parameters are described in section 252.

Caller sets up all parameters. ﬁord 4 of parameters is

needed only if the modifiers specified indexed or return
line number (peel). A word 3 of zero is assumed equivalent

to

a Word 3 containing the location of a zero wordgd.

Subroutine writes out a record of length specified from

region specified.

1.

This subroutine may be called from FPORTRAN as well as
assembly code. E.g., CALL SPRINT(REG,LEN,0) Note that
LEN must be INTEGER*2

There is a macro of the same name in the system macro
library for generating the calling sequence to this
subroutine. See the writeup in section 255.

Default specification for unit: Sink

MTS-253/62645-0

12-1-67

Name:

ourpose:

SPUNCH

Punch a "card" (output record)

Calling sequence:

-

Entry:

Exit:

Notes:

0S (I) S type

GR1 contains location of a parameter list:

RC

Word 1: A (REGION)
2: A (COUNT)
3: A (MODIFIERS)

{4: A(LINE NUMBER)]

0 Normal return

4 Output device full
The parameters are described in section 255.

Caller sets up all parameters. Word 4 of parameters is

needed only if the modifiers specified indexed or return
line number (peel). A word 3 of zero is assumed egquivalent

to

a Word 3 containing the location of a zero word.

Subroutine writes out a record of length specified from

region specified.

1.

This subroutine may be called from FORTRAN as well as
assembly code. E.g., CALL SPUNCH(REG,LEN,0) Note that
LEN must be INTEGER*2.

There is a macro of the same name in the system macro
library for generating the calling sequence to this
subroutine. See the writeup in section 255.

Default specification for unit: None (terminal usage)

PUNCH (batch usage)

Subroutine Description (SPUNCH) 193

194

MTS-253/62625-0

12-1-67
SUBROUTINE DESCRIPTION
Name: SYSTEM
Purpose: Stop the world - I want to get off
Calling sequence: None - just branch
: (callable from both assembly code and FORTRAN)
Effect: Returns control to MTS to terminate execution. Execution

terminated in this manner cannot be RESTARTed. The comment
WEXECUTUION TERMINATED"™ is printed for a normal termination
of execution 1like this.

MTS-253/66315-0

12-1-67
SUBROUTINE DECRIPTION
Name: WRITE
Purpose: Write output record on specified logical unit
Calling sequence: 0S (I) S type

Entry: GR1 contains location of a parameter list:
Word 1: A (REGION)
2: A (COUNT)
3: A (MODIFIERS)
4: A(LINE NUMBER)

5: A(UNIT NUMBER)

Exit: RC 0 Normal return

4 Output device full
The parameters are described in section 252.

Caller sets up adil parameters, except that Word 4
parameter must be set up only the nmodifiers specified
indexed.

Subroutine writes out a record of length specified on
unit specified from region specified.

Notes: 1. This subroutine may be called from FORTRAN as well as
assembly code. E.g., CALL WRITE(REG,LEN,0,LNR,3). Note
that LEN must be INTEGER*2.

2. There is a macro oi the same name in the system macro
library for generating the calling segquence to this
subroutine. See the writeup in section 255.

Default specification for units: ©None

Subroutine Description (WRITE) 195

MTS-255-0

12-1-67

MACRO LIBRARIES

This section describes the macros available in the system macro library
(*SYSMAC) and how to construct a private macro library.

196

MTS-255/00015

12-1-67

System_Macro_Library -_ *SYSMAC

The system macro library (*SYSMAC) contains all of the macros described
in this section (MTS-255). It may be utilized by specifying it for logical
I/0 unit 0 when running the assembler:

$RUN *ASMBLR; O0=*SYSMAC SCARDS=...c...
Some of the macros available are essentially the same as in IBM's

Operating System (0S/360): +they have the same effect (except where
specified) as their O0S egquivalents, but generate code appropriate for

interfacing with MTS, not 0S. They are listed Dbelow. For descriptions,
see IBM's publication “Supervisor and Data Management Macro -
Instructions", form C28-6647. Descriptions of other macros are on the

following pages.

0S - equivalent Macros

ABEND (no parameters, same as ERROR - g.V.)

CALL

DCB

DCBD

FREEMAIN no SP no MF

GETMAIN no sP no MF

LINK only EP or EPLOC

LOAD only EP or EPLOC

RETURN

SAVE

TIME (no parameters - returns HH:M4.SS in GRO-GR1, MM-DD-YY in
GR2-GR3)

WTo

WTOR no ecb address

iCTL only EP or EPLOC

Noted TIf *SYSMAC is used, the following aaditional macro names cannot be
defined by the user -- IHBERMAC, IHBINNRA, IHBOPLST, IHBRDWRS,
IHBRDWRK, TIHBO1, I4B02, #IOHPRLS, #IOHOCCK, #FIX, #IOHERCK, #LNXC,
#MTSIOCP, #MTSIOQOST, #MTSIOG , #MISIOEF, #MTSIOPS

Structure of a Macro Library 197

198

MTS-255/21235-0

12-1-67
MACRO DESCRIPTION
Name: ACCEPT
Purpose: To "accept" an image so that the next Read Format or Look At
Format using IOH/360 will see a new image. This does not
apply to FORTRAN format I/0.
Prototyp=a: [LABEL] ACCEPT ([UNIT]
wvhere UNIT is the name of a full-word aligned full word comntaining
either a 1logical wunit number or a FDUB pointer which
specifies the unit whose image is to be accepted. Iif
omitted, SCARDS is assuned.
Note: A call (by 10H/360) to RCLOSE causes the "accept" switch to

be set for the appropriate 1logical I/O wunit; a call to
LCLOSE just sets the return code to zero and returas to
JI0H/360. A user may decide to do some Look At Formats and
then decide that he wants to read the next image— to do
this he should ACCEPT the current image and the Look At or
Read the next image with LKFMT or RDFMT.

MTS-255/22625

12-1-67

Name:

Purpose:
Prototype:

Usage:

MACRO DESCRIPTION

BAS,BASR

To assemble the BRANCH-AND-STOKRE and
BRANCH-AND-STORE-REGISTER instructions which are opcodes 4D
(hex) and 0D (hex) respectively on the IBM 360 Model 67.

[LABEL] BASR R1,R2
[LABEL] BAS R1,D2 (X2,B2)

These instructions are essentially the same as the BAL and
BALR instructions excépt that the high-order byte of the
branch register is zeroed out (i.e., the instruction 1length
code (ILC) and condition code (CC) are not inserted) in
normal PSW mode or extended PSW mode with either =no
translation on or 24 bit translation on [MTS normally rumns
with 24 bit translation on]}. See the Model 67 Functional
characteristics manual (A27-2719) for details.

Macro Description (BAS,BASRK) 199

200

MTS-255/24215

12-1-67

Name:

Purpose:

Prototype:

Usage:

MACRO DESCRIPTION

DFAD,DFSB,DFMP

To simulate double-precision floating point using the double
precision hardware instructions. These macros will add,
subtract, or multiply two contiguous 1long floating point
registers by a double precision (16 byte) operand and place

the result in the appropriate floating point registers.

[LABEL] DFxx REG,ADR,TEMP

The contents of ADR (8 bytes long aligned on a double-word
boundary) and ADR+8 (8 bytes long aligned on a double-word
boundary) are added to, subtracted from, or multiplied by
the contents of long floating registers REG and REG+2. Note
that REG cannot be 6 as there is no floating register 8.
TEMP specifies a scratch area which will be used: in the
case of DFAD and DFSB. The scratch area must be 16 bytes
long, aligned on a double-word boundary; in the case of DFMP
the scratch area must be 64 bytes 1long, aligned on a
double-word boundary.

A double precision operand may be considered as two long
floating operands. Both operands have a characteristic and
a mantissa; the characteristic of the second long operand is
14 less than the characteristic of the first long operand.

These macros use the ahardware operations ADD, ADDR, SDD,
SDDR, MDD, and MDDR. {[These instructions are RPQ number
M24391]

MTS-255/24265-0

12-1-617

Name:

Purpose:

Prototype:

where

Description:

MACRO DESCRIPTION

DFIX, EFIX

To convert a floating point number (in a floating point
register) to an integer (in a general register).

[LABEL) {gFIX} FPR,GR[, WA=workarea]
FIX

FPR 1is the floating-point register

GR is the general register.

WA designates a work area of two double words aligned on a
double word boundary. If omitted, the macro will
allocate an in-line work area.

DFIX converts a 1long precision floating point number (8
bytes) ; EFIX converts a short precision £floating point
number (first four bytes of floating point register). The
contents of the specified floating point register are
restored at the end of the macro call. Note that it is
possible to convert a floating point number that is too big
to fit (as an 1integer) in a general register - e.g., the
floating point number 1.2E30 is obviously too big. No
attempt is made to signal this as an error. '

Macro Description (DFIX, EFIX) 201

202

MTS 255/24627-0

12-1-67

Name:
Purpose:
Prototype:

Parameters:

Example:

Description:

MARCO DESCRIPTION

DISMOUNT
Set up calls to dismounting routines
[LABEL] DISMOUNT 'MESSAGE!

'MESSAGE' 1is the pseudao-device-name of
dismounted

DMNT DISMOUNT "*TAPE*!
A call will be set up to DISMOUNT. (See

The macro generates literal constants,
adressability must be preserved.

the volume to be

MTS 280/24627).

hence

literal

MTS-255/25445-0

12-1-67

Name:
Purpose:
Prototype:

where

-Examples

Effect:

REG

SA

LENGTH

TREG

MACRO DESCRIPTION

ENTER

To generate prolog code

for the entrance to a subroutine.

[LABEL] ENTER REG[,SA=savearea][,LENGTH=1len][,TREG=tenpreg]

is the register to
Should not be 15.

specifies the location
omitted, a call to

specified by LENGTH is

specifies the length of the save area to

is omitted. If LENGTH
specifies a temporary
register 15 is used.

TREG should not be

be established as a base register.
of a save area to use. If SA is
GETSPACE for a save area of length
made.

be obtained if SA
72 is used.

used. If omitted,

the same as REG.

is not specified,
register which is

SUBR ENTER 12
F ENTER 9,SA=SAVARR
G ENTER 15,TREG=12
Causes code for the following to be produced:
1. Generates USING *,REG
2. Establishes REG as base register
3. If SA is omitted calls GETSPACE to get save area
LENGTH long
4, Establishes forward and backward links
Macro Description (ENTER) 203

204

MTS-255/25675-0

12-1-67

Name:

Purpose:

Prototype:

vhere

Examples

Usage:

MACRO DESCRIPTION

EXIT

Re-establish calling program's save area and return with a
return code in register 15.

(LABEL)] EXIT RC[,MF=FS]

RC is a self-defining term which is the return code. MF=FS
specifies that the save area pointed to by register 13 is to
be released.

EXIT 4
oUT EXIT 0

L 4
This requires that the save area was properly linked on
entry to the subroutine, such as is done by the ENTER macro.
If the ENTER macro was used and it obtained space . via
GETSPACE, this space can be released by specifying MF=FS.

MTS-255/2645-0

12-1-67

Name: FLOAT

MACRO DESCRIPTION

Purpose: To convert the contents of a general register or a full-word
aligned area in storage into a floating-point number and
leave the converted number in a floating point register.

Prototype: [LABEL] FLOAT ARG1,ARG2

where
ARG1

ARG2

can either be a general purpose register or a full-
word aligned location; if ARG1 designates a general
register then the argument must be enclosed in
parentheses.

is the floating point register into which the results
are placed.

Note: Contents of register zero are destroyed if ARG1 specifies a
storage location.

Literal addressability is required.

Examples:
FLOAT

FLOAT

aA,2 Float the contents of A and put in FPR 2

(6) ,6 Float the contents of GR6 and put in FPR 6

Macro Description (FLOAT) 205

206

MTS-255/27635

12-1-67
MACROG DESCRIPTION
Name: GETSPACE
Purpose: To assemble a call to the GETSPACE subroutine
Prototype: [LABEL] GETSPACE [LENGTH,] T=type
where LENGTH is a self-defining ternm specifying the number of bytes of
storage wanted. Ir omitted, the length is assumed to be in
general register 1.
T specifies the type of space wanted. type should be 0,1,2,
or 3. See description of GRO contents in GETSPACE writeup
[MTS-253/27635].
Example: GETSPACE 8192,T=3

MTS-255/31305-

12-1-67

0

Macro Cails to IOH/360

A set of Macro Definitions has been written to allow the user to
painlessly call IOH/360 since the calling sequence is somewhat ghastly and
one may not like forming the calling sequence manually more than a few

times.

The following Macros have been defined:

RDFMT -

LKFMT -

WRFUT -

PCFMT -

PRFMT -

MOREIO-

ONEIO -

ENDIO -

I0P -

REFMTC-

SERFMT-

'read format!'

*Jook at format!'

'write format!?

'punch format!

fprint format!'

'continue parameter list!

'continue parameter list one element

'terminate I/O-processing'.

'I/0-parameter' (acts like ONEIO or
number of arguments given)

'repeat call!

'print formatted error comnent'

Whenever the term LIST is used in the following
the following meaning:

The LIST is the parameter list --- i.e.
is to work as directed by the FORMAT. The LIST may be either

I0H/360

a single element or a list of elements each

or part of a block-argument.
LIST, then the wh

at a time!

MOREIQO depending on the

descriptions, it will have

the arguments on which

to be taken as an argument

If there is more than one element in the
ole LIST must be enclosed in parentheses.

I0H/360 Macro Calls 207

208

MTS-255/31305-0

12-1-67

More specifically:

<LIST>

.
.
I

<atomic argument> | (<listp>)

<listp> <list element> | <listp>,<list element>

<list element>

<atomic argqgument> | <block sublist>

<block sublist>

e
X3
1

<atomic argument>,...,<atomic argument>

<atomic argument>

<legal Assembler Language expression>

INITIAL CALL TO_TIOH/360

The initial call to I0OH/360 is made using the Macros
RDFMT, LKFMT,WRFMT,PCFMT, or PRFMT. The general form of these five Macro
Calls is as follows (the 'read format' call will be used as an example):

RDFMT FORMAT,LIST,OPEN=MYOPEN,CLOSE=MYCLOSE,EOF=MYEOF,LUNIT=MYUNIT,
ERROR=MYERROR,SECT=MYSECT,POOLSW= 0 or 1,NC=ARGNC,TYPE=MYTYPE

FORMAT refers to the user-supplied format which will tell 1IO0H/360 how to
interpret fields going to or coming from the line image. LIST has been
described previously --- LIST may be empty (i.e. it may be omitted). The
other parameters in the Macro Call (i.e. the keyword arguments) are
optional. Any or all may be deleted --- if any of the keyword arguments
appear, they may appear in any order. If the user wishes to use one of the
keyword arguments, he must place some symbol (which is either system-
defined or user-defined) in place of the "MY"-symbols as shown above.

example: PRFMT FMT1, (A,B,A+100,...,A+200,0) ,POOLSW=1,TYPE=S,
CLOSE=MFCLOSE, OPEN=MLOPEN, SECT=PQSECT,NC=12

THE KEYWORD OPTIONAL ARGUMENTS

OPEN and CLOSE

OPEN Indicates the name of a user-supplied routine which IOH/360 will
call when it needs a new line image; the routine so named may be
internal to the calling program or external to it; in the latter
case it must have been defined in an EXTRN statement.

CLOSE Indicates the name of a user-supplied routine which IOH/360 will
call when it needs to put out a line image (i.e. release a line

MTS-255/31305-0

12-1-67

NOTE:
CLOSE,

format!

image); the routine so named may be internal to the calling
program or external to it; in the latter case the name must have
been previously defined in an EXTRN statement.

If the user is going to supply one of the pair of an OPEN or a
then he should supply both (especially in the case of the ‘'read
usage) . See the IOH/360 writeup about the details of writing an

OPEN or CLOSE routine.

The user

ERROR returns and END-OF-FILE_returmns

may specify that on each return from IOH/360, a check of the

return code is to be made. If either the EOF or ERROR arguments appear,

then, a

check of the return code is to be made --- and the generation of

the appropriate code will be made to route the return to the point

specified

by the user. NOTE: I0H/360 will ©return to the user with a

non-zero return code only if the correct flag bits have been previously set

by a call

EOF

ERROR

to SETIOHER (see IOH/360 writeup for details).

indicates the name of a user-defined or system-defined routine to
handle END-OF-FILE returns from IQH/360; the routine may be
internal or external to the calling program --- if external, it
nust have been declared external in an EXTRN statement. NOTE:
I0H/360 will allow an EOF return only if the user has set the
appropriate flag by calling on SETIOHER --- if this switch has
not been set, return will be made to the system routine SYSTEM
with the comment: ALL_INPUT DATA HAS BEEN_PROCESSED__AT _LOCATION
XXXXXX.

indicates the name of a user-defined or system—-defined routine to
handle ERROR returns from IOH/360; the routine may be internal or
external --- if external, it must have been been declared so in
an EXTRN statement. NOTE: I10H/360 will allow an ERROR return
only if the user has set the appropriate flag by calling on
SETIOHER --- if this flag is not set, return will be made to the
system routine ERROR, with the comment: ERROR RETURN TO SYSTEM.

IOH/360 Macro Calls 209

210

MTS-255/31305-0

12-1-67

SECT

POOLSW

NC

SECT: Placement of Parameter Lists

indicates the name of a Control Section in which the parameter
lists generated by the current Macro Call are to be placed. The
SECT argument need not be given on every call. The effect of a
previous SECT argument is retained until the appearance of a new
SECT argument. Initially, Macro Calls are generated with in-line
parameter lists with a branch around them. The user may cause
these parameter 1lists to be placed in the Control Section
designated by the 1last SECT argument. If the last or present
SECT argument given is an asterisk, "*", then in-line parameter
lists will be coded with a branch around then.

POOLSW: Accumulation of Sublist-Count Addresses

each time a Macro Call is expanded, half-word constants may be
generated which form the counts for the lists and sublists. The
user may cause such half-words to be accumulated so that
half-words previously generated are not generated and the
previously defined half-words are used (i.e. the macro expander
keeps track of names it has assigned to certain half-wvord
constants that it has generated previously). The proper use of
this switch allows one to avoid generating redundant half-word

constants --- it is a space-saver in this respect. The POOLSW
argument acts as a binary switch. It may take on the values 0 or
1. Each time it 1is explicitly wused (whether it is given an

assignment 0 or 1) in a #Hacro Call, all previous half-word
constant rteference accumulation is lost; i.e. the half-word
constant pool begins to be built from scratch. The initial value
of POOLSW is 0. If the assignment to POOLSW is 1, then new
constant pools are generated for each Macro Call thereafter until
the setting of POOLSW is changed. If the assignment to POOLSW is
0, then an accumnulation of half-word constants starts at the
present Macro Call and continues until the assignment of POOLSW
is explicitly given again (i.e. explicitly a 0 or 1).

NC: Use of Previous Lists

the user may assign "names" to the Macro Calls which he uses by
using the NC parameter. He then may refer to such an assigned
name in a later Macro Call to use the same format and list
defined in the Macro Call which originally defined the name (this

MTS-255/31305-0

12-1-67

TYPE

LIUNIT

allows the user to use the same format and parameter 1list for
many Macro Calls; it saves space). The NC argument camn be any
string of characters up to eight characters in length. Only
twenty-five such (different) names may be used in a single
assembly. The following happens on encountering an unomitted NC
argument. A search is made of the list which contains previously
defined Macro Calls wusing the NC argument. If the present NC
argument has not been used before, then an entry for the present
Macro Call is made in the table and processing proceeds as if the
NC argument was omitted. If the present NC argument is already
in the list, then both the FORMAT and the LIST of the present
Macro Call are ignored. The calling sequence for the present
Macro is so arranged as to point to the parameter 1list which
contains the FORMAT and the LIST of the Macro Call which
originally defined the present NC argument. When the NC argument
is used in an REFMTC Macro Call, it specifies that in addition to
using the LIST and FORMAT of a previous Macro Call, the OPEN - and
CLOSE arguments are also to be used (see REFMIC description
following).

TYPE: The Type of Adcons Generated for the_ List

B o T e e e e s s e e s A - e o

The lists that the Macro Processor generates may be in one of two
forms. The first type consists of full-word adcons (i.e. type-A
adcons). The second type of list consists of half-wvord adcons
(i.e. S-type adcons). Initially a type-A list is generated.
One may set the value of the keyword "TYPE" to either A or S to
generate one or the other type of list. The type so selected
will also be used in all succeeding calls until the TYPE is
changed.

LUNIT: The Logical Unit Number

The user may specify a logical unit number (between 0 and 9) to
which or from which images are to be passed. If LUNIT is omitted
as a keyword argument, then the routines in the table below will
be used for input and output of images. If the LUNIT keyowrd is
present, the logical unit so named (i.e. LUNIT=0 ; "O" is the
logical wunit in this case) Wwill Dbe used to get input images
(using the READ subroutine) or release output images (using the
WRITE subroutine). The LUNIT argument may also be the address of
a FDUB pointer. The image length in such cases is 256.

I0H/360 Macro Calls 211

MTS-255/31305-0

12-1-67

DEFAULTS_FOR_‘'OPEN' AND *'CLOSE'

If the OPEN or CLOSE parameters are omitted and the LUNIT keyvord is
omitted, the Macros will generate adcons with the names of the appropriate
SYSTEM-supplied OPEN and CLOSE routines. They are as follows:

{ 1 L ¥ A
| l i | : |
- | MACRO CALL} OPEN | CLOSE | ROUTINE _CALLED AND LENGTH OF_IMAGE |
| | i [|
L I 1 1]
) L 1 1 Ll
| i | | | |
| RDFMT | ROPEN | RCLOSE | SCARDS-80 columns (not called if |
| | | | previous input image has not been |
| | { | 'accepted?) i
1 1 [l i g]
LI T 1 1] L]
| LKFMT | LOPEN | LCLOSE | SCARDS-80 columns (not called if |
| | § | previous input image has not been |
| I | | 'accepted!') : (
b + + t 9
| PRFMT | POPEN | PCLOSE | SPRINT- 132 colunmns |
L 4 L 1 1
L T v] A
| PCFMT | PCOPEN | PCCLOSE | SPUNCH- 80 columns |
L. [[1 'y
L} g i] 1 Ll
| WRFMT | POPEN | PCLOSE | SPRINT- 132 columns |
L 1 1 I i
T 1) L] A
| SERFMT | SEROPEN| SERCLOSE| SERCOM- 132 columns |
L 1 i i]

NOTE: ©PRFMT should be used tor transmitting an image to some kind of
printer. WRFMT should be used for transmitting images to any
I/0-device capable of receiving the image. PRFMT and WRFMT actually
generate the same calls.

NOTE: a call on RCLOSE or ACCEPT causes the input image transmitted by
a previous call to LCPEN or ROPEN to be 'accepted'.

MTS-255/31305-0

12-1-67

ADDITIONAYL FEATURES

Whenever IOH/360 finds a zero as an argument _address, it terminates 1I/0
processing. The appearance of the zero element may appear anywhere in the
argument list where reference to an I/0 argument may be placed. If I0OH/360
works its way through an argument iist and does not find the zero element,
it returns to the user. The user has the option of returning or not
returning to IOH/360 with another argument list. If he does not return or
makes a new initial call to IOH/360 - (the initial types of call have been
defined above), then he "loses" any remaining image left in the image
buffer. If he returns with another parameter list, I/0 processing will
continue from the place where it was when IOH/360 previously returned to
the user. This process can continue as long as the user wants to do so -—-
I0H/360 just keeps on performing I/O-conversion until the zero element is
reached. The return to IOH/360 can be generated with four types of macros.
they are:

MOREIO
ONEIO
ENDIO
I0P

MOREIO-with this Macro, the user can generate a new argument list, can
specify EOF, ERROR, SECT, NC, POCOLSW, and TYPE arguments, and has the
option of telling IOH/360 to use a new format instead of continuing with
the original format. The general torm of the call is:

MOREIO LIST,EOF=MYEOF,ERROR=MYERROR,SECT=MYSECT,CFMT=FORMAT,
POOLSW=0 or 1,NC=NCARG,TYPE=MYTYPE

If CFMT is wused all knowledge pertaining to the previous format will be
lost --- i.e. IOH/360 uses the new format just as if it were the original
one. In particular, knowledge of placement of parentaeses and their
associated multiplicities in the previous format is lost. With the CFNMT
feature, the user may build a format as he goes along during execution (he
needs to have only a part of the format present at any one time) --- oOne
thing to remember is that the user must supply enough format eaca time for
the number of arguments in the associated parameter list or terminate each
such format with an asterisk (i.e. '*'), Note that if the NC argument.
refers to a previously compiled Macro Call, then the LIST and CFMT
arguments of the present call are ignored and the LIST and FORMAT (or CFMT)
of the previous Macro Call which used that NC argument will be used.

ONEIO- with this Macro, the user may give IOH/360 one argument at a time

IOH/360 Macro Calils 213

214

MTS-255/31305-0

12-1-67

much like the STR (store and trap) on the 7090. He may also specify the
EOF and ERROR arquments. The form of the Macro Call is :

ONEIO ARG,EOF=MYEOF,ERROR=MYERROR
If ARG is a zero (i.e. ONEIO 0), I/0-processing is terminated.
NOTE: If ARG is omitted, register 1 is assumed to contain the argument
address.

ENDIO- with this Macro, one can terminate an I/O list. It is equivalent to
ONEIO 0.

IOP- to transmit either a single argument or a single blocked-pair, one may
use the IOP Macro. The EOF and ERROR keyword arguments may be used in this
macro call.

IOP ARG is equivalent to ONEIO ARG

IOoP ARG1,...,ARG2 is equivalent to MOREIO (ARG1,...,ARG2)

REFMTC: How_to "Execute!" Previous_Calls

The REFMTC Macro is used to "execute" previously defined initial-type Macro
Calls. The general form of an REFMTC call is:

REFMTC NC=NCARG,ERROR=MYERROR,EOF=MYEOF

The NC-argument must be present and refers to a previously-defined
initial-type Macro Call using that NC-argument. The effect of this type of
call is to set up code which will use the OPEN and CLOSE arguments of the
initial-type call (even if they were defaulted), in addition to using the
FORMAT and LIST of that call. The use of this Macro Call would, for
example, allow one to have many places in a program to read a card using
the exact same FORMAT, LIST, and OPEN and CLOSE options. It is a
space-saver in this respect.

NOTE
So that the user's names 4o not conflict with the names generated during a
Macro Call, all names g2nerated during Macro processing start with a #-sign
and have a number immediately following the #-sign. All such names have at
least three (3) characters in then. Also, all global set-symbols used
during Macro Call compilation begin with a #-sign.

The names of the Macros that are used in expanding the IOH/360 macros
described above are as follows:

#IOHPRILS
#I0HOCCK
#I10HERCK

Thus the user should not define his own macros with any of the above nanmes.

MTS-255/31305-0

12-1-67

DPRFMT FORMAT1, (A,B,C,...,C+8,A+5,A+10,...,A+15,0) ,OPEN=IOPEN,
CLOSE=ICLOSE

The above call is equivalent to the following set of calls:

PRFMT FORMAT1,OPEN=IOPEN,CLOSE=ICLOSE
IOP A

I0P B

i0P C,...,C+8

IOP A+5

10P 2+410,...,A+15

ENDIO

I0OH/360 Macro Calls 215

216

MTS-255/44645-0

12-1-67

Name:
Purpose:
Prototype:

Parameters:

Examples:

Description:

MACRO DESCRIPTION

MOUNT
Set up calls from execution to mounting routines.
[LABEL] MOUNT f'MESSAGE!

'MESSAGE' is the character string which would immediately
follow "PAR=" if the subroutine were called in command mode.

MOUNT 'M123 ON 9TP, PNAME=Test, ''TEST TAPE'',RING IN'

A description of the mount subroutine is given in MTS
280/44645. The macro generates 1literal constants, hence
literal addressability must be preserved. Note also double
primes are used to produce one prime in actual text.

MTS-255/62215-0

12-1-67

Name: sC

Purpose: To
na

Prototypes: Ty

{ LABEL]

[LABEL]
Ty
[LABEL] {

[LABEL]

where REG

MODIFS

LNR

EXIT

MACRO DESCRIPTION

ARDS,SPRINT,SPUNCH,SERCOM,READ,WRITE
assemble calls to the system I/0 routines of the same
mes.

pe 1: The user specifies a region and length.

SCARDS
SPRINT| REG [,REGL][,MODIFS][,LNR][,EXIT=exitseq]
SPUNCH
SERCOM

READ
WRITE} UNIT,REG[,REGL][,MODIFS][,LNR][,EXIT=exitseq]

pe 2: The user specifies a comment.

SPRINT
SPUNCH} ‘comment'| ,MODIFS][,LNR][,EXIT=exitseq]
SERCOM

WRITE UNIT,'comment'[,MODIFS] ,LNR][,EXIT=exitseq]

is the 1location of the region to be read into or
written from. It'may be expressed as a symbol on the
number of a register (which contains the location of
the region) in parentheses.

specifies the length. It may be either the name of a
half-word containing the length or a self-defining tern
which is the length, or tae number of a register (which
contains the length) in parentheses. If omitted, L'REG
is assumed.

stands for several parameters separated by commas.
Each consists of the name of an MTS mnmodifier (see
section M2$-210) preceded by either an at-sign ("a@") or
an at-sign not-sign ("a-").

is the location of a full-word aligned full word
containing the line number.

specifies exits to be taken for non-zero return codes.
If exitseq is a single symbol, then any non-zero return
code will cause a branch to this symbol. If exitseq is
a parenthesized list oif symbols, then a return code of
4 will cause a branch to the first symbol, a return
code of 8 will cause a branch to the second symbol, and
so on. If a return code larger than that corresponding
to the 1last symbol occurs, then a branch to the last

Macro Description (SCARDS,SPRINT,SPUNCH,SERCOM,READ,WRITE) 217

A

38}

0

MTS-255/62215-0

12-1-67

UNIT

Examples:
SPRINT
LOOP SCARDS
READ
SPRINT
SCARDS
SPUNCH

Other forms:

If
only
ers
TADR
only

symbol will take place.

specifies the corresponding parameter to be given ta
READ or WRITE, either the numbers 0 through 9 or the
location of a rull-word aligned full word containing a
FDUB pointer.

