
M T S

The Michigan Terminal System

The Michigan Terminal System

Volume 1

Reference R1001

November 1991

University of Michigan
Information Technology Division
Consulting and Support Services

DISCLAIMER

The MTS manuals are intended to represent the current state of the Michigan Terminal System (MTS),
but because the system is constantly being developed, extended, and refined, sections of this volume
will become obsolete. The user should refer to the Information Technology Digest and other ITD
documentation for the latest information about changes to MTS.

Copyright 1991 by the Regents of the University of Michigan. Copying is permitted for nonprofit,
educational use provided that (1) each reproduction is done without alteration and (2) the volume
reference and date of publication are included.

2

CONTENTS

Preface .. 9

Preface to Volume 1 .. 11

A Brief Overview of MTS .. 13
History .. 13
Access to the System .. 14
The File System .. 15
Device Support ... 15
Accounting and Billing ... 15
Bulk-Data Input and Output ... 16
Virtual Memory .. 16
Resource Manager .. 17
The User’s View .. 17

Terminal Jobs .. 18
Server Connections .. 18
Batch Jobs .. 18
Files and Editing .. 18
File and Devices Names ... 19
Program Execution .. 20

MTS Command Language ... 21
Debugging .. 22
File Handling ... 22
Miscellaneous .. 23

The Editor Command Language .. 24
The Debug Command Language .. 24

UserIDs, Limits, and Sigfiles ... 25
Passwords ... 25
Time and Funds Limits .. 26
Page and Card Limits ... 29
Sigfiles .. 29
Project Sigfiles .. 30
Sigfiles and Security .. 30

Batch Use of MTS ... 33
What is a Batch Job? .. 33

Reasons for Using Batch .. 33
Submitting a Batch Job .. 34

Entering Commands in a File .. 35
How Long Does Batch Take? ... 35
Monitoring a Batch Job .. 36
Logging Batch Output ... 36
Viewing Batch Output ... 37
Cancelling a Batch Job .. 37

3

Common Errors with Batch ... 37
Changing Batch Defaults ... 38

Job Selection and Rates ... 39
Estimating Time and Pages ... 40
Assigning a Job Name .. 41
Mounting Magnetic Tapes ... 41
Setting Print Routes and Delivery Codes .. 41

Printed Output For Batch Jobs .. 44
Head Sheet, Tail Sheet, and Job Statistics ... 44
Changing Print Options ... 45
Cancelling Hardcopy Output ... 45

Other Things You Should Know .. 46
Rerunning Batch Jobs ... 46
Conditional Sign-off ... 47
Sigfile Processing ... 47

Getting Printed Output .. 49
What is *PRINT*? ... 49
When to Use $COPY and $LIST .. 49
Printing Options ... 50

Setting Print Options for the Entire Session .. 50
Setting Print Options for the Current Print Job ... 51
Setting Print Options Using $9700 Commands .. 53
Summary of $SIGNON, $SET, $CONTROL, and $9700 .. 53

Print Routes and Delivery Codes ... 53
Multiple Copies .. 54
Cancelling a Print Job .. 55
Creating Your Own Print Device ... 55
Local Printers ... 56

Managing Batch and Print Jobs ... 57
The $CANCEL Command .. 57
The $CONTROL Command ... 59
The $CREATE Command .. 62
The $DISPLAY Command ... 64

Displaying $SET Command Keywords ... 64
Displaying Pseudodevice Names ... 65

The $LOG Command ... 66
The $RELEASE Command .. 67
The $SET Command .. 69
The $SYSTEMSTATUS Command ... 71

The USERS Keyword ... 72
The QUEUE Keyword ... 72
Explanation of Responses .. 74
When is a Job Purged? ... 75

The $VIEW Command ... 75

Server Use of MTS .. 79
MTS Network Servers Currently in Use ... 79
Classifying Servers .. 80

By Client Type .. 80
By Funder .. 80
By Provider .. 81

4

Comparing Interactive, Batch, and Server Sessions ... 81
Accessing a Server .. 82

The Logon Record ... 82
Using the “Which Host?” Prompt .. 82
Using the %GRAB Command .. 83
Using the $MOUNT Command ... 84

Files and Devices .. 87
Files .. 87

Categories of Files .. 87
Organization of Files ... 88
File Names ... 88

Devices .. 89
Device Names ... 89
Pseudodevice Names ... 89

Simple FDnames .. 91
Subsets of Files ... 91

Line Numbers .. 91
Line-Number Ranges ... 92

I/O Modifiers ... 94
Concatenation of FDnames .. 98

Implicit Concatenation .. 98
Explicit Concatenation .. 99

FDnames .. 100
Input/Output Operations ... 100

Sequential Operations with Line Files .. 101
Indexed Operations with Line Files .. 102
Sequential Operations with Sequential Files and Devices ... 102
The SP Modifier with Files .. 103
Explicit Concatenation with I/O Operations ... 103

Use of FDnames ... 104
Logical I/O Units .. 104
FDUB-Pointers .. 107

Error Processing ... 108
Creating Files ... 110
Putting Information into a File .. 111
Making Changes to a File ... 112

Changes Using MTS Commands ... 112
Changes Using the File Editor .. 115
Changes Using CDUPATE .. 116

Restoring the Contents of a File ... 116
Discovering the Changes to a File .. 116
Expanding Files ... 118
Control Options for Files .. 119
Shared Files .. 121

Access Types .. 121
Accessors .. 122
The PERMIT Command ..123

Program Keys ... 126
Overview of Program Keys .. 127
File Program Keys ... 132
File Access Via Program Keys ... 132
Command-Processor Program Keys .. 134

5

The Current Program Key ... 135
File-Access Evaluation .. 136
Protection of Programs with Nondefault Program Keys .. 138
Protection of Run-Only Programs ... 139

Locking and Unlocking Files .. 140

Appendix A: I/O Modifiers .. 141

Appendix B: Sequential Files and NOTE and POINT .. 152

Appendix C: Internal File Structure and the Size of Files .. 154

Appendix D: Details on Using Shared Files Concurrently .. 156

Appendix E: Updating Files Defensively in MTS .. 160

Appendix F: The Xerox 9700 Page Printer .. 163

Appendix G: Line-Printer Character Sets ... 166

Appendix H: Carriage Control ... 167
Logical Carriage Control ... 167
Machine Carriage Control ... 168
Devices ... 170

System Command Language .. 173
Modes of Operation Within MTS ... 174
Prefix Characters ... 177
Commands and Delimiters .. 179
MTS Command Macro Processor ... 180

MTS Command Mode ... 183
Processing MTS Command Lines .. 183
Continuation Lines .. 185
File-Name Patterns .. 185
MTS Commands ... 186

ACCOUNTING .. 196
ALTER ... 200
CALC .. 203
CANCEL .. 208
COMMENT .. 210
CONTROL ... 211
COPY .. 216
CREATE ... 220
DEBUG .. 222
DESTROY .. 225
DISPLAY .. 227
DUMP .. 238
DUPLICATE .. 240
EDIT ... 243
EMPTY ... 244
FILEMENU ... 246
FILESTATUS .. 254

6

FSMESSAGE ... 263
FTP ... 264
HELP, EXPLAIN ... 273
IF .. 274
LIST ... 276
LOAD ... 284
LOCATE ... 287
LOCK ... 289
LOCKSTATUS ... 291
LOG .. 294
MAKE ... 297
MESSAGE ... 298
MODIFY ... 299
MOUNT .. 300
MTS .. 304
NET .. 305
PERMIT ... 307
RELEASE .. 311
RENAME ... 312
RENUMBER .. 314
RERUN .. 316
RESTART ... 318
RUN .. 320
SDS ... 324
SET ... 325
SIGNOFF ... 339
SIGNON ... 340
SINK ... 346
SOURCE .. 347
START .. 348
SYSTEMSTATUS .. 349
TRUNCATE ... 355
UNLOAD .. 356
UNLOCK .. 357
VIEW .. 358

Abnormal Conditions .. 363
Program Interrupts .. 363
Attention Interrupts .. 365
Timer Interrupts .. 366
Input and Output Errors .. 366
Other System Errors .. 367

Index ... 369

7

8

MTS 1: The Michigan Terminal System

November 1991

PREFACE

The software developed by the Information Technology Division (ITD) technical staff for the
operation of the high-speed IBM 370-compatible computers can be described as a multiprogramming
supervisor that handles a number of resident, reentrant programs. Among them is a large subsystem,
called MTS (Michigan Terminal System), for command interpretation, execution control, file
management, and accounting maintenance. Most users interact with the computer’s resources
through MTS.

The MTS Volumes are a series of manuals that describe in detail the facilities provided by the
Michigan Terminal System. Administrative policies of ITD and the physical facilities provided are
described in other publications.

The MTS Volumes now in print are listed below. The date indicates the most recent edition of each
volume; however, since volumes are periodically updated, users should check the file
*ITDPUBLICATIONS, or watch for announcements in the Information Technology Digest, to ensure
that their volumes are fully up to date.

Volume 1: The Michigan Terminal System, Reference R1001, November 1991
Volume 2: Public File Descriptions, Reference R1002, January 1987
Volume 3 System Subroutine Descriptions, Reference R1003, April 1981
Volume 4: Terminals and Networks in MTS, Reference R1004, July 1988
Volume 5: System Services, Reference R1005, May 1983
Volume 6: FORTRAN in MTS, Reference R1006, October 1983
Volume 7: PL/I in MTS, Reference R1007, September 1982
Volume 8: LISP and SLIP in MTS, Reference R1008, June 1976
Volume 9: SNOBOL4 in MTS, Reference R1009, September 1975
Volume 10: BASIC in MTS, Reference R1010, December 1980
Volume 11: Plot Description System, Reference R1011, August 1978
Volume 12: PIL/2 in MTS, Reference R1012, December 1974
Volume 13: The Symbolic Debugging System, Reference R1013, September 1985
Volume 14: 360/370 Assemblers in MTS, Reference R1014, May 1983
Volume 15: FORMAT and TEXT360, Reference R1015, April 1977
Volume 16: ALGOL W in MTS, Reference R1016, September 1980
Volume 17: Integrated Graphics System, Reference R1017, December 1980
Volume 18: The MTS File Editor, Reference R1018, February 1988
Volume 19: Magnetic Tapes in MTS, Reference R1019, November 1991
Volume 20: Pascal in MTS, Reference R1020, December 1985
Volume 21: MTS Command Extensions and Macros, Reference R1021, April 1986
Volume 22: Utilisp in MTS, Reference R1022, May 1988
Volume 23: Messaging and Conferencing in MTS, Reference R1023, February 1991

The numerical order of the volumes does not necessarily reflect the chronological order of their
appearance; however, in general, the higher the number, the more specialized the volume. MTS

Volume 1, for example, introduces the user to MTS and describes in general the MTS operating system,
while MTS Volume 10 deals exclusively with BASIC.

9

MTS 1: The Michigan Terminal System

November 1991

The attempt to make each volume complete in itself and reasonably independent of others in the
series naturally results in a certain amount of repetition. Public file descriptions, for example, may
appear in more than one volume. However, this arrangement permits the user to buy only those
volumes that serve his or her immediate needs.

Richard A. Salisbury
General Editor

10

MTS 1: The Michigan Terminal System

November 1991

PREFACE TO VOLUME 1

The November 1991 edition of MTS Volume 1 reflects the changes that have been made to MTS
since the February 1988 edition.

Sections have been added describing the use of Resource Manager.

References and descriptions have been added for the FTP, LOCATE, and VIEW commands. In
addition, several new options have been added for the DISPLAY and SET commands.

11

MTS 1: The Michigan Terminal System

November 1991

12

MTS 1: The Michigan Terminal System

November 1991

A BRIEF OVERVIEW OF MTS

MTS, the Michigan Terminal System, is a terminal-oriented, time-sharing operating system that
offers terminal, server, and batch facilities. It was originally developed by the University of Michigan
Computing Center for an IBM 360/67, and has since been modified to run on the IBM System/370 and
Extended Architecture (XA) systems. It is currently running as the production system at several
academic installations1 on the IBM 370, 3033, 3090, 4300, and ES/9000 systems and the Amdahl 470,
580, and 590 systems. It has also been distributed to other installations and run on other computers.

The purpose of this section is to provide a brief description of the capabilities of MTS and an
overview of its appearance to the user. Detailed information on various aspects of the Michigan
Terminal System are given in the following sections of this volume and in other volumes describing the
system.

HISTORY

Development of MTS began in 1966 on an IBM 360/50 (a computer without dynamic-relocation
hardware). In January 1967, the system was converted to the newly arrived IBM 360/67, and in the
spring of 1967, MTS was offered to the University of Michigan community. At that time the system
could support about five terminal users and one batch stream, due to the storage limitations inherent
in a non-relocate system.

In November 1967, a new version of MTS was put into service, which exploited the relocation
hardware of the 360/67 for address translation and made use of a high-speed drum for paging. Only
changes in the supervisor were necessary in order to effect this transition, and neither the MTS
operating system itself nor user programs were affected. As a result of this change, a tenfold increase
in the number of tasks that could be serviced by the system at any one time was achieved. In August
1968, a dual-processor 360/67 replaced the single-processor 360/67, and shortly thereafter a version of
the system that supported multiprocessing was installed.

The development of the MTS operating system has been shared by various MTS installations. The
University of British Columbia Computing Centre was the first MTS installation to install an IBM
System/370 computer (a 370/168); thus the modifications to the MTS operating system for this
equipment were made there. Over the years, MTS has been installed on the following processors at
the University of Michigan:

August 1968 IBM 360/67
January 1975 IBM 370/168
July 1975 Amdahl 470V/6
March 1979 Amdahl 470V/7
September 1980 Amdahl 470V/8
November 1982 Amdahl 5860
October 1986 IBM 3090-400
July 1988 IBM 3090-600E

1
The original MTS installations are: University of Alberta, University of British
Columbia, Durham University, University of Michigan, University of Newcastle upon
Tyne, Rensselaer Polytechnic Institute, Simon Fraser University, and Wayne State
University.

A Brief Overview of MTS 13

MTS 1: The Michigan Terminal System

November 1991

June 1991 IBM ES/9000-720

In order to give some idea of the capacity of MTS, the following numbers relating to use at the
University of Michigan are offered. The maximum number of terminal users that can be signed on
simultaneously is over 600 (on both systems combined). The number of batch jobs that can be run
simultaneously is controlled by the system’s load-leveling program, and varies from 3 to 10. There are
currently over 450,000 files in the file system. At the peak of a semester, about 50,000 distinct user
identification codes (userIDs) are authorized. There are about two dozen remote batch terminals in
various parts of the University, other universities, and governmental agencies.

ACCESS TO THE SYSTEM

As its name implies, the Michigan Terminal System was designed for access from interactive
terminals, although the system also has extensive facilities for providing servers and processing batch
jobs.

Under MTS, terminal, server, and batch access differ from each other as little as possible. The
command language is identical, and the same translators and utility programs are available in each
mode. However, servers and batch are usually inappropriate for jobs requiring interaction between
the user and the program.

Although some users need only one type of access, the majority of users use all types: terminals for
program development and debugging, batch for bulk-data input and output and production running
(for noninteractive programs), and servers for accessing specialized services from MTS.

Terminal access depends on the type of terminal being used. The following terminal types are
currently supported by MTS (this is not an exhaustive list; see MTS Volume 4: Terminals and

Networks in MTS, Reference R1004, for further details):

The Ontel Terminal
The IBM PC, the Apple Macintosh, and other microcomputers
The DEC VT100 Terminal
The IBM 3278 Terminal
The Tektronix 4010 Storage Tube Display
The Visual 550 Display

Most terminals that are compatible with any of the above terminals are also supported. Most of
these terminals (except for the IBM 3278s) are linked to MTS through the UMnet/Michnet Computer
Network by means of hardwire connections or the telephone dial-up facilities. Details on using
terminals through UMnet/Michnet are given in Introduction to Terminals and Microcomputers,
Tutorial T7005, and in the section “Merit/UMnet” in MTS Volume 4. Details on using the Ontel
terminals are given in the section the “The Ontel Terminal” in MTS Volume 4.

MTS is connected to the UMnet/Michnet Computer Network which provides direct access to the
computing facilities at Wayne State University, Michigan State University, Western Michigan
University, and several other Michigan colleges and universities. Because of the UMnet/Michnet
connection, access to MTS at the University of Michigan is also possible from any location served by the
Telenet commercial network.

14 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

THE FILE SYSTEM

Unlike many other operating systems in which the user has to be aware of disk volumes and
remember which files reside on which disk, in MTS each reference by the user to a file stored on a public
volume is made only via the file name. Ordinarily, the user does not know which volume contains a
given file. The name is private to a user, thus allowing any user in the system to have a file by the
same name. Internal to the system, the name is qualified by the userID. Most files are line files,
which allow either direct access to any line by means of the line number, or else sequential access from
one line to the next. All files are physically stored in fixed-length records of 4096 bytes each (which
matches the virtual memory page size).

Normally, each userID has unlimited access to its own files, and no other userID has any access to
them. However, the user can permit any ID, group of IDs, or specific programs and/or commands to
have access to any specified file. The basic access classes are read, write-append, write-change,
destroy, and permit; any one or any combination (including NONE) of these may be chosen for any
combination of userIDs and files, independent of the other files.

DEVICE SUPPORT

At the time of the initial development of MTS, it was recognized that an ever increasing number of
different devices could be expected. As a result, there is a firmly specified, centralized interface for
I/O. The program that controls a device is called a device support routine (DSR); there is a DSR for
each type of device supported. There is also a single common interface to these DSRs, and all I/O
(including system I/O) goes through this common interface. The interface manages the details of I/O
processing that are device-independent; all device-dependencies are managed entirely by the DSR.
The package of routines that comprises a DSR has several entry points to manage various aspects of
I/O, such as opening, closing, reading a record, writing a record, control operations, etc. Since all
devices and most people are record-oriented, I/O in MTS is also record-oriented.

ACCOUNTING AND BILLING

In order to manage an authorization and accounting system for the user accounts and to do line-item
billing for these accounts, an elaborate structure has evolved. The following describes the part most
apparent to users.

There are several files maintained by the system for accounting purposes. One file has a line in it
for every valid userID, which contains an encoded form of the user’s password, the maximum allowed
amount and the current cumulative amount for several quantities, and various other items of billing
information. Among the information monitored are terminal time, CPU time, a virtual storage
integral, file space in use, a file space integral, dollars spent, the number of signons, batch runs and
terminal runs, and the number of cards read, cards punched, pages printed and lines printed. Before
a user is allowed to sign on, the cumulative dollars spent are compared with the maximum dollars
allowed; various other maxima fields are also checked at appropriate times.

Another file contains statistics on system use, one line for each session (signon to signoff period)
which the user has with the system. This line is written after signoff and contains a detailed
summary of the billable resources used during that session. The billing is subsequently done using
information from this file.

A Brief Overview of MTS 15

MTS 1: The Michigan Terminal System

November 1991

Billing is based on several items. Hardware and labor costs are divided into categories, and the
charge per unit in each category is the cost of that category divided by the total use in that category.
Four of the items are unit-record charges: a cost per card read, per line printed, per page-printer
images and sheets printed, per page printed (materials cost), and per card punched. Both batch and
terminal runs are charged per second of CPU time, and for “tenancy,” which is a virtual memory used
vs. CPU-time integral. Terminal sessions also incur a charge per connect-hour to pay for
transmission controllers, etc. File storage is charged for on a file space vs. elapsed-time integral.
Charges are also made for tape mounts, tape-drive tenancy, plotting time, etc.

Public servers are free and an account is not needed to access them.

BULK-DATA INPUT AND OUTPUT

Batch users may enter input data via punched cards and either batch or terminal users may receive
output via printed paper or punched cards.

Magnetic tapes may be read and written both by batch and terminal users. Introductory
information about submitting, retrieving, and using magnetic tapes is given in Introduction to

Magnetic Tapes, Tutorial T7002. Reference documentation for magnetic tapes is given in MTS

Volume 19: Magnetic Tapes in MTS, Reference R1019.

VIRTUAL MEMORY

One of the primary constraints facing programmers has been the amount of addressable memory
available. Addressable memory refers to storage that can be addressed directly. In the past, when a
program required more than the maximum main storage available, the “ping-pong” or “overlay”
method was often used. Using this technique, the programmer divided the program into
self-contained sections, each small enough to fit into main storage. Each section was loaded from an
auxiliary storage device such as a magnetic tape or disk and executed separately, and it was up to the
programmer to control the order, loading, and linking of the sections. This was no simple task.

The concept of virtual memory, implemented in the IBM 360/67 and the IBM System/370
computers, allows the use of more addressable memory than is physically available. In effect, the
system does the “ping-ponging” and the programmer does not have to worry about any of the details.
The system breaks the program into sections called pages and manages the transfer of pages between
main storage and suitable auxiliary devices. This transferring of pages is called paging.

Virtual memory, which can be many times larger than actual physical memory, is divided into
segments. A segment is 256 pages and a page is 4096 bytes (characters); thus, there are are 1,048,576
bytes in one segment. There are 64 segments which are allocated as follows:

Seg. 0–5: Resident system programs
Seg. 6–7: System storage for user’s job
Seg. 8: Resident system programs (NAS)
Seg. 9–55: Storage available for user programs
Seg. 56–59: System storage for user’s job
Seg. 60–63: Resident system programs (NAS)

The primary advantage of the virtual memory concept is apparent—each user has access to a very
large address space. The system ensures that when a page is needed, it is brought into main storage if

16 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

it is not already present. In order to utilize the system efficiently, it is desirable to minimize the
number of different pages needed in rapid succession.

RESOURCE MANAGER

The Resource Manager (RM) is a system that was developed to handle all the facilities associated
with printing and batch processing on a large mainframe computer. It is an integral part of the
Michigan Terminal System (MTS) and is invoked automatically whenever a job is initiated that
requires one of these facilities:

(1) page, local, or line printers

(2) batch processing

(3) BITNET file transfers

(4) BITNET messages

The Resource Manager

(1) assigns a job number and job name in order to keep track of the job;

(2) assesses the requirements of a job, based on certain defaults, the size of a job, and
information supplied on $CONTROL and $SIGNON commands;

(3) assigns a priority based on this assessment, and passes a job to the appropriate queue to
await processing;

(4) releases a job for processing when the required device or facility is available;

(5) directs output to the device indicated by a job (if this is a printer, it recognizes keywords
that might have been used to modify the manner of printing);

(6) removes a job from the system upon completion or cancellation;

(7) retains a record of a job for a period of time;

(8) maintains a log of a job from start to finish.

THE USER’S VIEW

The user can access the system from a terminal, by submitting a batch job, or by invoking a server.
Access from a terminal is called conversational mode (or terminal mode); access from a batch job is
called batch mode; access from a server is called server mode. Switching between terminal and batch
mode is not difficult since all files, commands, and facilities are available in each mode.

A Brief Overview of MTS 17

MTS 1: The Michigan Terminal System

November 1991

Terminal Jobs

When a terminal user calls in, a number of signon messages are printed after the connection is
established. A new line beginning with a pound sign (#) is then printed and the terminal waits for
input. This initial character, which is printed on both input and output lines, is called a prefix

character and indicates “who is talking or listening;” i.e., a (#) means the user is in MTS command
mode. The first command from the user must be a SIGNON command or HELP command. A user
whose userID is WXYZ would enter

SIGNON WXYZ

After the SIGNON command has been entered, the user is prompted to enter the password associated
with the userID given on the SIGNON command.

Server Connections

Server connections allow users to sign on and request a special service while bypassing the dialogue
of an interactive MTS terminal session. The user gives the system the name of the desired server and
is automatically connected to the server. The server then instructs the user how to enter the
necessary commands to obtain the desired service. Some servers will charge the userID for the service
rendered; other servers are free.

Batch Jobs

For a batch job, the user submits a deck of cards via a card reader or else uses a terminal to enter,
edit, and submit the “cards.” Each batch job is assigned a job receipt number that is used to identify all
printed and punched output produced by the job. Printed output includes a header sheet containing
the job receipt number and userID and a tail sheet containing the job receipt number and a statistical
summary of the job that includes the approximate cost of the job. Batch and terminal use are
essentially identical in commands and in action, with the exception that no interaction is possible in
batch; if some parameter is incorrect or omitted, instead of prompting for a replacement (as would be
the case in conversational mode), MTS terminates the command (an exception is the SIGNON
command where an error terminates the entire job). In addition, the batch user is required to give
maximum limits on the SIGNON command for the number of pages the job will print, the number of
cards it will punch, and the amount of CPU time it will use (if any of these is not given, a default is
supplied). An attempt to exceed any of these limits causes termination of the job.

Files and Editing

Once signed onto the system, the user may wish to create a file (with a CREATE command) or
modify an existing file. Almost all files the user works with are line files. A line file consists of a
collection of zero or more lines. Associated with each line is a line number (which is not part of the
line), and lines are ordered by line number. The line number appears to the user as a number in the
range −2147483.648 to 2147483.647.

A user may create and use private files (i.e., files belonging to the userID), and temporary files (files
automatically created when first referenced, and automatically destroyed when the user signs off).
Temporary files are distinguished by a minus sign “−” which prefixes the file name. Users may also
access public files, which usually contain translators or utility programs; a public file name is
distinguished by having an asterisk (*) as the first character.

18 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

Users usually enter data into a file or modify data already in a file by using the MTS File Editor.
The File Editor acts as a separate subsystem with its own command language and is known as the
EDIT CLS (command language subsystem). The user enters edit mode by entering a EDIT command
with the name of the file to be edited as a parameter. While in edit mode, the prefix character is the
colon (:), which helps remind the user at all times that the system is in edit mode. The INSERT,
DELETE, and REPLACE commands may be used in this mode to change entire lines, the CHANGE
command to change part of a line, the OVERLAY command to overlay information on top of a line, and
so on. Each File Editor command may include a line number parameter to indicate which line or lines
to work on, as for example

ALTER 10 'ABC'DEF'

alters the string “ABC” to “DEF” in line 10. One can also use the File Editor in a purely context-driven
fashion, using SCAN and similar commands to find the appropriate lines, and then the pertinent
command without a line number in order to work on the current line.

Further information about the MTS File Editor is given in MTS Volume 18: The MTS File Editor,
Reference R1018.

File and Devices Names

One of the most important concepts that unifies data referencing in MTS is that of the general
file-or-device name (FDname). This is illustrated using the LIST and COPY commands. Both of
these commands have two parameters which are FDnames, and proceed by reading lines from the file
or device specified by the first parameter and writing them on the file or device specified by the second
parameter. LIST differs from COPY in that the line number of the line is appended to the front of the
output line. If no second parameter is given, a default is assigned. For batch jobs, the default device
is the line printer; for terminal jobs, it is the display screen. Thus,

LIST ALPHA

prints each line in the file ALPHA, starting at line 1 (or the first line thereafter, if line 1 does not exist),
and prints the line number on the front of each line. The command

LIST ALPHA(-10)

does the same, but it starts at line −10, whereas

LIST ALPHA(5,11,2)

lists the lines 5, 7, 9, and 11 (from 5 to 11 by increments of 2).

Modifiers may also be attached to an FDname. Normally,

COPY ALPHA BETA

makes a copy of file ALPHA in file BETA, with lines renumbered in BETA to start at 1 in increments of
1. A copy of a file that preserves existing line numbers may be made by specifying an indexed
attribute on the receiving file:

COPY ALPHA BETA@I

This specifies that in writing each line into BETA, an indexed-write operation should be performed

A Brief Overview of MTS 19

MTS 1: The Michigan Terminal System

November 1991

using the line number received when the line was read from ALPHA.

In place of the file name, the user may specify a pseudodevice name, which can identify a real device,
such as *T* for a tape that has been mounted, or which can stand for some logical I/O entity, such as
SOURCE for the command stream source, *SINK* for command output, *PRINT* for the output
stream to a printer, etc.

Lastly, the FDname may be “concatenated.” An explicit concatenation consists of two or more
FDnames connected with plus signs (+):

LIST ALPHA(1,10)+BETA

An Implicit concatenation occurs if a line read from a file or device is of the form

$CONTINUE WITH FDname [RETURN]

where the brackets indicate that RETURN is optional. The dollar sign ($) is always required.
Reading is transferred to the FDname specified, transparent to whatever program is doing the reading.
If RETURN is specified, then an end-of-file condition on FDname causes reading to proceed at the line
following the “$CONTINUE WITH” line in the original file. The FDname in an implicit concatenation
can, of course, have the full form of an FDname as described above, including explicit concatenations,
etc.

Commands for manipulating files include CREATE, DESTROY, DUPLICATE, RENUMBER,
RENAME, PERMIT to set access rights for a file, FILESTATUS and FILEMENU to inquire about
various properties of a file, and EMPTY to retain a file but empty its contents so that something new
can be put in it. In conversational mode, both EMPTY and DESTROY require user confirmation to
provide some protection against accidental loss of data.

Program Execution

The RUN command loads and executes a program. For example, the command

RUN *TAPESUBMIT

loads and executes the object module contained in the file *TAPESUBMIT. Programs that are run
may refer to the named logical I/O units INPUT, PRINT, OBJECT, etc. (by calling the subroutines
INPUT, PRINT, OBJECT, etc.) or to units 0 through 99 (by calling the subroutines READ and WRITE).
Assignments of FDnames to logical I/O units are made by means of keyword parameters on the RUN
command. Thus, if the program in the file PROGRAM gets its input from logical unit INPUT (the
standard system input stream), then to specify the file FYLE as input the user would issue

RUN PROGRAM INPUT=FYLE

To read from line 25 to the end of the file FYLE, the user would issue

RUN OBJ INPUT=FYLE(25)

The DEBUG command is the same as the RUN command, but instead of starting execution of the
program directly, debug mode is entered after loading so that execution of the program may be
monitored. See MTS Volume 13: The Symbolic Debugging System, Reference R1013, for information
on the DEBUG command.

20 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

From the viewpoint of the system, translators are user programs which are executed via the RUN
command. For example, to compile a FORTRAN program, the user enters RUN *FORTRANVS giving
appropriate assignments for logical I/O units: INPUT, the source program; PRINT, the listing output;
OBJECT, the object deck output, etc. Parameters are passed to the program via the optional PAR
field.

MTS COMMAND LANGUAGE

In order to use the computer, one must first get the attention of MTS and be identified through the
SIGNON command. Once this has been done and MTS has declared the signon to be legitimate, the
system is at the user’s disposal.

In this section, the commands are listed in their most common form followed by a brief explanation
of their function. Not every possible option and parameter is mentioned. A detailed explanation of
the commands is given in the section “The System Command Language” in this volume. The synopsis
of the complete syntax for the MTS command language is given in the MTS Reference Summary, a
pocket-sized guide to MTS.

Global Control

SIGNON userid tells MTS that the user with userID “userid” wants to use the system.
The password associated with the userID must be entered on the
following line.

SIGNOFF signs the user off the system and gives a summary of the cost of the
run.

SET is used to set various options and variables in the system. These
control such functions as setting the user’s password and/or name,
mail/message notification, printed output routing, etc.

SINK FDname switches the current output sink to the file or device “FDname”
instead of the printer (in batch mode) or the terminal (in
conversational mode).

SOURCE FDname switches the current input source to the file or device “FDname”
instead of the card reader (in batch mode) or the terminal (in
conversational mode).

Program Control

RUN FDname loads and executes the program in the file “FDname”. These files
can be public, such as *FORTRANVS or *PASCALJB, or private,
such as MYPROGR or −LOAD.

RERUN reissues the previous RUN command.

LOAD FDname loads but does not execute the program in the file “FDname”. The
program can then be DISPLAYed and/or ALTERed. Execution can
be started by the START command.

A Brief Overview of MTS 21

MTS 1: The Michigan Terminal System

November 1991

START starts the execution of a program which has already been loaded by a
LOAD command.

RESTART restarts the program at the point of the last interrupt or at a specified
location. START and RESTART are synonymous and may be used
interchangeably.

UNLOAD releases storage and devices acquired by the previous LOAD or RUN.
It is useful when the execution of a program did not terminate
normally.

IF tests program execution return code.

Debugging

DEBUG FDname loads the program in the file “FDname” under the control of the
Symbolic Debugging System (SDS). SDS has its own set of
commands which allows the user to interactively debug a program.
A listing of the important debug commands is given later.

SDS returns control to SDS from MTS.

DUMP prints out the contents of the general registers, floating-point
registers, and all the virtual memory locations associated with the
current job.

File Handling

CREATE filename creates a file named “filename”. If it is not a temporary file (that is,
if its name does not begin with a minus sign), it is retained until the
user destroys it.

DESTROY filename destroys the file named “filename” and returns the space on the disk
to the pool of available storage.

EMPTY filename empties the contents of the file “filename”, but retains its space and
identity. Thus, the file can be reused.

RENAME filename1 filename2
renames the file “filename1” to “filename2”.

RENUMBER filename renumbers the line numbers in the file “filename”.

TRUNCATE filename deallocates unused space at the end of file “filename”.

COPY FDname1 TO FDname2
copies the contents of the file or device “FDname1” into the file or
device “FDname2”. Unless specified otherwise, the lines in
“FDname2” are numbered from 1 with increments of 1 regardless of
their numbers in the old file. “FDname1” is retained unaltered.

22 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

DUPLICATE oldname AS newname
copies the contents of the file “oldname” exactly into the file
“newname”. The original line numbers are retained.

LIST FDname lists the contents of the file or device “FDname”.

RELEASE releases *PRINT*, *BATCH*, or *PUNCH*, or pseudodevices
mounted by the MOUNT command.

EDIT filename enters edit mode. The MTS File Editor has its own set of commands
which allow the direct editing of the file “filename”.

PERMIT filename access specifies the access that other users have to the file “filename” to be
“access”.

FILESTATUS gives file status information for the user’s files.

FILEMENU gives file status information in full-screen format.

Miscellaneous

CALC enters into the desk calculator mode of operation.

CONTROL FDname xx performs the file or device control operation “xx” on the file or device
“FDname”.

DISPLAY option displays information about the status of the system or the user’s task.

FSMESSAGE enters into the Full-Screen Message System.

FTP enters the File Transfer Protocol system.

LOCATE gives job status information.

LOG ON FDname begins printing a log (copy) of a terminal session on the file or device
“FDname”.

MAKE program enters the program management facility which builds the contents
for the file “program” depending on rules given in a make-file.

MESSAGE enters into the MTS Message System.

MOUNT xx requests the mounting of the magnetic tape, server, or
UMnet/Michnet Computer Network connection “xx”.

NET xx enters into the UMnet/Michnet Computer Network system for the
connection “xx”.

SYSTEMSTATUS gives status information for a job or the system.

A Brief Overview of MTS 23

MTS 1: The Michigan Terminal System

November 1991

VIEW looks at queued batch and print jobs.

THE EDITOR COMMAND LANGUAGE

After the user has entered the command EDIT xx, MTS turns control over to the MTS File Editor,
which is then ready to accept commands concerning the editing of the file named “xx”.

Files may be edited either by line number or by context.

The File Editor maintains a current line pointer which is initially set to the first line of the file.
Commands that require line number specification may refer to the line pointer or may explicitly
mention the appropriate lines.

Visual-mode (or full-screen mode) editing is available for dedicated MTS terminals such as the
Ontel and the IBM 3278, and for microcomputers such as the IBM PC (and its compatibles), the Apple
Macintosh, and the DEC VT100.

An introductory description of the MTS File Editor is given in Introduction to the MTS File Editor,
Tutorial T7006. The complete description of the File Editor is given in MTS Volume 18: The MTS File

Editor, Reference R1018.

THE DEBUG COMMAND LANGUAGE

The Symbolic Debugging System (SDS) is a conversational program checkout facility which aids in
debugging programs. The MTS command DEBUG xx has the same format as the RUN command.
It tells MTS to load the program in file “xx” and then to give control to SDS. Using the SDS command
language, the programmer may initiate execution of a program and monitor its flow by specifying
breakpoints where instructions and data may be displayed and modified.

The programmer may refer to locations in the program symbolically, by relative address, or by
absolute (virtual or loaded) address. Symbolic referencing can be used only with those language
processors which generate a symbol table with the object programs they produce. Currently, this
includes the 360/370 assembler, the FORTRAN G and H compilers, the VS FORTRAN compiler, the
PL/I (F) compiler, the PL360 compiler, the PLUS compiler, and the C87 compiler. If the user has
requested that SDS display the contents of a particular location—using any of the above three ways to
specify the location—SDS consults the symbol table, if there is one, to get the proper type and length of
the location. If there is no symbol table, the contents are printed in hexadecimal in units of 4 bytes.

An introduction to SDS is given in Introduction to Programming and Debugging in MTS, Tutorial
T7004. The complete description of SDS is given in MTS Volume 13: The Symbolic Debugging System,
Reference R1013.

24 A Brief Overview of MTS

MTS 1: The Michigan Terminal System

November 1991

USERIDS, LIMITS, AND SIGFILES

The ITD userID (also called the signon ID) identifies the user to the system and differentiates him or
her from other users. It is a 4-character alphanumeric identifier assigned when an application for use
of the mainframe computer is approved. Each userID is provided for a particular use; thus, a student
enrolled in two courses using the computer would have a separate userID for each course. Each
userID has independent limits on computer resources and each has separate accounting information
maintained for it.

Every userID is associated with a project. A project may consist of several userIDs or just a single
ID, but a userID can belong to only one project. Each project has a 4-character identifier called the
“projectID.” For instructional use, one projectID is usually assigned to a course, and each student in the
course has a userID belonging to that project. A research group might have one projectID for the
whole group, and each individual within the group would have a userID belonging to that project.

A project director or instructor may request that the project be organized so that the ACCOUNTING
command may be used to allocate computer resources among the userIDs in the project. Billing and
the transfer of funds to pay for use of the computer are based on projectIDs.

ProjectIDs are also useful if programs or data stored in a file belonging to one signon are to be shared
by members of the project. (See the PERMIT command for details.)

PASSWORDS

Whenever a user wishes to use MTS, the first command entered in a terminal session (or the first
card of a batch job) must be a SIGNON command specifying the userID. To protect the user against
unauthorized use of a userID, a password of from 1 to 12 characters (blanks and commas are not
allowed) is assigned when the userID is created. The system stores an encoded form of the password
in the accounting record for the userID. When the user enters the SIGNON command, the system
inspects the accounting record to determine whether the userID is valid and whether funds remain. If
both of these conditions exist, the system prompts the terminal user to enter the password (for a batch
job the password should be entered on the card following the SIGNON command). The system
encodes the user’s password and then compares it with the one maintained in the accounting record.
If they are identical, the SIGNON procedure is completed and the user may begin the computing
activities. The algorithm for encoding passwords is nearly irreversible; hence, it is impossible for
anyone, including ITD personnel, to recover a lost password. If a user forgets his or her password, an
application must be made to the ITD Accounts Office for a new one.

The user can change the password for the userID whenever he or she is signed on by issuing a “SET
PW” command. Users should change their passwords frequently. Anyone who knows a userID and
its password has access to the funds and files of that userID. UserIDs are essentially public
knowledge; they are printed conspicuously on all batch output to facilitate distribution. Therefore
users should take care to see that printing of passwords is always suppressed. Methods for
suppressing the printing of passwords are given in the section “Batch Use of MTS” and in Introduction

to Terminals and Microcomputers, Tutorial T7005. If the password is printed, that portion of the
output should be destroyed and then discarded; merely throwing it in a wastebasket does not

guarantee that security will be maintained. Additional security may be obtained by using a password
validation scheme with sigfile processing (see “Sigfiles and Security” below).

UserIDs, Limits, and Sigfiles 25

MTS 1: The Michigan Terminal System

November 1991

To change the password, the SET PW command is used. For batch jobs, the command sequence is
given as

SET PW
newpw newpw

where “newpw” is the user’s new password (starting in column 1). The password must be entered
twice to reduce the possibility of setting the password to an unknown word due to a typing error.

For terminal jobs, the user is first prompted for the current (old) password and then prompted for
the new password. As an aid to guard against typing errors when entering the new password, MTS
requires the terminal user to verify the new password by entering it a second time. If both versions of
the new password are the same, the new password becomes the current password; if they are different,
an error message is printed and the password remains unchanged. Thus for terminal users, the
command sequence is

SET PW
Enter old user password.
oldpw
Enter new user password.
newpw
Reenter new user password to confirm.
newpw

Automatic input blanking is provided for both batch and terminal jobs to prevent either the old
password or the new password from printing on the user’s printed output or terminal.

As an additional measure of protection, the system will print the message

Password has been changed.

If this message appears under suspicious circumstances, the user should immediately change the
password before signing off (if in conversational mode) and notify a consultant or the ITD Accounts
Office.

Attempts to sign on to a userID that fail because of improper password entry are logged by MTS and
reported at the next successful signon with the following message:

There have been n unsuccessful attempts to sign on
to this account since the last successful signon.

where “n” is the number of signon attempts. This message, when used in conjunction with the last
signon date and time, allows a user to detect all attempted uses of the account, whether successful or
not. If this message is received often or with a large value for “n” and authorized users of the account
are not responsible for the unsuccessful attempts, individual users may wish to contact ITD for further
assistance. Any actual unauthorized use of an account should be reported promptly to the ITD
Accounts Office.

TIME AND FUNDS LIMITS

The computer resources used by a userID can be limited at three levels: in the accounting record, in
an individual batch job or terminal session, and in the execution of individual programs within a batch
job or terminal session.

26 UserIDs, Limits, and Sigfiles

MTS 1: The Michigan Terminal System

November 1991

In the accounting record, each userID normally has at least three limits: funds, file space, and an
expiration time and date. Other limitations (e.g., prohibiting terminal use) may be requested. MTS
is designed to prevent the user from overdrawing his or her account. The funds limit is checked when
the user attempts to sign on. If the balance is zero or negative, the signon is not allowed. If the
balance is positive, and the job is a batch job, the system checks to ensure that the remaining balance is
sufficient to cover the CPU time specified on the SIGNON command; if the balance is insufficient, the
job is not run. For each terminal session, the system simply stops when the user runs out of money.

At the individual session level, the user may specify a global CPU time limit in seconds as part of the
SIGNON command, e.g.,

SIGNON WXYZ T=10

If the global time limit is exceeded on a batch job, the message

Global time limit exceeded [at xxxxxxxx]

is printed and the job is terminated (the location “xxxxxxxx” is printed only if the interrupt occurred
while a program was executing). If the global time limit is exceeded on a terminal job, the above
message is printed and the user is prompted for permission to continue what was interrupted or to
return to MTS command mode. From this point, the job is continued without a global time limit.

The system also sets a funds-depletion time limit on the SIGNON command which is an estimate of
the amount of CPU time needed to expend the remainder of the money allotted to the account. When
this time limit is exceeded, the system recomputes the balance of funds. If the balance is still positive,
a new time limit is set and the job is continued. If the balance is negative, the following message is
printed:

You have run out of money [at xxxxxxxx]

(the location “xxxxxxxx” is printed only if the interrupt occurred while a program was executing). The
current balance of funds is printed and the user is prompted to continue whatever was interrupted or to
return to MTS command mode. The user is then given a new time limit of 3 seconds. Thereafter, at
3-second (CPU time) intervals, the warning is repeated.

Warning: The system will not prevent the user’s account from accumulating a deficit balance and
will not force the user to terminate the session. If the initial estimate by the system of the CPU time
needed to deplete the remaining balance of funds is inaccurate (due to the type of computing being
performed by the user’s job) or if another person is concurrently signed onto the same account and is
expending funds, the deficit incurred may be substantial. Rebates will not be granted because the
system fails to prevent an account from being overdrawn.

At the individual program-execution level, the system imposes no time limits; however the user can
specify a local CPU time limit on any RUN, RERUN, LOAD, DEBUG, RESTART, or START command
to limit the execution time of the program, e.g.,

RUN *TEX T=5

sets a local time limit of 5 CPU seconds for the executing program. If no local limit is specified,
program-execution times are limited only by the remaining portion of the global limit. For a terminal

session, if no explicit global or local time limit is set, the only limit is the remaining money in the user’s
account. Therefore, it is strongly advised that users specify explicit global or local time limits.

UserIDs, Limits, and Sigfiles 27

MTS 1: The Michigan Terminal System

November 1991

Since it is inconvenient to enter a local time limit on every RUN, RERUN, etc., command, the SET
TIME=n command allows the user to establish a default local time limit. The value specified becomes
the default local time limit until another SET TIME=n command is entered or until the user signs off.
Users must remember to SET TIME=n for every batch or terminal job if they want a default local time
limit (this may be easily done using a sigfile). An explicit local time limit presented on the RUN, etc.,
command always overrides the default value. Whenever a local limit is reached, program execution is
interrupted and a message of the form

Local time limit exceeded [at xxxxxxxx]

is printed. The user can restart execution by using the RESTART command. The user should specify
a new local time limit on the RESTART command if the default value is inappropriate, .e.g.,

RESTART T=3

A warning message of the form

WARNING: Program being run with no local time limit.

is printed if the RESTART command is given without a local time limit when a previous local time limit
was in effect.

A global time limit takes precedence over a local time limit only if the local limit is greater than the
global limit.

Some programs cannot be restarted if they are interrupted because a time limit has been reached.
Such programs (e.g., *WATFIV and *PLC) may establish an internal time limit that is smaller than the
one the user specified; if the internal limit is reached, program execution is interrupted so that a
meaningful dump can be produced.

The user can determine the cost of the session at any time by entering the command

DISPLAY COST

The user can also determine, after each MTS command, the incremental and total cost of the session by
issuing the command

SET COST=ON

Similar information is available for the execution of programs by using the SET command options EBM
and ETM.

The user may specify either a global or local plot-time limit for either a batch or terminal job. A
global plot-time limit may be specified on the SIGNON command in the form

SIGNON WXYZ PT={t | tM}

and a local plot-time limit may be specified in the same form on the RUN, RERUN, START, RESTART,
LOAD, or DEBUG commands. If given in the form “t”, the limit is in seconds; if given in the form “tM”,
the limit is in minutes. If a global plot-time limit is exceeded, the plot job is automatically terminated;
if a local plot-time limit is exceeded, the executing program is terminated. The default global and local
plot-time limits are none which means that the plot-time limit is unrestricted.

28 UserIDs, Limits, and Sigfiles

MTS 1: The Michigan Terminal System

November 1991

PAGE AND CARD LIMITS

For batch jobs, the user may specify limits for either the number of pages of output printed or the
number of cards punched. This may be done either globally for the entire job or locally for a single
RUN, RERUN, START, RESTART, LOAD, or DEBUG command.

A global page limit may be specified on the SIGNON command in the form

SIGNON WXYZ P=p

where “p” is the number of pages that may be printed. If the number of pages generated by the job
exceeds this limit, the job is automatically terminated, and the message

Global page limit exceeded [at xxxxxxxx]

is printed where “xxxxxxxx” is the same as for the global time limit message described above. The
default is 50 pages. The maximum number that may be specified is 99999.

A global card limit may be specified on the SIGNON command in the form

SIGNON WXYZ C=c

where “c” is the number of cards that may be punched. If the number of cards generated by the job
exceeds this limit, the job is automatically terminated, and the message

Global card limit exceeded [at xxxxxxxx]

is printed. The default is 0 cards and the pseudodevice *PUNCH* is undefined if no global card limit
is specified (in batch mode). The maximum number that may be specified is 99999.

Local page and card limits may also be specified on the RUN, RERUN, START, RESTART, LOAD,
and DEBUG command. The form of the specification is the same as above for the SIGNON command.
If the number of pages or cards generated by the executing program exceeds either limit, the program is
automatically terminated, and the message

Local page limit exceeded [at xxxxxxxx]

or

Local card limit exceeded [at xxxxxxxx]

is printed.

SIGFILES

Many option settings and default values, such as the default local time limit mentioned above, can
be modified by the user. The standard settings usually satisfy the needs of the majority of users, but,
obviously, they cannot satisfy all users. Therefore, MTS permits the user to enter commands (usually
SET commands) to establish the conditions desired each time he or she signs on. However, since this
procedure would be repetitive and wasteful, the concept of a sigfile or signon file was developed. A
sigfile is an ordinary file which the user specifies (via SET SIGFILE=filename) as a source of commands
to be executed immediately after signon, but before the system requests additional commands from the

UserIDs, Limits, and Sigfiles 29

MTS 1: The Michigan Terminal System

November 1991

user’s terminal (or batch job). The commands in the sigfile are not printed on the user’s terminal (or in
the batch output). For example, if a user wishes to establish a default local time limit of 10 seconds
and wishes to have the cost used for processing each command printed upon completion of every
command, he would construct a file containing the line

SET TIME=10 COST=ON

and then specify the file as the sigfile. Assuming that the name of the sigfile is SIGF, the user would
enter the command

SET SIGFILE=SIGF

in MTS command mode. The name of the sigfile is saved in the accounting record when the user signs
off. Thereafter, each time the user signs on (in batch or terminal mode) the sigfile commands are
executed immediately, before additional commands are executed.

Sigfiles may also contain other commands: e.g., RUN commands to execute programs or CONTROL
commands to establish other desired conditions such as setting terminal device commands. For
example, the command

CONTROL *MSINK* LEN=255

may be used to execute a terminal device command to set the output-line length for a terminal to be 255
characters.

PROJECT SIGFILES

If the userID is under the control of a project director who is authorized to use the ACCOUNTING
program with the project, an additional sigfile may be established. This sigfile may be assigned only
by the project director and is called the project sigfile. The name does not imply that all userIDs
belonging to the project are controlled by that project’s sigfile. Instead, the project director may assign
a project sigfile to any (or all) userIDs in the project, and may assign different project sigfiles to
different userIDs in the project. If a userID has both a project sigfile and a user’s sigfile, the project
sigfile is processed first after each SIGNON and the user’s sigfile is second. For example, if an
instructor assigns a problem to be done at a terminal with a limit of 2 seconds of CPU time to execute,
the student could construct a file containing the single line

SET TIME=2

and then use the ACCOUNTING MANAGEMENT command to establish this file as the project sigfile
for every userID in the project. Thereafter, whenever a student in the class signs on, the default local
time limit will be 2 seconds. If a student forgets to put a local time limit on a RUN command and the
program goes into a loop, it will be interrupted when 2 seconds of CPU time have been used. A local
time limit so established by the project sigfile may help prevent the waste of computer resources that
might otherwise occur. A user sigfile can override or reset this.

SIGFILES AND SECURITY

Project sigfiles and/or user sigfiles may be used to provide additional security and control over the
use of computer resources.

30 UserIDs, Limits, and Sigfiles

MTS 1: The Michigan Terminal System

November 1991

Better security may be achieved by requiring extended testing or validation, over and above the
password, before a user is allowed to proceed. To further validate the signon, the user can prepare a
program that requires a correct response to a question or command, such as

Enter the project secret code.

If the user responds correctly, thereby demonstrating that he or she is an authorized user of the userID,
the validation program permits the user to proceed. If the response is unacceptable the program can
terminate the job (e.g., either by calling the QUIT subroutine or by using the OFFBIT (item 23) of the
CUINFO subroutine as described in MTS Volume 3: System Subroutine Descriptions, Reference
R1003). The user then constructs a file named, e.g., SECURITY, containing the line

RUN program

and enters SET SIGFILE=SECURITY to establish this file as the sigfile. Thereafter, anyone
attempting to use the userID must respond to the questions of the program. If the user responds
correctly, the session is allowed to continue; otherwise, the user is automatically signed off. An
example of such a program is contained in the file *CKID (see MTS Volume 2: Public File Descriptions,
Reference R1002, for details).

This scheme for providing extra security could be circumvented if someone were able to interrupt
execution of the sigfile program, via an attention interrupt. To prevent this, the owner of the userID
or project director can instruct the system to ignore attention interrupts until sigfile processing is
complete. The owner may do this by entering the command

SET SIGFILEATTN=OFF

The project director may do so by entering the ACCOUNTING MANAGEMENT command and then
entering

MOD userid,SFATTN=OFF

The project director has sole control over the attention switch for the project sigfile and the owner has
sole control over the attention switch for the owner’s sigfile. Programs that are to be executed during
sigfile processing should be debugged thoroughly before sigfile attention interrupts are disabled.

The keyword SIGFILE=OFF may be specified on the SIGNON command to bypass any project or
user sigfile processing unless this has been prohibited by the SIGFILEATTN or SFATTN options (see
above). For example,

SIGNON WXYZ SIGFILE=OFF

If an authorized user cannot get past the sigfile-processing due to an error in a sigfile program, the
owner of the userID may request the ITD Accounts Office to modify the accounting record so that
attention interrupts will be recognized rather than ignored. (Such a request is submitted exactly like
a request for a change of password.) The owner may then SIGNON, interrupt the faulty sigfile
program, and then debug it.

Additional security for executing a sigfile program can be obtained by having the program
immediately call the CUINFO subroutine to enable the OFFBIT, process the security algorithm, and
then call the CUINFO subroutine to disable the OFFBIT immediately before program termination.
This will cause the user to be signed off if the sigfile program fails to execute to completion due to any
type of interrupt (e.g., attention interrupt, program interruption, timer interrupt).

UserIDs, Limits, and Sigfiles 31

MTS 1: The Michigan Terminal System

November 1991

Occasionally it is desirable to restrict the use of a userID to the running (execution) of a single
program. Such a program should be invoked by a RUN command in the sigfile and should call the
QUIT subroutine to sign the user off when the program terminates. Thus, the userID can never be
used to run other programs; it never leaves “sigfile mode.” For this type of use, the sigfile should belong
to a different userID; otherwise there is no way to change it after it is established. Thus, if the userID
to be restricted to “sigfile mode” is AAAA and the other userID is BBBB, the file, say SFYLE, would be
created by BBBB and filled appropriately, and then permitted so that AAAA has read access. Then
AAAA can sign on and enter the following commands:

SET SIGFILE=BBBB:SFYLE
SET SIGFILEATTN=OFF

This mechanism may be used to allow a large number of people to use a common userID for
executing the sigfile program (e.g., a tutorial routine) while preventing them from using the userID for
any other purpose.

32 UserIDs, Limits, and Sigfiles

MTS 1: The Michigan Terminal System

November 1991

BATCH USE OF MTS

This section describes how to use the MTS batch job facility. It covers general concepts, and
presents some basic examples for running a batch job using *BATCH*. This is followed by an
explanation of the available sign-on parameters, printed output, and by other useful information.

WHAT IS A BATCH JOB?

A batch job is simply a set of commands that are processed by the computer without interactive
control. In other words, once you have submitted the job you cannot change the sequence of flow, nor
correct any errors during execution. You sacrifice the flexibility available in interactive mode, and you
may have to wait several hours, or even overnight, to receive your results.

MTS batch jobs may be

(1) punched on cards and read through a card reader,

(2) prepared at a terminal and copied to *BATCH*, or

(3) submitted over the UMnet/Michnet Computer Network.

Before deciding to use batch you should ask yourself the following questions.

(1) Do I know the exact steps required to complete the job?

(2) Can I run the program without being prompted for input from the terminal keyboard?

(3) Am I confident that the job will run without errors? Often batch jobs will exceed time or
page limits (see “Common Errors with Batch” in this section).

(4) Am I prepared to wait (possibly overnight) to get the results back from my job?

If the answer is “yes” to the above questions, then you are ready to use batch.

Reasons for Using Batch

There are two basic advantages for you in using batch mode: the first is cost, the second is time.

When you run your job interactively, you are in effect requesting the use of computer resources: for
example, printers or disk space. Interactive mode means that the computer attempts to respond to
your request as quickly as possible while at the same time responding to similar requests from all other
users on the system. Batch mode allows the computer to take its time in responding and allocate
resources to your job when they are not required by interactive jobs. What this means for you is
perhaps a longer wait for completion of your job, but at a reduced cost. This reduced cost is due to the
fact that you are not charged for terminal connect time and that your job may run at a time when the
rates are lower. A more detailed explanation of the charges for batch processing is given in “Job
Selection” in this section.

Batch Use of MTS 33

MTS 1: The Michigan Terminal System

November 1991

The second advantage in using batch is that under certain circumstances batch allows you more
efficient use of your time. This is best illustrated by an example. Let us assume you have a job that
typically consumes a lot of elapsed time (for example, running *RESTORE to reinstate several files).
Rather than sit idly at a terminal waiting for execution to terminate, you might submit a batch job and
get on with other work while it is being processed. If you require a hardcopy record of your run, this is
supplied automatically in batch, and includes such pertinent information as time and accounting
charges.

In addition to the above situations, any job that is processed at regular intervals in a standard
manner is a good candidate for batch processing. These types of jobs are frequently referred to as
“production jobs”.

Remember that while you are waiting for your batch job to complete, you are free to continue
working on other tasks, such as editing or submitting jobs, provided they do not use files required by
your batch job.

SUBMITTING A BATCH JOB

MTS batch jobs may be

(1) prepared at a terminal and copied to *BATCH*,

(2) submitted over the UMnet/Michnet Computer Network, or

(3) punched on cards and read through a card reader.

The easiest way to submit a job to batch is to copy the commands directly to *BATCH*.

Let us assume you were producing a course catalog, using a program in the file CATMAKER to
generate your output, and you want to run your job in batch because it will cost less. The course
catalog is in an MTS file called CATALOG. You can submit your batch job directly from *SOURCE*
(normally the terminal keyboard) to the pseudodevice *BATCH* as follows (remember, you should not
type the prompt characters):

$COPY *SOURCE* *BATCH*
> $SIGNON * PAGES=100

BATCH assigned job number 273907
> $RUN CATMAKER INPUT=CATALOG PRINT=*PRINT*
> $SIGNOFF
> $ENDFILE
BATCH RM273907 released HOST=UM RATE=NORMAL

When you enter the line containing your $SIGNON command, you should always use an asterisk (*)
instead of your userID if you are running the batch job from the same userID. This avoids the security
risk of typing your password at your terminal. The PAGES=100 parameter requests a limit of 100
pages for your job (the default limit is 50). You may then type in any commands you wish to execute in
batch; e.g., running CATMAKER.

After entering the first line, the system assigns your batch job a name and number. Your job name
is RM273907 and your job number is 273907. Note that your job name is simply the job number with
the letters RM prefixed to it. You can assign your own job names (more about this in “Assigning a Job
Name” in this section). You can use your job name to keep track of the progress of your batch job (more

34 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

about this in “Monitoring a Batch Job” in this section).

You terminate the batch job by typing the line $ENDFILE or by entering an end-of-file at the “>”
$COPY prompt. Your job will then be released.

All batch jobs produce printed output which is sent directly to *PRINT*. Since you did not change
the default for *PRINT*, the output from the job will be printed on one of the Xerox 9700 page printers.
Details on printed output will be covered in “Printed Output for Batch Jobs” in this section.

Entering Commands in a File

If you expect to run the job several times, you can put the commands in an MTS file and copy the file
to *BATCH*.

Using your previous example, create a file called CAT.RUN and use the editor to add commands to
the file.

$EDIT CAT.RUN
: INSERT
? $SIGNON * PAGES=100
? $RUN CATMAKER INPUT=CATALOG PRINT=*PRINT*
? $SIGNOFF
: STOP

Now, any time you want to submit this as a batch job, just type:

$COPY CAT.RUN *BATCH*

Your job will be submitted to the batch queue. In general, we recommend that you use this second
technique for submitting batch jobs for two reasons: first, it is easier to correct errors; second, if you are
submitting the same job several times, it will be more efficient than typing in the entire command
sequence each time.

How Long Does Batch Take?

Often a batch job will begin executing immediately after it is submitted; however, this is not always
the case. The time required for a job to complete is the turn-around time. Turn-around is affected by
a number of factors including the number of users on the system, current jobs executing or in the
queue, availability of resources such as printers, and the priority level of the job submitted. Because
of this the turn-around for a particular job can vary significantly. The following are a few guidelines to
make note of:

(1) A job that is submitted with the parameter RATE=MINIMUM on your $SIGNON
command will usually run overnight (more details in “Job Selection” in this section).

(2) Jobs requiring large amounts of computer time or resources will, in general, have a slower
turn-around time.

(3) Before submitting your job, it is possible to check current activity on the system using the
$SYSTEMSTATUS command (see the section “Managing Batch and Print Jobs”).

(4) The system will not notify you when your job has finished; however, you can check using

Batch Use of MTS 35

MTS 1: The Michigan Terminal System

November 1991

the $SYSTEMSTATUS command. This will be explained in the next section.

Monitoring a Batch Job

Once you have submitted your batch job, you may check its progress.

Assume you have submitted two jobs to *BATCH* and want to see if they are finished. You do not
know what their names or numbers are so you issue the command

$SYSTEMSTATUS QUEUE *

or more simply

$SY Q *

The system will respond with the following:

1ABC:RM316636 is awaiting execution, P7, after 26 jobs.
1ABC:RM316638 was executed at 10:48:52 Sun Jan 14/90
1ABC:RM316639 is awaiting print, P13, after 21 jobs.

The first line refers to a batch job still awaiting execution; there are 26 jobs preceding it in the queue.
It has an execution priority of 7 (indicated by P7), which is a medium priority. The second entry tells
us that job RM316638 has been executed. The last entry refers to the printed output created by the
second job which is waiting to be printed, there are 21 jobs ahead of it in the print queue. Note that
$SYSTEMSTATUS QUEUE * will display all of your jobs currently waiting in a queue plus any jobs
that have completed execution in the last eight hours.

Another form of the $SYSTEMSTATUS command which can be used as follows:

$SYSTEMSTATUS QUEUE USER (or $SY Q U)

This form of the command will only display those jobs belonging to the user that are currently waiting
to be executed. You can use this form if you are certain that your job has not been executed.

Logging Batch Output

Once your job has been executed, the output will be sent to *PRINT*. Further details on printed
output are given in the section “Printed Output for Batch Jobs” in this section.

Normally output from a batch job is printed. However, if you also want the output of your batch job
to be put into a permanent file, then you should include the following commands at the start of your
batch job:

$SIGNON *
$EMPTY MYLOG
$LOG *MSINK* ON MYLOG

.

. (enter batch commands here)

.
$SIGNOFF

Note that you will need to have created the file MYLOG before you submit the above job; the results of

36 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

your batch run will then be placed into the file MYLOG.

Viewing Batch Output

You may use the $VIEW command to look at the command lines of a batch job before it is executed or
at the results of the job before they are printed (see the section “Managing Batch and Print Jobs” later
in this volume).

Cancelling a Batch Job

You can cancel a job submitted to *BATCH* using $CANCEL provided, of course, that the job has
not been already executed. For example, suppose you have submitted a job with a low priority and
subsequently decide that you want to submit it interactively rather than wait for the results. First,
obtain the job name:

$SYSTEMSTATUS QUEUE *

The system responds,

1ABC:RM316636 is awaiting execution, P8, after 26 jobs.

Then you enter,

$CANCEL RM316636

You can then check again,

$SYSTEMSTATUS QUEUE *
1ABC:RM316636 was cancelled at 15:53:02 Sun Jan 14/90.

Further details on using $CANCEL are given in the section “Managing Batch and Print Jobs”.

Common Errors with Batch

A batch job will terminate abnormally if it requires more central processing unit (CPU) time or
pages than you have allowed. In this case, you will find the message:

GLOBAL item LIMIT EXCEEDED

on the last page of your output, where item could be one of either TIME or PAGES. When you submit a
job to batch there are a number of optional parameters that you can specify using $SIGNON. If you do
not specify these, the system will automatically assign default values for you: 3 seconds for execution
(CPU) time and 50 pages for printed output. If you expect to exceed these limits, be sure to specify
appropriate values with the $SIGNON command. It is wise to estimate higher than you expect.

For example, if you are submitting a job that requires about 8 seconds of CPU time and normally
prints 376 pages, you could define reasonable limits such as:

$SIGNON * PAGES=400 TIME=10

These are slightly higher than your requirements to allow for a small margin of error, but not so high
that the priority of the job would be adversely affected.

Batch Use of MTS 37

MTS 1: The Michigan Terminal System

November 1991

There are two reasons why it is not a good idea to request an excess of either time or pages to ensure
that your job will execute. First, time and page restrictions are an insurance to you that your job is not
out of control producing unwanted pages of output while using up precious computer dollars; second,
excessive time limits will lower your job’s position in the execution queue and thus increase the
turn-around time and may even cause the job to be held by the operator and not run. For more details
on estimating TIME and PAGE requirements, see “Estimating Time and Pages” in this section.

Regardless of the limits you define on your $SIGNON command, you will only be charged for the
amount of resources actually used. However, if you request a limit that would exceed the funds
remaining in your account—even if your job does not actually require that much—the system will not

let your job sign on. The job will abort.

Typing and syntax errors, as mentioned earlier, are also quite common. These are more easily
corrected when batch jobs are submitted by entering your commands into a file. Note also that
although the use of the dollar sign is optional (i.e., $SIGNON and SIGNON are equivalent), we
recommend that you always use them. If an error is detected during execution, MTS will look for the
next line in your file beginning with a “$” and continue from there.

CHANGING BATCH DEFAULTS

Unless you explicitly modify the attributes of a batch job, it will execute subject to the following
criteria:

(1) The job is executed at normal priority.

(2) It is printed in landscape format on the Xerox 9700 page printer, on standard 8 1/2 by 11
paper.

(3) There is a 3-second global limit for execution (CPU) time and a 50-page global limit for
printed output.

(4) All commands and system responses are echoed in the the printout.

You can change these default options by using the $SIGNON command. The first line of your batch
job contains a $SIGNON command with either a userID or an asterisk (*). The general form of this
command is:

$SIGNON * parameters

or

$SIGNON userid parameters

The first form, which uses the asterisk, can only be used when you are submitting a job from your own
userID. If you are submitting a job for a userID other than the one you are currently signed on to, then
you must use the second form. Note that if you are using the second form, you will also need to provide
the password for the userID that you are using. Generally, most users will find the first form easier to
use. In both cases parameters are optional and can be one or more selected from the list in Table 2.
The following is a simple example:

$SIGNON * RATE=MINIMUM PAGES=200

38 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

In the above example you will be signed on to run a job with minimum rates (RATE=MINIMUM) with a
limit of 200 pages of printed output (PAGES=200). The order in which $SIGNON parameters are
specified is not important. Note that there should be no blank spaces before or after the “=” sign.

The $SIGNON command is described more fully in the section “MTS Command Mode” in this
volume. The remainder of this section discusses some of the $SIGNON parameters that are of
particular interest to batch users.

Job Selection and Rates

Both the job priority and the rate period are used to select jobs for execution and print processing.

The priority of the job is the position of the job within the execution queue or the print queue.

The job execution priority is assigned as an integer between 1 and 10 and is based on the CPU time
estimate specified on the $SIGNON command. The job print priority is an integer between 0 and 15
and is based on the actual number of pages (images) to be printed. The following table summarizes
the priority assignments for the NORMAL rate period:

Table 1: Priority Assignments for Jobs

Priority Execution Images

Class Time (seconds) Printed

15 ... ≤5
14 ... ≤10
13 ... ≤20
12 ... ≤50
11 ... ≤100
10 ≤1 ≤200

9 ≤2 ≤350
8 ≤4 ≤500
7 ≤8 ≤650
6 ≤16 ≤800
5 ≤32 ≤1000
4 ≤64 ≤1500
3 ≤128 ≤2000
2 ≤256 ≤4000
1 >256 ≤6000
0 ... >6000

Jobs are selected in decreasing order of priority class and, within any given class, in a first-in, first-out
(FIFO) basis. The page estimate does not affect the priority calculations for that job.

The rate period specifies the rate at which the job will be charged. Jobs for which RATE=LOW,
RATE=DEFERRED, or RATE=MINIMUM is specified are automatically held for execution during the
low-, deferred-, or minimum-rate periods. Such jobs are charged at a reduced rate. Jobs for which
RATE=NORMAL is specified are eligible for execution at any time.

The rate period schedule is as follows:

Batch Use of MTS 39

MTS 1: The Michigan Terminal System

November 1991

Low Rates (45%) 6 pm - 10 pm Monday through Thursday

Deferred Rates (65%) 10 pm - 12 am Monday through Thursday
12 am - 2 am Tuesday through Friday

6 pm - 10 pm Friday
7 am - 6 pm Saturday and Sunday

Minimum Rates (80%) 2 am - 7 am Tuesday through Friday
12 am - 7 am Friday to Saturday

6 pm - 7 am Saturday to Sunday
6 pm - 7 am Sunday to Monday

Normal Rates All other times

The percentages given above reflect the CPU-rate discount that is applied to sessions run during these
periods. Other resources may have differing discounts.

Terminal jobs are always executed at the lowest available rate at sign-on time. The rates for
terminal jobs are determined by the sign-on time and remain in effect for the duration of the session.
The rate for a terminal job may not be changed by specifying the RATE option on the $SIGNON
command.

Batch jobs are executed at the current rate at sign-on time if the RATE specification is omitted from
the $SIGNON command. A higher or lower rate period may be specified by using the RATE option.
If a higher rate period is specified, the job will be executed before other batch jobs of lower rate periods.
If a lower rate period is specified, the job will be held until the specified rate period is in effect.
However, if the job cannot be executed during the next available lower rate period, it will be executed as
soon as possible thereafter (i.e., it will not be held over until the lower rate period recurs).

Batch jobs and *PRINT* jobs submitted at LOW, DEFERRED, or MINIMUM rates may be printed
anytime, but are assigned priorities lower than would be the case for similar-sized, NORMAL-rate jobs.
The priority decrements are as follows:

LOW-rate jobs 2 lower than NORMAL
DEFERRED-rate jobs 3 lower than NORMAL
MINIMUM-rate jobs 4 lower than NORMAL

For example, a 50-page job would be priority 12 for NORMAL rates, 10 for LOW rates, 9 for
DEFERRED rates, and 8 for MINIMUM rates.

The public file *RATES gives the current rate structure for each of the different classes of accounts.
You can obtain this information by issuing the command

$COPY *RATES

Estimating Time and Pages

The amount of time and pages required is tied closely to the type of job being run; however, there are
a few general guidelines to follow when making your estimates. If you have run the job previously
using either batch or interactive mode, the last page of your listing will usually have an accounting of
the pages printed and time used—you should refer to this for approximations.

40 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

If you are currently running a job interactively, you can obtain an estimate of the CPU time required
by noting the CPU time used which is given on the “Execution terminated” message.

Note the following when you are estimating pages: the Resource Manager counts a single sheet,
printed on both sides, as two pages of output. If you are using a format that prints two images on a
page, then a single sheet would contain 4 pages of output. Also, remember to include all of the
hardcopy that you are directing to *PRINT* in your estimates.

If you are submitting a large job which you anticipate could run for several minutes (or even hours),
then do some smaller test runs first to get an accurate estimate. Finally, remember that if a job aborts
due to exceeding time or page limits, you will be charged for resources used. Therefore, if you do not
know what to estimate, get some advice from the ITD Consultants (764–HELP) instead of submitting a
job several times on a trial and error basis using up computer dollars in the process.

Assigning a Job Name

You can uniquely identify your batch job by assigning a job name by issuing a command of the form

$SIGNON * JOBNAME=jobname

The job name is a string of up to eight alphanumeric characters, starting with a letter; for example,
ANDY or EPA001. This is useful if you have jobs that you submit on a regular basis. It also makes it
easier to remember your job name when you are using the $SYSTEMSTATUS command.

You must use care when assigning names to jobs that are submitted on the UB-MTS system. All
printed output from those jobs is assigned a new job number when it is transferred to the UM-MTS
system for printing. Thus if you have several jobs with the same name, it may be difficult (or
impossible) to distinguish those jobs since you will not know the new job number assigned after the
transfer.

Mounting Magnetic Tapes

If your batch job requires magnetic tapes to be mounted, use the TAPES option on the $SIGNON to
improve the chances that sufficient tape drives will be available when your job starts:

$SIGNON * TAPES=n

Howvever, even with this, your job may start executing when all the drives are in use. In this event,
the operator must stop your job and rerun it later, which could have undesired results (see “Reruning
Batch Jobs” in this section). Also, you should use a single $MOUNT command to mount all tapes that
must be simultaneously available.

Setting Print Routes and Delivery Codes

The ROUTE option determines where your output is printed; the DELIVERY option implies that
your job will be delivered to another site on campus. Either of these options can be altered with your
$SIGNON command. A more complete explanation is given in the section “Getting Printed Output”.

Batch Use of MTS 41

MTS 1: The Michigan Terminal System

November 1991

Table 2: Options Available on $SIGNON

Option Description

ADDRESS="line1;line2;..."
Specify the campus mail address for delivered output (when
DELIVERY=MAIL is set). This option applies only to page-printer output,
not to line-printer or local-printer output.

CARDS=n Specify maximum number of punched cards for job. The default is n=0.

COPIES=n Specify number of copies of printed output. The default is n=1.

DELIVERY={station | MAIL | NONE}
Specify a delivery station to which output should be delivered by messenger
service (see tee file *DELIVERY for further details). If MAIL is specified,
the output will be delivered by campus mail or the US Postal Service. The
default is NONE.

FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
Specify format for page-printer output. The default is LANDSCAPE.

JOBNAME={jobname | DEFAULT}
Assign a job name of 1 to 8 alphanumeric characters to the current job. The
first character must be a letter. DEFAULT specifies the default format of
“RM” plus six digits.

{LANDSCAPE | PORTRAIT | TWOUP}
Specify orientation of page-printer output (synonymous with FORMAT for
the corresponding values). The default is LANDSCAPE.

MARGIN={n.nn | NO}
Set the left margin to “n.nn” inches. MARGIN=NO resets the margins to
the default for the current format (0.5 for PORTRAIT and 0.65 for
LANDSCAPE).

NOMESSAGES or NOMSGS
Suppress check of mailbox for messages.

{ONESIDED | TWOSIDED}
Specify printing on one or both sides of the paper for page-printer output.
The default is TWOSIDED.

OVERLAY={NONE | SHADED | LINED}
Specify an overlay for page-printer output. The default is NONE.

PAGES=n Specify maximum number of printed pages for job. The default is n=50.

PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
Specify paper type for page-printer output. The default is PLAIN.

42 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

PLOTTIME={t | tM}
Specify plot time limit. The default is t=0.

PRINT={T3 | TN} Specify line-printer character set. The default is T3.

PRINTER={PAGE | LINE}
Specify the type of printer. The default is PAGE.

QUICK Combination of NOMESSAGES and SHORT.

RATE={NORMAL | LOW | DEFERRED | MINIMUM}
Specify job rate group for execution.

RERUN={YES | NO}
Specify whether job should be restarted if it is stopped during execution for
any reason. The default is YES.

ROUTE=station Specify a station for output.

SEPCOPY={YES | NO}
Specify whether each copy will have separate head and tail sheets (YES) or
whether all copies will be printed together as one job with a single head and
tail sheet (NO). The option is only effective for page-printer output and if
COPIES=n is specified. If each copy is more than 50 pages, then
SEPCOPY=YES is forced. The default is NO.

SHIFT={YES | NO}Specify whether page-printer output is shifted away from the binding edge.
The default is SHIFT=NO.

{SHORT | LONG} Specify condensed signon message. The default is LONG.

SIGFILE={ON | OFF}
Specify whether sigfile processing is to be in effect. The default is ON.

TAPES=n Specify number of tape drives required at any one time.

TIME=n Specify maximum CPU time in seconds. The default is 3.

TWOSIDED={YES | NO}
Specify printing on one or both sides of the paper for page-printer output.
The default is YES.

WAITUNTIL="time and/or date"
Specify when job will be run.

"comment" An arbitrary comment, enclosed within quotes, may be used to identify the
job.

Batch Use of MTS 43

MTS 1: The Michigan Terminal System

November 1991

PRINTED OUTPUT FOR BATCH JOBS

Every batch job creates printed output. In some cases this output may only include a head sheet, a
tail sheet, and job statistics. Typically, the output consists of the above plus a log of the batch session.
This log contains all of the commands that were submitted to *BATCH* plus the system responses to
these commands. By default, all printed output from the job is directed to *PRINT*.

Head Sheet, Tail Sheet, and Job Statistics

The first and last pages of the printed job are called the head sheet and tail sheet. These are used to
identify each job, and to separate it from those that printed immediately before and after. The head
sheet is printed in very large type and includes: your userID, the job name and number, the time and
date it printed, and the delivery code. The tail sheet contains the same information in a much smaller
format and also includes a summary of job statistics such as: CPU time, disk storage, lines read, pages
printed, and so on for the current job. It also lists accounting charges for each resource used by the job,
and gives an approximation of the remaining balance in your account.

Suppose you submitted a job by using *BATCH* as follows:

$COPY *SOURCE* *BATCH*
> $SIGNON * PAGES=100

BATCH assigned job number 629384
> $RUN CATMAKER INPUT=CATALOG PRINT=MYTEXT SERCOM=MYLIST
> $SIGNOFF
> $ENDFILE
BATCH RM629384 released HOST=UM RATE=NORMAL

This is what you might expect your job statistics to look like:

ID: 1ABC
Project Number: 1AAA
Signon Time: 11:57:06 Tue Jan 16/90
Signoff Time: 11:57:33 Tue Jan 16/90
Last Signon Time/Date: 08:13:12 Mon Jan 15/90

Charging Rate: Batch,Normal,Univ/Gov't,UM,IBM 3090-600E

Elapsed Time 0.067 minutes
Cpu Time 0.726 seconds $.50
Active VM Integral 0.633 page-minutes
Wait VM Integral 0.128 page-hours
Lines Read 3 lines
Page Printer Pages 3 pages
Page Printer Lines 125 pages
Page Printer Image 3 images $.12
Page Printer Sheet 2 sheets $.02
Disk I/O 394

Computing Cost $.64

Disk Storage 5760 page-hours $.30
Remaining Balance $927.04

Job name: RM629384
Job number: 629384
Host: UM
Devicetype: 9700
Twosided: YES
Format: LANDSCAPE
Paper: PLAIN

44 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

Entered from AF1C at: 11:57:07 Tue Jan 16/90
Printed on PTR2 at: 12:26:59 Tue Jan 16/90

The above example tells you a number of things about your job. The job ran at 11:57 and was charged
at normal rates. The total elapsed time was .067 minutes whereas it only used .726 seconds of CPU
time. Elapsed time is always higher than CPU time due to the fact that even when a job is executing it
will spend a certain amount of time waiting for resources, disk I/O, etc. The job read 3 lines; these are
the 3 lines that were submitted to *BATCH* from your terminal. There were 3 images printed on 2
sheets of paper. All of the other output was put into permanent files, as indicated by the parameters
PRINT=MYTEXT and SERCOM=MYLIST from the original job. If you had directed all of your output
to *PRINT*, you would then expect the lines printed to be much higher. The job was finished at 11:57
and was printed at 12:26. The total cost for the job was $.99. If you had printed the files MYTEXT
and MYLIST, there would have been additional charges.

Changing Print Options

There are a number of techniques for changing your printed output. You can alter the print options
for your entire batch job on the $SIGNON command (see Table 2 for details). This is typically done for
setting global options; for example, you can set the delivery station using the DELIVERY option.

The other techniques that you will probably find useful is creating multiple print streams within
your batch job. This will allow you to print several files each with different print options within a
single batch job. A full explanation of creating user defined pseudodevices (multiple print streams) is
provided in the section “Getting Printed Output”. The following is a simple example to illustrate how
you might use this technique:

$SIGNON * PAGES=200
$CREATE *LIST* TYPE=PRINT OPEN='FORMAT=TWOUP'
$CREATE *TEXT* TYPE=PRINT OPEN='PORTRAIT ONESIDED'
$RUN CATMAKER INPUT=CATALOG PRINT=*TEXT* SERCOM=*LIST*
$SIGNOFF

This batch job consists of three separate print jobs. The first job is the log of your batch run which is
directed to *PRINT*. The second print job is your program listing which will be printed in two-up
format; that is, there will be two pages printed on each side of the sheet. Finally, the third print job is
the output from your program run which will be printed on one side of the page (ONESIDED) in
portrait orientation (PORTRAIT).

All of the options that are available for regular print jobs also apply to batch print jobs. Further
details and examples of altering the appearance of your printed output are provided in the section
“Getting Printed Output”.

Cancelling Hardcopy Output

You can eliminate hardcopy output from your batch job by using the $CANCEL command. For
example, suppose you want to run the previous job with the listing and CATMAKER output placed into
permanent files. The only printed output would be the job statistics which you could then cancel as
follows:

Batch Use of MTS 45

MTS 1: The Michigan Terminal System

November 1991

$COPY *SOURCE* *BATCH*
> $SIGNON * PAGES=100

BATCH assigned job number 629384
> $RUN CATMAKER INPUT=CATALOG PRINT=MYTEXT SERCOM=MYLIST
> $CANCEL *PRINT*
> $SIGNOFF
> $ENDFILE
BATCH RM629384 released HOST=UM RATE=NORMAL

You should use this form of $CANCEL carefully, as it will eliminate all printed output from your job
including error messages.

OTHER THINGS YOU SHOULD KNOW

Let us quickly look at a few more features which might be used to your advantage. These include:

(1) rerunning batch jobs

(2) conditional sign-offs

(3) sigfile processing

Rerunning Batch Jobs

If there is a system failure (or a system shutdown where the operator decides to stop your job), then
all jobs that are currently executing will be rerun from the beginning. This could present a serious
problem if you had already emptied or destroyed input files that were used during an earlier part of
your job. If you are adding data to the end of a file, the same information could be added twice, which
may not be the desired effect.

Your job will also be automatically rerun if it requires tape drives that were not available while it
was running. This problem is less likely to occur if you specify the TAPES option on the $SIGNON
command and mount all tapes using a single $MOUNT command. Since tape mounts are not allowed
on the UB-MTS system between 10 a.m. and 4 p.m., jobs submitted during that time requiring tape
mounts should specify the WAITUNTIL option on the $SIGNON command.

In order to protect yourself against possible problems in the event of a system failure, design your
batch job so that it can be rerun from the beginning. If you create a file within the job, empty it right
after creation so that it will not contain anything if the job is rerun.

When a job is rerun, whatever was done before the interruption is not undone when it restarts. You
are not explicitly informed when a rerun has occurred, although you might find some clues in your
batch job listing. For example, if you get the following system response while trying to create a new
file:

File NEWFILE already exists

it is probable that your job was rerun.

One consolation is that you are only charged for the final complete run, and not for the aborted first
attempt. If you do not want your job to be rerun, you have the option of specifying RERUN=NO with
your $SIGNON command.

46 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

Conditional Sign-off

In a batch job, all commands are processed sequentially regardless of previous errors. However,
you can use the $IF command after any $RUN command to test for an error condition. Then,
depending on the value of the return code set by the program, you can decide whether to sign off or
continue. This does not offer as much flexibility as interactive computing, but it does let you
terminate a job that is running into trouble.

The following is a simple example:

$IF RUNRC > 4, $SIGNOFF

The return code from the last executed program is tested. If it is greater than 4, the user will be signed
off the system. Thus, if a program gives an indication of success or failure through values of the return
code, this type of test may be used to abort a batch job if the program fails to execute properly.

You can also conditionally $RUN another program based on the success/failure of previous steps.
A complete conditional facility is available by using MTS command macros which are described in MTS

Volume 21: MTS Command Extensions and Macros, Reference R1021.

Sigfile Processing

In MTS, it is possible to set up a special file called a sigfile that will contain a series of commands to
be automatically processed whenever you sign on. You can check to see if you have a sigfile by issuing
the command

$DISPLAY SIGFILE

If MTS responds with the name of a file that is your current sigfile. You should print out a copy of this
file and familiarize yourself with its contents. If you do not already have a sigfile, the rest of this
section will explain briefly how you can set one up.

The following steps will create a sigfile called SIGS:

$CREATE SIGS
$EDIT SIGS
: INSERT
? $SET ROUTE=NUBS
? $SET COST=ON
?

This file will route all your printed output to NUBS and will also turn on the MTS cost display option.
The next step is to identify this file as your sigfile by issuing the following command:

$SET SIGFILE=SIGS

The next time you sign on to your userID (and every time thereafter), the two commands in SIGS will
automatically be executed. If you decide that you want to turn off sigfile processing for all subsequent
signons, issue the following command:

$SET SIGFILE=OFF

Batch Use of MTS 47

MTS 1: The Michigan Terminal System

November 1991

This is a simple example that is intended to introduce the concept of sigfile processing. It is also
possible to run a program from within your sigfile which will execute a series of commands
conditionally, depending on such factors as what type of device you are signed onto, or what day of the
week it is. If you want to know more, please see the description of *SIGSETUP in MTS Volume 2:

Public File Descriptions, Reference R1002.

48 Batch Use of MTS

MTS 1: The Michigan Terminal System

November 1991

GETTING PRINTED OUTPUT

Printed output can be produced during a terminal session or as a result of submitting a batch job.
The various terms printout, hardcopy, or simply output are most often used to describe the printed
results. Earlier we discussed some of the attributes that apply specifically to batch jobs; the following
will cover the details of creating a print job from either a terminal or batch session.

WHAT IS *PRINT*?

In the introduction to this document we described pseudodevices and how they are used. *PRINT*
refers to the pseudodevice that is used to produce your printed output. By default, *PRINT* is defined
as one of the Xerox 9700 page printers.

You create printed output in a variety of ways. You can use the $LIST command:

$LIST filename ON *PRINT* (the ON is optional)

or if the named file contains carriage-control characters, you can use $COPY:

$COPY filename TO *PRINT* (the TO is optional)

or you can send output directly from a job that is executing, e.g.,

$RUN *PASCALVS INPUT=MYPROG OBJECT=MYOBJ PRINT=*PRINT*

In all of the above cases the Resource Manager follows the same sequence of events. It assigns the job
a number and, if you do not assign one explicitly, a default job name. It evaluates the requirements of
the job, and then submits it to the print queue for the designated device. Once in the queue the job
will:

(1) print immediately, or

(2) print after waiting for jobs that were before it in the queue, or

(3) print when the resources are available (e.g., label stock is loaded into the Xerox 9700 page
printer).

If the print device is not functioning when the job is submitted, the Resource Manager will maintain
a queue of all jobs until the machine is back in order. This can sometimes cause quite a backlog when
the system is busy. The operations staff have the option of holding back very large print jobs,
especially if the queue is long. A print job that generates a large amount of output may be printed in
smaller segments. Of course, the user picks it up as one complete job.

WHEN TO USE $COPY AND $LIST

Some files contain special characters called carriage-control characters in the first column. These
special characters act as instructions to the printer to control vertical spacing on the page. These are
usually inserted by text-processing programs; however, they can be added by the user. A common

Getting Printed Output 49

MTS 1: The Michigan Terminal System

November 1991

mistake when getting a printout of a file is to use the $COPY command when the file does not contain
carriage-control characters. The result is often that the output may be only one or two lines per page,
thus generating an unexpectedly large volume of output. The clearest indication that you have this
problem is when the first character of some (or all) of the lines is missing in the printed output.

The easiest way to check for carriage-control characters is to examine the file using the editor and
check the first character of each line. If the first character is part of the actual text or data, do not use
$COPY to send that file to the printer; use $LIST instead. On the other hand, if the first character of
each line is a blank or a carriage-control character, the printer will use it to control spacing as
indicated. Further information about carriage-control characters is given in Appendix H of the
section “Files and Devices” in this volume.

The $LIST command also is preferable if you are printing files with long lines since they will be
wrapped onto the next line. With the $COPY command, they will be truncated instead.

PRINTING OPTIONS

All output is sent to the printer with certain default printing options in place. If you do nothing
more than direct output to the printer, your output will have the following attributes:

(1) orientation is landscape

(2) typeface is Xerox 1200 fixed-pitch

(3) printing is on both sides

(4) printing with no overlay

(5) printing is not shifted from the “binding” edge

(6) paper is 8 1/2 by 11, standard weight, plain (not 3-hole punched)

All of these options can be altered using the $SIGNON, $SET, $CONTROL, or $9700 commands.
The choice of which command to use depends on the options required, and how long you want them to
be in effect. It is not practical to illustrate here all of the ways that you can change your print options.
However, we will discuss each of the four commands briefly and give an example of how they might be
used.

Setting Print Options for the Entire Session

The $SIGNON command can be used to set options for an entire session in batch mode. Setting
global print options for interactive mode is done using $SET. If you are interested in setting print
options for batch processing, you should read the section on the $SIGNON command entitled
“Changing Batch Defaults”.

The $SET command is used to set print options for the remainder of the session—that is, once you
have set your options they are in effect until you reset them or sign off. The main advantage of using
$SET is that you have the option of putting your commands into a file called a sigfile and then have that
file automatically executed each time you sign on. The following is a simple example of how you might
use this technique.

50 Getting Printed Output

MTS 1: The Michigan Terminal System

November 1991

Suppose you want all of your output to be printed with the page oriented in portrait (like this
document) instead of in landscape (which is the default format). Assuming that you have a sigfile
called MYSIGFILE, you would include the appropriate $SET command as follows:

$EDIT MYSIGFILE
: INSERT
? $SET FORMAT=PORTRAIT

Now the next time you sign on (and for all sign-ons thereafter), all of your output will have portrait
orientation. If you want to change this, you can reset the option using:

$SET FORMAT=LANDSCAPE

More details on creating and testing sigfiles is given the section “Sigfile Processing” earlier in this
document. Sigfile processing is also useful for setting print routes and delivery codes (more about
these in a later section).

Setting Print Options for the Current Print Job

You can use $CONTROL to set print options for a single print job. For example, suppose you were
printing a special report and you want to use paper that is lined to make it more readable. The output
for your report is stored in a file called REPORT1.

$CONTROL *PRINT* OVERLAY=LINED
PRINT assigned job number 357578
PRINT RM357579 held

$COPY REPORT1 TO *PRINT*
$RELEASE *PRINT*

PRINT RM357578 released to CNTR 10 images 5 sheets RATE=NORMAL
OVERLAY=LINED

After you enter the $CONTROL command, the Resource Manager assigns a job number. You are also
notified that your job is being held. What this means is that nothing will be printed until you issue
$RELEASE *PRINT* or sign off. The Resource Manager displays the specified options once the job
has been released.

You can also use $CONTROL to change several options at once. For example, if you want to print a
file on 3-hole punched paper at Michigan Union Station (UNYN), you would enter the following:

$CONTROL *PRINT* PAPER=3HOLE ROUTE=UNYN
PRINT assigned job number 357595
PRINT RM357595 held

$COPY REPORT1 TO *PRINT*
$RELEASE *PRINT*

PRINT RM357595 released to UNYN 10 images 5 sheets RATE=NORMAL
PAPER=3HOLE ROUTE=UNYN

The $CONTROL command can also be used to change the format of your output. For example, to print
a file using portrait orientation set with a shaded overlay:

$CONTROL *PRINT* FORMAT=PORTRAIT OVERLAY=SHADED
PRINT assigned job number 357596
PRINT RM357596 held

$COPY REPORT1 TO *PRINT*
$RELEASE *PRINT*

PRINT RM357596 released to CNTR 10 images 5 sheets RATE=NORMAL

Getting Printed Output 51

MTS 1: The Michigan Terminal System

November 1991

FORMAT=PORTRAIT OVERLAY=SHADED

A complete list of formats and overlays is available in Using the Xerox 9700 Page Printer, Reference
R1038.

When you use $CONTROL be aware that each time you issue the command the options you set will
affect everything that you have printed but not yet released. For this reason we suggest that you
always release your print job when you are finished with a particular print option.

If a line of the form

$9700CONTROL option ...

appears in a file that is copied to *PRINT*, then it will act as if a $CONTROL *PRINT* command with
the specified options was issued. For example, if the file contains

$9700CONTROL ONESIDED PAPER=PLAIN
line 1
line 2

...

then copying this to *PRINT* will act the same as if you first issued the command

$CONTROL *PRINT* ONESIDED PAPER=PLAIN

and then copied the file containing the lines

line 1
line 2

...

to *PRINT*.

Note that only legal $CONTROL command options may be specified on the $9700CONTROL line.
As with the $CONTROL command, all this does is set up the conditions that will be in effect at the start

of the print job. If the same option is used more than once on $9700CONTROL lines in a print job, the
last one specified will be the one in effect.

If do not explicitly $RELEASE your print job, it will be automatically released when you sign off.
Also once you issue $RELEASE, all of your print options are changed back to their default values with
the exception, of course, of those that were changed using $SET.

If you want to find out if a print job is currently being held, you can issue the command

$DISPLAY *PRINT*

The message

PRINT RM357604 routed to CNTR 20 images 10 sheets RATE=NORMAL

will be printed indicating that you have 10 sheets of output waiting to be printed. If you decide that
you do not want your printout, you can $CANCEL it instead of issuing $RELEASE (more about this in
a later section). More examples of using $CONTROL are given in the section “Managing Batch and
Print Jobs”.

52 Getting Printed Output

MTS 1: The Michigan Terminal System

November 1991

Setting Print Options Using $9700 Commands

The $9700 command differs from previous commands (including the $9700CONTROL command)
since it is used to change print options within the data being printed as opposed to changing the print
options for an entire job. In this way, you can alter the printed appearance of your job on a line-by-line
or a page-by-page basis.

The $9700 commands are inserted directly into the data stream instead of being issued from MTS.
They will allow you to change options such as typeface, fonts, and page orientation. The use of $9700
commands is explained in detail in Using the Xerox 9700 Page Printer, Reference R1038. If you are
interested in altering print options in this manner, you are advised to read this document, or
alternatively you should consider using one of the text-processors available on MTS that automatically
insert the appropriate $9700 commands.

Summary of $SIGNON, $SET, $CONTROL, and $9700

When you submit a batch job, you can assign your print options for the entire session using the
$SIGNON command. If you want a particular print option to always be in effect for either batch or
interactive mode, you should create a sigfile and put in the appropriate $SET commands. If you want
to specifically change the print options for a single job, the $CONTROL command is the one to use.
The $9700 command is quite specialized; its use should not be attempted without further reading as
noted above.

A table of $SIGNON parameters is given above in “Changing Batch Defaults”. Similar tables for
$SET and $CONTROL can be found in the section “Managing Batch and Print Jobs”.

PRINT ROUTES AND DELIVERY CODES

You can use ROUTE option to specify where you want your output printed; the DELIVERY option
implies that your job will be printed at one location and then delivered to another site by messenger.
Let’s look at two simple examples to illustrate the use of these options.

Suppose you are working in the Chemistry Building and you want to have your output printed at the
nearby North University Building Station (NUBS). You enter your commands as follows:

$SET ROUTE=NUBS
$EMPTY MYOBJ
$RUN *PASCALVS INPUT=MYPROG OBJECT=MYOBJ PRINT=*PRINT*

PRINT assigned job number 629384
PRINT RM629384 released to NUBS 18 images 9 sheets RATE=NORMAL

The listing produced by the compiler *PASCALVS will be printed at NUBS.

Alternatively, suppose you are working on the U-M Dearborn Campus and want the Dearborn
messenger to pick up the output for you at the Computing Center. You would submit your job as
follows:

$SET DELIVERY=DBRN
$EMPTY MYOBJ
$RUN *PASCALVS INPUT=MYPROG OBJECT=MYOBJ PRINT=*PRINT*

PRINT assigned job number 629384
PRINT RM629384 released to CNTR 18 images 9 sheets RATE=NORMAL

DELIVERY=DBRN

Getting Printed Output 53

MTS 1: The Michigan Terminal System

November 1991

Note that in the above examples that the ROUTE and DELIVERY options will be in effect for the entire
session (this is because you used $SET). If you want to change ROUTE or DELIVERY for a particular
job, you would use $CONTROL. If you are submitting a job in batch, you can change the print route or
delivery code using $SIGNON (see “Changing Batch Defaults”).

A complete list of available print routes and delivery codes is maintained online; they can be
obtained as follows:

$COPY *ROUTE
$COPY *DELIVERY

If the DELIVERY=MAIL option is specified, one of two things will happen:

(1) For Xerox 9700 page-printer output, if the ADDRESS option is specified on either the
$CONTROL or $SET command, the output will be delivered via campus mail. For
example:

$SET DELIVERY=MAIL ADDRESS="Jon Dough;ITD;5074 Fleming 1340"

(2) For line-printer output, or for page-printer output that does not specify the ADDRESS
option, the output will be sent to the ITD Mail Librarian for delivery via the US Postal
Service at a cost of $7.50 for each mailing in addition to actual shipping costs. The
charge will be billed to your userID. To make arrangements for mail delivery, send your
job number and mailing address to:

ITD Mail Librarian
535 W. William Street
Ann Arbor, MI 48103

or send an electronic message via the MTS Message System to Mail_Librarian.

Output from the local printers is never delivered, even if the DELIVERY option is specified.

MULTIPLE COPIES

If you want to print more than one copy of your entire job (not including head and tail sheets), use
the COPIES option with the $CONTROL command and specify the number desired.

$CONTROL *PRINT* COPIES=3
PRINT assigned job number 357615
PRINT RM357615 held

$COPY filename *PRINT*
$RELEASE *PRINT*

PRINT RM357615 released to CNTR 40 images 20 sheets per copy
RATE=NORMAL COPIES=3

If you require each copy to have a head and tail sheet (i.e., to print as a separate job), include the
SEPCOPY=YES option on the $CONTROL command:

$CONTROL *PRINT* COPIES=3 SEPCOPY=YES

Note that if each copy is larger that 50 pages, then each copy will always have a head and tail sheet,
since in this case each copy is separately scheduled for printing.

54 Getting Printed Output

MTS 1: The Michigan Terminal System

November 1991

The SEPCOPY option applies only to page-printer output. Line-printer output and local printer
output are always printed with SEPCOPY=YES in effect.

CANCELLING A PRINT JOB

It is possible to cancel a job that you have submitted for printing if it is in the queue or is currently
printing. First, get the job name and number as follows:

$SYSTEMSTATUS QUEUE *

The system responds,

1ABC:RM316640 (316640) is awaiting print, P8, after 10 jobs.

Then you enter,

$CANCEL RM316640

The system will respond with

Job 1ABC:RM316640 cancelled.

As you can see your output was successfully cancelled. If you have not released *PRINT*, use
$CANCEL as follows:

$CANCEL *PRINT*

When you use $CANCEL as shown in the last example, you will be refunded the printing portion of the
original charges for your output. Further details on using $CANCEL are given in the section
“Managing Batch and Print Jobs”.

CREATING YOUR OWN PRINT DEVICE

Occasionally you may find that you are changing print options frequently. If this is the case, you
might find it useful to create your own print pseudodevices (the concept of pseudodevices was explained
in the “Introduction”) with the options that you use for particular types of print jobs. It is possible to
do this using the $CREATE command.

For example, suppose you are working on a paper at the Church Street computing site (CHUR).
The paper is in an MTS file called THESIS. You want to produce two types of printed output: the first
is a file listing that you want printed on the Xerox 4045 local printer at the site; the second is your final
text output, with portrait orientation, printed on the Xerox 9700 page printer at the Michigan Union
Station (UNYN). You can do this by creating two new pseudodevices called *DRAFT* and *FINAL*
as follows:

$CREATE *DRAFT* TYPE=PRINT OPEN="ROUTE=CHUR"
DRAFT has been created

$CREATE *FINAL* TYPE=PRINT OPEN="FORMAT=PORTRAIT ROUTE=UNYN"
FINAL has been created

$LIST THESIS ON *DRAFT*
DRAFT assigned job number 357400
DRAFT RM357400 released to CHUR 12 pages

$COPY THESIS TO *FINAL*

Getting Printed Output 55

MTS 1: The Michigan Terminal System

November 1991

FINAL assigned job number 357401
FINAL RM357401 released to UNYN 11 images 6 sheets RATE=NORMAL

FORMAT=PORTRAIT

The output from your job has been sent to the specified printers. You are also free to use *DRAFT* or
FINAL anytime again in the current session. If you want to use *DRAFT* and *FINAL* without
explicitly creating them for each session, you should use $CREATE in a sigfile to define them.

When you create print pseudodevices, you specify the attributes by using the OPEN option. Any
options that are available with the $CONTROL command may also be used with OPEN. It is also
possible to specify several options at once provided they are separated by blanks:

$CREATE *ONE* TYPE=PRINT OPEN="FORMAT=PORTRAIT ONESIDED"

You have created a print device called *ONE* which has the attributes of PORTRAIT and ONESIDED.

LOCAL PRINTERS

Several Campus Computing Sites have Xerox 4045 or Hewlett-Packard LaserJet local printers.
These are small page printers which are slower, have fewer built-in fonts, and may be restricted in
other capabilities such as printing on only one side of the paper. They are best for printing short file
listings, draft copies of documents, and copies of messages.

The Xerox 4045 and H-P LaserJet only support the PORTRAIT, LANDSCAPE, MARGIN, and
OVERLAY=LINED $CONTROL options; they do not recognize $9700 command lines.

To send output to a local printer, you must specify the ROUTE parameter on the $CONTROL or
$SET command

$CONTROL *PRINT* ROUTE=station

For example, to print the file named DRAFT in portrait orientation on the Xerox 4045 at the Dana
Building Computing Site:

$CONTROL *PRINT* PORTRAIT ROUTE=DANA
$COPY DRAFT *PRINT*

The following local printers are available at the Campus Computing Sites.

Route Printer

Code Type Location

AROX Xerox 4045 Angell Hall Courtyard
CHUR Xerox 4045 611 Church, 4th Floor
DANA Xerox 4045 Dana Building (Natural Resources)
FRZE Xerox 4045 Frieze Building
SPH2 Xerox 4045 School of Public Health
UGLS Xerox 4045 Undergraduate Library

Local printing to the Xerox 4045 and H-P LaserJet printers is charged for at the same rates as for
the Xerox 9700 page printers.

56 Getting Printed Output

MTS 1: The Michigan Terminal System

November 1991

MANAGING BATCH AND PRINT JOBS

The Resource Manager enables you to modify certain features of any job you submit for processing.
It also provides a mechanism for keeping track of jobs once they have been submitted. This section
contains a summary of the MTS commands that can be used.

$CANCEL removes a job from the processing queue.
$CONTROL changes the attributes of a specified pseudodevice.
$CREATE lets you define pseudodevice names.
$DISPLAY shows the current state of a pseudodevice or set item.
$LOG puts a record of your session in a file.
$RELEASE releases a job to the execution or print queue.
$SET changes certain global conditions that apply to a job.
$SYSTEMSTATUS keeps track of jobs that have been submitted during the last 8 hours.
$VIEW lets you view the results of a batch or print job.

Note: Most MTS commands may be abbreviated. However, for clarity abbreviations are used
sparingly here.

THE $CANCEL COMMAND

The $CANCEL command lets you remove a job from the processing queue. You can cancel a job
that is not done, i.e.,

(1) executing or waiting to execute

(2) printing or waiting to print

(3) held by a $CONTROL command

The general form of the command is:

$CANCEL {jobname | jobnumber} [USER=userid]

or

$CANCEL {*PRINT* | *BATCH*}

The first format is used for jobs that have been released for processing. In this case you must know the
job name or job number (these terms were explained in the “Introduction”). Your job name and job
number can be obtained by using the $SYSTEMSTATUS command. If the job was submitted from a
different userID, you must specify it with the USER parameter; you will be prompted for the password.

The second form is used when the job is still being held (i.e., you have not released it). In this case
you must cancel the appropriate pseudodevice name (e.g., *PRINT*).

The effects of cancelling a job are as follows:

(1) If the job has already been executed and printed, cancelling it will have no effect as the job

Managing Batch and Print Jobs 57

MTS 1: The Michigan Terminal System

November 1991

is finished anyway.

(2) If you cancel the pseudodevice name before releasing the job to the processing queue, the
job is cancelled and you are not charged.

(3) If you cancel a print job after it is released but before it starts printing, it will not be
printed. Note: Your session charges will include the printing charges, but these will be
automatically refunded at a later time.

(4) If your print job was in the middle of printing when you cancelled it, it will stop printing at
that point and you will be charged for the portion that was printed.

(5) If you cancel a batch job before it starts executing, you will not be charged for it.

(6) If a batch job is executing, or has already executed but has not yet printed, cancelling the
job will not cancel the printout. In order to cancel the print job you must issue a second
$CANCEL. In any event you will still be charged for the job up to the point where it was
cancelled.

Some typical examples:

(1) You have just copied 400 pages to the printer, and suddenly realize that it was the wrong
file. The $SYSTEMSTATUS command indicates that your job (138475) is still waiting to
print, so you can use:

$SYSTEMSTATUS 138475
1ABC:RM138475 awaiting print, P8, after 10 jobs
$CANCEL 138475
Job 1ABC:RM138475 cancelled.

The system response gives the user’s userID (in this example, 1ABC) before the job name.
The job will not be printed and you will be automatically refunded for it.

(2) You have submitted a batch job (RM112984), which has already started to execute, and
then you realize that you have used the wrong format:

$CANCEL RM112984
Job 1XYZ:RM112984 cancelled.
$CANCEL RM112984
Job 1XYZ:RM112984 (112985) cancelled.

When the job began execution, it created a print stream (112985) that was not cancelled
the first time. The second $CANCEL command got rid of it.

(3) After controlling *PRINT* so that it will print in portrait mode, you copy your job to it.
However you do not know whether it should be printed onesided, so you decide to cancel it
for now:

$CANCEL *PRINT*
PRINT RM198765 cancelled.

(The job name RM198765 was assigned by the $CONTROL command.) The print cost
for images and sheets will be refunded, but you will still incur charges for CPU time used
by the $LIST or $COPY command.

58 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

(4) You have submitted a batch job to run overnight and you decide you want to cancel it, but
you do not know the job name and number. You obtain it as follows:

$SYSTEMSTATUS QUEUE *
1ABC:RM116982 awaiting execution, P10, after 35 jobs.

and now you enter:

$CANCEL 116982
Job 1ABC:RM116982 cancelled.

Your batch job has now been cancelled.

Notes:

(1) Use the $SYSTEMSTATUS command to find the job names and current status of any jobs
you have submitted within the last 8 hours.

(2) Be sure you specify the correct job name when there is more than one waiting in the
queue. If you have assigned the same job name to more than one job, cancelling that job
name will cancel all jobs with that name. You can avoid this problem by cancelling the
job number instead.

THE $CONTROL COMMAND

The $CONTROL command lets you modify the attributes of a single print or batch job. You will
notice that many of the options are identical to $SET options. The essential difference between
$CONTROL and $SET is that $CONTROL changes options for a particular job—only until the job is

released or you sign off. The $SET command will affect all jobs until the option is reset or you sign off.
When you need a particular set of options for a single job, $CONTROL is the command to use. It is
frequently used to change the way output is printed on the Xerox 9700 page printer.

The general form of the $CONTROL command is:

$CONTROL *pdn* keyword

or

$CONTROL *pdn* keyword=option

where *pdn* is a pseudodevice name from the list given below, and keyword (with option where
applicable) is selected from Table 3 below. The following is a list of predefined pseudodevice names
that are processed by the Resource Manager.

Pseudodevice Facility Provided

BATCH For submitting a batch job.
PRINT For printing output.
PUNCH For producing 80-byte records for BITNET files.
IMPORT For retrieving BITNET files that have been received from another system.
EXPORT For sending BITNET files to another system.

Managing Batch and Print Jobs 59

MTS 1: The Michigan Terminal System

November 1991

The first three pseudodevices have been described in other sections of this document (e.g., *BATCH*
was explained in the section “Batch Processing”, *PRINT* was explained in the section “Getting
Printed Output”, etc). Each of these sections also contains more examples of using $CONTROL for
each particular pseudodevice.

More information about BITNET is available in the document BITNET on MTS, Reference R1039.

Table 3: $CONTROL Keywords and Options

Keyword Description

ADDRESS="line1;line2;..."
Specify the campus mail address for delivered output (when
DELIVERY=MAIL is set). This option applies only to page-printer output,
not to line-printer or local-printer output.

CANCEL *...* Cancel the job that is currently held for the specified pseudodevice.

COMMENT="text" Specify a comment that will be associated with the job. This comment will
be printed on the head sheet of jobs submitted to *PRINT* or *BATCH*.

COPIES=n Specify number of copies of output for the given pseudodevice. The default
is 1.

DELIVERY={station | MAIL | NONE}
Specify a delivery station to which output should be delivered by messenger
service (see the file *DELIVERY for further details). If MAIL is specified,
the output will be delivered by campus mail or the US Postal Service. The
default is NONE.

FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
Specify format for page-printer output. The default is LANDSCAPE.

HOLD Explicitly hold the job directed to the specified pseudodevice.

JOBNAME={jobname | DEFAULT}
Assign a job name of 1 to 8 alphanumeric characters to the job directed to
the specified pseudodevice. The first character must be a letter.
DEFAULT specifies the default format of “RM” plus six digits.

{LANDSCAPE | PORTRAIT | TWOUP}
Specify orientation of page-printer output (synonymous with FORMAT for
the corresponding values). The default is LANDSCAPE.

MARGIN={n.nn | NO}
Set the left margin to “n.nn” inches. “n.nn” must be less than the current
page width (8.5 for portrait orientation, 11.0 for landscape). MARGIN=NO
turns off the margin override and resets the margins to the default for the
current format (0.5 for PORTRAIT and 0.65 for LANDSCAPE).

NUMBER={(b,l,c) | NO}
NUMBER=(b,l,c) numbers pages automatically, starting with number “b”,

60 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

printing the number on line “l”, ending in column “c”. NUMBER=NO (the
default) disables automatic page-numbering. The page number is always
printed in the first font of the current format or FONTLIST specification.

OVERLAY={NONE | SHADED | LINED}
Specify an overlay for page-printer output. The default is NONE.

PAGES=n Specify a page limit for a print job. The default is no page limit.

PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
Specify paper type for Xerox 9700 page-printer output. The default is
PLAIN. The obsolete ANY option is synonymous with PLAIN.

PRINTER={PAGE | LINE}
Specify the type of printer. The default is PAGE. Applies only to
PRINT and *BATCH*.

RELEASE Release for processing the job that is currently held for the specified
pseudodevice (see also the $RELEASE command).

SEPCOPY={YES | NO}
Specify whether each copy will have separate head and tail sheets (YES) or
whether all copies will be printed together as one job with a single head and
tail sheet (NO). The option is only effective for page-printer output and if
COPIES=n is specified. If each copy is more than 50 pages, then
SEPCOPY=YES is forced. The default is NO.

ROUTE=station Specify a station for output at which output is to be printed (use the
command $COPY *ROUTE to obtain a list of valid station codes).

SHIFT={YES | NO}Specify whether page-printer output is shifted away from the binding edge.
The default is SHIFT=NO.

TWOSIDED={YES | NO}
Specify printing on one or both sides of the paper for page-printer output.
The default is YES.

{TWOSIDED | ONESIDED}
Specify printing on one or both sides of the paper for page-printer output.
The default is TWOSIDED.

Some typical examples:

(1) The next job you send to *BATCH* is to be printed onesided on 3-hole punched paper.
The file called BATRUN should contain MTS commands for a batch job, including a
$SIGNON command.

$CONTROL *BATCH* ONESIDED PAPER=3HOLE
BATCH assigned job number 345678
BATCH RM345678 held

$COPY BATRUN *BATCH*
$RELEASE *BATCH*

BATCH RM345678 released HOST=UM ROUTE=CNTR TWOSIDED=NO

Managing Batch and Print Jobs 61

MTS 1: The Michigan Terminal System

November 1991

PAPER=3HOLE

The job is assigned a number and is automatically held until the $RELEASE command is
given. This demonstrates how more than one attribute may be specified on a
$CONTROL command.

(2) You want to direct the next printout to the Xerox 9700 page printer at the Michigan
Union Station (UNYN):

$CONTROL *PRINT* ROUTE=UNYN
PRINT assigned job number 654321
PRINT RM654321 held

$LIST DATAFILE ON *PRINT*
$RELEASE *PRINT*

PRINT RM654321 released UNYN 9 images 5 sheets RATE=NORMAL

(3) You want your output printed with portrait orientation and a shaded overlay:

$CONTROL *PRINT* FORMAT=PORTRAIT OVERLAY=SHADED
PRINT assigned job number 654324
PRINT RM654324 held

$COPY ESSAY TO *PRINT*
$RELEASE *PRINT*

PRINT RM654324 released to CNTR 20 images 10 sheets
RATE=NORMAL FORMAT=PORTRAIT OVERLAY=SHADED

A complete list of formats and overlays is available in Using the Xerox 9700 Page Printer,
Reference R1038.

Notes:

(1) If a held job is not explicitly released, the keywords given on the $CONTROL command
remain in effect for all output subsequently directed to that job during the current
session.

(2) If you enter additional $CONTROL commands for a job that is already held, the effect is
cumulative. In the event of a conflict of options for a specific keyword, the last value
assigned will apply to the whole job (including any output that may have been generated
before the last $CONTROL command).

(3) You can use the $CONTROL command with user-defined pseudodevice names.

(4) You can use $DISPLAY to see what is currently held for a particular job.

(5) You can use $CANCEL to cancel a job that is being held.

THE $CREATE COMMAND

The $CREATE command is normally used for creating files, but it also lets you define your own
pseudodevice name with the attributes that you most commonly use. You should consider creating
your own pseudodevice if you find that you are using the $CONTROL command frequently to modify
the attributes of:

62 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

PRINT
BATCH
PUNCH
IMPORT
EXPORT

With $CREATE you can define several print pseudodevices so you can easily produce print jobs each
with a different set of predefined attributes.

Furthermore, you can use the $CONTROL command to alter or add to the attributes of a
user-defined pseudodevice. In this case, the pseudodevice is assigned a job number and held until it is
explicitly released.

The general form of the $CREATE command for pseudodevices is:

$CREATE *pdn* TYPE=device OPEN="keywords"

where

pdn is an arbitrary pseudodevice name, consisting of 3 to 16 characters. The first and
last characters must be asterisks (*), for example, *PRINT*.

device is one of: PRINT, BATCH, PUNCH, EXPORT, or IMPORT. This represents the
type of device that is to be modified.

keywords is one (or more) of the keywords given in Table 3 above, including any options that
are appropriate. These attributes are applied as if a $CONTROL command were
given each time the device is opened for processing.