' 1PROGRAM TO DIDDLE AROUND!
REG,LEN,EXIT=EOF
5,INREG,L,EXIT=(EOF,0UCH)
LINE,80

REGION,LENG,®I,dPEEL, EXIT=DONE
(1) ,80

MF=L 1is attached to any of the calls listed above, then

the parameter list will be generated. If the paramet-
are replaced by MF=(E,LISTADR)[,EXIT=exitseq] then LIS-
is assumed to be the location of a parameter list, and
the code to call the subroutine will be generated.

MTS-255/62435-0

12-1-67

Name:

Purpose:

Prototype:
where M1

L2
D2B2

Example:

Usage:

MACRO DESCRIPTION

SLT

To assemble a SLT (search list) instruction - opcode A2

[LABEL] SLT M1,L2,D2B2

is the mask to be used

is the count to be used (actual count - not IBM count)
should be represented in a form suitable for assembly into
an S-type adcon, i.e., D(B), where B 1is the register
containing the location of the list region and D specifies
the displacement from the front of the block of the word
containing the chain address.

SLT 10,2,LINKO (0)
A description of the SLT instruction is available at the

Computing Center. [The SLT instruction is RPQ number
F13800]

Macro Description (SLT) 219

MTS~-255/62665-0

12-1-67

Name:
Purpose:
Prototype:
wvhere GR
FR

Examples:

Usage:

MACRO DESCRIPTION

SWPR

To assemble an SWPR (swap register) instruction - opcode A3

[LABEL] SWPR GR,FR

is the even general register of an even-odd pair
is a floating-point register.

SWPR 6,4
L SWPR 0,0

The SWPR instruction exchanges the contents of a floating
point register and a pair of general registers. [The SWPR
instruction is RPQ number M24390]

MTS-255/63625-0

12-1-67

W

MTS Assembly Language Testing Macros

A set of macros has been written which allows the user to write assembly
programs without intermediate printing, and to add or delete such printing
as is useful during the debugging phase without disturbing the code already
written.

The following macros have been defined:

#AT -to define testing point(s)

#DISPLAY -to print an arbitrary length string of bytes
#COMMENT -to print a comment

#GENREGS -to print the general registers

#FLTREGS -to print the floating point registers

#GOTO -to transfer control within the testing macros
#STOP -to halt execution

#ENDTEST -a necessary evil

Explanations and restrictions:
#AT

Prototype: { pplabel] #AT proglabel
[pplabel] #AT (proglabell,proglabel?2,...)

The first occurrence of an #AT macro call inserts into the calling progran
a 24-26 byte link to a setup routine. Therefore the first #AT must follow
relative address formation and be executed before any testing point is
reached. 'pplabel' will only be defined in the first #AT call. Then it
will be the first instruction in tne link sequence. 'proglabel' must label
an instruction in the user's program. There is no default for 'proglabel'.

Examples: #AT T1

PLABEL #AT (TESTING,PRLABEL,HERE)
#DISPLAY
Prototype: [ttlabel} #DISPLAY stringnamef ,abcon[,type]]

This macro prints 'abcon' bytes beginning at ‘'stringname' in either ebcdic
(*type' equals BCD, EBCD, or EBCDIC) or hexadecimal ('type!' is any other
string) conversion. There is no default for 'stringname'. Default for
‘abcon' is L' (*stringname'). Default for 'type' is hexadecimal.

Exanmples: TLABEL #DISPLAY ARRAY

#DISPLAY ARRAY,,BCD
#DISPLAY SAVEAREA,72

Assembly Language Testing Macros 221

MTS-255/63625-0

12-1-67

COMMENT

Prototype: [ttlabel] $COMMENT 'characterstring!

Forty bytes is the maximum length of ‘characterstring'. ‘'characterstring!
must contain at least one character.

Examples: TLABEL1 #COMMENT 'THIS COMMENT PRINTED®
#COMMENT 'SO DOES THIS.!

#GENREGS

Prototype: [ttlabel] #GENREGS

Examples: TLABEL2 #GENREGS
#GENREGS

#FLTREGS

Prototype: [ttlabel] #FLTREGS

Examples: TLABEL3 #FLTREGS
#FLTREGS

#GOTO

Prototype: {ttlabel] #GOTO ttlabel

This macro transfers control within the testing macros. ‘'ttlabel' may be a
label on any testing macro except #AT and #ENDTEST.

Examples: TLABELY #GOTO TLABEL3
#GOTO TLABEL2

#STOP

Prototype: [ttlabel] #STop

This macro stops execution with an operation interrupt. Everything except
GR15 1is available for $ALTERing. $RESTARTing resumes execution. This
macro has limited use in batch jobs.

Examples: TLABELS #STOP
#STOP

MTS-255/63625-0
12-1-67
#ENDTEST
Prototype: #ENDTEST
One call on this macro must be included in the user's program, and it nmust

physica

CAUTION

L)

2)

3)

4)

11y follow all other testing macro ‘calls.

S:

The testing macros produce many names of the form @TESTxxx. These
should be avoided by the user.

This facility operates through progranm interrupts and will not
behave if the user is processing his own interrupts.

An ERROR RETURN with GR14 containing a location in ATESTITP
indicated that the facility found an interrupt which did not belong
to it. In the dump only GRO is useful and it points to an 18 word
save area which contains the conditions of the program at the tinme
of the interrupt. Words 1 and 2 contain the PSW and words 3 to 18
contain GRO to GR15.

The facility will alter the program condition code immediately

pefore +the instruction named by an #AT macro. There is no other
effect upon the execution ot the program.

Assembiy Language Testing Macros 223

MTS-255/63625-0

12-1-67

Example of usage:

USING *,15
"STM 0,15,SAVEREGS

PRINT NOGEN
#AT T1
#AT T2
#COMMENT 'THESE LOCATIONS HAVE NOT BEEN SET'
#DISPLAY ARRAY,,BCD
#DISPLAY ARRAY
#GENREGS
#FLTREGS
MORE #COMMENT 'ONE LAST COMMENT'
#AT T3
#GOTO MORE
#AT (T4,T5)
#DISPLAY ARRAY,50

#AT T6
#STOP
#COMMENT 'RESTARTED..."
#ENDTEST ’
T1 BCR 1,0
T2 BCR 2,0
™3 BCR 3,0
i BCR 4,0

MVI ARRAY,X'48"
MVI ARRAY,C'X’
MVC ARRAY+1(49) ,ARRAY

T5 BCR 5,0
T6 BCR 6,0
LM 0,15,SAVEREGS
BR 14
SAVEREGS DS 16F
DS CL3
ARRAY DS CL100
END

224

MTS-255/63625-0

12-1-67

Output from example:

$eok b - b otk 3Rt 3k W M otk 3k e 3 o R ek R W 3 R R R REREE

#PROGRAM INTERRUPT.

AT T1

AT T2

THESE LOCATIONS HAVE NOT BEEN SET

ARRAY, 100

ARk dkdkokkdok g kok§k ok Dokiokkooksokok ook ok dololoololoR oK ok ok R KoKk KRR Rk KRG R E ok ko k

s e ok e s ok sl ok st ke kot o ok ok ok ok sk sk ek ok sk e o skl skl ok

ARRAY, 100
C10

2

C1 00035018 0000CB2C 00035070 000350A4 4000D7AE 00000000 0001898
00029E98 81038018 0000CE38 0000CE5C 00008768 0100CB2C 0000CB2C 000350D
5000 CCBE 00000000 00000004 0000CB2C 0002AD20 0000CE38 0000CE5C 0000876

0100CcB2C 00000005
GENERAL REGISTERS

#SRESTART

#EXECUTION TERMINATED

RESTARTED

00029FAC 00029Fu8 00000000 40017986
00000000 00029F40 00000000 00029FAC
00000000 00029038 000140D6 00012030
00011030 00029F54 00014cCAC 00035018
FLOATING POINT REGISTERS
0000000000000000 0000000000000000 0000000000000000 0000000000000000
ONE LAST COMMENT
AT T3
ONE IAST COMMENT
AT T4
ARRRAY, 50
C1 00035018 00000B2C 00035070 00035024 4000D7AE 00000000 0001898
00029%98 81038018 0000CE38 0000CES5C 00008768 0100CB2C
AT TS
ARRAY,50
‘E7 E727E7TE7 ETE7TETE7 E7TETEYET E7£7E7E7 ETE7E7E7T ETETETE7T ETETETE
E7E7ETE7 E7E7ETE7 E7E7ETE7 E7ETEVET E7TE7TE7ET E700CB2C
AT T6
STCP...TYPE '$RESTART' TO CONTINUE

FF450001 40041276

Assembly Language Testing Macros

225

226

MTS-255/78005-1

12-1-67

Structure of a Macro Library

A macro library consists of a directory and the macros.
A. The directory:

1. Each entry of the directory contains the name of a macro in
columns 1-8 and the line-number of the macro definition header of
the corresponding macro in columns 10-16. (Both the name and the
line-number must be left justified with trailing blanks).

2. The line-number of the first entry in the directory must be 1.

3. The terminating entry in the directory is a string of eight zeroes
in columns 1-8.

B. The macros:

1. The 1line-number of the macro-definition header of each macro must
be a positive integral number.

2. The first macro follows the last entry in the directory.

EXAMPLE:

$NUMBER 1,1

BASR 10

BAS 20

00000000

SNUMBER 10,.1

MACRO

&§LABEL BASR ®1,®2
&LABEL BALR ®1,8®2

MEND

$NUMBER 20,.1

MACRO

§LABEL BAS ®1,&L0OC
§LABEL BAL §REG1,&L0OC

MEND

MTS-270-1

12-1-67

PHONE NUMBERS — DATA SET DIRECTORY

Computing Center Model 67 Ports:

TELETYPE

2741

1050

(through 2702)
{through data
concentrator)

(through 2702)
(through data

concentrator)

(through 2702)

FREQUENTLY CALLED NUMBERS

763-0300

764-0200

163-0510

763-0530

164-0206

763-0510
763-0530

(hunt-on-busy)

(hunt-on-busy)

[same as 1050]

[same as 2741]

Data Set Directory

227

228

MTS-270-1

12-1-67

COMPLETE DIRECTORY

[ITEMS IN BRACKETS ARE NOT YET CONNECTED]

ORDERED BY NUMBER-

NUMBER DATA SET ROOM BLDG WHAT CONNECTED TO
482-0794 1034 WR 33ASR (PORTABLE) -BLDG. 2218
482-7915 1032 130 WR 35ASR-BLDG.2041
483-2652 1032 WR 33ASR-BLDG.2213
721-8110 1032 2254 FLU 35ASR-FLUIDS ENG. LAB.
761-1947 1032 CRLT 1050
3-0139 1032 UNIV TWRS 33ASR-LOG. OF COMP. GRP.
3-0149 1034 EE 33ASR-BLL RAD. LAB.
3-0164 1034 2113 sp 35ASR-SPACE PHYSICS
3-0167 1031 1101 NUB 33ASR
3-0170 1034 HWY SAF 33ASR
3-0190 201a 2518 EE LINC-8
3-0193 1032 19 P.S. 33ASR
3-0196 1034 HOSP ADMN 33ASR(PORTABLE)
3-0300 1032 cc TELETYPE PORTS
TO OF 2702 (HUNT-ON-BUSY
3-0315 LINES)
3-0316 1034 cc 35ASR-MACHINE ROOM
3-0510 1032 cc 2741/1050 PORT OF 2702
3-0530 103a cc 2741/1050 PORT OF 2702
3-0563 1032 1008 CHEM 33ASR
3-0570 201A cc DECAFACE - SDR1
3-0571 2014 cc DECAFACE - SDR2
3-0572 2012 cc DECAFACE - SDR3
3-0573 201A cc DECAFACE - SDRY
3-1175 1034 2518 EE LINC-8
3-1176 1032 2518 EE LINC-8

ANSWER-BACK

UMISTRSWRAYP
UMCPDETWRAYP
UMISTIRWRAYP
UM NUENG AAA
UMLOGICCGAAA
UMEERALAB AAA
UMSPCPHYSAAA
UMGEOSBSLAAA
UMHYSRI A AA
UM H P C AAA

UMBUHOSADAAA

UM CMPC A AA

UM CHEM A AA

MTS-270-1

12-1-67

NUMBER

3-2189
3-2196
4-0200
TO
4-0207

4-1538
4-1571
4-2273

4-2329
4-2345
4-3249

4-3288
4-4149
4-4169

4-4208
4-4259
4-4279

4-4289
4-4297
4-4398

4-4439
4-4483
4-4494

DATA SET

2011
1032
103A

1032
103A
103a

1037
1032
103A

1037
103A
103a

202C
10327
103a

1032
202C
103A

1032
X403
X4031

ROOM

106

UNI

2514
2116

1031
B101
3216

108

231

230F

BLDG

MHRI
DENT
CC

COoMP
EE .
IST

MH
ccC
CRLT

CcC
SPH
EE

cC
CcC
cC

COOL
cc
cc

WE
cC
cC

WHAT CONNECTED TO

PDP-8

33ASR

DECAFACE PORTS
(HUNT-ON-BUSY LINES)

35ASR~ARCH. RES
35ASR
33ASR

1050 - LANGUAGE LAB
2701 - TEL2
33ASR

1050
1050
35ASR

DECAFACE
274 1-MACHINE ROOM
[2741-BASEMENT]

33ASR
DECAFACE
2701 - TER1

35ASR
DECAFACE
DECAFACE

ANSWER-BACK

UM DENTL AAA

UMARCHRESAAA
UMSYSENGEEA

MIT DUM1 DUM1

UMCMENGAAA

UMCOLYEEMAAA

UM WENG C AAQ

Data Set Directory 229

230

MTS-270-1

12-1-67

‘NUMBER

4-u4496
4-6155
4-6199

4-6569
4-6591
4-7144

4-7145
4-7146
4-7147

4-7539
4-8270
4-9525

4-9526

4-9527
4-9528

4-9529
4-9564
4-9570

DATA SET

1034
1032
1032

1032
X403a
2014

2012
103A
103a

1032
1032
103a

103a

103A
103a

1034
1032
103A

ROOM
1528
2518
1525
UNIV
230F
230F
230F
229

2001
108

230F
228H

2601

BLDG

CcC
UES
EE

MHRI
MH
TWRS

WE
WE
WE

WE
MHRI
cC

cC

ccC
WE

WE
ccC
SPH

WHAT CONNECTED TO

DECAFACE - MAIN FRAME
33ASR
33ASR

35ASR
(LANGUAGE LAB)

DEC PDP-7-L0G. OF COMP.GRP

DEC 338
DEC 338-MAINFRAME
DEC 338-33ASR

33ASR(PORTABLE)
35ASR
35ASR-BASEMENT

33ASR-MACHINE ROOM
(PORTABLE)

35ASR - MACHINE ROOM
35ASR

33ASR-PORTABLE (HERZOG)
1050 - MACHINE ROOM
35ASR

ANSWER-BACK

UMUNELSCLAAA
UMSYSEE B aAA

UM MHRI A AA

UMESUMCONFAA

UM
UM

UM

UM
UM

UM

UM

MHRI
CMPC

CMPC

CMPC
WENG

WENG

B
B

C

D
A

B

AA
AA

AA

AA
AA

AR

SPH A AA

MTS-280-0

12-1-67

LIBRARY FILE DESCRIPTIONS

This section contains descriptions of many of the 1library files
available to MTS users.

Library File Descriptions 231

MTS-280/21505-0

12-1-67

Name:

Contents:

Usage:

Logical I/0O unit

Examples:

Note:

LIBRARY FILE DESCRIPTION

*ASA

The object module of a program to convert lines with ASA
printer control characters in column 1 to lines with machine
carriage control in column 1 (which can be directly
printed).

This file should be referenced by a $RUN command.

s referenced:

SCARDS - Source of the lines with ASA carriage coantrol

SPRINT - printer (*SINK* in batch) or place to put the
output lines.

SRUN *ASA; SCARDS=-PRINT
(SPRINT defaults to *SINK¥*)
$RUN *ASA; SCARDS=-PRINT SPRINT=LISTING

If the output of *ASA is put in a file, then when +the file
is finally 1listed, the machine carriage control modifier
should be specifiegd:

$COPY LISTING TO *SINK*@MCC

MTS-280/21445-0

12-1-67

Name:

Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION

*ASMBLR

The initial object module of the Operating System F-level
Assembler.

Assemble System/360 assembly language source progranms.

The F assembler is invoked by an appropriate RUN command
specifying *ASMBLR as the file where object cards are found.

Logical I/0 units referenced:

Examples:

Description:

SCARDS The source program which is to be assembled.

SPRINT The assembly listing and symbol reference table
listing.

SPUNCH The resuiting object module.

0 A library of macro definitions. This should be

set to *SYSMAC unless the user wishes to use his
own macro library.

1 The file to contain the object module if it is to
be executed. This is needed only if the parame-
ter LOAD is set.

2 A second library of macro definitionms, described
below. This is needed only if the parameter CON
is specified.

JRUN *ASMBLR
(SCARDS,SPRINT,SPUNCH default to *SOURCE*, *SINK*, *PUNCH*,
resp.)

$RUN *ASMBLR; SPRINT=*SINK¥ SCARDS=*SOURCE*
0=*SYSMAC 1=-LOAD PAR=NODECK,LOAD,LINECNT=99

$SRUN *ASMBLR; SPUNCH=LD SCARDS=CDS 0=*SYSMAC

This assembler is IBM's Operating System F-level Assembler
modified to run under MTS, and therefore offers the full
facilities of that language. For a complete description of
the language see the manual "IBM System/360 Operating Systen
Assembler Language", form C28-6515-4. Two additions have
been made to the language. The COM pseudo operation may

Library File Description (*ASMBLR) 233

MTS-280/21445-0

12-1-67

have a symbol in the label field. The common section
generated is given this name exactly as in FORTRAN named
common. Also the operand field of a COPY pseudo operation

can be any FDname as described in MTS-210. If parameters

Note:

34

are to be given, the PAR= sequence must be last in the
sequence of specifications, as shown in the example above.
The parameters are:

DECK The object module is placed on the device
specified by SPUNCH.

LOAD The object module is placed on logical unit
1.

LIST A listing of the program is put on the device

specified by SPRINT.

XREF A cross-reference table of symbols is put on
the device specified by SPRINT.

RENT The assembler checks for a possible coding
violation of program reenterability.

CON A macro library with the same structure as
*SYSMAC 1is placed as the file specified as
logical unit 2. This 1library will be
searched before the library on 0 is searched,
permitting the over-riding of system macro
definitions or the «concatenation of macro
libraries.

LINECNT=nn This parameter specifies the number of lines
to be printed between headings in the list-
ing. The permissible range is 01 to 99
lines.

TEST TESTRAN symbol table information is produced.
(See *SDS writeup for usage.)

The prefix NO is used to turn off parameters LOAD, LIST,
XREF, RENT, CON, and TEST. If no options are specified, the
assembler assumes tne following default entries:

PAR=NOLOAD,DECK,LIST,XREF,NORENT,
NOCON, NOTEST ,LINECNT=56

The assembler usage writeup will be found in section
MTS-510.

MTS-280,/21448-0

12-1-67

Name:

Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION
*ASMEDIT

The object module of a program (1) to process card images
suitable for input to the MTS Assembler into standard
format; that is, name field starting in column 1, operation
field starting in column 10, operand field starting in
column 16, and following comments delimited by a blank.
Continuation characters in column 72 are not disturbed. (2)
to sequence the card images produced with a four character
program identification code followed by four numeric charac-
ters.

To edit MTS Assembler input source decks into easily read
form. This feature is especially desirable to clean up
decks containing modifications made from terminals.

The editing program is invoked by a RUN command specifying
*ASMEDIT as the file containing the object module.

Logical I/0 units referenced:

Example:

Description:

SCARDS A file containing card images suitable for
input to the MIS Assembler.

SPRINT: A listing of the edited deck is given on the
specified device.

SPUNCH: The edited deck is output to the specified
file or device.

$RUN *ASMEDIT; SCARDS=PGM SPKINT=-LIST SPUNCH=FGME
$RUN *ASMEDIT; SCARDS=PGHM
- (SPRINT defaults to *SINK*,SPUNCH to *PUNCH* (in batch))

*ASMEDIT edits card images suitable for input to the MTS
Assembler into standard format for the F-level assenbler.
It is useful for producing a neatly aligned deck from decks
containing modifications made fron terminals. The first
card processed by *ASMEDIT must contain a four character
deck identification code in columns 73-76 and a starting
sequence number in columns 77-80; viz.

PUNTO0000
| |
73 80
*ASMEDIT will continue numbering, incrementing by one, from
the starting segquence number.

Library File Description (*ASMEDIT) 235

MTS-280/21447-0

12-1-67

Name:

Contents:

Purpose:

Usage:

Logical I/0 unit

Example:

Description:

LIBRARY FILE DESCRIPTION

*ASMERR

The object module of a program to scan an assembly listing
and find flagged lines and their associated error comments.

To print the errors and diagnostics noted in a F-level
assembly listing.

The error 1listing program is invoked by a RUN command
specifying *ASMERR as the file containing the object module.

s referenced:

SCARDS A file containing an assembly list-
ing
SPRINT Error comments are given on the

specified device

$RUN *ASMERR;SCARDS=-PTR
(SPRINT defaults to *SINK*)

*ASMERR 1lists on SPRINT the erroneous statements and diag-
nostics noted in an F-level assembly listing. If no errors
are detected an appropriate comment is printed. SCARDS must
refer to a file, not a device.

MTS-280,/22305-0

12-1-67

Name:
Contents:

Usage:

LIBRARY FILE DESCRIPTION

*BATCH
The object module to monitor remote batch entry.

The program is invoked by a JRUN conmnand specifying *BATCH
as the object file.

Logical I/0 units refereaced:

Examples:

Description:

SCARDS - file or device containing records to be
entered as an MTS job.

$RUN *BATCH
(SCARDS defaults to *SOURCE¥)
$RUN *BATCH; SCARDS=AFILE

The content of SCARDS's reference is treated as any "batch"
job run in MTS. A "receipt number" by which the user may
pick up the output is returned to the user. The job's
output may be picked up at the computing center when ready
(at the time of this writing, usually the morning following
its entry) and should be retrieved within one week.

The first statement entered into SCARDS must be $SIGNON

If SCARDS references a device (such as the user's
terminal), rather than a file, the following are applicable:
1. Oonly 480 characters of information will be accepted
(six 80 byte lines, twelve 40 byte lines, etc.)
2. If a line of zero length is entered, the line pointer
is decremented by one line, that is, the previous line
is deleted.

Library File Description (*BATCH) 237

238

MTS-280/22245-0

12-1-67

Name:

Contents:

Purpose:

Usage:

Logical I/0 unit

Examples:

Description:

LTIBRARY FILE DESCRIPTION

*BCDEBCD

The object module or the BCD to EBCD conversion progran.
Convert cards punched on an 026 card punch (BCD) to the
equivalent card codes as if punched on an 029 card punch
(EBCD) .

The BCD to EBCD conversion program is invoked by an
appropriate RUN command specifying *BCDEBCD as the file
where the object cards are found.

s referenced:

SCARDS BCD lines to be converted.

SPRINT Listing of converted 1lines.

SPUNCH EBCD 1lines resulting from the con-
version.

SRUN *BCDEBCD; SPUNCH=MYFILE
(SCARDS defaults to *SOURCE*,SPRINT to *SINK*)

The following conversion is applied to all input lines:

BCD CARD CODE CHARACTER EBCD CARD CODE
0-4-8 (% 12-5-8
12-4-8) o 11-5-8
4-8 ' 5-8
12 + & 12-6-8
3-8 = # 6-8
all others unchanged

This conversion maps those characters which had a dual
symbolism (scientific and commercial) on the 026 keypunch to
the appropriate 029 keypunch scientific code. Note that on
an 026 keypunch, there is no way to represent the following
characters:

o 2 & #

as this program will convert them to their scientific
equivalents.

MTS-280/23635-1

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*CATALOG

Object module of program to praint a list of files for the
current user.

This file should be referenced by a $RUN command with
#*CATALOG as the object file.

Logical I/0 units referenced:

Example:

Description:

SPRINT List of files is put on specified <file or
device.

$RUN *CATALOG
%*CATALOG lists on SPRINT the name of every file belonging to

the current user and a summary of the amount of file space
he is using.

Library File Description (*CATALOG) 239

MTS-280/23315-0

12-1-67
LIBRARY FILE DESCRIPTION
Name: *¥*COINFLIP
Contents: The object module or the Coinflip progran.
Purpose: Demonstration.
Usage: The program is invoked by the conversational command:
$RUN *COINFLIP

Description: The program is self-describing.

240

MTS-280/23455-0

12-1-67

Name:

Contents:

Purpose:

Usage:

Logical I/0

Example:

Description

unit

Example session:

$SOUR

LIBRARY FILE DESCRIPTION

*CONVSNOBOL

A SNOBOL4 program that reads and executes SNOBOL4 state-
ments.

To allow conversational use of SNOBOL4.

This file contains commands to run the SNOBOL4 program. It
should be specified as the source (see $SOURCE command
description).

s referenced:
(Specified in $RUN command in the file)

‘5: Input for SNOBOLY4 initial compilation

6: Output for SNOBOLY4 error comments

8: Input of conversational SNOBOL4 statements
9: Output of conversational SNOBOLY4 statements

$SOURCE *CONVSNOBOL

The SNOBOL program in this file reads (from *MSOURCE¥)
SNOBOL statements. If a statement is preceded by a number,
the compiled form of the statement is stored in the element
of the array PROG with that subscript. If the statement is
not preceded by a number i is executed immediately and the
code is not saved unless the ‘statement was labeled. To
begin execution of stored statements the user should execute
an unconditional transfer to one of them. If the SNOBOL4
compiler detects an error in the statement entered the
comment "COMPILATION ERROR"™ is typed. When the user termi-
nates execution (by entering an end of file) the error
comments for the last such statement are typed. If the
SNOBOLY4 interpreter detects an error, execution is inmedi-
ately terminated with an error comment and a string dump if
one was requested.

(Input is underlined)
CE_*CONVSNOBOL

SRUN
8=%
EXECU
SUCCE
ENTER
ouTP

*SNOBOLY ;5=*CONVSNOBOL (3) 6=*DUMMY* (1,20) +*MSINK*
MSOURCE* 9=%MSINK*
TION BEGINS
SSFUL COMPILATION
SNOBOL STATEMENTS
Ur_ = "HELLO"

HELLO

Library File Description (*CONVSNOBOL) 241

MTS-280/23455-0

12-1-57

I4 {end of file)
NORMAL EXIT FROM SNOBOL AT LEVEL O

242

MTS-280/24625-0

12-1-67

Name:
Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION

*DISKDUMP
The object module ot the DASD dump progran.

Print the contents of specified portions of a 2311, 2314, or
2301 in a hexadecimal dump format.

The DASD dump program is invoked by an appropriate RUN
conmand specifying *DISKDUMP as the file where the object
cards are found.

Logical I/0 units referenced:

Examples:

Description:

SCARDS control lines specifying the disks
and areas on the disks to be
dumped.

SPRINT The dump listing.

$RUN *DISKDUMP; SCARDS=*SOURCE* SPRINT=PTR2

The DASD dump program will print in hexadecimal dump format
the specified region of any DASD . All records on the DASD
within the specified region are printed, with the exception
of the RO records. Each record is read with a READ COUNT,
KEY AND DATA command, and the entire record is printed out -
beginning with the count field. The format of each control
line is:

Positions Contents

1-4 Physical DASD on which volume 1is mounted e.g.,
D291 e.g., D291

5-8 Starting cylinder address in hexadecimal, e.g.,
00AO0

9-12 Starting track address in hexadecimal, e.g., 0000

13-16 Ending cylinder address in hexadecimal, e.g.,
00AS5

17-20 Ending track address in hexadecimal, e.g., 0009

As many control lines as desired can be entered. Execu-
tion terminates when an end-of-file ccndition is returned by
SCARDS.

Library File Description (*DISKDUMP) 243

MTS-280/24625-0

12-1-67

All other processing on a DASD being dumped is locked out

while that DASD is being printed, so that the contents being
dumped cannot be changed in mid-dump, so to speak.

24y

MTS-280/24627-0

12-1-67

Name:
Contents:
Purpose:

Usage:

Prototype:

where:

EZxamples:
Logical I/0 Unit

Description:

LIBRARY FILE DESCRIPTION

*DISMOUNT
The object module or the volume dismounting program.
Allow users to dismount private volumes.

The program is invoked by a run command specifying *DISMOUNT
as the file where the object cards are to be found.

$RUN *DISMOUNT; PAR=*pseudodevicename*

pseudodevicename 1s the pseudo-device name specified when
the volume was mounted.

$RUN *DISMOUNT;PAR=*TAPE*
s Referenced: none.

The volume will be removed and (hopefully) placed in its
appropriate spot in the storage rack. See *MOUNT descrip-
tion for further details. If there are any outstanding uses
of the pseudo-device name (such as SCARDS) the volume will
not be actually dismounted until all of them are released.

The following rules describe the interaction between
*MOUNT and *DISMOUNT.

1. If *MOUNT is run (either explicitly or by calling
MOUNT during execution) with a pseudo-device name
specified wnich is already active, then the'device
type must be the same as the previous type amnd all
outstanding references to the pseudo-device name will
be changed to refer to the new volume..

2. If *MOUNT is run with a pseudo-device name which has
been previously used but for which *DISMOUNT has been
run, then the new device type may be anything 1legal
and any outstanding references to the old pseudo-
device name are unchanged. In general a use of
*DISMOUNT signifies the end of a particular use of a
pseudo-device name and a use of *MOUNT for am active
pseudo-device name signifies a new volume for a
previous use.

The following example may clarify this. Suppose the

following commands were issued during an MTS session:
$RUN *MOUNT; PAR=G000 ON 7TP PNAME=*TP* MY TAPE

Library File Description (*DISMOUNT) 245

246

MTS-280/24627-0

12-1-67

$RUN -0BJ; SCARDS=*TPx*

If during execution of the program in -0BJ, *MOUNT is callec
(presumably by using the macro or subroutine MOUNT) and the
pseudo-device name *TP* is specified then the device type
must be 7TP and a new reel will be mounted on the same tape
drive, which SCARDS will still refer to. However if durinc
execution of the program in -0BJ, *DISMOUNT is called for
TP and then *MOUNT is called for it, the device type maj
be any legal type, SCARDS will still refer to the old tape,
and any nevw use of the name *TP* (for example as a parameter
to GETFD) will refer to the new volume. In this <case the
original tape reel will not actually be removed until
execution is terminated.