Some typical examples:

(1) You frequently produce notices that are printed with the attributes PORTRAIT and
PAPER=PLAIN. It would be more convenient if you did not have to control *PRINT*
every time you printed one, so you define a new pseudodevice name with those attributes:

$CREATE *NOTE* TYPE=PRINT OPEN="PORTRAIT PAPER=PLAIN"

Now, any time you want to copy a notice to the printer, simply specify *NOTE* instead of
PRINT:

$COPY CLASSLIST *NOTE*
NOTE assigned job number 146531
NOTE RM146531 released to CNTR 6 images 3 sheets

RATE=NORMAL FORMAT=PORTRAIT PAPER=PLAIN

This is especially useful when created in a sigfile.

(2) You have already defined the pseudodevice name *NOTE*, but you want to copy one
notice with a shaded overlay:

$CONTROL *NOTE* OVERLAY=SHADED
NOTE assigned job number 187654
NOTE RM187654 held

$COPY OUTLINE *NOTE*

Managing Batch and Print Jobs 63

MTS 1: The Michigan Terminal System

November 1991

$RELEASE *NOTE*
NOTE RM187654 released to CNTR 6 images 3 sheets

RATE=NORMAL FORMAT=PORTRAIT PAPER=PLAIN OVERLAY=SHADED

The pseudodevice *NOTE* now has the attributes of portrait orientation, plain paper,
and a framed overlay. This example illustrates that when you alter the attributes of a
pseudodevice that you have created the attributes are added to those already present for
that device.

Notes:

(1) You cannot create a pseudodevice name that is already defined.

(2) Use the $FILESTATUS command to see what pseudodevice names are currently defined:

$FILESTATUS *?*

This will list all the names (including predefined ones), but none of the attributes.

(3) A user-defined pseudodevice is like a temporary file: it exists for the current session only.
You can use $CREATE in your sigfile to define one or more pseudodevice names
automatically at the beginning of each session.

(4) You can remove a user-defined device by using the $DESTROY command.

THE $DISPLAY COMMAND

The $DISPLAY command lets you display options that have been set with the $SET command, or
establish whether a given pseudodevice name is defined or active.

A complete description of the $DISPLAY command is given in the section “MTS Command Mode” in
this volume. Only those items that specifically relate to Resource Manager job handling are included
here.

The general form of the command is:

$DISPLAY keyword

or

$DISPLAY *pdn*

where keyword is one of the $SET command keywords, and *pdn* is a pseudodevice name.

Displaying $SET Command Keywords

Any RM keyword that may be used on the $SET command may also be used on the $DISPLAY
command to determine its current setting. For example, if you had used

$SET FORMAT=PORTRAIT

64 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

in your sigfile, you could display this information at any time during the current session:

$DISPLAY FORMAT
FORMAT=PORTRAIT

If the item you display is set to the default value, the system would tell you that the default is in
effect:

$DISPLAY OVERLAY
OVERLAY is defaulted.

See Table 4 later in this section for a list of keywords and their default settings.

Displaying Pseudodevice Names

If you have started a job for a particular pseudodevice but not yet released it (for example, by using
the $CONTROL command), you can display the job name, and other information for the given
pseudodevice name. For example:

$DISPLAY *PRINT*
PRINT RM123456 routed to CNTR 4 images 2 sheets RATE=NORMAL.

You can see that you have a print job with 4 images on 2 sheets waiting to be released to CNTR at
normal rates.

If you want to see which pseudodevices are currently being held you can use:

$DISPLAY *?*
NOTE RM113441 routed to UNYN 6 images 3 sheets RATE=NORMAL
PRINT RM113440 routed to UNYN 4 images 4 sheets RATE=NORMAL

FORMAT=PORTRAIT TWOSIDED=YES

You currently have two jobs for the Xerox 9700 page printer at UNYN that are waiting to be released.

You may display both predefined and user-defined pseudodevice names. If the specified
pseudodevice is currently active, the following information is displayed for the given device type:

Device Type Information Displayed

PRINT Job name and number, print route, delivery route (if any), number of images
and sheets, charge rate, number of copies (if more than one), and format
parameters (if any).

BATCH Job name and number, time estimate (if any), delivery route (if any), host,
print route, and format parameters (if any).

PUNCH Job name and number, delivery route (if any), number of records, and
charge rate.

Notes:

(1) If the specified pseudodevice name is defined but is not currently active for your userID,
the system sends an appropriate response:

$DISPLAY *PRINT*
PRINT is defined but is not active.

Managing Batch and Print Jobs 65

MTS 1: The Michigan Terminal System

November 1991

(2) You can display your current session statistics using the command:

$DISPLAY TAILSHEET

THE $LOG COMMAND

This command can be used to keep a record of input and output operations on a file or device. A
popular use of this command is for recording your terminal session in a file. When you are logging
your terminal session, the I/O operations are the commands that you are typing and the device is
MSOURCE (the keyboard that you are using). It is useful to keep a record of your terminal session
in the event that an unexpected error occurs and you need a hardcopy of the sequence of commands
that were entered.

The general form of the $LOG command is:

$LOG fdname1 ON fdname2 options

where fdname1 and fdname2 may be files or devices and fdname1 will default to *MSOURCE*, but
fdname2 must be specified. Options can be one of:

READS
WRITES
CONTROL
BINARY
ALL
ASIS
SYMBOLIC

The first five options determine which operations are logged, the last two determine the format of the
$LOG output. If you do not specify options they will automatically default to READS, WRITES, and
ASIS. These options are more fully explained in the description of the $LOG command in the section
“MTS Command Mode” in this volume.

Some typical examples:

(1) You want to keep a record of your terminal session in the file LOGFILE.

$LOG *MSOURCE* on LOGFILE

The file LOGFILE will contain all commands entered from your keyboard and all the
output sent to your terminal.

(2) You are submitting a job to batch and you want to keep a record of your session in a file
instead of having it printed. The commands for your batch run are in a file that looks
like this:

$SIGNON *
$EMPTY LOGFILE
$LOG *MSINK* ON LOGFILE
$RUN SPSS:xxx INPUT=DATA PRINT=MYPRINT
$CANCEL *PRINT*
$SIGNOFF

66 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

Our file contains six lines. First you have your $SIGNON command, next you $EMPTY
the file that you are using to log your session in. Note that you must $CREATE
LOGFILE before you submit this run. You cannot use a temporary file as in the previous
example since you are logging in batch and it would disappear once the job was
completed. The next command instructs the system to log your job in LOGFILE. You
then enter your commands for this run. In this example you are running the statistical
package SPSS:xxx. Finally, you enter $CANCEL *PRINT* which will cancel all
hardcopy output from this job. Because $CANCEL will cancel all printouts for your job,
you should use it with caution. In this instance the only hardcopy that you are expecting
is the log of your batch run which you are storing in a permanent file anyway.

Notes:

(1) If you are logging terminal I/O and you $LIST the logfile or $EDIT the logfile and issue a
PRINT /F command, the list is (potentially at least) infinite, since each line that is listed
or printed is also added to the end of the logfile. In general, when using $LIST you
should specify the line range to avoid this problem, or alternatively, you can turn logging
off first (see below).

(2) You can use the $DISPLAY command to see which files or devices are currently being
logged:

$DISPLAY LOGSTATUS
Logging *MSINK* on LOGFILE
30 lines read
192 lines written

In this example you are informed that you are logging your terminal session on the file
−LOG. You have read 30 lines which have resulted in 192 lines of output into the file
−LOG.

(3) You can stop logging by issuing the $LOG OFF command:

$LOG OFF
Logging of *MSINK* on LOGFILE terminated

THE $RELEASE COMMAND

A job will be held if one of the following conditions apply:

(1) You have issued a $SET AUTOHOLD=ON command.

(2) You have issued a $CONTROL *pdn* for a particular pseudodevice.

In all of the above situations, the job is held until you issue a $RELEASE command. If you neglect
to use $RELEASE, the system will do so automatically when you sign off. However, until the job is
released (one way or another), it does not get submitted to the processing queue.

The general form of the $RELEASE command is:

$RELEASE *pdn*

Managing Batch and Print Jobs 67

MTS 1: The Michigan Terminal System

November 1991

When a job is released, the job name and number and attributes applied using either $SET or
$CONTROL commands are displayed.

Some typical examples:

(1) You want to copy a file to *PRINT* and print it in portrait format:

$CONTROL *PRINT* PORTRAIT
PRINT assigned job number 151357
PRINT RM151357 held

$COPY THESIS *PRINT*
$RELEASE *PRINT*

PRINT RM151357 released to CNTR 72 images 36 sheets
RATE=NORMAL FORMAT=PORTRAIT

(2) You have given a $CONTROL command, but changed your mind before copying anything
to the printer:

$CONTROL *PRINT* PAPER=3HOLE
PRINT assigned job number 124680
PRINT RM124680 held

$RELEASE *PRINT*
PRINT RM124680 cancelled: no lines.

Nothing is printed, and the job is abandoned.

Notes:

(1) If you have used $SET AUTOHOLD=ON, you will need to explicitly release any job sent
to any pseudodevice (e.g., *PRINT*, *BATCH*), regardless of whether you used a
$CONTROL command. The $SET AUTOHOLD=ON is a useful command to put into
your sigfile because it explicitly holds any files sent to a *pdn* and thus gives you the
option of cancelling a job before it is released.

(2) If you did not copy anything to the printer before releasing it, the job would be
automatically cancelled (see example 2).

(3) If there was no print job active, the system would respond that the given pseudodevice
name was not held.

(4) If you neglect to $RELEASE a job, the system will do so automatically when you sign off
from the current session.

(5) Once you $RELEASE your job the options for that pseudodevice are reset back to their
default values; with the exception, of course, of those that have been changed using $SET.

(6) You can use $DISPLAY to see what is currently held, for a particular device:

$DISPLAY *PRINT*

or for all devices:

$DISPLAY *?*

68 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

(7) If you have a number of pseudodevices active, you can release them all at once by typing
the following:

$RELEASE *?*

THE $SET COMMAND

The $SET command lets you set various global conditions. Any option specified on a $SET
command remains in effect until the end of the current session, or until it is reset to a new value.
Many of the options described here apply to jobs that are directed to a printer. Some of them are valid
only for the Xerox 9700 page printer.

The $SET command is particularly useful for options that you use all the time. In this case you can
put your $SET commands into a special file called a sigfile and then have that file executed each time
you $SIGNON.

The general form of the $SET command is:

$SET option

where option is selected from Table 4 below.

Note: Only the options that specifically relate to RM job handling are included here; for complete
documentation of the $SET command, see the section “MTS Command Mode” in this volume.

Table 4: $SET Options

Option Description

ADDRESS="line1;line2;..."
Specify the campus mail address for delivered output (when
DELIVERY=MAIL is set). This option applies only to page-printer output,
not to line-printer or local-printer output.

AUTOHOLD={OFF | ON}
Specify that all subsequent jobs sent to *BATCH*, *PRINT*, and *PUNCH*
will automatically be held until explicitly released. This will also apply to
all user-defined pseudodevices. The default is OFF.

COMMENT="text" Specify a comment to be printed on the head sheet of the job.

COPIES=n Specify number of copies of output for print jobs. The default is 1.

DELIVERY={station | MAIL | NONE}
Specify a delivery station to which output should be delivered by messenger
service (see the file *DELIVERY for further details). If MAIL is specified,
the output will be delivered by campus mail or the US Postal Service. The
default is NONE.

FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
Specify format for page-printer output. The default is LANDSCAPE.

Managing Batch and Print Jobs 69

MTS 1: The Michigan Terminal System

November 1991

JOBNAME={jobname | DEFAULT}
Specify a job name of 1 to 8 alphanumeric characters for all subsequent jobs
sent to the printer. The first character must be a letter. DEFAULT
specifies the default format of “RM” plus six digits.

MARGIN={n.nn | NO}
Set the left margin to “n.nn” inches. “n.nn” must be less than the current
page width (8.5 for portrait orientation, 11.0 for landscape). MARGIN=NO
turns off the margin override and resets the margins to the default for the
current format (0.5 for PORTRAIT and 0.65 for LANDSCAPE).

NUMBER={(b,l,c) | NO}
NUMBER=(b,l,c) numbers pages automatically, starting with number “b”,
printing the number on line “l”, ending in column “c”. NUMBER=NO (the
default) disables automatic page-numbering. The page number is always
printed in the first font of the current format or FONTLIST specification.

OVERLAY={NONE | SHADED | LINED}
Specify an overlay for page-printer output. The default is NONE.

PAGES=n Specify a page limit for a print job. The default is no page limit. It applies
only to jobs directed to *PRINT* or user-defined pseudodevices with
TYPE=PRINT.

PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
Specify paper type for Xerox 9700 page-printer output. The default is
PLAIN.

PRINTER={PAGE | LINE}
Specify the type of printer. The default is PAGE.

ROUTE=station Specify a station for output (use the command $COPY *ROUTE to obtain a
list of valid station codes).

SEPCOPY={YES | NO}
Specify whether each copy will have separate head and tail sheets (YES) or
whether all copies will be printed together as one job with a single head and
tail sheet (NO). The option is only effective for page-printer output and if
COPIES=n is specified. If each copy is more than 50 pages, then
SEPCOPY=YES is forced. The default is NO.

SHIFT={YES | NO}Specify whether page-printer output is shifted away from the binding edge.
The default is SHIFT=NO.

TWOSIDED={YES | NO}
Specify printing on one or both sides of the paper for page-printer output.
The default is YES.

Some typical examples:

(1) You have decided that all output directed from the current session to *PRINT* should be
printed in portrait format, on one side only:

70 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

$SET FORMAT=PORTRAIT TWOSIDED=NO

All subsequent output for the Xerox 9700 page printers will be printed in portrait mode,
on one side of the paper. This demonstrates how more than one option may be used on a
$SET command.

(2) You are working in the Church Street (CHUR) computing site and you want to print all
your output for the current session to the the Xerox 4045 printer located there:

$SET ROUTE=CHUR

Anything sent to *PRINT* will now be printed at that computing site. Remember that
this type of printer cannot handle many of the characters and specifications that are
available only on the Xerox 9700 page printers.

(3) You want to ensure that none of your print jobs exceed 20 pages of output so you enter:

$SET PAGES=20 AUTOHOLD=ON

Now whenever you $COPY or $LIST a file to *PRINT*, only 20 pages (images) will be
copyed after which an error message:

PRINT assigned job number 348902
***Local Page Limit Exceeded

will be printed. This option can be overidden for a particular print job by using the
$CONTROL command.

Notes:

(1) The $SET options remain in effect for the whole session, or until explicitly reset.

(2) Using $SET does not initiate any particular “job”.

(3) Values that have been set may be displayed (see the $DISPLAY command).

(4) If you submit a batch job from a terminal session or from another batch job, the attributes
of the job will be defaulted from any values that have been $SET in the submitting job
unless overridden by the $SIGNON command in the submitted job.

THE $SYSTEMSTATUS COMMAND

The $SYSTEMSTATUS command lets you find out the current status of any job (or jobs) that you
have submitted for processing within the last 8 hours, or that has not finished processing. It can also
tell you how busy the computer is overall.

The general form of the command is:

$SYSTEMSTATUS USERS

or

Managing Batch and Print Jobs 71

MTS 1: The Michigan Terminal System

November 1991

$SYSTEMSTATUS QUEUE option

where option selects the job(s) for which you want queuing information.

The USERS Keyword

This form of the command gives you a general idea of the system load. The information displayed
includes:

(1) number of terminal users signed on

(2) number of active batch jobs

(3) number of active non-MTS jobs

(4) number of virtual pages in use

(5) number of real pages in use

The QUEUE Keyword

This displays the status of individual jobs that you have submitted for processing. It also provides
summary information about queue lengths. You must be signed on to the userID that submitted the
job in order to see its current status.

The general form of the command is shown above, and the available options are listed below.

Option Information Displayed

jobnumber The current status of the specified job.

jobname The current status of the specified job.

USER The status of all jobs submitted by the current userID, but not yet processed.

* The status of all jobs processed for the current userID during the preceding
8-hour period. This will include jobs that have printed, or were cancelled,
or are still waiting to be processed. This will also include BITNET files
that are being held in *IMPORT*.

ALL A summary including the number of active and queued jobs, the number of
pages waiting to print for all printers, and the number of plot minutes in the
queue. This information represents the whole system, not just the current
userID.

PROUTE=code A summary of all jobs awaiting print at a specified print station.

IMPORT A summary of all BITNET files that are awaiting import.

Some typical examples:

72 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

(1) If you just want to get an idea how busy the system is:

$SYSTEMSTATUS USERS
There are 267 terminal users, 2 batch jobs, 216 available
lines, and 60 non-MTS jobs using 20150 private virtual pages
and 9110 real pages. Additionally, there are 1270 shared
virtual pages.

(2) The owner of the userID 1ABC submitted two jobs and wants to see if they have finished
printing.

$SYSTEMSTATUS QUEUE USER
1ABC:RM116982 is awaiting print, P14, after 0 jobs.

This tells you that one job is next in the queue to be printed. In order to see the status of
all jobs (included those that have printed within the last 8 hours) you should enter:

$SYSTEMSTATUS QUEUE *
1ABC:RM116982 is awaiting print, P14, after 6 jobs.
1ABC:RM118973 is awaiting purge, was printed on PTR2 at

10:33:00 Mon Jan 15/90.
1ABC:RM113243 was printed on PTR2 at 09:24:11 Mon Jan 15/90.

The first job is awaiting print and there are six jobs ahead of it in the queue. The second
entry represents a job that has been printed but has not yet been purged. For an
explanation of the the term “purged”, see “When is a Job Purged?” in this section. The
last entry represents a job that has been printed and has also been purged.

(3) How many jobs are waiting to print on the Church Street (CHUR) computing site printer?

$SYSTEMSTATUS QUEUE PROUTE=CHUR
1 active job, 3 queued jobs, representing 81 pages.

(4) You want to track a job that was submitted on the UB-MTS system and tranferred to the
UM-MTS system for printing. From the UB-MTS system, you can enter

$SYSTEMSTATUS QUEUE RM123456
1ABC:RM123456 is awaiting purge, was sent at 12:10:15

Mon Jan 15/90.

This shows the time the job was sent to UM-MTS for printing. If you have an account
with the same userID on the UM-MTS system, you can enter

$SYSTEMSTATUS QUEUE RM123456
1ABC:RM123456 (345678) is awaiting purge, was printed on PTR2

at 12:20:20 Mon Jan 15/90.

Note that the UB-MTS job (numbered 123456) was given a new job number of 345678
when it was transferred to the UM-MTS system. However, the job name RM123456
remained the same.

Managing Batch and Print Jobs 73

MTS 1: The Michigan Terminal System

November 1991

Explanation of Responses

The following list summarizes the responses you can normally expect when querying the status of a
job.

(1) job name is awaiting execution, Pm, after n jobs

This indicates a batch job that is waiting in the execute queue. It also tells you the
priority of the job, and the number of batch jobs ahead of it. (For more information on
priorities, see the section “Batch Processing”.)

(2) job name is executing

This indicates a batch job that is currently executing.

(3) job name is awaiting print, Pm, after n jobs

This indicates a job that is waiting in the print queue. It also tells you the priority of the
job, and the number of print jobs ahead of it.

(4) job name is printing

This indicates a job that is currently printing.

(5) job name is awaiting purge, was printed on PTRn at ...

This message gives the time and date at which the job was printed. The job is finished,
but has yet to be purged. (See Note 3 at the end of this section.)

(6) job name was executed at ...

This indicates the job has been executed.

(7) job name was printed on PTRn at ...

This indicates the job was printed and has been purged from the system.

(8) job name was cancelled at ...

This indicates the job was cancelled (see the $CANCEL command).

(9) job name not locatable

This indicates you are requesting information for a job that the RM does not have
information for. Perhaps it finished more than eight hours ago, or was submitted under
another userID.

(10) job name was sent at ...

This indicates the job was sent to another system for processing. This message applies
to print, punch, or BITNET jobs that require a device that is attached to another system.

74 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

All print jobs from the UB-MTS system are sent to the UM-MTS system for printing.

Notes:

(1) $SYSTEMSTATUS always looks for jobs for the current userID. It automatically
prefixes each job name with this userID.

(2) Note the difference between the following QUEUE options:

$SYSTEMSTATUS QUEUE USER
No jobs found for ID 1ABC.

$SYSTEMSTATUS QUEUE *
1ABC:RM119435 was cancelled at 15:36:23 Wed Jan 10/90.

The * will find jobs that were purged or cancelled earlier in the day, whereas “USER”
locates only those that are active or pending.

(3) The Xerox 9700 page printer maintains its own internal print queue. The time given as
printed is actually the time the Resource Manager copied the job to the printer. If there
is a heavy backlog inside the printer or it is out of paper, there may be a lag between the
time given and the time the job really gets printed.

When is a Job Purged?

The expression “awaiting purge” simply means that the job is finished, but still exists on the system.
So, for example, if operators discovered your output was printed while the Xerox 9700 page printer was
malfunctioning, they could reprint the job when the problem was fixed. This saves you the task of
rerunning the job.

After a set amount of time, the Resource Manager purges jobs which have already printed in order to
make room for new ones being submitted. The length of time a job remains in the purge queue varies
depending on the type of job.

THE $VIEW COMMAND

The VIEW command allows users to look at batch and print jobs that are queued by the Resource
Manager for execution or printing.

For example, you can look at the contents of the print job 123456 by first entering the command

VIEW 123456

at the MTS “#” prompt. Then, you can use MTS File Editor commands (including visual mode) to
examine the job. You can copy sections of the job to other files, cancel it, or reroute it. If the job is
queued for execution, you will see the commands that make up the batch job. If the job is queued for
printing, you will see the output produced by the job.

Print jobs must be released to the Resource Manager before they can be viewed. That is, you
cannot give the commands

COPY file *PRINT*

Managing Batch and Print Jobs 75

MTS 1: The Michigan Terminal System

November 1991

> *PRINT* assigned job number 123456
VIEW 123456

but you can give

COPY file *PRINT*
> *PRINT* assigned job number 123456
RELEASE *PRINT*

PRINT RM123456 released to ...
VIEW 123456

You can view print output only while it is queued for printing. Once printed, it can no longer be
viewed.

You can send jobs to the VIEW command by using the ROUTE=VIEW option on the $CONTROL or
$SIGNON commands. Jobs submitted with this routing will not print but will remain queued in the
system for up to 11 days until rerouted or canceled (both described later).

For example, to use ROUTE=VIEW for a print job, use the commands

CONTROL *PRINT* ROUTE=VIEW
COPY file *PRINT*
RELEASE *PRINT*

You can then use the VIEW commands described below. For batch jobs, place the parameter
ROUTE=VIEW on your $SIGNON command.

If you currently submit batch jobs and only examine the printed output to determine the success or
failure of the job, then VIEW can be of use to you. If you submit your job with a ROUTE=VIEW, you
can examine the output from your terminal. Having looked at it, you can then cancel it.

If you submit a batch job that is going to generate a lot of output, it might be worth first routing the
output to VIEW. You can then examine the output and, if the job is correct, reroute it to the printer.

The VIEW command requires a job number to identify the job. You can find the job number by
using the LOCATE command. To see what jobs you have in the system, enter the command:

LOCATE

or, to see only the jobs with ROUTE=VIEW:

LOCATE VIEW

You will see a message such as

RM299444 (234567) waiting print, posn 0, Route=VIEW.
RM299593 (234568) waiting print, posn 1, Route=VIEW.

Then, you can use the VIEW command to view a job:

VIEW 234567

76 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

You will see a message such as

* Print job 234567 RM234567 1ABC 3 pages submitted at
11:34:32 Tue Jul 30/91

The asterisk “*” is a prompt that indicates the VIEW command is active. To examine the job in visual
mode, enter the following command at the “*” prompt:

V

Subsequently, you could cancel the job with the command

CANCEL

To exit the VIEW command, enter

STOP

at the “*” prompt. For more help on the VIEW command, enter

HELP

while you are in the VIEW command.

You can reroute jobs from VIEW to a printer by entering the following command at the “*” prompt:

ROUTE station

For example,

ROUTE CNTR

will route the output of a job to the CNTR batch station. You can send jobs to other printers, such as
the page printer at NUBS, by substituting NUBS for CNTR. Please note that you will probably not
want to view text-formatted jobs, such as .DVI files, since their output normally is not readable using
the File Editor.

If you work under more than one MTS userID, please note that you can only view jobs from the
userID on which you originally executed them.

Managing Batch and Print Jobs 77

MTS 1: The Michigan Terminal System

November 1991

78 Managing Batch and Print Jobs

MTS 1: The Michigan Terminal System

November 1991

SERVER USE OF MTS

An MTS network server is a program on an MTS computer (the host) that provides a service to a user
or program (the client) on another computer. The host and the client are connected by the
UMnet/Michnet Computer Network.

The MTS network server mechanism is an important part of the evolution of computing at the
University of Michigan. It makes possible a future server-enhanced networking environment, in which
the various kinds of computers attached to the UMnet/Michnet network cooperate to deliver a variety
of multiple-computer services to users and to each other.

The MTS network server mechanism originally was created to make it easier for MTS programmers
to coordinate the activity of multiple computers (at least one of them running MTS). As a side benefit,
the mechanism makes it possible for the UMnet/Michnet Computer Network to provide certain “free”
information services.

MTS NETWORK SERVERS CURRENTLY IN USE

The following table shows the characteristics of some “public” MTS network servers that are
currently in use.

Public MTS Network Servers

Name Host Description Sponsor Client

FINGER UM UM Display UM user info ITD Both

FINGER UB UB Display UB user info ITD Both

FTP UM, UB File Transfer Protocol ITD Pgm

HELP UM, UB Online help for MichNet ITD User

MIRLYN UM, UB UM Library catalog Univ Libraries User

NETMAILSITES UM, UB List of remote mail hosts Merit Network User

TDAY UM, UB T-Day EBCDIC translation ITD Pgm

TIMEDATE UM, UB Display time and date ITD Both

UMLIBHOURS UM, UB UM Library open hours Univ Libraries User

UM-CIC UM, UB Campus events database Campus Info Ctr User

UM-ITD-SUGGEST UM, UB ITD Suggestion Box ITD User

UM-UHS-INFO UM, UB Health info query Univ Health Svc User

UM-UMIPS UM, UB UM Info. Posting System ITD User

UM-WEATHER UM, UB Weather information AOSS Dept User

A more complete list of available servers is given by the HELP server.

Each server has a name that lets the network direct a request for the server to the proper host and
lets the host direct the request to the proper server command file.

A server resides on a host, has a sponsor, and is intended for access by users, programs, or both.

Server Use of MTS 79

MTS 1: The Michigan Terminal System

November 1991

CLASSIFYING SERVERS

There are three ways to classify an MTS network server: by client type, by funder, and by provider.

By Client Type

A server is said to be user-oriented if it is intended to be accessed directly by an interactive user.
Examples include the servers UM-CIC, UM-UHS-INFO, and UMLIBHOURS. A UMnet/Michnet
user can access these servers to get (respectively) a list of upcoming campus events, an answer to a
health question, and a schedule of open hours at a University library.

A server is said to be program-oriented if it is intended to be accessed by a client program on another
computer. Examples include the servers FTP and TDAY. The FTP (File Transfer Protocol) server on
each machine exchanges files with corresponding servers on other machines, and the TDAY server is
invoked by the T-Day translation program.

Note that program-oriented servers are often accessed by user-oriented programs as, for the above
examples, $FTP and *TDAY88TRANS. However, it is the program, not the user, that directly
accesses the program-oriented server.

A server can be both user- and program-oriented. For example, FINGER and TIMEDATE. It is
also possible for a program to access a user-oriented server, and a user (with sufficient devotion) to
access a program-oriented server.

User-oriented servers and program-oriented servers differ in several respects:

(1) Purpose. The purpose of a user-oriented server is to provide a centralized, usually free
service to users anywhere on the network, even to users who have not signed on to a host
computer. The purpose of a program-oriented server is to provide a streamlined, reliable
way for two or more computers to undertake coordinated activity.

(2) Format. All exchanges with a user-oriented server consist entirely of text; exchanges
with a program-oriented server may be text or binary.

(3) Style. A good user-oriented server offers “friendly” prompts and provides help if
requested; a good program-oriented server sends output that is predictable and easily
parseable.

Most public user-oriented servers are accessible at the “Which Host?” prompt and are free.

By Funder

Any server’s use of MTS resources on its host computer must be paid for by a userID on that host. If
the userID belongs to the client, the server is said to be charged for; if the userID belongs to someone
else (the server’s sponsor), the server is said to be free.

Charged servers and free servers differ in that the client must send a charged server a logon record

(see next section) to identify the userID and password.

80 Server Use of MTS

MTS 1: The Michigan Terminal System

November 1991

By Provider

Apart from the question of who pays for using a server is the question of who provides and supports
the server program itself. Public servers are officially provided and supported by ITD; private servers
are not.

Public and private servers differ in that:

(1) Practically speaking, a public server is under the stewardship of ITD, while private
servers are not. ITD takes responsibility for ensuring that a public server works
correctly and that it is documented accurately. ITD may provide this support itself, or by
arrangement with another person or organization, typically the server’s sponsor. For
example, the University Health Service maintains the public server UM-UHS-INFO, and
the Campus Information Center maintains the public server UM-CIC.

(2) Technically speaking, a public server is defined by having an entry in the host computer’s
server table. This table has one generic entry PRIVATE that handles all private servers.

(3) From the user’s point of view, a public server (like a public file) is not associated with a
particular userID, while a private server (like a private file) is.

(4) Public servers can be free or charged; private servers are always charged.

Note that the terms “public” and “private” imply nothing about who can access the server. They are
analogous to the common terms “public sector” and “private sector,” and consistent with long-standing
MTS terminology for “public files” and “private files.”

COMPARING INTERACTIVE, BATCH, AND SERVER SESSIONS

How does an MTS network server session differ from the familiar interactive and batch sessions?
The following table shows how interactive, batch, and server sessions progress from beginning through
middle to end.

Phase Interactive Session Batch Session Server Session

Beginning Write MTS banner Write MTS banner

Read a $SIGNON Read a $SIGNON Generate a $SIGNON

Write a signon banner Write a signon banner

Middle Read project sigfile Read project sigfile Read project sigfile

Read user sigfile Read user sigfile Read user sigfile

Read interactive commands Read batch commands Read server command file

End $SIGNOFF $SIGNOFF Generate a $SIGNOFF

Notice how a server session shares some characteristics of an interactive session and some
characteristics of a batch session. In particular:

(1) All three types of sessions begin with a $SIGNON (explicit or implicit), then process a
project sigfile (if any) and user sigfile (if any) before processing any other commands, and
end with a $SIGNOFF (explicit or implicit).

Server Use of MTS 81

MTS 1: The Michigan Terminal System

November 1991

(2) Like a batch session, a server session generates an implicit $SIGNOFF if none is
provided.

(3) Unlike the interactive and batch sessions, a server session writes nothing when it is
invoked.

This last point is perhaps the major advantage of using a server session, if the client is a program:
the server mechanism guarantees that the first output the client sees is the result the client asked for.
That is, the client program need not parse the MTS headers and signon headers and possible other
messages from UMnet/Michnet and MTS to search for the desired result.

ACCESSING A SERVER

This section explains the various methods by which a client user or program can access an MTS
network server.

After a general description of the client’s logon record, some of the various access methods are
presented.

The Logon Record

To access a user-funded server, that is, a charged public server or a private server, the client must
supply a logon record. A logon record consists of a sequence of information items separated by spaces.
Each item is of the form keyword=value.

Certain items are required, and others are optional. The required items are:

Keyword Description

ID The userID on the MTS host of the user to whom the server’s use of
resources will be charged.

PW The password that corresponds to the userID.

CMDFILE The name of the server’s command file (private servers only).

For example, a logon record for a charged public server might look like:

ID=WXYZ PW=GRUNCH

A logon record for a private server might look like:

ID=WABC PW=HUNGRY CMDFILE=WABC:MAILDROP

Using the “Which Host?” Prompt

This method can be used by any client that can access the UMnet/Michnet network. It is most
suited for human users, especially in the case of free public servers.

To access a free public server using the “Which Host?” prompt, type the server’s name in response to
that prompt. For example, here is a sample TIMEDATE server session:

82 Server Use of MTS

MTS 1: The Michigan Terminal System

November 1991

Which Host? TIMEDATE
16:16:29 EST
Wed Jan 20/88
%H1E:CH0445-AF5E:UM24 timeda Connection closed

To access a charged public server using the “Which Host?” prompt: type the server’s name; press the
Return key; and then type a logon record that supplies a userID to be charged and its password. For
example, here is a sample server session charged to an imaginary user with userID MONA and
password LISA:

Which Host? servername
ID=MONA PW=LISA
output here
%H1E:CH043D-AF1D:UM4E servername Connection closed

To invoke a private server using the “Which Host?” prompt: type the word “PRIVATE” followed by
the name of the MTS host on which the server resides; press Return; and then type a logon record that
supplies the userID of the owner of the server, the corresponding password, and the name of the server
command file. For example, here is a session with an imaginary private server SHOWFILES owned
by our imaginary user MONA:

Which Host? PRIVATE UM
ID=MONA PW=LISA CMDFILE=SHOWFILES
5 ML.CC Create=Oct16/87
5 ML.CITI Create=Nov02/87
%H1E:CH043D-AF1D:UM4E privat Connection closed

When typing a logon record at a terminal, it is useful to press the Escape key before and after the
password to keep it from printing.

Using the %GRAB Command

This method can be used by any client that can access a host computer on the UMnet/Michnet
network. It is used from within a host session rather than at the “Which Host?” prompt, but is
otherwise identical.

To access a free public server using the %GRAB command, type “%GRAB” followed by the server’s
name. For example:

#%GRAB TIMEDATE
16:16:29 EST
Wed Jan 20/88
%H1E:CH0445-AF5E:UM24 timeda Connection closed

To access a charged public server using the %GRAB command: type “%GRAB” followed by the
server’s name; press the Return key; and then type a logon record that supplies a userID to be charged
and its password. For example:

#%GRAB servername
ID=MONA PW=LISA
output here
%H1E:CH043D-AF1D:UM4E servername Connection closed

Server Use of MTS 83

MTS 1: The Michigan Terminal System

November 1991

To invoke a private server using the %GRAB command: type “%GRAB”, followed by the word
“PRIVATE”, followed by the name of the MTS host on which the server resides; press Return; and then
type a logon record that supplies the userID of the owner of the server, the corresponding password,
and the name of the server command file. For example, here is a session with an imaginary private
server SHOWFILES owned by our imaginary user MONA:

#%GRAB PRIVATE UM
ID=MONA PW=LISA CMDFILE=SHOWFILES
5 ML.CC Create=Oct16/87
5 ML.CITI Create=Nov02/87
%H1E:CH043D-AF1D:UM4E privat Connection closed

Using the $MOUNT Command

This method can be used by any client that is signed on to an MTS session in the UMnet/Michnet
network. It is often used from within a $SOURCE-able file of MTS commands.

To invoke a free public server, use a $MOUNT command of the form:

MOUNT MNET *pdn* DEST=host SERVER=server

where “pdn” is a pseudodevice name of your choosing, “host” is the name of the MTS host on which the
server resides, and “server” is the name of the server (see the discussion on server names under
“Comparing MTS Network Servers Currently in Use” above). Note that server and client may reside
on the same host.

Here is an example of accessing the free public TIMEDATE server interactively using the $MOUNT
command:

#MOUNT MNET *A* DEST=UM SERVER=TIMEDATE
#mnet *a* dest=um server=timedate
#*A*: Mounted on AD00
#COPY *A*
>16:25:00 EST
>Tue Jan 26/88
AD00: Connection CLOSED
#RELEASE *A*
#"*A*": MNET dismounted.

To invoke a charged public server or a private server, issue the MOUNT command as above and then
follow it with a logon record as described above under the “Which Host” method. One way to do this is
to copy it to the server’s pseudodevice:

COPY *SOURCE* TO *pdn*
ID=userid PW=password CMDFILE=cmdfile
{end-of-file}

The output of the server can then be read using a command of the form:

COPY *pdn*

Once the server completes, release the pseudodevice name with a command of the form:

RELEASE *pdn*

84 Server Use of MTS

MTS 1: The Michigan Terminal System

November 1991

Here is an example of accessing our imaginary private SHOWFILES server owned by userID
MONA:

#MOUNT MNET *A* DEST=UM SERVER=PRIVATE
#mnet *a* dest=um server=private
#*A*: Mounted on AD00
#COPY *SOURCE* TO *A*
>ID=MONA PW=LISA CMDFILE=SHOWFILES
>$ENDFILE
#COPY *A*
>5 ML.CC Create=Oct16/87
>5 ML.CITI Create=Nov02/87
AD00: Connection CLOSED
#RELEASE *A*
#"*A*": MNET dismounted.

For further information about other methods for accessing servers and for creating servers, see
Using and Creating MTS Network Servers, Reference R1073.

Server Use of MTS 85

MTS 1: The Michigan Terminal System

November 1991

86 Server Use of MTS

MTS 1: The Michigan Terminal System

November 1991

FILES AND DEVICES

Files and devices are used by programs for the input and output of data. A file is a logical entity
that contains data. A device is a physical entity such as a card reader, a magnetic-tape unit, or a
magnetic-disk unit that transmits data to and from a file or a program. The general specification of a
file or device is called a file or device name, and is abbreviated as FDname. The purpose of this section
is to describe the kinds of files and devices available, to give rules for specifying FDnames, and to
illustrate their use.

FILES

A file is an ordered set of zero or more lines. A line is a string of one or more characters (bytes). A
line may contain up to 32,767 characters.

On-line storage in MTS is organized on the basis of files of information stored on magnetic disk
units. It is common practice to refer to such files as “file storage,” “disk files,” or simply “files.” These
files are always available when MTS is operating (except in cases of hardware failure) and are
considered to be “on-line.” Other storage media such as punched cards and magnetic tapes may be used
to store information but information stored in this manner is usually not referred to as file storage.
Furthermore, such information is considered to be “off-line” since some manual intervention is
required to gain access to the information. Disk files may contain source decks, object decks, data sets,
output listings, writeups, etc.

Files are classified in two ways:

(1) the category of the file, and
(2) the organization of the file.

These two characteristics are established when the file is created. The category is specified by the
form of the file name. The type of organization is specified by a keyword on the CREATE command.

Categories of Files

Public files are files containing components of the system, such as language translators and utility
programs. Public files are usually permitted such that they can be read by all users, but are protected
against modification. MTS Volume 2: Public File Descriptions, Reference R1002, contains
descriptions of the public files. Public files are also called system files or library files, and their names
always begin with an asterisk (*). Most users cannot create public files.

Private files are files belonging to a specific user and may be accessed only by that user, unless
permission is given to others for accessing them. There are two types of private files, permanent and
temporary. Permanent private files must be explicitly created by the user with the CREATE
command (or by calling the subroutine CREATE). Once created, they exist until the user explicitly
destroys them with the DESTROY command (or by calling the subroutine DESTROY). For the
descriptions of these subroutines, see MTS Volume 3: System Subroutine Descriptions, Reference
R1003.

Files and Devices 87

MTS 1: The Michigan Terminal System

November 1991

Temporary files may be created explicitly (via the CREATE command or the CREATE subroutine)
or implicitly. Implicit creation of a temporary file occurs when the file does not exist (i.e., has not been
previously created either explicitly or implicitly) but is referenced in a command or through a
subroutine call. Implicitly created files always have the default file characteristics. Temporary file
names always begin with a minus “−” sign. Temporary files must be created explicitly if other than
the default characteristics are required. The default characteristics are discussed later and are also
given in the CREATE command description in this volume. Temporary files may be explicitly
destroyed at any time before the user signs off; all remaining temporary files that still exist are
automatically destroyed by MTS when the user signs off.

Organization of Files

There are two types of file organization, the line file and the sequential file.

The line file is the most commonly used file type in MTS. A line file is an ordered set of zero or more
lines. Each line may consist of 1 to 32,767 characters (bytes). Each line has associated with it a
unique line number. Although the line number is stored on the disk with the line, it is not a part of the
contents of the line. The lines are numerically ordered and are in the range −2147483.648 to
2147483.647. By specifying its line number, any line in the file may be directly accessed.

A sequential file is an ordered set of zero or more lines. Each line may consist of 1 to 32,767
characters (bytes). The lines of a sequential file do not have line numbers associated with them;
therefore, the lines in the file may not be directly accessed. The lines may be accessed only
sequentially. Sequential files are rarely used any more. They were useful in the past when the
length of line-file lines was restricted to 255 characters.

The file organization is established at the time the file is created by specifying the TYPE keyword
with the CREATE command. For example,

CREATE SFILE TYPE=SEQ

creates the sequential file named SFILE. If the TYPE keyword is omitted, the type defaults to LINE.
All temporary files that are implicitly created (by reference as opposed to by the CREATE command)
are line files. If a temporary sequential file is desired, it must be created explicitly by the CREATE
command or by the CREATE subroutine.

File Names

Permanent private file names consist of one to twelve characters. The name may contain the
letters A–Z (case is insignificant), the digits 0–9, and the following special characters:

< > $ * − % # / . _ !

The name cannot begin with an asterisk (*) and should not begin with the special flag characters “>” or
“#”. If more than twelve characters are specified, only the first twelve are used; the rest are ignored.
Examples of legal file names are:

PHYLE
A_LONG_NAME
STATPROG.SOU

88 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Internally, the name of the file consists of the user’s four-character userID followed by the external
twelve-character name. In this way, the names of one user’s files are always different from those of
other users.

If a user wishes to access a permanent file belonging to another user, the file name must be prefixed
by the userID of the owner. The userID and file name are separated by a colon (:). Thus, if user
AAAA wants to read the file NEWS belonging to user BBBB, it must be referred to as

BBBB:NEWS

However, user AAAA may read the file only if user BBBB has given user AAAA read access to the file.
See the section “Shared Files” for further details about accessing files.

Temporary file names consist of one to eight characters prefixed by a minus sign “−”. This prefix is
called the temporary-file character. The legal characters for a temporary file name are identical to
those for a permanent file name. Temporary file names are restricted to a maximum of 9 characters
(including the leading minus sign). Examples of legal temporary file names are:

-T
-LOAD

Public file names begin with an asterisk (*), cannot end with an asterisk, and contain a maximum of
sixteen characters (including the asterisk). Examples of legal public file names are:

*FORTRANVS
*CONSULTINGHOURS

DEVICES

A device is a physical unit of hardware, such as a card reader, a magnetic tape unit, or a telephone
line adapter (or port) that a user’s terminal can call. All input of data into the system and output of
data from the system is ultimately performed by devices.

Device Names

Each device has a unique four-character device name and a three- or four-character device type. All
similar devices have the same type. A complete list of devices is given in the section “System Device
List” in MTS Volume 3: System Subroutine Descriptions, Reference R1003. Since the user generally
does not know and should not care which specific devices are being used for his job, pseudodevice names
are used in their place. Device names are generally used only by the operators and the system
programmers. Since the user occasionally sees device names, a brief mention is made here.

Pseudodevice Names

A pseudodevice name (or pdn) refers to a file or device when the actual name for the file or device is
not available or when the user desires to have a single name to refer to a set of file or device names.

For batch use, pseudodevice names are needed for the card reader, the line printer, and the card
punch since the actual device names for these units are not available to the user. For conversational
use, pseudodevice names are needed for the terminal (input and output) since the terminal port name
is not available to the user. These pseudodevice names are predefined and are given below.

Files and Devices 89

MTS 1: The Michigan Terminal System

November 1991

Pseudodevice names are also needed to refer to user-mounted volumes such as magnetic tapes since
the actual tape drive device names are not available to the user. These pseudodevice names are not
predefined, but are defined by the user at the time these volumes are mounted. See the MOUNT
command description in this volume and in MTS Volume 19: Magnetic Tapes in MTS, Reference R1019,
for further details of user-mounted media and their associated pseudodevice names.

A pseudodevice name begins with an asterisk, ends with an asterisk, and has from one to fourteen
characters in between. The same characters that are legal for file names are legal for pseudodevice
names. Examples of legal pseudodevice names are:

P
TAPE
T12

There are eight pseudodevice names which are predefined for the user. These are the following:

MSOURCE is defined as the master source (or input) file or device. For batch mode, it
is the card reader; for conversational mode, it is the keyboard of the
terminal. *MSOURCE* may not be redefined by the user.

MSINK is defined as the master sink (or output) file or device. For batch mode, it is
the line printer; for conversational mode, it is the printer (or display screen)
of the terminal. *MSINK* may not be redefined by the user.

SOURCE is defined as the current source (or input) file or device. Initially, the
system defines *SOURCE* to be the same as *MSOURCE*. Thus, for
batch mode, *SOURCE* is the card reader, and for conversational mode,
SOURCE is the keyboard of the terminal.

The user can redefine *SOURCE* by using the SOURCE command. If
SOURCE has been redefined by a user, an attention interrupt at a
terminal, or an end-of-file on *SOURCE* when attempting to read a
command, redefines *SOURCE* back to *MSOURCE*.

SINK is defined as the current sink (or output) file or device. Initially, the system
defines *SINK* to be the same as *MSINK*. Thus, for batch mode,
SINK is the line printer, and for conversational mode, *SINK* is the
printer (or display screen) of the terminal.

The user can redefine *SINK* using the SINK command. If *SINK* has
been redefined by a user at a terminal, an attention interrupt redefines
SINK back to *MSINK*.

DUMMY is defined as an infinite wastebasket for output (lines are discarded) and an
empty file for input (every time a line is requested, an end-of-file condition is
returned). *DUMMY* is particularly convenient for specifying that output
is to be ignored.

PUNCH is defined as the punch file or device. For batch mode, *PUNCH* is the
card punch. If the user has specified a card limit on this SIGNON
command, output written to *PUNCH* is punched on cards. For
conversational mode, output written to *PUNCH* creates a new batch

90 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

queue entry to punch the output on cards. A receipt number for retrieving
the punched output will be printed at the terminal.

PRINT is defined as the print file or device. In batch mode, this is the same as
MSINK. In conversational mode, output written to *PRINT* creates a
new batch queue entry to print the output. A receipt number for retrieving
the printed output will be printed at the terminal.

BATCH is defined for both batch and conversational mode. Output written to
BATCH creates a new batch queue entry to process the input provided as
a separate batch job. A receipt number for picking up the batch job’s
output will be printed at the terminal (if submitted from a terminal), or in
the printed batch output of the submitting job (if submitted from batch).

IMPORT is defined for importing data using BITNET connections.

EXPORT is defined for exporting data using BITNET connections.

SIMPLE FDNAMES

A simple FDname is one of the following:

(1) a file name, or
(2) a pseudodevice name.

An FDname that is not a pseudodevice name is treated as a file name. To specify that an FDname
is only a file name, it may be prefixed with the file-name character “#”. This is required only when the
first character of the file name is a special flag character such as “−” or “>”; e.g.,

-T refers to a temporary file with name T
#-T refers to a permanent file with name -T

SUBSETS OF FILES

Line Numbers

Line numbers are used to specify individual lines associated with a file or device. Line numbers
exist in two formats: external and internal. The external format is normally used by the user to
specify an FDname with a line-number range; the external format is converted by the system to the
internal format and is used to process the line number during I/O operations. The internal format is
also required for certain I/O subroutines.

The external format of a line number may be one of the following:

(1) ±nnnnn.nnn

where “n” is a decimal digit (0 through 9). The minimum and maximum line numbers
are −2147483.648 and 2147483.647. When writing a line number, leading plus signs,
leading zeros, trailing decimal points, and trailing zeros after decimal points may be
omitted. Examples of line numbers of this form are:

Files and Devices 91

MTS 1: The Michigan Terminal System

November 1991

5 5.1 5.13 5.137 32505.137 -32505.137

(2) FIRST or *F

which has the value of the first (numerically least) line number in the file. If the file is
empty, the value is zero.

(3) LAST or *L

which has the value of the last (numerically greatest) line number in the file. If the file is
empty, the value is zero.

(4) FIRST±m or *F±m
LAST±m or *L±m
MIN+m
MAX−m

where “±m” is a number of the form “±nnnnn.nnn” as described above, and MIN and MAX
are the numbers −2147483.648 and 2147483.647, respectively. The value of this is the
sum or difference of the two components; thus LAST−1 does not necessarily specify the
line number of the next-to-last line, but merely a line number 1 less than that of the last
line.

The internal form of a line number is a fullword binary integer whose value is 1000 times the
external form. Thus, a line number whose external form is 1 is stored internally as 1000 (decimal) or
000003E8 (hexadecimal). The internal form of a line number must be supplied to the input/output
subroutines when requesting an indexed operation, and the internal form of the line number of the line
that was read is returned after a sequential read operation (see the description of READ and WRITE in
MTS Volume 3).

Line-Number Ranges

A subset of a file or device may be specified by appending a line-number range to the FDname. This
line-number range is given in the form

(b,e,i)

where “b”, “e”, and “i” specify the beginning line number, the ending line number, and the increment,
respectively. Any or all of these items may be omitted. Trailing commas resulting from the omission
of any of these items may also be omitted, but leading and intermediate commas are required.

The bounds of the subset of the file or device are determined by the beginning line number and the
ending line number. All lines between the beginning line number and the ending line number are
included in the subset. If “b” is omitted, the subset extends to line 1 of the file or device. If line
numbers less than 1 are desired, an explicit beginning line number must be specified or the line
number FIRST (or *F) must be used. If “e” is omitted, the subset extends to the end. For example,

A(10,20)

specifies all lines in file A with line numbers between 10 and 20, inclusive.

A(10)

92 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

specifies all lines in the file with line numbers ≥ 10.

A(,20)

specifies all lines in the file with line numbers ≥ 1 and ≤ 20.

A(*F,20)

specifies all lines in the file with line numbers ≤ 20.

For devices such as magnetic tapes, the line-number range serves as a count of records. For
example,

TAPE(10,20)

specifies the next eleven records from the current record on the tape file. The first record read will be
given the line number 10 (this is useful only when doing an indexed I/O operation to another file or
device). If the user desires to position a tape to the tenth record from the current position, the
CONTROL command should be used.

The subset of the file may be further restricted by specifying an increment. The increment
indicates which lines between the beginning line number and the ending line number are to be included
in the subset. The increment and the beginning line number are used according to the formula

b + n*i

to generate the list of lines which are included in the subset. Values for “n” are chosen such that the
generated list of lines are within the beginning and ending lines of the subset. If “b” is omitted, the
value of 1 is used in the formula. If “i” is omitted, all lines between the beginning line number and the
ending line number are included in the subset. This is equivalent to having an increment of .001.
For example,

A(10,20,2)

specifies the lines in the file with line numbers 10, 12, 14, 16, 18, and 20. Any other lines between line
10 and line 20 are excluded from the subset.

A(,20,2)

specifies all lines in the file with odd line numbers ≥ 1 and ≤ 20. In this case, the ending line number 20
is excluded from the subset.

A(,,2)

specifies all lines in the file with odd line numbers ≥ 1.

A subset of the file also has a direction associated with it. This direction specifies the order in
which lines are processed by a sequential read or write operation. The direction is determined by the
sign of the increment and the presence of the @BKWD FDname modifier. If the increment is positive
and the @BKWD FDname modifier is not present, the direction is forwards. The direction is also
forwards if the increment is negative and the @BKWD FDname modifier is present. The direction is
backwards if either (but not both) the increment is negative or the @BKWD FDname modifier is
present. A forwards subset consists of the lines whose line numbers “#” are in the range

Files and Devices 93

MTS 1: The Michigan Terminal System

November 1991

b ≤ # ≤ e

A backwards subset consists of the lines whose line numbers are in the range

b ≥ # ≥ e

For example,

A(10,1)@BKWD

specifies all lines in the file starting at line 10 through line 1, in that order.

A(10,1,-.001)

is the same as above.

A(10,1,-1)

specifies all lines in the file with line numbers 10, 9, ..., 1, in that order.

A(1,10,-.001)@BKWD

specifies all lines in the file with line numbers from 1 to 10, in that order. This is the same as

A(1,10)

If the ending line number is less than the beginning line number, the direction specified must be
backwards; otherwise, the subset is null. Thus,

A(10,1)

specifies a null subset of file A even though the file may contain lines between lines 10 and 1.

The @BKWD I/O modifier and the BKWD modifier used with subroutine calls differ in their
meanings. See the section “Input/Output Operations” and Appendix A for a further description of the
@BKWD FDname and I/O modifiers.

I/O MODIFIERS

Modifiers are used to modify the action of a specific I/O call or general I/O use. Modifiers may be
used in I/O subroutine calls (INPUT, PRINT, READ, etc.), in macro calls setting up the corresponding
I/O subroutine calls, or as parts of FDnames given in MTS commands. Modifiers control such
functions as uppercase conversion, logical carriage control, machine carriage control, record trimming,
etc.

When modifiers are used with FDnames, they are appended to the FDname. Each modifier
consists of an at sign (@) followed by the modifier name. A modifier name may be preceded by a minus
sign (−) or a not sign (˜) to reverse its meaning. For example,

COPY A *SINK*@-CC

copies the file A to *SINK* with the −CC modifier specifying no logical carriage control.

94 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Modifiers used with I/O subroutine calls are specified in one or more fullwords of modifier bits which
are passed to the subroutine performing the I/O operation. This is further described below.

In general, there are three levels of precedence in the use of modifiers. In the first level of
precedence are the modifiers specified on a call to one of the I/O subroutines. If the modifier is not
specified by the subroutine call, the second level of precedence, in which the modifier name is a part of
the FDname, applies. Note that the group of modifiers which can only control the action of a specific

I/O call (for example ERRRTN, NOTIFY, NOATTN, and NOEC) are not valid at this level of
precedence. If the action of the modifier is not specified by the second level, the third level of
precedence, which consists of the default specifications, applies. The default specification depends
upon the type of FDname referenced in the I/O call and the settings of global options. These defaults
are given in the explanation of modifier bits below. Modifier specifications given at the first level of
precedence override specifications given at the second and third levels (except for the BKWD modifier).
Modifier specifications given at the second level override specifications given at the third level. This
precedence scheme is illustrated in the diagram below. Each modifier is treated independently in the
above precedence process.

Level 1: Subroutine Call Modifiers ______
|
|

Level 2: FDname Modifiers _______________|
|
|

Level 3: Defaults _______________________|
|
|

Effective Modifiers

The examples below illustrate the three levels for controlling the TRIM modifier. In each example, the
solid line indicates the controlling level of precedence.

CALL INPUT(REG,LEN,32768,LNUM) _______
(32768 specifies TRIM) |

|
INPUT=FYLE@-TRIM on RUN command|

|
Default is -TRIM for file|

|
|

TRIM

CALL INPUT(REG,LEN,0,LNUM)
(0 makes no specification) .

.
INPUT=FYLE@TRIM ______________________

|
Default is -TRIM for file|

|
|

TRIM

Files and Devices 95

MTS 1: The Michigan Terminal System

November 1991

CALL INPUT(REG,LEN,0,LNUM)
(0 makes no specification) .

.
INPUT=FYLE

.
Default is -TRIM for file ____________

|
|

-TRIM

The action of the modifiers specified on a subroutine call is controlled by one or more fullwords of
modifier bits given as one of the parameters to the subroutine. The action of the modifiers on the
subroutine call apply only to that specific call. There are two classes of modifiers.

(1) Bits 0-6 of the first fullword are referred to individually and each specifies the options for
a specific I/O call. If the bit is set, the modifier’s action is enabled. If the bit is not set,
the default specification is used (which normally means the modifier action is disabled).

(2) Bit 7 of the first fullword (and all subsequent fullwords) is the continuation bit. If this
bit is set, another fullword of modifier bits follows the current fullword.

(3) Bits 8-31 of the first fullword and bits 30-31 of the second fullword are referenced in pairs
and specify options for a general I/O use. For each option, one bit is used as an “ON” bit
and the other as an “OFF” bit. If either of the bits, but not both, is set, the modifier action
is as specified (except for the BKWD modifier). If neither, or both, of the bits is set,
indicating a “don’t care” condition at this level of precedence, the modifier appended to the
FDname is used. If there is no modifier name appended to the FDname, the default
specification for the FDname type is used. The normal programming practice is to leave
the modifier bits set to zero on the subroutine call and to append the modifier names to the
FDname unless the program depends upon the modifier bits being set for a specific
subroutine call. The following example illustrates how this might be done first in
assembly language and then in FORTRAN:

CALL INPUT,(REG,LEN,MOD,LNUM)
.
.

REG DS 20F
LEN DS H

DS 0F Fullword alignment for MOD
MOD DC X'00004000' No trimming of input lines
LNUM DS F

Note that if the subroutine call is set up by a macro call, the modifier names rather than
the bits are used in the macro parameter list. Thus, the above example would become

INPUT REG,LEN,@-TRIM,LNUM

The equivalent FORTRAN code is:

INTEGER*2 LEN
DATA MOD/Z00004000/
CALL INPUT(REG,LEN,MOD,LNUM)

96 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

The action of modifiers applied to the FDnames is controlled by the modifier name (preceded by “@”)
appended to the FDname. The action of the modifiers appended to the FDname apply to all I/O calls
referring to that use of the file or device. If the modifier name is preceded with (−) or (˜), the other bit of
the bit pair is set, which negates the action of the modifier name. If implicit or explicit concatenation
to another FDname occurs, the modifiers must be applied to both FDnames even if the FDnames are
the same. If the user at a terminal is prompted for an FDname, the full FDname including the
modifiers and line-number range must be given with each request. The order of modifier names
appended to an FDname is unimportant. Some examples are:

FILE1@I@UC Specifies indexed and uppercase
FILE2@-TRIM Specifies no trimming
SINK@-CC Specifies no logical carriage control

If the modifier action is also specified on a subroutine call, the modifier action applied to the FDname is
overridden (except for the BKWD modifier).

If the BKWD modifier is given on a subroutine call, it specifies that the I/O operation is to be done in
the reverse direction to that associated with the subset of the file. If the −BKWD modifier is given on a
subroutine call, it is ignored.

The list of all the modifiers available is given below. The complete description of the action of each
of these modifiers is given in Appendix A.

Value Value

Name Function (1st Fullword) (hex) (decimal)

S Sequential I/O operation 00000001 1
I Indexed I/O operation 00000002 2

EBCD EBCDIC translation (card reader) 00000004 4
BIN Binary format (card reader) 00000008 8

LC No conversion to uppercase 00000010 16
UC Conversion to uppercase 00000020 32

NOCC No logical carriage control 00000040 64
CC Logical carriage control 00000080 128

−PFX No line number prefix 00000100 256
PFX Line number prefix 00000200 512

−PEEL No line number peeling (input) 00000400 1024
No line number returned (output)

PEEL Line number peeling (input) 00000800 2048
Line number returned (output)

−MCC No machine carriage control 00001000 4096
MCC Machine carriage control 00002000 8192

−TRIM No trimming of trailing blanks 00004000 16384
TRIM Trim trailing blanks 00008000 32768

Files and Devices 97

MTS 1: The Michigan Terminal System

November 1991

−SP No special processing 00010000 65536
SP Special processing 00020000 131072

−IC No implicit concatenation 00040000 262144
IC Implicit concatenation 00080000 524288

FWD Forward sequential 00100000 1048576
BKWD Backward sequential 00200000 2097152

−ENDFILE Suppress $ENDFILE recognition 00400000 4194304
ENDFILE Force $ENDFILE recognition 00800000 8388608

FDUBCONT Second word of modifiers present 01000000 16777216
NOPROMPT No prompting for replacement 04000000 67108864
MAXLEN Maximum input/output length given 08000000 134217728
NOEC No explicit concatenation 10000000 268435456
NOATTN Attention left pending 20000000 536870912
ERRRTN Error return 40000000 1073741824
NOTIFY Notify when FDUB changes 80000000 −2147483648

Value Value

Name Function (2nd Fullword) (hex) (decimal)

−LOG No logging via LOG command 00000001 1
LOG Allow logging via LOG command 00000002 2

−MACRO Do not invoke macro processor 00000004 4
MACRO Invoke macro processor 00000008 8

−MFR Macro flag not required 00000010 16
MFR Macro flag required 00000020 32

CONCATENATION OF FDNAMES

Although the maximum size of any single file is limited (depending on the amount of file space
available in the system and to the user), the amount of data that may be referred to by a given FDname
is effectively unlimited, because several FDnames may be concatenated. This concatenation may be
done either implicitly or explicitly.

Implicit Concatenation

Implicit concatenation is indicated whenever a line of the form

$CONTINUE•WITH FDname

or

$CONTINUE•WITH FDname RETURN

(where • represents exactly one blank) is read from any file or device. The dollar sign ($) is required

98 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

and must be the first character of the line. When such a line is encountered, reading continues with
the file or device FDname; the “$CONTINUE WITH” line is not passed as data to the program issuing
the read operation.

In the first case (without the RETURN), reading continues with the specified FDname, and the lines
following the “$CONTINUE WITH” line in the original file or device are ignored. This is analogous to
an unconditional transfer statement in a programming language. For example, if file A contains the
line

$CONTINUE WITH C

then the FDname A specifies the portion of file A up to the implicit concatenation line followed by the
entire contents of file C. The second case (with RETURN) is analogous to a subroutine call in
programming languages—after reaching the end of the FDname that was continued with, reading
resumes with the line following the “$CONTINUE WITH” in the original file or device. For example, if
file A contains the line

$CONTINUE WITH C RETURN

then the FDname A specifies the portion of file A up to the implicit concatenation line, the entire
contents of file C, and the remainder of file A after the implicit concatenation line, in that order.

Implicit concatenation may be disabled by the IC global option or by the IC FDname modifier.
When implicit concatenation is disabled, a “$CONTINUE WITH” line is read as a data line. The IC
global option may be set by the IC option of the SET command or by the subroutine CUINFO; its initial
value is ON (implicit concatenation enabled). Thus, the command

SET IC=OFF

disables implicit concatenation globally (“$CONTINUE WITH” is read as a data line, by default). The
IC modifier overrides the setting of the IC global option for all references to FDnames to which the
modifier is appended. Thus,

LIST PHYLE@-IC

allows the user to determine if the file contains any “$CONTINUE WITH” lines.

Explicit Concatenation

Several files and/or devices may be chained together by using explicit concatenation. This is done
by giving the names of the files or devices (with optional modifiers and/or line-number ranges) in the
order desired, connected by plus signs. For example,

A(1,100)+B

specifies lines 1 through 100 of file A followed by the entire contents of file B.

If two or more consecutive simple FDnames in an explicit concatenation are identical, all but the
first may be omitted. For example,

A(1,1)+A(10)

may be abbreviated to

Files and Devices 99

MTS 1: The Michigan Terminal System

November 1991

A(1,1)+(10)

Each of these specifies line 1 of file A followed by the remainder of file A starting at line 10.

If a member FDname of an explicit concatenation uses implicit concatenation (i.e., contains a
“$CONTINUE WITH” line), the implicit concatenation affects only that member of the explicit
concatenation; the remaining members are not ignored. For example, if file A contains the line

$CONTINUE WITH C

the FDname A+B specifies the portion of file A up to the implicit concatenation line, the entire contents
of file C, and the entire contents of file B, in that order. Note that the FDname in the
“$CONTINUE WITH” line may also be an explicit concatenation.

FDNAMES

The term FDname can now be completely defined as either

(1) a simple FDname with an optional line-number range and/or modifiers, or

(2) an explicit concatenation of two or more simple FDnames, each with an optional
line-number range and/or modifiers.

In either case, the files or devices specified by the FDnames may contain “$CONTINUE WITH”
lines. In the cases where a restriction must be made to either a single file or device, the term FDname
will not be used.

INPUT/OUTPUT OPERATIONS

Input and output using files may be done either as indexed operations or as sequential operations.
An indexed operation uses a line number to directly access a specific line. A sequential operation
accesses the first line or the next line following the previous line that was read or written. Many
devices, such as card readers and line printers, are intrinsically sequential. For these devices,
indexed operations are not defined. Similarly, indexed operations have no meaning for a file whose
organization is sequential.

The type of operation used for input and output depends on the setting of a pair of I/O modifier bits.
These bits specify whether the operation is to be indexed or sequential. These bits may be set either
by the SEQUENTIAL (S) or INDEXED (I) FDname modifiers or by the corresponding I/O modifier bits
on an input/output subroutine call. The complete details of I/O modifier bit processing are given in
Appendix A to this section.

For all input or output operations with line files, the system maintains a current line pointer that
points just past the last record read or written, and a current line number that contains the line number
of the last record read or written. When a sequential I/O operation is initiated, the current line
pointer is used to determine the record that is to be read or written. After the operation has been
completed, the current line pointer is set just past the line that was read or written. If the I/O
operation is done in the backwards direction, the line pointer is set just before the line that was read or
written (i.e., just past the line going in the backwards direction). In addition, the current line number
is updated.

100 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

The BKWD FDname modifier, the sign of the increment specified in a line-number range, and the
BKWD I/O modifier bit specified on an I/O subroutine call interact to determine the direction of an I/O
operation. The BKWD FDname modifier and the sign of the increment determine a direction for the
subset of the file specified by the line-number range. The rules for determining this direction are
given in the section “Line-Number Ranges.” If the direction is forwards, the I/O operation is done in the
forwards direction; if the direction is backwards, the I/O operation is done in the backwards direction.
The setting of the BKWD I/O modifier bit on an I/O subroutine call may be used to further control the
direction of the I/O operation. If the BKWD modifier bit is set, the direction of the operation is
reversed. The following table illustrates the use of these modifiers in controlling the direction of the
I/O operation.

BKWD I/O Direction of

FDname Specification Modifier Bit I/O Operation

A(1,10) 0 Forwards
A(1,10) 1 Backwards
A(10,1,−1) 0 Backwards
A(10,1,−1) 1 Forwards
A(1,10,−1)@BKWD 0 Forwards
A(1,10,−1)@BKWD 1 Backwards

Sequential Operations with Line Files

If the I/O modifier bits specify a sequential operation or if they specify neither a sequential nor an
indexed operation (the default), a sequential operation is performed.

A sequential operation specifies that the “next” record is to be read or written. The “next” record is
determined by the value of the current line pointer. The setting of the BKWD I/O modifier bit
indicates whether “next” is taken in the ascending or descending order. If the modifier bit is not set
and the direction of the subset is forwards, ascending order is used; if the modifier bit is set and the
direction of the subset is forwards, descending order is used. For a read operation, “next” means the
record follows in ascending (descending) line number order from the current value of the line pointer.
If an increment is explicitly given with the FDname, the line read is the first line in the file past the
current line pointer that has a line number which is a multiple of the increment from the beginning line
number. For a write operation, “next” means the first line number past the current line pointer that is
a multiple of the increment from the beginning line number. If no increment is specified, a default of 1
is used for write operations.

For a sequential read operation with a line file, the line-number range determines which lines of the
file may be read. The read operation begins with the beginning line number “b”. If “b” is omitted, line
number 1 is used. Note that this is not necessarily the first line of the file. All lines in the subset of
the file as specified by the line-number range may be read. Any lines not in the subset, even if they are
between the beginning line number and the ending line number, are not read (i.e., they are skipped).
If an attempt is made to read a line in the subset which does not exist in the file, reading continues with
the next line in the subset. For example, the command

LIST A(10,20,2)

initiates read operations for lines 10, 12, 14, 16, 18, and 20 from line file A. Each line of this subset
that exists in the file is listed. Lines in the subset that do not exist in the file and all other lines in the
file that are not in the subset defined by (10,20,2) are not listed.

Files and Devices 101

MTS 1: The Michigan Terminal System

November 1991

If a sequential read operation is not the first I/O operation on a line file (e.g., if an indexed read or
any write operation was the last operation completed), the line read is the first line past the current line
pointer in the appropriate direction that has a line number that is a multiple of “i” past the beginning
line number “b”.

For a sequential write operation to a line file, the line-number range determines which lines of the
file may be written. The first line written is the beginning line number “b”. If “b” is omitted, line
number 1 is used. All lines in the subset of the file as specified by the line-number range may be
written. Any lines not in this subset, even if they are between the beginning line number and the
ending line number, are not changed. If an attempt is made to write to a line not in the subset, an
end-of-file condition is generated. For example, the command

COPY *SOURCE* A(10,20,2)

reads 6 lines from *SOURCE* and writes them to lines 10, 12, 14, 16, 18, and 20 of file A. Any other
lines in the file that are not in the subset defined by (10,20,2) are not changed. When an attempt is
made to write a seventh line, an end-of-file occurs.

Indexed Operations with Line Files

An indexed operation is performed if the I/O modifier bits specify an indexed operation.

For an indexed operation, a line number must be given which specifies the line to be read by a read
operation or the line to be written by a write operation. The line-number range specified on the
FDname is checked to determine whether the given line number is in the subset of the file that may be
read or written. If the line is not within this subset or the line contains the “$ENDFILE” delimiter, an
end-of-file condition occurs. The rules for defining the subset of the file specified by the line-number
range are given in the earlier section “Line-Number Ranges.” After an indexed operation is completed,
the current line pointer and the current line number are updated. The current line pointer will point
after (in the direction of the subset of the file) the line read or written unless the BKWD modifier was
specified on the I/O call, in which case it will point before the line read or written.

Implicit concatenation with indexed operations is handled as follows. For an indexed read
operation, if the line selected is a “$CONTINUE WITH” line and implicit concatenation is enabled, the
concatenation will occur and the same line number will be used to read the new file or device specified
by the FDname in the implicit concatenation line.

Indexed operations are not allowed with sequential files unless the SEQFCHK option is OFF. An
error comment will be generated if an indexed operation is specified with an FDname; a return code of
20 will be given if an indexed operation is attempted with a sequential file in an I/O subroutine call.

Sequential Operations with Sequential Files and Devices

For I/O operations involving sequential files or devices, the test to determine whether a given line is
in the subset specified by the line-number range is the same as for line files. However, since lines in a
sequential file or device have no line numbers inherently associated with them, the system “generates”
line numbers internally using the beginning line number and the increment specified by the user and
tests if the result exceeds the ending line number. The data lines can only be read or written
sequentially, either forwards or backwards (depending on the inherent nature of the file or device).

102 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Just as the current line pointer is maintained for line files, a current read pointer and a current
write pointer are maintained for sequential operations on sequential files. In general, these two
pointers are independent of each other, i.e., the read pointer controls only read operations and the write
pointer controls only write operations. The read pointer initially points before the first line of the file
and the write pointer initially points after the last line of the file. These pointers are updated
appropriately after a sequential read or write operation to point to the next line to be read or written.
For a sequential read operation, the read pointer may move either forwards or backwards depending on
the setting of the BKWD I/O modifier bit.

For a sequential read operation from a sequential file or device, the line read is the next line after
the current position of the read pointer in the appropriate direction or the line at the current position of
the device (e.g., the current position of a magnetic tape or card reader).

For a sequential write operation to a sequential file or device, the line written is the next line after
the current position of the write pointer (thus, new lines are always written at the end of the file, by
default), or the line at the current position of the device (e.g., the current position of a magnetic tape or
line printer). If the write pointer does not point to the end of the file, a sequential write operation will
truncate the remainder of the file after the line written unless the SP modifier is specified (see below).

For sequential files, a beginning line number other than 1 is not allowed unless the SEQFCHK
option is OFF. For devices, any beginning line number is legal.

The read and write pointers may be explicitly positioned to a particular line in a sequential file via
the NOTE and POINT subroutines. This is further described in Appendix B to this section.

The SP Modifier with Files

The SP (SPECIAL) modifier is a file- or device-dependent modifier that may be used to further
control I/O operations. Only the use of SP as applied to I/O operations with files is described here.
For details on using SP with terminals operating through the UMnet/Michnet Computer Network, see
the appropriate sections of MTS Volume 4: Terminals and Networks in MTS, Reference R1004, and
MTS Volume 19: Magnetic Tapes in MTS, Reference R1019.

For read operations to both line files and sequential files, the SP modifier is used to skip to the next
line without transmitting data. The current line number and current line pointer (or read pointer for
sequential files) are updated. However, no data is read into the buffer provided by the I/O subroutine
and a zero is returned for the length of the line read.

For write operations to sequential files, the SP modifier is used to replace the current line without
truncating the file. The line at the current position of the write pointer is replaced by a new line. If
the new line is shorter than the current line, it is padded on the right with blanks; if the new line is
longer than the current line, it is truncated to the length of the current line. In either case, an error
message is generated. If the write pointer is at the end of the file, no write operation is performed and
an error message is generated. The SP modifier is ignored for write operations to line files.

Explicit Concatenation with I/O Operations

The processing of the next member of an explicit concatenation is started whenever an end-of-file
occurs for a read or write operation unless the NOEC modifier was specified. This occurs when the
physical end of the file or device is encountered or when the line number specified for the operation is
not within the subset of the file specified by the line-number range. Specifying NOEC inhibits the

Files and Devices 103

MTS 1: The Michigan Terminal System

November 1991

transfer to the next member of the explicit concatenation.

For an indexed read operation, an end-of-file returned to the program (when NOEC is not specified)
indicates that none of the members of the concatenation contains the line specified for the indexed
operation. A successful indexed read operation selects the specified line from the first member of the
concatenation that contains that line.

For a sequential write operation, the line-number range specifications may be used to control the
flow of data into several files or devices. For example,

COPY A B(1,10)+*SINK*(1,10)+B(11)

copies from file A (starting at line 1) 10 lines into line file B (starting at line 1), followed by 10 lines to
SINK, followed by the remainder of file A into file B (starting at line 11).

If the file that is a member of an explicit concatenation is unable to expand during a write operation,
the write operation transfers to the next member of the concatenation to write the line.

USE OF FDNAMES

There are two ways that FDnames may be used for input/output operations. Most commonly, a
program reads or writes information without knowing the names of the specific files or devices being
used. This case is handled with logical I/O units. Alternatively, the program reads from or writes to
a specific file or device, whose name is either built into the program or is obtained as data from the user.
This case is handled with FDUB-pointers.

A summary of the system subroutines that use file names, logical I/O units, and FDUB-pointers is
given in the section “Subroutines That Use Files and Devices” in MTS Volume 3: System Subroutine

Descriptions, Reference R1003.

Logical I/O Units

When a program is coded, the names of the files and devices to be used for input and output are
normally unknown; hence, it is impossible to specify them in the program source statements. Even if
the names were known, it would be inconvenient to specify them in the program, since this would
require retranslation every time a file or device name was changed. Thus, it is desirable to specify the
location of the data at execution time rather than at translation time. To do this, a logical I/O unit is
used. A logical I/O unit is a symbolic name which is used in a program to specify the source of data for
input or the destination of output information. A logical I/O unit does not name a specific file or
device; it simply serves as a reference. When a program is executed, it is necessary to first specify, for
each logical I/O unit used by the program, the actual file or device to be used. For example, in
FORTRAN, the statement

READ (5,100) P

requests input from logical I/O unit 5. Before this statement can be executed, the user must specify a
file or device name to be used whenever logical I/O unit 5 is referenced. This is normally done on the
RUN command by specifying a keyword of the form

unit=FDname

104 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

For example, to execute the program in the file PROGRAM which contains the above FORTRAN
statement, the command

RUN PROGRAM 5=DATAFILE

may be given; whenever the program requires input from logical I/O unit 5, data is read from the file
DATAFILE.

The names of the logical I/O units and acceptable synonyms are given below. Minimum
abbreviations for the synonyms are underlined. The synonyms will be used in this volume when
appropriate.

Units Synonyms

SCARDS INPUT
SPRINT PRINT
SPUNCH OBJECT
SERCOM
GUSER
0 through 99

For each of these, except 0 through 99, there is a subroutine of the same name to perform input and/or
output on this unit. For 0 through 99, the subroutines READ and WRITE are provided (these
subroutines may also be used with the named logical I/O units). These subroutines can be called from
both assembly-language programs and higher-level language programs. For example, calling the
subroutine INPUT (SCARDS) from a program causes a record to be read from the logical I/O unit
INPUT (SCARDS). These subroutines are described in MTS Volume 3: System Subroutine

Descriptions, Reference R1003.

Since it is desirable to reduce the amount of typing necessary to specify the information required on
a RUN command, some of the logical I/O units have default specifications. The following defaults are
provided if no logical I/O unit assignment is given on the RUN command:

Units Defaults

INPUT *SOURCE*
PRINT *SINK*
OBJECT *PUNCH*1

SERCOM *MSINK*
GUSER *MSOURCE*
0–99 none

1*PUNCH* is the default for batch jobs only if the global card estimate is greater than 0;
otherwise, there is no default. OBJECT (SPUNCH) is not defaulted for terminal jobs.

For example, if on a RUN command the logical I/O unit SCARDS is not specified as a particular file
or device, it is assigned by default to the current input *SOURCE*. Since most of the translators in
MTS use INPUT for source program input and PRINT for compilation listing output, it is often
unnecessary to specify these logical I/O units when running the translators, especially in batch mode.
For both batch and conversational mode, it is usually necessary to specify the logical I/O unit for the
translator output of the resulting object deck. Logical I/O units 0 through 99 have no default
specifications in MTS. There are, however, default specifications for units 5 and 6 within the

Files and Devices 105

MTS 1: The Michigan Terminal System

November 1991

FORTRAN I/O library routines during program execution.

The following example given in assembler language illustrates how to perform an input/output
operation using subroutines and logical I/O units. This example reads the name of a file from logical
I/O unit 5 and performs an indexed write operation to place the line “***DATA LINE***” into line 10 of
that file. For the complete descriptions of the subroutines used in this example, see MTS Volume 3.

READ 5,FNAME,EXIT=ERROR Read file name
CALL SETLIO,(UNIT,FNAME) Assign file to I/O unit
LTR 15,15 Check for error
BNE ERROR
WRITE UNIT,REGION,@I,10000,EXIT=ERROR Write the data line
.
.

FNAME DC CL18' '
UNIT DC CL8'PRINT '
REGION DC C' ***DATA LINE***' Data line

The following example is the FORTRAN equivalent of the example given above.

INTEGER*4 MOD/2/,LNUM/10000/
INTEGER*2 LEN/16/
LOGICAL*4 REGION(4)/' ***','DATA',' LIN','E***'/
LOGICAL*1 FNAME(18)
LOGICAL*4 UNIT(2)/'PRIN','T '/
READ (5,50) FNAME

50 FORMAT (18A1)
CALL SETLIO(UNIT,FNAME,&100)
CALL WRITE(REGION,LEN,MOD,LNUM,UNIT,&100)

.

.
100 (print error comment)

The following example is the C87 equivalent of the example given above.

#include <mts.h>
main()

{ char fname[18];
short inlen;
static const short outlen=16;
static const int unit5 = 5;
static const unsigned int inmods = 0,

outmods = _INDEXED;
int lineno, rc;

MTSREAD(fname,&inlen,&inmods,&lineno,&unit5,_retcode rc);
if(rc!=0) goto error;
SETLIO("PRINT ",fname,_retcode rc);
if(rc!=0) goto error;
lineno = 10000;
MTSWRITE(" ***DATA LINE***",&outlen,&outmods,&lineno,"PRINT ",

_retcode rc);
if(rc!=0) goto error;
...

error: /* print error message */
}

106 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

FDUB-Pointers

It is occasionally necessary for a program to read or write on a specific file or device whose name is
not, or cannot, be assigned to a logical I/O unit before or after program execution begins. The FDname
may be built into the program (as for example a fixed file of error messages) or may be input data to the
program. The program uses a fullword quantity called a FDUB-pointer to refer to this FDname when
doing input or output on the file or device. A FDUB-pointer is the location of a File or Device Usage
Block, maintained by MTS to control the use of that file or device. When the subroutines READ or
WRITE are called, the FDUB-pointer is used as a parameter instead of a logical I/O unit name or
number.

A FDUB-pointer is obtained by calling the subroutine GETFD (see MTS Volume 3) giving it the
FDname for the file or device. The FDUB-pointer returned by GETFD can then be used in calls to
READ or WRITE to do input or output. It can also be used in calls to a number of other subroutines
(see table below). When the program is finished with the FDUB-pointer, the FDUB can be released by
calling the subroutine FREEFD.

The following example given in assembler language illustrates how to perform an input/output
operation using subroutines and FDUB-pointers. This example reads the name of a file from logical
I/O unit 5 and performs an indexed write operation to place the line “***DATA LINE***” into line 10 of
that file. The subroutine GDINFO is also to determine if the file specified is a line file. For the
complete descriptions of the subroutines used in this example, see MTS Volume 3.

READ 5,FNAME,EXIT=ERROR Read file name
LA 1,FNAME
CALL GETFD Get FDUB-pointer for file
LTR 15,15 Check for error
BNE ERROR
ST 0,FDUB Save FDUB-pointer
CALL GDINFO Get file information
LTR 15,15 Check for error
BNE ERROR
USING GDDSECT,1 Pointer for GDINFO area
CLC GDTYPE,=C'FILE' Check for line file type
BNE ERROR
SR 0,0
CALL FREESPAC Release the GDINFO area
DROP 1
WRITE FDUB,REGION,@I,10000,EXIT=ERROR Write the data line
L 0,FDUB
CALL FREEFD Release the FDUB-pointer
.
.

FNAME DC CL18' ' File name
FDUB DS F
REGION DC C' ***DATA LINE***' Data line

COPY *GDINFODSECT GDINFO area copy section
.
. (GDDSECT has symbol GDTYPE)

The following example is the FORTRAN equivalent of the example given above.

EXTERNAL GETFD,FREEFD,FREESP,GDINF
INTEGER*4 ADROF,FDUB,GDAREA(11),GDTYPE,FILE/'FILE'/
INTEGER*4 MOD/2/,LNUM/10000/
LOGICAL*4 REGION(4)/' ***','DATA',' LIN','E***'/
LOGICAL*1 FNAME(18)

Files and Devices 107

MTS 1: The Michigan Terminal System

November 1991

INTEGER*2 LEN/16/
EQUIVALENCE (GDAREA(2),GDTYPE)
READ (5,50) FNAME

50 FORMAT (18A1)
CALL RCALL(GETFD,2,0,ADROF(FNAME),1,FDUB,&100)
CALL GDINF(FDUB,GDAREA,&100)
IF (GDTYPE.NE.FILE) GOTO 100
CALL WRITE(REGION,LEN,MOD,LNUM,FDUB,&100)
CALL RCALL(FREEFD,1,FDUB,0,&100)

.

.
100 (print error comment)

The following example is the C87 equivalent of the example given above.

#include <mts.h>
#include <string.h>
main()

{ char fname[18];
short inlen;
static const short outlen=16;
static const int unit5 = 5;
static const unsigned int inmods = 0,

outmods = _INDEXED;
void *fdub;
struct GDDSECT *gdreg;
int lineno, rc;

MTSREAD(fname,&inlen,&inmods,&lineno,&unit5,_retcode rc);
if(rc!=0) goto error;
fdub = GETFD(fname,_retcode rc);
if(rc!=0) goto error;
gdreg = GDINFO(fdub,_retcode rc);
if(rc!=0) goto error;
if(memcmp(gdreg->GDTYPE,"FILE",4)!=0) goto error;
FREESPAC(0, gdreg);
lineno = 10000;
MTSWRITE(" ***DATA LINE***",&outlen,&outmods,&lineno,&fdub,

_retcode rc);
if(rc!=0) goto error;
...

error: /* print error message */
}

ERROR PROCESSING

If the FDname for a file or device is incorrect (e.g., if it contains an illegal modifier or line-number
specification), an initial error comment is issued when the FDname is accessed (e.g., when a RUN
command is issued). If, however, the FDname is correct but the intended use is not (e.g., if an attempt
is made to read from a file that does not exist), then the error condition is not recognized until the first
time an attempt is made to use the file or device (e.g., when the subroutine READ or WRITE is called).

In either case, when an error condition exists, error comments are printed as described below when
the first attempt is made to use the file or device, and then

(1) in batch mode, a return is made to MTS command mode or debug mode, and (in MTS
command mode) the succeeding cards in the user’s deck are skipped until an MTS

108 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

command ($ in column 1) is found, or

(2) in conversational mode, the message

[error message]
Enter a new file/device name, "CANCEL", or "HELP".

is printed. At this point, the user may either enter a replacement FDname (including
the modifiers and/or line number ranges), or enter CANCEL in which case MTS will
return to MTS command or debug mode, or else enter HELP in which case MTS will give
an expanded error message.

If the file or device in error is part of an explicit concatenation, the replacement file or device
replaces only the FDname printed in the message in the same relative position in the concatenation.

The four error messages that most often occur at “first use” time are as follows:

“FDname” does not exist. This means that “FDname” was interpreted as a file
name and no file by that name exists.

“FDname” is not available. This means that “FDname” is an existing file or *...*,
but it cannot be accessed at the present time (e.g.,
because it is a file on a volume that is not available).

File “FDname” - required access not allowed.
This means that “FDname” is an existing file, but the
access appropriate to the request is not permitted.

Invalid file specification “FDname”. This is produced in all other cases. This message is
often accompanied by another message giving more
information.

As an example, consider the following portion of a terminal session. The numbers in brackets at
the right are for reference only.

#copy *source* -a@snark (1)
#Illegal FDname modifier (2)
>line one (3)
>"-A@SNARK" is invalid. (4)
>Enter a new file/device name, "CANCEL", or "HELP". (5)
?cancel (6)
(7)

In (1), the user enters a COPY command with an illegal modifier. The error message is printed
immediately (2). However, the error occurred in the second FDname of the COPY command, which
was not referred to until after the first line was read from *SOURCE* in (3). At that point, the illegal
name is first used, the “first use” error message is printed (4), and the user is prompted for replacement
(5). In (6), the user enters CANCEL, which causes return to MTS command mode (“#” prefix
character) in (7).

Files and Devices 109

MTS 1: The Michigan Terminal System

November 1991

CREATING FILES

The category, organization, and initial and maximum size of a file are all established at the time the
file is created. Files are created by using the CREATE command or by calling the CREATE
subroutine from a program. The syntax of the CREATE command is given in the command
description in this volume. The CREATE subroutine is described in MTS Volume 3: System

Subroutine Descriptions, Reference R1003. The following discussion applies to the specification of the
file characteristics when using the CREATE command.

The CREATE command has the basic form:

CREATE filename

This command creates a file with the name “filename” (unless there already exists a file of the same
name, or the user has exceeded the file-space allotment). There are several options that can be
specified in the form of keyword expressions.

SIZE=n n is number of average (50 byte) lines
SIZE=nP n is number of pages (1 page = 4096 bytes)

For most files, this parameter is not needed. The default size for permanent files is the
smallest possible (one page) which is large enough for about 60 average length lines.
The default size for temporary files is 10 pages. Although files are expanded
automatically (as explained later), they are expanded by 10% of their current size each
time; consequently, the cost of this convenience is higher than initially creating the file
with the necessary size. Thus, for larger files, it is desirable to specify an estimated size.
When estimating size in terms of pages, it should be noted that there is a certain
minimum overhead in addition to the data itself for each line or logical record in the file.
The minimum overhead for each logical record depends on the organization of the file as
follows:

Type Minimum Overhead

LINE 10 bytes/line
SEQ 6 bytes/line

Information on the internal structure of files and approximate formulas for the size
required for a file is given in Appendix C to this section.

Files are expanded automatically by the system if the following conditions are satisfied:

(1) The user has not exceeded the disk space allocation and allowed overage.

(2) Space is available on the direct-access volume on which the file was
originally created.

(3) The maximum inherent size of a file (32,767 pages) has not been exceeded.

(4) The user-specified maximum expandable size (MAXSIZE) has not been
exceeded.

If the first condition is not met, the error comment

110 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

File "filename": Allocated space exceeded

is printed. If any of the last three conditions is not met, the error comment

File "filename": Expansion unsuccessful

is printed. If a file cannot be expanded for any of the above reasons, it is left in a state
such that the I/O operation which incurred the error should be repeated, if possible, after
correcting the cause of the error. For line files, the following types of operations will
have the indicated results, following a failure to expand a file:

Operation Result

Insertion Line is not inserted
Replacement Line is deleted, but new line not inserted
Deletion Line is deleted

For the replacement and deletion operations, the file space occupied by the deleted line
may not be available for future allocation to subsequent lines.

TYPE=LINE Line file
TYPE=SEQ Sequential file

This specifies the organization of the file being created. The default is LINE.

MAXSIZE=n n is number of average (50 byte) lines
MAXSIZE=nP n is number of pages (1 page = 4096 bytes)

This specifies the maximum expandable size for the file. The default is 32767 pages.

PUTTING INFORMATION INTO A FILE

There are basically two different methods for initially putting a set of lines from *SOURCE* into a
file. The following descriptions are equally applicable to batch and conversational mode.

The first method is to use a COPY command, copying from the source stream *SOURCE* into the
file, as for example,

COPY *SOURCE* F
.
.
. lines to be put in file
.
.

{end-of-file signal}

where the end-of-file signal in batch must be a “$ENDFILE” delimiter (or the physical end of the card
deck), or from a terminal, it can be either an end-of-file control character for that terminal or a
“$ENDFILE” delimiter explicitly typed in.

With this method, all lines are transmitted into the file as typed except lines which consist of
“$ENDFILE” or “$CONTINUE WITH”. The “$ENDFILE” line is recognized as an end-of-file

Files and Devices 111

MTS 1: The Michigan Terminal System

November 1991

delimiter and terminates the copy operation. For example, in order to get “$ENDFILE” lines into the
file F, the command

COPY *SOURCE*@-ENDFILE F

should be used. This causes “$ENDFILE” lines to be treated as data lines. This also means that
“$ENDFILE” cannot be used to terminate the copy. If the copying is being done from a terminal, an
end-of-file control character must be used to terminate the copy. But if the copying is being done in
batch, the COPY command should be terminated by

$CONTINUE WITH *DUMMY*

This is an alternate method of generating an end-of-file condition. If this method is not used, the
COPY command must be the last command in the batch input stream, since all the remaining input
lines will be copied into the file.

Note that implicit concatenation is normally enabled. If a “$CONTINUE WITH” line is to be copied
rather than taking effect, implicit concatenation must be disabled for the copy, for example,

COPY *SOURCE*@-IC F

The second method is to use the MTS File Editor INSERT command, for example,

EDIT F
INSERT 1

.

.

. lines to be put into file

.

.
{end-of-file signal or null line}
STOP

For further details, see MTS Volume 18: The MTS File Editor, Reference R1018.

MAKING CHANGES TO A FILE

There are two basic methods of making changes to a file: using the MTS commands to make changes
to the file on a line-by-line basis, and using the MTS File Editor to make changes either on a line basis
or on a context basis.

Changes Using MTS Commands

MTS commands can be used to change one line of a line file, a group of lines of a line file, or to empty
or destroy an entire file. Sequential files can be changed only by adding on to the end of the file, or by
emptying or destroying the file. Single lines or groups of lines in a line file can be changed by using the
same basic two methods that may be used to put information into a file.

The COPY command can be used to copy lines or groups of lines from a file to itself or another file.
Thus,

COPY A+B C

112 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

enters the contents of A, followed by the contents of B, into file C (or if C is sequential, adds to the end of
C). If either A or B are line files, then the “contents” are only the lines with numbers greater than or
equal to 1, which is not necessarily the entire contents of the file. If C is a line file, lines that are not
replaced by the copy operation are not affected. Thus,

COPY A(1,5)+(99,99)+(1000) B

copies from A lines 1 through 5, 99, and 1000 through the end of A into B, starting at line 1 in B, if B is a
line file, or adding to the end of B, if B is sequential. File A must be a line file in this example. Note
that if the example were

COPY A(1,5) B

then A could be either a line file or a sequential file.

COPY A(10,15) A(100)

makes a copy in A of the lines in the range of 10 through 15, starting at line 100. Remember that the
range of 10 through 15 is the same as 10.000 through 15.000 and can contain anywhere from 0 to 5001
lines. The increment between the copied lines starting at line 100 is 1 (the default).

A copy operation from a file to itself specifying overlapping line-number ranges can be done, but
should be used with care. For example,

COPY A(1,9) A(2)

results in line 1 being replicated in lines 2 through 10, since line 1 is copied into line 2, and then line 2
(which is now a copy of line 1) is copied into line 3, etc.

Once a file has been created, it may be emptied, truncated, expanded, renumbered (line files only),
renamed, or destroyed at any time. This applies both to permanent files and to temporary files.
Permanent files exist until the user destroys them; temporary files exist until the user destroys them or
signs off.

An exact copy of a file can be made by issuing the DUPLICATE command. For example,

DUPLICATE A B

writes an exact copy of the file A into the file B. The file B will be created automatically if it does not
exist with the same characteristics as file A; if it does exist, it will be emptied first. Conversational
users are prompted for confirmation before the file is emptied.

To empty a file, the command

EMPTY filename

should be issued. This discards the contents of the file, but preserves all storage space allocations
(including expansions). Future references to the file will reuse the file space. If a command to empty
a permanent file is issued from a terminal, the user must confirm that the contents of the file are to be
discarded. The message printed is

File "filename" is to be emptied. Please confirm:

The user should respond with “OK” to empty the file. A response of “NO” or “CANCEL” cancels the

Files and Devices 113

MTS 1: The Michigan Terminal System

November 1991

command. Any other response is an error and the message is repeated. Confirmation is not
requested for temporary files, nor for any files in batch runs.

It should be noted that the EMPTY command empties the whole file; parts of a file cannot be
emptied by attaching a line-number range to the file name in the command. Thus,

EMPTY A(10,50)

is an error, whereas

EMPTY A

empties all of file A. To partially empty a file, the parts to be saved should be copied to another file.
The original file may then be destroyed and the new file may be renamed to the original name.

To truncate a file, the command

TRUNCATE filename

should be issued. Any unused space at the end of the file is deallocated. This decreases the size of the
file and decreases the storage charge for the space used by the file. In the case of a line file, truncating
does not compact or optimize the space used by the actual data in the file.

To change the absolute size of a line file, the user may issue the command

CONTROL filename SIZE={n | nP}

or, to add to or subtract from the current file size

CONTROL filename SIZEINC=[±]{n | nP}

To change the absolute maximum size of a line file, the user may issue the command

CONTROL filename MAXSIZE={n | nP}

or, to add to or subtract from the maximum file size

CONTROL filename MAXSIZEINC=[±]{n | nP}

To renumber a line file, the command

RENUMBER filename

should be issued. The line numbers in the file are renumbered. By default, the entire file is
renumbered starting at line number 1 and by increments of 1. An explicit line-number range to be
renumbered as well as an explicit new beginning line number and increment may be specified (see the
RENUMBER command description).

To rename a file, the command

RENAME filename1 filename2

114 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

should be issued. The file “filename1” is renamed to “filename2”. If this command is issued from a
terminal and “filename1” is a permanent file, confirmation is requested. The message is:

File "filename1" is to be renamed as "filename2". Please confirm:

The user should respond with “OK” to rename the file; confirmation is not requested for temporary files,
nor for any files renamed during batch runs. A temporary file may be changed to a permanent file, and
vice versa, by renaming it.

To destroy a file, the command

DESTROY filename

should be issued. All space allocated for the file is deallocated. If this command is issued from a
terminal and the file is a permanent file, confirmation is requested:

File "filename" is to be destroyed. Please confirm:

The user should respond with “OK” to destroy the file. A response of “NO” or “CANCEL” cancels the
command. Any other response is an error and the message is repeated. Confirmation is not
requested for temporary files, nor for any files in batch runs.

Changes Using the File Editor

The MTS File Editor can be used to edit files on a line-number basis. Single lines or a range of lines
may be deleted, new lines may be inserted between existing lines, and existing lines may be replaced by
new lines. The File Editor can also be used on a context basis, scanning for lines with certain
character strings in them, replacing characters in a line with other characters, etc. For example, on a
line-number basis, the following sample edit session replaces line 2, deletes line 7, and inserts two lines
after line 8 of the file being edited (the first character is the prefix character; input from the user is in
lowercase, File Editor output is in uppercase):

:replace 2 'new second line'
: 2 NEW SECOND LINE
:delete 7
:insert 8
?eighth and a quarter
?eighth and a half
? {null input line}
:

On a context basis, the following example illustrates a scan through the file searching for the
characters “ABC#D”:

:scan /file 'abc#d'

and then the following command alters “C#D” to “XYZ”:

:alter /file 'c#d'xyz'

The File Editor is invoked from MTS command mode by the EDIT command. The Editor has its
own command language. Complete details on using the Editor are given in MTS Volume 18: The MTS

File Editor, Reference R1018.

Files and Devices 115

MTS 1: The Michigan Terminal System

November 1991

Changes Using CDUPATE

The program *CDUPDATE may be used to update a file. *CDUPDATE is a “context-directed”
program that applies updates to an “old master file” to produce a new “updated master file.” It is
typically used in maintaining a program in the form of a “base-level source” and a set of updates to be
applied to produce the current version. *CDUPDATE is further described in MTS Volume 2: Public File

Descriptions, Reference R1002.

RESTORING THE CONTENTS OF A FILE

Occasionally, a user will make changes to a file and then regret it. The user should realize that the
File Editor makes changes to a file as the commands are entered; it does not make changes to a working
copy. Thus, it is prudent to either make a copy of the file as backup before editing it, or else to use the
Editor’s checkpoint/restore facility. This facility allows the user to establish a base from which all
future edit commands are checkpointed. The RESTORE edit command may then be used to restore all
or a portion of the file back to its state when it was last checkpointed. The most recent change to the
file can always be reversed by the UNDO command (see MTS Volume 18: The MTS File Editor,
Reference R1018 for details).

All files are periodically saved on magnetic tape by ITD. This “file-save” is done on a partial basis
daily and on a complete basis weekly. The daily file-save saves all files that were changed during the
preceding day. The weekly file-save saves all files that exist in the system at the time of the file-save.

The user may restore a file which was accidentally changed, emptied, or destroyed from the file-save
tapes by running the program *RESTORE. Files are available only for 6 weeks. See MTS Volume 2:

Public File Descriptions, Reference R1002, for details.

DISCOVERING THE CHANGES TO A FILE

Often a user, after extensively working on a file, ends up with a “current” copy and an “original”
copy, and would like to know how they differ. In particular, the user would like a list of changes that
must be applied to the original copy to make it into a current copy.

There are three programs available in MTS public files that generate “changes” in this manner:
*UNEDIT, *APC, and *COMPARE. All differ on either the basis for deciding if something is changed,
or the method for presenting the changes, or both. The remainder of this section gives examples
illustrating how these programs differ. The complete descriptions of these programs are given in MTS

Volume 2: Public File Descriptions, Reference R1002.

The program *UNEDIT generates MTS File Editor commands. Both the current and original
copies should be line files and must not contain lines longer than 255 bytes. The entire contents of the
lines are sequentially compared. The line numbers are used for the edit commands output, but are
ignored in the comparing process. Thus, the effect of applying the output of *UNEDIT as commands
to the File Editor working on the original generates, as a result, a file with lines that have the same
content as the “current” copy and in the same order, but not necessarily with the same line numbers.
In the following example, “original” and “current” are the original and current copies as before:

116 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Line Number Contents

Original: 1 FIRST
2 SECOND
3 THIRD
4 FOURTH
5 FIFTH
6 SIXTH
7 SEVENTH
8 EIGHTH
9 NINTH
10 TENTH

Line Number Contents

Current: 1 FIRST
2 NEW SECOND
3 THIRD
4 FOURTH
5 FIFTH
6 SIXTH
8 EIGHTH
8.25 EIGHTH AND A QUARTER
8.5 EIGHTH AND A HALF
9 NINTH
10 TENTH

Issuing the command

RUN *UNEDIT 0=original 1=current SPUNCH=changes

yields as the contents of “changes”:

DELETE 2
INSERT 1
NEW SECOND
$ENDFILE
DELETE 7
INSERT 8
EIGHTH AND A QUARTER
EIGHTH AND A HALF
$ENDFILE

so that

SET ENDFILE=ON
EDIT original
$CONTINUE WITH changes

regenerates the current copy.

*UNEDIT produces on PRINT a printed record of the differences found between the two files if
PAR=LIST is specified on the RUN command. This is often more useful than the actual edit
commands.

The program *APC (“all-purpose compare”) may be used to test for the equality of records between
files. Using the same “original” and “current” files as in the UNEDIT example,

RUN *APC 0=original 1=current PAR=SYNCH

Files and Devices 117

MTS 1: The Michigan Terminal System

November 1991

would generate the following output:

Unit 0: ORIG lnr 1 len 5 col 1 Unit 1: CURR lnr 1 len 5 col 1
************************* 1 equal line ****************************

2 SECOND 2 NEW SECOND
************************* 4 equal lines ****************************

7 SEVENTH After line 6
************************* 1 equal line ****************************
After line 8 8.25 EIGHTH AND A QUARTER

8.5 EIGHTH AND A HALF
************************* 2 equal lines ****************************
Files have 4 mismatches
4 errors

The program *COMPARE is a general file comparison program much like *APC. *COMPARE uses a
different and less expensive algorithm; however, the size of the files compared is limited to 65,534 lines.
Using the same “original” and “current” files as in the above examples, the command

RUN *COMPARE 0=original 1=current

would generate the following output:

Unit 0: original Unit 1: current
__

= 1 FIRST 1 FIRST =
2 SECOND 2 NEW SECOND

= 3 THIRD 3 THIRD =
======================= 2 equal lines ==========================
= 6 SIXTH 6 SIXTH =

7 SEVENTH
= 8 EIGHTH 8 EIGHTH =

8.25 EIGHTH AND A QUARTER
8.5 EIGHTH AND A HALF

= 9 NINTH 9 NINTH =
= 10 TENTH 10 TENTH =

Old file "original" has 10 lines,
and current file "current" has 11 lines.
Both files have 4 mismatches.
Total virtual storage used = 3 pages.
CPU time = 0.017397 seconds.

EXPANDING FILES

When information is placed into a file, the size of the file is increased to accommodate the new data if
at all possible. The process of expanding a file requires

(1) verification that the user has not exceeded the file space allotment, and

(2) allocation of space on a disk storage unit for the new extent of the file.

Since these are relatively expensive and time consuming operations, allowing a small file to expand
line by line into a large file increases the total cost and real time to record the data in the file.

118 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

The user may alleviate this problem by using the CONTROL command to explicitly assign an
expansion factor characteristic permanently to the file. This command is given in the form

CONTROL filename EXPFAC={nP | n%}

The EXPFAC parameter has the following effect. If EXPFAC=nP is specified, the file will be expanded
by “n” disk pages whenever the file requires more space. If EXPFAC=n% is specified, the file will be
expanded by “n” percent of the current size whenever it requires more space. In either case, if the
expansion amount is less than required to fit the new line into the file, an adequate amount will be
allocated. Conversely, if the expansion amount would exceed either the user’s file space allotment or
the remaining available space on a disk storage unit, the request will be scaled down appropriately.

Using explicit expansion factors, a user can create a file of a small initial size and can cause it to
expand by large amounts. This alleviates the cost and time penalty described above without forcing
one to guess the ultimate size of a file and having to bear the effects of a poor choice. For example,
suppose one is intending to write 20,000 20-byte lines into a file of an initial size of one page. If the file
expanded 1 page at a time, approximately 20,000/(4096/20)=97 expansions would be required.
Expanding 5 pages at a time would require only 1/5 of the number of expansions, or 19. If expanded by
100 percent of its current size, then only log(base 2)(20,000/(4096/20))=7 expansions would be
necessary. The latter expansion characteristics are clearly preferable.

A default expansion factor can also be requested to cancel a previous one associated with a file. By
requesting

CONTROL filename EXPFAC=DEFAULT

(where underlining indicates the minimum acceptable abbreviation), the current default expansion
factor, 10 percent, is associated with the file. By default, all newly created files have the default
expansion factor.

The FILESTATUS command may be used to display the expansion factor of a file by requesting the
EXPFAC item. Executing programs may call the system subroutines CHGXF and GFINFO to change
and retrieve the expansion factor, respectively; see MTS Volume 3: System Subroutine Descriptions,
Reference R1003.

CONTROL OPTIONS FOR FILES

The CONTROL command and the CONTROL subroutine may be used with files. For the
CONTROL command, the options are specified in the form

CONTROL filename option

and for the CONTROL subroutine, the options are supplied as the first argument to the subroutine (see
MTS Volume 3: System Subroutine Descriptions, Reference R1003). The following table gives the
control options available for files.

Option Description

EMPTY Empty the file (same effect as the EMPTY command or
EMPTY subroutine).

Files and Devices 119

MTS 1: The Michigan Terminal System

November 1991

TRUNCATE Truncate the file (same effect as the TRUNCATE command or
TRUNC subroutine).

RENUMBER pars Renumber the file (same effect as the RENUMBER command
or RENUMB subroutine). “pars” is the line number
parameters as specified in the RENUMBER command.

PKEY=key Set the program key of the file. See the section “Program
Keys” for further details.

SIZE={n | nP} Change the size of the file to “n” lines or “nP” pages. The size
must be greater than or equal to the truncated size of the file
and less than or equal to the maximum size of the file.

MAXSIZE={n | nP} Change the maximum size of the file to “n” lines or “nP” pages.
The maximum size must not be greater than 32767 pages or
less than the current size of the file.

SIZEINC=[±]{n | nP} Increment (or decrement) the size of the file by “n” lines or “nP”
pages.

MAXSIZEINC=[±]{n | nP} Increment (or decrement) the maximum size of the file by “n”
lines or “nP” pages.

{BUFFERS | MAXBUFS}=n This dynamically alters the maximum number of 4096-byte
buffers used by the file system when reading or writing a file.
For line files, “n” must be in the range of 3 to 100 inclusive; for
sequential files, “n” must be in the range of 1 to 100 inclusive.
This option is only effective for files that are currently open.
The control information is not saved; if the file is closed and
reopened, the default value will be used. In general, the file
system dynamically allocates as many buffers for use in
reading and writing a file as there are pages in actual use by
the file (i.e., the truncated size) up to the maximum number of
buffers specified. Generally, as more buffers are allowed, less
physical disk I/O is required, but greater virtual memory is
required. Large line files will benefit more than large
sequential files from an increase in the maximum number of
buffers allowed. The default for both line files and sequential
files is 8.

EXPFAC={nP | n%} Explicitly assign the expansion factor permanently to a file.
If “nP” is specified, the file will be expanded by “n” disk pages
whenever the file requires more space. If “n%” is specified,
the file will be expanded by “n” percent of the file’s
instantaneous size whenever it requires more space.

EXPFAC=DEFAULT Restore the expansion factor to the default of 10 percent.

{SAVE | NOSAVE} If the SAVE option is specified, the file “FDname” will be saved
periodically on the system file-save tapes. These files may
later be restored by running the program *RESTORE. If the

120 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

NOSAVE option is specified, the file will not be saved on the
file-save tapes. In this case, there is no system backup in the
case of accidental changing, emptying, or destroying. The
default is SAVE.

TOUCH The last data change time for the file is updated to be the
current time.

SHARED FILES

MTS provides extensive file-sharing capabilities. When a file is created, the owner (i.e., the
“userID” under which the file was created) has unlimited access to it and all other users have no access
to it (unless the NEWFILEACCESS global SET option has been used). However, the owner may allow
various levels of file access to other userIDs. Private files that may be accessed by userIDs different
from the owner are called shared files. Sharing is implemented via the PERMIT command and the
NEWFILEACCESS global SET option. In order to permit access to a file, access information must be
given which specifies the type of access the owner wishes to allow and which userIDs are allowed to
have this access. After a file is permitted, the userIDs that have access to it may refer to it by prefixing
the file name with the userID and the colon (:) shared-file separator character.

Access Types

There are six basic categories of access to a file. Each can be denoted in several equivalent ways.

Category Name

Read READ

Write-expand WRITEXP, WE, APPEND

Write-change and Empty WRITECHG, WC, EMPTY

Truncate and Renumber TRUNCATE

Destroy and Rename DESTROY, RENAME

Permit PERMIT

Each of these six basic permit categories is independent of the others. Permitting a file using any
one of the names for a category is the same as using any of the other names for the same category. All
types of access listed in the category are allowed.

There are two different forms of write access:

Write-expand means that a user with this access can add new lines to the file, but cannot change
the lines that are already there. For a sequential file, new lines always are added at the end;
hence, the notation APPEND. For a line file, however, new lines may be inserted anywhere in
the file.

Files and Devices 121

MTS 1: The Michigan Terminal System

November 1991

Write-change means that the user with this access can change or delete lines that are already
there, but cannot add new ones. He also can empty the file.

To give a user general write access to a file, the owner must specify both WE and WC (this
combination can be specified as WRITE or W).

Permit access means that the users so authorized can change the permit status of the file. There is
one special case with regard to permit access: the owner of a file always has permit access for that file.
Otherwise, the owner could get into a situation where he had a file that he could not do anything with
(except pay for it).

In general, it will never be necessary to explicitly give a file truncate and renumber access.
Write-expand access will allow a file to be truncated and read-write access (see below) will allow a file to
be renumbered.

Several commonly used combinations of categories have been given names of their own; they are:

Combination Name

Write-change and Write-expand WRITE

Read and Write-change RWCHG

Read and Write-expand RWEXP

Read, Write-change, RW
and Write-expand

Everything except Permit FULL

Everything UNLIM

Default access DEFAULT

No Access NONE

Read, Write-change, and EDIT
Write-expand from the File Editor

Read from the RUN command RUN

Other combinations must be described in terms of either the basic categories or the combinations
given above. The combinations are specified by means of a parenthesized list. Thus, to give a user
read and destroy access to a file, the owner would specify (R,D).

Accessors

Access to a file may be granted to one or more individual userIDs or to groups of userIDs by
specifying one of the following:

xxxx

122 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

ID=xxxx

where “xxxx” must be from one to four characters. If less than four characters are specified followed
by a question mark (?), the file is permitted to the group of userIDs that begin with those characters
(not including the trailing “?”); otherwise, the file is permitted to the single userID specified.

A file may also be permitted to all userIDs belonging to a specific projectID “yyyy” by specifying

PROJECT=yyyy

where “yyyy” must be from one to four characters. If less than four characters are specified followed
by a question mark (?), a group of projects, all beginning with the characters specified, are given the
associated access to the file.

In addition, several specific categories may be used:

OTHERS gives the associated access to all userIDs not specifically permitted via the projectID
or userID. This does not include the owner. When a file is created, the access for others is
initially NONE. If the owner wishes to change the access to a file, using PERMIT, and fails to
specify an explicit accessor, by default, the specified access is given to OTHERS.

ALL gives all userIDs (other than the owner) the associated access to the file, including those
specifically permitted. To accomplish this, ALL destroys all previously specified permit access
to specific userIDs and projectIDs, and also changes the access for OTHERS to that specified.
Thus, ALL enables the user to eliminate the access granted to specified userIDs and projectIDs;
it does not affect the owner’s access.

ME gives the specified access to the userID issuing the permit command.

OWNER gives the specified access to the userID of the owner of the file (usually the same as
ME).

Often it is desirable not only to allow access to ones files by specific userIDs or projectIDs, but also to
allow access to data files, for example, by specific programs (object files). To accomplish this, files may
have a program key attribute associated with them; this association is set by the CONTROL command.
Data files may be permitted access by object files (with the appropriate program key attribute) by
specifying in the PERMIT command

PKEY=key

where “key” is a program key. See the section “Program Keys” for further details on the use of
program keys in MTS.

The PERMIT Command

The basic form of the PERMIT command is

PERMIT filename [access [accessor]]

where “filename” is the name of the file to be permitted, and “access” and “accessor” specify the access
information to be given for the file. If the “accessor” is omitted, it is assumed to be OTHERS; if both

Files and Devices 123

MTS 1: The Michigan Terminal System

November 1991

“access” and “accessor” are omitted, they are assumed to be READ and OTHERS, respectively. Thus,

PERMIT FYLE READ OTHERS
PERMIT FYLE READ
PERMIT FYLE

all have the same effect.

In addition, the user may specify several “access-accessor” pairs. The “access” and “accessor” of a
pair must be separated by blanks, and the pairs must be separated by commas. Blanks may occur
before the comma, after the comma, or both. The form of the PERMIT command thus becomes:

PERMIT filename [access [accessor]] [,access [accessor]] ...

For example,

PERMIT FYLE RW 2AGA, READ OTHERS

In addition, the “filename”, “access”, and “accessor” may each consist of a parenthesized list of items,
rather than just a single item. The items in such a parenthesized list must be separated by commas,
blanks, or both. Thus, the following commands are valid:

PERMIT FYLE READ (ME,OTHERS)
PERMIT FYLE READ (2BCA,2BCB,2BCC)
PERMIT (FILEA,FILEB) (RW,DES) 2AGA, R P=ABCD
PERMIT DBMSFILE RW PKEY=DBMSPGM

These are processed left to right for each file. Hence, each file in the list is processed in the same
manner. This does not mean that each file has the same permit status; that depends on the previous
status of each file. Merely issuing a PERMIT command for a file does not necessarily delete the
previous specific sharing information, unless ALL is specified. Each “access-accessor” combination
specified either replaces a previous sharing entry, adds a new entry, or deletes an entry (if DEFAULT is
specified), depending on whether or not one was there before.

A special access type DEFAULT may be used to remove a specific access granted to a userID,
projectID, or program key and thus, by default, leave only the access associated with OTHERS to the
specified userID, projectID, or program key. For example, if the user first issues

PERMIT FYLE READ OTHERS, UNLIMITED (WXYZ,WABC)

and later issues

PERMIT FYLE DEFAULT WXYZ

the second command would remove WXYZ’s unlimited access and leave it with read access. Note that
there is nothing special about the owner in this context. Thus,

PERMIT FYLE DEFAULT OWNER

means that the owner has the same access as OTHERS (of course, the owner always retains permit
access). DEFAULT may be abbreviated as DEF.