MTS-280/24645-0

12-1-67

Name:

Purpose:

Usage:

Examples:

user

LIBRARY FILE DESCRIPTION

*DOUBLE

To generate the correct (rounded) double-precision floating
point representation of a given decimal number. If *x' is
the decimal representation, then the approximate range of
possible values of 'x' is

.388E-61 < |x| < 7.21E+75
[Note: Double-precision is not long precision]

Input to this program is on SCARDS; output may be printed or
punched and printed. Printed output is on SPRINT; punched
output is on SPUNCH. To specify that one wishes punched
output, the parameter saying such should be given---i.e.
PAR=PUNCH. Any error comments (such as underflow or
overflow) will be produced on SERCOM---no error is fatal.
The user inputs number (starting in column 1) in any type of
floating point external format. Examples:

10.1
10.1E+0
10.1D+0
10.10000
101E-1
101-1
10.1-1

A1l numbers (or special characters such as . , D E and +
and -) until either a blank, illegal floating point format,
or illegal character occurs Wwill be taken as part of the
input number. Output will be in the form of two hexadecimal
numbers each sixteen digits in 1length. I the wuser
specifies that punched output is to be given, then the first
15 columns after the first blank or first illegal <character
will be used as a comments field in the punched output.
Punched output is or the form which can be input to the
assembler---i.e.

DC X'16 digits',X'16 digits' comments

input is underlined

#$RUN_ *DOUBLE

#EXECUTION BEGINS

1-0

Library File Description (*DOUBLE) 247

MTS-280/24645-0

12-1-67

4110000000000000 3300000000000000

3.141592653589793238“6264338327950;88“19716790202 PI
413243F618885A30 338D313198A2E037

248

MTS-280/24215-0

12-1-67

Name:
Contents:

Purpose:

LIBRARY FILE DESCRIPTION

*DRAW
The object module of line drawing progran

Allow user to create line drawings using the 2250 display
unit. Up to 31 separate displays may be saved in a file and

. later retrieved.

Jsage:

This program is invoked by an appropriate RUN command
specifying *DRAW as the file where the object cards are
found.

logical I/0 units referenced:

Examples:

Description:

SCARDS file from which displays are to be
read
SPUNCH file in which displays are saved

$RUN *DRAW; SCARDS=DRAWING SPUNCH=DRAWING
$RUN *DRAW; SCARDS=DRAWING SPUNCH=PCH1

The user at the 2250 display console interacts with the
*DRAW program by means of the 1light pen and programmed
function keyboard (PFK). The following keys on the PFK have
been given the indicated meaning:

»key 0 -> enter point-plotting mode

key 1 -> enter basic character mode

key 2 -> enter large character mode

key 3 -> enter position-cursor mode

key 4 -> enter vector-plotting mode

key 10 -> start scan to find light pen

key 22 -> enter erase mode

key 30 -> read new display (via "SCARDSY)

key 31 -> save the curremnt display (via “SPUNCH")

Pressing any other key will cause a display of these

instructions to appear. In addition two ‘"alternate code"
keys have been given these meanings:

Library File Description (*DRAW) 249

250

MTS5-280,/24215-0

"cancel" -> blank screen in preparation for a new drawinc
"end" -> terminate execution of the *DRAW program.

To plot a point on the screen the user must enter
point-plotting mode by pressing key O. (Once a mode is
entered, the program remains in that mode until the mode is
changed by pressing another key). Pressing key 10 initiates
a display of X's. By pointing the light pen at the spot or
the screen where the point is to be plotted and pressing the
light pen foot switch to activate the ligat pen, the user
"plots"™ the point. Successive points may be plotted by
alternately pressing key 10 and activating the light pen.
To draw lines, vector plotting mode must be entered. Key 10
and the light pen must then be used as described above. The
position of the light pen denotes the terminal point of the
line. The initiai point of +the line is the most recent
point (or terminal point) drawn. Characters (either basic
or large size) may be entered in the drawing by entering the
appropriate character mode, pressing key 10 and activating
the light pen to indicate where in the drawing the charac-
ters are to be inserted. This causes a cursor to appear on
the screen and up to 10 characters may be entered from the
console. If more than 10 characters are desired, the above
action can be repeated. To delete lines or points from a
drawing, erase mode 1is entered by pressing key 22 and the
object to be deleted is identified with the light pen. To
delete characters, enter either erase or position-cursor
mode and identify the character with the 1light pen. This
will cause a cursor to appear beneath the character. The
character may then be erased by pressing the space bar on
the console. ‘

Displays may be retrieved or saved by pressing keys 30
and 31.

MTS-280/25235-0

12-1-67

Name:
Contents:
Purpose:

Usage:

Logical I/O0 unit

Example:

Description:

LIBRARY FILE DESCRIPTION

*EBCDBCD

The object module ot the EBCDIC-to-BCD translation program.
Translate lines from EBCDIC to 7090 Augmented BCD.

This program is normally invoked with a $RUN command
specifying *EBCDBCD as the object FDname. It can also be

loaded and called as a subroutine (without parameters).

s referenced:

SCARDS For EBCDIC lines to be tramslated.

SPUNCH Augmented BCD lines resulting fromn
translation.

SPRINT Listing of the lines resulting from

translation.

$RUN *EBCDBCD; SCARDS=OLDFILE SPUNCH=NEWFILE
(SPRINT defaults to *SINK¥)

Lines of any length are read sequentially (not indexed) from
SCARDS, translated, and written to SPUNCH. Each output line
is also prefixed by a blank character (for carriage control)
and written to SPRINT. Output lines are written sequential-
ly unless the "indexed" modifier is used. When an end-of-
file is encountered from SCARDS, the program returns.

Library File Description (*EBCD3CD) 251

MTS-280,/25235-0

12-1-67

line:

The following translation is applied to each character of each input
r T 1
| EBCDIC input i BCD output i
| Character Card code | i
F : —
| Digits | Unchanged i
| Upper-case letters | Unchanged |
| Lower-case letters | Upper-case equivalents |
| Control characters | Blank i
Il « ¢ 3% -/ 5 | ~_m | Unchanged }
| + 12-6-8 i 12 |
1 & 12 | 0-7-8 |
I (12-5-8 i 0-4-8 {
i) 11-5-8 | 12-4-8 {
| 5-8 | 4-8 |
| = 6-8 | 3-8 {
| < 12-4-8 | 12-6-8 |
I > 0-6-8 1 6-8 |
| % 0-4-8 { 2-8 i
| $ 0-7-8 i 12-0 |
| : 2-8 i 5-8 |
| # 3-8 I 0-2-8 |
| @ 4-8 | 11-0 |
| All others | Blank |
l | l
[(] J

MTS-280/26435-0

12-1-67

Name:
Contents:

Purpose :

Usage:

LIBRARY FILE DESCRIPTION

*FILEDUMP
The object module of the file dumping program.

To aump the contents of a file or device in hexadecimal.

The file-dumping program is invoked by the appropriate RUN
command specifying *FILEDUMP as the file where the object
cards for the file dumper are found. '

Logical I/0 Units Referenced:

Parameters:

Examples:

Sample Run:

$RUN *FILEDUMP;

SCARDS - the tile or device to be dumped
SPRINT - the file or device where the output is to be
placed.

The output on SPRINT is usually 64 columns per 1line; the
user may vary the lengtih of the output line by the use of
the LENGTH parameter. The LENGTH may vary between 1 and 132
inclusive.

$RUN *FILEDUMP; SCAKDS=MYOBJ
(SPRINT defaults to *SINK¥)

$RUN *FILEDUMP; SCARDS=-0BJ SPRINT=-PRINT
PAR=LENGTH=128

SCARDS=-FILE(1,2)

#EXECUTION BEGINS

**¥LINE-FILE DUMPER

LINE XO.
02C5E2C4 404040

1 s 80 CHARACTERS
404040003040400001C4E4D4DT7C640404000000000400007DC

E2CS5D9C3D6DU40400200000040404040E2C3C1DICHE240400200000040404040
4040404040404040C4DUDTCHFOFOFOFT

LINE NO.

2 3 80 CHARACTERS

02C5E2C4404040404040003040400004C/C5E3C6CH4040400200000040404040
DIC5C1C4404040400200000040404040E2D7DICIDSE340400200000040404040

40404040404040

40C4DUDTCH6FOFOFOF2

#EXBECUTICN TERMINATED

Library File Description (*FILEDUMP) 253

MTS-280/26437-0

12-1-67

Contents:

Purpose:

Usage:

Logical I/0 unit

Description:

LIBRARY FILE DESCRIPTION

*FILESCAN
The object module of the file scan program.

Locates a line in a file according to a given format and
prints the line and line number.

The filescan program is invoked by an appropriate RUN
command specifying *FILESCAN as the file where the object
cards are found.

s referenced:

SCARDS Format and file name input.

SPRINT Requests and line and line number of selected
line.

SERCOM Error comments.

*FILESCAN will first print "ENTER FORMAT" on SPRINT. There
are three types of format terms: skip, transfer, and
character string. These are entered via SCARDS. The skip
term consists of the letter S followed by an optional minus
sign followed by a string of decimal digits. The value of
the digit string is the number of columns to be skipped.
The transfer term consists of the letter T followed by a
string of decimal digits. The value of the digit string is
the column in the lines of the file to be scanned where the
next skip or character string term will start. The
character string term is delimited by primes. The charac-
ters in the string are compared with the appropriate columas
of the 1lines of the file to be scanned. A maximum of 20
character strings may be used in one format. If a prime is
desired in the character string, it may be represented by
two consecutive prines. (Note: Umless it is the 1last
character in a character string, each prime reduces the
maximum number of character strings by one.) Commas may be
used to separate tormat terms, but they are not necessary.
The format is terminated by the first blank not in a
character string or by the end of the line. If the first
character entered is a >, it is assumed that the characters
immediately following name a file and that the previous
format is to be used. If "CONTINUE" (or "C") is entered,
the scan is continued with the next line in the same file
using the same format.

NTS-280/26437-0

12-1-67

Example:

After the format is entered, *FILESCAN will print "ENTER
FILE NAME" on SPRINT. The file name is entered via SCARDS
and may be followed by a line number range and/or modifiers
as for GETFD. The first blank or end of line terminates the
file name.

An end-of-file when a file name is requested will cause a
format request. An end of file when a format is requested
will cause termination.

If it was desired to find lines containing "LA" in columns
10 and 11 and "R4," in columns 16-18 of the files FILE and
FILE1, the input (underlined) and requests might be:

#$SRUN_*FILESCAN
#EXECUTION BEGINS
ENTER FORMAT
T10'LA',S4"RU,"
ENTER FILE NAME
FILE
114 LA R4 ,INPUT
ENTER FORMAT
CONTINUE

— e s S i i

123 LA RU4 ,1(,RY)

12 LA R4 ,=A (WHERE)
ENTER FORMAT
ENDFILE
#EXECUTION TERMINATED

Library File Description (*FILESCAN) 255

MTS-280/26505-0

12-1-67

Name:

Note:

LIBRARY FILE DESCRIPTION.

*FORTRAN

*NEWFORT rather than *FORTRAN currently contains the FORTRAN
G compiler. See the description of *NEWFORT, filed alpha-
betically in this section.

MTS-280/26507-0

12-1-67

Name:

Contents:

Purpose:

Jsage:

LIBRARY FILE DESCRIPTION

*FORTEDIT

The object module of a program to convert FORTRAN statements
in free-format form to fixed-format form.

Allow user to write FORTRAN statements in free-format form.
The output consists of "fixed-format cards" so that they can
be processed by the current FORTRAN compiler.

The program is invoked by the appropriate RUN command
specifying *FORTEDIT as the file where the object cards are
found.

Logical 1I/C units referenced:

SCARDS free-format input lines to be converted

S

Exanmnples:

Description:

PUNCH fixed-format output 1lines for processing by FOR-
TRAN IV compiler.

$RUN *FORTEDIT;SCARDS=FTNPRGM SPUNCH=-PROG

Initial lines

If a line is the initial line of a statement, it may have
a statement number. The first character of a statement
number should occur within the first five columas and will
terminate at column 6 or at nonnumeric characters (blanks
not included), which ever occurs first. The text of a
statement begins just at the first nonnumeric character

Ccontinuation lines

A line is a continuation line, when the last character
(blanks included) of the preceding line was a t-v, The text
starts with the first character.

2 line is a comment when the line is not a continuation
line and the first character of the 1line is an asterisk
("*"). ~ The program will automatically produce an output
line with a "C" in the first column. Comment lines may not
be continued.

Library File Description (*FORTEDIT) 257

258

MTS-280/27473-0

12-1-67

Name:

Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION

*GPAKDRAW

The object module of the GPAK console modelling test
progran.

To allow the user to create, modify, and manipulate 1line
drawings based on a ring type data structure, using the 2250
mod I display unit.

This file should be referenced by a $RUN command, with
*GPAKDRAW+*GPAKLIB+*GPAPHLIB as the file to be loaded.
Loading takes a minute or two, don't be alarmed at the
delay. Storage requirements: 40-50 pages.

Logical I/O0 units referenced: Nomne.

Examples:

Description:

$RUN *GPAKDRAW+*GPAKLIB+*GRAPHLIB *SINKx*

The user at the 2250 interacts with *GPAKDRAW using the
programmed function keyboard and 1lightpen. For detailed
operating instructions, see the GPAK manual.

A summary of function key meanings follows:

0 Terminate execution of *GPAKDRAW.

1 Delete the current picture.

2 Get menu of old pictures.

3 Create new picture.

4 Delete element.

5 Degroup element.

8 Enter new point.

9 Drawvw new line from last point entered.

17 Move element.

12 Enter text element.

14 Draw new line.

15 Enter circular arc.
22 Get more model storage.
23 Temporarily erase element.
24 Redisplay all temporarily erased elements.
25 Scale or translate current picture.
28 Enter grouping mnode.

29 Move group.
31 Haven't figured this one out yet. (REDSP2) .

MTS-280/27475-0

12-1-67

Name:
Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION
*GPAKGRID
The object modules of the GPAK grid and plot test program.

To demonstrate some of the grid display and curve plotting
facilities available in GPAK.

This file should be referenced by a‘$RUN command, with
*GPAKGRID+*GPAKLIB+*GRAPHLIB as the file to be 1loaded.
Storage requirements: 20-25 pages.

Logical I/0 units referenced:

Example:

Description:

Note:

6 - printout of diagnostic information. It is suggested
that 6 be set to *DUMMY*

$RUN *GPAKGRID+*GPAKLIB+*GRAPHLIB *SINK*;6=%DUMMY*

The user at the 2250 consoie interacts with *GPAKGRID using
the programmed function keyboard and lightpen. See the GPAK
manual P.361 for detailed instructions. A summary of
function key actions follows:

20 x 20 grid

Full screen.

3/4 screen, centered.

3/4 screen, upper right position.

10 Set curve plot mode to points only.

11 Set curve plot mode to vectors only.

12 Set curve plot mode to points plus vectors.

13 Scissor to grid.

14 Use full screen

27 Fit new curve onto grid.

28 Generate new curve. Alternates between damped sinu-
soid and n-leafed rose. For rose, key in n, then hit
fend'.

29 Plot new curve (after 7-14 or 27).

30 Display new grid (after 0-9).

31 Terminate run.

0 Set grid type to linear-linear
1 Set grid type to log x, lin y.
2 Set grid type to 1lin x, log y.
3 Set grid type to log-log.

4 1 x 1 grid

5 5 x 10 grid

6

7

8

9

A 3/4 screen grid can be moved (vwithin screen limits) by
detecting it, then detecting new light pen position on the
character raster which comes up. To detect, position light
pen, push and hold down footswitch, and if nothing happens,
hit any function key.

Library File Description (*GPAKGRID) 259

250

MTS-280/27477-0

12-1-67

Name:

Contents:

Purpose:

Usage:

Reference:

Note:

LIBRARY FILE DESCRIPTION

*GPAKLIB

The object modules of the subroutines of GPAK, version II
(plus necessary LIB and RIP cards to allow one pass,
selective loading).

Provides a variety of programming support for users of the
2250 mod I display unit, including attention handling,
display management, and modelling. The modelling routines
are independent, and may be used to create and manipulate a
CORAL-like ring structure even for non-2250 programs.

These subroutines are used in conjunction with a user
written graphics application program, which may be written
in G-level FORTRAN IV, or in assembly language. *GPAKDRAW
and *GPAKGRID contain the object modules of two such graphic
application prograams.

5/360 General Program Libarary, manual no. 360D-3.4.005;
"GPAK: an online system 360 graphic data processing package
with real time 2250 input and display." This manual
contains detailed descriptions of all the subroutines,
sample programs, operating instructions, and programming
assistance.

*GPAKLIB contains all the subroutines supplied in the GPAK
version II release (except for GBDUMP, DUFFER, and PATCH -
diagnostic subroutines not described in the GPAK manual).
Some routines have been modified slightly from the release
tape versions to make them compatible with MTS, but there
should be no significant difference in behavior at the user
level. Some of the GPAK subroutines call on a version of
the OS express graphics routines and IBM written "“PORS"™,
which are available to MTS users in *GRAPHLIB. ‘

MTS-280/27505-0

12-1-67

Name:

Contents:

purpose:

Usage:

Description:

Note:

Reference:

LIBRARY FILE DESCRIPTION

*GRAPHLIB

The object modules of part of the O0S express graphic support
package for the IBM 2250 mod I, modified (where necessary)
to work under MTS. File includes necessary LIB and RIP
cards to allow selective, one-pass loading.

Contains open, I/0, and attention hamndling routines for the
2250, and order generation routines for certain kinds of
plots, grids, labels, and arcs.

These routines are used by GPAK (see *GPAKLIB), and may
(with caution - see note below) be called by any progran
needing the facilities of 0S express graphics support.

The following is a 1list of the subroutines contained in
*GRAPHLIB, with a brief description of each:

GSTOR store graphic orders

GCPRNT display character information
GARC generate arc with points
GSPLOT plot with points

GCGRID generate Cartesian grid

GVARC generate arc with vectors
GSVPLT plot with vectors

GLABEL label a graph

GPGRID polar grid with points
GPVGRID polar grid with vectors
GOFFSG check for off screem condition
ANLZ analyze attention information
GIOCR graphic I/0 control routine
GOPEN graphic open routine

The MTS compatible version of OS express graphic support for
the 2250 contained in *GRAPHLIB and *GRAPHMAC was designed
to be minimally sufficient to assemble and run GPAK. Its
general utility is untested, but it is thought that most
usages of express graphics will transfer ok. The two
important behavioral changes of the MTS version are 1) only
one DCB may be open at a time (e.g. one cannot run both the
2250 and a printer as 0S data sets simultaneously) and 2)
attentions from the 2250 are handled on an interrupt rather
than a polling basis (when ANLZ is called, it does not
return until an interrupt has occurred).

IBM SRL C27-6921 "IBM System/360 Operating System: express

Library File Description (*GRAPHLIB) 261

262

MTS5-280/27505-0

12-1-67

graphics programming services for the IBM 2250 Display Unit,

For detailed information on the 0S versions of the open,
attention handling, and I/0 routines, see IBM PLM Y27-7113
"IBM System/360 Operating System: Graphics Access Method".
This graphic access method has been revised and condensed
into the three routines ANLZ, GOPEN, and GIOCR. The other
subroutines in *GRAPHLIB are unchanged from the 0S versions.

MTS-280/27507-0

12-1-67

Name:

Contents:

Usage:

Example:

Description:

Note:

Reference:

LIBRARY FILE DESCRIPTION

*GRAPHMAC

A library of macros useful in programming for the IBHM 2250
mod I display.

This file is in the form of a standard MTS macro library.
Its name may be given as a macro library parameter to the
assenmbler.

$RUN *ASMBLR; SCARDS=PROGR 0=*SYSMAC 2=%GRAPHMAC PAR=CON

This file contains a variety of graphic order generating
macros, some graphic I/0 macros which are needed by OS
express graphics, and four special macros needed to assemble
GPAK subroutines.

An exact list of the macro names can be obtained by listing
the initial segment of this file (line numbers 1.0 thru
5.0).

This file contains special versions of OPEN and STIMER.
STIMER has been changed to a dummy, and OPEN is for graphic
DCBs only.

IBM SRL C27-6921 "IBM System/360 Operating System : express

graphics programming services for the IBM 2250 display unit,
model I."

Library File Description (*GRAPHMAC) 263

MTS-280/30675-0

12-1-67
LIBRARY FILE DESCRIPTION
Name: *HEXLIST
Contents: The object module ot the hexadecimal card lister
Purpose: To list cards (usually object cards) in hexadecimal
Usage: This module is invoked by the appropriate run command.

Logical I/0O units referenced:

SCARDS Where the file names are to come
from
SPRINT Where the listing is to be done
Examples: $RUN *HEXLIST
(SCARDS defaults to *SOURCE*; SPRINT to *SINK*)
Description: The output format is:
Line 1: The card number (advanced by 1 for each card

Line

Line

Sample output:

read), the MTS file sequence number (line number),
the card I.D. (columns 73-80 of the card), column
1 of the card (in hexadecimal), columns 2-4 in
EBCDIC

Columns 5-38 in hexadecimal
Columns 39-72 in hexadecimal

*HEXLIST is interactive in the sanme way as
*¥0BJSCAN is.

$RUN *HEXLIST; SCARDS=*SOURCE* SPRINT=*SINK¥

#EXECUTION BEGINS
READY!
HXL (83.24,83.24)

CARD NO. 1,FILE SEQ. NO.=83.24 CARD ID=HXL 0003, 02 , TXT
QOOOOOEO“04000384040000147FOAODu418411F244420A2FED202A39BA309F321A1D4
A308DCO1A1DQA2BED201A397A1D4Q110A3A058F03u1005EFF3E7A1D4A30CF3E7A1E23

64

MTS-280/31235-0

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*IHC

Error descriptions for the error numbers produced by the
Fortran library subroutines. '

Line xxx of *IHC contains the description of error number
THCxxX. Hence if Fortran tells the user "IHC232I%", then
doing

$COPY *IHC(232,232)

will bring forth an explanation of that error comment on his
terminal.

Library File Description (*IHC) 265

MTS-280,/31235-0

12-1-67

Name:
Contents:

Purpose:

Usage:

LIBRARY FILE DESCRIPTION

*LINPG
Object module of a calling program and the subroutine LINPG

Provide a convenient way to solve linear programming prob-
lems.

The calling program is invoked by using a $RUN with *LINPG
as the object file.

Logical I/0 units referenced:

Examples:

Description:

SCARDS Where the data values are to be found
SPRINT Where the results are put

$SRUN *LINPG
$RUN *LINPG; SCARDS=DATA

Read the description of the subroutine LINPG. Values for M,
N, M2, N2 using the IOH360 standard format 4I%* are read in
followed by values for the A array on the next card or line
which are read in row by row using the 1IOH360 standard
format 42F*. An example problem and the associated data:

maximize X + 2Y¥ + 3X =X

1 2 3 4
subject to x + 2x + 3x = 15
1 2 3
2x + x + 5x = 20
1 2 3
X +2X 4+ %X +x =10
1 2 3 4
The data:
4 530

1. 2. 3. 0. 15. 2. 1. 5. 0. 20. 1. 2. 1. 1.
10.
-1. -2. -3. 1. 0.

The calling program interprets the switch returned by LINPG
and prints the appropriate comments and results. See the
description of the subroutine LINPG (in section MTS-253) for
further details.

MTS-280/43625-0

12-1-67

Name:
Contents:

Jsage:

LIBRARY FILE DESCRIPTION

*LISTVTOC
Object module to print out a list of files.

This file should be referenced by a $RUN with *LISTVTOC
the object file, and (optionally) the SCARDS source.

as

Logical I/0 units referenced:

Examples:

Description:

SCARDS Gives serial numbers of
(optional) disk packs whose files are to be
listed
SPRINT Catalog listing is given on the
specified device
$RUN *LISTVTOC; SCARDS=RDRU SPRINT=PTR1
*LISTVTOC 1lists on SPRINT the names of all the files

allocated on the disk pack whose six-character volume serial
number (name) is given in columns 1-6 of each input card (or
line). An end-of-file causes a terminal exit, and request-
ing a non-existent or unmounted disk pack will generate an
error message.

For input from SCARDS, if columns 7-10 are non-blank (if
any one of them is non-blank) they are assumed to constitute

a one to four character prefix and initiate a "selective
catalog" print - i.e., only those files whose nanes begin
with that prefix are printed.

If column 11 contains an X then the output is inm

hexadecimal; if it contains T then the files of the current

user are listed by name omnly.

Library File Description (*LISTVTOC) 267

MTS-280/44645-0

12-1-67

Name:
Contents:

Purpose:

Usage:

Prototype:

Examples:

Parameters:

LIBRARY FILE DESCRIPTION

*MOUNT
The object module of the volume mounting program.

Allow users to mount private volumes and attach certain
attributes to those volumes.

The program is invoked by a run command specifying *MOUNT as
the file where the object cards are to be found.

SRUN *MOUNT; PAR=vol.i.d. [ON] devicetype,
[PNAME= J*pseudodevicename¥*, [MODE=mode,]
[SIZE=max.rec.size,]
'volumenanre' [,comments to operator]

$RUN *MOUNT; PAR=MOOO ON 9TP,PNAME=*TEST*, SIZE=512,
'TAPE TEST 1', RING IN

$RUN *MOUNT; PAR=MOO1 7TP *TEST2*, MODE=8CV,
'*TEST 2', RING OUT

vol.i.d. is the U4_ character rack number at the computing
center in which the volume is stored.

devicetype is the type of device on which the volume is to be
mounted. Currently 7TP and 9TP are supported.

pseudodevicename is the pseudo-device name by which the
volume will be referred to in data accesses.

mode is the mode in which the volume was or is to be written.

size 1is the length in bytes of the longest possible record on
that volunme.

volumename is the identifying name associated with the volume.
This name should be written upon a paper label and attached to
the volume when it is first submitted to the computing center.

comments are specifications as to ring in or ring out, as well
as any special directions to the operator.

Logical I/O Units Referenced: none.

Description:

A comment will be printed on the operator's console requesting
that he mount the specified volume on the specified device

MTS-280/44645-0

12-1-67

type. If he is able to comply, the comment "OK" will be
printed on the master sink device. If he is not able to mount
the volume, a message from the operator explaining the problen
will be printed on the master sink device. Volumes mounted in
this way will automatically be removed when a second volume is
mounted with the same pseudo-device name and when the user
signs off.

The following rules describe the interaction between *MOUNT

and *DISMOUNT.

1. If *MOUNT is run (either explicitly or by calling MOUNT
during execution) with a pseudo-device name specified
which is already active, then the device type must be
the same as the previous type and all outstanding
references to the pseudo-device name will be changed to
refer to the new volume.

2. If *MOUNT is run with a pseudo-device name which has
been previously used but for which *DISMOUNT has been
run, then the new device type may be anything legal and
any outstanding references to the old pseudo-device
name are unchanged. In general a use of *DISMOUNT
signifies the end of a particular use of a pseudo-
device name and a use of *MOUNT for an active pseudo-
device name signifies a new volume for a previous use.

The following exampie may clarify this. Suppose the
following commands were issued during an MTS session:
$RUN *MOUNI; PAR=G000 ON 7TP PNAME=*TP* MY TAPE

$RUN -0BJ; SCARDS=%TP*

If during execution of the program in -OBJ, *MOUNT is called
(presumably by wusing the macro or subroutine MOUNT) and the
pseudo-device name *TP*¥ is specified then the device type nmust
be 7TP and a new reel will be mounted on the same tape drive,
which SCARDS will stili refer to. However if during execution
of the program in -OBJ, *DISMOUNT is called for *TP* and then
*MOUNT is called for it, the device type may be any legal
type, SCARDS will stiil refer to the old tape, and any new use
of the name *TP* (for example as a parameter to GETFD) will
refer to the new volume. In this case the original tape reel
will not actually be removed until execution is terminated.

Library File Description (*4MOUNT) 269

270

MTS-230/44645-0

12-1-67

Name:

Contents:

Purpose:

Usage:

Logical I/0

LIBRARY FILE DESCRIPTION

*NEWFORT

The object module for IEYFORT, the FORTRAN G control module,
followed by the most recent IBM releases of the other six
object modules that constitute 0S FORTRAN G.

Batch compilation of IBM/360 FORTRAN IV (refer to FORTRAN IV
LANGUAGE, SRL C28-6515-4) source modules. The compiler «can
produce a source listing, storage allocation map, object
listing, load module and/or object deck according to the
options specified. The default options are: SOURCE, MAP,
NOLIST, LOAD, NODECK, EBCDIC, NAME=MAIN, LINECNT=57.

The compiler is invoked by a RUN command with an objectFDname
of *NEWFORT.

units referenced:

SCARDS source modules
SPRINT source, map and object listings
SPUNCH card deck version of object module. The deck

will have ID in columns 73 to 80 comsisting
of the first four characters of the progranm
name followed by four digits--0001,0002,...

0 object module suitable for use as the
objectFDname in a RUN command.

Scratch Files Referenced:

Examples:

-T# temporary file used by the compiler if the
LOAD and/or DECK options are specified, con-
taining information of no real value to
anybody but FORTRAN.

SRUN *NEWFORT; SCARDS=XSOURCE 0=-LOADMOD PAR=NOSOURCE, NOMAP
$RUN *NEWFORT; O=-LOADMOD

(SCARDS and SPRINT default to *SOURCE* and *SINK*)

$RUN *NEWFORT; PAR=NOSOURCE, NOMAP,NOLOAD

Description:

If the compiler runs to completion without finding any phase
1 errors (IEY001 to IEY018I,IEY032I) or if only phase 2

MTS-280/44645-0

12-1-67

errors (IEY019I to IEY026I) are detected the compiler will
terminate with the singular comment (produced by the system)
EXECUTION TERMINATED. If a phase 1 error(s) was detected
this comment will be preceded by the line: ‘

*¥%%%% FORTRAN RETURN CODE 4

where 4 will be 0,4 or 8. Associated with each phase 1
error is a completion code of 0,4 or 8; it is the completion
code corresponding to the most severe error that is given.
There are five error conditions which may occur during
compilation from which the compiler cannot recover. These
will occasion the comment:

*¥¥%x%¥¥ FORTRAN RETURN CODE 4

where d4=2,3,5,6 or 7. Subsequent to the printing of this
comment the compiler will immediately call ERROR.