One additional option on the PERMIT command is available. The sharing capabilities enable the
user to build up very complex sharing lists for a file. In such cases, it is useful for the user to be able to

124 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

copy sharing information from one file to another, so that it does not have to be reentered. This is
possible with the LIKE option. The form is

PERMIT filename1 LIKE filename2

which copies the specific sharing information, the default access, and the owner access from
“filename2” to “filename1” replacing any sharing information already associated with the file. The
user must have permit access to both files to be able to do this. Additional sharing information may be
applied to “filename1” by adding the word EXCEPT and the “access-accessor” pairs, as in the normal
form of the PERMIT command:

PERMIT filename1 LIKE filename2 EXCEPT access [accessor]

The additional sharing information is applied to “filename1” after the information from “filename2” has
been applied. Moreover, either “filename1” or “filename2”, or both, may be a parenthesized list of files.
The information given after EXCEPT may enhance or restrict access to “filename1” depending on the
“access-accessor” lists. Several “access-accessor” pairs may be given in the same manner specified
above.

Files may be permitted to an initial substring of a userID or projectID by specifying from one to
three characters followed by a question mark (?). Therefore, it may happen that a single userID and
associated projectID may potentially have more than one type of access. In these cases, the actual
access is resolved (in the absence of program keys) according to the following rules:

(1) If a file is permitted to a given userID and also to its associated projectID, the userID
always takes precedence. Furthermore, if a file has been permitted in such a way that
more than one match may occur on a userID, then the PERMIT command that specifies
the greatest number of characters that match the userID takes precedence. For
example, for a file that has been permitted both

PERMIT filename READ 2AG?

and

PERMIT filename RW 2AGA

then the user with userID 2AGA has RW access to that file, but user 2AGB has only
READ access.

(2) If a file is not permitted to a specific userID, but is permitted to its associated projectID,
then the user implicitly has the access to that file associated with that projectID.
ProjectIDs, like userIDs, may be specified by 1 to 4 characters, and thus the same
potential for conflicts exists when determining accessibility. As in the case of userIDs,
the ambiguity is resolved according to the greatest number of matching characters.
Thus, for example, in a file that is permitted both

PERMIT filename READ P=2BC?

and

PERMIT filename NONE P=2BCB

all userIDs that have projectIDs 2BCA, 2BCC, 2BCD, etc., have READ access to that file,

Files and Devices 125

MTS 1: The Michigan Terminal System

November 1991

while userIDs that have projectID 2BCB have no access.

(3) If a file has not been specifically permitted for either userID or projectID, the access that
has been specified for OTHERS is used. The default access for OTHERS is NONE.

See the section “Program Keys” for details on using the PERMIT command with program keys.

The NEWFILEACCESS option of the SET command establishes a new default access to be given to
all new files created by the CREATE command. This command is given in the form

SET NEWFILEACCESS='access accessor'

where “access” and “accessor” is same access/accessor pair that may be specified with the PERMIT
command. For example, the command

SET NEWFILEACCESS='READ P=ABCD'

will give READ access to project ABCD for all new files created. This access may be removed later,
either for all userIDs in the project or for an individual userID. For example, issuing the command

PERMIT DATA DEFAULT ABC1

removes READ access from the individual userID ABC1 for the file DATA.

The initial default access is UNLIM OWNER, and may be restored by giving the command

SET NEWFILEACCESS=OFF

The FILESTATUS command can be used to determine the access to a file.

PROGRAM KEYS

For most applications, it is sufficient to permit a file to other userIDs or projectIDs with one of the
simple access types described above. For example, if the file has been permitted “READ OTHERS”,
other userIDs can list or copy the file, run the program that resides in the file, or run a program that
reads the file. Alternatively, if a file has been permitted “WRITE” to a specific userID, that userID
may copy information into the file, edit the file, empty the file, or run a program that changes the
contents of the file.

However, there are situations where this level of control is not sufficient. For example, a file may
exist that has information about each person in a group. It may be necessary to prevent others from
obtaining confidential information about specific persons in the group, but it may be necessary to allow
the extraction of statistical information about the group as a whole. Simple READ access does not
give this kind of selectivity. As a second example, the operations of a database management system
involve a management program that must be able to selectively read and perhaps write the files that
contain the database, but not all users (perhaps none at all) should have direct read or write access to
the files, since the integrity of the database might depend on the access implemented by the database
system.

This more sophisticated control over file access is accomplished in MTS by the use of program keys.

126 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Overview of Program Keys

Every file, whether a private file or a public file, has two attributes associated with it that are
relevant for sharing programs. The first attribute is the program key of the file and the second
attribute is the access list describing how and by whom the file may be accessed.

By default, the program key is set to *EXEC when the file is initially created. The access is set to
UNLIM for the owner and NONE for others. For example, if user WABC creates the file DBMSPGM,
which is to contain a database management program, the default file-access structure is as follows:

Program
┌───────────────┐
│ │
│ WABC:DBMSPGM │
│ │
└───────────────┘
│
Pkey:

*EXEC
Access List:

WABC - UNLIM
OTHERS - NONE

With this access structure, only user WABC (the owner) has access to the program in the file
DBMSPGM, and therefore only user WABC may run the program. All other users are denied access to
the program. The setting of the program key is irrelevant in this case.

User WABC may allow other users to run this program by permitting the file READ to OTHERS as
follows:

PERMIT DBMSPGM READ OTHERS

The file-access structure can now be illustrated as:

Program
┌───────────────┐
│ │
│ WABC:DBMSPGM │
│ │
└───────────────┘
│
Pkey:

*EXEC
Access List:

WABC - UNLIM
OTHERS - READ

Unfortunately, these attributes do not restrict the other users from using the file DBMSPGM in other
ways. For example, any other user may examine the file by using the EDIT command or may make a
copy of the file by using the COPY command.

This deficiency can be overcome by permitting the file so that it can be accessed only by the RUN
command. As with a file, each MTS command has a program key associated with it. For example,
the program key for the EDIT command is *EDIT, while the program key for the RUN command is
*MTS.RUN. The program keys for all the MTS command are listed later in this section. Unlike a
file, there is no access list associated with an MTS command; each MTS command is always available to

Files and Devices 127

MTS 1: The Michigan Terminal System

November 1991

all users.

Command
┌───────────────┐
│ │
│ EDIT Command │
│ │
└───────────────┘
│

Pkey:
*EDIT

┌───────────────┐
│ │
│ RUN Command │
│ │
└───────────────┘
│

Pkey:
*MTS.RUN

User WABC may permit the file DBMSPGM so that it can be accessed only by the RUN command by
issuing the command

PERMIT DBMSPGM READ PKEY=*MTS.RUN

The file-access structure is now illustrated as follows:

Command Program
┌───────────────┐ ┌───────────────┐
│ │ │ │
│ RUN Command │ │ WABC:DBMSPGM │
│ │ │ │
└───────────────┘ └───────────────┘
│ │

Pkey: Pkey:
*MTS.RUN *EXEC

Access List:
WABC - UNLIM
OTHERS - NONE
PKEY=*MTS.RUN - READ

With this access structure, all other users still may access the file, but now only by the RUN command.
This type of access transforms the program into a “run-only” program.

Instead of making the “run-only” program available to all users, user WABC may restrict access to a
selected group of users such as an individual user, several individual users, or a project. For example,
user WABC may permit the file DBMSPGM so that it can be accessed only by user WXYZ and only by
the RUN command by issuing the command

PERMIT DBMSPGM READ WXYZ&PKEY=*MTS.RUN

Since this is a common way to use program keys, a shorthand abbreviation is available:

PERMIT DBMSPGM RUN WXYZ

128 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

The file-access structure is now illustrated as follows:

Command Program
┌───────────────┐ ┌───────────────┐
│ │ │ │
│ RUN Command │ │ WABC:DBMSPGM │
│ │ │ │
└───────────────┘ └───────────────┘
│ │

Pkey: Pkey:
*MTS.RUN *EXEC

Access List:
WABC - UNLIM
WXYZ &

PKEY=*MTS.RUN - READ
OTHERS - NONE

With this access structure, only user WXYZ can run the program in the file DBMSPGM. All other
users are denied access.

Another level of sophistication may be added to this example by assuming that the program in
DBMSPGM is to read and write a data file named DATA, also belonging to user WABC. If user WABC
merely grants RW access to the file DATA by issuing the command

PERMIT DATA RW OTHERS

there is still the problem that other users may access the data file by means other than running the
database management program, which may be undesirable if the data is confidential.

This deficiency may be overcome by having user WABC permit the data file so that it can be accessed
only by the program in the file DBMSPGM. This is done in two steps. First, the program key of
DBMSPGM is changed by using the CONTROL command to a nondefault value, such as DBKEY:

CONTROL DBMSPGM PKEY=DBKEY

Internally, the program key DBKEY is made unique by prefixing it with the owner’s userID (so that it
cannot be confused with the use of the same program key by another user). Second, the file DATA is
permitted so that it may be accessed only by programs executing with program key DBKEY by giving
the command

PERMIT DATA RW PKEY=DBKEY

This actually permits the data file such that any user who is allowed to run the program (in this case,
only the owner WABC and user WXYZ) will have RW access to the file DATA. The file-access
structure can now be illustrated as follows:

Files and Devices 129

MTS 1: The Michigan Terminal System

November 1991

Command Program Data File
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ RUN Command │ │ WABC:DBMSPGM │ │ WABC:DATA │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘
│ │ │

Pkey: Pkey: PKey:
*MTS.RUN WABC:DBKEY *EXEC

Access List: Access List:
WABC - UNLIM WABC - UNLIM
WXYZ & OTHERS - NONE

PKEY=*MTS.RUN - READ PKEY=WABC:DBKEY - RW
OTHERS - NONE

With this access structure, user WXYZ is now able to run the program DBMSPGM which in turn is able
to read and write into the data file DATA. However, user WXYZ is unable to examine or make copies
of either the program or the data file.

User WABC may extend the access of the program and data file to other users by issuing additional
PERMIT commands. For example

PERMIT DBMSPGM RUN WRST

will allow user WRST to also run the database program (with RW access to the database).

A variation of this scheme can be shown by assuming that user WABC desires to allow several
different users to run the database program, but desires to restrict each of the users to a different type
of access to the data file DATA. For example, user WXYZ is to have RW access to the data file and user
WRST is to have only READ access to the data file. In order to establish this type of scheme, user
WABC would issue the following commands:

PERMIT DBMSPGM RUN (WXYZ,WRST)
CONTROL DBMSPGM PKEY=DBKEY
PERMIT DATA RW WXYZ&PKEY=DBKEY
PERMIT DATA READ WRST&PKEY=DBKEY

The last two PERMIT command are necessary to restrict the type of access that each of the users
running the database program is to have to the data file.

For this case, the access structure is now as follows:

130 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Command Program Data File
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ RUN Command │ │ WABC:DBMSPGM │ │ WABC:DATA │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘
│ │ │

Pkey: Pkey: PKey:
*MTS.RUN WABC:DBKEY *EXEC

Access List: Access List:
WABC - UNLIM WABC - UNLIM
WXYZ & WXYZ &

PKEY=*MTS.RUN - READ PKEY=WABC:DBKEY - R
WRST & WRST &

PKEY=*MTS.RUN - READ PKEY=WABC:DBKEY - READ
OTHERS - NONE OTHERS - NONE

The final example illustrates how program keys can be used to safeguard a user’s own files from
accidental change or destruction. In this case, user WABC desires to restrict the source file
DBMSPGM.S for the database program to be changeable only by the EDIT command. This can be
done by issuing the command

PERMIT DBMSPGM.S READ ME, RW ME&PKEY=*EDIT

The access structure is illustrated as follows:

Command Data File
┌───────────────┐ ┌───────────────┐
│ │ │ │
│ EDIT Command │ │ WABC:DBMSPGM.S│
│ │ │ │
└───────────────┘ └───────────────┘
│ │

Pkey: Pkey:
*EDIT *EXEC

Access List:
WABC &

PKEY=*EDIT - RW
WABC - READ

This prevents user WABC from accidentally destroying the file with a DESTROY command or
overwriting the file with a COPY command; only the EDIT command is now allowed to be used to make
changes to the file. Other MTS commands that read the file still can access the file; for example, the
RUN command can be used to compile the program.

The user may ascertain the current access list and program key for a file by issuing the
FILESTATUS command, for example

FILESTATUS DATA ACCESS PKEY

The above examples illustrate only the most simple uses of program keys for sharing programs. In
order to devise more complex examples, the user will have to understand the concept of the current
program key, the rules for file-access evaluation, and the methods by which programs are protected
when running with program keys. These are discussed in detail in the following sections.

Files and Devices 131

MTS 1: The Michigan Terminal System

November 1991

File Program Keys

Every file in the MTS file system has a file program key associated with it. When a file is created, it
is assigned the file program key *EXEC; this value is stored in the system catalog along with other
information such as the file type and the maximum size of the file.

The file program key allows MTS to distinguish between different programs. For example, it may
be useful to permit a file so that it can be accessed from one program, but not accessed from another. If
this mechanism is to work, the program must reside in a single file (without $CONTINUE WITH lines).
In this case, the file program key for the file becomes the current program key when the file is run.

The owner of the file, or any userID that has permit access to it, may change the file program key
using the CONTROL command. For example, if the user whose userID is WABC has a file named
PROGRAM and enters the command

CONTROL PROGRAM PKEY=DBMSPGM

the file program key is changed to DBMSPGM. A user-provided file program key must be from one to
eight characters long and may contain no blanks. The same characters that can be used for file names
may be used for program key names. Internally, the program key is prefixed by a userID.

When a file program key is assigned via the CONTROL command, the user ordinarily specifies only
the external portion of the program key and the system assigns the userID prefix. If the user provides
a userID prefix for the program key, the system requires that it match the userID of the user who
entered the CONTROL command. Thus, if WABC is signed on and enters the command

CONTROL PROGRAM PKEY=WABC:DBMSPGM

the command is accepted. If a userID prefix is specified on the CONTROL command but is different
from the userID currently signed on, an error comment is produced. Since the internal form of a
program key includes a userID as a prefix, different users may assign the same external program key to
one (or more) of their files but such program keys are internally distinct. Program keys need not be
unique for each file under a userID; in fact, it may be desirable for a user to assign the same program
key to several different files.

Unless a user explicitly assigns a program key to the file, it retains the default program key *EXEC
that is assigned when the file is created.

If a program already has a file program key other than *EXEC, the user may permit files to that
program key (see MTS Volume 2: Public File Descriptions, Reference R1002, for a listing of the file
program keys for public files).

File Access Via Program Keys

The PERMIT command may be used to allow (and restrict) access to data files by other files
(programs) with certain program keys. The general form of the PERMIT command is

PERMIT filename access accessor

where “filename” is the name of the file whose access control information is being altered, “access” is
the type of access (read, write, etc.), and “accessor” specifies the userID, projectID, program key, or
combination thereof that is to be permitted “access” to “filename”.

132 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

Thus, data files may be permitted to specific programs via their associated file program keys. For
example, if the user WABC has a file named DATA and enters the command

PERMIT DATA READ PKEY=DBMSPGM

the program with associated program key DBMSPGM (object file PROGRAM in the previous example)
would be granted read access to file DATA.

Ordinarily, when the accessor parameter of a PERMIT command is a program key, the userID
prefix of the program key need not be specified. When no userID prefix is given, the system assumes
that the userID prefix is that of the user who enters the command. However, if a user wishes to permit
a data file to be accessed by a program whose program key has a userID prefix that differs from his own
userID, this may be done by providing an explicit userID prefix. For example,

PERMIT DATA READ PKEY=WXYZ:OBJ

is a valid form for the PERMIT command that grants read access to the file DATA by any program that
resides in a file having a program key WXYZ:OBJ.

In certain instances, the user may want to control more precisely the access to certain files. For
example, it may be desirable to allow certain programs to access certain files only if the programs are
invoked by specific userIDs or by userIDs that belong to a specified projectID. To establish this level of
control, the “accessor” parameter of the PERMIT command may be expressed as the logical “and” of a
userID (or projectID) and a program key. For example, if the user WABC enters the command,

PERMIT DATA RW ID=WXYZ&PKEY=DBMSPGM

the program with program key DBMSPGM (object file PROGRAM belonging to WABC in this example)
would be granted read and write access to the file DATA only if it is invoked by userID WXYZ. The
ampersand (&) is used to represent the logical operator “and” in the accessor expression. To allow
read and write access by programs with program key DBMSPGM belonging to and invoked by WXYZ,
the command

PERMIT DATA RW ID=WXYZ&PKEY=WXYZ:DBMSPGM

must be given.

To accommodate program keys, the PERMIT command accepts several types of accessor
expressions. In the following list of accessor expressions, uppercase letters represent characters that
must be entered exactly as shown; the lowercase letters “xxxx” represent a user-provided userID or
project number, and “key” represents a user-provided program key. The following are the legal
accessor expressions involving program keys:

PKEY=key
xxxx&PKEY=key
ID=xxxx&PKEY=key
P=xxxx&PKEY=key
PROJECT=xxxx&PKEY=key

In these expressions, “key” may be a simple external program key or an external program key
prefixed by a particular userID. If a userID prefix is specified, it must be followed immediately by a
colon and the external program key. For example:

Files and Devices 133

MTS 1: The Michigan Terminal System

November 1991

ID=WXYZ&PKEY=WABC:DBMSPGM

is a valid form for the accessor parameter of a PERMIT command.

As stated in the description of the PERMIT command, “xxxx” may be from one to four characters
long; “key” may be from one to eight characters long and may be prefixed by an explicit userID.
Permitting a file to a group of userIDs, projectIDs, or program keys by specifying only the first
characters of the name followed by a question mark (?) is called permitting the file to an initial
substring of the userID, projectID, or program key.

Command-Processor Program Keys

Each of the MTS command processors has been assigned a specific command-processor program key.
For most of the MTS commands, the command-processor program key is of the form

*MTS.command

truncated, if necessary, to 12 characters. For example,

Command Program Keys

COPY *MTS.COPY
DESTROY *MTS.DESTROY
DUPLICATE *MTS.DUPLICA
EMPTY *MTS.EMPTY
LOG *MTS.LOG
RUN *MTS.RUN
UNLOCK *MTS.UNLK

The only exceptions are as follows:

Command Program Keys

ACCOUNTING *ACCOUNTING
CALC *CALC
DEBUG *SDS
EDIT *EDIT
FILEMENU *FILEMENU
FSMESSAGE *FSMESSAGE
LIST *LIST
LOCKSTATUS *MTS.LSTATUS
MESSAGE *MESSAGESYST
NET *NET
RERUN *MTS.RUN
SDS *SDS
SYSTEMSTATUS *SYSTEMSTATU

During the execution of the command, the current program key is changed to the command-processor
program key in question.

134 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

The PERMIT command may be used to permit a file to be accessed only by a particular command
processor. For example, if the file PROGRAM is permitted using

PERMIT PROGRAM READ PKEY=*MTS.RUN

then only the RUN processor could read the object file PROGRAM. The file could be read during RUN
command processing for the purpose of loading the program but read access would be denied the LIST,
COPY, EDIT, and all other command processors. If one assumes that no other PERMIT commands
were entered to specify additional access restrictions, the program in the file PROGRAM becomes a
“run-only” program available to everyone. This allows the program to be run. However, it is not
possible to copy or list the program or to gain any information about the internal details of the program.
Similarly, the EDIT command processor in MTS has been assigned the program key *EDIT. If a user
enters the command

PERMIT DATA READ ME, RW ME&PKEY=*EDIT

access to the file DATA would be limited to read and write access while EDITing the file. By first
specifying READ access to ME, the default access for the owner of a file (i.e., UNLIMITED access) is
changed to read. Thus, the file can only be changed by the MTS File Editor (secure from the owner’s
accidental emptying or destruction, although the owner would still be able to read the file, e.g., LIST it)
until another PERMIT command is used to modify its access restrictions.

The two shorthand access types, RUN and EDIT, may be used with the PERMIT command.
Specifying

PERMIT file RUN xxxx

is equivalent to specifying

PERMIT file DEFAULT xxxx, READ xxxx&PKEY=*MTS.RUN

where “xxxx” is a userID, P=xxxx, OTHERS, ALL, ME, or OWNER. Likewise, specifying

PERMIT file EDIT xxxx

is equivalent to specifying

PERMIT file DEFAULT xxxx, RW xxxx&PKEY=*EDIT

These access types may be combined with each other and with the present file accesses, e.g.,

PERMIT DATA (WE,RUN,EDIT) P=WABC

The Current Program Key

MTS maintains a piece of information called the current program key which is simply a character
string stored in system storage.

The value of the current program key changes during a session in response to the commands issued
and programs executed by the user. The intent of changing the current program key is to maintain a
program key value that corresponds, in some way, to what the job is doing, so that file-access decisions
can be made appropriate to the job’s current activity.

Files and Devices 135

MTS 1: The Michigan Terminal System

November 1991

For most commands, the current program key retains the value of the associated
command-processor program key throughout the execution of the command. For example, when the
COPY command is executed, the current program key is set to *MTS.COPY. However, for commands
that initiate or resume execution of a program (e.g., RUN and RERUN), the current program key will
change as the command executes. For such commands, the current program key will be changed at
the moment execution of the program begins to a value associated with the program being executed
(i.e., the file program key).

When a RUN or RERUN command is issued, the current program key is initially set to *MTS.RUN.
However, under certain circumstances it may be changed while loading the program to
*MTS.ETC.RUN. This change is intended to prevent users from violating the intent of the “run-only”
access provided by the program key *MTS.RUN.

The circumstances under which the RUN command-processor program key is changed, and other
considerations of run-only programs, are discussed in the section “Protection of Run-Only Programs.”

The loading of a program is performed with the program key for the command used to load it (e.g.,
*MTS.RUN), which therefore controls which files may be accessed by the loader. The current program
key is changed again, as described below, only when execution is about to begin or continue. The
program key used during execution determines which files may be accessed by the executing program.

(1) Under certain carefully controlled conditions, the current program key is set, during
program execution, to the file program key associated with the file from which the
program was loaded. The conditions under which the current program key is set in this
way are described below in the section “Protection of Programs with Nondefault Program
Keys.” Basically, they amount to the requirement that the program must be run as a
complete self-contained program, and must not be “tampered with” after loading.

(2) When a program begins execution under any circumstances that do not meet the
requirements for the use of a nondefault program key, the current program key is set to
the key *EXEC (the same as the default file program key).

If the object file has a nondefault file program key, a message will be issued indicating
that the key *EXEC is being used instead of the file program key. If, under these
conditions, the file program key is required to access a certain data file, access will be
denied.

(3) The program key for a user program is determined at the time the main program is
initially loaded. Calls to the LINK, LOAD, or XCTL subroutines do not change the
program key.

File-Access Evaluation

Since files may be permitted to numerous combinations of userIDs, projectIDs, and program keys,
the system must follow a precisely defined procedure to determine whether a particular combination of
userID, projectID, and program key is to have access to a file.

For each file, the system maintains an access list that it uses to determine access rights. This list
contains the userIDs, projectIDs, and program keys which have been permitted access to the file.
Assuming that access has not been granted to initial substrings of userIDs, projectIDs, or program
keys, this list is scanned as follows:

136 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

(1) First, the list is checked to determine if the userID attempting to access the file appears
explicitly in the access list, either alone or in combination with program keys.

If the userID has been specified in conjunction with a program key that is equal to the
current program key, the access specified for that combination of userID and program key
applies.

If the userID has been specified alone (not in combination with a program key), the
specified access applies.

(2) If the userID is not specified in the access list, the list is checked to determine if an entry
specifies the projectID of the user attempting the access (either alone or in combination
with program keys). If a match occurs, access rights are determined in a similar manner
as for userIDs.

(3) If the list contains no entries that match the userID or projectID of the user attempting to
access the file, the list is checked for the current program key as set by the program or
command processor accessing the file.

(4) Finally, the access specified for OTHERS is used if access rights were not determined by
any of the above procedures.

The above is only a simplified version of the algorithm used. When initial substrings are used in
specifying access for userIDs, projectIDs, and program keys, the complete algorithm is as follows:

(1) First, the list is checked to determine if the userID attempting to access the file has been
permitted access to the file or if it is a member of a group of userIDs which has been
permitted access to the file (e.g., all userIDs beginning with three specific characters,
etc.). If the userID is a member of more than one such group, the access associated with
the group providing the longest initial substring match is used.

If a userID from the list does provide an initial substring match with the userID
attempting to access the file but access to the file is allowed only in conjunction with an
associated program key, then the associated program key (maintained in the list) must
also provide an initial substring match with the program key of the program or command
processor attempting to access the file.

If two or more groups of userIDs in the access list provide the longest initial substring
match with the userID attempting to access the file, then at least one of the userID groups
must have been permitted in conjunction with an associated program key, and the
program key that is the longest initial substring match determines the access to be used.

(2) If no initial substring match occurs between userIDs in the list and the userID
attempting to access the file, the list is checked to determine if an entry contains a
projectID (or initial substring of a projectID) that matches the projectID of the userID
attempting to access the file. If a match occurs, access rights are determined in a similar
manner as for userIDs.

(3) If the list contains no entries that provide an initial substring match for the userID or
projectID attempting to access the file, the list is checked for an initial substring of the
current program key as set by the program or command processor accessing the file. If
more than one initial substring match is found, the program key with the longest match

Files and Devices 137

MTS 1: The Michigan Terminal System

November 1991

determines the access to be used.

(4) Finally, the access specified for OTHERS is used if access rights were not determined by
any of the above procedures.

Protection of Programs with Nondefault Program Keys

When a user assigns a program key to an object file and then permits other data files to be accessed
in a specified manner by programs having that particular program key, it is assumed that the intent is
to provide a more controlled environment in which only certain programmer-defined file operations will
be undertaken on the files in question. For this reason, MTS goes to considerable lengths to ensure
that the running of a program which has a nondefault program key will not be compromised. If it is
determined that an attempt to run a program with a nondefault program key may violate (as specified
in the list given below) the intent of the program key, MTS will assign the default program key *EXEC
as the program key to be used during the current execution of the program. When the system does
this, a comment is printed and execution proceeds in an otherwise normal fashion. If, under these
conditions, the nondefault program key is required to access certain data files, access will be denied.
Furthermore, the program can be designed to terminate immediately on the first unsuccessful attempt
to access the files.

The cases in which an attempt to run a program with a nondefault program key might compromise
the intent of the owner, and thus the cases in which MTS will temporarily reassign the current
program key during execution, are:

(1) if explicit concatenation is specified in the object program FDname on the RUN or
RERUN command;

(2) if line-number ranges or modifiers are specified on the object program FDname on the
RUN or RERUN command;

(3) if LOAD, DEBUG, or SDS has been specified instead of RUN or RERUN;

(4) if a loading error occurs which requires additional input;

(5) if a RESTART command is given to restart at a specific location;

(6) if an ALTER command is given after the program is loaded;

(7) if the shared-file separator character has been set to something other than a colon (:).

In addition, the effect of the LIBSRCH and DEBUG options of the SET command will be ignored
while loading a program with a nondefault program key.

It should be noted that the above restrictions are required so that MTS will be able to prevent any
unintended access by a program (with a nondefault program key) to data files. MTS accomplishes this
in general by changing the program key to the default value so that program-key access to the data file
will be denied on subsequent I/O operations.

In order to ease the burden of the user who has to debug and maintain programs with nondefault
program keys, two courtesies are provided. First, the previously described reassignment (by the
system) of program keys to ensure security is done only when running a program with a nondefault

138 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

program key whose internal userID prefix is different from the userID currently signed on. That is,
the owner of a program with a nondefault program key is not subjected to the above-mentioned checks
while running under his or her own userID (unless the userID prefix of the program key differs from
that userID). Second, a facility is provided whereby an alternate program key may be assigned to
override temporarily the program key associated with the program. This is accomplished by means of
the

SET EXECPKEY=key

command or the EXECPKEY=key keyword parameter on the RUN command. The SET command is
effective for all subsequent RUN commands until a

SET EXECPKEY=OFF

command is entered. An alternate program key presented as a parameter on the RUN command
overrides that provided via the SET command, if any, as well as the program key associated with the
program. The temporary overriding is effective only if the userID prefix, if presented, is identical to
the userID of the user attempting to override the program key.

Protection of Run-Only Programs

It is assumed that when a user permits a program to be “run-only” (i.e., accessible in a READ
fashion by only the RUN command processor), the intent is that the program as a single, self-contained
file should be only RUN and that no information about the contents of the program should be released.
Toward this end, MTS notes that a run-only program has been loaded, and disallows certain
commands, i.e., ALTER, DISPLAY, DUMP, or MODIFY (locations, registers, etc.), and RESTART (at a
specific location). In addition, MTS controls more carefully the loading process of run-only programs.
In particular, the program key used by the system during the loading process of the RUN command,
normally *MTS.RUN, is changed to a second value, *MTS.ETC.RUN, in the following cases:

(1) If explicit concatenation, line-number ranges, or I/O modifiers are specified on the object
program FDname on the RUN or RERUN command, the program key is changed before

attempting to access the first member of the FDname. In particular, this means that
run-only programs cannot be members of an explicit concatenation.

(2) At the time an implicit concatenation is encountered during the loading process, the
program key is changed and then an attempt is made to access the new FDname. In
particular, this means that run-only programs cannot be “$CONTINUEd WITH”.

Furthermore, if the LIBSRCH or DEBUG option of the SET command has been specified, it is ignored
during the loading of a run-only program. And finally, if an error occurs while loading a run-only
program which requires additional input, the loading process is prematurely terminated.

As before, it should be noted that the above restrictions are required so that MTS will be able to
prevent any unintended access by the user to the run-only program. In general, this is done by either
changing the system-assigned program key before (or during) the loading process, and thus denying
run-only program-key access during the loading process, or by terminating the loading process if any
errors occur. Prohibiting certain commands while a run-only program is loaded is intended to protect
the internal contents and structure of a run-only program.

Files and Devices 139

MTS 1: The Michigan Terminal System

November 1991

Although the aforementioned changes are intended primarily to ensure that a run-only program is
invoked as a complete, self-contained file, one of the potentially useful side effects of changing the
program key to a second value during the loading process is that it provides a mechanism for run-only
libraries. For example, if the file STAT:LIBRARY is permitted READ to program key
*MTS.ETC.RUN, users may still explicitly or implicitly concatenate the statistical library package to
their private programs while at the same time the library owner may guarantee that the library is used
in a (somewhat less restrictive) “run-only” fashion.

LOCKING AND UNLOCKING FILES

If a file has been permitted for sharing, certain rules govern the concurrent use of a file. Obviously,
one user should not be allowed to destroy a file while, at the same time, another user is trying to read it.
Under these simple rules, any number of jobs (users)

1
may simultaneously read a particular file, but

only one job may modify (e.g., write, empty, truncate) a file at any one time, and then only if no other
jobs are reading the file. Since access is granted to a file as a whole, these rules are necessary as well
as sufficient to guarantee the integrity of the shared file.

MTS enforces these rules by implicitly and automatically “locking” a file for reading or modification
whenever a request requiring such locking is made by the user. Thus, for example, when a user asks
to LIST a file, MTS will lock the file for reading, list the file, and, when finished, unlock it. While the
file is locked for reading, others permitted access to it may read the file, but may not modify it.
Similarly, when a user wishes to COPY something to a file, MTS will lock the file for modification, copy
the information to the file, and, when finished, unlock the file. If MTS attempts to lock a file and finds
that, according to the rules, such locking is not possible at that time (for example, if another job has the
file locked for modification), MTS automatically waits until such locking can be accomplished (in our
example, until the first user finishes modifying the file and it is unlocked). An attention interrupt may
be used to cancel the wait; a message is printed whenever the wait condition is interrupted.

It is anticipated that the implicit, automatic locking, unlocking, and waiting done by MTS will be
sufficient to satisfy most shared use of files. For those users who want more control over the locking,
unlocking, and waiting conditions that MTS provides implicitly, two commands, LOCK and UNLOCK,
and two subroutines, LOCK and UNLK, are provided. These commands and subroutines allow the
user to control explicitly the locking, unlocking, and waiting mechanisms. This explicit control is
necessary, for example, if a user wants to empty a shared file and copy new information into it, all the
while ensuring that no one can read the file after it is empty and before the new information has been
entered. In this case, the user should explicitly lock the file for modification, empty it, copy the new
information, and explicitly unlock the file. Additional information on using shared files is given in
Appendix D.

The LOCKSTATUS command may be used to determine the current lock status of a file.

1
In this discussion, a job (or user) means a terminal session or a batch run.

140 Files and Devices

MTS 1: The Michigan Terminal System

November 1991

APPENDIX A

I/O MODIFIERS

This section lists all the I/O modifiers that may be used with FDnames or with calls to I/O
subroutines.

The device types discussed below in the exceptions to the default modifier bit specifications are the
device types as returned by the GDINFO subroutine (see MTS Volume 3: System Subroutine

Descriptions, Reference R1003). Some of the device types discussed are given below; the remainder
are given in the section “System Device List” in MTS Volume 3.

FILE Line files
SEQF Sequential files
RMRD Resource manager card input
RMPT Resource manager printed output
RMPC Resource manager punched output
9TP 9-track magnetic tape
MNET UMnet/Michnet Computer Network
3270 IBM 3278 Display Station terminals

The values indicated below with each bit specification are the decimal and hexadecimal values that the
modifier word for a subroutine call would have if only that modifier option was specified.

First Fullword of Modifier Bits

Bit 31 SEQUENTIAL, S Value: 1 (dec) 00000001
30 INDEXED, I 2 00000002

Default: SEQUENTIAL
Exceptions: None

The SEQUENTIAL modifier specifies that the input or output operation is to be done
sequentially. The INDEXED modifier specifies that an indexed operation is to be
performed.

In general, the INDEXED modifier is applied only to line files, while the SEQUENTIAL
modifier is applied to line files, sequential files, and all types of devices. Note that the
SEQUENTIAL modifier and the sequential file are not directly related.

I/O operations involving line files may be performed with either SEQUENTIAL or
INDEXED specified. I/O operations involving sequential files must be done
SEQUENTIALly. If the user specifies INDEXED on an I/O operation to a sequential file,
an error message is generated unless the global option SEQFCHK is OFF, in which case
the operation is performed as if SEQUENTIAL was specified. Attempting a sequential
operation with a starting line number other than 1, e.g., COPY FYLE(2), also gives an
error comment if SEQFCHK is ON.

Appendix A: I/O Modifiers 141

MTS 1: The Michigan Terminal System

November 1991

I/O operations involving devices, such as card readers, printers, card punches, magnetic
tape units, and terminals, are inherently sequential and are normally done
SEQUENTIALly. If the SEQUENTIAL modifier is specified, the line number associated
with the line is the value of the current line number plus (minus, if the backwards I/O
modifier is given) the increment specified on the FDname. If the INDEXED modifier is
specified, the line number associated with the line is the line number specified in the
calling sequence. For devices, the INDEXED modifier is used primarily in conjunction
with the PREFIX modifier. Note that the device treats the I/O operation as if
SEQUENTIAL were specified.

For further details about indexed and sequential input/output operations, see the section
“Input/Output Operations” in this volume.

Bit 29 EBCD Value: 4 (dec) 00000004
28 BIN, BINARY 8 00000008

Default: EBCD
Exceptions: None

The action of the EBCD/BIN modifier pair depends on the device. For card readers and
punches, the EBCD modifier specifies EBCDIC translation of the card image; this means
that each card column represents one of the 256 8-bit EBCDIC character codes. The BIN
modifier specifies that the card images are in column binary format; this means that each
card column represents two 8-bit bytes of information. The top six and bottom six punch
positions of each column correspond to the first and second bytes, respectively, with the
high-order two bits of each byte taken as zero. Printers and files ignore the presence of
this modifier pair.

Other device support routines that recognize this modifier pair are:

(1) The UMnet/Michnet Computer Network routines
(2) The IBM 3278 Display Station routines

For information on the use of this modifier pair in specifications involving the devices
listed above, see the respective sections of MTS Volume 4: Terminals and Networks in

MTS, Reference R1004, and MTS Volume 19: Magnetic Tapes in MTS, Reference R1019.
The list of device support routines recognizing this modifier is subject to change without
notice. Users who wish to keep their programs device-independent should not specify
this modifier.

Bit 27 LC, LOWERCASE Value: 16 (dec) 00000010
26 UC, CASECONV 32 00000020

Default: LC
Exceptions: None

The LC/UC modifier pair is not device-dependent. If the LC modifier is specified, the
characters are transmitted unchanged. If the UC modifier is specified, lowercase letters
are changed to uppercase letters. This translation is performed in the user’s virtual

memory region. On input operations, the characters are read into the user’s buffer area
and then translated. On output operations, the characters are translated in the user’s
buffer area and then written out. Only the alphabetic characters (a-z) are affected by

142 Appendix A: I/O Modifiers

MTS 1: The Michigan Terminal System

November 1991

this modifier. Unlike IBM programming systems, MTS considers the characters ¢, ",
and ! as special characters rather than “alphabetic extenders,” and thus, the UC modifier
does not convert ¢, ", and ! into @, #, and $, respectively. Note that the conversion to
uppercase may also be performed by the terminal support routines (see MTS Volume 4:

Terminals and Networks in MTS, Reference R1004).

Bit 25 NOCC Value: 64 (dec) 00000040
24 CC, CARCNTRL 128 00000080

Default: CC
Exceptions: Line files (FILE), sequential files (SEQF), 9TP, and RMPC

Controlled by device commands for MNET

The NOCC/CC modifier pair is device-dependent. This modifier pair controls whether
logical carriage control on output records is enabled. For printers and terminals, the
first character of each record is taken as logical carriage control if it is a valid
carriage-control character and if the CC modifier is specified. If the first character is not
valid as a carriage-control character, the record is written as if NOCC were specified.
For further information on logical carriage control, see Appendix H to this section.

Bit 23 −PFX Value: 256 (dec) 00000100
22 PFX, PREFIX 512 00000200

Default: −PFX
Exceptions: None

The PFX modifier pair controls the prefixing of the current input or output line with the
current line number. On terminal input, the current input line number is printed before
each input line is requested. The line number used is determined as specified in the
description of the SEQUENTIAL and INDEXED modifiers. An example for terminal
input is

COPY *SOURCE*(6,,2)@PFX A(6,,2)
6_ first input line
8_ second input line

.

.
end-of-file indicator

The current (prefix) line number is not necessarily equivalent to the file line number. In
the example above, the prefix line and the file line numbers were explicitly made to
correspond by also specifying a line number range on the output FDname (the file A). On
input from card readers and files, the PFX modifier has no effect. On terminal output,
the current line number is printed before each output line is written. The line number
used is determined as specified in the section “Input/Output Operations” in this volume.
An example for terminal output is

COPY A(1,10) *SINK*(100,,2)@PFX
100_ first output line
102_ second output line

.

.

Appendix A: I/O Modifiers 143

MTS 1: The Michigan Terminal System

November 1991

Note again that the current line number is not equivalent to the file line number. On
output to the printer or to a file, the PFX modifier has no effect.

If the INDEXED and PFX modifiers are given together for terminal output, the line
numbers referenced by the INDEXED modifier are the same as those produced by the
PFX modifier. As an example, consider the following FORTRAN program segment:

INTEGER*2 LEN
DATA MOD/Z00000202/ Enables INDEXED and PFX

1 CALL READ(REG,LEN,0,LNR,2,&2)
CALL WRITE(REG,LEN,MOD,LNR,3)
GO TO 1

2 STOP

This program performs a read SEQUENTIAL and a write INDEXED and PFX. The
command (assuming compilation of the above into −LOAD)

RUN -LOAD 2=A 3=*SINK*

is equivalent to

COPY A *SINK*@I@PFX

which is also similar to

LIST A

with a slightly different formatting of the line numbers.

Bit 21 −PEEL Value: 1024 (dec) 00000400
20 PEEL, GETLINE#, 2048 00000800

RETURNLINE#

Default: −PEEL
Exceptions: None

The PEEL modifier pair has two functions, depending upon whether it is specified on
input or on output. On input, if the PEEL (GETLINE#) modifier is specified, a line
number is removed from the front of the current input line. The line number is
converted to internal form (external value times 1000) and returned in the line number
parameter during the read operation (see the subroutine descriptions of INPUT, GUSER,
and READ). The complete input line including the line number is read into the user
input region, PEEL processing is performed, the line number (if any) is removed, the
remainder of the line is shifted left by the number of characters in the line number, and
the length to be returned is decremented by the number of characters removed. Thus,
the user input region must be large enough to accommodate both the line number and the
line itself. The line number must begin in column 1 (leading zeros are permitted). The
line-number separator character (which defaults to “,”) may be used to separate the line
number from the line. As an example, consider the following FORTRAN program
segment:

INTEGER*2 LEN
DATA MOD/2048/

1 CALL INPUT(REG,LEN,MOD,LNR,&2) Read with PEEL
CALL PRINT(REG,LEN,0,LNR)

144 Appendix A: I/O Modifiers

MTS 1: The Michigan Terminal System

November 1991

GO TO 1
2 STOP

The program reads an input line, removes the line number, and writes out the line
without its line number. Execution of the object module of the sample program is as
follows:

RUN -OBJ INPUT=*SOURCE* PRINT=ABC
10AAA
12BBB

is equivalent to

COPY *SOURCE*@GETLINE# ABC
10AAA
12BBB

Listing the file ABC produces

LIST ABC
1 AAA
2 BBB

If the PEEL modifier is specified on input in conjunction with the INDEXED modifier on
output, the line number of the input line can be used to control the destination of the line
during output. For example:

INTEGER*2 LEN
DATA MOD1/2048/, MOD2/2/

1 CALL INPUT(REG,LEN,MOD1,LNR,&2) Read with PEEL
CALL PRINT(REG,LEN,MOD2,LNR) Write INDEXED
GO TO 1

2 STOP

This program reads an input line, removes the line number, and writes out the line with
the extracted line number as the line number specification for an indexed write operation.
The following sequence (assuming compilation of the above into −LOAD)

RUN -LOAD INPUT=*SOURCE* PRINT=ABC
10AAA
12BBB

is equivalent to

COPY *SOURCE*@GETLINE# ABC@I
10AAA
12BBB

Listing the file ABC produces

LIST ABC
10 AAA
12 BBB

On output, if the PEEL (RETURNLINE#) modifier is specified, the line number of the
current output line is returned in the line number parameter of the subroutine call during
the write operation (see the subroutine descriptions of PRINT (SPRINT), SPUNCH,

Appendix A: I/O Modifiers 145

MTS 1: The Michigan Terminal System

November 1991

SERCOM, and WRITE). The line itself is written out and is unaffected by the presence
or absence of this modifier. The modifier is used on output to aid the programmer in
recording the line number of the current line written out.

Bit 19 −MCC Value: 4096 (dec) 00001000
18 MCC, MACHCARCNTRL 8192 00002000

Default: −MCC
Exceptions: None

The machine carriage-control modifier pair is device-dependent and in general its use is
discouraged. The MCC modifier is used for printing output (via printers or terminals)
from programs producing output in which the first byte of each line is to be used as a
machine carriage-control command for output to an IBM 1403 (or 1443) printer. If the
MCC modifier is specified and the first byte of the output line is a valid 1403 machine
carriage-control command code, the line is spaced accordingly and printing starts with
the next byte as column 1. If the first byte is not a valid 1403 machine carriage-control
command code, the entire line is printed using single-spacing. Spacing operations
performed by machine carriage control occur after the line is printed (as opposed to logical
carriage control in which the spacing is performed before each line is printed). Most
programs do not produce output using machine carriage control. The MCC modifier pair
is ignored for files and devices other than printers, terminals connected through the
UMnet/Michnet Computer Network, or IBM 3278 Display Station terminals. For
further information on machine carriage control, see Appendix H to this section.

Bit 17 −TRIM Value: 16384 (dec) 00004000
16 TRIM 32768 00008000

Default: −TRIM
Exceptions: TRIM for 3270, RMPT, and 3066

Controlled by TRIM option of SET command for line files and
sequential files

The TRIM modifier pair is used to control the trimming of trailing blanks from input or
output lines. If the TRIM modifier is specified, all trailing blanks except one are trimmed
from the line. If −TRIM is specified, the line is not changed. For an input operation,
trimming does not physically delete the trailing blanks from the line, but only changes
the line length count. Note that the UMnet/Michnet Computer Network terminal
routines unconditionally trim blanks from output lines.

Bit 15 −SP Value: 65536 (dec) 00010000
14 SP, SPECIAL 131072 00020000

Default: −SP
Exceptions: None

The SP modifier pair is reserved for device-dependent uses. Its meaning depends upon
the particular device type with which it is used. The device support routines recognizing
this modifier pair are:

(1) The file routines
(2) The UMnet/Michnet Computer Network routines

146 Appendix A: I/O Modifiers

MTS 1: The Michigan Terminal System

November 1991

(3) The IBM 3278 Display Station routines

The file routines use the SP modifier to mean skip (do not transmit data) on a read
operation to a line or sequential file, and to mean replace on a write operation to a
sequential file. For further details, see the section “Input/Ouput Operations” in this
volume.

For information on the use of this modifier pair in specifications involving the devices
listed above, see the corresponding sections of MTS Volume 4: Terminals and Networks in

MTS, Reference R1004, and MTS Volume 19: Magnetic Tapes in MTS, Reference R1019.
The list of device support routines recognizing this modifier is subject to change without
notice. Users who wish to keep their programs device-independent should not specify
this modifier.

Bit 13 −IC Value: 262144 (dec) 00040000
12 IC 524288 00080000

Default: The setting of the IC global option (initially ON)
Exceptions: None

The IC modifier pair controls implicit concatenation. If the IC modifier is specified,
implicit concatenation occurs via the “$CONTINUE WITH” line. If −IC is specified,
implicit concatenation does not occur. For example, LIST PROGRAM@−IC lists the file
PROGRAM and prints “$CONTINUE WITH” lines instead of interpreting them as
implicit concatenation. The use of the IC modifier in I/O subroutine calls or as applied to
FDnames overrides the setting of the implicit concatenation global option (SET IC=ON or
SET IC=OFF) for the I/O operations for which it is specified.

Bit 11 FWD, FORWARDS Value: 1048576 (dec) 00100000
10 BKWD, BACKWARDS 2097152 00200000

Default: FWD
Exceptions: None

The forwards-backwards modifier pair control the direction of the next sequential read
operation. On a read backwards operation, the information is placed in the designated
region in a manner identical to a read forwards operation, i.e., the front of the logical
record is placed at the beginning of the region. For further details on using this modifier,
see the section “Input/Output Operations” in this volume.

Bit 9 −ENDFILE Value: 4194304 (dec) 00400000
8 ENDFILE 8388608 00800000

Default: The setting of the ENDFILE global option (initially OFF)
Exceptions: None

The ENDFILE modifier pair controls the recognition of the $ENDFILE command
delimiter in the input stream. If ENDFILE is specified, the $ENDFILE line is always
recognized as a command delimiter. If −ENDFILE is specified, the $ENDFILE line is
never recognized as a command delimiter (the line is taken as a data line). If neither is
specified, the recognition of the $ENDFILE line is governed by the setting of the
ENDFILE global option (initially OFF). See the SET command for further details.

Appendix A: I/O Modifiers 147

MTS 1: The Michigan Terminal System

November 1991

Bit 7 FDUBCONT Value: 16777216 (dec) 01000000

Default: −FDUBCONT
Exceptions: None

The FDUBCONT modifier may be used to specify that another fullword of modifier bits
follows the current fullword. This modifier may be used only with an I/O subroutine call;
it may not be used with an FDname.

Bit 6 Unused (should be set to zero).

Bit 5 NOPROMPT Value: 67108864 (dec) 04000000

Default: −NOPROMPT
Exceptions: None

The NOPROMPT modifier may be used to allow control to be returned to a program after
certain errors occur that would otherwise result in a request for a replacement FDname
in conversational mode or program termination in batch mode. If the NOPROMPT
modifier is specified (bit 5 in the modifier word is 1) when an I/O subroutine call is made,
GR0 will be set to a value (see the section “Special Returns” below) indicating that either
the I/O operation terminated because of an error while attempting to open a new logical
I/O unit or FDUB, or that the I/O operation was completed with its success or failure
indicated by the return code in general register 15. This modifier may be used only with
an I/O subroutine call; it may not be specified with an FDname.

Bit 4 MAXLEN Value: 134217728 (dec) 08000000

Default: −MAXLEN
Exceptions: None

If the MAXLEN modifier is specified (bit 4 in the modifier word is 1) when an I/O input

subroutine call is made, only a maximum specified number of bytes of an input record will
be returned by the read operation. The second parameter of the input subroutine points
to three halfwords instead of the normal single halfword. The first halfword is set to the
length of the record returned by the read operation; the second halfword is preset by the
caller to specify the maximum record length that is desired; and the third halfword is set
to the actual (physical) length of the record. If the incoming record is longer than the
maximum length as specified by the second halfword, the record returned will be
truncated to the maximum specified length. If the DSR cannot determine the actual
length of the record, the third halfword will be set to −1. If the incoming record is less
than or equal to the maximum specified length, the first and third halfwords are not
guaranteed to be identical values if the TRIM modifier is in effect. This modifier may be
used only with an I/O subroutine call; it may not be specified with an FDname.

148 Appendix A: I/O Modifiers

MTS 1: The Michigan Terminal System

November 1991

Bit 3 NOEC Value: 268435456 (dec) 10000000

Default: −NOEC
Exceptions: None

If the NOEC modifier is specified (bit 3 in the modifier word is 1) when an I/O subroutine
call is made, explicit concatenation will be inhibited, i.e., if an end-of-file (return code 4)
occurs, a return will be made to the calling program instead of proceeding with the next
member of the concatenation (if any). This modifier may be used only with an I/O
subroutine call; it may not be specified with an FDname.

Bit 2 NOATTN Value: 536870912 (dec) 20000000

Default: −NOATTN
Exceptions: None

If the NOATTN modifier is specified (bit 2 in the modifier word is 1) when an I/O
subroutine call is made, all pending attention and timer interrupts, and all attention and
timer interrupts occurring during the call, are left pending. This modifier is useful only
when used by systems programs (by systems programmers). It may be used only with an
I/O subroutine call; it may not be used with an FDname.

Bit 1 ERRRTN Value: 1073741824 (dec) 40000000

Default: −ERRRTN
Exceptions: None

If the ERRRTN modifier is specified (bit 1 in the modifier word is 1) when an I/O call is
made, and if an I/O error occurs, the error return code is passed back to the calling
program instead of printing an error comment. The error return code is returned in
general register 15 or, if the NOPROMPT modifier is also specified, in register 0 for some
error conditions. The error comment may be retrieved by calling the subroutine
GDINFO. This modifier may be used only with an I/O subroutine call; it may not be used
with an FDname.

This modifier will cause any calls to the subroutines SETIOERR or SIOERR to be
ignored.

Bit 0 NOTIFY Value: −2147483648 (dec) 80000000

Default: −NOTIFY
Exceptions: None

If the NOTIFY modifier is specified (bit 0 in the modifier word is 1) when an I/O
subroutine call is made, GR0 will be set to a value (see the section “Special Returns”
below) indicating that the I/O operation did or did not cause a new FDUB to be opened.
A new FDUB is opened when

(1) implicit concatenation occurs,
(2) explicit concatenation occurs,
(3) a FDUB or logical I/O unit is used for the first time,
(4) a return is made from implicit concatenation, or

Appendix A: I/O Modifiers 149

MTS 1: The Michigan Terminal System

November 1991

(5) the maximum line length increases.

This modifier may be used only with an I/O subroutine call; it may not be specified with an
FDname.

Second Fullword of Modifier Bits

If any of the following bits are used, bit 7 (FDUBCONT) in the first word of I/O modifiers must also be
set.

Bit 31 −LOG Value: 1 (dec) 00000001
30 LOG 2 00000002

Default: LOG
Exceptions: None

If the LOG modifier is specified, the read or write operation will be logged in the log file, if
logging is enabled by the LOG command. By specifying −LOG, the user may suppress
information from being written into the log file.

Bit 29 −MACRO Value: 4 (dec) 00000004
28 MACRO 8 00000008

Default: MACRO
Exceptions: None

If the MACRO modifier is specified and the input is being read from *SOURCE* (or
equivalent), the MTS macro processor is called to interpret lines for macro commands or
macro invocations. If the −MACRO is specified, the macro processor is not called. SET
MACROS=ON (the default) must be specified for this modifier to be effective. The
MACRO modifier pair has no effect on the generation of lines by a macro once it is
invoked; these lines are always generated whether or not the MACRO or −MACRO
modifier is subsequently specified.

Bit 27 −MFR Value: 16 (dec) 00000010
26 MFR 32 00000020

Default: −MFR
Exceptions: None

If the MFR (macro flag required) modifier is specified and the input is being read from
SOURCE (or equivalent), the “>” macro flag character must be given for lines that are
macro invocations. If the −MFR modifier is specified, the “>” is not required. The
MACRO modifier and SET MACROS=ON (the default) must also be specified for this
modifier to be effective. The MFR modifier pair does not affect lines that are macro
commands; these always require the flag character.

Bits 0-25 are reserved for future expansion and should be set to zero.

150 Appendix A: I/O Modifiers

MTS 1: The Michigan Terminal System

November 1991

Special Returns

If the NOPROMPT (bit 5 of the first word) or NOTIFY (bit 0 of the first word) modifiers are specified
when an I/O subroutine call is made, the bits in general register 0 (GR0) will indicate the result of the
subroutine call. If no bits are set (GR0 is zero), the I/O operation was completed and its success or
failure is indicated by the return code in general register 15. If GR0 is nonzero, the I/O operation
terminated without completion. The bit assignments are:

Bit 31 The NOTIFY modifier was enabled and a new FDUB was opened as the result of
this call, or an old FDUB was used for the first time with the @NOTIFY modifier.

Bit 30 The NOPROMPT modifier was enabled and an error occurred while opening a new
logical I/O unit or FDUB.

The values of bits 0-29 are unpredictable and are reserved for future expansion.

Appendix A: I/O Modifiers 151

MTS 1: The Michigan Terminal System

November 1991

APPENDIX B

SEQUENTIAL FILES AND NOTE AND POINT

Associated with every sequential file are at least three logical pointers which determine where the
next read or write operation will start. Every sequential file has one read pointer for each use of the
file

1
as well as one write pointer and one last pointer. These logical pointers are automatically

updated after every read or write operation by MTS as outlined below. In addition, there are two MTS
subroutines, NOTE and POINT, whereby the user can remember the current values of these logical
pointers, and, at some later time, alter the values of these pointers. In so doing, a user is able to start
reading and/or writing a sequential file from points other than the beginning and/or end of the file.

These three logical pointers are manipulated by MTS as follows.

The read pointer is always initially set to point to the beginning of the file when the file is created or
first referenced. The read pointer is updated after every read operation to point after the line read if it
was read forwards and before the line if it was read backwards. A particular read pointer affected by a
rewind operation (i.e., the read pointer associated with the FDUB on which the rewind was given) is
reset to point to the beginning of the file. Finally, all read pointers are reset to point to the beginning
of the file whenever the file is emptied.

The write pointer is initially set to point to the beginning of the file when the file is created, and is
updated after every write operation to point to the next line to be written. The write pointer is reset to
point to the beginning of the file when the file is emptied or rewound. In addition, if after any forward
(backward) read operation, the read pointer is greater (less) than the write pointer, the write pointer is
updated to coincide with the read pointer. This allows a user to rewind, read backwards, or skip
backwards through a sequential file, begin reading forward, stop at some intermediate point and begin
writing at that point. This is similar to what would happen if the same operations were performed on
a magnetic tape. The difference is that, if after writing a few lines, the user again began to read the
file, reading would begin from the intermediate point at which reading had previously stopped and
writing had started (i.e., the read pointer is not updated after a write operation). Finally, whenever
the file is first referenced, the write pointer is set equal to the last pointer.

The last pointer is initially set to point to the beginning of the file when the file is created, and is
updated after every write operation to coincide with the new updated write pointer. The last pointer is
also considered the logical end of file, so that writing a file beginning from some intermediate point
implies that any information from that point on is to be discarded. However, if the write operation
specifies the @SP modifier (i.e., a replace is requested), the last pointer is not set to the write pointer
and the rest of the information is still there. In this case, the record being written into the file must
have the same length as the one that was there before. If it is not the same length, it will be truncated
or padded with blanks as necessary, written into the file, and then an error message (interceptable as

1
When a user has more than one logical I/O unit attached to the same file, or has
called the subroutine GETFD more than once for the same file, MTS creates a FDUB
(File or Device Usage Block) for each of these uses. The ramifications of having more
than one FDUB (and thus more than one read pointer) for the same file are discussed
later.

152 Appendix B: Sequential Files and NOTE and POINT

MTS 1: The Michigan Terminal System

November 1991

usual with the @ERRRTN modifier) will be issued. Finally, the last pointer is reset to point to the
beginning of the file whenever the file is emptied.