News of compiler changes, both intermal and extermal, and
compiler errors may be found in the system file
*FORTRANNEWS. A copy may be most conveniently obtained by
issuing a

$COPY *FORTRANNEWS TO *SINK*
command.

If parameters are to be given, the PAR= must be the last in the sequence of
specifications as shown in the examples. A description of the optioans
follow.

The FORTRAN IV 1language is described in "IBM SYSTEM/360 FORTRAN IV
LANGUAGE", form C28-6515. The entire library as described in “IBM
SYSTFM /360 OPERATING SYSTEM: FORTRAN IV, Library Subprograms", form
C28-6596, is available and subroutines will be automatically 1loaded with
the object module if regquired.

Note: The source file must be terminated either by an end-of-file or by a
SENDFILE command.

COMPILER GPTIONS

Ortions may be passed to the compiler tarough the PAR parameter in the
RUN command, e.g., (default options are underlined).

SOURCE MAP LIST DECK LOAD BCD

SRUN *NEWFORT; PAR=NOSOURCE,NOMAP,NOLIST,NODECK,NOLOAD,EBCDIC,
NAME=MAIN, LINECNT=57

These options may be specified 1in any order. If both the positive and

Library File Description (*MOUNT) 271

272

MTS-280/44645-0

12-1-67

negative option are given, e.g., LIST,NOLIST, the NO- overrides the
presence of the positive version. The last occurrence of the NAME and
LINECNT keywords will be the effective ones.

SOURCE _or NOSOURCE: The SOURCE option indicates that the source
statements are to be written to the logical device SPRINT.

MAP _or _NOMAP: The MAP option specifies that a table of names, which
appear in the object module, is to be written to +the 1logical device
SPRINT. The type and location of each name is given. The seven types
distinguished are: COMMON variables, EQUIVALENCE variables, scalar
variables, array variables, subprogram names, NAMELIST variables, and

FORMAT statements.

LIST _or_ NOLIST: The LIST option indicates that the object module
listing is to be written to the 1logical device SPRINT. (The
statements in the object module 1listing are in a pseudo assembly
language format.)

DECK_or_ NODECK: The DECK option indicates that the object module is to
be written to the logical device SPUNCH in card deck forn. The deck
will have ID in <columms 73 to 80 consisting of the first four
characters of the progran namne followed by four digits --
0001,0002,...

LOAD or NOLOAD: The LOAD option inaicates the the object module is to
be written to the logical device 0. This is a more compact version of
the object module than that available on SPUNCH. The object module is
written as a sequence of variable length records containing from 16 to
72 characters. No extraneous information is written.

BCD or EBCDIC: The BCD option indicates that the source statements are
written in Binary Coded Decimal; EBCDIC indicates Extended Binary
Coded Decimal Interchange Code, i.e., 026 versus 029 generation.
Intermixing of BCD and EBCDIC in the source module is not allowed.
The occurrence of the EBCDIC option overrides the presence of the BCD
option. CAUTION: If the EBCDIC option is selected, statement numbers
passed as arguments must be coded as §&n. If the BCD option is
selected, statement numbers passed as arguments must be coded as $n
and the $ must not be used as an alphabetic character in the source
module. (n represents the statement number)

NAME=XXXXXXXX: The NAME option specifies the name (xXxXxXXXxX) assigned
to a module (main program only) by the programmer. If the name is not
specified or the main program is not the first module in a compila-
tion, the <compiler assumes the name MAIN for the main program. The
name of a subprogram is always specified in the SUBROUTINE or FUNCTIGON
statement. The name appears in the source, map, and object module
listings.

LINECNT=xx: The LINECNT option specifies the number of lines that will
be written between page headings on the logical device SPRINT. If
this parameter is not specified, the system default will be used.

MTS-280/44645-0

12-1-67

The SOURCE, MAP and LIST options all cause output to the logical device
SPRINT. This output is always written in the order .just given, i.e., the
source statements, the map, and finally the object module 1listing. The
object module produced on SPUNCH (the DECK option) requires about 25% more
file space than the object module produced on 0 (the LOAD option).

Note: The FORTRAN user's quide and a list of FORTRAN error messages will be
found in section MTS-520.

Library File Description (*MOUNT) 273

NTS-280/46415-0

12-1-67

Name:
Contents:

Purpose:

Usage:

Description:

Bxamples:

274

LIBRARY FILE DESCRIPTION

*0OBJSCAN
The object module of the object-scan program

To give an edited accounting of the contents of a object
file.

The object-scan program is invoked by the appropriate run
command specifying *0OBJSCAN as the file where the object
cards (for the OBJSCAN program) are found.

The object-scan program reads an object file and gives an
edited account of what is in that file. The program only
looks at the second through fourth bytes of each image it
obtains from the object file in order to make its decision;
it will print on Y“SPRINT" the "BREAKSY" when columns 2-4
change; for example it will tell where the break is betvween
"ESD" and "TXT" object cards, between "RLD" and the "END"
card, etc. The program will ask the name and beginning and
ending 1line numbers of the file to be scanned; this request
is made through "“SERCOM"; the reply is made through
"SCARDS". 1In addition to printing out on SPRINT where the
breaks occur, the beginning and ending line number of a
block of cards having the same characters in columns 2-4 are
printed along with the id field of such line numbers (i.e.
columns 73-80). At the beginning of the program and after
each edit 1is finished, '"READY" will be printed, thus
inviting the user to enter another file or device.

$RUN *OBJSCAN
(SCARDS,SPRINT,SERCOM default to *SOURCE*, *SINK*,
*¥*MSINK*, resp.)

$RUN *0OBJSCAN SPRINT=PTRFIL

MTS-280/46415-0

12-1-67

Example of usage.

#$RUN *0OBJSCAN

#EXECUTION BEGINS

READY!
*IEUASH
n ESD"
"TXT ”"
"RLD"

” ENDII
“LCS“
"LDT"
READY!

IN
IN
IN
IN
IN
IN

LINE
LINE
LINE
LINE
LINE
LINE

NO.
NO.
NO.
NO.
NO.
NO.

The information input by the user is underlined.

12
13
14
15

ASM 0001
ASM 0002 THRU LINE NO. 11 ASM 0011
ASM 0012
ASM 0013

Library File Description (*OBJSCAN)

275

276

MTS-280/46625-0

12-1-67

Name:

Purpose:

Contents:

Tsage:

LIBRARY FILE DESCRIPTION

*0OSMAC

To enable 0S users to assemble their programs in MTS. These
programs must not be rum under MTS.

The macro library from iBM's Operating System, Reference is
"IBM System/360 Operating System: Supervisor and Data Man-
agement Macro-Instructions", form C28-6647.

This file should be specified for logical I/0 unit 0 when
running the assembler.

MTS-280/47435-0

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*PALBSS

Object module to coanvert PDP-8 binary paper tapes to PDP-8
load card format.

#*PAL8SS is used to convert PDP-8 paper tape programs into a
form suitable for use in the PDP-8 simulator or for use in
PDP-8 systems with card readers.

Logical I/0 units referenced:

Examples:

Parameters:

Note:

SCARDS Source of paper tape images
SPUNCH Sink for binary load cards

$RUN *PAL8SS; SCARDS=TAPESOURCE SPUNCH=CARDSINK PAR=10
$RUN *PAL8SS; SCARDS=*PAPERTAPERDR*@BIN

The parameter represents the starting address in octal of
the program. After all of the tape has been converted to
cards a transfer card will be produced directing the card
loader to transfer to the program at the assigned 1location.
If no parameter is present 0 is assumed. For a complete
description of the binary card formats see the 8ASS writeup
(MTS-590) . A description of the paper tape formats may be
found in the appropriate DEC literature.

Both the input and output FDnames refer to entities which
must have binary attribute associated wita them. Thus if
TAPESOURCE is an intermediate file, $COPY *PAPERTAPERDR*@BIN
TO TAPESOURCE woula 1load it properly. Similarly $COPY
CARDSINK TO *PUNCH*@BIN would punch the output. *PAL8SS
both reads and puncnes &BIN, tnus there is no need to
explicitly attach the binary modifier to SCARDS and SPUNCH.

Library ¥ile Description (*PAL8SS) 271

278

MTS-280/47435-0

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*PIL

Object module of the PIL (Pitt Interpretive Language)
interpreter.

This file should be referenced by a $RUN command. This is
an interactive program designea to be used from +terminals;
use in batch is possible but of marginal utility.

Logical I/0 units referenced:

Example:

Description:

SCARDS - input to PIL
SPRINT - output from PIL
SRUN *PIL

(SCARDS and SPRINT default to *SOURCE* and *SINKx)

See the PIL writeup in section MTS-550 of this manual.

MTS-280/47463-0

12-1-67

Name:
Contents:

Usage:

LIBRARY FILE DESCRIPTION

*¥PLOT
Object module to produce plots of points.

This file should be referenced by a $RUN with *PLOT as the
object file.

Logical I/0 units referenced:

Examples:

Description:

SCARDS Where the points and the parameter are to be
found.
SPRINT Where the plot is put.

$RUN *PLOT; SCARDS=*SOURCE* PAR=NSBH=9,-
LABEL='EXPERIMENT 1!

FRUN *PLOT;SCARDS=DATAFILE SPRINT=PTRFILE -
PAR=NSBH=9,NVL=11,L06=1,LABEL='COST OF LIVING®

The user is asked to enter the number of points he wishes to
plot followed by the points themselves. Each point is given
by its abscissa and ordinate. The points (1,2.5), (2.1,4.6)
would be entered as 1 2.5 2.1 4.6. After the plot has
been produced, the user is asked whether he wishes to plot
again. By specifying new parameters beginning in column 1,
a new plot of the same points will be produced. If NEW is
included in the specifications, the user will be asked to
supply a new set of points which will then be plotted.
Execution will be terminated by putting an $ in column 1.

The parameters are:
NHL=nn The number of horizontal lines, nn22

NSBH=nn The number of spaces between horizontal
lines, nn21.

NVL=nn The number of vertical lines, nn22

NSBV=nn The number of spaces between vertical
lines, nnx1.

LABEL='label! A vertical label centered along the left
side of the graph.

Library File Description (*PLOT) 279

230

MTS-280/47463-0

12-1-67

NEW

LOG=nn

NOR

NOY

New points are to be used in the next
plot, or if in function mode, a new file
name will be requested.

nn=0 Plot is linear on both axes

nn=1 The Y axis is scaled logarithmi-
cally

nn=2 The X axis is scaled logarithmi-
cally

nn=3 The X and Y axes are scaled logar-
ithmically

Instead of supplying points, the user is
asked to specify the name of a file
containing a FORTRAN compatible func-
tion. This function will be called to
produce points in the interval [XL,XR].
Values for XL and XR should be specified
at the same time that F is given. The
object records in the file must end with
an LDT record, with the function entry
point specified. (See the Dynamic Load-~
er writeup)

The left boundary value of the plot if F
is used.

The right boundary value of the plot if
F is used.

The function feature is turned off.
The plotting char is set to ¢

If F is set, the user sets up values for
YH and YL

The highest value of the function that
is plotted.

The lowest value of the function that is
plotted.

The X and Y coordinates are inter-
changed.

The R feature is turned off.

The entire function is plotted.

MTS-280/47463-0

12-1-67

OMIT=nn This

will

cause the deletion of any of

the following parts of the graph depend-
ing on the value of nn.

1

Delete X grid values

2 Delete Y grid values

4 Delete the last graph line

Several parts may be deleted by

setting

nn equal to the sum of the numbers
corresponding to the parts.
ple, nn=7 would cause all three parts to
be omitted. If one or more functions

are to be restored, nn should be set
the negative sum of the numbers.

exam-

to
For

example, nn=-3 would restore the X and Y
grid values.

The default cases for the parameters are:

NHL=6,NSBH=1,NVL=6,NSBV=9,LABEL="

Library File Description (*PLOT)

',L0G=0,NOF,CHAR=%,NOY

281

282

MTS-280/47463-0

12-1-67

Example of usage of *PLOT:

In the following example, characters that the user typed in
underlined to make it easier to follow.
#$RUN_*PLOT
#EXECUTION BEGINS
HOW MANY POINTS ARE TO BE PLOTTED?
3
ENTER ABSCISSA AND ORDINATE OF EACH POINT
1, 1. 2. 2. 3. 3.
3.000 +———===-- Ftom $mm——————— Fmm—————— pomm——————— *
1 I I I I I
2.600 +-—=——=——-- o ——— $—mmmm————— o mm————— o —————— +
I I I I I I
2.200 +-——-———=-- o —————— o ——— o ———— o —m———— +
I I I * I I I
1.800 4-—--——=——- tmmmmmm——— $mm— $rm——m———— - +
I I I I I I
1.400 +-—-----—-= pmmm o o e tm——————me +
I I I I I I
1.000 *%——-—————= 4 o ————— o ———— tm———————— +
1.000 1.400 1.800 2.200 2.600 3.000

IF YOU WISH TO PLOT AGAIN WITH DIFFERENT PARAMETERS,

PUT THEM IN COLUMN 1
OTHERWISE PUT AN S IN COLUMN 1
NHL=2,NV1=2,LABEL="'L"', NSBV=4

3.000 +---—%
L I * I
1.000 *----+
1.0003.000

PUT PARS OR S IN COLUMN 1
S
#EXECUTION TERMINATED

have

been

MTS-280/50625-0

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*RCSSPRINT

Object module to print the upper/lower case print tapes
(ROSS print tapes) produced by TEXT90.

This file should be referenced by a $RUN with *ROSSPRINT as
the object file, SPRINT as output, and SCARDS as the iaput
tape.

Logical I/0 units referenced:

Exanples:

5
it
o)
e

Description:

SCARDS The input tape (ROSS print tape)

SPRINT The writeup which is output is
produced on the specified device.

3RUN *ROSSPRINT; SCARDS=*TAPE* SPRINT=PTR1 PAR=UC,DBL
$RUN *ROSSPRINT; SCARDS=T0C1 SPRINT=PTR3 PAR=NOCTL
$RUN *ROSSPRINT; SPRINT=OFILE SCARDS=*IN*

Output put 1in a file should be later printed with applica-
tion of the machine carriage control modifier. For example:

$COPY OFILE TO PTRI1aMCC

This program prints the special 1401 ROSS output tape (also
called the upper/lower case print tape) produced by TEXT90
as modified for U. of M. use. Specifically, the tape is
written in high (556 BPI) rather than low density, and the
self-loading 1401 program and trailing tape mark are omit-
ted. [i.e., the data is the first file on the tape, not the
second.] The output can be printed single or double spaced,
with or without the TEXT90 control fields (for editing
purposes), can include all pages in the document or only
those pages which were changed during the TEXT90 run, and
can print with fulli character set or can map lower case
letters into upper case letters so a test print can be made
on a printer without installing the TN print train. These
options are controlieda by the use of parameters in the
PAR= field of the $RUN command.

For normal wusage (unless UC has been specified) the TN

print train should be installed and the UCS buffer 1loaded
appropriately (via the TN program in UMMPS).

Liprary File Description (*ROSSPRINT) 283

284

MTS-280/50625-0

12-1-67

The character set available on the TN print train differs
slightly from that used on the special 1401 chain originally
used to print TEXTY90 ROSS tapes. Specifically, left arrow,
up arrow, carat, and subscript 1, 2, 3, and n, are not
available. Cent sign, square block, logical not, pillow,
and superscript plus, minus, 1left parenthesis and right
parenthesis are available on the TN train in their place.
Accordingly, the following substitutions for graphics should
be made to the special-character notation in using TEXT90:

1401 ROSS Chain IN train TEXT90 notation

t (up arrow) 4 /C

+«— (left arrow) s (square block) /L

A (carat) - (logical not) //C

subscript n superscript right //N
parenthesis

subscript 1 superscript plus //1

subscript 2 o (pillow) //2

subscript 3 superscript left /73
parenthesis

The following sub-fields are valid in the PAR= field of
the $RUN command. Illegal sub-fields are ignored. Default
assumptions for each pair are underlined. All are optional.
Order of occurrence does not matter.

SNGL Output will be single spaced.

DBL Output will be doubled spaced

CTL TEXT90 control fields and exception 1listings
are printed.

NOCTL TEXT90 control fields and exception listings

are not printed (used for making final copy
for reproduction or distribution)

ALL All pages in the document are printed.
CHNGD Only those pages altered in the TEXT90 run
are printed.

ucC Maps all lower case letters to upper case
letters so a non-TN train may be used. (is
normally off)

MTS-280/62625-0

12-1-67
LIBRARY FILE DESCRIPTION
Name: _ *SDsS
Contents: The object module ot the Symbolic Debugging System program.
Purpose: To aid in the development and checkout of assembly language
progranms.
Usage: SDS is invoked with an appropriate RUN command.

Logical I/0O units referenced:

SCARDS The source from which SDS reads its commands.
SPRINT SDS messages and diagnostics.
Examples: $RUN *SDS

$RUN *SDS; SCARDS=COMS SPRINT=DIAGS

SDS_USER'S_GUIDE

SDS is a program checkout system which allows the assembly 1language
programmer to debug his programs conversationally (i.e., from a remote
terminal.) Using the SDS command language, the programmer initiates
execution of his program and interrupts it at specified break-points, where
instructions and data may be displayed and modified.

I. Program Preparation

SDS processes object programs produced by the MTS Assembler. The
specification, PAR=TEST must be set when a program to be tested by SDS is
assembled. This specification causes the assembler to include a symbol
table with the object dack it produces, thus allowing the user and SDS to
reference the program symbolically. The Loader will unconditionally ignore
the symbol table when it goes to loaa the progran.

II. Invoking_ SDS

SpS is invoked with a $RUN *SDS command. When execution begins, SDS
types:

+ENTER OBJECT FILE NAME.

Library File Description (*SDS) 285

MTS-280/62625-0

12-1-67

The user responds by entering the name of the file (or concatenated file
name) containing the object program to be tested. If multiple control
sections are loaded as one or more assemblies, the first control section
loaded will become the current CSECT (see $CSECT command.) When the user's
object program has been loaded, SDS types:

+READY

at which point the wuser may type in his first command. In general, SDS
signals its readiness to accept a command by typing the prefix character,
"+, in column one. This same prefix character precedes all SDS messages
and diagnostics.

ITT. Command Language Specifications

The user communicates with SDS through the SDS command 1language by
entering command lines from his terminal. A command is a request that SDS
do something with the program to be tested: for instance, $DISPLAY displays
instructions and data on the user's terminal; $MODIFY alters the contents
of memory locations or the arithmetic registers; $BREAK enters
"break-points™ into the user's program in order to return control to the
user at strategic points in his program. Every SDS command begins with a
dollar sign followed by three or more alphabetic characters. A list of one
or more parameters usually follow each command.

A parameter 1is a means of referencing specific 1locations (loaded
addresses) in the program being tested with SDS. The command language
includes two types of parameters: simple parameters and block parameters.

A simple parameter is any of the following:

(1) a label in the label field of an instruction, DC or DS statement;
a label created by the $LABEL command.

(2) a relative address in the form of an unsigned hexadecimal
constant.

(3) a label or a relative address plus or minus a hexadecimal constant
called the displacement. The displacement is the number of bytes
following or preceding the location specified by the label or
relative address.

(3) a label or a relative address immediately followed by a parenthe-
sized subscript, i, representing the ith assembled element beyond the
label or relative address. The subscript is assumed to be an unsigned
decimal integer.

(5) a subscripted 1label or relative address followed by a displace-
rent.

A block parameter consists of a simple parameter followed by three
periods (an ellipsis) followed by a second simple parameter. The loaded
address corresponding to the first parameter must be strictly less than the
loaded address corresponding to the second parameter.

MTS-280/62625-0

12-1-67

It is fregquently necessary to distinguish between a 1label and a
hexadecimal constant. For instance, the string of characters, "ABC", could
be the 1label, ABC or the constant, ABC (base 16). When the latter
interpretation is intended, the surfix, "a@X", must be appended to the
constant. In the previous example, we would have "ABC3X" for the hex
constant. This explicitness is needed specifically to distinguish between
labels and relative addresses appearing in SDS parameters; SDS assumes all
displacements are hexadecimal and all subscripts are decimal integers. If
the first character of a relative address is numeric (0,1,...,9) "@aX" need
not be specified.

The following assembly language program will illustrate the use of SDS
parameters:

000000 PROG START 0

USING *,15
000000 L 1,ALPHA
000004 AD A 1,C
000008 ST 1,ALPHA
00000cC L 10,VsSYs
000010 BR 10
000014 ALPHA DC F'10°
000018 VSYS DC V(SYSTEN)
00001C C DC F'20°
000020 GAMMA DS 20F
000070 DELTA bC 2p'1,22,3333,"

END

Following is a list of SDS parameters and their corresponding relative
addresses:

PARAMETER ADDRESS
AD 000004
VSYS 000018
o 00001C
70 000070
cax 00000C
AD+4 000008
VSYS-10 000008
VSYS-A 00000E
20+4 000024
c+C 000028
CAX+C 000018
ALPHA (1) 000018
10 (2) 000018
PROG (7) 000018
DELTA (3) 000076
70 (2) 000073
c (1) 000020
Cax (1) 000010
GAMMA (1) 000023

Library File Description (*SDS) 287

238

MTS-280/62625-0

12-1-67

PROG (1) +4 000004
Cox (1)-4 00000C

ALPHA...DELTA 000014...000070
AD+4...C@X (1) 000008...000010

IV. Command Definitions

Following is a list of commands processed by SDS. 1In general, only the
first three characters after the dollar sign need be typed. The structure
of the the parameter list for each command in presented in standard MTS
notation.

SATTRIBUTES [simple-parameter] [,simple-parameter] ...

The attributes for each simple parameter are listed. These attributes
include: relative address, loaded address, type, length, and (if different
from ons) scale factor and duplication factor. The one-character codes for
"type" are defined in the discussion of the $DISPLAY command.

Example: SATTRIBUTE GAMMA would print out

RA=000020 1LA=101698 TYPE=F LENGTH=4 DUP=20

$BREAK [simple-parameter] [,simple-parameter] ...

At each location specified by the parameter list, the instruction is
saved and a "break-point" is inserted into the wuser's progranm. When
control reaches a break-point during execution of the user's progranm,
control is returned to SDS which prompts the user for his next command.
The program may be restarted by issuing a $RESTART command which executes
the saved instruction and transfers control to the user's program where
normal sequencing resumes.

r a
|csect-namej|
$CSECT | * [
! integer |
L J

When a program consisting of one or more control sections is loaded, the
first one loaded becomes the current CSECT and the remaining comntrol
sections are opened for referencing. If SDS cannot locate a given label in
the current CSECT, the remaining CSECT's are searched (in the order they
vere loaded) for a possible match. If SDS locates the label in the current
CSECT, SDS will search through the remaining open CSECT's to make sure the

MTS-280/62625-0

12-1-67

label is not multiply defined. A warning message 1is printed for each
multiply-defined label thus located and the first definition is used.

The $CSECT command provides a means of specifying a new current CSECT.
The control section named by csect-name becomes the current CSECT and the
remaining control sections are <closed; that is, checking for multiply-
defined labels is suppressed and, if a label cannot be found in the current
CSECT, no further searching through the remaining control sections takes
place.

If the command $CSECT * is entered, the first control section loaded
becomes the current CSECT and the remaining control sections are opened for
referencing.

If one or more private control sections has been 1loaded, the
command $CSECT i makes the ith private control section loaded the current
CSECT and closes the remaining control sections.

Examples: $CSECT PROG1

$CSECT *
$CSECT 2
r 1 r A
|simple-parameter| | simple-parameter|
$DISPLAY |block-parameter | |,block-parameter | ese
L 4 L 4

Each parameter (or element in the range of a block parameter) is
converted according +to its type and length, and printed out along with a
one-character code which indicates the type. These codes are defined as
follovs:

(@]

ODE IYPE

address constant

binary

character

floating point

fixed point

instruction format
alignment exception - hex assumed
packed

S-type address constant
V-type address constant
channel command word format
hexadecimal

Y-type address constant
zoned decimal

NS ZHRE O W

Library File Description (*SDS) 289

290

MTS-280/62625-0

12-1-67

If a parameter to $DISPLAY specifies an address which is incorrectly
aligned with respect to the parameter's type, (e.g., half-word alignment
for a full-word integer) the contents of the byte specified by the
parameter, and the contents of the next seven bytes, are printed in
hexadecimal.

The following conventions will be used when $DISPLAY attempts to display
"jllegal" data:

(1) character conversion: if a hex code is encountered for which there
exists no graphic, a question mark will be
substituted for that code.

(2) instruction format : if the op-code portion of an instruction is
not a defined operation, the op-code is
printed as two hex digits sandwiched between
asterisks; the length of such an instruction
is assumed to be two.

(3) packed format : if the length of the number exceeds 16, the
number is dumped in hexadecimal.

(4) zoned format : same as (3).

To display the 16 general registers, the predefined parameter, "GRS" is
used. To display the ith general register, the parameter, "GRi" is used,
where i is the register number, ranging from zero to 15.

To display the four floating point registers, the predefined parameter,
"FRS" is used. To display the jth floating point register, the parameter,
"FRj" 1is wused, where 1is Jj is the register number, ranging from zero to
seven.

To display a location labelled "GRS" or"“FRS"™, or "GRi" or "FRj", where i
and j are as defined above, append the override, "aq"™ to each symbol.
Thus, to display the 1location 1labelled "GR10, enter the command,
SDISPLAY GR10@Q; to display general register 10, enter $DISPLAY GR10.

Examples: $DISPLAY ALPHA, GAMMA(1)...GAMMA(20)
$DISPLAY PROG+20, GRS, FR2,C(1)-3

$G0T0 [simple-parameter]

Control 1is transferred to the location in the user's program specified
by the varameter. The parameter must specify a half-word aligned address.

MTS-280/62625-0

12-1-67

r Tnr a
|simple-parameter| | simple-parameter|
SHEXDISPLAY |block-parameter | |,block-parameter [...
L 4 L 4

Fach parameter is printed out in hexadecimal in a format identical to
the format used by SDUMP.

1
{decimal-constant}|

simple-parameter {simple-parameter}|
J

$IGNCRE

(o

1
{decimal-constant} |

,Simple-parameter {simple-parameter}| ...
3

F——n

ordinarily, when control reaches a location in the wuser's progranm
containing a break-point, execution is interrupted and control returns to
SDS. The 3IGNORE command provides a means of suppressing this interruption
each time control reaches the break-point location, for a total of N times,
where N is either a decimal constant or the contents (presumably integer)
of the location specified by the simple-parameter. The N+1st time control
reaches the break-point, the interruption takes place as usual.

For example, assume a break-point exists at location AD in the sample
program in section III. To suppress the interruption 20 times, either of
the following commands could be used:

$IGNORE AD 20 or $IGNORE AD C

$LARFL simple-parameter label]
[,simple-parameter label] ...

The location specified by simple-parameter is assgned the synbol
specifi=ad by lakel. Thereafter, the location may be referred to by that
symbol. label is a string of one through eight alphabetic or numeric
characters, the first of which is alphabetic.

$MAP

Library File Description (*SDS) 291

292

NTS-280/62625-0

12-1-67

A Loader-like map is printed, listing each control section in the user's
progranm.

r 3
{simple-parameter hex-constant|
$MODIFY |block-parameter hex-constant |
L 4

r 1
| simple-parameter hex-constant]

| ,block-parameter hex-constant | ...
L 4

copied into the location specified by the parameter. If block-parameter is
specified, hex-constant is sprayed through the region delimited by the
block nparameter. In any case, the 1length of hex-constant must be no
greater than the length attribute of any location into which the constant
is being entered. The hex constant will be right-justified and padded with

leading zeros if necessary.

To modify the contents of a general or floating point register, the
naming conventions as specified in the description of $DISPLAY nust be
used.

$RESTART

This command returns control to the next instruction to be executed
after a program interrupt or a $BREAK-produced interrupt has occurred. in
the 1latter case, the saved instruction originally at the break-point
location is executed and execution proceeds as usual.

$RESIORE [simple-parameter] [,simple-parameter] ...

If no parameters are specified, the last break-point entered via the
$BREAK command is removed from the user's program and the original
instruction is restored. If one or more parameters are specified, the
break-point(s) at each 1location are removed and the original operation
restored.

$SRUN

MTS-280/62625-0

12-1-67
Control is transferred to the entry point of the user's program.

$STORTEST

End of testing. Control is returned to MTS.

V. Parameter Overrides

It is occasionally useful to alter the implied or assumed attributes of
an SDS parameter. For instance, 1t might be necessary to display a
hexadecimal constant in EBCDIC format. SDS provides a means of temporarily
overriding the attributes of a parameter by explicitly specifying those
attributes. Each override consists of an ampersand (@) followed by a
one-character override code, followed (if necessary) by a constant. When
overriding the attributes of a parameter, the override code is appended
directly to the parameter. If necessary, more than one override may be
appended. Attributes may not be used with block parameters.

SDS also provides a means of specifying information about the
constituents of a parameter. For instance, it might be useful to express a
displacement as a decimal rather than a hexadecimal constant; or a single
hex constant might be an absolute (virtual) address rather than a relative
address. In this case, override codes specifying these properties can be
appended to - that element of a parameter (i.e., label,
displacement,subscript, etc.) which is being modified.

Following is a 1list of override codes and their definitions.

CODE DEFINITION

@A treat as an absolute (virtual) address.

@D force decimal conversion

aL=1i set the length attribute to i, where i is an unsigned

decimal integer.
20 treat as a label

DS=1i set the scale tactor to i, where 1 1is a signed or
unsigned decimal integer.

@dT=code Set the type attribute to code, where code is any of
the single-character type-codes defined in the explana-
tion of the $DISPLAY command.

oX force hexadecimal conversion

Library File Description (*SDS5) 293

294

MTS-280/62625-0

12-1-67

Examples:

Spacify the tenth byte beyond the location labelled "aD":
AD+A or AD+10aD

Force a length of 20 on GAMMA:
GAMMA®RL=20

Force character conversion and a length of two on delta:
DELTA@T=CAL=2

Force hex conversion for the contents of location 00000C:
caXxaT=X

Specify absolute (virtual) address 130108 (base 16):

130108aA

MTS/280/62455-0

12-1-67

Nanme:
Contents:

Usage:

LIBRARY FILE DESCRIPTION

*SNOBOLY4

The object module of the SNOBOL4 interpreter.