The NOTE subroutine can be called to obtain the values of these pointers when reading and/or
writing a sequential file, and then the POINT subroutine can be called to “reposition” these pointers.
(See the subroutine descriptions in MTS Volume 3: System Subroutine Descriptions, Reference R1003,
for calling sequences.) A call to NOTE will obtain four fullwords of information to be used later.
These four fullwords are respectively, the read, write, and last pointers, as well as the last line number
associated with the file corresponding to the FDUB-pointer given. These pointers always correspond
to the next line about to be read or written. At some later time, the caller is able to indicate which of
these pointers are to be altered for the next read or write operation and, using the information returned
by NOTE, can call the POINT subroutine appropriately.

The logical pointers are valid from one copy of a sequential file to another as long as both copies are
located on the same kind of storage. Thus, the pointers returned by NOTE for a file on the disk can be
used to point into an identical copy of the file elsewhere on disk storage.

The user should be aware of the consequences of reading and/or writing multiple logical I/O units
attached to the same file. Since there is one read pointer associated with each FDUB-pointer and with
each logical I/O unit, the user is able to read alternately from a number of different points in the file,
overlapping or not as the application dictates. However, since there is only one write pointer and one
last pointer associated with the file, writing to multiple uses attached to the same file amounts to
simply writing to the end of the file in the order that the write requests are received.

Appendix B: Sequential Files and NOTE and POINT 153

MTS 1: The Michigan Terminal System

November 1991

APPENDIX C

INTERNAL FILE STRUCTURE AND THE SIZE OF FILES

This appendix explains how big a file must be to hold a certain amount of data1 and describes the
internal structure of line files and sequential files.

The basic unit of space in a file is the page, a physical record that is 4096 bytes long.

Line Files

A line file contains two logical components: the line directory and the data section.

The line directory consists of fixed-length entries, one for each line in the file, and ordered by line
number. There are also entries for each available “hole” in the data section. The entries contain the
line number and indicate where that line is, in terms of the logical page number within the file (an
integer between 1 and 32767) and the displacement within the page. The line directory only points to
the lines themselves, which are in the data section.

The data section contains the lengths of the lines, followed by the actual lines, unordered and
unpacked (i.e., holes that result because of line replacements stay there until a piece that length or less
is needed). Very long lines must be broken into pieces; each piece after the first requires 6 bytes to
indicate its location and length.

Initially, the line directory and data section are contained in one page. If the file requires more
than one page, the line directory and data section occupy separate pages.

Now to get some approximate numbers for sizes of line files.

If N is the number of lines in the file, and
L is the average length of a line,

then the file can be contained in one page if:

N*(L+2) < 3000 and N < 132

If the file requires more than one page, then it will use DP data pages and LP line directory
pages, where:

1
The FSIZE subroutine may be used to determine the size of a file needed to hold a
given data set. See MTS Volume 3: System Subroutine Descriptions, Reference R1003,
for further details.

154 Appendix C: Internal File Structure and the Size of Files

MTS 1: The Michigan Terminal System

November 1991

┌ ┐
| N*(L+2+6*L/4096) |

DP = |__________________|, and
| 4096 |
└ ┘

┌ ┐
| N+DP+2 |

LP = |________|
| 510 |
└ ┘

The total number of pages required is thus:

P = DP + LP

It should be noted that the above figures are approximate, and closest to the actual number only
when the file is first filled. In particular, the parameter N above really is the number of lines plus the
number of holes, and, after the file has undergone much editing, it may be considerably greater than
the number of lines. Duplicating a file into another file (and destroying the original and renaming the
copy) will condense the file, and is recommended after a file has been extensively edited.

Sequential Files

The organization of sequential files is quite simple compared to line files. In general, the first 16
bytes of the first page are used as a header in which pertinent information about the sequential file is
retained.

Immediately following this header information are the lines of information stored in the sequence in
which they were received. Since these lines may be up to 32767 bytes long, and since the pages on the
disk are 4096 bytes, it is quite possible that a line will have to be broken up and stored on more than one
page. This is quite likely, even if only “short” lines are written into a sequential file, since the lines are
packed end-to-end using up all of one page before going on to the next page. Thus it turns out that
even a short line may be broken up across a page boundary.

For this reason it is convenient to refer to a segment of a line as that part of the line which resides on
a page. A line can therefore consist of one segment, two segments, or more, depending on the size of
the line and how the line “fell” with respect to page boundaries. Each segment of a line in a sequential
file has 6 bytes of overhead associated with it.

This gives the following lower bound for the number of pages:

┌ ┐
| 16 + N*(L+6)|

P = |_____________|
| 4096 |
└ ┘

This is a lower bound because it does not consider that when a line is spanned across page
boundaries, each of the segments has the 6 bytes of overhead information attached to it, and almost
every page boundary has a line spanned across it.

Appendix C: Internal File Structure and the Size of Files 155

MTS 1: The Michigan Terminal System

November 1991

APPENDIX D

DETAILS ON USING SHARED FILES CONCURRENTLY

When discussing the use of shared files in MTS, two distinct processes are of concern. First, the
process by which the owner of a file grants or denies others access to that file and subsequently the
resolution involved in determining the allowable access to others; second, once access has been granted
to a user, the process by which concurrent use of the shared file is controlled. The first process
involves the use of the PERMIT command as well as the subsequent access resolution and is described
elsewhere; only the second process is described here.

A file can be used concurrently among several tasks (jobs)
1

in MTS. Although the system has
hardware available to allow separate tasks to address the same virtual storage (i.e., the same copy of a
file), this facility is not used in the current mechanism for sharing files in MTS. Thus, two tasks using
the same file concurrently actually address their own separate copies of the shared file.

Thus, the problem of controlling concurrent use of a shared file among separate tasks amounts to the
bookkeeping necessary to guarantee that concurrent use will not endanger the integrity of the actual
file on disk. Quite simply, this is accomplished, first, by maintaining a system-wide shared-file table
of all files currently in use as well as how and by whom each file is being used and, second, by enforcing
a set of rules describing exactly what types of concurrent use can be allowed at any time.

Before describing the rules of concurrent use, something should be said about opening and closing
files in MTS as opposed to locking and unlocking files in MTS.

A file is opened the first time it is referenced (read, written, etc.). The opening process requires
searching the appropriate file catalog, determining allowable access, allocating buffers in virtual
memory for the file, and reading parts of the file from the secondary storage device (disk) into the
buffers. A file is closed whenever the user or MTS indicates that the use of the file is complete.
Closing a file requires that any modified buffers be rewritten back onto secondary storage, and the
buffers be deallocated. Opening and closing a file is a rather time-consuming process and needs to be
done only once for each use of a file.

On the other hand, a file must be locked (in the appropriate fashion) before any operation (reading,
emptying, etc.) can be performed on the file. The locking process requires that MTS interrogate the
system-wide shared-file table to determine if (concurrent) use is possible at this particular time. If so,
MTS records in the table how the file has been locked and by whom. A file is unlocked whenever MTS
indicates that the use of the file is complete or whenever the user indicates that concurrent use of the
file need no longer be restricted. The unlocking process amounts to deleting the appropriate
information from the system-wide shared-file table.2 The MTS file-sharing facility was designed so that
the opening and closing of files is independent of the locking and unlocking of files (i.e., a file can be
opened without being locked or can be locked without being opened). This is desirable, since in many

1
A task can be either a batch job, a terminal session, or a server.

2
All files in MTS are potentially sharable since MTS allows concurrent signons of the
same userID; thus all files must be locked and unlocked during the normal course of
operation.

156 Appendix D: Details on Using Shared Files Concurrently

MTS 1: The Michigan Terminal System

November 1991

shared-file applications it is necessary to lock and unlock files many times during the single use of a file.

In MTS, three classes of locking are defined to maintain the integrity of a shared file. These three
classes are: locking a file for reading, locking a file for modification (writing, emptying, truncating,
renumbering, etc.), and locking a file for destroying (renaming, permitting). These three locking
classes are inclusive in the sense that locking a file for modification also locks a file for reading, and
locking a file for destroying also locks the file for modification and reading.

The rules for concurrent use of a file among separate tasks can now be stated in terms of the locking
restrictions.

(1) Any number of tasks can have a file locked for reading at the same time as long as no other
task has the file locked for modification or destroying.

(2) Only one task can have a file locked for modification at any given time, and then only if no
other task has the file locked for reading or destroying.

(3) Only one task can have a file locked for destroying at any given time, and then only if no
other task has the file open, or locked for reading or modification.

The process by which files are locked and unlocked falls into two categories. Files are implicitly

(automatically) locked and unlocked by MTS whenever a user requests something of MTS which
requires locking. Files can also be explicitly locked and unlocked by the user from either the command
level or the subroutine level.

Thus, if a user asks MTS to LIST a file, MTS will implicitly and automatically lock the file for
reading, list the file, and then unlock the file. Likewise, if the user asks MTS to COPY information to a
file, MTS will implicitly and automatically lock the file for modification, copy information to the file,
and then unlock the file. Similarly, if the user is operating at the subroutine level, on the first call to a
subroutine to read (or write) a line from a file, MTS will implicitly and automatically lock the file for
reading (or modification) and then leave the file locked in that manner until the use of that file is
complete. In general, the locking is associated with the FDUB (File or Device Usage Block) associated
with the file, and the implicit and automatic unlocking is done when the FDUB is released.

1
At the

command level, a FDUB is obtained for each use of a file by that command and the FDUB is not
released until the (normal) termination of that command. At the subroutine level, FDUBs are
obtained via subroutines such as GETFD and released via subroutines such as FREEFD.

If, while attempting to lock a file, MTS determines that according to the concurrent-use rules, it
cannot lock the file as requested (for example, if another task has the file already locked for
modification), MTS will implicitly and automatically attempt to queue the task to wait until the file can
be locked. Before doing so, however, MTS will check to ensure that queuing the task to wait for the file
will not result in a situation wherein the current task, as well as others, will be deadlocked indefinitely
on their respective wait queues. If such is the case, MTS will not allow the task to wait but instead
will return an error indication. An example of deadlocking is as follows:

(1) Suppose task A has file X locked for reading, and

1
When MTS implicitly locks a file through a particular FDUB, it may “raise” the
locking class but will never “lower” it. Thus, if a user operating from the subroutine
level first writes a line to a file and then reads a line from the same file, MTS will
implicitly lock the file for modification before the first write and leave it locked for
modification thereafter.

Appendix D: Details on Using Shared Files Concurrently 157

MTS 1: The Michigan Terminal System

November 1991

(2) Suppose task B has file Y locked for reading.

(3) Now suppose task A does something that requires file Y to be locked for modification.
MTS, realizing that someone else (task B) has file Y locked for reading, will queue task A
to wait for the use of file Y to complete.

(4) Finally, suppose task B does something that requires file X to be locked for modification.
MTS realizes not only that someone else (task A) has file X locked for reading, but also
that if task B is queued to wait for the use of file X to complete, neither task A nor task B
will do another thing, since each would be waiting for the other (to unlock a file) before
continuing. In this particular example, task B is not queued to wait, but instead an error
indication is returned.

If the file is locked by another task, MTS normally will wait until the file is released by the other
task. This waiting may be canceled by an attention interrupt, in which case the message

"FDname": wait to lock cancelled.

is printed.

It is anticipated that most shared-file use of MTS could be handled by the implicit automatic
locking, unlocking, and waiting done by MTS. To be sure, however, there also needs to be some means
of explicitly locking and unlocking files, as well as some way of specifying a maximum time to wait on a
file if such is desired. These facilities are necessary, for example, if a user operating at the command
language level wished to empty a file and copy new information into it, all the while ensuring that after
the file was empty and before the new information was copied in, no one would be able to read the
(empty) file. Likewise, if a user is operating at the subroutine level, the facility would be necessary if
one wished to read a line from a file, change it, and write the line back into the file, all the while
ensuring that no other task could be attempting to read or modify that same line after it was read and
before it was written back. Thus, MTS has available two commands (LOCK and UNLOCK) and two
user-callable subroutines (LOCK and UNLK) to allow users to explicitly lock and unlock files as well as
to (optionally) request that no waiting be done, or that the wait is not to last longer than a certain
amount of time if the locking cannot be accomplished. In addition, (batch) tasks can request that their
tasks be terminated if for any reason their explicit locking requests cannot be satisfied.

Since, within any one task, the locking and unlocking of files is controlled by each use of the file (i.e.,
each FDUB), the question arises as to how a file is actually locked and unlocked within a task when
more than one use (and thus more than one implicit or explicit locking request) is associated with the
same file. In general, it can be said that a file is always locked at the level of the highest locking
request associated with the file, and when a file is unlocked for a particular use, it is left locked at the
highest remaining locking request associated with the file. Thus, for example, if the user explicitly
LOCKs a file for reading (one use of the file) and then EMPTYs the file (a second use), MTS will
implicitly and automatically lock the file for modification (the second use requires a higher locking
class), empty the file, and then unlock the file for modification but leave it locked for reading (the
highest remaining locking request). Likewise, if a user, operating at the subroutine level, has called
GETFD twice for the same file and has implicitly locked the file for modification by writing the file via
FDUB1 and then explicitly locked the file for read via FDUB2, the file would remain locked for
modification (the highest level locking request). If then the user explicitly unlocked FDUB1, the file
would be unlocked for modification but would remain locked for reading (the highest remaining locking
request).

158 Appendix D: Details on Using Shared Files Concurrently

MTS 1: The Michigan Terminal System

November 1991

When a file is locked explicitly at the command level, it will remain locked until it is explicitly
unlocked at the command level (or until the task signs off). Likewise, if a file is locked explicitly (or
implicitly) at the subroutine level via a FDUB it will remain locked until:

(1) the file is explicitly unlocked via the same FDUB,

(2) the FDUB is freed, or

(3) the program terminates execution normally (attention interrupts, program interrupts,
calling the subroutines ERROR, MTS, or MTSCMD are not normal terminations) or is
unloaded.

In addition, EDITing a file implicitly locks the file as needed and leaves the file locked until a new file is
edited or until the File Editor returns.

Furthermore, when a file is locked explicitly, either from command or subroutine level (assuming no
other FDUB has a locking request associated with the file within the same task) the file will actually be
locked as requested, i.e., the locking class will be either “raised” or “lowered” or left the same in order to
conform to the actual request.

Finally, it should be noted that locking a file is in effect locking the name of that file. Thus, one can,
for example,

LOCK FILE1 RENAME
RENAME FILE1 AS FILE2
CREATE FILE1

all the while leaving FILE1 locked.

Appendix D: Details on Using Shared Files Concurrently 159

MTS 1: The Michigan Terminal System

November 1991

APPENDIX E

UPDATING FILES DEFENSIVELY IN MTS

One of the hazards of using a timesharing system like MTS is the unfortunate fact that when
machine problems or power failures cause the system to go down abruptly, terminal users are not able
to sign off gracefully and generally are left with no recourse for recovery of work currently in progress.
This is particularly frustrating if the terminal user happens to be in the process of updating a file when
the system goes down because, due to the structure of files in MTS, it is possible that a random portion
of the most recent changes may not in fact be made. In addition, if the terminal user is particularly
unfortunate, the partially updated file may possibly be left in an inconsistent, unusable state by the
abrupt halting of the terminal session.

Two questions often asked are: Why do changes, apparently made, not actually get accomplished
when the system crashes during the updating process? and, what can the terminal user (or even an
interactive program) do to minimize the effort lost when the updating process is terminated
prematurely due to machine or power failures?

To understand the answer to the first question, some background about the file system in MTS is
necessary.

When a file is first referenced, the first few physical blocks (physical units of information, in general
containing many lines) of the file are read from disk into buffers (blocks of storage in virtual memory).
This is done because transferring information to and from the user via these buffer images of the
physical blocks is much faster than actually reading and writing physical blocks of secondary storage
at every request. This process of reading the first few physical blocks into buffers when the file is first
referenced has historically been called “opening the file.” Thus, for example, when MTS is requested to
read a line (logical record) from the file, if that line happens to be already in a buffer, the information is
simply and immediately passed to the requester. If the line is not in a buffer, an existing buffer must
be emptied and the physical block on secondary storage containing the requested line must then be
read from disk into the now-empty virtual memory buffer and then, as before, the line requested is
passed to the user.

Similarly, when MTS is requested to take a line from the user and write it into a file, if that line
“happens to fit” (both physically and logically) into a buffer in virtual memory, it is put directly into the
appropriate place in the buffer. If it does not happen to fit into any buffers, an existing buffer must be
“emptied” and the physical block from secondary storage into which the line properly goes is read into
the empty buffer and the line fitted into the appropriate place. In either case, once the line is written,
the buffer into which it was placed is flagged as changed. This means that the buffer in virtual
memory is no longer identical to the corresponding physical block on secondary storage and, more
importantly, the buffer image in virtual memory is henceforth the one and only valid representation of
that block of the file.

By now one is able to see the first indications of how problems can and do arise when the system goes
down during the updating process. The problem, of course, is that while a file is open, its true and
valid state is reflected not only in its physical blocks on secondary storage but also by its quite possibly
changed buffer images in virtual memory. Suffice it to say further that when the system goes down

160 Appendix E: Updating Files Defensively in MTS

MTS 1: The Michigan Terminal System

November 1991

abruptly, all buffer images in virtual memory are lost.

Thus, the big question appears to be: When are the buffer images in virtual memory written out in
updated form on secondary storage? The answer is quite simply (and again for reasons of efficiency)
that while the file is open the buffers are written out to secondary storage only when necessary.
Whenever a new physical block is needed in virtual memory and a buffer is not available, an existing
buffer must be emptied. Before that buffer is emptied and reused, however, a check is made to see if
the buffer has been changed, and, if it has, the buffer is written back out on secondary storage in
updated form. The randomness of changes made and changes actually accomplished should now be
evident, since there is no direct relationship between when changes are made to a buffer and when the
buffer is actually written out in updated form on secondary storage.

To decrease the probability that the secondary storage will be inconsistent, certain operations
always cause the buffer images to be written. An example of such an operation is the expansion of a
file. Also, for the same reason, whenever any buffer image is written to secondary storage, all changed
buffer images are written.

When the user has finally finished updating the file, MTS goes through and writes out all virtual
memory buffers that have changed in updated form onto secondary storage. Only at this point is the
file safely on secondary storage in a consistent and up-to-date state. This process of writing out
changed buffers onto secondary storage has historically been called “closing the file.”

Turning to the second question, it becomes evident that the one thing a terminal user (or interactive
program) can do to minimize losses which may occur when the system goes down during the updating
process is to request MTS to close a file more often than it otherwise might. This of course brings up
the obvious question. When does MTS normally close a file? Very simply (and specifically to
minimize losses), MTS closes all open files before the execution of every command. This means that
during an edit session using the EDIT command, the edit file will not be closed until the File Editor
returns to MTS command mode and another MTS command is issued. To circumvent this problem,
the Editor CLOSE command may be issued periodically to force the closing of the edit file. (Note: The
Editor commands CHECKPOINT and RESTORE are of no help in the event of system crashes, since
they are meant to be used only if the user wishes to backtrack.)

The system subroutines CLOSEFIL and FREEFD (the counterpart of GETFD) also close the
indicated file. CLOSEFIL closes the file when it is called; FREEFD closes the file only when the last
FDUB is released. Also, the system subroutine WRITEBUF will write the VM buffers to secondary
storage without closing the file. Thus, interactive user programs which write large amounts of
information into a file over long periods of time should occasionally call WRITEBUF or CLOSEFIL to
ensure that changes made up to that point in time are actually accomplished. In particular, programs
which complete the updating process but continue to execute for long periods of time should always call
WRITEBUF, CLOSEFIL, or FREEFD as soon as updating is complete, since MTS will not close the file
until execution has terminated.

It should be mentioned at this point that these procedures allow a user or program to force MTS to
close a file more often than it otherwise might, and in that way do much to minimize the work lost if the
system goes down before the updating process is completed. In general, there is not much that can be
done to salvage the changes that were made between the time the file was last closed and the time the
system went down. If one is lucky, and generally one is, the only loss is that of checking and redoing
those changes (not necessarily the most recent) made but not accomplished during the last open period.
If one is unlucky, the file (open when the system crashed) will show signs of inconsistency which are not
correctable through normal means. These inconsistencies are evidenced by, for example, two lines
with the same line number, or lines which refuse to be deleted or altered. Due to their much simpler

Appendix E: Updating Files Defensively in MTS 161

MTS 1: The Michigan Terminal System

November 1991

internal structure, losses when writing sequential files are most often limited to the last few lines not
being written on the disk. The public file *VALIDATEFILE, which checks for inconsistencies in files,
should be run on any file that was open and being updated when the system went down. Most
inconsistencies can be fixed by the user with the aid of *VALIDATEFILE. Some inconsistencies,
however, make a file totally unreadable. In cases of this nature, the ITD staff should be consulted; if
the damage is beyond human repair, the file will have to be restored from a save-tape to its status of the
day before. The *RESTORE program may be run to restore a file from the save-tape (see MTS Volume

2: Public File Descriptions, Reference R1002, for details). In cases where many time-consuming
updates are being made over long periods of the day and the restoring of a file to its status of the day
before cannot be tolerated, the user should probably make changes to a copy of the file and periodically
update the original by duplicating the copy.

Some general comments can be made in closing. First, upon reflection, it should be evident that if a
file is only being read, no problems can result from a system crash since none of the virtual memory
buffers are changed and thus the file on secondary storage is always valid. Second, due to their
internal structure, line files are much more susceptible (than sequential files) to inconsistencies caused
by system crashes during an updating process. Finally, update defensively; the work you save will be
your own.

162 Appendix E: Updating Files Defensively in MTS

MTS 1: The Michigan Terminal System

November 1991

APPENDIX F

THE XEROX 9700 PAGE PRINTER

The Xerox 9700 Electronic Printing System is a high-speed page printer that produces high-quality
output on one or two sides of standard 8.5 by 11-inch paper. The Xerox 9700 operates using a
Xerographic process. In this respect, it is much like a large office copier, but instead of requiring an
original document whose image is optically projected into the reproduction mechanism, the page
printer uses a laser to create the image to be printed from data transmitted by MTS. The page printer
prints at a rate of up to two images per second, which is more than ten times the speed of our fastest
line printer.

Pages, Images, and Sheets

On line-printer output, there is no need to distinguish between pages, images, and sheets, since
each sheet of paper contains one image of one page. However, on the page printer this relationship is
more flexible.

A page is a logical quantity. A new page is started either when the appropriate carriage control
appears (such as a “1” in column one, which causes a new logical page to be started), or when the
number of lines per page is exceeded, so that text overflows onto a new page. An image is what gets
printed on one side of a sheet of paper, and a sheet (of paper) is a physical quantity. An image may
contain more than one page, for example when printing in two-up or four-up configuration.

In the normal (default) manner of printing for the page printer, one page is placed on one image, and
two images are placed on each sheet (one on each side). Pages also may be printed “two-up” and/or
“two-sided”. When printing “two-up”, two pages are placed on each image, one above the other.
When printing “two-sided”, two images are printed on each sheet. Thus, when printing “two-up” and
“two-sided”, four pages can be printed on each physical sheet of paper.

Page Orientation

The page printer can print text in many formats and fonts, but the major variation is between
“landscape” and “portrait” orientation of the paper. These terms indicate the direction in which text
lines lie on the paper. In landscape orientation (the way most landscapes are painted), the lines of text
lie parallel to the long edge of the paper:

┌────────────────────────┐

Landscape Orientation

│ │
│ │
│ │
│ │
│ │
│ │
│ │
└────────────────────────┘

Appendix F: The Xerox 9700 Page Printer 163

MTS 1: The Michigan Terminal System

November 1991

In portrait orientation (the way most portraits are painted), the lines of text are parallel to the short
side of the paper:

┌───────────────┐

Portrait
Orientation

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───────────────┘

Delivery of Page-Printer Output

Users can request delivery of page-printer output to the batch stations at NUBS, UNYN, Dearborn,
and Flint by specifying the DELIVERY keyword on the SIGNON command for batch jobs, e.g.,

SIGNON userid DELIVERY=NUBS

or similarly on the CONTROL or SET commands for *PRINT* jobs submitted from a terminal session.
DELIVERY=NONE will disable a previous delivery specification for future print jobs. The delivery
schedule and stations serviced are given in the public file *DELIVERY.

Additional Features of the Xerox 9700

The Xerox 9700 has many features beyond those described above. It can print characters in
different sizes and shapes. Boldface, italics, and script characters are all available. Special and
foreign-language characters can be included. The fairly high resolution of the Xerox 9700 (300 dots
per inch) makes some graphics support possible, although the 9700 is character addressable rather
than dot addressable and so is not a true graphics device. Electronic forms can be used to simulate
lined and shaded paper.

These additional features are described in Using the Xerox 9700 Page Printer, Reference R1038.

Programs Supporting Xerox 9700 Features

Only a few programs currently support the multiple-font and multiple-page capabilities of the Xerox
9700.

The program *PAGEFONTCONVERT, which is described in Reference R1038, may be used to
reformat output intended for a line printer into output more appropriate for the Xerox 9700 page
printer.

The program *SIDEBYSIDE, which is also described in Reference R1038, may be used to combine
several pages onto one sheet of output.

164 Appendix F: The Xerox 9700 Page Printer

MTS 1: The Michigan Terminal System

November 1991

The *TEX text-processing program supports the multiple-font capability of the page printer.

The program STAT:TEXTEDIT, a text-processor supported by the Statistical Research Laboratory,
supports the multiple-font capability of the page printer (see the Stat Lab publication, TEXTEDIT).

Rates

Printing charges for the page printer are based on the number of images printed and the number of
sheets of paper consumed, not on the number of pages or number of lines printed. The specific charges
are given in the public file *RATES.

Operational Considerations

In spite of the high speed of the page printer, turnaround time for small jobs may be slower than
when the job is printed on a line printer, because it is not possible to remove output from either of the
two output bins without manual intervention (unless the bin fills up). Each output bin holds up to
1500 sheets, so it could take up to 25 minutes for a bin to fill. However, we expect turnaround for jobs
to be faster than this, because the bins will be emptied manually on a periodic basis. Also, after a job
has been sent to the page printer for printing, but before it has actually been printed and removed from
the output bin, it will be shown as “done” on the job status screen and by the command

SYS QUEUE

Because there is only one page printer at any site, a single large job could tie up the printer for fairly
long periods and no shorter jobs would be able to print. If this proves to be a serious problem, some
restrictions may be placed on the maximum size of jobs that can be printed on the page printer during
certain hours of the day. Finally, if the page printer is out of service for repair or maintenance, no jobs
can be printed and turnaround time will suffer.

Appendix F: The Xerox 9700 Page Printer 165

MTS 1: The Michigan Terminal System

November 1991

APPENDIX G

LINE-PRINTER CHARACTER SETS

The standard character set assumed by system software for output directed to line printers is called
the T3 character set. The T3 character set consists of all the upper/lowercase letters, the digits 0-9,
plus many other special characters. This character set follows the ISO standard and produces as
many of the TN characters that exist in the ISO standard. A sample of this character set is given in
the file DOC:T3PRTTABLE.

An alternative character set called the TN character set may be specified for the line printer. The
TN set has more characters than the T3 set and some characters have different hexadecimal
representations. Output from text-processing programs such as FORMAT and TEXT360 should be
used with this character set. A sample of this character set is given in the file DOC:TNPRTTABLE.

A second alternative character set called the PN character set is sometimes used with printers at
other remote sites. The PN character set consists only of those characters necessary for PL/I plus the
double-quote ("), a total of 60 characters plus the blank. This character set does not contain the
lowercase letters. ITD no longer has a line printer that uses the PN character set.

For a batch job, selection of the character set is specified by the

PRINT={ANY | UC | MC | LC | T3 | TN | PN}

option of the SIGNON command. Terminal users may control the character set for output to a printer
via *PRINT* by using the same PRINT option of the CONTROL command (or CONTROL subroutine)
or the same PRINT option of the SET command.

For the line printer at a Campus Computing Site, the default is T3. ANY, UC (uppercase), LC
(lowercase), MC (mixed case), and T3 are synonymous. TN is the only alternative choice. PN is not
available. For line printers at remote sites, the default is ANY, i.e., output will be printed on any
available printer. The specification of other choices is dependent on the type of line printers available
at the remote sites.

The character set specification (via the PRINT options) is independent of print routing (via the
ROUTE or PROUTE options). Currently, only the Computing Center (CNTR) has a line printer
available. Hence, any job requiring the line printer must be either submitted at the Computing
Center or must specify PROUTE=CNTR in the job if submitted at a remote batch station. Otherwise,
a warning message will be issued and the PROUTE option will be ignored.

166 Appendix G: Line-Printer Character Sets

MTS 1: The Michigan Terminal System

November 1991

APPENDIX H

CARRIAGE CONTROL

The term carriage control refers to the user’s ability to control the vertical spacing of output.
Carriage control is used mainly for output to a terminal or a printer. If the user has specified carriage
control, the first character of every record (if output to a printer or a terminal) is interpreted as a
carriage-control character. The carriage-control character determines the vertical positioning of the
output page and is not part of the printed text. The control character is stripped from the output
record and printing begins with the second character, rather than replacing the first character with a
blank and starting the printing with the blank. If the first character is not one of the legal codes for
the particular device being used, a default option of single space is assumed, and the first character is
printed as part of the output text. The character codes are independent of the source language used by
the programmer.

MTS supports two types of carriage control: logical and machine. Both are used in the manner
described above, differing only in the legal carriage-control characters and their effects. Logical
carriage control is the more common, and, in general, the user need not be concerned with machine
carriage control. MTS supports machine carriage control because a few old programs (notably
*ASMG) produce it. The use of machine carriage control is discouraged. In most cases in which
carriage control is desired (such as output to printers and terminals), logical carriage control is enabled
by default. To select either machine carriage control or no carriage control, the appropriate modifier
must be specified. For a description of the carriage-control modifiers, see Appendix A to this section.

Logical Carriage Control

The following table describes the logical carriage-control characters and their effects.

Exceptions

Character Effect Before Printing Printer Terminals

blank Single space

0 Double space

− Triple space

+ Overprint previous line ss1

(print without spacing first)

& Suppress carriage return undef2

after printing

9 Single space and suppress ss
overflow3

Appendix H: Carriage Control 167

MTS 1: The Michigan Terminal System

November 1991

1 Skip to top of next page4 skip 35

(physical line 4)

2 Skip to next 1/2 page6 skip 3

4 Skip to next 1/4 page6 skip 3

6 Skip to next 1/6 page6 skip 3

8 Skip to logical bottom of skip 3
page (physical line 63)

; Skip to top of next physical undef
page (physical line 1)

: Skip to top of next sheet undef
(physical line 1)

< Skip to bottom of physical undef
page (physical line 66)

1ss = single space.
2undef = undefined, in which case spacing defaults to single space and the undefined character is
printed as text.
3Normally, the printer automatically skips the first and last three lines of a page. A logical
carriage-control character of “9” suppresses this skip, causing these top and bottom margins to be
ignored.
4“Top” is physically three lines down from the perforation because of the automatic margin mentioned
above.
5Skip 3 lines on the UMnet/Michnet Computer Network, and skip 3 lines on the IBM 3278 Display
Station (may be modified by TOP device command, see MTS Volume 4: Terminals and Networks in

MTS, Reference R1004).
6
The logical page is divided into two halves, four quarters, and six sixths. A logical carriage-control

character of 4 will, for example, position the page at the next quarter block even if this may in fact be
the top or the middle of a page.

Machine Carriage Control

Machine carriage control acts at a lower level than logical control. In fact, logical control
characters must be converted to machine control characters by system routines. It is very device- and
installation-dependent and its use is not recommended. The first byte (i.e., character) of the output
record is interpreted as the command in the channel command word (CCW) for an IBM 1403- or
1443-compatible line printer. The following table describes the codes and their functions.

168 Appendix H: Carriage Control

MTS 1: The Michigan Terminal System

November 1991

Function Byte Value (hex)

Write and no space after printing 01
Write and space 1 line after printing 09
Write and space 2 lines after printing 11
Write and space 3 lines after printing 19
Write and skip to channel 1 after printing 89
Write and skip to channel 2 after printing 91
Write and skip to channel 3 after printing 99
Write and skip to channel 4 after printing A1
Write and skip to channel 5 after printing A9
Write and skip to channel 6 after printing B1
Write and skip to channel 7 after printing B9
Write and skip to channel 8 after printing C1
Write and skip to channel 10 after printing D1
Write and skip to channel 11 after printing D9

To obtain the corresponding carriage-control operations (space or skip to Channel N) without printing,
increase the value of the low-order digit by hexadecimal 2, i.e.,

Space two lines 13
Skip to Channel 5 AB

Unlike logical carriage control, machine carriage control spaces after printing.

The printer has a 12-channel tape which moves synchronously with the paper. For each line on the
page, there is a corresponding line on the tape which may have a hole punched in one of the 12
channels. Thus, a command such as “Skip to Channel 1” has the effect of moving the tape, and,
consequently, the paper, until a hole in column 1 of the tape is located. For the tape used by MTS, the
effect of this command is to position the paper at the logical top of the next page, i.e., 3 lines down from
the physical top. With the present system, Channels 9 and 12 are not available. A complete
description of the carriage-control tape for printers at the Computing Center, NUBS, and UNYN (but
not necessarily for other remote batch stations) follows.

Carriage-Control Tape

Physical Line of Page Channel Punched

1 11
4 1
5 5
9 10
14 6
19 4
24 7
34 2
44 6
49 4
54 7
63 8
66 3

Appendix H: Carriage Control 169

MTS 1: The Michigan Terminal System

November 1991

Devices

Line Printers

The line printer uses 11-inch paper printing 6 lines per inch, and thus 66 lines per page. Printing is
usually done in a subset, called a logical page, of this total number of lines. Since the first and last 3
lines of the physical page are skipped, the logical page consists of 60 lines. Thus, in both machine and
logical modes, a request to skip to the top of the next page, or equivalently to skip to Channel 1,
positions the paper at the fourth physical line.

┌──────────────────────────────┐
│ 3 lines │

logical 1st line ──→├──────────────────────────────┤
│ │
│ │
│ │
│ │
│ │

1/4 ──→│ 19 │
│ │
│ │
│ │
│ │
│ │ 11 inches

1/2 ──→│ 34 60 lines │
│ │ 66 lines
│ │
│ │
│ │
│ │

3/4 ──→│ 49 │
│ │
│ │
│ │
│ │
│ │

logical last line ──→├──────────────────────────────┤←──┐
│ │ │
└──────────────────────────────┘ overflow skip

across perforation
│

←──┘

With logical carriage control, the printer automatically skips over the 3-line margin on both sides of
the perforation (unless a “9” carriage control is used, in which case this automatic “overflow skip” is
suppressed).

In the horizontal direction, the line printers at the Campus Computing Sites have 132 print
positions per line. Other printers may vary, usually from 120 to 144 print positions per line.

Page Printers

The page printer uses only 8.5 by 11-inch paper. The images may be printed either in vertical
(portrait) or horizontal (landscape) orientation. The number of lines and columns per page is
dependent on the font package selected.

170 Appendix H: Carriage Control

MTS 1: The Michigan Terminal System

November 1991

Only logical carriage control may be used with the page printer. The function of the
carriage-control codes is the same as for the line printer except that the colon (:) control skips to the top
of the next sheet, i.e., it skips to a new physical sheet of paper.

The page printer is described in further detail in Appendix F to this section.

Terminals

The terminals do not have the equivalent of a logical page. The paper is treated as a continuous
sheet with no discrete physical pages. Hence, skipping to the top of a page results in merely skipping 3
lines.

Appendix H: Carriage Control 171

MTS 1: The Michigan Terminal System

November 1991

172 Appendix H: Carriage Control

MTS 1: The Michigan Terminal System

November 1991

SYSTEM COMMAND LANGUAGE

The sequence of operations of a job processed by MTS is controlled by the commands of the system
command language. A command is a request for the system to perform a particular function such as
running a program, creating or destroying a file, or setting a global option.

To request that a particular command be executed, enter the command name and, after one or more
blanks, the parameters that are required for the command. For example,

SIGNON WXYZ

is a command that informs the system that the user whose userID is WXYZ wants to sign on to the
system.

When a batch job or terminal session is initiated, the system is in a mode of operation called MTS

command mode. After the SIGNON command is processed, the system is ready to accept another
MTS command. Many commands provide simple services and require only a few parameters (or
perhaps no parameters at all) to specify completely the function to be performed. Commands of this
type, such as SIGNON, are processed in MTS command mode. Certain commands provide a wider
range of services and may have extended facilities, such as a command language subsystem (CLS)
associated with them. For example, when a user enters the command

EDIT DATAFILE

the system is informed that the user wishes to edit the file named DATAFILE, but the details of which
editing functions are to be performed are not specified. To process this command, the system leaves
MTS command mode and enters another mode of operation called “edit mode.” While in edit mode, a
part of the system called the MTS File Editor controls the behavior of the system. The File Editor
provides a command language subsystem that operates only when the system is in edit mode. Edit
mode commands allow users to inspect, alter, extend, etc., the contents of the file being edited. In
addition, several edit mode commands are available that instruct the system to leave edit mode and
return to MTS command mode.

The principal MTS commands that provide extended facilities and cause a transition from MTS
command mode to a different mode of operation are ACCOUNTING, CALC, DEBUG, EDIT,
FILEMENU, FSMESSAGE, FTP, MESSAGE, NET, and SYSTEMSTATUS. Each mode of operation
provides one or more means of returning to MTS command mode. The various modes of operation are
logically separate; that is, each mode may be entered and exited at any time without affecting the
status of any other mode. With one exception the names of the various modes of operation are
identical to the name of the MTS command that makes that mode available (e.g., CALC provides access
to “calc” mode); the exception is execution mode which may be entered via the RUN command (and
several other commands as described below).

The facilities of all modes of operation except execution mode are provided by system programs.
MTS provides certain supporting services (such as loading a program) for execution mode but for the
most part the behavior of the system in execution mode depends on the program being executed. The
program to be executed may be one prepared by the user or a system program such as the FORTRAN or
Pascal compiler. Many system utility programs are available to perform various services in execution
mode; they are described in MTS Volume 2: Public File Descriptions, Reference R1002.

System Command Language 173

MTS 1: The Michigan Terminal System

November 1991

Besides the extended facilities provided for each mode of operation there are other characteristics of
the modes of operations that are of considerable value. In particular, since the modes are logically
separate, it is possible to retain certain information pertaining to a given mode of operation even
though the system undergoes a transition to a different mode. For example, “calc” (desk-calculator)
mode may be entered via the CALC command, certain variables may be defined and assigned values,
and then a return to MTS command mode may be effected so that some other MTS commands can be
executed. When a subsequent CALC command is entered, the system reenters calc mode and the
variables previously established are still available. Thus, one may consider the use of calc mode to be
comprised of several intervals during which calc mode is active with intervening periods during which
calc mode is suspended and some other mode is active. The collection of intervals during which calc
mode is active comprise a session during which all information pertinent to calc mode is retained.

The retention of information pertaining to a particular mode of operation can be very useful but
occasionally the user may wish to “get a fresh start” for some mode of operation. The user controls
whether information pertaining to a mode is retained or destroyed when the system leaves that mode of
operation; he does so by presenting an appropriate command or signal to the system. For example, if
the system entered calc mode from MTS command mode, entering the character string “RETURN” or
“MTS” causes a return to MTS command mode with calc mode information retained but entering
“STOP” causes a return to MTS command mode with calc mode information destroyed.

The “MCMD” command or an MTS command prefixed by the “$” command flag may be used to
transfer from one mode of operation to another. For example, if the system is in edit mode and the
user enters the edit command

MCMD CALC

or simply the MTS command

$CALC

the system leaves edit mode and enters calc mode. When a RETURN or STOP command is entered,
the system leaves calc mode and reenters edit mode.

With the exceptions noted below (in the section on delimiters) the interpretation of an input line
depends on the mode of operation.

MODES OF OPERATION WITHIN MTS

MTS Command Mode

MTS command mode is the default mode of system operation for all batch jobs and terminal
sessions. MTS commands can be subdivided into several groups according to the services they
provide. The major groups are:

(1) Global Control

The global-control commands include SIGNON and SIGNOFF to initiate and terminate
jobs, and SET to set various system options.

174 System Command Language

MTS 1: The Michigan Terminal System

November 1991

(2) Program Control

Program-control commands include RUN, RESTART, and RERUN to initiate and/or
resume program execution, and IF to test program execution results.

(3) Debugging

The debugging commands include DEBUG and SDS to enter the Symbolic Debugging
System, DUMP, DISPLAY, and ALTER to inspect and/or modify registers and storage
locations.

(4) File and Device Management

File and device management is provided by the CREATE, DESTROY, EMPTY, PERMIT,
RENAME, RENUMBER, LOCK, UNLOCK, and CONTROL commands. Information
about the status of files may be retrieved using FILESTATUS, FILEMENU, and
LOCKSTATUS. The COPY, DUPLICATE, FTP, and LIST commands are useful in the
transfer of data from one file or device to another. SOURCE and SINK control the
current input and output streams. Magnetic tapes may be mounted by the MOUNT
command.

(5) Help Information

Help information is provided by the HELP command.

The commands mentioned above are a subset of the system command language; a complete list of
MTS commands, parameters that are allowed (or required) for their use, and a description of their use
is given in the section “MTS Command Mode” in this volume.

Execution Mode

Execution mode is used to execute programs and is entered via the RUN, RERUN, START,
RESTART, and several other commands and from debug mode as described below. If the RUN
command is given, any currently loaded program is unloaded and the object module specified by the
first command parameter is loaded; when loading is complete, control is passed to the loaded program
at its entry point and the system enters execution mode. The RERUN command causes the previous

RUN or RERUN command to be processed as though it had just been reentered. If parameters such as
logical I/O assignments are entered on a RERUN command, they override those specified on the
previous RUN or RERUN. When a program is already loaded (e.g., via LOAD), the START or
RESTART commands may be used to enter execution mode. Normally, the return to the mode from
which execution mode was invoked occurs when the program proceeds to completion (or calls one of the
system subroutines SYSTEM, MTS, MTSCMD, or ERROR).

The occurrence of certain abnormal conditions also causes a return to MTS command mode or debug
mode. For example:

(1) For batch jobs only:

(a) a global time, page, or card limit is exceeded (does not return to debug mode).

System Command Language 175

MTS 1: The Michigan Terminal System

November 1991

(2) For batch jobs and terminal sessions:

(a) a local time, page, or card limit is exceeded.
(b) an abnormal condition (e.g., a program interrupt) occurs. The program may call

the appropriate subroutine (e.g., PGNTTRP) to intercept the return to MTS
command mode.

(3) For terminal sessions only:

(a) an attention interrupt occurs. The program may call the appropriate subroutine
(e.g., ATTNTRP) to intercept the return to MTS command mode.

(b) the user’s account has run out of funds and the user chooses to return to MTS
command mode when prompted.

Accounting Mode

Accounting mode may be used to obtain information about the resource status of a userID. It also
may be used by project directors or instructors to manage the resources (money, disk space, etc.)
available to their projects or classes. Accounting mode is entered via the ACCOUNTING command.
Accounting mode is described in the section “Accounting” in MTS Volume 5: System Services, Reference
R1005.

Calc Mode

Calc (or desk-calculator) mode provides sophisticated desk-calculator capabilities. Calc mode is
entered via the CALC command. While in calc mode, mathematical expressions may be evaluated,
and symbolic variables may be defined and values may be assigned to them. Calc mode is described in
the section “MTS Command Mode” in this volume. The facilities of calc mode are available to a user
program by calling the CALC subroutine (see MTS Volume 3: System Subroutine Descriptions,
Reference R1003).

Debug Mode

Debug mode is entered via the DEBUG or SDS command. In debug mode, a part of the system,
called the Symbolic Debugging System (or SDS), enables the user to monitor the execution of a
program.

The debug command language subsystem provides convenient facilities for controlling the execution
of the program and for displaying and modifying instructions and/or data at any point during execution
of the program. When a DEBUG command is entered, the program to be debugged is loaded for
execution and appropriate symbol table information (from SYM records in the object module) is made
available to the symbolic debugging system. After loading is completed, the system enters debug
mode at which time the user may initiate execution of the program. While the system is in debug
mode, the program may be interrupted and various locations may be displayed or modified. After any
desired modifications have been made, execution of the program may be resumed via the CONTINUE,
GOTO, or STEP debug commands. The Symbolic Debugging System is described in MTS Volume 13:

The Symbolic Debugging System, Reference R1013.

Edit Mode

Edit mode is entered via the EDIT command. In edit mode, the user may use the MTS File Editor
to display and selectively modify the contents of a file. The File Editor provides special support for

176 System Command Language

MTS 1: The Michigan Terminal System

November 1991

display terminals such as the Ontel and the IBM 3270, and various microcomputers such as the IBM
PC and the Apple Macintosh to visually display and modify a file. The File Editor is described in MTS

Volume 18: The MTS File Editor, Reference R1018. The facilities of the File Editor are available to a
user program by calling the EDIT subroutine (see MTS Volume 3: System Subroutine Descriptions,
Reference R1003).

File Transfer Mode

File-transfer mode is entered via the FTP command. In file-transfer mode, the user may transfer
files to or from a remote host machine. The FTP command is described in the section “MTS Command
Mode” in this volume.

List Mode

List mode is entered via the LIST command. In list mode, the user may issue various commands to
control the formatting of the listing. The LIST command is described in the section “MTS Command
Mode” in this volume.

Message-System Mode

Message-system mode is entered via the MESSAGE or FSMESSAGE command. In
message-system mode, the user may send messages to other users either local or remote. The
messages may be addressed by either userID or name. The MTS Message System is described in MTS

Volume 23: Messaging and Conferencing in MTS, Reference R1023.

Network Mode

Network mode is entered via the NET command. In network mode, a part of the system, called the
network interface, provides access to computers located at other installations (hosts) of the
UMnet/Michnet Computer Network. The NET command is described in the section “The NET
Command” in MTS Volume 4: Terminals and Networks in MTS, Reference R1004.

Systemstatus Mode

Systemstatus mode is entered via the SYSTEMSTATUS command. In systemstatus mode, the
user may inquire about the status of particular jobs being processed by the system, about the status of
particular devices attached to the system, etc. The SYSTEMSTATUS command is described in the
section “MTS Command Mode” in this volume.

View Mode

View mode is entered via the VIEW command. In view mode, the user may look at the results of a
print or batch job. The VIEW command is described in the section “MTS Command Mode” in this
volume.

PREFIX CHARACTERS

In order to assist users in interpreting system activity during a terminal session, a prefix character
is printed when an input line is requested from a terminal and also at the beginning of each output line
directed to a terminal. Since prefix characters are intended to assist terminal users in the
interpretation of system activity, they are used only for terminal devices; they are never written to disk

System Command Language 177

MTS 1: The Michigan Terminal System

November 1991

files, magnetic tapes or other devices. The prefix character depends on the mode of operation of the
system and on the particular activity within that mode. Although certain prefix characters may be
used in two or more modes of operation (e.g., the question mark), prefix characters are usually
characteristic of only one type of system activity. The prefix characters most commonly used are
tabulated below.

Mode Prefix Character

MTS Command Mode #
Command Continuation #−
Copying >
Loading .
Prompting ?

Execution Mode blank

Accounting Mode $?

Calc Mode
Input ?
Output =

Debug Mode +
Command Insertion ?

Edit Mode :
Fast Insertion ?

File-Transfer Mode ftp>

List Mode >

Message-System Mode @
Text insertion ?

Network Mode)

Systemstatus Mode −

View Mode *

The printing of prefix characters is controlled by an option that is normally on. However, prefix
characters can be suppressed by entering the command

SET PFX=OFF

When the prefix option is off, prefix characters are suppressed globally; that is, they are suppressed for
all modes of system operation.

The default prefix character for execution mode is the blank but an alternate can be assigned by
calling the subroutines CUINFO (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003, for details) or by using the SET command option EXECPFX. Various system programs use

178 System Command Language

MTS 1: The Michigan Terminal System

November 1991

alternate prefix characters in execution mode; for example, *FS assigns the equal sign (=) as its
execution mode prefix.

COMMANDS AND DELIMITERS

An input line having the form of an MTS command is interpreted as such by MTS only if the system
is in MTS command mode. Thus, the input line

COPY A B

is treated as an MTS copy command if the system is in MTS command mode, but is treated as an
ordinary data line if the user’s program reads it in execution mode. MTS provides two special
constructs, the end-of-file delimiter and the implicit concatenation delimiter, that have the same
general format as MTS commands. These constructs are recognized in a broader context than MTS
commands.

The form of the end-of-file delimiter is

$ENDFILE

The “$” is always required. This delimiter signals an end-of-file condition. The scope of this delimiter
depends on the setting of the global ENDFILE option which can be set by the MTS command SET (e.g.,
SET ENDFILE=SOURCE), by the CUINFO subroutine (see the GUINFO, CUINFO subroutine
description in MTS Volume 3: System Subroutine Descriptions, Reference R1003), or by a pair of I/O
modifier bits. If the ENDFILE option is set to SOURCE (the default case), a line consisting of
“$ENDFILE” is recognized as the end-of-file delimiter only if it is read from *SOURCE* or
MSOURCE. If the ENDFILE option is set to ALWAYS, a line consisting of “$ENDFILE” is always

treated as an end-of-file delimiter. If the ENDFILE option is set to NEVER, a line consisting of
“$ENDFILE” is never treated as a delimiter, but always as a data line.

If the ENDFILE option is set to NEVER for a batch job, the only other method available for
generating an end-of-file condition involves the use of the implicit concatenation delimiter (see below).
If the ENDFILE option is set to NEVER for a terminal session, there is always an alternate control
function available to signal the end-of-file condition. The I/O FDname modifiers ENDFILE and
−ENDFILE (see Appendix A of “Files and Devices”) may be used to override the setting of the global
ENDFILE option.

The form of the implicit concatenation delimiter is

$CONTINUE•WITH FDname [RETURN]

where • means exactly one blank. With the exception noted below, this delimiter causes implicit
concatenation to occur. For a complete description of implicit concatenation see the section on “Files
and Devices” in this volume. Recognition of the implicit concatenation delimiter is controlled by both
the global IC option and a pair of modifier bits. The IC option may be set ON or OFF by the SET
command or by an appropriate call to the CUINFO subroutine (see MTS Volume 3: System Subroutine

Descriptions, Reference R1003). The default is ON, which means that this construct is recognized as a
delimiter. The I/O modifier bits are IC and −IC (see “Files and Devices”) and when applied to an
FDname, they override the setting of the global IC option for those uses of the FDname.

System Command Language 179

MTS 1: The Michigan Terminal System

November 1991

The implicit concatenation delimiter can be used to provide an end-of-file condition by specifying

$CONTINUE•WITH *DUMMY*

This may be useful in batch jobs when the ENDFILE option has been set to NEVER.

MTS COMMAND MACRO PROCESSOR

The MTS command extension and macro processor is a special interface between the user and MTS
that allows users to “custom” design their own commands. A series of MTS or CLS (command
language subsystem) commands may be combined into a single command or into a macro (a program of
commands) to perform a special task.

Extended commands can appear in two basic forms: as a simple command statement entered in
“open code”, usually signalled by a “>” in column one, or as a macro call of a previously defined macro.
Any line entered from *SOURCE* is examined for a “>” in column one which indicates that the line is
an open-code command that should be processed by the macro processor.

A conditional command is a common form of an open-code command. It is the form

>IF expression, command

where “expression” is a logical statement that evaluates to either true or false, and “command” is a
statement that is acted upon if the expression is true. For example, the conditional command

>IF SIGNONID="WABC", SET ROUTE=UNYN

could be placed in a shared sigfile to request that output generated by the userID WABC be routed to
the printer at the UNYN batch station.

A macro is a small program comprised of several commands. The definition of a macro is given in
the form

>MACRO name [optional parameters]
command 1
...
command n
>ENDMACRO

The macro may be subsequently invoked by merely giving the name. For example, the following
macro could be defined to save a file on magnetic tape TAPE99:

>MACRO TAPE99 FILE
MOUNT MYTAPE *T* WRITE=YES VOL=TAPE99
CONTROL *T* POSN=*EOT*
CONTROL *T* NAME={FILE}
CONTROL *T* VB(10000,100)
COPY {FILE} *T*
RELEASE *T*
>ENDMACRO

To invoke the macro to save the file DATA1 on the tape, the user would simply enter the command

180 System Command Language

MTS 1: The Michigan Terminal System

November 1991

TAPE99 DATA1

Macro definitions may be saved in special macro libraries so that they need not be defined every time
the user signs on. Complete details on using the MTS command extension and macro processor,
including the defining of macro libraries, is given in MTS Volume 21: MTS Command Extensions and

Macros, Reference R1021.

System Command Language 181

MTS 1: The Michigan Terminal System

November 1991

182 System Command Language

MTS 1: The Michigan Terminal System

November 1991

MTS COMMAND MODE

MTS command mode is the default mode of system operation for all batch jobs and terminal
sessions. The principal function of MTS command mode is the entry and processing of MTS
commands.

PROCESSING MTS COMMAND LINES

The following rules apply to the processing of MTS command lines:

(1) The MTS command verb must be the first word in the command line. Leading blanks are
allowed both in batch and conversational mode. However, “$CONTINUE WITH” and
“$ENDFILE” lines (which technically are not MTS commands) must begin in column one
(the “$” is required). The command lines are not converted to uppercase.

(2) Null lines and blank lines are ignored.

(3) Lines beginning with an asterisk “*” or “$*” are treated as comment lines. They are not
echoed.

(4) The dollar sign “$” command flag is optional in both batch and conversational mode.
However, “$CONTINUE WITH” and “$ENDFILE” lines must begin with a dollar sign.

(5) If the leading characters of the command line constitute a valid MTS command name or
command name abbreviation, the command is processed; if not, the error comment
“Invalid MTS command” is produced. For terminal sessions, a new input line is
requested if SET ERRORPROMPT=ON (the default); for batch jobs, subsequent input
lines are discarded until an input line that begins in column one with a dollar sign and a
valid command name is encountered.

The CMDSCAN option of the MTS SET command specifies the method used to recognize MTS
command names. When the CMDSCAN option is set to UNAMBIGUOUS (the default), the
recognition of MTS commands is limited in the following ways:

(1) When an MTS command is abbreviated, enough of the characters composing the
command verb must be given to distinguish the command from all other MTS commands,
or their abbreviations. If this is not the case, the error comment “Ambiguous MTS
command” is produced.

(2) Characters other than the characters composing the full command name may not be
given (e.g., CANCELLATION and CANCEL are not equivalent and will produce an error
comment).

(3) Spelling correction of unrecognizable commands is attempted under control of the
SPELLCOR option. If spelling correction determines that the command can be
mistaken for no more than two other MTS commands, verification and/or correction of the
command verb will result. Otherwise, the command will be in error.

(4) Certain short and ambiguous, but harmless abbreviations are recognized: C for COPY, D

MTS Command Mode 183

MTS 1: The Michigan Terminal System

November 1991

for DISPLAY, L for LIST, R for RUN, and SIG for SIGNON and SIGNOFF.

When the CMDSCAN option is set to AMBIGUOUS, the command recognition procedure uses the
following abbreviations for otherwise ambiguous commands:

Command Abbreviation

ALTER A
CALC CA
COPY C
DESTROY DE
DISPLAY D
DUMP DU
EMPTY E
FILESTATUS F
LOAD LO
LIST L
MODIFY M
RENAME REN
RESTART RE
RUN R
SET S
SIGNON/SIGNOFF SIG
SINK SI
UNLOAD UNL

In MTS command mode, input lines are read from the file or device assigned or defaulted to the
pseudodevice *SOURCE*. At the beginning of every batch job or terminal session, *SOURCE* is
defaulted to the same device as *MSOURCE*. *MSOURCE* is always assigned to the keyboard of the
user’s terminal for terminal sessions and the card reader (or *BATCH* input) for batch jobs. The
assignment for *SOURCE* may be changed using the SOURCE command, e.g.,

SOURCE CMDFILE

Also, at the beginning of every batch job or terminal session, *SINK* is defaulted to the same device
as *MSINK*. *MSINK* is always assigned to the printer of the user’s terminal for terminal sessions
and the printer (or *BATCH* input) for batch jobs. The assignment for *SINK* may be changed using
the SINK command, e.g.,

SINK OUTFILE

Normally, MTS commands from *SOURCE* are echo-printed (or simply “echoed”) to *SINK*, if
SINK differs from *SOURCE*. In addition, command lines are echoed to *MSINK*, if *MSINK*
differs from both *SOURCE* and *SINK*. Thus, MTS commands read in via the batch card reader
(*SOURCE*) appear in the output listing (*MSINK*) for the job. For a terminal job, *SOURCE*,
SINK, and *MSINK* are normally identical (unless the SOURCE or SINK commands have been
used to reassign *SOURCE* and *SINK*), thus echoing is not usually necessary. Echo-printing of
command lines may be disabled by entering the command

SET ECHO=OFF

and may be reenabled by

184 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

SET ECHO=ON

Any MTS command may be executed from a program using the CMD, CMDNOE, or COMMAND
subroutines (see MTS Volume 3: System Subroutine Descriptions, Reference R1003). This is simply a
mechanism in which a transition is made to MTS command mode and the input lines are supplied by
the subroutine rather than being read from *SOURCE*. Following execution of the MTS command, a
transition back to execution mode is made automatically, unless the MTS command was one which
caused modes to be switched.