The SNOBOLU interpreter is invoked by means of a RUN
command. Since SNOBOL4 currently does all I/0 through the
FORTRAN IV I/0O routines, all input and output is done
through logical I/O units 1 to 9 See the Fortran Users Guide
(MTS~-520) for details om I/0.

Logical I/0 units referenced:

Examples

Description:

5 Source for the SNOBOL4 program to be tramnslated,
immediately followed by:
Data read via default "INPUT" string.

6 output from compilation of the SNOBOL4 program and
output via the default "OUTPUT" string.

7 Output via the default "PUNCH" string.
$RUN *SNOBOLU4; 5=%SOURCE* 6=*SINK*
$RUN *SNOBOL4; S=SNOPROG+*SOURCE*
6=%DUMMY* (1,20) +*SINK* 7=*PUNCH*

See the SNOBOL4 language description in section MTS-560
(volume II) of the manual.

Library File Description (*SNOBOLHY) 295

MTS-280/62645-0

12-1-67

Name:
Contents:
Purpose:

Tsage:

Logical I/0 Unit

Examples:

Description:

296

LIBRARY FILE DESCRIPTION

*SCUASH
The object module ot the Card-Squashing Program.
To squash object cards to as few records as possible.

The Card-Squashing Program is invoked by the appropriate RUN
command specifying *SQUASH as the file were the object cards
of the Card-Squasher may be found.

s Referenced:

SCARDS - the file or device which contains the object
cards which are to be squashed.

SPUNCH - the file or device on which squashed object
records are to be placed.

SERCOM - the file or device where error comments are
to be placed; error comments do NOT cause
ERROR RETURN (i.e. they are not fatal).

$RUN *SQUASH; SCARDS=-LIB SPUNCH=MYLIBRARY

$RUN *SQUASH; SPUNCH=-FUNCH PAR=IDS
(SCARDS defaults to *SOQOURCE¥)

The card-squashing program compresses object cards which may
be produced by a system translator (TXT,ESD,RLD, and END
cards) and those cards which may be hand-produced
(LIB,RIP,REP,DEF,LDT, and-LCS cards). The input to the card
Squashing program, consists of 80 (or 1less) byte card
images---bytes 73-80 contain card ID; the output consists of
compressed "card" images which may be up to 255 bytes in
length. RLD and TXT input cards are formed into larger
images for output so that, in effect, there will be fewer of
these types of images in the output (compared with the
input). The other types of card images except for REP are
trimmed from column 72 backwards. REP cards are trimmed
starting at the first blank character in the data field.
The identification of the input images may be placed in the
output images by using the parameter 'IDS' ---this is done
on a one-for-one basis for all cards except TXT and RLD
cards; the 1IDS of the TXT and RLD cards are the IDS of the
first input record used in the compressed output image.

MTS-280/62475-0

12-1-67

Name:

Contents:

Tsage:

Example:

LIBRARY FILE DESCRIPTION

*SSP

The MTS FORTRAN produced object modules of the most recent
modification 1level of the most recent version of the
Scientific Subroutine Package. A list of SSP entry points
is included in section MTS-253.

These subroutines are thoroughly documented in the IBHM
publication System/360 Scientific Subroutine Package,
(360A-CM~03X) Version II, Programmer's Manual (H20-0205)
They are made available to a program by concatenating *SSP
with the file or device containing the object progranm.

$RUN -OBJ+*SSP *SINK*; 5=%SOURCE* 6=%SINK*

Library File Description 297

298

MTS-280/62215-0

12-1-67

Name:
Contents:

Purpose:

Jsage:

LIBRARY FILE DESCRIPTION

*¥*STATUS
The object module ot the user space-time status program.

Print information regarding the user's -elapsed time, core
time, CPU time, disk space, and disk storage time.

The space-time status program is invoked by an appropriate
RUN command specifying *STATUS as the file where the object
cards are found.

»

Logical I/O0 units referenced:

Examples:

Description:

SPRINT Listing of the space-time information.

SRUN *STATUS
JRUN *STATUS; SPRINT=FILE

*STATUS lists on SPRINT the following information for the
user. The maximum, used, and remaining figures are given
for cumulative elapsed time in minutes, cumulative core
usage in page hours, cumulative CPU time in minutes, and
current disk space in pages. The amount used is from the
last time the cunmulative sums were reset (e.g. the end of a
billing period) to the 1last signoff before the current
signon. In addition, the cumulative disk storage in page-
hours is given from the last time the cumulative sums were
reset to the last time a disk file (including temporaries)
was created, destroyed, or changed extents.

MTS-280/62445-0

12-1-67

Name:

Contents:

Jsage:

LIBRARY FILE DESCRIPTION

*SYMBOLS

Object module to print a listing of all external symbols
within the MTS systen.

This file should be referenced by a $RUN with *SYMBOLS as
the object file, SPRINT as output, and SCARDS as the
location of a control record.

Logical I/0 units referenced:

gxample:

Description:

SPRINT The 1listing which is output is produced on
the specified file or device

SCARDS A control record is read from the device or
file specified.

Note: *SYMBOLS (0) is a valid control record.

$RUN *SYMBOLS; SCARDS=*SYMBOLS (0)
(SPRINT default to *SINK¥)

This program produces the listing of MTS external symbols
which is reproduced in section 253 of this MTS manual. The
listing is produced by searching the external symbol
dictionaries of tane system and the library. Hence it is
current as of the instant it is run.

The program has options to generate printed output or a
deck in TEXT90 format. It also will suppress privileged
system symbols if desired. These options are set by a
control record which the program expects on the SCARDS file
or device. The format of this control record is not
provided in this writeup.

There is a control record in the file *SYMBOLS at line
number 0. This record will cause the program to produce
printed output with privileged symbols suppressed. Hence a
user may obtain a listing by the command:

SRUN *SYMBOLS;SCARDS=%SYMBOLS (0)

Library file Description (*SYMBOLS) 299

300

MTS-280/63225-0

12-1-67

Name:
Contents:
Purpose:

Usage:

LIBRARY FILE DESCRIPTION

*TABEDIT

The object module ot the tab editing program.

To simulate the TAB key on remote terminals.

The program is invoked by an appropriate RUN command,
specifying an input file, an output file and a parameter

list, containing a character to represent TAB and a list of
tab settings.

Logical I/0O units referenced:

Examples:

Description:

SCARDS The input file to be edited.
SPRINT The output file containing the edited lines.

$RUN *TABEDIT; SCARDS=%*SOURCE* SPRINT=ACTIVE
PAR=10,16,35, 72 -

$RUN *TABEDIT; SCARDS=AA SPRINT=BB PAR=/,5,10,15

The user defines the TAE character and tab settings in the
PAR 1list. If the first character in the PAR list is
non-numeric, the character will be used as the TAB code, and
all occurrences of that character in the input file will be
treated as a tabulator key. If the first character in the
PAR list is numeric, the normal code for TAB will be used.

The tab stops are entered into the PAR 1l1list as column
numbers. For instance,

PAR=/,5,10,15

specifies "/" as the TAb character, and tab stops at column
5, 10 and 15. An occurrence of "/" in an input 1line will
cause blanks to be inserted up to the next tab stop. If the
line pointer is beyond the 1last tab stop (e.g., in the
previous example, column 15 or beyond) one blank will be
inserted in the output line for subsequent occurrences of

ll/ll.

If a TAB character other than normal TAB is used,
occurrences of normal TAB in an input line will not cause
tabulation. All occurrences of +the TAB character are
deleted from output lines.

MTS-280,/63215-0

12-1-67
LIBRARY FILE DESCRIPTION
Name: *UMIST
Contents: Object module for UMIST interpreter.
Purpose: To process UMIST procedures.
Jsage: UMIST is an interactive text-processing language. It inter-

prets strings of characters accepted one at a time from the
input device and prints the value of each string after
processing.

Logical I/0 units referenced:
The initial settings for input and output devices are the
: SCARDS and SPRINT logical devices. Any file or device nanme
may later be designated as the current input or output unit.
Examples: UMIST may be invoked by the MNTS command
SRUN *UMIST

Description: See the UMIST writeup (section MTS-570).

Library File Description (¥UMIST) 301

302

MTS280/66245-0

12-1-67
LIBRARY FILE DESCRIPTION
Name: *UPDATE
Purpose: This program will copy tapes (or files) containing card
images, making insertions and deletions, as well as blocking
and unblocking.
Logical I/0O Units Referenced: SPRINT - printed output

Examples:

Usage:

SERCOM - error messages

SPUNCH - output from %PUNCH
Commands and insertions are expected to come from the source
stream (*SOURCE*). If another source of commands is wished,
its FDname should be specified following the "PAR=" on the
$RUN command.

$RUN *UPDATE .
$RUN *UPDATE; PAR=PIL.UPDATE

The wupdate input tape must consist of 80 column card images
which may be blocked to any factor desired. The blocking
factor, if greater than 1, must be stated on the %INPUT
command. The update output tape will consist of 80 column
card images blocked as specified (except for the last
record, and other records which may be truncated by a %CLOSE
command. [Space for the specified input and output buffer-
ing is obtained dynamically when %INPUT and %OUTPUT command
are encountered; released when %CLOSE is encountered.]

All commands take the following form: column 1 nmust
contain a percent-sign ("%") which must be immediately
followed by the command (only the first three letters need
be given, and they must be upper-case). Parameters for the
command are separated from the command and from- each other
by one or more blanks (or commas, which are treated
identically with blanks). Lines which are not recognized as

commands are treated as insertion 1lines and are copied
immediately to the update output tape.

Tape positioning and reading across a file mark while the
tape is still open is considered an error. Therefore %CLOSE
commands should precede positioning and the update should
finish copying of a file with %BEFORE FILEMARK, not %AFTER
FILEMARK.

Tape Attachment and Manipulation Commands

. e S e . e i e . i S e

AINPUT INTAPE [N]

MTS280,/66245-0

12-1-67

INTAPE is the pseudo-device name (or FDname) of the
file or device to be established as the update input
tape. N is an integer specifying the blocking factor
of that tape. If omitted, a blocking factor of 1
card/record (i.e., unblocked) is assumed. This command
causes the tape to be opehned.

Example: %INPUT *TN* 50

%OUTPUT OUTTAPE [N]
OUTTAPE is the pseudo-device name (or FDhame) of the
file or device to be established as the update output
tape. N is an integer specifying the blocking factor
desired on that tape. If omitted a value of 1
(unblocked) is assumed.

Example: %OUTPUT *QUT* 20
%0UTPUT FILE1T 1

%SREWIND T
Tape T 1is rewound. T must not currently be open as
input or output.

Example: %REWIND *0UT*

%RUN T

%UNLOAD T
Tape T is rewound and unloaded. T must not currently
be open as input or output.

Example: %RUN *QUT*

%EFSF T [N]
Tape T 1is spaced forward N files. If N is omitted a
value of 1 is assumed. T must not currently be open as
input or output.

Example: ®FSF *¥TN* 3

%BSF T [N]
Tape T is spaced backwards N files. If N is omitted a
value of 1 is assumed. T must not currently be open as
input or output.

Example: %BSF *IN*

%WTH T [N]

WEF T [N]

%EOF T [N]
Tape T has N tape marks (end-of-file marks) written on
it. If N is missing a value of 1 is assumed. T nmust
not currently be open as input or output.

Library File Description (*UPDATE) 303

304

MTS280/66245-0

12-1-67

Example: %WTM *0UT*

%CLOSE [T]
Tape T is closed. If the update output tape, the last
buffer (possibly truncated) is written out. If T is
omitted, the update output tape is assumed.

Update Feature Control Commands

%NEWID H

Cards written onto the wupdate output tape following
this command will have new I.D.'s (columns 73-80). The
first card written will have the 1I.D. specified in
this command. Succeeding cards will have I.D. incre-
mented in steps of one. The I.D. given imn this
command should consist of 8 characters - blanks and
commas may not be included. Only the numeric portion
of the I.D. 1is incremented.

Example: ®NEWID PIL00001

%0LDID
Suspends the re-I.D.ing of the cards as described under
%®NEWID.

&®LIST ON
Starts 1listing of deleted and inserted cards.
(Initially on)
OFF
Stops 1listing of deleted and inserted cards [This
output goes onto *SINK*]

%PUNCH OoN

Starts putting all card images sent to the update
output tape on SPUNCH (presumably for punching).

OFF
Turns off the "punching" described above. (Imitially
off)

Card Location, Copying and Deletion Commands
In the execution of these commands, the 360 collating
sequence is used for comparisons.

%AFTER IDp
Copies all cards having I.D.'s less than or equal to ID
from the update input tape to the update output tape
N
Copies the next N cards from the update input tape to
the update output tape.

MTS280,/66245-0

12-1-67

%BEFO

%DELE

%FIND

Retur

Examples: RAFTER PIL03789
%A FTER 2

RE ID
Copies all cards having I.D.'s less than 1D from the
update input tape to the update output tape

FILEMARK

FILEMK
Copies the rest of the file. It 1leaves the tape
positioned after the file mark.

Examples: %BEFORE PIL07892
%BEFORE FILEMARK

TE ID

Copies all cards having I.D.'s leéss than ID from update
input to update output, then deletes the card (or
cards) having I.D. of ID (if any).

N
Deletes the next N cards on the update input tape
ID1 ID2

Copies all cards having I.D's less than ID1 from update
input to update output, then deletes all cards having
I.D.'s ID1 through ID2 inclusive from the input.

D1 N
Copies all cards having I.D.'s less than ID1 from
update input to update output, then deletes the next N
cards on the input tape.

* Ip2
Deletes all cards on the update input tape from the
current position up through ID2.

Examples %DELETE PILO0O16
%DELETE 2
%DELETE PIL00378,PILO0379
%®DELETE PIL00378,2
%*DELETE * PIL00736

ID
The update input tape is searched for a card with I.D.
equal to ID. Order of the I.D.'s is ignored. Card
passed over are not copied to the update output tape.

Example: %FIND QQSvV0395

n_Command

%END

This command or an end-of-file encountered in the
command stream causes execution of the wupdate progran
to terminate. All buffers are closed.

Library File Description (*UPDATE) 305

306

MTS280/66245-0

12-1-67

Sample Command Stream

%INPUT
%0UTPUT
%DELETE
%AFTER

%#DELETE
®DELETE

%AFTER
SAVR#
SAVREG#
PARREG#
%BEFORE
%CLOSE
%CLOSE
EWTH
%REW
%RUN
%END

IN 50
0UT 1
PIL00016
PIL00079
GETSPACE 8193,T=3
LR 15,1
L 14,=F'8192"
PIL00830, 2
PILO7044,PIL07049
PUTLINE
GETLINE
PIL09711
DS 6F
DS 18F
DS 6F
FILEMARK

IN
QUT
QUT
T N

MTS-280/66633-0

12-1-67

Name:

“ontents:

Purpose:

Jsage:

Examples:

LIBRARY FILE DESCRIPTION

*WATERR
WATFOR-produced error codes and their corresponding defini-
tions. The file is approximately 370 lines. It is the sanme

as the section WATFOR ERKOR MESSAGES in the WATFOR writeup
in section MTS-580.

To provide a means of interpreting WATFOR diagnostics from a
terminal.

The file may be listed using a $COPY (or $LIST) command.

$COPY *WATERR
$COPY *WATERR(10,20)

library File Description (*WATERR) 307

308

MTS-280/66635-0

12-1-67

Name:

Contents:

Purpose:

Usage:

LIBRARY FILE DkSCRIPTION

*WATFOR

The University of Waterloo FORTRAN IV Compiler.

Compile and execute FORTRAN 1V programs.

The compiler is invoked by a RUN command, specifying *WATFOR
as the object file.

Logical I/O units referenced:

Examples

Description:

Note:

SCARDS The source program to be compiled and its
standard input unit.

SPRINT The compiler listings and diagnostics and the
source program's standard output unit.

SPUNCH Standard punch unit. (optional)

0 Pre-stored library of WATFOR-coded subrou-
tines. (optional)

$RUN *WATFOR; 5=*SOURCE* 6=%SINK* 0=*WATLIB
$RUN *WATFOR
$RUN *WATFOR; SCARDS=MYFILE 1=MYDATA

/360 WATFOR is a one-pass load-and-go processor developed at
the University of Waterloo. Because of fast compilation,
and since loading time for the object program is virtually
eliminated, large time savings may be realized over standard
FORTRAN-G processing. WATFOR will accept FORTRAN-IV state-
ments as described in IBM form C28-6515, subject to the
extensions and restrictions noted in this writeup. The
translator provides comprehensive error diagnostics at both
compile time and and execution time; all violations of the
FORTRAN language are reported at compile time, and the
object program checks for programming errors at execution
time. Most error comments will contain a 3-character code;
this code may be interpreted by consulting the section
entitled "WATFOR Error Messages" at the back of the WATFOR
usage.

The writeup on WATFOR usage will be found in section
MTS-580.

MTS-280/66637-0

12-1-67

Name:
Contents:
Purpose:
JIsage:
Example:

Description:

LIBRARY FILE DESCRIPTION

*WATLIB

A library of WATFOR-coded functions and subroutines.

To provide a library facility for the WATFOR translator.

The file is referenced by *WATFOR through logical unit 0.
$RUN *WATFOR; 5=*SOURCE* O=*WATLIB

The subprograms entered into WATLIB will depend on the
varying needs of the WATFOR user community. Arrangenents
may be made through the Computing Center to enter a routine

into the 1library. *WATLIB is formatted according to the
specifications outlined in section IV of the WATFOR write-

up‘

Library File Description (*WATLIE) 306

310

MTs-280/82855-0

12-1-67

Name:
Purpose:

Logical I/0 unit

Jsage:

LIBRARY FILE DESCRIPTION

*¥2250EDIT
To allow using the 2250 display console to edit a file.
s referenced:

SCARDS - input file

SPRINT - output file

Initially the program is in Sequential mode and will display
the first line in the file along with it's line number under
the heading "Current Input line". Displayed also will be
the next four sequential lines in the file for context.
Furthermore as lines are accepted (vritten into the output
file), they are saved and displayed under the heading "Last
Five Output Lines". None of the above information may be
altered by the user.

The next line displayed is the "Current Output Line".
This line is initially identical to the current input line
and it is the line which may be modified by wusing various
combinations of the programmed function keyboard,
alphanumeric keyboard, light pen and cursor position. An
explanation of the various programmed function keys follows:

Key 16

(accept 1line) - in the sequential mode writes out
the current output line into the output file (using
the line number of the current input 1line) and
displays the next sequential line as the current
input line (and current output line).

Key 4 (delete line) - when used in the sequential mode,
writes out a "Zero Length Line" to the output file,
(using the line number of the current input line),
and causes display of the next sequential line as

the current input line (and current output 1line).

Key 9 (insert character) '"opens" a space in the current
output line above the cursor position (the 1light
pen can be wused to position the cursor) to allow
insertion of a character from the alphanumeric

keyboard.

Key 15 (delete character) - deletes the character above

the cursor in the current output 1line (again the

MTS-280/82855-0

12-1-67

1light pen can be used to position) and "closes" the
line accordingly.

Key 0 - (edit 1line) - massenbly edits" (columns 1, 10, 16,
30) the current output line, assuming for example
that the input is in free form format.

To switch to the indexed mode of operation, the asterisk
following the word "indexed" should be touched with the
ligkt pen. The program will now expect at least ome "MNTS
line#" to be enterea from the alphanumeric keyboard before
the remaining options are exercised.

Key 28 - (display 4iine) - will display as the current input
line (and current output lime), the line from the
input file corresponding to the line number entered
if such a line exists.

Key 30 - (copy lines) - in conjunction with two line numbers
entered (use the jump key to enter the second line
number), will copy the 1lines starting with the
first, up to and including the last into the output
file.

Key 4 - (delete 1line) - in the indexed mode writes out a
line of length 0, using the line number entered.

Key 16 - (accept line) - in the indexed mode writes out the

current output line into the output file using the
line number currently displayed (i.e. It's possi-
ble to move lines by displaying, changing the line
number and accepting if desired)

Inserting lines in indexed mode is accomplished by typing
in a line number, using the jump key to position the cursor
at column 1 of the initially blank current output line,
entering the desired line and hitting the accept key.

In indexed mode, keys 0, 9, and 15 operate the same as in
the sequential mode.

At any time Key 2 - (set tab) may be used to set up a
wcursor tab"™ for the current output line. The first time
the set tab key is hit a blank line will be displayed with
the cursor below column 1. The user should enter the
character "+" in the columns it is desired to tab to.
Hitting. the set tab key again registers these columns and
thereafter hitting key 27 - (tab) will move the cursor to
the next tab column in the current output line.

To switch back to sequential mode from indexed a starting

line number should be entered and the asterisk following the
word "sequential" touched with the light pen.

Library File Description (*2250EDIT) 311

MTS-280,/82855-0

12-1-67

On the alphanumeric keyboard, “cancel" will blank the
current output line ,hitting "end" twice will terminate the

edit program, and "jump" will move the cursor to appropriate
starting positions.

312

MTS-280/88625-0

12-1-67

Name:
Contents:
Purpose:

Example Usage:

Description:

LIBRARY FILE DESCRIPTION

*BASS
Object modules of the PDP-8 assembler

To assemble PDP-8 programs

$RUN *8ASS; 1=*SOURCE* 2=%80PS 6=-F
8=%SINK* SPUNCH=%PUNCH*@BIN

The two-pass assembler reads a set of standard definitioans
from “2%., EBCDIC source lines are read from "1" and Pass I
intermediate storage is listed on "6" (a 93-character record
for each input line). Pass II dinput is from "6"; the
assembly is listed on "8" and binary cards are produced on
WSPUNCH".

The input format of the assembler in 8SS (see 7090 MESS
Manual, volume 2) is compatible with 8ASS format.

The internal symbol table size of the assembler is <fixed.
If a program defines S symbols and references symbols
(including standard opcodes and procedure calls) R tinmes,
then the PDP-8 assembly size is limited by:

10 (S+65) +2R<M

For *8ASS, M = 30,000

8ASS ASSFMBLY LANGUAGE_FORMAT

Fighty-character source lines are scanned, left to right, for three

fields: label,

opcode, and operand. With the following exceptions, fields

are delimited by blanks.

The 1label

field may contain an alphanumeric string less than 9

characters long, starting with a letter as the first character of the line.
If the first character is a blank, the label field is empty.

The operand

During the

field must begin betore character 17; otherwise it is emrpty.

scan, occurrence of a semicolon (";") will force the

remaining fields to be empty.

After all three fields are scanned, the rest of the line is treated as
comment.
Note: For further information, see the 8ASS writeup in section MTS-590.

Library File Description (*8ASS) 313

314

MTS-280/88627-0

12-1-67

Name:

Contents:

Usage:

LIBRARY FILE DESCRIPTION

*8SSPAL

object module to convert PDP-8 load card images to PDP-8
paper tape formats.

*8SSPAL is used to convert the load cards produced by the
855 system on the 7090 or the output of the 360 PDP-8
assembler (*8ASS) to the paper tape formats required by most
PDP-8 configurations.

Logical I/0 units referenced:

Examples:

Note:

SCARDS Source of binary load cards
SPUNCH Sink for paper tape output

SRUN *8SSPAL; SCARDS=CARDSOURCE SPUNCH=TAPESINK
$RUN *8SSPAL; SPUNCH=*PAPERTAPEPUNCH*@BIN

Both the input and output FDnames refer to entities which
must have the binary attribute associated with then. Thus
if CARDSOURCE is an intermediate file, $COPY *SQURCE*®BIN TO
CARDSOURCE®BIN wouid 1load it properly. Similarly $COPY
TAPESINK@BIN TO *PAPERTAPEPUNCH*@BIN would punch the output.
*8SSPAL both reads and punches @BIN.

MTS-290-0

12-1-67

THE _DYNAMIC LOADER

The dynamic lcader takes the output from the language processors such as
the Assembler or FORTRAN compiler and puts it into the memory of the
computer so that it can be executed. The loader is invoked by the $RUN and
$LOAD commands and by the system subroutines LINK, LOAD, and XCTL.
Although the general processing done by the loader 1is the same in all
cases, some details differ depending upon the manner in which the loader is
invoked.

The writeup for the dynamic loader consists of several sectioms, each
covering a different aspect of the loader. A 1list of these sections
follovws:

i) 1
| SECTION NUMBER | TITLE |
i 1 []
L} T 1
| MTS-292 | Description of the loading Process |
i MTS-294 | Description of the lLoader Input i
| MTS-296 { Description of the Loader Output |
| MTS-298 | Loader Library Facility i
| MTS-341 | Loader Internal Specification {
L i J]

The Dynamic Loader 315

316

MTS-292-0

12-1-67

DESCRIPTION OF THE LOADING PROCESS

Introduction

The dynamic loader takes one or more object modules, each consisting of
one or more control sections, and puts them into the memory of the
computer. External symbols which are referenced by the object modules but
not defined by any of them are looked for in the systenm library, and loaded
if found. The program thus loaded can be executed, provided that no fatal
errors were detected during the loading process.

Loader Input

The dynamic loader receives its input from two sources. The first
source is the file or device specified as the loader input parameter on the
$RUN or $LOAD command or the call to LINK, LOAD, or XCTL. The information

contained in the loader input file or device should be loader input lines
as described in MTS-294. Each line is read and processed sequentially
until an end-of-file, a load terminate line, or a line which is not a legal
loader input line is encountered. At this point the loader will no longer
reference input from this source.

If after processing the input from the user specified source, external
symbols remain which have not yet been defined although they are ref-
erenced, the loader continues with its input coming from the systen
library, which is contained in the file *LIBRARY. The object modules from
the library are loaded selectively. That is, only object modules which
satisfy unresolved external symbols and modules which are in turn ref-
erenced by such modules are loaded.

Optional libraries may be concatenated to the end of the user specified
source. Object modules from the optional 1library will be selectively
loaded after all modules preceding it in the wuser specified source have
been loaded and before the system library is scanned. The optional library
may be either a public library, as the Scientific Subroutine Package in the
file *SSP, or a private library created by the user. More details about
optional libraries can be found in section MTS-298.

Resident System_Symbols

After the object modules from the user specified source and the library
have been loaded, there may still be some unresolved symbols which

MTS-292-0

12-1-67

reference the resident system. Examples of such symbols are GETSPACE,
READ, SPRINT and ERROR. The correct values for these symbols are located
in two system tables, one containing definitions of symbols whose values
never change, the other symbols which change from user to user such as
SPRINT. These tables are searched in an attempt to resolve all symbols not
yet defined. Symbols which are still undefined after this search are
printed out in error messages as undefined and loading halts.

If the 1loader is invoked via a call to one of the subroutines LINK,
LOAD, or XCTL, symbols and their values may be added to the system table of
unchanging symbols (the initial ESD table) and entirely new tables of
changeable symbols (low core symbol dictionaries) may be created by the
user. TFor details on this, see the appropriate subroutine writeups, the
description of the LCS 1loader card in MTS-294, and the loader library
specifications in MTS-298.

Loader Output

The dynamic loader generates two types of output as the fruits of its
labors. The first type of output 1is the program which remains in the
memory of the computer. This program is a representation of the informa-
tion in the object modules which have been loaded. The representation is
such that the program can be executed, provided that no fatal errors were
detected during the loading process.

The second type of output generated by the loader consists of printed
information describing the results of the loading endeavor. This includes
error messages, a map showing the value of each external symbol as well as
the location and relocation factor of each control section, and the entry
point of the program. The map may be omitted.

Entry Point Determination

The entry point of a program is the point within the program where
execution will begin if the program is executed. That is, it is the
location of the first instruction within the program to be executed. This
location is determined by the loader as it processes the object modules
forming the progranm. The following algorithm is used to determine the
entry point:

1. If one or more entry lines (ENT) have been encountered, the entry
point is +the value of the external symbol referenced on the first
such ENT line.

2. Otherwise; if the processing of input from the user specified source
was terminated by a load terminate 1line (LDT) and that 1line
referenced an external symbol, the entry point is the value of that
external symbol.

Description of the Loading Process 317

318

MTS-292

12-1-67

Loader

-0

Otherwise; if one or more object module end lines (END) contain an
entry point address, the entry point is the value of the entry point
address from the first such END line.

Otherwise; if at least one control section has been encountered, the
entry point is the address of the first byte of the first control
section encountered.

Otherwise; the entry point is zero.

Processing Details

As t
and pe
progran
the loa

1.

he loader processes its input, it maintains its own internal tables
rforms other tasks necessary for the gemneration of an executable

in memory. Following is a list of the various tasks performed by
der.

The loader maintains an external symbol table which contains an
entry for each external symbol thus far referenced or defined.
Since there may be many private control sections, there may be many
entries in the table whose names are blank. The information stored
in the table for each external symbol includes the symbol name, the
location of the symbol if it has been defined, the relocation factor
of the symbol if it is the name of a control section, the current
"short hand name" or external symbol identification (ESID) by which
the symbol is referenced in the lines of the object module currently
being loaded, and a set of status bits indicating if the symbol is
Jefined, if it is the name of a control section, common section or
pseudo-register, if the symbol was defined by the system, and so
forth.

Address constants which refer to external symbols are relocated. If
the symbol has not yet been defined when the address constant is
encountered, pertinent information is stored in a relocation table
so that the relocation can be performed when the symbol is defined.

Storage is acquired in the memory of the computer for each control
section encountered in the loader input, and the text for each of
these control sections is loaded into the storage acquired for ‘the
corresponding control section.

An entry point is determined via the algorithm described above.

The loader input is checked for errors. If errors are detected an
error message 1is printed and loading is either continued or
terminated depending upon tine severity of the error.

A map is produced showing pertinent information about each external
symbol and control section name. The map may be omitted as an
option of the user.

MTS-292-0

12-1-67

7. The loader is capable of producing a reference table for the
external symbols, showing the locations at which each external
symbol was referenced. However, there is currently no way in MTS to
turn this option on.

Loader Invocation Details

The 1loader is invoked by the $RUN and SLOAD commands and by the systenm
subroutines LINK, LOAD, and XCTL. Although the general processing done by
the loader is as described above in all cases, some details differ
depending upon the manner in which the loader is invoked. This section
presents a general outline of the processing performed by each type of
invocation of the loader. For more details, see the appropriate command or
subroutine writeup.

A. Invocation by a $RUN command.

1. Storage and devices acquired by previous commands and all their
consequences are released.

2. Devices required for the run are acquired.

3. The program is loaded, with the map produced if a loader output
file or device was specitied.

4, The registers are set up as in a normal subroutine call.

5. The system transfers to the program at the entry point.

6. The program can return to the system via normal subroutine return
conventions or by calling the system subroutines SYSTEM or ERROR.

B. Invocation by a $LOAD command.

This is processed exactly as a $RUN command, except that the loaded
program is not executed. Instead MTS remains in command mode. The
program will be started in the normal fashion if a $START command is
given. This allows the user to display and alter sections of the loaded
program before execution begins.

C. Invocation by a call upon LINK.

1. The program is loaded, with the map produced if a loader output
file or device was specified on the initial $RUN or $LOAD
command.

2. The registers are set up to make the call upon the LINK

subroutine transparent.

Description of the Loading Process 319

MTS-292-0

12-1-67

3. The system transfers to the program at the entry point.

4. TIf the program returns as a normal subroutine, all storage
acquired to 1load it plus all further storage acquired by it at
its storage level and at higher levels is released.

5. The system returns to the program which called LINK.

D. Invocation by a call upon LOAD.

1. The program is loaded, with the map produced if a 1loader output
file or device was specified on the initial $RUN or $LOAD
command.

2. The external symbol table and entry point of the loaded program
are made available to the program which called LOAD.

3. The system returns to the program which called LOAD.

Note that the program loaded is in core and ready to use. Aall
storage acquired during the 1loading operation is cataloged wunder a
unique storage index number. This storage can later be released by
calling the subroutine UNLOAD.)

E. Invocation by a call upon XCTL.

1. The storage having the current storage index number is released.
This presumably is the program which is calling XCTL.

2. The program is loaded, with the map produced if a loader output
file or device was specified omn the initial $RUN or $LOAD
command. '

3. The registers are set up to make the call upon the XCTL
subroutine transparent.

4. The system transfers to the program at the entry point.
5. 1I1f the program returns as a normal subroutine, the action taken

is the same as what would have happened if the program which
called XCTL had returned instead.

MTS-294-0

12-1-67

DESCRIPTION OF THE LOADER INPUT

The loader accepts as valid input thirteen different types of input
records. These input records break into three groups: one group of records
is generated by language translators to form object modules, the second
group is generated by the user to "patch" object modules and specify entry
points, while the third type 1is used to control selective loading of
library object modules and other services.

A1l loader input images are identified amnd referred to by the sequence
of three characters appearing in the second, third, and fourth columns of
the input record. Although loader input usually consists of card images
and this writeup shall describe them as such, variable length input lines
are accepted by the 1loader provided that all required information is
present as specified and all counts are correct. Records of up to 256
bytes in length are accepted.

Following is a brief paragraph describing each of the valid loader input
records. If the loader encounters a non-loader type record, it prints out
the contents of the record and considers it to be a logical end-of-file.
Following that is a table showing the exact record formats for each type of
loader input record.

1. Translator-generated load Records

A. ESD Input Record. (Extermnal Symbol Dictionary).

Translators generate ESD records in object modules to define the
external symbols contained within the module and indicate which
symbols external to the module are referenced within it. All
necessary information, such as 1length of control sections and
program common, alignment of pseudo-registers and address of an
external symbol definition within a control section is specified
for the loader.

B. TXT Input Record (Text)
The TXT input records generated by translators contain the actual
text or data of the module. Information on the TXT record
includes the control section the data is contained in, the
starting address of that data within the control section, the
number of bytes of data on the record and the record itself.

C. RLD Input Record (Relocation Dictionary)
The RLD input records generated by translators contain all
information necessary to relocate address constants which refer

Description of the Loader Imnput 321

MTS-294-0

12-1-67

to external symbols or labels within the control section.
Information on the RLD record includes the control section and
address within it of the address constant, the length of the
address constant, and the external symbol which the address
constant referred to.

END Input Record
The END record indicates the end of the object module. It may
optionally give an entry point address within the module.

SYM Input Record

The assembler generator SYM records in object modules if the TEST
parameter is turned on. These records contain a dictionary of
symbols which are internal to the module and are used by symbolic
debugging packages. These records contain no information that is
vital to the loading process and are ignored by the loader.

2. _User-generated Load_ Records

322

LDT Input Record (Load Terminate Record)

A load terminate record is optional, but may be placed after the
last object module by the user. The loader will never read past
the 1load terminate record, so that it can be used to stop the
loader when data records follow the object deck. It also can be
used to specify the entry point of the program. The external
symbol which indicates the entry point is ignored if it is blank.

REP Input Record (Replace Record)

A REP record can be used to "patch" (correct) errors in the text
of a control section. All fields of a REP record are specified
as hexadecimal digits, so that the information can be typed at
terminals and is readable. The record contains the ESD identifi-
er of the control section and starting address within it to be
modified. Furthermore, it contains the data which is to replace
the original text. This data must always specify an integral
number of bytes of data, with two hexadecimal digits per byte.
The data can be delimited by commas on the byte boundaries, if
desired; and the data field ends with the first blank. The
"patch" can be applied on any byte boundary and be of any length
which will fit on a loader input record.

DEF Input Record (Define External Symbol).

A DEF record can be used to define an external symbol within an
object module. 1Its primary use is to define symbols as external
when this was forgotten in the original source module. The

MTS-294-0

12-1-671

record contains the name of the symbol, the control sectiom it is
located in, and its address within the control section. All
nunbers are specified as hexadecimal digits.

D. ENT Input Record (Entry Point Record)
An entry point record may be used to specify the entry point of
the program. The record contains the external symbol with which
execution of the program is to begin. ENT records are generated
by some translators.

E. NCA Input Record (No Care Record)
A no care input record can be used to specify that the user does
not care if the symbol referenced on the NCA record is undefined.
The loader will not print an error message if this symbol is
referenced but not defined. Instead, it will be treated as if it
has a value of zero. NCA records are denerated by some
translators.

3. Library Control Records

A. LCS Input Record (Low Core Symbol Table).)

The LCS record is used to present a low core symbol dictionary to
the loader. The external symbol specified is assumed to be the
origin of an external symbol dictionary, which contains entries
for symbols and their values. If any symbol in the table has
been referenced but not yet defined by the object modules loaded
thus far, it is given the definition contained in the table. See
section MTS-298 for a description of an external symbol dictiona-

ry.

B. LIB Input Record (Library record)

The LIB record is used to control the selective loading of
library object modules. If the symbol on the LIB record bhas been
referenced by object modules loaded thus far but never defined,
the object module immediately following the LIB record is loaded.
Otherwise it is ignored. Optionally the LIB record may contain
the 1line number on which the object module begins. The object
module then would not be located after the LIB card but would be
pointed by it. The processing of the’ library is faster if this
option is taken, since object modules which are not referenced
need not be read.

C. RIP Input Record (Reference 1f Present Record)
The RIP record is used to solve problems of nultiple entry points
and forward references within the one-pass library scaam. If the

Description of the Loader Imput 323

MTS-294-0

12-1-67

second symbol on the record has been referenced but never defined
by the object modules loaded thus far, the first symbol is also

marked as having been reteremnced but not yet defined (provided it
is indeed not yet defined).

MTS-294

12-1-67

Record

-0

Formats - Dynamic_lLoader

The following are the card image formats for the dynamic loader.
loader will accept variable length input up to 256 bytes long, but
images are the most common and hence are shown here.

1. Translator-generated Load Cards:

ESD Input_ Record_ (Card_ Image)
1 L]] 1 Ll L Ly T L
111 2-41 5-10 {11,12)13,14}15,16} 17-72 { 73-80 (
L1 1 L 1 L [} 1 1
r Y T T ¥ r ¥ L

o | | | | |

i | | | | L.ESD_DATA--see below '—Not
| | | | | . used
(| | | | t—-Blank 1f all ESD items are LD

P | | i L ESD_IDENTIFIER of first ESD item

P | | ‘—Blank (other than LD)

[1 i

[| t-Number of bytes of ESD data

I |

b 1

. t—Blank

[

| L-ESD

|

L_Not used

Description of the Loader Input

The
card

325

326

MTS-294-

12-1-67

0

ESD Data Item

L

1-8

O
—

0-12}

1

T v
131 14-16}
3

—i

1
r
I
|
i
]
|
|
|
|

CTTTTTTTTTTY

L} L)

L—Zero-if length is on END card.

t-Length of control section (if type is: SD,PC,CHN)
L-Identifier of SD entry containing name

L-Blank if type is ER

L-Lenqth of pseudo-register (PR)

-Blank-alignment Factor for type PR

L-24 bit address (SD,PC,LD,LR)

t—-Iype-Hex (00=SD,01=LD,02=ER,03=LR,04=PC,05=CM,06=PR)
\-Name--when type is SD,LD,LR,ER,CH,PR
t—Blank--when type is PC or blank CHM.

1TYPE MNEMONIC ; MEANING }
L 1 }
; SD i Name Control Section i
L. 1
i LD ; Entry Point Name]
1. 1
i ER ; External Symbol Name }
L] 1
; LR i Label Reference i
[i
; PC i Private (blank-name) Control Sectioni
L i
; CHM ; Program Common Name i
L 1
i PR i Pseudo-registers Name }
L 1]

MTS-254-0

12-1-67

Text Input Record (Card Image)

1 4 T ¥ 1 1} 1 Ll L] 1
1112-41516-819- 10111,12113,14115,16| 17-72 { 73-80 |
L‘..l..r._..J.l_.l.‘..__..l_I Lr J_r J_l J_r i - 4

I (I i | | | L-Text data(machine ||

I 1 11 | | | 1 language code) t—Not

i I | | | +-SD_Identifier of used

[1| | i | SD for control of

(I | |] | | this section of this text

(I 1 { | L—Blank

[[| i

[(I | L—Number of bytes of text data

(I | i

(I i t—Blank

1 (I

| | 24 bit address of first byte of text data

1 —Blank

| “IXT

L—Not used

Description of the Loader Input

327

328

MTS-294-0

12-1-67

RLD Input Record (Card Image)

L T L L} T L ¥ L
1 112-415-10111-12113-16] 17-72 | 73-80 |
LI'J‘I L T L r 4 f . T n T !

|] { l i |

b | | | | L—Not

I { I | L-RLD_data-see below used.

I | { |

I | | t—Blank

(I | |

[| L-Number of bytes of RLD data

[L-Blank

L-RLD

T

rto
|
!

L-Flag field-- (TTTTLLSTn)
TIITT=type
0000=non-branch
0001=branch
0011=pseudo register

cumulative length
LlL=length_of address

constant
01=2 bytes
10=3 bytes
11=4 bytes

|
|
1
]
|
|
{
|
|
|
|
|
|
|
]
|
|
| the address constant
1

L-Assigned address of address constant

S=Direction of relocation

O=positive (+)
1=negative (-)
In=type of next RLD item
O=next RLD item has a
different R or P pointer
They are present in the
next item.
1=next RLD item has the
same R and P pointers,
hence they are omitted.

L-Position pointer (P)-ESDID of SD
for control section that contains

L-Relocation_pointer (R)-ESDID of CESD entry
for the symbol being referred to. Zero (00)

if type=PR cumulative length

MTS-294-0

12-1-67

END Input Record (Card Image)

| T 1 L 8 1 L L 1
{112-41516-8] 9-14 {15,16] 17-28 [29-32| 33-80 |
"r"'r . r"‘r Ll" lf J_l" Ll’ A ¥ J

11 (I | | | | |

11 11 l { | | t—Not used

[i i | | i '

(| || | | | t-Ccontrol section length

(I (I i | t—Blank for control section whose

[1| t—Blank{ length was not specified

I [| in SD ESD item. Byte 29

1 (I i is binary zero if length

I [| is present.

i1 11 | _

[I 1 LESDID of SD item for this section that

(| 11 contains the address specified in

(I (I bytes 6-8.

11 (I

(! | «—24 bit address of entry point (optional)

11 1

(. —-Blank

I

| —END

1

L-Not used

Description of the Loader Input

329

330

MTS-294-0

12-1-67

SYM _Input Record (Card_ Image)

L
11,12 | 13-72

L

T

-
73-80 |

—— . —— — — = —
——— e —— -

t—Blan

[m—————————1

SY

'L—Not used

L-Not
used

t—Symbolic Debugging Package data

L—Number of bytes of symbolic

debugging package data

MTS-294-0

12-1-67

2. User - generated Load Cards:

1LDT Input Record (Card_Image)

T 8 T T t
| 112-4} 5-16 | 17-24 | 25-80 |
Lr"‘r' L T L— L T .
i | | 1
I | | |
[t-Not i L-Not used
11 used |
| “LDT L8 character entry point
|

name (optional)
t—Not used

REP Input Record (Card_ Image)

N
[}
&
-

[=1)
-.._.__._.___.__.—.-I

Lo

- o ————— —— —— ~
1
ey
N
-

17-80 |
L)

|

L—An even number of hexadecimal
digits ending with the first
blank which replaces an integer
number of bytes. The digits may
be separated by commas (on byte
boundaries only) if desired.

r—"
L —

—=——1-2.
[=1-1

0w o
O ct

T
3-14115-16
1

]

——
=}
=]
o]

— e — e amm. St o)

L-ESD_Identifier of SD for control
section of text as two right Jjustified
hexadecimal digits.

L—-Not used

t—Address of first byte of replace data as six

right justified hexadecimal bits.

L_Not used

r
|
|
|
|
i
|
|
|
|
|
|

Note: A zero ESD Identifier always indicates that the address is absolute,
that is, not to be relocated at all.

Description of the Loader Input 331

MTS-294-0

12-1-67

DEF_Input Record (Card Image)

I T LE 1 L 1] ¥
I11 2-415-617-12113-14(15-16| 17-24 |25-80 |
LI'J'I l| L e ll 'l .I
I | | i |
1 | | | L-Not used
| ‘-—DEF | |
| | L—External symbol which
L—Not | is to be defined.
used |

L-ESD_Identifier of SD for control
section to contain this external
symbol, as two right justified
hexadecimal digits.

L—-Not used

t-Address of the external symbol as six right
justified hexadecimal digits.

|
|
|
|
|
|
|
|
|
|
|
|
|
L—Not used

ENT Input Record_(Card_image)

L
T 1 2-4 | 5-16 | 17-24 | 25-80

L-Not used

8 character entry
point name

— e e — o — —

L—_Not used

fmmm

r
|

|

|

I

|

|

!

|

|

| ENT
]

—

Not used

MTS-294-0

12-1-67

NCA Input Record

(Card _Image)

) 1
11 2-4 | 5-16 | 17-24 | 25-80
]

T
|
|
|
|
{
}
| L_Not used
i

L-NCA

r-
o

L—Not used

L—_Not used

t—Name of the external symbol
which can be left undefined.

Description of the Loader Imput

333

MTS-294-0

12-1-67

3. Library Control Cards

T T T ng -
1112-415-16117-24 | 25-80 |
"r'J'r 'r’* 'r L T .
(| | | I

(| | | L-Not used

(I | |

| LLCS| L—-The external symbol whose value is
i | the origin of a low case symbol
L—Not | dictionary table.

used}|

L—Not used

Note that the system low core symbol dictionary has the pre-defined nanme
LCSYMBOL. An LCS card referencing that symbol can be placed at the end of
the deck by the user and will eliminate several seconds of loading time if
no library subroutines are referenced.

LIR Tnput Record (Card Image)

LE v
| 11 2-4 | 5-8 | 9-16 | 17-24] 25-80

object module.

LI Il .l ll ll lf 4
| | | | | |
| { | | { |
| | | | 1 L—Not used
| —-LIB | | l
| | t—Not |
L—Not | used |
used | t—The module name of the
i
|

t—Blank: object module follows.

1
L—Full word integer line number of

the first line of the object module.

334

MTS-294-0

12-1-67

RIP Input Record (Card Image)

L—External symbol to be treated as
referenced but not defined if the
symbol to be tested is of that class.

L L} T L L] 1) L) 1§
1112-4 |5,617-14{15,16] 17-241 25-80 |
LrJ‘r Jl J‘r J‘l J‘l lr 4
(I | | | | |
11 | | | | L-Not used
I | 1 |
| L-RIP{] | L—External symbol to be tested.
l | | 1
L_Not | i t—Not used
ased |]
I
|
|
|

t—_Not used

Description of the Loader Input 335

336

Loader Input Deck Ordering and Restrictions

The usual order of loader lines within an object module is depicted in
the following diagram. The top of the diagram is the front of the object
module. REP, DEF, and RLD recoras are optional and appear only if
required. The user must supply REP and DEF cards if he requires then.

Languages processors do generate the object module cards in the correct
order.

ESD Records

TXT Records

REP Records

DEF Records

RLD Records

END Record

e e e e e e e e dh e - —— - b —)

[~ O YT e ST e e e Gy e e — — . — o

Order of loader lines within an object module.

The usual order of the object modules and other loader lines within the
loader input is depicted in the following diagram. Because they are
usually used only by the library, the positioning of LIB and RIP cards is
not shown here.

MTS-294-0

12-1-67

First Object Module

- o — —
e e e -

Second Object Module

|
|Last Object Module

b o o oo

I
|LCS LCSYMBOL Record
L

r |
|LDT "Entry Point" Record|
L

3

order of loader lines within
the input to the loader.

A user is posed with the problem of presenting the loader will all of
the loader input records in the correct order. One solution of this is to
concatenate all of the files which contain object modules that are to be
loaded together. For instance, suppose that three object modules have been
generated by language translators, one object module in each of the files
-0BJ1, -0BJ2, -O0BJ3. Then an appropriate run command to load and run the
contents of these files might be:

$RUN ~0BJ1+-0BJ2+-0BJ3

The contents of these files could be combined into one file if desired, by
a command as:

$cory -0BJ1+-0BJ2+-0BJ3 TO -0BJECT

The load specified above could then be written as:

Description of the Loader Imput 337

338

MTS-294-0

12-1-57

$RUN -0BJECT

The object modules could also be put into the same file by use of
appropriate starting line numbers on the output device for the translator.
For instance, the object modules from two runs of the assembler could be
run using the following segquence:

$RUN *ASMBLR; SPUNCH=-0BJECT SCARDS=...
SRUN *ASMBLR; SPUNCH=-0BJECT (LAST+1) SCARDS=...
$RUN -OBJECT

These hints have indicated just a tew of the more common ways a user may
present the loader with the appropriate set of input records.

A deck which follows all the suggestions above concerning deck ordering
may still run into difficulties, especially if it uses program common oOr
pseudo registers. There are also some problems with the ordering of CSECT,
START, ENTRY, and V-type adcons within assembler language source modules.
A more precise list of the deck ordering restrictions follows, with.a brief
description clarifying the restriction if necessary. In general, the
restrictions are those which would be normally éxpected from a one-pass
loader with special provisions for external symbol forward references.

1. Object Modules cannot be intermixed.

The moral is, do not shutfle your object module decks together.
Object modules should be placed in sequential order, one after the
other.

2. If more than one object module references a pProgram common oOr
pseudo-register, the object module which declares the program common
or pseudo-register to be the largest should appear first.

The first reference to a program common or pseudo-register is
used by the loader to assign the space for that program common OL
pseudo-register. Hence if a later reference requires more space, it
will run over the end of the space actually allocated. No error
messages are generated for this situation.

3. An LCS record may appear anywhere; however, it will define only
those symbols which are referenced in the object modules which
preceded it.

4. An LDT record must, of course, be the last record, since it Yturns
off" the loader.

5. Within an object module, an ESD Identifier must be defined before it
is referenced.

The ESD Identifiers are integers waich are put into correspon-
dence with the external symbols referenced within the object module,
so that all references to these symbols on the other records within
the module can consist of a two byte integer rather than the eight

MTS-294-0

12-1-67

byte symbol name. On the surface this restriction merely states
that TXT, REF, DEF, and RLD records saould not appear before the ESD
records. More subtly though, some items on the ESD records (namely
items generated by the ENTRY statement in assembly 1language) refer
to another ESD item (namely the control section containing the
definition) via an ESD identifier. Hence a sequence in which the
ENTRY statement appears betfore the START or CSECT statement for the
control section containing the symbol will generate an ESD Identifi-
or forward reference within the ESD records themselves. That 1is,
the sequence

ENTRY WHEE
CSECT
WHEE EQU *

will cause a loader error, whereas the sequence

CSECT
ENTRY WHEE
WHEE EQU *

will be loaded correctly. This problem in forward references of ESD
Tdentifiers should not be confused with external symbol forward
references, which works correctly in all cases.

6. Within an object module, no external symbol may be assigned more
than one ESD Identifier.

An external symbol will be assigned more than ome ESD Identifier
if it occurs more than once on tne ESD records. The only known way
of causing this error is to refer to the same symbol in a V-type
adcon and in a CSECT, START, EXTRN, or ENTRY statement in assembly
language. That is, the sequence

WHEE CSECT
.
°
.

DC V (WHEE)
#ill cause a loader error, whereas the sequence

WHEE CSECT

DC A (WHEE)

will b2 loaded <correctly. The reason is that the former comnstruction
declares the external symbol WHEE to be defimed in this object module and
sxternal to this object module at the same time, which confuses the loader.

7. The TXT and REP records within an object module take effect in the

Description of the Loader Input 339

MTS-294-0

12-1-67

order they appear. An RLD item either takes effect immediately if
the external symbol referenced is already defined, or is saved until
the object module which defines that external symbol has been
processed.

8. The last record of an object module must be its END record.

340

MTS-296-0

12-1-67

DESCRIPTION OF THE LOADER OUTPUT

Introduztion

The dynamic loader produces two types of output as the fruits of its
labors. The first +type of output is the program which remains in the
memory of the computer. The second type of output consists of printed
information describing the results of the loading endeavor. Both of these
are described in more detail below.

The sole purpose for the existence of the loader is to put programs into
the memory of the computer in such a way that the program can be executed.
The 1loader performs thres operations to each control section that is
loaded. These are:

1. The loader acquires storage for each control section. An indepen-
dent block of storage is acquired for each control section. The
block of storage acquired for a control section comes from any
available free area of the computer's memory which is large enough.
Hence it is unlikely that any two control sections will be loaded in
contiguous storage or that the loading of the same program on two
different occasions will produce an identical map. This is a very
important difference between MTS and other systems which have been
run at the University of Michigan in the past. It is not at all
possible to postulate where a control section will be loaded

relative to other control sections, Core storage is acquired
dynamically on a competitive basis against the other wusers of the
systen.

2. The 1loader insesrts the text of each control section into the area
acquired for the corresponding control section. 0f course, the
relative displacement between any two bytes of a control section is
preserved. One can think of this process as picking up the text of
the control section and copying it into the storage acquired for the
control section byte-by-byte, in the exact order of the origimnal
control section. No changes are made at this point to the text of
the control section to indicate that is has moved.

3. Because control sections can be located anywhere arbitrarily rela-
tive to each other, it is necessary for the loader to be able to
"inform" a control section of the 1location of itself and other
control sections which it wishes to reference. Because of the

Description of the Loader Output 341

342

MTS-296-0

12-1-67

base-displacement addressing scheme on the IBM/360, only address
constants and channel command words need to be modified by the
loader. This process is referred to as relocating the appropriate
address constants and channel command words. Address constants and
channel command words which require relocation contain expressions
which have a machine address as a value. Furthermore, " these
expressions contain references either to external symbols or symbols
within the control section containing the address constant or
channel command word. The loader evaluates these expressions, using
as the values of these symbols the memory locations they have been
assigned to in the loading process. The value of this expression
then becomes the contents of the address constant or channel command
word. 1In this manner then, a control section may refer to other
control sections even through they are assigned storage independent-
ly.

Printed Output

The second type of output generated by the loader comnsists of printed
information describing the results of the loading endeavor, This includes
error messages, a map showing the value of each external symbol as well as
the location and relocation factor of each control section, and the entry
point of the program. All numbers printed in the map and error messages
are in hexadecimal. The map may be omitted. A sample of some loader
output is shown below. The various parts of the printed output will be
discussed following the exanmple.

Sample Loader Printed OQutput

SNARK IS AN UNDEFINED SYMBOL.

ENTRY = 047018

NAME VALUE T RF NAME VALUE T RF NAME VALUE T RF

SNARK -—===-- SYSTEM 014CAC * ERROR 014CEY *

GDINFO 017810 * GETFD 0181E0 * SDUMP 0183D8 *

SCARDS 018464 * SPRINT 018476 * SPUNCH 018488 *

SERCOM 01849a * READ 018506 * WRITE 018522 *

LCSYMBOL 018BA8 * MYCOM 02C018 C02Cc018 SUB1 02Cc730

SUB1# 02C730 02C730 IHCFCOMH 030018 030018 IBCOM# 030018

FDIOCS# 0300D4 MAIN 047018 MAIN# 047018 047018
L

MTS-296-0

12-1-67

The Entry Point

The entry point of the program is computed by the loader as described in
the section MTS-292. This entry point is printed as a part of the 1loader
output. In the sample above the entry point is at address 047018, which is
also the value of the external symbol MAIN. Hence execution of the program
will begin in the subroutine whose name in MAIN. This effect might have
been caused by an LDT record giving the entry point external symbol WMAINY.

The Map

The map contains an entry for each external symbol which has been
referenced in the loading process. Each entry gives the name, value, type,
and relocation factor of its symbol. The entries of the map are printed in
ascending order by value. The information in an entry is described in more
detail below:

1. Name
This is the eight character name of the external symbol. Each
non-blank name can be associated with only one external symbol.

2. Value
This is the actual address assigned to the external symbol. It
is the address in the computer's memory where the instruction or
data associated with the external symbol is located. If the symbol
is undefined the value is printed as six dashes. For pseudo-
registers this is the displacement assigned within the pseudo-
register area.

3. ZIype
The type gives some indication of the status or special
significance of the symbol. The allowable types and their meanings

are:

* The symbol is a system symbol. It is either pre-defined by the
system, or received its value via the processing of amn LCS
record.

c The symbol is the name of a program common. Note that progranm
common is treated much like a control section. There 1is mno
fixed area in which program common is located and there may be
more than one common.

D The symbol has been defined by the user with a DEF control
record.

p The symbol is a reference to pseudo-register storage. This is

used by some translators to handle dynamic storage assignments.

A1l other symbols are given a blank type code. This indicates

Description of the Loader Output 343

344

MTS-296-0

12-1-67

that they are the ordinary type of symbol with no special meaning.
For instance, control section names and entry point names fall i
this category.

4., Relocation_ Factor

Every symbol which is the name of a control section also has :
relocation factor printed in its entry. The relocation factor is
the number which must be added to addresses in an object o1
assembler listing to compute the actual machine memory locatiol
address of the item in question. That is, the relocation factor it
the location corresponding to the location 000000 in the contro]
section object 1listing if indeed there was such a location. The
relocation factor is essential for finding information in storage
dumps.

Error Messages

As the loader is processing its input, it checks the input for errors.
An error message 1is printed for each error detected and the action taken

next depends upon the severity of the error. If the error 1is a
non-recoverable error, loading is terminated immediately and execution of
the program is aborted. If the error is is a fatal error, loading is

continued but the execution of the program is still aborted. Finally, if
the error 1is a non-fatal error, loading continues as normal. A list
showing each message, its severity, and likely causes for the message is
given below:

1. INPUT RECORD LONGER THAN 256 CHARS.

Non-recoverable. An input record was read which was longer than 256
characters. Since the input buffer is only 256 characters long,
internal tables may have been destroyed.

2. CARD NOT A LOAD CARD, END-OF-FILE ASSUMED.

Non-fatal. An input record which did not have a legal loader record
type in positions 2,3 and 4 was read. The contents of the record
are printed, and are 1lost for further processing. The loadet
continues as if this had been and end-of-file.

3. PROGRAM BUFFER OVERFLOW.
Fatal. The core storage acquired for the loading of the next
control section is not large enough to hold the control section.
This error is intercepted by MTS and treated as a request for more
space by the loader. It should never appear.

4. XXXXXXXX IS MULTIPLY DEFINED. FIRST DEFINITION USED.

Non-fatal. Two object modules containing the definition of the
given external symbol have been loaded. The first definition of the

MTS-296-0

12-1-67

symbol is the one actually used in all references to the symbol.
The second definition is ignored entirely in loading.

ESD/RLD TABLE AREA OVERFLOW.

Yon-recoverable. The area used by the loader for internal tables is
not 1large enough to hold all the information necessary to load your
program. You may take one of the following actions +to reduce the
table requirements of the program:

a. Re-order your program so that frequently referenced external
symbols are defined betore they are referenced. This will
reduce the amount of space required to hold RLD information.

b. Reduce the number of external symbols used by your progranm.

C. Pre-process your program through a LINKAGE EDITOR to reduce both
the number of control sections and amount of unresolved RLD
information.

ESTD XXXX RELOCATION FACTOR UNDEFINED.

Non-recoverable. Information on an ESD, TXT, REP, DEF, RLD, or END
record is to be relocated relative to the symbol which has the
specified ESID. However, either no symbol has that ESID, or the
symbol which does have that ESID is not the name of a control
section and hence does not have a relocation factor associated with
it. Common causes of this error are

a. Mixing up the order of the object module records.

b. Leaving object module records in a file which contains a newer,
but shorter object module so that the loader attempts to process
these 01d, obsolete records.

c. Placing the ENTRY pseudo-op before the CSECT pseudo-op for the
CSECT containing the external symbol in assembly code.

D. Referencing an external symbol which is defined within the
current assembly with a V-type adcon.

ESID XXXX UNDEFINED.

Non-recoverable. An address constant or channel command word
references the symbol with +the specified ESID within it's
expression. However, no external symbol has been given this ESID in
the object module being processed. This message is caused by the
same errors as listed under error message 6 above.

XXXXXXXX IS AN UNDEFINED SYMBOL.
Fatal. The external symbol specified has been referenced by at

least one of the object modules loaded, but has not been defined.