CONTINUATION LINES

Occasionally it is necessary to enter a command line that requires more characters than the
maximum (e.g., a maximum of 80 characters per card read by a card reader) allowed by the input device
assigned to *SOURCE*. In MTS command mode, input lines up to 255 characters can be accumulated
according to the following conventions. If the last character of an input line is the line-continuation

character (by default, a minus sign “−”), the line is assumed to be incomplete. The line-continuation
character is deleted and MTS requests another input line (a continuation line) which is appended to the
characters previously entered. As many continuation lines as desired may be entered, but the total
accumulated length may not exceed 255 characters. In batch mode, the last character position is
column 80 on cards read through a card reader or the last character in a line submitted via *BATCH*.
For terminal input lines, the line-continuation character must be the last character entered before the
line is terminated (e.g., by a carriage return). When reading a continuation line, MTS prints the prefix
#−.

For certain applications, the use of the minus sign as the line-continuation character may be
awkward; the CONTCHAR option of the SET command allows the user to assign a different character
for this function. For example:

SET CONTCHAR=*

replaces the minus sign with an asterisk as the line-continuation character.

It should be noted that these rules for continuation lines apply particularly to MTS command mode
input lines; continuation conventions are also available for some, but not all, other modes of operation
and for some, but not all, system programs described in MTS Volume 2: Public File Descriptions,
Reference R1002.

FILE-NAME PATTERNS

Several MTS commands that take a file name (or list of file names) as a parameter allow the file
name to be a file-name pattern. This pattern is used to represent a set of file names in the user’s
catalog of files. The commands that currently allow file-name patterns are

COPY
DESTROY
DUPLICATE
EMPTY
EDIT
FILESTATUS
FILEMENU

MTS Command Mode 185

MTS 1: The Michigan Terminal System

November 1991

LIST
LOCKSTATUS
PERMIT
RENAME
RENUMBER
TRUNCATE

The presence of the “?” character in the file-name parameter is used to indicate a file-name pattern.
A single “?” will match zero or more arbitrary characters in the file name. Thus,

?.S represents all files whose names end with “.S”,
A?B represents all files whose names begin with “A” and end with “B”, and
A?Q?B represents all files whose names begin with “A”, end with “B”, and contain the

letter “Q”.

“n” consecutive “?” characters will match “n−1” arbitrary characters in the file name. Thus,

???.s represents all files whose names are four characters long and end with “.S”, such as
XX.S.

The “?” cannot be used in the userID portion of a shared file name.

For example, the following COPY command will copy to *PRINT* all the user’s files that begin with
the characters “DATA”:

COPY DATA? *PRINT*

MTS COMMANDS

The following notation conventions are used in the prototypes of the commands:

lowercase represents a generic type which is to be replaced by an item supplied by the
user.

uppercase indicates material to be repeated verbatim in the command.
brackets [] indicates that material within the brackets is optional.
braces { | } indicates that the material within the braces represents choices, from which

exactly one must be selected. The choices are separated by vertical bars.
ellipsis ... indicates that the preceding syntactic unit may be repeated.
underlining indicates the minimum unambiguous form of the command or parameter.

Longer abbreviations are accepted.

The following pages give a complete summary of the commands in the MTS command language.

186 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

Summary of MTS Command Prototypes

ACCOUNTING [{statusopts | MANAGEMENT}]

ALTER location value

location GRx
FRx
[RF={hhhhhh | GRx}] xxxxxx

value {hhhh | X'hhhh'}
C'xxxx'
F'yyyy'
H'yyyy'

CALC [expression]

CANCEL {*...* | *...* [JOB] nnnnnn | [JOB] nnnnnn} [ID=userid]

... {*PRINT* | *PUNCH* | *BATCH*}

COMMENT [text]

CONTROL FDname control-command

COPY [FROM] {FDlist1 | 'string'} [[TO] FDlist2]

CREATE {filename | *pdn*} [keywords]

keywords SIZE={n | nP}
MAXSIZE={n | nP}
TYPE={LINE | SEQ | IMPORT | EXPORT | DUMMY}

DEBUG [program] [I/Ounits] [options] [PAR=parameters]

(see RUN command)

DESTROY {filelist | *pdn*} [{OK | ALLOK | PROMPT}]

DISPLAY [OUTPUT=FDname] [format] {location | item} ...

format {HEX | NOHEX}
{MNEMONICS | NOMNEMONICS}
{EBCDIC | NOEBCDIC}
{SINGLESPACE | DOUBLESPACE}
ORL={LONG | SHORT | n}

location {GRx | GRS}
{FRx | FRS}
[RF={hhhhhh | GRx}] xxxxxx[...xxxxxx]
PSW

MTS Command Mode 187

MTS 1: The Michigan Terminal System

November 1991

item ADDRESS
AUTOHOLD
CARDS
CLASS
COMMENT
CONTCHAR
COPIES
COST
CROUTE
DATE
DEBUG
DELIVERY
DESTINATION
{EBM | ETM}
ERRORPROMPT
EXECPFX
FILE
FORMAT
GUINFO(name)
HELPMODE
HOSTNAME
INITFILE(command)
INSTALLATIONNAME
JOBNAME
{LASTRELOAD | LRL}
LIBSRCH
LOGSTATUS
MACHINE
MAILCALL
MAP
MAPDOTS
MARGIN
MODEL
NAME
NAMELIB
{NEWFILEACCESS | NFA}
NUMBER
OVERLAY
PAGES
PAPER
PASSWORD
PDNS
PRINT
PRINTER
PROJECT
PROJECTPWCHANGE
PROUTE
RATES
RCPRINT
RERUN
RF
RUNS

188 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

SEE_DISPATCHES
SENSE(devicename)
SEPCOPY
SHIFT
SHOWNAME
SIGFILE
SINK
SOURCE
SPELLCOR
SRVREPLY
SYMTAB
SYSTEM
TAILSHEET
TASKNUMBER
TDR
TERSE
TIME
TIMEDATE
TIMESPELLEDOUT
TWOSIDED
UPTIME
USERID
USMSG
UXREF
VERSION(command)
VMSIZE
XREF
BATCH
PRINT
PUNCH
...
pdn

DUMP [OUTPUT=FDname] [format] ...

format {HEX | NOHEX}
{MNEMONICS | NOMNEMONICS}
{EBCDIC | NOEBCDIC}
{SINGLESPACE | DOUBLESPACE}
ORL={LONG | SHORT}
{LIBRARY | NOLIBRARY}

DUPLICATE oldname [{AS | TO}] newname [keywords] [{OK | ALLOK | PROMPT}]

keywords EMPTYOK
{OPTIMIZE | NOOPTIMIZE}
{DATA | NODATA}

EDIT [filename] [:edit-command]

EMPTY filelist [{OK | ALLOK | PROMPT}]

MTS Command Mode 189

MTS 1: The Michigan Terminal System

November 1991

{FILEMENU | FMENU} [name] [information]

FILESTATUS [name] [format] [information]

FSMESSAGE [FSMessage-command]

FTP [hostname]

{HELP | EXPLAIN} [topic]

IF RUNRC condition integer, MTS-command

condition =,˜=,<,>,<=,>=
.EQ.,.NE.,.LT.,.GT.,.LE.,.GE.

LIST FDlist [[{ON | TO}] FDname] [[WITH] options]
LIST FDlist WITH options [{ON | TO} FDname]

LOAD [program] [I/Ounits] [options] [PAR=parameters]

(see RUN command)

LOCATE {SYSTEM | LOCAL | FULL | SHORT | HELP}
LOCATE {jobnumber | jobname} [option ...]

option PRINT
EXECUTE
IMPORT
VIEW
PRINTQ
SUMMARY

LOCK filename [how] [option ...]

how READ
{WRITE | MOD | CHANGE | EMPTY | TRUNCATE | RENUMBER}
{DESTROY | RENAME | PERMIT}
NONE

option {WAIT | NOWAIT}
{QUIT | NOQUIT}

{LOCKSTATUS | LSTATUS} [item [options]]

item filelist
JOB {nnnnnn | ME}
USER=userid

option LOCK
LOCKDESTROY
LOCKMOD
LOCKREAD

190 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

WAIT
WAITDESTROY
WAITMOD
WAITREAD
WAITOPEN
INVALID
OPEN
NOTONOTL
ANY
REPEAT=seconds
OUTPUT=FDname

LOG [FDname1] {[ON] FDname2 [format] [options] | OFF}

MAKE program [WITH] options

MESSAGE [message-command]

MODIFY location value

(see ALTER command)

MOUNT [request [;request] ...]

MTS

NET [{hostID | *pdn*}] [.network-command]

PERMIT filelist [access [accessor]]
PERMIT filelist LIKE filelist2 [EXCEPT access [accessor]]

access READ
{WRITEXP | WE | APPEND}
{WRITECHG | WC | EMPTY}
TRUNCATE
{DESTROY | RENAME}
PERMIT
RCWHG
RWEXP
RW
FULL
UNLIM
DEFAULT
NONE
RUN
EDIT

accessor ALL
ME
OTHERS
OWNER
[ID=]userid

MTS Command Mode 191

MTS 1: The Michigan Terminal System

November 1991

PROJECT=project
PKEY=key
[ID=]userid&PKEY=key
PROJECT=project&PKEY=key

RELEASE {*PRINT* | *PUNCH* | *BATCH* | *pdn*}

RENAME oldname [AS] newname [{OK | ALLOK | PROMPT}]

RENUMBER filelist [first [last [beg [inc]]]] [{ALLOK | PROMPT}]

RERUN [{ECHO | NOECHO}] [I/Ounits] [options] [PAR=parameters]

(see RUN command)

RESTART [[AT] location] [I/Ounits] [options]

(see RUN command)

RUN [program] [I/Ounits] [options] [PAR=parameters]

options MAP[=mapFDname]
NOMAP
XREF
UXREF
{EXECPKEY | PKEY}={key | OFF}
TIME={t | tS | tM}
PAGES=p
CARDS=c
{PLOTTIME | PT}={t | tM}

I/Ounits INPUT=FDname (defaults to *SOURCE*)
PRINT=FDname (defaults to *SINK*)
SPUNCH=FDname (defaults to *PUNCH* in batch)
GUSER=FDname (defaults to *MSOURCE*)
SERCOM=FDname (defaults to *MSINK*)
{0 | 1 | ... | 99}=FDname

SDS [debug-command]

SET option ...

option ADDRESS="line1;line2;..."
AUTOHOLD={ON | OFF}
CLASS=char
CMDSCAN={AMBIGUOUS | UNAMBIGUOUS}
CMDSKIP={ON | OFF}
COMMENT="text"
CONTCHAR=character
COPIES=n
COST={ON | OFF}
CROUTE=station

192 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

DEBUG={ON | OFF}
DELIVERY={station | MAIL | NONE}
DESTINATION=userid@node
DISPATCHES[(filter)]={ON | OFF}
EBM=characters
ECHO={ON | OFF}
ENDFILE={ALWAYS | SOURCE | NEVER}
ERRMAP={ON | OFF}
ERRORDUMP={NOLIBRARY | OFF | LIBRARY}
ERRORPROMPT={ON | OFF}
ETM=characters
{EXECPFX | EXECPREFIX}=character
EXECPKEY={key | OFF}
FILE={filename | "file name"}
FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
HELPMODE={LINE | DEFAULT | SCREEN}
IC={ON | OFF}
INITFILE(command)={FDname | OFF}
JOBNAME={jobname | DEFAULT}
LIBR={ON | OFF}
LIBSRCH={OFF | FDname}
MACROS={ON | OFF}
MAILCALL={ON | OFF}
MAPDOTS={ON | OFF}
MARGIN={n.nn | NO}
NAME={name | 'name' | NONE}
NAMELIB={FDname | OFF}
{NEWFILEACCESS | NFA}={'string' | "string" | OFF}
NUMBER={(b,l,c) | NO}
OVERLAY={NONE | SHADED | LINED}
PAGES=n
PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
PARFIELDCASE={UC | MC}
PDMAP={ON | OFF}
{PFX | PREFIX}={ON | OFF}
PRINT={T3 | TN}
PRINTER={PAGE | LINE}
PRMAP={ON | OFF}
PROJECTPWCHANGE={ON | OFF}
PROUTE=station
{PW | PASSWORD}
RCPRINT={NEVER | OFF | POSITIVE | NONZERO |

NONNEGATIVE | ALWAYS | ON}
RF={hhhhhh | GRx}
ROUTE=station
SEPCOPY={YES | NO}
SEQFCHK={ON | OFF}
SHIFT={YES | NO}
SHOWNAME={ON | OFF}
SIGFILE={OFF | FDname}
SIGFILEATTN={ON | OFF}
SPELLCOR={OFF | PROMPT | ON}

MTS Command Mode 193

MTS 1: The Michigan Terminal System

November 1991

SRVREPLY={ON | OFF}
SYMTAB={ON | OFF}
TDR={ON | OFF}
TERSE={ON | OFF}
{T | TIME}={t | tS | tM | OFF}
TRIM={ON | OFF}
TWOSIDED={YES | NO}
USMSG={ON | OFF}
UXREF={ON | OFF}
VERSION(command)={NEW | OLD | CURRENT}
XREF={ON | OFF}
*LIBRARY={ON | OFF}

SIGNOFF [{SHORT | $ | LONG}]

SIGNON {userid | *} [option ...] ['comment']

option ADDRESS="line1;line2;..."
CARDS=c
COPIES=n
CROUTE=station
DELIVERY={station | MAIL | NONE}
FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
JOBNAME={jobname | DEFAULT}
{LANDSCAPE | PORTRAIT | TWOUP}
MARGIN={n.nn | NO}
{NOMESSAGES | NOMSGS}
{ONESIDED | TWOSIDED}
OVERLAY={NONE | SHADED | LINED}
PAGES=p
PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
{PLOTTIME | PT}={t | tM}
PRINT={T3 | TN}
PRINTER={PAGE | LINE}
PROUTE=station
QUICK
ROUTE=station
RATEGROUP={NORMAL | LOW | DEFERRED | MINIMUM}
RERUN={YES | NO}
SEPCOPY={YES | NO}
SHIFT={YES | NO}
{SHORT | LONG}
SIGFILE={ON | OFF}
TAPES=n
TIME={t | tS | tM}
WAITUNTIL='time and/or date'

SINK {FDname | PREVIOUS}

SOURCE {FDname | PREVIOUS}

194 MTS Command Mode

MTS 1: The Michigan Terminal System

November 1991

START [[AT] [RF={hhhhhh | GRx}] location] [I/Ounits] [options]

(see RUN command)

SYSTEMSTATUS [option]

option DISPLAY disp[+disp[+...]] [count]
LOAD [job#]
MCMD MTS-command
MTS
QUEUE [{receipt | USER | ALL | ROUTE=station | *} ...]
REPEAT [TIME=n]
RETURN
STOP
TAPEQUEUE [LIST]
TASKS [descriptor]

descriptor job#
B
F
M
N [job-name]
D device-name
T device-type
U userid
P projectid

USERS
$MTS-command

TRUNCATE filelist [{ALLOK | PROMPT}]

UNLOAD [CLS=clsname] [EVERYTHING]

UNLOCK filename

VIEW [jobnumber [;view-command]]

MTS Command Mode 195

MTS 1: The Michigan Terminal System

November 1991

ACCOUNTING

MTS Command Description

Purpose: To invoke the accounting system.

Prototype: ACCOUNTING [{statusopts | MANAGEMENT}]

statusopts

“statusopts” specify one or more options that may be used to selectively
filter the status information given about the current userID. The options
are as follows:

FULL

Print all information. In addition to the items listed under
NOFULL below, the following quantities are printed:

amount of temporary file space
cumulative figures for file storage
CPU and wait-memory used
CPU time used
number of tape mounts
tape-drive time used
lines, images, sheets, and pages printed
phototypesetter units and media used
cards read and punched
plotter paper used
UMnet/Michnet network charges
surcharges and royalties
number of batch and terminal sessions
expiration date and time

FULL is the default in batch mode if no options other than
HEADING or NOHEADING are specified.

{NOFULL | −FULL | ̃ FULL}

Print the maximum, used, and remaining figures for the following
items:

charge
current file space
concurrent signons
terminal time
plotter time
UMnet/Michnet Computer Network originate time

NOFULL is the default in conversational mode if no options other
than HEADING or NOHEADING are specified.

196 ACCOUNTING MTS Command

MTS 1: The Michigan Terminal System

November 1991

HEADING

Print a heading before the next line that contains a used amount.
This is the default for the first line printed.

{NOHEADING | −HEADING | ̃ HEADING}

Do not print a heading. If this option is specified, it should be first.

{CHARGE | DOLLARS | FUNDS | $}

Print the remaining amount of funds.

{DISK | FILE}

Print the remaining amount of file space.

EXPIRE

Print the expiration date and time of the account.

NETWORK

Print the remaining amount of outbound network connect time
available.

PLOTTER

Print the remaining amount of plotter time available.

SIGNONS

Print the remaining number of concurrent signons permitted.

{TERMINAL | CONNECT}

Print the remaining amount of terminal connect time available.

One of the following modifiers may be appended to the CHARGE, DISK,
SIGNONS, TERMINAL, PLOTTER, or NETWORK parameters or their
synonyms. If a modifier is to apply to more than one parameter, the
parameters may be separated by commas and grouped within
parentheses, e.g., ($,DISK)@D.

{@DETAILED | @FULL | @NOREMAINING | @−REMAINING |
@˜REMAINING}

Print the maximum, used, and remaining figures for the modified
quantities rather than only the remaining amounts.

{@REMAINING | @NODETAILED | @−DETAILED |
@˜DETAILED | @NOFULL | @−FULL | @˜FULL}

ACCOUNTING MTS Command 197

MTS 1: The Michigan Terminal System

November 1991

Print only the remaining amounts for the modified quantities. This
is the default if a modifier is not specified.

MANAGEMENT

If the MANAGEMENT option is specified, accounting management mode
is entered.

If no options are specified on the command, status information is printed about
the current userID. This is equivalent to specifying the FULL option in batch
mode or the NOFULL option in conversational mode.

Program Key: *ACCOUNTING

Description: The ACCOUNTING command may be used to print information regarding the
userIDs charge; current and cumulative file space; signons; terminal, plotting,
and network time; CPU and wait-memory use; CPU time; I/O; and expiration
time.

If the command is given in conversational mode and no options are specified
(other than HEADING or NOHEADING), the items listed for the parameter
NOFULL are printed. If the command is given in batch mode and no options
are specified (other than HEADING or NOHEADING), the items listed for the
parameter FULL are printed in addition to those listed with NOFULL. If all
information about an item is zero, no information normally is printed unless the
item is specified as a “statusopt”. The information is current at the time the
command is given with the exception that tape drive time and paper tape
punched as well as the associated charges for these are not included for tapes
currently mounted, nor are charges included for a concurrent signon using the
same userID.

It must be emphasized that the information printed is only approximate. A
user’s true position is indicated only by the monthly billing.

Accounting management mode allows project directors and instructors to
distribute money, permanent disk space, and terminal and plotting time to
various userIDs belonging to their project or class. Also, the expiration time
and maximum number of concurrent signons for individual userIDs may be
changed. Before a project can use management mode, one of the userIDs
belonging to the project must receive authorization by contacting the ITD
Accounts Office. For the details of accounting management mode, see the
section “Accounting” in MTS Volume 5: System Services, Reference R1005.

Examples: ACCOUNTING CHARGE

In the above example, the amount of funds remaining in the user’s account
is printed.

ACCOUNTING NOFULL EXPIRE

In the above example, the information that is normally listed when the
command is given in conversational mode plus the expiration date and

198 ACCOUNTING MTS Command

MTS 1: The Michigan Terminal System

November 1991

time is printed.

ACCOUNTING ($,DISK,SIGNONS)@D PLOTTER

In the above example, the maximum, used, and remaining funds, file
space, and concurrent signons, as well as the remaining plotter time, are
printed.

ACCOUNTING MTS Command 199

MTS 1: The Michigan Terminal System

November 1991

ALTER

MTS Command Description

Purpose: To alter the contents of a general register, floating-point register, or specified
virtual memory location(s).

Prototype: ALTER location value

Each alteration requires a pair of the following parameters, the first specifying
what is to be altered and the second specifying the new contents. Any number
of items may be altered with a single ALTER command.

location

“location” is the general register, floating-point register, or virtual memory
location(s) that is to be altered. “location” may be given in one of the
following forms:

GRx

GRx specifies the general register “x”, where “x” is a decimal integer
from 0 to 15 or a hexadecimal integer from 0 to 9, A to F.

FRx

FRx specifies the floating-point register “x”, where “x” is one of the
integers 0,2,4, or 6.

[RF={hhhhhh | GRx}] xxxxxx

This specifies a virtual memory location given by an optional local
relocation factor and a displacement. “hhhhhh” is the hexadecimal
value of a local relocation factor; GRx indicates the general register
whose contents are to be used as a local relocation factor. “xxxxxx” is
the hexadecimal value of a displacement. The displacement is
added to the current value of the relocation factor to provide an
absolute 24-bit virtual memory address. If a local relocation factor
is not specified, the global relocation factor is used. The global
relocation factor is initially zero, but may be changed by the RF
option of the SET command. When a local relocation factor is
specified in the command, it remains in effect for the remainder of the
command unless subsequently overridden by a second local
relocation factor specification.

value

The new contents are specified by any one of the following constant
expressions:

200 ALTER MTS Command

MTS 1: The Michigan Terminal System

November 1991

hhhh or X'hhhh'

Any hexadecimal constant expression of any length may be given.

C'xxxx'

Any EBCDIC character expression of any length may be given
between the delimiting primes; a prime in the character string must
be represented by two consecutive primes.

F'yyyy' or H'yyyy'

A fullword (F) or halfword (H) decimal constant expression may be
given consisting of a sign followed by decimal digits all enclosed in
primes. The plus sign (+) is optional; the minus sign (−) is required.
Decimal constants may not be specified for floating-point registers.

Program Key: *MTS.ALTER

Description: The new constant given by the parameter “value” replaces the contents of the
register or virtual memory location specified by “location”. Register numbers
and virtual memory addresses are checked for validity and an error comment is
produced if an illegal value is specified. If a virtual memory address is given, it
must not be less than 600000. The parameter pairs in the command are
processed from left to right.

If the currently loaded program has a nondefault program key that is not
prefixed with the current userID, the program key will be set to the default (for
this invocation of the program only).

This command is invalid if the currently loaded program is a “run-only”
program.

General registers are altered as follows:

A character constant is truncated or padded with trailing blanks to four
bytes (characters) and placed, left-justified, into the register.

The integer value of a hexadecimal constant (consisting of one to eight
hexadecimal digits including leading zeros) is placed, right-justified, into
the register.

The integer value of a decimal constant is placed into the register.

Floating-point registers are altered as follows:

A character constant is truncated or padded with trailing blanks to eight
bytes (characters) and placed, left-justified, into the register.

A hexadecimal constant is truncated or padded with trailing zeros to eight
bytes and placed, left-justified with leading zeros retained, into the
register.

ALTER MTS Command 201

MTS 1: The Michigan Terminal System

November 1991

Virtual memory is altered as follows:

A character constant is placed, one character per byte, into consecutive
virtual memory locations.

A hexadecimal constant is placed, two hexadecimal digits per byte with
leading zeros retained, in consecutive memory locations. If an odd
number of hexadecimal digits is given, the last byte of memory altered has
bits 4-7 set to zero.

The integer value of a decimal constant is placed, without regard to
boundary alignment, into either four or two bytes (for fullword or halfword
constants) starting with the byte specified by “location”.

Examples: ALTER GR3 1A3E0 FR6 X'41104'

The hexadecimal constant 0001A3E0 is placed in GR3 and the
hexadecimal constant 4110400000000000 is placed in FR6.

ALTER RF=6188E2 200 X'D502CC7E6000' 400 X'05EF' GRA 0

The hexadecimal constant D502CC7E6000 is placed in virtual memory
location 618AE2, the hexadecimal constant 05EF is placed in location
618CE2, and the constant zero is placed in GR10.

202 ALTER MTS Command

MTS 1: The Michigan Terminal System

November 1991

CALC

MTS Command Description

Purpose: To enter calc mode for performing desk-calculator operations.

Prototype: CALC [expression]

expression

“expression” is an optional arithmetic expression to be evaluated.

Program Key: *CALC

Description: Calc mode provides a desk-calculator facility in MTS. This facility evaluates
mathematical expressions using double-precision, floating-point arithmetic.
The result may be presented in several formats.

The CALC command may be used in two ways. If the optional parameter, a
single arithmetic expression, is given with the command, the expression is
evaluated, the result is printed, and control is returned to MTS command mode.
If the expression is omitted, calc mode is entered. In calc mode, several
expressions may be evaluated.

Once in calc mode, the user is prompted for expressions to be evaluated. The
expressions are given in the form:

[variable=]expression[@format]

where

“variable” is a 1- to 8-character (alphanumeric) variable name (the
first character must be a letter),

“expression” is an arithmetic expression consisting of numeric
constants, variable names, functions, and the arithmetic
operators +, −, *, /, and ** (exponentiation).

If the input line is in the form of an assignment statement, the value of
“expression” is assigned to “variable”. There is no limit to the number of
variables which may have values assigned to them, but a variable must be
assigned a value before it is used in an expression. All variables contain
double-precision, floating-point, scalar values.

The user may return to the caller (normally MTS command mode) via the MTS,
RETURN, or STOP commands, or an end-of-file.

Output

If the input line is an expression which does not assign a value to a
variable, the result of the evaluated expression is printed. An expression
may consist of a single element or a number of elements. The manner in

CALC MTS Command 203

MTS 1: The Michigan Terminal System

November 1991

which the result is printed is controlled by a format specification. The
format may be defaulted, set to a particular specification for a single
expression, or set to a global specification for all expressions.

When calc mode is entered, the default format specification is in effect.
With this format, the result is printed as a decimal number (up to 16
significant digits) if the expression contains decimal constants or
variables; the result is printed as a hexadecimal number if the expression
contains only hexadecimal constants or variables. If the expression
consists of only a single number, the result is printed in decimal if the
number is entered in hexadecimal format, and in hexadecimal if the
number is entered in decimal format. If the result is to be printed in
hexadecimal format, but it is not an integer, it is printed in floating-point
hexadecimal format (excess-40 notation). If the expression consists of
only a single variable name, the value of the variable is printed in decimal.
Finally, if the expression consists of only the symbol “$”, the result of the
preceding expression is printed in the format opposite to the previous
printing.

In addition to arithmetic expressions as input, a global format
specification may be specified by the SET calc command. All subsequent
results are printed according to this format specification. This format is
given in the form:

SET FORMAT=fmt

where “fmt” may be any FORTRAN-type numeric field specification
(I,F,E,G,Z), X (for hexadecimal), RX (for floating-point hexadecimal), and
GREG (for Gregorian date conversion). For example,

SET FORMAT=F10.2

sets the format to the FORTRAN floating-point 10.2 format. If “fmt” is
omitted, the format specification is reset to the default.

A format specification may also be appended to an expression (see
expression prototype above). This format overrides the global format and
affects only that expression. Thus, a format may be set for a single
expression. When appended to an expression, the “FORMAT=” may be
omitted. Thus,

1.23@F10.2

is equivalent to

1.23@FORMAT=F10.2

Expressions

Expressions are the basic input to calc mode. The operands of an
expression may be constants, variables, or function invocations. The
operators may be the arithmetic operators +, −, *, /, and **
(exponentiation). Expressions may be parenthesized; all blanks are

204 CALC MTS Command

MTS 1: The Michigan Terminal System

November 1991

ignored. Note that operators of equal precedence are evaluated from left
to right (e.g., 2**2**3 is equivalent to (2**2)**3 and gives the result 64);
the user may use parentheses to override this.

Constants may be entered in any of four forms: decimal, hexadecimal,
floating-point hexadecimal, and Gregorian date. All constants are
converted to double-precision, floating-point numbers before the
expression is evaluated.

(1) Decimal constants may be entered with or without a decimal
point and with an optional exponent in the form E±nn.

(2) A hexadecimal constant is of the form X'hhhhhhhh' or
'hhhhhhhh'. One to eight hexadecimal digits may be given; if
fewer than eight are given, the constant is padded on the left
with zeros to eight digits.

(3) A floating-point hexadecimal constant is of the form
R'ccmmmmmm'. The constant consists of a two-digit
characteristic in excess-40 notation and a mantissa of one to
fourteen digits.

(4) A Gregorian date is of the form GR'mm/dd/yy' or G'mm/dd/yy';
the digits “mm”, “dd”, and “yy” specify the month, the day, and
the year, respectively. Gregorian dates are converted to their
equivalent Julian dates before they are evaluated in an
expression. The Julian date is computed as the number of days
since March 1, 1900.

Variables may have names consisting of one to eight alphanumeric
characters, the first of which must be a letter. A variable is created when
it is first used on the left side of an assignment expression; it remains
defined until calc mode is terminated by a STOP command or an
end-of-file. In addition, the special variable “$” is always defined and
contains the result of the last valid expression.

Functions may be used as operands in expressions. A function is given in
the form

name(expression,...)

where “name” is the function name and “expression” is a calc mode
expression which may be passed as an argument to the function. Any of
the functions in the elementary function library may be used (see MTS

Volume 3 for a description of these functions). Among the functions
included are SQRT, EXP, LOG, LOG10, SIN, COS, TAN, COTAN, ARSIN,
ARCOS, ATAN, SINH, COSH, TANH, ERFC, ERF, DLGAMA, and
GAMMA. All functions use the double-precision form in the elementary
function library.

Commands: Any of the calc commands described below may be used in calc mode.

CALC MTS Command 205

MTS 1: The Michigan Terminal System

November 1991

CLEAR

The CLEAR command undefines all currently defined variables except for
the “$” variable.

LIST

The LIST command lists all currently defined variables and their values.

MCMD MTS-command

The MCMD command executes an MTS command while in calc mode.

MTS [MTS-command]

The MTS command returns control to the caller (normally MTS command
mode). If an MTS command is specified, that command is immediately
executed before control returns to the caller. All current variable
definitions and format specifications are retained.

RETURN

The RETURN command returns control to the caller (normally MTS
command mode). All current variable definitions and format
specifications are retained.

SET keyword ...

The SET command controls several calc mode options. The options which
may be set are:

DIGITS=[n] “n” specifies the number of digits that are printed to
the right of the decimal point for a decimal number.
If more digits are available than are to be printed,
the number is rounded to the nearest digit. If “n” is
omitted, it is reset to the default (all digits are
printed).

[FORMAT=][fmt]
“fmt” specifies the global format specification.
FORMAT may be omitted; if “fmt” is omitted, the
format is reset to default format processing.

OUTPUT=[FDname]
“FDname” specifies the file or device to which
expression results are written. If “FDname” is
omitted, the output device is reset to *SINK*.

SIGDIGITS=[n]
“n” specifies the number of significant digits that are
printed for a decimal number. If “n” is omitted, it is
reset to the default of 16.

206 CALC MTS Command

MTS 1: The Michigan Terminal System

November 1991

STOP

The STOP command (or an end-of-file) terminates calc mode and returns
control to the caller (normally MTS command mode). All current variable
definitions and format specifications are released.

Examples: The following two terminal session examples illustrate the use of the CALC
command. User input to calc mode is prefixed by “#” or “?”; output is prefixed
by “=”.

#CALC SQRT(2)
=1.414213562237309492

#CALC
?X=SIN(2*3)
?Y=COS(3*2)
?X**2+Y**2
=1
?X@FORMAT=F10.5
= -0.27942
?SET FORMAT=E20.14
?Y
=0.96017028665037E+00
?SET FORMAT=
?Y
=.960170286650365995
?Y@RX
=R'40F5CDB84BC117AA'
?X**2+Y**2@X
=X'00000001'
?STOP

CALC MTS Command 207

MTS 1: The Michigan Terminal System

November 1991

CANCEL

MTS Command Description

Purpose: To cancel *PRINT*, *PUNCH*, or *BATCH* jobs submitted from a terminal, or
regular batch jobs that the user has previously submitted.

Prototype: CANCEL {*...* | *...* [JOB] nnnnnn | [JOB] nnnnnn} [ID=userid]

where the parameters may be given in any order.

... [JOB] nnnnnn

“*...*” is either *PRINT*, *PUNCH*, or *BATCH*, and “nnnnnn” is the
6-digit job number or the job name. If the appropriate “*...*” has not been
released, the associated job is canceled; in this case, the job number or
name is not required. If the “*...*” job has been released to the system, the
job number or name must also be specified.

If both the “*...*” name and the job number (or job name) are given, and the
number does not match the number of the currently open “*...*” job, it is
assumed that the user is referring to an earlier “*...*” job of the same type
and the cancel information is passed to the system. If both the “*...*”
name and the job number are given, but the job number is that belonging
to a different type of “*...*” name, an error comment is printed.

{ID | USER}=userid

“userid” is the ITD userID associated with the job to be canceled. If the
userID given with the command is different from the current userID, the
terminal user is prompted for the password.

Program Key: *MTS.CANCEL

Restrictions: An “*...*” job cannot be canceled once processing has begun by the system.
Thus, *PRINT* can be canceled only if it is awaiting print, *PUNCH* if it is
awaiting punch, and *BATCH* if it is awaiting execution. To locate a job in the
system, the SYSTEMSTATUS command may be used.

Canceling an *PRINT* or *PUNCH* job while it is still open causes the
page-line or punch charges for the job to be rebated automatically. Once the job
has been released to the system, it still can be canceled in some cases (subject to
the constraints mentioned above). Charges are rebated automatically only if
the job is canceled during the same session in which it was released. In all
other cases, the user must explicitly apply for a rebate.

Examples: CANCEL *PRINT*

The current *PRINT* job is canceled.

208 CANCEL MTS Command

MTS 1: The Michigan Terminal System

November 1991

CANCEL 610399

The job with job number 610399 is canceled.

CANCEL *PUNCH* 603321

The *PUNCH* job with job number 603321 is canceled.

CANCEL MTS Command 209

MTS 1: The Michigan Terminal System

November 1991

COMMENT

MTS Command Description

Purpose: To allow insertion of comments on output to the terminal or the printer.

Prototype: COMMENT [text]

Program Key: *MTS.COMMENT

Description: This command is ignored by the system. As with all commands, it is echoed on
SINK and *MSINK*, unless the command SET ECHO=OFF has been given.

Comments also may be inserted into the output by prefixing them with an
asterisk (*) or dollar sign ($). This type of comment is not echoed on *SINK* or
MSINK.

Examples: COMMENT This is a comment.

* This is also a comment.

210 COMMENT MTS Command

MTS 1: The Michigan Terminal System

November 1991

CONTROL

MTS Command Description

Purpose: To control the operation of certain types of files and devices.

Prototype: CONTROL FDname control-command

Program Key: *MTS.CONTROL

Description: The “FDname” parameter specifies the file or device on which the control
operation specified by the “control-command” parameter is to be performed.
The “control-command” parameter includes all characters beginning with the
first nonblank character after the “FDname” parameter. The control command
is converted to uppercase before it is processed by the system.

Control commands may also be processed from user programs via the
CONTROL subroutine (see MTS Volume 3: System Subroutine Descriptions,
Reference R1003).

Only certain types of files and devices allow control operations to be performed.
A list of the acceptable devices and their control commands follows. The codes
in parentheses refer to the device type returned by the GDINFO subroutine (see
MTS Volume 3).

Magnetic Tapes (9TP):

Control Command Function

Positioning:

REW Rewind
FSR [n] Forward space “n” records
BSR [n] Backspace “n” records
FSF [n] Forward space “n” files
BSF [n] Backspace “n” files
POSN={* | *n* | *EOT* | name}

Position to beginning of current file, nth
file, end-of-tape, or file name

Blocking:

{FORMAT | FMT | RECFM}=fmt[([size][,lrecl])] where
“fmt” is {U | F | FB | FBS | V | VB | VS | VBS | D | DB}

Specify blocking format and, optionally,
block size and/or logical record length

{SIZE | BLKSIZE}=n Specify blocksize (18 ≤ n ≤ 32767)
LRECL=n Specify logical record length (1 ≤ n ≤

32767)
BLK={ON | OFF} Enable or disable blocking

CONTROL MTS Command 211

MTS 1: The Michigan Terminal System

November 1991

Label Processing:

{DSN | NAME}[=name] Specify name for next new file written
DTCHK={ON | OFF} Enable or disable expiration date

checking
EXPDT=[{mm-dd-yy | mm/dd/yy}]

Specify file expiration date for new files
INIT Initialize (empty) a labeled tape
LP={ON | OFF} Enable or disable label processing
EOV Terminate tape with end-of-volume labels
BLKPFX=n Specify block-prefix length for ANSI

labeled tapes (0 ≤ n ≤ 99)
CC={A | M} Specify control character for next new file

written

Error Recovery:

RETRY=n Specify read error retry count (0 ≤ n ≤ 15)
SNS Return sense data

Miscellaneous:

{WTM | EOF} [n] Write “n” tape-marks
MODE=mode Specify tape mode
PUSH Push current tape parameters onto stack
POP Pop tape parameters from stack
MINSIZE=n Specify minimum block size (1 ≤ n ≤ 100)
TIMER={ON | OFF | n} Enable, disable, or specify elapsed-time

interval (in minutes) for inactive tape
warning message; defaults to ON, n=15
minutes

TRANSLATE={MTS(parity) | MTS | IBM | NONE}
Specify translation scheme for
ANSI-labeled or ASCII unlabeled tapes;
parity is EVEN, ODD, ZERO, or ONE;
defaults to MTS(ZERO)

Note that in the FSR, BSR, FSF, BSF, and WTM commands, “n” must be in
the range from 0 to 32767. If omitted, “n” defaults to 1. For a complete
description of these commands, see MTS Volume 19: Magnetic Tapes in

MTS, Reference R1019.

UMnet/Michnet Computer Network (MNET):

Any of the UMnet/Michnet Computer Network device commands as
normally entered after a percent sign (%) may be specified. The percent
sign should not be given as part of the device control information. For a
complete description of the device commands, see the section “The
UMnet/Michnet Computer Network” in MTS Volume 4: Terminals and

Networks in MTS, Reference R1004.

212 CONTROL MTS Command

MTS 1: The Michigan Terminal System

November 1991

IBM 3270 Display Device Commands (3270):

Any of the IBM 3278 device commands as normally entered after a percent
sign (%) may be specified. The percent sign should not be given as part of
the device control information.

Files (SEQF, FILE):

Control Command Function

EMPTY Empty the file
TRUNCATE Truncate the file
RENUMBER par Renumber the file
{PKEY | PGMKEY}=key Set the program key
SIZE={n | nP} Change the size of the file
MAXSIZE={n | nP} Change the maximum size
SIZEINC=[±]{n | nP} Increment the size
MAXSIZEINC=[±]{n | nP} Increment the maximum size
{BUFFERS | MAXBUFS}=n

Set the number of file buffers
EXPFAC={nP | n% | DEFAULT}

Set the expansion factor for a file
SAVE Save the file on the system file-save tapes
NOSAVE Do not save the file on the system file-save

tapes
TOUCH Update the last data change time to the

current time

For a complete description of these commands, see the section “Control
Options for Files” in the section “Files and Devices” in this volume.

PRINT, *PUNCH*, *BATCH* (RMPT, RMPC, RMBA)

Control Command Function

CANCEL Hold job
COPIES=n Specify number of copies of job
DELIVERY={station | MAIL | NONE}

Specify output delivery station
HOLD Hold job
JOBNAME={jobname | DEFAULT}

Specify job name
RELEASE Release job
ROUTE=station Route all output of job

PRINT or *BATCH* only:

COMMENT="text" Specify head sheet text
FORMAT={LANDSCAPE | PORTRAIT | TWOUP |

format-name} Specify output format
{LANDSCAPE | PORTRAIT | TWOUP}

Specify output orientation

CONTROL MTS Command 213

MTS 1: The Michigan Terminal System

November 1991

MARGIN={n.nn | NO} Specify output margin
NUMBER={(b,l,c) | NO} Specify output page numbering
{ONESIDED | TWOSIDED}

Specify number of printed sides
OVERLAY={NONE | SHADED | LINED}

Specify output overlay
PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}

Specify output form
PRINT={T3 | TN} Specify line-printer character set
PRINTER={PAGE | LINE}

Specify printer type
SHIFT={YES | NO} Specify output shifting
TWOSIDED={YES | NO} Specify number of printed sides

PRINT only:

ADDRESS="line1;line2;..."
Campus mail delivery address

PAGES=n Specify number of pages
PROUTE=station Route print output of job
SEPCOPY={YES | NO} Specify separate jobs for copies

PUNCH only:

CARDS=n Specify number of cards
CROUTE=station Route card output of job

IMPORT and *EXPORT* (RMIM, RMEX)

Control Command Function

CLASS=char Specify file class
FILE={filename | "file name"}

Specify file name

For *IMPORT* only:

CANCEL Cancel incoming job
HOLD Hold incoming job in open state
JOBNAME=jobname Specify job name
JOB#=jobnumber Specify job number
KEEP Requeue job
RELEASE Release held job

For *EXPORT* only:

COMMENT="text" Specify header comment
COPIES=n Specify number of copies of job
DESTINATION=userid@node

Specify BITNET destination
ENCODING={NONE | NETDATA | DISKDUMP}

Specify data encoding

214 CONTROL MTS Command

MTS 1: The Michigan Terminal System

November 1991

TYPE={PUNCH | PRINT}Specify job type

For information on using the CONTROL command with with BITNET
connections, see BITNET in MTS, Reference R1039.

Server Commands:

For information on using the CONTROL command with servers, see Using

and Creating MTS Network Servers, Reference R1073.

Examples: CONTROL *TAPE* REW

A REW control command is given to the pseudodevice *TAPE* which could
be a 9-track magnetic tape.

COPY *SOURCE* CNTRLFILE
CON *MSINK* OUTLEN=100
RUN PROGRAM INPUT=INPUTDATA PRINT=*MSINK*
CON *MSINK* RESET
$ENDFILE

The file CNTRLFILE is established which can be used as a source file of
commands for running a program that prints output lines up to 100
characters long on a terminal via the UMnet/Michnet Computer Network.
The CONTROL commands set the terminal output length to 100
characters for the duration of the program run, and then reset the output
length to the default value. This sequence of commands can be started
with the command SOURCE CNTRLFILE.

CONTROL MTS Command 215

MTS 1: The Michigan Terminal System

November 1991

COPY

MTS Command Description

Purpose: To copy from a file or device (or set of files) to another file or device (or set of
files).

Prototype: COPY [FROM] {FDlist1 | 'string'} [[TO] FDlist2]

Two FDname lists may be given as parameters:

FDlist1

“FDlist1” specifies the file or device (or set of files) that contain the lines to
be copied (the input). “FDlist1” may be a single file or device name or a
file-name pattern. An explicit concatenation of file or device names plus
one file-name pattern may be specified. For example,

A?+B

is valid, but

A?+B?

is not valid. Line-number ranges and FDname modifiers may be
included.

'string' or "string"

A single arbitrary character string (enclosed in single or double quotes)
may be copied to the output set of files.

FDlist2

“FDlist2” specifies the file or device (or set of files) that is to receive the
copied lines (the output). “FDlist2” may be a single file or device name or
a file-name pattern. An explicit concatenation of file or device names plus
one file-name pattern may be specified. “FDlist2” may contain a pattern
only if “FDlist1” contains a pattern. Line-number ranges and FDname
modifiers may be included. If “FDlist2” is omitted, the output lines are
written on *SINK*.

If “FDlist1” contains a pattern, a set of files are copied. If “FDlist2” contains a
pattern, the output files are generated by replacing each question mark in
“FDlist2” with the string matched by the corresponding question mark in
“FDlist1”. “FDlist1” must have at least as many question marks as “FDlist2”.

“FDlist2” does not have to contain a pattern if “FDlist1” contains a pattern. For
example, the command

COPY -A? TO -B?

216 COPY MTS Command

MTS 1: The Michigan Terminal System

November 1991

is equivalent to the command sequence

COPY -A1 TO -B1
COPY -A2 TO -B2

and the command

COPY -A? TO -B

is equivalent to the command sequence

COPY -A1 TO -B
COPY -A2 TO -B(*L+1)

assuming the existence of the files −A1 and −A2. The first command copies two
files into two other files with similar names, while the second command copies
two files into a single file back to back.

Program Key: *MTS.COPY

Description: The COPY command causes a series of read and write operations to be
performed. Lines are read sequentially from “FDlist1” and written to “FDlist2”
until an end-of-file condition is encountered on “FDlist1”.

For line files, the read operation uses the line numbers of “FDlist1”. For
sequential files and devices, the read operation simulates line numbers,
although a beginning line number and increment may be specified for a device.
For line files and devices, the write operation generates line numbers starting at
1 with an increment of 1 unless a beginning line number and increment is
specified on “FDlist2”. For sequential files, the write operation ignores line
numbers and writes the lines at the end of the file. If the @I FDname modifier
is used on “FDlist2”, the write operation uses the line numbers from the read
operation for generating line numbers for the write operation.

For line files, lines may be written on “FDlist2” sequentially or indexed. If a
line file is written sequentially, renumbering of lines occurs; however, the user
can specify the beginning line number and increment for “FDlist2”. For
sequential files and devices, lines are written on “FDlist2” sequentially. If a
line file is copied to a sequential file, the line numbers are lost. See Appendix A
to the section “Files and Devices” for a further description of the use of modifiers
with read and write operations.

An exact copy of a line file can be made by issuing the command

COPY file1(*F)@−TRIM@−IC@−ENDFILE file2@−TRIM@I

An exact copy of a sequential file can be made by issuing the command

COPY file1@−TRIM@−IC@−ENDFILE file2@−TRIM

The −TRIM FDname modifier disables trimming, the −IC modifier disables
implicit concatenation, and the −ENDFILE disables the recognition of the
$ENDFILE delimiter. The above commands are both equivalent to issuing the

COPY MTS Command 217

MTS 1: The Michigan Terminal System

November 1991

command

DUPLICATE file1 AS file2

The user must have READ access to “FDlist1” and WRITE access to “FDlist2”.

A quoted string can be used in place of the file being copied from. This makes it
possible to insert lines with carriage controls and other formatting codes
directly into the print stream to the Xerox 9700 page printer, rather than having
to insert them in the file and then copy the file to the page printer. For
example, the following commands force the page printer to begin every copy of
“file1” on a new sheet:

$CONTROL *PRINT*
$COPY ":" *PRINT*
$COPY file1 *PRINT*
$COPY ":" *PRINT*
$COPY file2 *PRINT*
$RELEASE *PRINT*

It is also possible to use the COPY command to switch formats in a single print
job. The following example prints “file1” in portrait mode, and “file2” in
landscape mode:

$CONTROL *PRINT* PAPER=3HOLE
$COPY '$9700 PORTRAIT' *PRINT*
$COPY file1 *PRINT*
$COPY '$9700 LANDSCAPE' *PRINT*
$COPY file2 *PRINT*
$RELEASE *PRINT*

You can also use $COPY to send arbitrary strings such as headers to the page
printer:

$CONTROL *PRINT*
$COPY " Output from Job 1" *PRINT*
$COPY file1 *PRINT*
$RELEASE *PRINT*

This will print “Output from Job 1” (without the quotes) at the top of the first
page of file1. Note that the first character in the string must be a
carriage-control character, in this case, a blank.

The quoted string must stand alone and cannot be part of a concatenation.
Thus, these commands work properly:

$CONTROL *PRINT*
$COPY ":" *PRINT*
$COPY file1 *PRINT*
$RELEASE *PRINT*

But this is illegal:

$COPY ":"+file1 *PRINT*

Examples: COPY DATA1 TO DATA2

218 COPY MTS Command

MTS 1: The Michigan Terminal System

November 1991

The file DATA1 (beginning with line 1) is copied to the file DATA2. If
DATA2 is a line file, new line numbers are generated for DATA2 starting
at 1 and incremented by 1. The line numbers from DATA1 are not carried
over to DATA2.

COPY DATA1 DATA2@I

The file DATA1 (beginning with line 1) is copied to the file DATA2. The
line numbers from DATA1 are retained in DATA2. If DATA1 is a
sequential file, these line numbers start with 1 and are incremented by 1.
DATA2 must be a line file.

COPY DATA1+DATA2(5,20) DATA3(10,,10)

The file DATA1 (beginning with line 1) and all lines between 5 and 20,
inclusive, of the file DATA2 are copied to the file DATA3. The line
numbers of DATA3 start at 10 and are incremented by 10.

COPY DATA1

The file DATA1 (beginning with line 1) is copied to *SINK* (default).

COPY DATA? *PRINT*

All files beginning with the string DATA are copied to *PRINT*.

COPY -? TEMPFILES

All temporary files are copied into the file TEMPFILES.

COPY WABC:DATA1 DATA1

The file DATA1 belonging to userID WABC is copied to the file DATA1.
The current userID must have read access to WABC:DATA1 (see the
PERMIT command).

COPY MTS Command 219

MTS 1: The Michigan Terminal System

November 1991

CREATE

MTS Command Description

Purpose: To create either a permanent or temporary file, or a pseudodevice name.

Prototype: CREATE {filename | *pdn*} [keywords]

When creating files, only the “filename” parameter giving the name of the file to
be created is required. See the section “Files and Devices” in this volume for
restrictions on the length of file names and legal characters. The other legal
keyword parameters that may be given are:

SIZE={n | nP}
MAXSIZE={n | nP}

The SIZE parameter specifies the estimated size of the file to be created.
The MAXSIZE parameter specifies the maximum size to which the file
may be expanded. The size may be given in one of two forms:

n the number of 50 byte lines
nP the number of 4096 byte pages

If the SIZE parameter is omitted, the default size is 1 page. If this size is
exceeded when the file is used, the system attempts to extend the file. If
the MAXSIZE parameter is omitted, the default maximum size is 32767
pages. The maximum value that may be specified is 2686975 lines or
32767 pages. However, the size of the largest file that may be created
within these limits depends on the total amount of file space available in
the system and the user’s maximum file space allotment.

The formulas for calculating the size of a file are given in Appendix C to
“Files and Devices.”

TYPE={LINE | SEQ}

The TYPE parameter specifies the type of file to be created where

LINE a line file
SEQ a sequential file

The default type is LINE.

When creating pseudodevice names, the TYPE parameter must be given
specifying the type of pseudodevice name being created.

TYPE={IMPORT | EXPORT | DUMMY}

The TYPE parameter specifies the type of pseudodevice name to be created
where

220 CREATE MTS Command

MTS 1: The Michigan Terminal System

November 1991

IMPORT is a pseudodevice that is used for importing data
using BITNET connections.

EXPORT is a pseudodevice that is used for exporting data
using BITNET connections.

DUMMY is a pseudodevice that always returns an end-of-file
on a read operation and discards output on a write
operation.

Program Key: *MTS.CREATE

Description: The CREATE command can be used to create either a permanent or temporary
file. The parameter “filename” gives the name of the file to be created.

When the command is entered, MTS checks to ensure that a file of the given
name does not already exist; an error comment is produced if the file already
exists. Then MTS checks the user’s file space allocation to determine if there is
enough space remaining to allow creation of the file. Finally, MTS attempts to
acquire the space. If all three steps are successful, MTS informs the user of the
successful creation of the file. The file is initially empty when created.

The SIZE parameter gives an approximation of the number of bytes that can
actually be stored in the file. The actual capacity of the file is affected by the
type of the file, the location of the file, the length of the lines stored in the file,
and the order in which the lines are written (for line files).

Since temporary files are created automatically when first referenced in a
command or subroutine call, their explicit creation is necessary only when
nondefault specifications are required.

A file may be created from a program by calling the CREATE subroutine (see
MTS Volume 3: System Subroutine Descriptions, Reference R1003).

Examples: CREATE A

The file A is created with the default size of 1 page.

CREATE BIGFILE SIZE=100P

The file BIGFILE is created with a size of 100 pages.

CREATE *JUNK* TYPE=DUMMY

The pseudodevice name *JUNK* is created. All output written to
JUNK will be discarded.

CREATE MTS Command 221

MTS 1: The Michigan Terminal System

November 1991

DEBUG

MTS Command Description

Purpose: To load a program and enter into debug command mode.

Prototype: DEBUG [program] [I/Ounits] [limits] [mapoptions]
[{EXECPKEY | PKEY}={key | OFF}] [PAR=parameters]

The following parameters may be given:

program

“program” specifies the file(s) or device(s) containing the program to be
loaded and debugged. If omitted, debug mode is entered without loading
a program.

I/Ounits

The keyword parameters “I/Ounits” are the assignments of logical I/O
units to files or devices for use by the loaded program during execution.
The logical I/O unit assignments are used to select appropriate I/O
subroutines to be used by the loaded program for input and output of data.
Where no specifications are stated, the following default assignments
occur:

SCARDS=*SOURCE*
GUSER=*MSOURCE*
SERCOM=*MSINK*
SPRINT=*SINK*
SPUNCH=*PUNCH* (batch mode if global card est. > 0)

Synonyms may be used for the following logical I/O unit names:

INPUT for SCARDS
PRINT for SPRINT
OBJECT for SPUNCH

The logical I/O units 0 through 99 have no default specifications. See the
section “Files and Devices” in this volume and the subroutine descriptions
for INPUT (SCARDS), PRINT (SPRINT), OBJECT (SPUNCH), SERCOM,
GUSER, READ, and WRITE in MTS Volume 3: System Subroutine

Descriptions, Reference R1003, for further details on the use of these
subroutines.

The logical I/O unit assignments may be initially assigned or reassigned in
debug mode via the SET debug command.

FORTRAN users are reminded that MTS logical I/O units 0 through 99 are
not necessarily the same as the FORTRAN logical I/O units 0 through 99.

222 DEBUG MTS Command

MTS 1: The Michigan Terminal System

November 1991

limits

The keyword parameters “limits” specify local limits for time, pages
printed, and cards punched. For a complete description of the use of
limits, see the RUN command description and the section “UserIDs,
Limits, and Sigfiles” in this volume.

MAP[=mapFDname] [NOMAP] [XREF] [UXREF]

The MAP, XREF, and UXREF parameters are used to obtain a loader map
and cross-reference listings from the dynamic loader. These are not
normally needed when in debug mode. See the RUN command
description for further details.

{EXECPKEY | PKEY}={key | OFF}

The EXECPKEY parameter “key” specifies an override program key to be
used instead of the program key associated with “program”. If OFF is
specified, the override specified by the EXECPKEY option of the SET
command is disabled. For further details on the use of program keys, see
the section “Files and Devices” in this volume.

PAR=parameters

The PAR field specifies an arbitrary string of characters to be passed to the
loaded program on initiation of execution. This is usually a parameter
list for the program and its interpretation depends on the loaded program.
The PAR field must be the last parameter specified in the command. The
parameter list is terminated by the end of the command line. Note that
the parameter field always has a blank added after the last character and
the length count is incremented by one.

The parameter list may be initially assigned or reassigned in debug mode
via the SET debug command.

Program Key: *SDS

Description: The DEBUG command invokes the dynamic loader to load the object in
“program”. For a complete description of the loading process, see the
description of the RUN command in this section and the section “The Dynamic
Loader” in MTS Volume 5: System Services, Reference R1005.

If the program is loaded successfully, control is transferred to debug command
mode. In debug mode, the user may use the facilities of the symbolic debugging
system (SDS) to display or modify parts of the loaded program and to initiate
execution. SDS monitors the execution of the program. See MTS Volume 13:

The Symbolic Debugging System, Reference R1013, for further details.

If no parameters are given on the DEBUG command, debug mode is entered
without loading (or unloading) any program.

DEBUG MTS Command 223

MTS 1: The Michigan Terminal System

November 1991

If “program” has a nondefault program key that is not prefixed by the current
userID, the program key will be set to the default value (for this invocation of
the program only).

Example: DEBUG OBJPROG 5=INPUT 6=OUTPUT

This loads the program OBJPROG and transfers control to debug mode.
Logical I/O units 5 and 6 are assigned to the files INPUT and OUTPUT,
respectively.

224 DEBUG MTS Command

MTS 1: The Michigan Terminal System

November 1991

DESTROY

MTS Command Description

Purpose: To destroy a file or a set of files, or a pseudodevice name.

Prototype: DESTROY {filelist | *pdn*} [{OK | ALLOK | PROMPT}]

Program Key: *MTS.DESTROY

Description: The “filelist” parameter specifies the file or the set of files to be destroyed and
may be a single file name, a file-name pattern, or a parenthesized list of either.

If a single file name is specified, confirmation is requested in conversational
mode unless the file is a temporary file. If more than one file is specified, a
single summary confirmation is requested. If the reply is OK, then all the files
specified are destroyed; otherwise, none are destroyed. Confirmation is not
requested in batch mode.