Description of the Loader Output 345

MTS-296-0

12-1-67

MTS Errors_or_ Program_ Interrupts During_Loading

The loader does not check the address specified on TXT and REP record:
to see if the address is actually within the legal range for the contro:
section. Instead, it dutifully loads the data on the record as requested.
An illegal address may cause the loader to generate a program interrupt.
The cause of the interrupt will usually be an addressing or protectiol
violation. The address of the instruction at fault will be within th«
first few pages of the machine memory.

It also is possible that MTS errors will develop during loading whic]
usually are not the fault of the loader. For instance, a bad file wil.
cause an error.

MTS-298-0

12-1-67

LOADER LIBRARY FACILITY

The dynamic loader has associated with it a very primitive library
facility. The facility consists of three control records, namely LCS, LIB,
and RIP, records. The LCS record is used to cause referenced but not yet
defined symbols to be defined from an in-core table if they are defined
there. The LIB record is used to selectively load the object module which
follows or is pointed to by the LIB record only if the module name has been
referenced but not yet defined. The RIP record is used to handle forward
references and multiple entry point problems in the one-pass 1library. A
set of symbols may be pre-defined. These are defined at the initialization
of the loading process and cannot be re-defined by the user.

The System_ (Public) Library

The MTS system library faciliity consists of an in-core dictionary of
resident symbols located at LCSYMBOL and a file of object modules with the
appropriate control records in the file *LIBRARY. The action taken by the
loader with respect to system symbols is as follows:

1. A small set of pre-defined resident system symbols are defined.
These cannot be redefined by the user.

2. The user's object modules are loaded.

3. If after loading all of the user's object modules any symbols remain
undefined: '

a. A pass 1is made of the file *LIBRARY to selectively load object
modules which define thus far undefined symbols,

b. The table at LCSYMBOL is searched for any symbols still
undefined.

Note that if only pre-defined and resident system symbols are ref-
erenced, the pass over the library can be eliminated by enclosing an LCS
record referring to LCSYMBOL after the last object module. Several seconds
can be eliminated from the loading time in this manner.

Loader Library Facility 347

l
|

3u8

MTS-298-0

12-1-67

Optional Libraries

Optional 1libraries may be concatenated to the end of the user specifie(
source. Object modules from the optional 1library will be selectivel:
loaded after all modules preceding it in the user specified source have
been loaded and before the system iibrary is scanned. The optional librar)
may be either a public library, as the Scientific Subroutine Package in the
file *S5P, or a private library created by the user.

A private optional library consists of the object modules the use;
desires in his 1library together witnh the necessary LIB and RIP contro.
records to define the module names, entry points, and references for the
selective 1loading feature of the loader. Although the user can coanstruct
such a library himself by inserting appropriate LIB and RIP records in witl
his object modules, this task has proven formidable enough with large
libraries that a program has been written that analyzes the object module:
that form the library and generates the library complete with all L1LIB an¢
RIP records. More details can be found in the description of the file
*GENLIB in section MTS-280/27455.

Optional libraries are referenced by concatenating them to the end of
the user specified source. ‘For example, the contents of the file -LOAI
might be loaded allowing reference to the user optional library MYLIB anc
the SSP library by the following RUN command.

$RUN —-LOAD+MYLIB+*SSP *SINK*

Pre-Defined Symbols and Low Core Symbol Dictionaries

The dynamic loader allows external symbols to be pre-defined at the
beginning of the loading process. It will also search an "external symbol
dictionary" for the definitions of external symbols which have beer
referenced but not yet defined whenever an LCS record is encountered. Botk
of these facilities are available through the LINK, LOAD, and XCTI

subroutines. They are a convenient way to allow the programs loaded vis
LINK, LOAD, and XCTL to reference routines or data items which are already
loaded. This allows +the user to set up some semblance of an overlayj
structure. '

Both the pre-defined symbol and "low-core symbol" capabilities require
tables called external symbol dictionaries. An external symbol dictionary
consists of (12%N+4) bytes, where N is the number of extermal symbols ir
the dictionary. The dictionary must begin on a full-word boundary. The
first word of the dictionary contains N, the integer number of symbols
entered in the dictionary. The rest of the table consists of external
symbol entries, each being twelve bytes long. The first eight bytes of &
symbol entry contain +the EBCDIC name of the symbol, left-justified wittk

MTS-298-0

12-1-67

trailing blanks. The last four bytes of the entry contain the value of the
symbol as a full-word integer.

As an example, suppose that a language scanner is to be brokem into an
overlay structure consisting of a scanner which links to a different module
for each type of statement. Each statement module may in turn refer to the
subroutines EXP, PUN, GEN, and NXTCHAR to scan the next expression, print
on error message, gJgenerate output, and acquire the next character,

respectively. An external symbol dictionary to define these symbols might
be:
MYEXTSYM DC F'4? Four Entries
DC CL8'EXP! Defines EXP
DC A (EXPRTN) Internal, different name
DC CL8'PUNT' Define PUNT
DC A (PUNT) Internal, same name
DC CL8'GEN! Define GEN
DC V (GENRTN) External, different name
DC CL8'NCTCHAR! Define NCTCHAR
DC V(NXTCHAR) External, same name

Notice that it matters not whether the symbol is external or internal in
the routines already loaded. It may even have a different name in the
program already loaded.

Now these symbols and the definitions given above might be passed on to
a program to be loaded using LINK, LOAD, or XCTL via the second parameter
to those subroutines. The symbols in the above table would then be
appended to the symbols which MTS normally pre-defines and would become
defined during the initialization of the loader. These symbols can then be
referenced by the object modules being loaded. No object module can
redefine any pre-defined symbols, however. So these external symbols are
reserved symbols to the program being loaded.

The external symbol table constructed above could alternatively be used
as a "low-core" symbol dictionary. The loader would search the external
symbol dictionary for the definitions of external symbols which have been
referenced but not yet defined whenever an LCS record referencing the
"low-core" symbol dictionary was encountered. The advantage of this method
is that the program being loaded can define its own symbols with the same
names as some of the symbols in the low-core symbol dictionary without
conflict — the program's own definition will be preferred.

In order to reference the low-core symbol dictionary, the loader must
have an external symbol defined which is the base of the table. This can
be accomplished by making the name of the table a pre~defined external
symbol. For instance, in our example above we might have the second
parameter of the call upon LINK, LOAD, or XCTL point to the following
table:

PREDEF DC F'1° One entry

DC CL8'MYEXTSYM' Define MYEXTSYM
DC A (MYEXTSYM)

Loader Library Facility 349

350

MTS-298-0

12-1-67

Then the occurrence of an LCS record referencing the symbol MYEXTSYM will
cause each symbol contained in that external symbol dicticnary to be
defined with the value given in the dictionary if it has been referenced
but not defined by the object modulies 1loaded thus far. If the object
modules loaded define any of the symbols in the table, the definition given
by the modules will over-ride the dictionary definition.

It should be pointed out that the symbols defined as pre-defined symbols
or in low-core symbol dictionaries may have as their values the addresses
of any items in the loaded program which the user wants to reference in the
program to be loaded. For instance, the address of a subroutine, a common
section, or a variable might be passed on. For furthermore, the address
given as the definition of an external symbol need not have the same nane
or even any name in the already loaded program. It is just an address
which is associated with EBCDIC characters in the table to form an external
symbol definition for the program to be loaded.

When an already loaded program calls LINK, LOAD, or XCTL to load another
program, the loader starts fresh in the loading of the new [frogram. None
of the symbols in the loaded program are available to the program to be
loaded, unless explicitly passed on via a pre-defined symbol or low-core
symbol dictionary. Likewise, symbols in the program being loaded can be
passed back to the already loaded program only via the fourth parameter for
LOAD. Hence there is usually no problem of conflicting symbol names in
programs which are loaded via LINK, LOAD, and XCTL.

MTS-300-0

12-1-67

INTERNAL SPECIFICATIONS

e o o e . i e, e i . i S s e s e S S

This major section describes the internal structure and workings of the
MTS system. It is designed for the edification of all those interested and
for the use of the systems programmers working on the systemn. No user
should ever attempt to directly call any of the subroutines which might be
listed in this section.

Internal Specifications 351

352

MTS-320-0

12-1-67

FILE AND DEVICE

MANAGEMENT

This section
internally, at
subroutines are

is concerned with how files and devices are
the 1level of a wuser of the file subroutines.
separately describad in section MTS-350.

handled
The file

MTS-321-0

12-1-67

MTS INTERNAL SPECIFICATIONS

FILE AND DEVICE MANAGEMENT

INTRODUCTION

The basis of file and device management is the File or Device Usage
Block (PDUB). This kind of beast 1is attached to logical functions, such as
SCARDS, SPRINT, SPUNCH, AFD, SOURCE, etc. A given FDUB is pointed to by
exactly one "logical device". It in turn wpoints", by means of an LDN if
device and a FCB location if file, to an appropriate entry for the physical
device it 1is fastened to. Since these information blocks for physical
devices or files may have more than one FDUB pointing to them, each has a
use count, so that it will be known when the device can be released or file
closed.

The information block for a file is a File Control Block (FCB). Except
for the use count, name, and the chain-pointer, the information in it is
used only by the file manipulation subroutines.

mhe information block for devices consists of a number of parallel
tables, indexed by LDN.

The general sequencing for an I/0 call is as follows: the user CALLs (OS
type I) a public entry (such as SCARDS) which goes to the the Device
support Routines Interface prefix (DSRI prefix), which chooses the
appropriate Device Support Routine (DSR) and goes to it. The DSR returns
to the Device Support Routines Interface postfix (DSRI postfix), which
finally restores registers and RETURNs to the user. More specifically:

PUBLIC_ENTRY

The Public entry saves registers in the save area, identifies what is
the location of its FDUB, and whether the call is READ, WRITE, or other.
It then transfers to the DSRI prefix.

DSRI_PREFIX

DSRI prefix establishes necessary addressability and the location of
DSECT. It checks FDUB location to see if is zero - if so this '"logical
device" (e.g. SCARDS,SPUNCH,etc.) was never set up and the user is
prompted to either define it now or cancel. If the FDUB refers to a file
and this file has not been opened an attempt is made to open it. If a file
does not exist or a device is unavailable the user is prompted to enter a
replacemnent or cancel. At the time SCARDS, SPRINT, SPUNCH, SERCOM were set
up, the device type was checked to see if it was an input or output device

File and Device Management 353

354

MTS-321-0

12-1-67

as required, and the input/output bit in the FDUB was set accordingly. The
devices for READ and WRITE could not be checked then, so they are checked
now to make sure that it is an input type device for READ and output type
device for WRITE, and the FDUB input/output bit is set appropriately. On
the basis of the FDUB input/output bit, tae appropriate subroutine is
selected from the transfer vector pointed to by the FDUBSBR field of the
FDUB. The third argument of the call (nodifiers) is tested to see if
present and if so, the modifiers from the call and the default modifiers in
the FDUB are appropriately combined and placed in the rightmost three bytes
of the FDUBS field of the FDUB. If the call is for output and the "return
line number" bit is off or the "trim" bit is on, a fake parameter 1list is
constructed which is a copy of the user's but with the line length moved to
the MTS DSECT so it can be moditied for the "trim" bit and with a fourth
argument if the call was sequential with the "return line number" bit off.
(since the user is not required to supply such in this case) .

The FDUBCL region of the FDUB is of main use in sequential access: the
user does not supply a number, so the one in the FDUB is kept as a current
one and is updated. Hence for a sequential call, the FDUBCL is added to
the FDUBIL field and the result placed where the user's calling sequence
specifies the line number should go.

If output and case conversion is wanted, it is dome now, to_the line the
user's_calling sequence indicates.

A prefix character is set up, either the single character fronm PREFPIXC
or a line-number (from user's calling sequence), according as the prefix
bit is not or is set, respectively.

The DSR error bit in FDUBS is set to zero.

Finally, if +the attention latch is not set (indicating a non-immediate
attention has come through since the Jlast I/0 operation), control is
transferred to the DSR.

DSR

DSR does the actual I/0 operation requested. If the peel modifier bit
is set (input), a line number is peeled off the front of the 1line and
returned into the user's argument iist., Control is transferred to the DSRI
postfix.

MTS-321-0

12-1-67

DSRI POSTFIX

Tf +the DSR error bit is 1, the message whose length is in GR2 and
location is in GR3 is typed out and the return is set to INLOOP unless
SETIOERR has been called. DSRI postfix takes the line number from the
user's parameter list and puts it in FDUBCL. If this was an input call and
case conversion vas wanted, it is done now. Unless the
implicit-concatenation-off bit is set, the line (if input) is checked for
WECONTINUE WITH FDname" which signifies a change of file or device for this
logical input device. If the return code is 4 or the ending line number is
exceeded and this FDUB is not the iast one in a concatenation the next FDUB
is set up. Finally, the registers (saved at the public entry) are restored
and a return is made. The return code was set up by the DSR.

File and Device Management 355

MTS-322-0

12-1-67

FDBDCT
FDUBS

oK o 3 % % H * % o % 3 3

FDUBLN
FDUBBL
FDUBCL
FDUBEL
FDUBIL
FDUBSBR
FDUBSCR
FDUBNAM
FDUBDS
FDUBCH
*

FDUBL
FDUBAL

358

DSECT

DS

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

EQU
EQU

File or Device Usage Block DSECT Definition

F

e B B B B e B I

*-FDBDCT
FDUBL+1%4

SWITCHES - INCLUDES "MODIFIERS"
BYTE 1: BIT 0=0 DEVICE

1 FILE
BIT 1=0 INPUT
1 OoUTPUT
BIT 2=0 NO INDEXED OP
=1 INDEXED OP
BIT 3=0 NO DSR ERROR
=1 DSR ERROR
BIT 4=0 FILE NOT OPEN
=1 FILE IS OPEN
BIT 5=0 FDUB IS OK

FDUB IS BAD
BYTES 2,3,4: RESULTANT MODIFIER BITS
FCB LOCN OR LDN

BEGINNING LINE NUMBER

CURRENT LINE NUMBER

ENDING LINE NUMBER

INCREMENT

SUBROUTINE LOCATION

SCRATCH (SEQUENTIAL POINTER)
BACK POINTER TO WHO'S USING IT
DEFAULT SWITCHES

CHAIN TO NEXT (FOR CONCAT FILES)

LENGTH
ACTUAL LENGTH-INCLUDING CHAIN LINK

MTS-324-0

12-1-67

MTS - INTERNAL SPECIFICATIONS

FILE AND DEVICE MANAGEMENT

STRUCTURE OF DEVICE TABLES

These tables are indexed by LDN

1) DEVTBLS 1 word/entry
Contains switches
INUSE Byte 1 x'01' - In use bit

OPPEND x'02' - Operation pending on
this device

2) DEVTBLT 1 word/entry

Contains TYPE of device [4 char BCD]

\

3) DEVTBLN 1 word/entry

Contains NAME of device [4 char BCD]

4) DEVTBLU 1 word/entry

Use count for device in question.

5) DEVTBLC 1 word/entry

Header for lists of space allocated by device routines. All
storage allocated by DSR should be chained together by pointers

File and Device Management 359

MTS-324~0

12-1-67
in the first word of each block So it can be automatically
released when the device is released. All storage on the chain
must be system level storage.
6) DEVTBLP 4 double words/entry

Contains parameters for device.

First four words intended as parameter region for unit check
routines. Last four woras provide space for two CCW's.

MTS-325-0

12-1-67

DEVICE SUPPORT ROUTINES (DSR) - SPECIFICATIGNS

With the idea that the code for most devices will not be permanently
resident, but will be brought into a buffer as needed, the following
structure is set forth.

All of the routines to service a particular device will occupy a single
file. The "entry point" of this file (probably - but not necessarily - the
first 1location) will be the location of a list of adcons, each pointing to

the entry for the particular subroutine in question. These are, 1in the
order they will appear:

1. INITIALIZATION

3. GETFROM

4. WRITEON

5. SET ATTENTION

6. WAITFOR

7. RELEASE

[This list is not necessarily complete.]

The description of each of these folilows.

ommon Information

Each will be called as follows:

GRO will contain FDUB location.
GRY will contain the DSECT pointer.
GRS will point to a list of adcons, the first of which points to

the subroutine LINNBR which peels line numbers off the front
of - a line and converts them. The third word in the list of
adcons, points to a list of 6 full words giving the offset
from the front of the DSECT of the 6 device tables in the
order they are described elsewhere.

File and Device Management 361

362

MTS-325-0

12-1-67
GR11,12 will have the appropriate bases.
GR13 will point to a save area into which the appropriate save
has been done. This area may be accessed but not changed.
GR14 will contain the return location.
GR15 will contain the 1location of the first location in the

subroutine.

Each should return as follows:
(a) For GETFROM and WRITEON do not restore reg-
isters from save area. Do BR 14 with
GRO,GR1,G6R4,GR10-14 the same as they were when the
routine was called

(b) Others - standard 0S return.
For both cases GR15 should contain the return code,

1. INITIALIZATION

On entry, in addition to what is specified above, GR1 will contain a
location to transfer to if the device routines should decide at any time
the person is to be signed off. [Appropriate closing out will be done at
this time, and then the DITCH entry will be called. Calls to the other
entries preceding the DITCH call may be ignored.]

On this entry, everything will have been released and/or closed out
except the master source/master sink device(s) and any vital storage
associated with them, such as FDUB, FCB, etc. This is called only for
master source. This subroutine is responsible for making sure, in the
appropriate way, that the current user has been removed from that device.
When a return from this subroutine is effected, it signifies a no-user
condition.

3. _GETFROM

On entry, in addition to what was specified above, GR1 will contain the
location of a parameter list, GR2 will <contain the 1location of prefix
character(s) to be output at the front of the line, GR3 will contain the
number of prefix characters. The modifiers provided by the user as the
third argument in the parameter list will have been combined with the ones

MTS-325-0

12-1-67

following the FDname and the resultant directive bits placed in the FDUBS
field of the FDUB. For each pair of associated modifier bits, exactly one
of these bits will be on. Hence bit testing for modifiers should be done
in FDUBS and not in the parameter list. Testing and appropriate action
taking for the prefix bits, trim bits and the case_conversion bits are done
in the DSRI; the DSR is responsible for acting on the rest.

Line numbers are for the most part handled by the DSRI. The only case
that the GETFROM DSR must handle is if the "peel" modifier or bit is set.
In this case the routine must peel off the 1line number, convert it via
LINNBR, and return it to the user's parameter area. In no case should the
DSR change the line number information in the FDUB; this is taken care of
by the DSRI.

The parameter list is described in MTS-252. The subroutine shall obtain
the requested data and then return. The return code should be zero for
nqrmal return, and 4 for EOF return.

If an error is detected, the location of an error comment should be
placed in GR3, it's length in GRZ, a return code >4 in GR15, and the DSR
error bit should te set in FDUBS.

on entry, in addition to what was specified above, GR1 will contain the
location of a parameter 1list, GEk2 will contain the location of prefix
character (s) to be output at the front of the line, GR3 will contain the
number of prefix characters. The parameter list is described in MTS-252.
The subroutine shall output the data as specified and return. The return
code should be zero for a normal return.

If an error is detected, the location of an error comment should be
placed in GR3, it's length in GR2, a return code >4 in GR15, and the DSR
error bit should be set in FDUBS.

5. _ATTENTION

This is called only for the master source. On entry, in addition to
what was specified above, GR1 will contain a zero or location that can be
called if an attention or pseudo-attention (from full-duplex devices)
occurs. If GR1 contains zero then all further attention interrupts should
be inhibited. This call should be made with DSECT and base registers set
up, and with reg 0 containing the location at which the interrupt occurred
or zero if unknown in which case the attention will be processed later.
Also register 13 should point to a save area and register 1 to amn area
containing the general registers (in the order 0 to 15) at the time of the
interrupt. The occurrence of an wattention” should inhibit further of the

File and Device Management 363

54

same. If a return is made (before another set attention call), this means
erable further attentions (RC=0) or inhibit further attentions (RC=4), and
return to what was interrupted.

This subroutine is responsible for waiting, in the appropriate way, for
the next user to appear at the given device. When a return from this
subroutine is effected, it signifies a new user has been sensed and things
should start up again. This is normally called (for MSOURCE only) upon
iritial start-up, to wait for the first user, and thereafter after a DITCH
call wkich got rid of the previous user. If the device 1is capable of
producing an answer back then when WAITFOR returns register 1 should
contain tke location of a one byte count followed by the answer-back.

This is called only for devices that are not the master source. It is
the 1last subroutine called before the device is released, and should make
sure aporopriate close-out action is taken. It should neither release the
device nor the storage associated with it which shall have been put on the
DEVTBLC chain.

MTS-340-0

12-1-67

PROCESSOR_INTERNAL SPECIFICATIONS

This section contains descriptions of the internal workings of various
processors in the systen.

Processor Internal Specificatioas 365

366

MTS-341-0

12-1-57

LOADER INTERNAL SPECIFICATIONS

Introduction

The dynamic loader itself is a small, re-entrant, system-independent,
resident subroutine which processes loader input records, producing the
linked program in core storage and printed output. The loader itself does
not perform input/output operations or acquire storage for the control
sections it 1loads; all this must be provided by the routine which calls
upon the loader. Because such pronlems are left to the system in which the
loader resides, the overall flow ot the loading process as seen by the user
is more dependent upon that system than upon the loader itself. It can be
said that any similarity between the loader and the loading process as seen
by the user is purely coincidental.

The 1loader is a subroutine which may be called several times to
accomplish one loading process. Whenever the loader returns to the routine
which called it, it makes available to that routine a status word which
indicates the exact status of the loading operation at that time. If some
error condition existed which the calling routine could correct, it could
correct the condition and call the loader again to continue loading. Hence
it is possible for control to bounce back-and-forth during the load process
until finally all the smoke clears and the program is loaded.

This manual shall assume that all other loader manuals and the writeups
for the $RUN and $LOAD commands and LINK,LOAD,and XCTL subroutines have
already been read. The next few sections of this writeup will describe the
loader as a subroutine. ©No attempt will be made to explain the interaction
of the loader with MTS until the subroutine description has been completed.

Name

The name of the resident subroutine which accomplishes the loading
process is UMLOAD. This name appears in the map of resident system
symbols.

Function

The function of UMLOAD is to link and load one or more object modules,
each consisting of one or more control sections, 1leaving the executable
program in a specified region of core. The loading procedure is dome in an
"interactive" mode with the calling program. Input/output routines must be
provided by the calling progranm.

MTS-341-0

12-1-67

‘Calling Sequence

the calling sequence for UMLOAD is a standard 0S/360-Type 1 calling
sequence, with the exception of the save area. The so called save area is
a large area which must contain its length in its first four bytes. The
front of this area is used as a standard save area. The remainder of it is
used as the psect (changeable storage) for UMLOAD. Re-entrant code and ail
that you know. The register conventions are:

GRO1: Address of the first element of a parameter list. The parameter
list is explained in detail below.

GR13: address of the first word of a region of core which will be used

C by the loader as a save area and psect. The beginning of this
region must be set up as an 0S/360 save area. The first word of
this region must contain the length of the region in bytes. This
region must be at least 728 bytes long. Actually, to make the
loader internal tables of anywhere near usable size this area
should be at least 4096 bytes in length.

GR14: Address 6£ the return location im the calling progranm.

GR15: Address of the entry point of the load subroutine (UMLOAD).

Parameter List

The parameter list for UMLOAD is a standard 0S/360 parameter list, with
the exception that many of the parameters which themselves are addresses
are contained in the parameter list instead of being pointed to by elements
of the parameter list. Hence it would be a little difficult to write a
call upon UMLOAD in a compiler language. An explanation of each parameter
-follows:

PAR1: The full-word address of a subroutine which can be called to read
the next input record. The calling sequence for this subroutine
is assumed to be identical to the calling sequence for the system
subroutine SCARDS.

PAR2: The full-word address of a subroutine which can be called to
write the next output record. The calling segquence for this
subroutine is assumed to be identical to the calling sequence for
the system subroutine SPRINT.

PAR3: The full-word address of the first word of a region of core in
which the program will be loaded. The first word of this region
must contain the length of the region in bytes. It is possible
to continue loading with a new region if the last region was not
long enough to hold the remainder of the program. This capabili-
ty will be discussed later im the section on error recovery.

Loader Internal Specificatiomns 367

368

MTS-341-0

12-1-67

PARY:

PARS:

PARG:

PAR7:

PARS8:

PARO:

The full-word address of the origin of an initial external symbol
dictionary. This feature allows external symbols to be pre-
defined before the actuai loading operation takes place. If this
parameter is zero no symbols will be pre-defined. The format of
this initial external symbol dictionary will be discussed below.

The full-word address of a loading status word. The first three
bytes of +the loading status word must be set to zero before the
first entry to the load subroutine. Upon a return from the load
subroutine these bytes will have bits set to indicate the exact
status of the 1loading procedure. The 1loading procedure can
usually be continued by correcting any indicated errors and
calling the loader with these bytes of the 1loading status word
unchanged. The 1last byte of the loading status word can be set
by the calling program to control the amount of printed output
generated by the loader. The meaning of the bits within the
loading status word will be discussed below.

The full-word address of a full-word in which the load subroutine
will return the entry point of the loaded progranm. The entry
point is determined in the standard manner from information on
ESD,TXT and LDT records. :

The full-word address of a full-word in which the load subroutine
will return the number or bytes used in the current load@ buffer,
If this address 1is =zero, the value will not be returned. The
load buffer is the region pointed to by the third parameter.

The full-vword address of the first word of a region of core in
which +the current external symbol dictionary will be returned.
If this address is zero, the external symbol dictionary will not
be returned.

The full-word address of a full-word in which the load subroutine
will return the length of the next control section to be loaded
if the loading procedure is terminated by a full load buffer. If
this address is zero, this value will not be returned. Loading
can be continued by calling the load subroutine with parameter
three pointing to a new region of core which is at least as long
as the next control section.

Return_ Sequence

The return sequence for UMLOAD is a standard 0S/360 Type 1 return

sequence.
GRO-14:

GR15:

The register conventions used are:
Restored to original contents during call.

A return code indicating the severity of any detected errors:

MTS-341-0

12-1-67

0 Normal return. No errors were encountered.

4 Non-fatal error return. Errors were encountered, but the progranm
can probably be executed as loaded.

8 Fatal error return. Severe errors were encountered during
loading. The program probably is not capable of being executed
successfully.

External Symbol Dictionary_ Format

A program which calls UMLOAD can gain access to or cause to be altered
the external symbol dictionary stored within the loader's psect in three
ways. First, the program can pre-define external symbols by having as
parameter four the address of an dinitial external symbol dictionary.
Second, the program can obtain the current definitions of all symbols at
the time of load termination by having parameter eight point to the area in
which +the 1loader should leave a current external symbol dictionary.
Finally, symbols which have been referenced but are not yet defined can be
defined from an external symbol dictionary pointed to by an LCS record.
All of these dictionaries have identical formats. It should be remembered
though, that this is not the format of the table used internally by the
loader. It is the format of an external table through which information
can be passed back and forth between the loader and the calling program.

An external symbol dictionary consists of (12*N+4) bytes, where N is the
pumber of external symbols in the dictionary. The dictionary must begin on
a full-word boundary. The first word of the dictionary contains N, the
integer number of symbols entered in the dictionary. The rest of the table
consists of external symbol entries, each being twelve bytes 1long. The
first eight bytes of a symbol entry contain the EBCDIC name of the symbol,
left justified with trailing blanks. The last four bytes of the entry
contain the value of the symbol as a full-word integer. An undefined
symbol has 000000 as its value.

Loader Internal Specifications 369

370

MTS-341-0

12-1-67 .

Number of entries

Name of the
first symbol

Value of the first symbol

Name of the
second symbol

Value of the second symbol

Name of the
last syambol

e e —— — i ——— — ——— —— — ke — — — —— ke —— o v e — o)

Value of the last symbol

F-—-——‘—q——————_—-————-r————q——-‘

External Symbol Dictiomary Format

Error_ Recovery and Restart Procedures

The load subroutine has been designed to allow the load process to be
continued, perhaps with some corrections, by calling upon the loader again
after it has already returned from 1loading. This dis accomplished by
presenting the 1loader with the save area (psect) it has used up to the
present point in the loading process and a loading status word with the
first three bytes identical to those in the one it last returned. It is
essential that the return code and loading status word returned by the
loader be understood to take advantage of this continuation procedure. For
this reason, both of these are described in more detail below.

Return Codes

1. Normal return code

MTS-341-0

12-1-67

A normal return code indicates that as far as can be
determined, the load process has been completed successfully and
the program is ready for execution. The load process wvwas
terminated by either an LDT record or an END-OF-FILE return from
the input routine. Loading can be continued if desired; for
instance, to link another control section to all that has been
loaded already, but it is very unlikely that anyone would want to
do something 1like this. The loading status word will have only
bit 1 on to indicate that some loading has been accomplished.

2. Non-fatal error return code

A non-fatal error return code indicates that some errors have
been detected during the load process, but they probably aren't
serious enough to prevent the program from being executed. In
some cases, this assumption may not be valid. The loading status
word will have bit 1 on to imndicate that some loading has been
accomplished, and will have other bits on to indicate the
particular errors detected. Loading can always be continued, if
desired, after a non-fatal error return code,

3. Fatal error return code

A fatal error return code indicates that at least one error
has been detected during the load process which is serious enough
to Jjeapordize any meaningful execution of the program for the
moment. It is possible that some correction can be made and
loading continued, although not all fatal errors can be corrected
without completely restarting the 1load process., An undefined
symbol is an example of a fatal error which can be corrected by
continuing 1loading, while overflowing the loader internal tables
is an example of a fatal error which can be corrected only by
restarting the 1load procedure from the beginning. Bits within
the loading status word are set much like for non-fatal errors,
with the exception that bit 0 may be on and if on indicates that
loading cannot be continued.

Toading Status Word Format

, The loading status word is broken into two parts. The first three bytes
are bit-control switches which indicate the current status of the 1load
process. These bits must all be zero when the loader is first called to
begin loading, and must not be changed if the loader is called to continue
a previously started load. The last byte of the loading status word is
used to control the amount of printed output produced by the loader. This
byte can be changed by the calling program at any time to vary the amount
of output. Both of these parts of the loading status word are described in
more detail below.

Loader Internal Specifications 371

372

MTS-341-0

12-1-67

[e v —

T R

| |
Status Bit-Switches

-
|
Print Controlj

R I

8 16 24 31

Format of the Loading Status Word

Status Bit-Switches

The first three bytes of thne 1loading status word are bit-
switches which indicate the current status of the load process,
The following list describes the meaning of an on condition for
each bit.

BIT-0 A non-recoverable error has been detected. Loading
cannot be continued. Loading can be restarted,
however, by correcting the cause of the error, re-
positioning the input file at its beginning, and
calling the load subroutine with the first three bytes
of the loading status word set to zero.

BIT-1 This bit is always turned on when the loader returns to
the calling progran. It simply indicates that some
loading has been accomplished. It is wused by the
loader to determine if loading is being continued or
started from scratch.

BIT-2 The next control section to be loaded is longer than
the available space remaining in the current load
buffer. This is a fatal although recoverable error.
The length of this next control section is returned via
parameter nine if that parameter address is non-zero.
The number of bytes actually used in the current load
buffer is returned as usual via parameter seven if that
parameter address is non-zero. It is likely that some
space at the end of the 1load buffer has not been
utilized and can be used for some other purpose. If
the first control section encountered was longer than
the load buffer no space in the buffer will have been
used and the entire buffer can be reused for som¢ other
purpose. Loading can be continued by calling the 1load
subroutine with parameter three pointing to a new load
buffer at least as long as this next control section.
The input file must not be positioned before recalling
the loader if loading is to be continued.

BIT-3 The last input record read was longér than 256 bytes.
This is a fatal and non-recoverable error.

MTS-341-0

12-1-67

BIT-4

BIT-5

BIT-6

BIT-7

BIT-8

BIT-9

BIT-10

BIT-11

BIT-23

The 1last input record read was not a recognizable
loader input record. This is a mnon-fatal error and
loading has been terminated as if this record was an
end-of-file. The contents of the guilty record are
printed with the loader output.

A load map has Dbeen started in the loader printed
output but has not yet been completed. This is used by
the loader to prevent spurious maps on multiple «calls
and returns from the loader. This is only an internal
switch of the loader. It does mnot indicate that an
error has occurred.

At least one external symbol has been multiply-defined.
This is a non-fatal error. The first definition of
each multiply-defined symbol has been used.

The external symbol dictionary/relocation dictionary
table has overilowed the area available to it. This is
a fatal and non-recoverable error. The error can be
corrected only by restarting the loader either with a
larger psect (save area) or with a re-ordered imput
deck which requires less table space.

The external symbol identifier (ESID) which specifies
the symbol whose relocation factor is to be used in the
current address computation is either not defined or
the associated symbol does not have a relocation
factor. This is a fatal and non-recoverable error,
Several causes of this type of error have been put
forth in section MIS-296. :

The external symbol identifier (ESID) which specifies
the symbol whose value is required in the next address
computation is undefined. This -is a fatal and non-
recoverable error. This error is caused by the same
types of conditions which cause bit 8 to be set.

An external symbol which is referred to in the program
has not been defined. This is a fatal although
recoverable error. The address constants which refer
to this symbol have not been altered. If loading 1is
continued and the undefined symbol is subsequently
defined, all references to it will be rectified
correctly.

These bits are not in use yet.

Loader Internal Specifications 373

MTS-341-0

12-1-67

2. * Print Control

The last byte of the loading status word is used to control
the amount of output printed by the loader in the following way.
Every type of printed output which can be produced by the 1loader
belongs to a certain class of printed output. Every class, with
the exception of the class for fatal error messages, has
associated with it a bit in the fourth byte of the loading status
word. An output line is printed only if the bit associated with
its class is turned on. O0f course, fatal error messages are
always printed. The class numbers have been assigned so that if
the class numbers for all classes to be printed are added up and
the fourth byte of the loading status word is given this value,
the desired print control is in effect. A list of the class
numbers, the associated loading status word bits, and a descrip-
tion of each class of output follows:

CLASS BIT DESCRIPTION

0 -- All fatal error messages except the
error message for undefined symbols
and the error message for a load
buffer overflow.

1 31 Non-fatal error messages. These
can be considered warnings of pos-
sible error comnditionms.

2 30 Information lines, such as the line
giving the entry point address.

4 29 Positioning or format lines, such
as blank 1lines or the 1lines of
dots.

8 28 Symbol reference lines. These

lines, if printed, form a reference
table for all of the external sym-
bols, giving the assigned core
address of every adcon referencing
the external symbols.

16 27 The error message stating that the
load buffer has overflowed.

32 26 The error message stating that a
symbol is undefined.

Output classes 16 and 32 were created so that errors which are

374

MTS-341-0

12-1-67

normally corrected automatically by the program calling the
loader can have their error messages turned off.

General Organization of the Loader Psect

When the load subroutine is called, it must be provided with an
extra-long save area with the length of the area stored in the first word
of it. This save area is then used as the psect (changeable storage) for
the loader. This allows the loader to be re-entrant.

The general organization of the loader psect is as follows:

Loader relocation dictionary table

L 1
| |
000 | Length of this region |
! |
L 1
[L]
| |
| Save area for the use of UMLOAD |
| |
F {
| |
048 | Save area provided for the use of subrou- |
| tines called by UMLOAD. |
| l
F {
i |
OAC | Local storage for UMLOAD including input |
| and output area i
| {
L 1
L] L}
i |
2D8 | Loader external symbol dictionary table i
! !
[) L]
| I
| Area available for the expansion of the |
| lcader ESD and RLD tables i
| |
L]
L} il |
l I
| I
I |
L " |

Oorganization of the lLoader psect.

Loader Internal Specifications 375

376

MTS-341-0

12-1-67

Note that the loader begins its external symbol dictionary table righ
after the fixed-length information within its psect. Furthermore, i
builds its relocation dictionary table starting at the end of the psect, a
defined by the length in the first word of the psect. Hence both table:
may grow into the unused space between them. If the tables do eve:;
overlap, the loader returns with a fatal and non-recoverable error.

More Details on the Loader Structure

Many details of the loader have not yet been presented. For inmnstance,
the structure of the 1loader's internal tables and the steps taken t«
process each type of loader input records has not yet been presented.
These items will not be presented in this manual. Anyone interested ir
details such as these can find them in the loader assembly listing, as it
is well-documented with many comments and paragraphs of explanation.

The Lloader-MTS Interface

As has been stated before, the details of the loading process as seen by
the user depend to a great extent upon the manner in which the system uses
the loader subroutine. Following are just a few of the more pertinent
details concerning the interface between MTS and the loader.

1. The first «call upon the loader is made with a program or load
buffer of length zero. This forces the loader to make a fatal
error return with a program buffer overflow error when the first
control section 1is encountered. MTS then «calls the 1loader
providing it with a butfer exactly as long as the first control
section. The loader then can load the current control section in
this buffer, but will have to repeat the process outlined above
when it encounters the next control section. This forces each
control section to be loaded into a separate and independent area
of core storage.

2. If the loader returns with the fatal error indicating that there
are undefined symbols, MTS then calls the loader giving it an
input subroutine which reads the systenm library file. Hence

undefined symbols are searched for in the library.

3. A small number of symbols are pre-defined by MTS. These symbols
cannot be redefined by a user.

4. The setting of the print control byte of the loading status word
by MTS is a colorful process designed to allow or suppress such
things as error messages, maps, and dotted lines and depends upon
whether input is from the library or user specified source and
whether a is desired or not. The general processing is:

MTS-341-0

12-1-67

A. Set the print control and load the user specified input.

B. Reset the print control.

C. If symbols remain undefined load the system library.

D. If no symbols are undefined and a map was requested load
the contents of *DUMMY* to get the map.

E. If no errors and execution desired go to it.

The setting of the print control byte in the various states is
given in the following table:

3 T T 1
| Loader input source I Map | No Map |
L L 1 N |
L L] L 1
| User specified source | 51 1 |
L i [l ']
r '] } 4
| *LIBRARY or *DUMMY*] 39 | 33 i
t i L I

Loader Internal Specificatiomns 371

MTS-350-0

12-1-67

This section describes the internal structure of a line file, and give:
the calling sequences for the internally used subroutines to handle thes:
files.

378

MTS-351-0

12-1-67

FILE_FORMAT - GENERAL DESCRIPTION

Allocation of space and cataloging

Space allocated +to files, and the existence of them, is recorded in an
IBM-type VTOC. All information in and about the VTOC is maintained in
standard 0S format with the exception of "TYPE 5" records (available space)
which are not quite correct. All routines using the disk use the standard
system subroutines to allocate and release space for files, as well as for
creating and destroying the files themselves.

Files written throuqgh system subroutines (SCARDS, SPUNCH, etc)

Files written through these subroutines, and maintained through thenm,
are kept in a format conducive to easy updating by line number. Thus every
line in such a file must have a line number associated with it. Such files
are also limited to a size of 218 records on the disk, the implicatioas of
which and reasons for which will become clear later.

Fach such file consists of three 1logical components, which will
hereafter be referred to, with some consistency, as the track _index, line
directory, and line file.

The track index is wused simply to associate a physical disk address
(disk pack name, cylinder, track, and record address) with a logical record
number (integer between 1 and 255) which is used internally. There is a
one-one correspondence (hopefully) which associates a single logical record
number with each of the physical records allocated to the file.

The line _directory indicates where each 1line of the file is, as a
logical record address, offset witnin that record, and how 1long the 1line
is.. This directory consists of fixed length entries, ordered by line
number, so that it can easily be searched and modified. It only points to
the lines themselves, which are resident in:

The 1line _file contains the actual EBCDIC (or whatever) lines in the
file. This file is unordered, and what pieces are used or unused is
recorded only in the line directory. The limes in the line file may be of
variable length, there may be unused 'holes' in the middle of or at the end
of tracks, and it is in general useless without the line directory to nake
sense out of it.

General Description 379

380

MTS-351-0

12-1-67

Physical format of the components

THE TRACK INDEX

BEach entry in the track index is 16 bytes long, and there is one for
every physical record allocated to this file. The entries have the
following format:

BYTES 0-5: Name of disk pack the record is on

BYTES 6-7: Physical cylinder address

BYTES 8-9: Physical track address

BYTE 10 : Physical record address (always 1 for a 2311, 1 or 2
for a 2314)

BYTES 11-15: Unused

The logical record number associated with a physical record entry is
determined by the position of the entry in the track index, in the FORTRAN
sense, which is to say that the first entry in the track index is 1logical
track number 1, the second is number 2, and so on.

THE LINE DIRECTORY

Each entry in the line directory is 8 bytes long, and there is an entry
for every line in the file, and also entries for

1) A1l the 'holes' or unused pieces of tracks that are partially used
2) The as-yet-unused space at the end of the file.
Entries in the line directory have the following format:
BYTES 0-3: The number (as a 32-bit signed integer) of the 1line
which this entry describes (see below for special

'hole' entries)

BYTE 4: Logical record number of the track where the line
itself resides.

BYTE 5: Character (byte) count for the line, i.e., how long it
is.
BYTES 6-7: Offset, indicating how far from the beginning of the

MTS-351-0

12-1-67

record indicated in byte 4 this line begins. (Offset
is in bytes).

The entries in the line directory are ordered by line number, and 'hole!
and 'end-of-file' entries are given the highest possible 1line numbers so
that they will naturally appear at the end of the directory. ‘'Hole!
entries look just like normal entries except that they have a 1line number
of hex 'J7FFFFFFE'. Such entries indicate that there is an unused piece of
line file at the place and of the size indicated in the second four bytes
of the entry. " The entry indicating where the file ends (beyond which, all
space is available) has a line number of '7FFFFFFF' (it is always the last
entry in the directory), and in this entry byte 5 is always 0, and bytes
6-7 indicate the next available byte on the record (it and all succeeding
bytes are presently unused). All logical records beyond the one indicated
in byte 4 (which is the one being tilled) are also unused.

THE LINE FILE

The line file may have all sorts of garbage in it, as when new lines are
added to the file they are simply placed on top of whatever was there, and
the deletion of 1lines is recorded only in the line directory, the line
itself, or pieces of it, are left around in the line file until the space
is reused.

How_the components are tied together

Since all three of the components must exist within the area assigned to
a single file, it is necessary to tind where each of them is. This is easy
for the track index, because it is always in the first record of the first
extent assigned to the file, and begins at the eighth byte of the record
The length, in bytes, of the track index is in bytes 0-1 of the record.

We must now make a distinction between "normal" and "extended" files.

A normal file is small enough so that both the line directory and track
index may be contained in the first record (logical record #1). 1If this is
the case, the line directory immediately follows the track index, and its
length, in bytes, is given in bytes 2-3 of the record.

If the file is too big to be so cozy, then only the track index (TI)
will be in track #1, and the line directory (LD) will be elsewhere. But
where, you say? Ah-ha. The answer to that lies in bytes 4-7 of record #1.
In any case where the TI and LD cannot exist together on record #1, the TI
alone will be on record #1, and will point (as will be seemn), to the first
LD record , and the LD records (it there are more than one) will be linked
together, all through bytes 4-7 of each LD or TI record , which are defined
as follows: .

BEYTE 4: LOGICAL RECORD # OF PREVIOUS RECORD IN TI-LD COMBINA-
TION (FOR TI THIS WILL BE 0)

General Description 381

382

MTS-351-0

12-1-67
BYTE &4: LOGICAL RECORD # OF NEXT RECORD IN TI-LD COMBINATIO!
(FOR LAST RECORD THIS IS 0)
BYTE 6: LAST USED RECORD OF THOSE ASSIGNED TO FILE. THIS IS
SIGNIFICANT ONLY IF BYTE 5 = 0.
BYTE 7: SELF-IDENTIFIER. LOGICAL RECORD # OF THIS RECORD .

When the TI and LD are not entirely contained in a single record, we
speak of the file as being extended. Record #1 contains the TI only (an¢
bytes 2-3° =0), and byte 5 points to the first record of the LD (vwhich maj
point to further records in the LD), and in each record of the LD, bytes
0-1=8 (the header length) and bytes 2-3= k, the number of bytes of the LI
contained in this track.

File size limitations

1) The TI must be contained in a single record (3520 bytes), so a file
cannot be assigned more 218 records.

2) A file may not have more than 16 non-contiguous blocks of tracks
{extents) assigned to it.

3) VNo line in the file may be longer than 255 byfes.

4) A file may be assigned space on only a single disk pack (this
restriction may too may go away)

MTS-352-0

12-1-67

FILE OPERATION SUBROUTINES

FILE CONTROL BLOCK DESCRIPTION

The following table describes the file control block in such a way that

one could generate either a DSECT or set of EQU's to reference it in ones
program.

FCBN DS 4r ALLOW SIXTEEN BYTES FOR ALPHABETIC FILE NAME
FCBLK DS F LINK TO NEXT FCB, OR ZERO

FCBCS DS F CHECKSUM FOR FILE CONTROL BLOCK

FCBVC DS 6X 6-BYTE NAME OF VTOC VOLUME

FCBCC DS H 2-BYTE CYLINDER ADDRESS OF VTOC

FCBTC DS H TRACK ADDRESS FOR VIOC ENTRY

FCBRC DS X RECORD NUMBER OF VTOC ENTRY

FCBBC DS X COUNT OF ASSIGNED BUFFERS

FCBAI DS X ACCESS INFORMATION (SUCH AS 'READ ONLY').
FCBEC DS X COUNT OF EXTENTS ASSIGNED TO THE FILE.
FCBVF DS 6X VOLUME NAME FOR LINE DIRECTORY

FCBCF DS C CYLINDER ADDRESS FOR FILE

FCBRF DS C RECORD NUMBER FOR FILE.

FCBTF DS H TRACK ADDRESS FOR FILE

Fkk % FOLLOWING 16BYTES REPEATED UP TO BUFFER COUNT

FCBFB DS C FLAG BYTE INDICATING BUFFER STATUS
FCBBA DS 3C MEMORY ADDRESS OF BUFFER

FCBBL DS H LENGTH OF ASSIGNELD BUFFER

FCRBBV DS 6C NAME OF VOLUME RECORD NOW HERE

FCBBC DS H CYLINDER NUMBER OF RECORD IN BUPFER
FCBBR DS C RECORD NUMBER OF RECORD NOW IN BUFFER
FCBBT DS C track ADDRESS OF RECORD NOW IN BUFFER

The size of a file control block is dependent on the number of buffers
allocated to the file. 1In general the block size must be at least U48+16N
bytes, where N is the number of buffers assigned to the block. Normally
there will be need for only two butfers per block, so the block should be
at least 80 bytes in length.

The following section describes the file control block in terms of
EQU's.

FCBN EQU 0

File Control Block Description 383

384

MTS-352-0

12-1-67

]

FCBLK EQU 16
FCBCS EQU 20
FCBVC EQU 24
FCBCC EQU 30
FCBCT EQU 32
FCBRC EQU 34
FCBBC EQU 35
FCBAI EQU 36
FCBEC EQU 37
FCBVF EQU 38
FCBCF EQU 44
FCBRF EQU 45
FCBTF EQU 46
% e de 3k %k

FCBFB EQU 48
FCBBEA EQU 49
FCBBL EQU 52
FCBEV EQU 54
FCBAC EQU 60
FCBBR EQU 61
FCBBT EQU 62

The flag byte (FCBFB) is used to describe the status of each buffer
assigned to the file. Each bit has the following meaning-

BIT 7 1 Indicates buffer in use

BIT (3 1 Indicates buffer must be written

BIT 5 1 Indicates buffer not standard

BIT 4 Not used

BIT 3 Indicates record has never been written
BITS 0-2 Priority of record in buffer

'Non-standard' means that the file system will make no attempt to manage
the data in the buffer, and will not use that particular buffer in the
course of normal operation, and will not close the buffer if suych a call is
executed.

If the user makes changes to the file control block (such as adding a
new buffer) he should re-compute the checksum, or call "CHKSUM' to do the
job. He should also be careful +to maintain the YBUFFER COUNT® byte
correctly.

MTS-352-0

12-1-67

FCB layout:

t 1
| FILE NAME AS 16 BYTES | 0
L]
L L
| WITH TRAILING BLANKS | 4
F {
| | 8
[4
r t
| | 12
‘ !
| Llink to next FCB, or 0 if none exists | 16
[']
| . t
| Checksum for file control block | 20
L]
v 1
| Volume name of VTOC entry (first 4 bytes) | 24
L]
r N .
| volume name (cont'qd) | Cylinder address 1 28
i 1 I |
L} Ll Ll L
| Track address of VTOC | record nbr| buffer cnt,.| 32
1 L L o |
|) L { 1
| FCBAX | FEBEC | volume name, file addr.| 36
i L L]
L B 1
{ Continued name of volume where file resides | 40
[l ‘ " |
L L i
| Cylinder addr. of file| track address of file | 44
[] L I
BUFFERS
#1 #2
L ¥ A
| Flag byte | address of assigned buffer | u8 64
L L]
| 3 | Ll
| Length of buffer { volume no. in buffer I 52 68
[1 1
L) L]
| continued name of volume for record in buffer | 56 72
1 " |
r 1
| cylinder and track address presently in buffer | 60 76
L J

#3

80
84
88
92

e (Additional 16 byte entries up to buffer count)

File Control Block Description

385

386

MTS-353-0

12-1-67

External File System Subroutines
GENERAL INFORMATION

As will be quickly obvious, these subroutines do not fit into any OS
category, amnd in fact are not even consistent in their behavior amongst
themselves.

All require the address of a working area (not an OS type save area) in
GR13, and said area must appear on a double-word boundary.

Where parameter lists are needed, they also must be on full-word
boundaries. Throughout these writeups (to avoid confusion) the words
'address' and 'pointer' are used synonymously and randomly, to refer to a
24-bit absolute memory address. ‘

The file subroutines all save and restore all the registers except GRO
and GR15. GR15 always has a return code when exit is taken from the
subroutine, and GRO is used in device management. The file subroutines all
assume logical device number 5 is free, and they use this number in all
device operatiomns.

The piece of information needed by almost every subroutine is the
address of a file control block. This block is built in memory when the
file 1is OPEN'ed (or «created), and contains all sorts of pertinent
information about the file. It should not be touched (even accidentally,
if you can manage that) except by the file subroutines. If it does get
wiped out or screwed up, your file will almost certainly go the same route.
If you are extremely unlucky, you may even muddle some other file that
doesn't even belong to you.

MTS-353/23425-0

12-1-67

Name:
Function:

Parameters:

Returns:

Description:

CHKSUM

SUBROUTINE CHKSUM

to both check and recompute the checksum in a file control

block.

GR1: File control block address
GR14: Return address
GR15: Address of CHKSUM

Note: no save area required

A return code will be in GR15

0 indicates checksum in FCB was correct

4 indicates

it was__not, but CHKSUM has recomputed it, and

the FCB now has a correct checksum.

You should
FCB. But
incorrect
there, and

always call CHKSUM before and after modifying the
very few routines do, so don't worry about
checksuns. It only gets a writeup because it is
people might wonder about it.

External File System Subroutines 387

388

MTS-353/23465-0

12-1-67

Name:
Function:

Calling segquence

Returns:

Description:

SUBROUTINE CLOSE

CLOSE

To write out any modified data contained in buffers assigned
to the file.

: GR1: PFile control block address.
GR13: Pointer to a scratch area of 300 bytes.
GR14: Return address
GR15: Address of CLOSE.

GR15 has a return code
Normal return code is 0.

Return code of 4 indicate the checksum in the FCB was
incorrect. Don't worry about it. Nobody maintains the
checksum anyhow. The file will still be (correctly) closed.

A return code of 8 indicates some serious error occurred.
Likely causes: an unrecoverable disk error, badly clobbered
FCB, or bad FCB address.

CLOSE looks through the buffers assigned to the file,
writing out any that need writing, and turning off the
must-be-written bits for those buffers.

It is possible to read or write a previously CLOSE'd
file, but it should then be CLOSE'd again when you are
really through with it.

MTS-353/23255-0

12-1-67

Name:

Function:

Parameters:

Parameter list:

Returns:

Description:

SUBROUTINE CREATE

CREATE

To 1) Make an entry in the Volume Table of Contents on a
specified disk pack for a file by the specified
name.

2) Make an initial space allocation for that file on
the same disk pack.

3) OPEN the file so that it may be written or read.

GR1: Pointer to a parameter list.

GR13: Pointer to a working area of 475 bytes
GR14: Return location

GR15: Address of CREATE

BYTES 0-15: File name, blank-filled, left-justified

BYTES 16-19: FCB 1link or 0

BYTES 20-23: Address of 3520 byte buffer

BYTES 24-25: Length of that buffer

BYTES 26-31: Volume mname of disk pack on which to place
this tile. If this parameter is all (hex)
zeroes, the file will be put on any available
system volume..

BYTE 32: Number of tracks to initially allocate.
BYTE 33... Used to create the FCB.

Note that up to BYTE 25 the parameter list is the same as
that for OPEN.

on return, a return code is left in GR15 as follows:
0 means AOK.

4 means the file already exists (CREATE does not open the
file in this case - it just punts)

8 means there is no space available (either on the disk pack
you asked for, or anywhere if you were indifferent)

12 means there was some serious error. Hardware or soft-
vare.

CREATE Jjust looks to make sure the file does not already
exists, and if it does not, it creates a VTOC entry for that

External File System Subroutines 389

MTS-353/23255-0

12-1-67

file. It then allocates the requested number (up to 100) of
tracks (not records) to the file in a single extent. The
file is then initialized and opened as through it were going
to be a line file.

390

MTS-353/24625-0

12-1-67

Name:

Function:

Calling sequence:

Returmns:

Description:

FILE OPERATION SUBROUTINES

SUBROUTINE DESTRY

DESTRY

To de-allocate all disk areas previously allocated to a
file, and destroy the Volume Table of Contents (VTOC)
entry for the file itself.

GR1: pointer to a 16-byte file name

GR13: pointer to a scratch area (575 bytes)
GR14: address of return location

GR15: address of first location in DESTRY

GR15 has return code
Normal return code is 0, imdicates successful completion,

Return code of 4 indicates the file couldn't be found to
be destroyed. Sorry about that.

Return code of 8 indicates something else went wromng.
Probably something wrong with the subroutine, but then it
might be in the call such as not providing enough scratch
area, etc.

DESTRY first of all locates the catalog entry for the
named file, and assuming it finds that, zeleases all
extents allocated to the file. It then marks the VTOC

_entry itself as available tor a new entry.

File Operation Subroutines (DESTRY) 391

392

MTS-353/27635-

12-1-67

Name:

Function:

Parameters:

Parameter list

Returns:

Description:

0

SUBROUTINE GETDSK

GETIDSK

To acquire some space for a specified file, and record the
additional allocation in the VTOC entry for that file.

GR1: Address of a parameter list
GR13: Address of a 400 byte working area
GR14: Return address

GR15: Address of GETDSK

format:

BYTES 0-3: FCB address

BYTES U4-7: Where to put extent address

BYTES 8 : Number of tracks (not records) requested

A return code is left in GR15 as follows:

0 indicates AOK. An extent address has been placed in the
address given in tne parameter list, and looks as follows:

BYTES 0-5: Disk name where it is
BYTES 6-9: CCTT of beginning of the extent.

4 indicates there is not enough space available, omn the
volume on which this file resides, to satisfy the request.
The parameter 1list is modified (BYTE 8) to indicate the
largest extent (in tracks) available on this volume. (It
may be 0)

8 indicates the wusual serious snark that should never
happen.

GETDSK searches the chain of available disk space, trying to
find a single extent to £fill the request. If none is
available, it determines what the largest extent available
is, and modifies the parameter list to indicate that.

If an extent is available, the smallest one which is
large enough is allocated to the file, and the VTOC is
updated in indicate that the allocation has been made.

MTS-353/46255-0

12-1-67
SUBROUTINE OPEN
Name: OPEN
Function: To search for a specified file, (if it exists) set up a file
control block for it, and initialize the buffers for
subsequent READ or WRITE operatioms.
Calling sequence: Pointer to a parameter list (and future file control
block area).
GR13: Pointer to a working area of 350 bytes.
GR14: Return address
GR15: Address of OPEN.
Returns: GR15 has a return code as follows:

Parameter list:

Description:

0 is the normal return.

4 indicates that the named file could not be found anywhere.
(This generally means it isn't anywhere.)

8 indicates something serious (like an unrecoverable disk
error or an error in the calling seguence) has occurred.

BYTES 0-15: Name of the desired file. Left-justified,
blank-filled

BYTES 16-19: Address of next FCB link or 0.

BYTES 20-23: Address of a buffer to be used for reading and
writing the file.

BYTES 24-25: Length of this buffer (in bytes)

If +the file named in the parameter list cam be found, the
parameter list (both the data and the memory where the list
is) is used to create a File Control Block for the file.

This supplied buffer is then used to read in the first
record of the first extent assigned to the file. If this
looks like a 1line (system) file, it is checked to see if
this file is extended, and in this case an additional buffer
may be acquired and added to the FCB.

It should be emphasized that the parameter list should be

contained in an area at least 80 bytes long, and that this
area will have become an FCB if the return code is normal,

File Operation Subroutines (DESTRY) 393

394

MTS-353/51215-

12-1-67

Name:

Function:

Parameters:

Parameter list

Return code:

Description:

0

SUBROUTINE READ

READ

To read a specified 1line from a specified file into a
specified area (nov you even know what the parameters are).

GR1: Pointer to a parameter list
GR13: Address of a working area of 400 bhytes
GR14: Return address

GR15: Address of READ

format:

BYTES 0- 3: Number of desired line (32-bit signed integer)
BYTES 4- 7: Where to put the line

BYTES 8-11: Address of file control block

A return code is always left in GR15 as follows:
0 indicates all went well

4 indicates line does not exist. The entry (see below) for
the following line is returned.

8 indicates line is beyond any in file
12 is some serious error indication.

For returns of 0 and 4, GR1 contains additional information.
For an RC of 0, GR1 indicates the number of bytes in the
line (guaranteed to be < 256). For a RC of 4, the number of
the following line is returned in GR1.

READ attempts to locate a line with the number given. If
one does exist, it moves it to the specified area. If there
is no line in the file with that number, it determines if
there is no 1line with a number that high, or locates the
line following the (non-existent) one asked for, and makes
the appropriate indication on return.

MTS-353/51216-0

12-1-67

Name:
Fuanction:

Parameters:

Returns:

Description:

SUBROUTINE READL

READL

To determine the line number of the last number in the file
and return it.

GR1: Address of file control block

GR13: Address of a 400 byte working area

GR14: Return address

GR15: Address of READL

Return is always made with a return code in GR15.

0 indicates o.k. return, and in this case, the line number
of the last line in the file will be in GR1

4 indicates some kind of a nasty error.
READL searches the file for the last lime in it, determines

the number of that line and returns it. In the case of an
empty file (no last line) a line number of 0 is returned.

File Operation Subroutines (DESTRY) 395

396

MTS-353/51217-0

12-1-67

Name:

Function:

Parameters:

SUBROUTINE READS

READS

To read sequential lines from a file (i.e., like 'READ',
except the line number is automatically supplied)

GR1: Address of a parameter list

GR13: Address of a 400 byte working ared
GR14: Return address

GR15: Address of 'READS!

Parameter List Format:

Returns:

BYTES 0-3: Number of first line to be read on first call,
number of last line read on subsequent calls.

BYTES 4-7: Where to put requested lines.

BYTES 8-11: File control block address.

BYTES 12-15: Pointer to a fixed full-word area which will
be zero on the first call to READS. Thereaft-
er READS will use it to store information it
must have from call to call (so the same
location must be given with every call, ‘and
its contents must not be changed between
calls).

A return code is always left imn GR15 as follows:
0 indicates everything went fine
4 indicates an end-of-file condition

8 indicates a bad error.

If the return code is 0, R1 contains the byte count for the line read.

Description:

READS is wused when one wants to sequentially access each
line in a file, without worrying about what the actual 1line
numbers. The first call on READS must specify what line to
start at, and thereafter, each subsequent call will return
the next line in the file (until the end is reached.)

MTS-353/51435-0

12-1-67

Name:

Function:

Parameters:

Parameter list:

Returns:

Description:

SUBROUTINE RELDSK

RELDSK

To return to free storage some portion of the disk storage
allocated to a file.

GR1: Pointer to a parameter list.

GR13: Pointer to a 400 byte working area
GR14: Return address
GR15: Address of RELDSK

BYTES 0-3: Pointer