When only a single file name is specified, the OK option may be used to bypass
the confirmation request; the OK option is ignored if more than one file name is
specified. The ALLOK option may be used to bypass the confirmation request
when several files have been specified. The PROMPT option causes prompting
for confirmation for each individual file, including temporary files.

The response to a prompt for confirmation may be OK to destroy the file, NO to
skip the file but continue with the next file in the list, or CANCEL to terminate
the command.

If only “?” is specified for “filelist”, a special confirmation request

Do you really want to destroy ALL your files?

is printed. If the reply is OK, then the command continues with a summary
confirmation request or with confirmation requests for each individual file.

The user must have DESTROY access to the files.

The destroyed files are deleted from the user’s file catalog. The space occupied
by the files is released and the user is no longer charged for it.

If a file is currently in use by this job and is locked in some manner, it remains in
use and locked. This allows the file to be locked, destroyed, recreated, and
written into without any other job erroneously using it while it does not exist.

A file or a set of files may be destroyed from a program by calling the DESTROY
subroutine (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

The “*pdn*” parameter specifies a pseudodevice name to be destroyed.

DESTROY MTS Command 225

MTS 1: The Michigan Terminal System

November 1991

Examples: DESTROY DATA1

This command destroys the file DATA1. The terminal user is prompted
for confirmation.

DESTROY DATA2 OK

This command destroys the file DATA2. Confirmation is given on the
command.

DESTROY (DATA1,DATA2,DATA3) ALLOK

This command destroys the files DATA1, DATA2, and DATA3.
Confirmation is given on the command.

DESTROY DATA? PROMPT

This command destroys all files beginning with the string DATA. The
terminal user is prompted for confirmation for each file to be destroyed.

DESTROY *JUNK*

This command destroys the pseudodevice name *JUNK*.

226 DESTROY MTS Command

MTS 1: The Michigan Terminal System

November 1991

DISPLAY

MTS Command Description

Purpose: To display the contents of general registers, floating-point registers, specified
virtual memory locations, the program status word, the accumulated cost of the
job, and/or other system information for the user’s job.

Prototype: DISPLAY [OUTPUT=FDname] [format] {location | item} ...

“location | item” is the only required parameter. As many “location | item” and
“format” parameters may be given as desired.

OUTPUT=FDname

“FDname” is the file or device to which the output from the DISPLAY
command is written. If “FDname” is omitted, the output is written on
SINK. An error comment is produced if “FDname” specifies a
nonexistent or unavailable file or device.

format

The format of the display may be specified by any combination of the
following options:

HEX Hexadecimal conversion
NOHEX Hexadecimal conversion off

MNEMONIC Mnemonic and hex conversion
NOMNEMONIC Mnemonic and hex conversion off

EBCDIC EBCDIC conversion
NOEBCDIC EBCDIC conversion off

SINGLESPACE Single-space output
DOUBLESPACE Double-space output

ORL=SHORT Short output record (70 char)
ORL=LONG Long output record (130 char)
ORL=n Output record is “n” characters

If not specified, the following default option settings apply:

NOHEX
NOMNEMONIC
NOEBCDIC
SINGLESPACE
ORL=LONG for printers
ORL=SHORT for terminals

DISPLAY MTS Command 227

MTS 1: The Michigan Terminal System

November 1991

If the NOHEX, NOMNEMONIC, and NOEBCDIC are all specified
simultaneously (explicitly or by default), the output is displayed with
hexadecimal conversion.

A “format” parameter affects only those “location” parameters that are
blocks of virtual memory and which follow it. A “format” parameter does
not affect single memory locations or other items.

location

“location” specifies what is to be displayed from the loaded program. If
the loaded program is a “run-only” program, these options are not legal.
This may be any of the following:

GRx

GRx specifies the general register “x”, where “x” is a decimal integer
from 0 to 15 or a hexadecimal integer from 0 to 9, A to F, or “S”, if all
general registers are to be displayed.

FRx

FRx specifies the floating-point register “x”, where “x” is one of the
integers 0,2,4, or 6, or “S”, if all floating-point registers are to be
displayed.

[RF={hhhhhh | GRx}] xxxxxx[...xxxxxx]

This specifies a virtual memory location or range of locations given by
an optional local relocation factor and a displacement or range of
displacements. “hhhhhh” is the hexadecimal value of a local
relocation factor; GRx indicates the general register whose contents
are to be used as a local relocation factor. “xxxxxx” is the
hexadecimal value of a displacement. A range of displacements can
be given by “xxxxxx...xxxxxx”. The displacement is added to the
current value of the relocation factor to provide an absolute 24-bit
virtual memory address. If a local relocation factor is not specified,
the global relocation factor is used. The global relocation factor is
initially zero, but may be changed by the RF option of the SET
command or by calling the CUINFO subroutine. When a relocation
factor is specified in the command, it remains in effect for the
remainder of the command unless subsequently overridden by a
second local relocation factor specification.

PSW

PSW specifies the program status word at the time the last loaded
program terminated.

228 DISPLAY MTS Command

MTS 1: The Michigan Terminal System

November 1991

item

“item” specifies informational items to be displayed that are not concerned
with a loaded program. This may be any of the following:

ADDRESS

ADDRESS displays the current setting of the SET ADDRESS option.

AUTOHOLD

AUTOHOLD displays the current setting of the SET AUTOHOLD
option.

CARDS

CARDS displays the current output card limit (SET CARDS option).

CLASS

CLASS displays the current job file class (SET CLASS option).

COMMENT

COMMENT displays the current head sheet comment text (SET
COMMENT option).

CONTCHAR

CONTCHAR displays the current line-continuation character (SET
CONTCHAR option).

COPIES

COPIES displays the current setting of the SET COPIES option.

COST

COST displays the accumulated cost of the current job. This
includes all charges up to the current time except charges for
permanent file storage, mounted tapes, and open UMnet/Michnet
Computer Network connections.

CROUTE

CROUTE displays the current setting of the SET CROUTE option.

DATE

DATE displays the current date.

DISPLAY MTS Command 229

MTS 1: The Michigan Terminal System

November 1991

DEBUG

DEBUG displays the current setting of the SET DEBUG option.

DELIVERY

DELIVERY displays the current delivery setting (SET DELIVERY
option).

DESTINATION

DESTINATION displays the current BITNET destination (SET
DESTINATION option).

{EBM | ETM}

EBM and ETM display the current settings of the SET EBM and SET
ETM options.

ERRORPROMPT

ERRORPROMPT displays the current setting of the SET
ERRORPROMPT option.

EXECPFX

EXECPFX displays the current execution prefix character (SET
EXECPFX option).

FILE

FILE displays the current job file name (SET FILE option).

FORMAT

FORMAT displays the current page-printer output format (SET
FORMAT option).

GUINFO(name)

GUINFO(name) displays the value of the GUINFO item specified by
“name”. Alternatively, any GUINFO item may be displayed directly
by giving the command

DISPLAY name

provided that “name” does not conflict with any existing option for
the DISPLAY command. The list of GUINFO items is given in the
description of the GUINFO/CUINFO subroutine in MTS Volume 3:

System Subroutine Descriptions, Reference R1003.

230 DISPLAY MTS Command

MTS 1: The Michigan Terminal System

November 1991

HELPMODE

HELPMODE displays the current helpmode setting; 0=line,
1=default, 2=screen (SET HELPMODE option).

HOSTNAME

HOSTNAME displays the current host name (normally UM).

INITFILE(command)

INITFILE displays the name of the current initialization file for an
MTS command (SET INITFILE option).

INSTALLATIONNAME

INSTALLATIONNAME displays the current installation name
(“MTS Ann Arbor” for the University of Michigan).

JOBNAME

JOBNAME displays the current job name (SET JOBNAME option).

{LASTRELOAD | LRL}

LASTRELOAD displays the time of the last reload of the system.

LIBSRCH

LIBSRCH displays the current setting of the SET LIBSRCH option.

LOGSTATUS

LOGSTATUS displays information about the files and devices
currently being logged by the LOG command.

MACHINE

MACHINE displays the type, model, and serial number of the
computer that the system is currently running on.

MAILCALL

MAILCALL displays the current setting of the SET MAILCALL
option.

MAP

MAP displays the loader map. The format and contents of the
loader map are controlled by the SET PRMAP, PDMAP, and
MAPDOTS options; the SET SYMTAB option must be ON.

DISPLAY MTS Command 231

MTS 1: The Michigan Terminal System

November 1991

MAPDOTS

MAPDOTS displays the current setting of the SET MAPDOTS
option.

MARGIN

MARGIN displays the current page-printer output margin (SET
MARGIN option).

NAME

NAME displays the current name (SET NAME option).

NAMELIB

NAMELIB displays the current name-library (SET NAMELIB
option).

{NEWFILEACCESS | NFA}

NEWFILEACCESS displays the setting of the default file access
used when new files are created (SET NEWFILEACCESS option).

NUMBER

NUMBER displays the current output page-number setting (SET
NUMBER option).

OVERLAY

OVERLAY displays the current page-printer output overlay (SET
OVERLAY option).

PAGES

PAGES displays the current output page limit (SET PAGES option).

PAPER

PAPER displays the current setting of the SET PAPER option.

PASSWORD

PASSWORD displays pertinent information about the user’s
password.

PDNS

PDNS displays the user-mounted pseudodevice names that are
active. These are the pseudodevice names for magnetic tapes and
UMnet/Michnet Computer Network connections. The information

232 DISPLAY MTS Command

MTS 1: The Michigan Terminal System

November 1991

displayed includes the pseudodevice name, tape name, device type,
and device name.

PRINT

PRINT displays the current setting of the SET PRINT option.

PRINTER

PRINTER displays the current setting of the SET PRINTER option.

PROJECT

PROJECT displays the current projectID.

PROJECTPWCHANGE

PROJECTPWCHANGE displays the current setting of the SET
PROJECTPWCHANGE option.

PROUTE

PROUTE displays the current setting of the SET PROUTE option.

RATES

RATES displays the current rates in effect for the session.

RCPRINT

RCPRINT displays the current setting of the SET RCPRINT option.

RERUN

RERUN displays the text of the last RUN or RERUN command.
This is the text that will be used if another RERUN command is
issued.

RF

RF displays the current relocation factor (SET RF command).

RUNS

RUNS displays the command text of all RUN commands issued
during the session.

SEE_DISPATCHES

SEE_DISPATCHES displays the current setting of the SET
DISPATCHES option.

DISPLAY MTS Command 233

MTS 1: The Michigan Terminal System

November 1991

SENSE(device-name)

SENSE displays the sense information associated with the specified
device name.

SEPCOPY

SEPCOPY displays the current setting of the SET SEPCOPY option.

SHIFT

SHIFT displays the current page-printer output shift value (SET
SHIFT option).

SHOWNAME

SHOWNAME displays the current setting on the SET SHOWNAME
option.

SIGFILE

SIGFILE displays the current and new (if any) signon and project
signon files (sigfiles) (SET SIGFILE option).

SINK

SINK displays the current *SINK* and the previous sink file or
device (if any).

SOURCE

SOURCE displays the current *SOURCE* and the previous source
file or device (if any).

SPELLCOR

SPELLCOR displays the current setting of the SET SPELLCOR
option.

SYMTAB

SYMTAB displays the current setting of the SET SYMTAB option.

{SYSTEM | MODEL}

SYSTEM or MODEL displays information about the currently
executing version of MTS.

TAILSHEET

TAILSHEET displays an itemized list of the accumulated costs for
the current session. This includes all charges up to the current time

234 DISPLAY MTS Command

MTS 1: The Michigan Terminal System

November 1991

except charges for permanent file storage, mounted tapes, and open
UMnet/Michnet Computer Network connections.

TASKNUMBER

TASKNUMBER displays the current task number.

TDR

TDR displays the current setting of the SET TDR option.

TERSE

TERSE displays the current setting of the SET TERSE option.

{TIME | TIMESPELLEDOUT}

TIME and TIMESPELLEDOUT display the current time.

TIMEDATE

TIMEDATE displays the current time and date.

TWOSIDED

TWOSIDED displays the current setting of the SET TWOSIDED
option.

UPTIME

UPTIME displays the amount of time elapsed since the last system
reload.

USMSG

USMSG displays the current setting of the SET USMSG option.

USERID

USERID displays the current userID.

UXREF

UXREF displays the current setting of the SET UXREF option.

VERSION(command)

VERSION displays the current version in use for the specified MTS
command (SET VERSION option).

DISPLAY MTS Command 235

MTS 1: The Michigan Terminal System

November 1991

VMSIZE

VMSIZE displays the current size of the user’s virtual memory in a
decimal number of pages.

XREF

XREF displays the current setting of the SET XREF option.

BATCH

BATCH displays the active *BATCH* job (if there is one) giving the
receipt number and the number of lines read for the job.

PRINT

PRINT displays the active *PRINT* job (if there is one) giving the
receipt number, the number of lines, pages, images, and sheets, the
number of copies (if greater than 1), the route, the printer character
set (if specified), the printer type, the output form, and the delivery
station (if specified).

PUNCH

PUNCH displays the active *PUNCH* job (if there is one) giving
the receipt number, the current number of cards, and the punch
route.

...

... displays all active *PRINT*, *PUNCH*, and *BATCH* jobs
giving the items listed above for each type of job.

pdn

“*pdn*” displays information about pseudodevices mounted by the
MOUNT command or created by the CREATE command. For
magnetic tapes, this includes information such as the tape name,
volume name, file number, block number, record number, format,
density, file name, and the status of various user options.

Program Key: *MTS.DISPLAY

Description: The DISPLAY command displays general registers, floating-point registers,
specified virtual memory locations, the program status word, the accumulated
cost of the current job, and other system information for the user’s job.

The general registers, floating-point registers, and the PSW are displayed in
labeled hexadecimal format.

Blocks of virtual memory are displayed in hexadecimal, mnemonic and
hexadecimal, and/or EBCDIC format.

236 DISPLAY MTS Command

MTS 1: The Michigan Terminal System

November 1991

Examples: DISPLAY GR3 FRS EBCDIC 818E08...818FA6

This displays GR3 and all the floating-point registers on *SINK* in
single-spaced hexadecimal format, and displays virtual memory locations
818E08 through 818FA6 (assuming a global relocation factor of zero) in
single-spaced EBCDIC format.

DISPLAY ON DISPLAYFILE ORL=LONG GRS PSW VMSIZE

This displays on the file DISPLAYFILE all the general registers, the
program status word, and the size of the user’s virtual memory in long
record hexadecimal format.

DISPLAY RF=818000 200...480 MNEMONIC EBCDIC 800...A80

This displays virtual memory locations 818200 through 818480 on *SINK*
in hexadecimal format (the default), and displays locations 818800
through 818A80 in hexadecimal, mnemonic, and EBCDIC format.

DISPLAY COST

This displays the accumulated cost of the current job.

DISPLAY *PRINT*

This displays information about the active *PRINT* job.

DISPLAY MTS Command 237

MTS 1: The Michigan Terminal System

November 1991

DUMP

MTS Command Description

Purpose: To display the contents of general registers, floating-point registers, the
program status word, and the virtual memory locations associated with the
user’s current loaded program.

Prototype: DUMP [OUTPUT=FDname] [format] ...

As many “format” parameters may be given as desired. The only restriction on
the order of parameters in the command line is that “ON FDname” must appear
first if it appears at all.

OUTPUT=FDname

“FDname” is the file or device to which the output from the DUMP
command is written. If “FDname” is omitted, the output is written on
SINK. An error comment is produced if “FDname” specifies a
nonexistent or unavailable file or device.

format

The format of the display may be specified by any combination of the
following options:

HEX Hexadecimal conversion
NOHEX Hexadecimal conversion off

MNEMONIC Mnemonic and hex conversion
NOMNEMONIC Mnemonic and hex conversion off

EBCDIC EBCDIC conversion
NOEBCDIC EBCDIC conversion off

SINGLESPACE Single-space output
DOUBLESPACE Double-space output

ORL=SHORT Short output record (70 char)
ORL=LONG Long output record (130 char)

LIBRARY Include library space in dump
NOLIBRARY Exclude library space from dump

If not specified, the following default option settings apply:

NOHEX
NOMNEMONIC
NOEBCDIC
SINGLESPACE
ORL=LONG for printers

238 DUMP MTS Command

MTS 1: The Michigan Terminal System

November 1991

ORL=SHORT for terminals
LIBRARY

If the NOHEX, NOMNEMONIC, and NOEBCDIC are all specified
simultaneously (explicitly or by default), the output is dumped with
hexadecimal conversion. If ORL=L is specified or default, then both
hexadecimal and EBCD conversion is given side by side.

Program Key: *MTS.DUMP

Description: The DUMP command displays the general registers, floating-point registers,
the program status word, and the virtual memory locations associated with the
user’s current loaded program.

The general registers are displayed in hexadecimal, fixed-point decimal, and
symbolic address format. The floating-point registers are displayed in
hexadecimal and floating-point decimal format.

Blocks of virtual memory are displayed in hexadecimal, mnemonic and
hexadecimal, and/or EBCDIC format.

A dump may be produced from a program by calling the STDDMP or SDUMP
subroutines (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

This command is invalid if the currently loaded program is a “run-only”
program.

Examples: DUMP

The general registers, floating-point registers, program status word, and
virtual memory locations are displayed in single-spaced hexadecimal
format.

DUMP HEX EBCDIC DOUBLESPACE SP2

The general registers, floating-point registers, program status word, and
virtual memory locations are displayed in double-spaced hexadecimal and
EBCDIC format.

DUMP MTS Command 239

MTS 1: The Michigan Terminal System

November 1991

DUPLICATE

MTS Command Description

Purpose: To duplicate a file or a set of files.

Prototype: DUPLICATE oldname [AS] newname [keywords] [{OK | ALLOK | PROMPT}]

The legal keywords are:

{OPTIMIZE | NOOPTIMIZE}

The OPTIMIZE keyword specifies that the file is to be optimized
during the duplication process; that is, all unused space in each page
of the file is eliminated. NOOPTIMIZE duplicates the file without
optimization. The default is OPTIMIZE.

{DATA | NODATA}

The DATA keyword specifies that both the data lines in the file and
the file attributes are copied to the duplicate file. The NODATA
keyword specifies that only the file attributes are copied; the
duplicate file remains empty. The default is DATA.

EMPTYOK

The EMPTYOK keyword specifies that confirmation is not required
to copy an empty file into a preexisting nonempty file.

Program Key: *MTS.DUPLICA

Description: The “oldname” parameter specifies the file or the set of files to be duplicated and
may be a single file name or a file-name pattern. The “newname” parameter
specifies the new names for the files being duplicated.

If “oldname” is a pattern, a set of files are duplicated. If “newname” is a
pattern, the new names are generated by replacing each question mark in
“newname” with the string matched by the corresponding question mark in
“oldname”. “oldname” must have at least as many question marks as
“newname”. “newname” must be a pattern if “oldname” matches more than
one file. For example,

DUPLICATE ?.S ?.OLD

is equivalent to

DUPLICATE A.S A.OLD
DUPLICATE B.S B.OLD

if ?.S matches the files A.S and B.S.

240 DUPLICATE MTS Command

MTS 1: The Michigan Terminal System

November 1991

If the files specified by “newname” do not exist, they are created at the minimum
size (MINSIZE) for the corresponding “oldname”. The file type (LINE or SEQ)
is the same. The data from “oldname” is copied exactly to “newname”. The
expansion-factor, file-save, and program-key attributes (MAXSIZE, NOSAVE,
and PKEY) are retained. If the user has PERMIT access to “oldname”, then
“newname” is permitted like “oldname”; otherwise, the access to “newname” is
DEFAULT.

If the files specified by “newname” already exist, “newname” is emptied and the
data is copied from “oldname” to “newname”. The other attributes and access
information are not changed.

If a single file name is specified as “oldname”, confirmation is not requested in
conversational mode unless “newname” already exists. If more than one file is
specified, a single summary confirmation is requested. If the reply is OK, then
all the files specified are duplicated; otherwise, none are duplicated.
Confirmation is not requested in batch mode.

When only a single file name is specified, the OK option may be used to bypass
the confirmation request; the OK option is ignored if more than one file name is
specified. The ALLOK option may be used to bypass the confirmation request
when several files have been specified. The PROMPT option causes prompting
for confirmation for each individual file.

The response to a prompt for confirmation may be OK to duplicate the file, NO to
skip the file but continue with the next file in the list, or CANCEL to terminate
the command.

The user must have READ access to “oldname”. “newname” must specify a file
belonging to the current userID, if it does not exist. The user must have
EMPTY and WRITE access to “newname”, if it already does exist.

Permanent files may be duplicated as temporary files, and temporary files may
be duplicated as permanent files if the user’s file space allocation allows it.

Example: DUPLICATE DATA1 AS NEWDATA1

The file DATA1 is duplicated as NEWDATA1. The terminal user is
prompted for confirmation.

DUPLICATE DATA2 NEWDATA2 OK

The file DATA2 is duplicated as NEWDATA2. The user is not prompted
for confirmation.

DUPLICATE DATA? NEWDATA? ALLOK

All files beginning with the string DATA are duplicated as corresponding
files beginning with the string NEWDATA. The user is not prompted for
confirmation.

DUPLICATE MTS Command 241

MTS 1: The Michigan Terminal System

November 1991

DUPLICATE WABC:DATA1 DATA1

The file DATA1 belonging to userID WABC is duplicated to the file
DATA1. The current userID must have read access to WABC:DATA1 (see
the PERMIT command).

242 DUPLICATE MTS Command

MTS 1: The Michigan Terminal System

November 1991

EDIT

MTS Command Description

Purpose: To invoke the MTS File Editor for making changes to a file.

Prototype: EDIT [filename] [:edit-command]

The legal parameters are:

filename

“filename” is the name of the file to be edited.

edit-command

“edit-command” is an optional edit command. The “:” is optional if
“filename” is specified. The edit command is executed as a single
command and an immediate return is made to the caller.

Program Key: *EDIT

Description: “filename” is the name of the file to be edited. This may be either a line file or a
sequential file. If “filename” is omitted, the currently active file becomes the
edit file; if there is no currently active file, edit mode is entered without an edit
file.

For further details about using the File Editor, see MTS Volume 18: The MTS

File Editor, Reference R1018.

Example: EDIT DATAFILE

The File Editor is invoked to edit the line file DATAFILE.

EDIT :CHANGE 10 'A'B'

This command changes the first occurrence of the character A in line 10 of
the edit file to the character B and then returns to MTS command mode.

EDIT MTS Command 243

MTS 1: The Michigan Terminal System

November 1991

EMPTY

MTS Command Description

Purpose: To empty a file or a set of files.

Prototype: EMPTY filelist [{OK | ALLOK | PROMPT}]

Program Key: *MTS.EMPTY

Description: The “filelist” parameter specifies the file or the set of files to be emptied and may
be a single file name, a file-name pattern, or a parenthesized list of either.

If a single file name is specified, confirmation is requested in conversational
mode unless the file is a temporary file. If more than one file is specified, a
single summary confirmation is requested. If the reply is OK, then all the files
specified are emptied; otherwise, none are emptied. Confirmation is not
requested in batch mode.

When only a single file name is specified, the OK option may be used to bypass
the confirmation request; the OK option is ignored if more than one file name is
specified. The ALLOK option may be used to bypass the confirmation request
when several files have been specified. The PROMPT option causes prompting
for confirmation for each individual file, including temporary files.

The response to a prompt for confirmation may be OK to empty the file, NO to
skip the file but continue with the next file in the list, or CANCEL to terminate
the command.

If only “?” is specified for “filelist”, a special confirmation request

Do you really want to empty ALL your files?

is printed. If the reply is OK, then the command continues with a summary
confirmation request or with confirmation requests for each individual file.

The user must have EMPTY (or WRITE-CHANGE) access to the files.

The current contents of the files are discarded. The space occupied by the files
is not released and the user is still charged for it.

A file or a set of files may be emptied from a program by calling the EMPTY or
EMPTYF subroutines (see MTS Volume 3: System Subroutine Descriptions,
Reference R1003).

When a file is emptied, the entire contents are discarded. The EMPTY
command cannot be used to empty only a portion of a file. The DELETE edit
command may be used to delete a portion of a file (see MTS Volume 18: The MTS

File Editor, Reference R1018).

244 EMPTY MTS Command

MTS 1: The Michigan Terminal System

November 1991

Examples: EMPTY DATA1

This command empties the file DATA1. The terminal user is prompted
for confirmation.

EMPTY DATA2 OK

This command empties the file DATA2. Confirmation is given on the
command.

EMPTY (DATA1,DATA2,DATA3) ALLOK

This command empties the files DATA1, DATA2, and DATA3.
Confirmation is given on the command.

EMPTY DATA? PROMPT

This command empties all files beginning with the string DATA. The
terminal user is prompted for confirmation for each file to be emptied.

EMPTY MTS Command 245

MTS 1: The Michigan Terminal System

November 1991

FILEMENU

MTS Command Description

Purpose: To obtain file information in full-screen format from which MTS commands can
be issued.

Prototype: FILEMENU [name] [information]
FMENU [name] [information]

name

The “name” parameter is specified as

{filename | ? | −? | userid:?}

“filename” is the name of the file for which information is to be displayed.
“?” specifies that information is to be displayed for all permanent files
belonging to the userID in use. “−?” requests that information is to be
obtained for all of the temporary files belonging to the userID in use.
“userid:?” specifies that information is to be obtained for all files for the
specified userID for which the user has the appropriate access. The
“name” parameter may also be given as a parenthesized list of items, i.e.,

(name1,name2,name3,...)

The default is “?”. The display for “?”, “−?”, and “userid:?” is sorted by file
name, initially.

The presence of the “?” character in “filename” indicates that this is a
partially specified file name. A single “?” will match zero or more
arbitrary characters in the file name. “n” consecutive “?” characters will
match “n−1” arbitrary characters in the file name. The “?” character
cannot be used in the userID portion of a shared file name.

information

The “information” parameters are specified as

item1 item2 item3 ...

The items that may be displayed is the same as for the FILESTATUS
command (see the description of the FILESTATUS command for details).
The order in which the items are displayed is controlled by the order in
which they are specified, with the restriction that the MYACCESS and
ACCESS items are always displayed last.

By default, only the LASTCHG, RPM, and MYACCESS information is
displayed; this default can be reset by the user by using the /DISPLAY
command (see below).

246 FILEMENU MTS Command

MTS 1: The Michigan Terminal System

November 1991

FILEMENU retains all file information internally when a file is displayed
for later use in sorting (by the /SORT command) and filtering (by the
/REMOVE command). However, information classed as FILE
information can be quite expensive to obtain, especially when a large
number of files are being listed. Therefore, unless file information is
requested on the initial FILEMENU command (or on a subsequent
/ENTER or /ADD command), this information is not acquired; each
numeric item is assigned a value of −1, and the EMPTY item is assigned a
value “???”, rather than YES or NO.

Selective Filtering

Any information item may be specified as a comparison that must be
satisfied before a file may be displayed. For a complete description, see
the FILESTATUS command. There is one extension: FILEMENU
accepts a filter based upon the ACCESS keyword, so that it is possible, for
example, to specify a filter like “ACCESS=UNLIM” or “ACCESS>READ”.
(MTS uses a numeric code for each type of file access; when a filter such as
ACCESS>READ or ACCESS<UNLIM is used, the numeric access codes
are compared. See the description of the PERMIT subroutine in MTS

Volume 3: System Subroutine Descriptions, Reference R1003, for a
description of the numeric-access codes.)

Program Key: *FILEMENU

Description: FILEMENU is a command language subsystem for use on full-screen terminals
which allows MTS commands to be issued from a list of files that is displayed on
the screen. The user can window over this file list, sort it into order by any file
item, and add or delete files from the list. Several independent lists of files may
be displayed simultaneously.

It should be noted that this command is only supported on full-screen terminals,
that is, terminals with a display screen that can be controlled by MTS such as
the IBM 3278 Display Terminal, the Ontel Terminal, and several
microcomputers.

Screen Format:

FILEMENU divides each line of the screen into three parts: the NAME
area, on the left, where the name and owner of a file are displayed; the
INPUT area, in the middle, from which commands may be issued, and the
DATA area, on the right of the screen, where file information is displayed.
If more information is requested than will fit in the data area, the data
area may extend to more than one screen line. If the input area is not
wide enough to accommodate a particular command, it may be extended,
first to encompass the data area, then to succeeding lines, so that a
command of up to 255 characters (the maximum accepted by MTS) may be
issued.

FILEMENU MTS Command 247

MTS 1: The Michigan Terminal System

November 1991

Issuing Commands:

FILEMENU recognizes two type of commands: MTS commands and
FILEMENU commands. Both may be issued from the input areas of the
screen or by program-function (PF) keys. FILEMENU commands, which
are distinguished by an initial slash (/), request some action from
FILEMENU; for example, windowing over the file list, sorting the list into
order, or adding or deleting files. MTS commands are passed to MTS for
execution. If an MTS command line begins with a slash (i.e., if the name
of a command macro begins with a slash), the slash should be doubled.

Substitution:

When an MTS command is issued, the name of the file that is displayed
upon the line where the command was issued is appended to the command.
Alternatively, if the command line contains question marks, the file name
is substituted for each question mark in the line. If a question mark is to
be passed unchanged to MTS, it should be doubled. For example, suppose
a line displays the file name WABC:TEST. Entering “EDIT” on that line
would issue the MTS command “EDIT WABC:TEST”; entering “COPY ?
TO *PRINT*” would issue the command “COPY WABC:TEST TO
PRINT”; and entering “PERMIT ? R P=W??” would issue the command
“PERMIT WABC:TEST R P=W?”.

Duplicating Commands:

If an equals sign (=) or quotation mark (") is entered as a command, then
the last MTS command, before substitution, is executed for that file. The
duplicated command line, rather than the equals sign, is displayed for the
file after the command is executed.

Errors:

When a FILEMENU command is executed successfully, it is removed from
the screen. When an MTS command is issued, the line from which it was
entered is marked by a one-character indicator before the start of the name
area. An asterisk (*) indicates an MTS command that executed
successfully and a not sign (˜ or ¬) denotes a command not recognized as a
valid MTS command or MTS macro command. If a command line begins
with a slash but does not contain a valid FILEMENU command, then the
line will be marked by a question mark (?). In addition, error messages
are displayed at the bottom of the part of the screen used for each file list.

Multiple File Lists:

A single file list is displayed when FILEMENU is first invoked.
Additional lists may be added to the screen by using the /ENTER
command. Each list is completely independent of all of the others; sorting
or windowing over any list will not affect other lists displayed.

248 FILEMENU MTS Command

MTS 1: The Michigan Terminal System

November 1991

Issuing Program-Function Commands:

Any MTS or FILEMENU command may be assigned to a program-function
(PF) key. When a PF key is pressed, the command for that key is executed
for the file list or file to which the cursor points (depending upon the type of
command). If the cursor line does not contain a file, the file name
substituted into an MTS command is left blank. If a FILEMENU
command which affects a file is assigned to a PF key and the cursor is not
on a file line, the command is ignored.

Commands: The following commands are recognized and processed by FILEMENU. It
should be noted that if a command is entered from the screen, it will not be
executed until an /EXECUTE command is issued by a PF key.

/ADD [name] [information]

This adds files to the file list upon which the command is issued. The files
are added after the file line where the command is issued. The “name”
and “information” parameters are identical to those permitted on the
FILEMENU command.

/DISPLAY [information]

This resets the specification of the file information items to be displayed for
the list where the command is issued. The “information” parameter
consists of one or more file item names; if it is omitted, the default display
is restored (i.e., LASTCHG, RPM, and ACCESS).

/EDIT [command]

This calls the MTS File Editor to edit the file on the line from which the
command is issued. If “command” is specified, the command is passed to
the File Editor for processing; if “command” is omitted, the user is placed
in edit command mode. FILEMENU remembers the user’s position in
each file /EDITed; when a file is /EDITed for a second or subsequent time,
the EDIT display begins at the final position during the previous /EDIT
session rather than at the beginning of the file.

/ENTER [name] [information]

This adds a new list of files to the screen. The “name” and “information”
parameters are identical to those permitted on the FILEMENU and /ADD
commands. If there is not enough space on the screen to add a new list, an
error message is displayed. The new list is added below the list where the
command is issued.

/EXECUTE [SINGLE]

This executes commands entered in the input areas of one or more files. If
the SINGLE option is specified, only the command for the file where the
cursor is located is executed; otherwise, commands are executed for each
file in the list, starting at the top of the list and proceeding down until the

FILEMENU MTS Command 249

MTS 1: The Michigan Terminal System

November 1991

end of the list is reached or an error is detected. This command is only
valid if issued from a PF key; it is ignored otherwise.

/EXTEND

This extends the file line from where it was issued, first to include the data
area, then to succeeding lines on the screen. The maximum number of
lines to which a line may expand will vary with screen size and with the
position of the line being expanded on the screen, but will never be greater
than the space required to permit a 255-character command to be issued.
This command is meaningful only if assigned to a PF key.

/FORGET

This removes the file list from where the command was issued from the
screen. If there is only one list on the screen, an error message is
displayed.

/GET

This windows a file list forward so that the first displayed file on the list is
the file on the line from where the command was issued.

/GOTO {n | name}

This moves a file list so that a specific file is the first displayed. If “n” is
specified, the nth file is displayed; if “name”, either a filename or a
file-name pattern, is specified, the first file after the file on which the
command is issued that matches the pattern is displayed.

/HELP [item]

This invokes the full-screen help facility. “item” may be any FILEMENU
command; if specified, information about that command will be displayed.

/INSERT text

This inserts “text” into the command line immediately before the cursor
location. This command is valid only if assigned to a PF key. If it is
ignored if it is issued directly from the screen or if the cursor is not on a line
containing a file.

/MCMD command

This passes “command” to MTS for execution without doing any
substitution. This is useful for issuing commands that do not take
filename parameters or for issuing commands for files not on the current
list. This command is identical to the /$ command.

250 FILEMENU MTS Command

MTS 1: The Michigan Terminal System

November 1991

/MTS [command]

This returns control to MTS. Reissuing the FILEMENU command will
restart FILEMENU at the point where the MTS command was issued.
“command” may be any MTS command to be executed before the return to
MTS command mode is made.

/PF {n [command] | ?}

If “/PF n command” is specified, the given command is assigned to PF key
“n”. If the command line is omitted, the PF key becomes a no-op key. If a
question mark is specified instead of “n command”, the current settings of
the PF keys are displayed. The number of PF keys available depends on
the type of terminal used; “n” may be any number, even though it may not
be possible to actually use some PF keys from a given terminal.

“Normal” PF keys are numbered from 1 to the maximum available on the
terminal: PF1 is 1, PF2 is 2, and so on. In addition, for the IBM 3278, the
ENTER key is treated as PF0, the PA1 key (ATTN on Ontels) is PF-1, the
PA2 key (EOF on Ontels) is PF-2, and the SYS REQ key is PF-3.

/REDISPLAY

This displays the last MTS command issued for the file list.

/REMOVE [name] [filters]

This removes files from the file list where the command is issued. The
“name” and “filters” parameters are identical to those specified for the
FILEMENU, /ADD, and /ENTER commands. If both are omitted, only
the file upon the line where the command was issued is removed;
otherwise, all files that match the name or filter patterns are removed.
When a file is removed, it is replaced by a blank line; the blank lines are
removed when the next /SORT command is issued.

/RETURN

This terminates FILEMENU and returns control to the caller (normally
MTS command mode).

/SET

This sets various options. The following options may be set.

DISPLAY={item | (item,item,...)}

This specifies the file information items displayed by default.
The DISPLAY setting for a file list determines the items
displayed for all lists created by /ENTER commands issued
from the original list; the DISPLAY option is overridden by an
explicit “info” parameter on the /ENTER command.

FILEMENU MTS Command 251

MTS 1: The Michigan Terminal System

November 1991

ECHO={ON | OFF}

This specifies whether MTS commands are placed in the
conversation buffer as they are executed.

HEADING={ON | OFF}

This specifies whether a column heading for the file list should
be displayed.

VISUAL={ON | OFF}

This specifies whether /EDIT automatically enters visual edit
mode.

The /SET options are specific to each file list; that is, they may have
different settings for each list on the screen. When a new list is created,
its /SET values default to those of the list from which it was created. For
the initial list created by the FILEMENU command, the ECHO,
HEADING, and VISUAL options default off and the DISPLAY option
defaults to (LASTCHG,RPM,MYACCESS), unless /SET commands are
included in an initfile.

/SORT item [{ASCENDING | DESCENDING}]

This sorts a file list into an order based upon the specified file item. The
order is specified by the ASCENDING or DESCENDING parameter; the
default is ASCENDING. If two files have identical “item” fields, a
secondary comparison by file name is performed.

/STOP

This terminates FILEMENU and returns control to the caller (normally
MTS command mode).

/WB [n] [SCREENS]

This moves the file display backward. If simply “/WB” is specified, the
display moves to the top of the file list. If “/WB n” is specified, the display
moves backward “n” lines. If “/WB n SCREENS” is specified, the display
moves back “n” screens.

/WF [n] [SCREENS]

This moves the file display forward. If simply “/WF” is specified, the
display moves to the end of the file list. If “/WF n” is specified, the display
moves forward “n” lines. If “/WB n SCREENS” is specified, the display
moves forward “n” screens.

252 FILEMENU MTS Command

MTS 1: The Michigan Terminal System

November 1991

/$command

This passes “command” to MTS for execution without doing any
substitution. This command is identical to the /MCMD command.

Using an Initialization File:

An initialization file (init file) may be used to redefine the PF keys with the MTS
command

SET INITFILE(FILEMENU)=FDname

Only the /MCMD, /PF, /SET, and /$ commands are valid in an init file; in
addition, lines beginning with “/*” are ignored, so that comment lines may be
included. Any other lines will be flagged as errors.

Default PF Assignments:

The following PF-key assignments are designed to make FILEMENU PF keys
as identical as possible to the default MTS File Editor and IBM 3278 PF-key
assignments:

1/13: /WB 1 S 2/14: /GET 3/15: /WB

4/16: /WF 1 S 5/17: /EDIT 6/18: /WF

7/19: /WB 1 8/20: /EXECUTE 9/21: /EXEC SIN

10/22: /WF 1 11/23: /EXTEND 12/24: /STOP

The PA1 and PA2 keys (on the IBM 3278), ATTN and EOF keys (on the Ontel),
and Control-C and Control-E keys (on MCP WINDOW terminals) are set to
/MTS. The IBM 3278 ENTER (PF0) and SYS REQ (PF-3) keys are left
unassigned. The IBM 3278 CLEAR key removes all screen changes since the
last PF key was pressed; it cannot be redefined by the user.

FILEMENU MTS Command 253

MTS 1: The Michigan Terminal System

November 1991

FILESTATUS

MTS Command Description

Purpose: To obtain file information, access information, and/or catalog information for a
file, or information about pseudodevice names.

Prototype: FILESTATUS [name] [format] [information]

The parameters to this command may be given in two formats: “keyword=value”
or “value”.

name

The “name” parameter is specified as

NAME={filelist | ? | −? | userid:?}

or

{filelist | ? | −? | userid:?}

“filelist” may be a single file name or pseudodevice name, a file-name or
pseudodevice name pattern, or a parenthesized list of either, or “?”. “?”
specifies that information is to be obtained for all the permanent files
belonging to the current userID. “−?” specifies that information is to be
obtained for all of the temporary files belonging to the current job.
“userid:?” specifies that information is to be obtained for all files of the
specified userID for which the user has the appropriate access. The
default is “?”. The output for “?”, “−?”, and “userid:?” is sorted
alphabetically by file name.

If no NAME keyword parameter is specified on the command, the first
nonkeyword parameter is treated as the “name” parameter, unless it is a
legal parameter to this command and the user does not have a file by that
name. Thus,

FILESTATUS TYPE

specifies that the type of all the user’s files is to be displayed, unless the
user has a file of the name TYPE, in which case catalog information (the
default) for that file is displayed. If the user has a file by the name of
TYPE and desires to display the catalog information for all files, he must
specify

FILESTATUS ? TYPE

If no name parameter is given, “?” is assumed as the default “name”
parameter.

254 FILESTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

A list of current pseudodevice names may be obtained by specifying “*?*”.

format

The “format” parameter is specified as

{COLUMNS | KEYWORD | LABELED | PACKED}

where the format parameters produce output in the following forms:

(1) COLUMNS — fixed-width columns with headings.

(2) KEYWORD or LABELED — free-form output, presented as
“label=value” (e.g., TYPE=LINE). Items are separated by
commas and blanks.

(3) PACKED — same as KEYWORD, except the “label=” portion is
deleted (e.g., LINE).

If no format parameter is specified, the default is KEYWORD for output to
a terminal, and COLUMNS for output to any other file or device. Space
restrictions dictate that if both the COLUMNS and VERBOSE parameters
are specified, the format is changed to PACKED. Normally, the
information for each file is printed on one line. However, if only the name
of the file is requested (the default case), then several file names are
printed on each line for noncolumnar output. Users should note that this
differs from PACKED format.

Headings may be specified for columnar output. This parameter is
ignored for keyword, labeled, or packed output formats. The heading
parameter is given as

{HEADING | NOHEADING}

The default is to produce headings for columnar output.

For output for multiple files in any format, the separation between file
entries can be specified by

SPACING={1 | 2 | 3}

where 1 means single-spacing, 2 means double-spacing, and 3 means
triple-spacing; the default is 1. This is the spacing of the first line of
information for a file entry; if the file entry requires more than one line of
output, succeeding lines are always single-spaced. The succeeding lines
may be indented by specifying

INDENT=n

where “n” is the number of columns to indent. “n” must be in the range of
0 to 20; the default is 1.

FILESTATUS MTS Command 255

MTS 1: The Michigan Terminal System

November 1991

The output file or device may be specified by the parameter

OUTPUT=FDname

The default is *SINK*.

The access information may be abbreviated by the parameter

{TERSE | VERBOSE}

If the output format is COLUMNS (the default for nonterminal output),
the default form for access printing is TERSE, since the access information
will not fit into any practical fixed-width column size. However, if the
output format is not COLUMNS (the default for terminal output), the
default form for access printing will be the same as the MTS TERSE option
(set by the SET command). Since the default setting for this is
TERSE=OFF, the default access information output format in this case
will be VERBOSE.

Explicitly specifying TERSE or VERBOSE will force the output format as
specified.

information

The “information” parameters are specified as

item1[,item2,...]

The order in which the items are presented is controlled by the order in
which they are specified.

The information printed by the FILESTATUS command is available to a
program via the GFINFO subroutine (see MTS Volume 3).

Use of the command does not affect the use count, last change date, last
reference date, or any other items associated with the file.

The information items are divided into five groups: catalog information,
access information, file information, name, and summary information.
Each group has a different cost associated with obtaining the information;
a different permit access is required for each group. (The owner always
has permit access, so all the information is accessible.) Below are listed
the separate items contained in each group.

Catalog information

The relative cost of obtaining this information is inexpensive. Any
access is sufficient.

OWNER Owner userID.
VOLUME Name of direct-access volume on which file is located.

256 FILESTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

USECNT Number of references since file was created.
CREATE Date when file was created.
LASTREF Date when file was last referenced.
LASTCHANGE Date when the file (data or catalog information) was

last changed.
LASTCATALOGCHANGE

Date when file catalog information was last changed.
LASTDATACHANGE

Time and date when file data information was last
changed.

LASTDATACHANGEDATE
Date when file data information was last changed.

TYPE Type of file (LINE, SEQ, or SEQWL).
LOC Type of storage device on which file is located (DISK).
RPM References per month since creation date. If this is

more than 999, the number of references per day is
given (with D suffix); if this is more than 999, the
number of references per hour is given (with H
suffix); if this is more than 999, a * suffix is printed to
indicate a truncated result.

IDLEDAYS The number of days since the last reference.
PKEY Program key associated with the file.
NOSAVE If ON, this indicates that the user has specified that

the file is not to be file-saved.

Access information

These items provide information regarding the permit status of files.
The relative cost of obtaining this information is moderately
inexpensive.

MYACCESS Access to the file by the userID currently in use.
ACCESS If this userID does not have permit access to the file,

this item provides the same information as
MYACCESS; otherwise, it provides information
regarding the access for the owner, the access for
others, and any specific access information that may
exist.

The abbreviations used in the output are:

N none
R read
WE write-expand
WC write-change
W write
RWE read and write-expand
RWC read and write-change
RW read and write
RT read and truncate
T truncate
D destroy

FILESTATUS MTS Command 257

MTS 1: The Michigan Terminal System

November 1991

F full
P permit
U unlimited

SA (Short Access) The access information is presented in
a more abbreviated form. This is valid only with
COLUMNS output.

File information

The cost of obtaining this information is relatively expensive. Any
access (except none) is sufficient. In the following list, the first
group of items only require opening the file and are moderately
expensive to obtain. The second group of items also require reading
the entire file and can be very expensive to obtain.

SIZE Current file size.
TRUNC Truncated file size.
MAXSIZE Maximum file size.
MAXLEN Maximum length of a line.
EMPTY Specifies if the file is empty.
EXPFAC Expansion factor of file (this is printed as “DEF” if it

is the default setting, “nn%” if it is a percentage
expansion factor, or “nnP” if it is an absolute
expansion factor).

TRUNCSAVES Number of disk pages that would be freed if file were
truncated (SIZE−TRUNC).

LINES Number of lines.
AVLEN Average length of a line.
MINSIZE Minimum file size.
HOLES Number of holes in file.
MAXHOLE Size of maximum hole.
AVAILSPACE Number of bytes of unused space (amount of space

available before file expansion occurs).
MINSAVES Number of disk pages that would be freed if file were

reduced to minimum size (SIZE−MINSIZE).

Name Information

The relative cost of obtaining this information is very low. Any
access (except none) is valid.

NAME Name of the file.

Summary Information

If SUMMARY is specified, a single summary line is produced that
contains a summary for each item requested. The summary
includes only the files for which items are printed. The items that
may be summarized are:

258 FILESTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

NAME Number of files.
SIZE Sum of file sizes.
MAXSIZE Largest MAXSIZE value.
RPM References/month for all files.
USECNT Sum of use counts.
IDLEDAYS Smallest IDLEDAYS value.
TYPE Number of line files and the number of sequential

files, respectively.
LASTREF Most recent last reference date.
LASTDATACHANGE

Most recent last data change date.
LASTCATALOGCHANGE

Most recent last catalog change date.
CREATE Most recent creation date.
MAXHOLE Sum of maximum holes.
MINSIZE Sum of all minimum file sizes.
MAXLEN Largest MAXLEN value.
LINES Sum of all lines.
AVLEN Sum of line lengths divided by the number of lines in

the file.
HOLES Sum of holes.
AVAILSPACE Amount of available space.
TRUNC Sum of all truncated file sizes.

Groups of Items

CATALOG The following items are provided: TYPE,
IDLEDAYS, RPM, USECNT, OWNER, CREATE,
LASTREF, LASTCATALOG, LASTDATA,
VOLUME, PKEY, NOSAVE.

FILE The following items are provided: SIZE,
TRUNCSAVES, MAXSIZE, TYPE, MAXLEN,
EMPTY.

FULLFILE The following items are provided: SIZE, MINSAVES,
TRUNCSAVES, MAXSIZE, EXPFAC, TYPE,
LINES, AVLEN, MAXLEN, MAXHOLE, EMPTY.

ALL The following items are provided: SIZE,
TRUNCSAVES, TYPE, LINES, MAXLEN, RPM,
USECNT, CREATE, LASTREF, LASTCATALOG,
LASTDATA, ACCESS.

TOTAL All information items.

In the above groups, the implicit use of NOSAVE and EMPTY causes the
value to be printed only if they are not the normal setting. If one of these
three is explicitly requested, its value is always printed.

For ALL, access information is printed if it will fit on the remainder of the
line; otherwise, only partial access information (with the asterisk to

FILESTATUS MTS Command 259

MTS 1: The Michigan Terminal System

November 1991

indicate there is unprinted specific sharing information) is printed. If the
output form is not columnar, as for example will normally be the case on a
terminal, access information is always printed, since ALL will not fit on a
single line.

Defaults

For a file specification of “?” or “userid:?” with no parameters, only the
names are printed. For a specific “filelist” with no parameters,
CATALOG (except for PKEY and NOSAVE) followed by ACCESS is
defaulted.

Selective Filtering

All information items except ACCESS and MYACCESS can also be
given as a comparison that must be satisfied before the items are
printed. Thus,

FILESTATUS TYPE

prints the type of the user’s files, whereas

FILESTATUS TYPE=SEQ

prints only the sequential files. Most items are specified as numeric
quantities; SIZE, MAXSIZE, MINSIZE, and TRUNC may be
specified either with or without the P suffix, but the value is always
given in pages; RPM may be given with the D or H suffixes; TYPE
may be LINE or SEQ; VOLUME must be a 6-character volume name;
OWNER must be a 1- to 4-character userID substring; LASTREF,
LASTCHANGE, and CREATE must be an 8-character date either in
the form “MMMDD/YY”, where “MMM” are the first three letters of
the month, “DD” is the 2-character numeric day of the month, and
“YY” is the last two digits of the year, (e.g., “MAR24/77”), or in the
form “MMxDDxYY”, where “x” is either “/” or “−” separating the
month, day, and year (e.g., “03−24−77”); PKEY must be 1 to 13
characters; NOSAVE is ON or OFF; EMPTY is YES or NO.

For TYPE, VOLUME, OWNER, PKEY, NOSAVE, and EMPTY, only
the comparisons “=” or “˜=” are legal. Thus, for example,
TYPE=SEQ and TYPE˜=SEQ are the two legal forms for the item
TYPE and the value SEQ. For the other items, the comparisons “=”,
“˜=”, “>”, “<”, “>=”, and “<=” are legal. Thus, for example, SIZE<2 or
CREDATE>MAR01/87. If multiple filters are specified, all
conditions specified must be met before the item is printed. Thus,
for example,

FILES SIZE>100 TYPE=SEQ

will find all sequential files of more than 100 pages in size. Ranges
may be obtained by specifying the same item in different
comparisons. Thus, for example,

260 FILESTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

FILES CREDATE>=MAR01/87 CREDATE<APR01/87

will find all files created in March 1987.

Note that specifying a filter causes all files to be investigated to
determine if they fulfill the filter specifications. Thus, the filter
SIZE=10 opens all the user’s files and extracts the size; the user is
correspondingly charged for opening and reading all of his files, not
just for opening and reading the files that were actually printed.

Program Key: *MTS.FILESTA

Examples: FILES

The above example prints the names of the files belonging to this userID in
the following format:

DATAFILE1 DATAFILE2 DATAFILE3 DTEST FORMAT
PROG PROGRAM1 PROGRAM2 PROGRAM3 RESULTS1
RESULTS2 RESULTS3 SPROG SPROGRAM1 SPROGRAM2
SPROGRAM3

FILE DATAFILE1

The above example prints the catalog and access information for the file
DATAFILE1 in keyword format:

DATAFILE1 Type=Line, Idledays=38, RPM=2,
Usecnt=12, Owner=50AX, Create=Apr18/87,
LastRef=Jun04/87, LastCatalog=May13/87,
LastData=18:33:15 May14/87,
Access=Unlim Owner, None Others

FILE DATAFILE1 ALL

The above example prints the information for the file DATAFILE1 in
keyword format:

DATAFILE1 Size=1P, Truncsaves=0P, Minsaves=0P,
Type=Line, Lines=14, Maxlen=80, RPM=2, Usecnt=12,
Create=Apr18/87, LastRef=Jun04/87,
LastCatalog=May13/87, LastData=18:33:15 May14/87,
Access=Unlim Owner, None Others

FILE DATAFILE1 TOTAL

The above example prints the information for the file DATAFILE1 in
keyword format:

DATAFILE Size=1P, Minsaves=0P, Truncsaves=0P,
Maxsize=32767P, Expfac=Def, Type=Line, RPM=2,
Idledays=38, Lines=14, Holes=1, Avlen=19,
Maxlen=80, Availspace=2729, Maxhole=255,
Create=Apr18/87, LastRef=Jun04/87,
LastCatalog=May13/87, LastData=18:33:15 May14/87,
Volume=MTS012, Owner=50AX, Loc=3350, Usecnt=12,

FILESTATUS MTS Command 261

MTS 1: The Michigan Terminal System

November 1991

Pkey=*EXEC, Access=Unlim Owner, None Others

FILE DATAFILE2 ACCESS

The above example gives the full access information in the following
format:

DATAFILE2 ACCESS=Unlim Owner, Read (P=W?,2G85),
None WRST

FILES (DATAFILE1,DATAFILE2) ACCESS TERSE

The above example gives the access information for the files DATAFILE1
and DATAFILE2 in keyword format:

DATAFILE1 Access=U Owner, N Others
DATAFILE2 Access=U Owner, R (P=W?,2G85), N WRST

FILES (F1,F2,F3) IDLEDAYS TYPE SIZE

The above example prints the number of idle days, the type, and the size
for the files F1, F2, and F3 in keyword format:

F1 Idledays=41, Type=Line, Size=12P
F2 Idledays=20, Type=Seq, Size=3P
F3 Idledays=2, Type=Line, Size=18P

FILES (F1,F2,F3) IDLEDAYS TYPE SIZE COLUMNS

The above example is identical to the previous example except that the
information is printed in column format.

File name Idle Type Size
Days Pgs.

F1 41 Line 12
F2 20 Seq 3
F3 2 Line 18

FILES OUTPUT=-FILES COLUMNS

The above example writes a list of the user’s files into the file −FILES in
column format.

262 FILESTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

FSMESSAGE

MTS Command Description

Purpose: To invoke the full-screen interface to the MTS Message System.

Prototype: FSMESSAGE [FSMessage-command]

“FSMessage-command” is an optional FSMessage-system command. The
command is executed as a single command and an immediate return is
made to the caller.

Program Key: *FSMESSAGE

Description: The FSMESSAGE command provides a full-screen interface to the MTS
Message System. For further details, see MTS Volume 23: Messaging and

Conferencing in MTS, Reference R1023.

FSMESSAGE MTS Command 263

MTS 1: The Michigan Terminal System

November 1991

FTP

MTS Command Description

Purpose: To transfer files between MTS and another Internet site.

Prototype: FTP [hostname]

Program Key: *FTP

Description: FTP, the Department of Defense/Internet standard File Transfer Protocol,
allows users to transfer files between MTS and any site on the Internet—the
collection of hosts and networks that includes Arpanet, NSFNET, regional
networks such as UMnet/Michnet, and many local networks.

In addition to the transfer of files between accounts on Internet hosts, FTP
enables you to transfer files to your MTS account from guest accounts on many
remote hosts (see “Anonymous FTP” below). Public MTS files are also
available by using Anonymous FTP from other hosts to MTS.

While using FTP, you can enter MTS commands by prefixing the commands
with a dollar sign ($).

This description contains instructions for using FTP for file transfers to and
from MTS, sample terminal sessions, and detailed descriptions of FTP
commands. It was adapted from a document entitled Internet Services

(TCP/IP) on MTS—MTS FTP, published by Information Technology Services
at Rensselaer Polytechnic Institute in Troy, New York.

For information on how to use the FTP services available for other computers
and operating systems, please refer to their documentation. Since most of the
command-driven implementations use similar commands, however, this
description may be of assistance.

Getting Started

To use FTP on MTS, sign on to MTS and enter the following command at the
pound sign (#) prompt:

FTP

To establish a connection to a host computer, type the following at the FTP
prompt (ftp>):

OPEN hostname

where “hostname” is the symbolic name, or Internet address, of the host with
which you would like to communicate, e.g., um.cc.umich.edu. You will then be
prompted to enter your login and password for the remote host.

264 FTP MTS Command

MTS 1: The Michigan Terminal System

November 1991

To transfer a file from a host computer to MTS, enter the command:

GET remotefilename newfilename

where “remotefilename” is the name of the file to be transferred and
“newfilename” is the name to be given to the new file. Note that the operating
systems on some hosts, such as UNIX, may be case sensitive. See “Command
Descriptions” below, for explanations of commands for listing files, changing
directories, etc.

To transfer a file from MTS to the host computer, enter the command:

PUT localfilename newfilename

When you are finished with transfers to or from a host, you can close the
connection to that host by typing:

CLOSE

You can then begin a session to another host with the OPEN command. To quit
FTP, type:

BYE

An alternative way to open a connection to a host is to specify the hostname
when you begin using FTP, as follows:

FTP hostname

This will immediately establish a connection with the host.

The following sample terminal session illustrates the use of FTP:

#ftp
um.cc.umich.edu FTP client (Version of Feb ...
ftp> open sample-sun.stanford.edu
220 sample-sun FTP server (SunOS 4.0/3) ready.
Name (36.44.0.6.ABCD): joew
331 Password required.
Password: blanked
230 Login successful.
ftp> ls
200 Port command successful
150 Opening data connection...
EXAMPLE.FILE1
EXAMPLE.FILE2
ftp> get EXAMPLE.FILE1 NEW.FILE
ftp> $edit NEW.FILE
: visual
: stop
ftp> put NEW.FILE REMOTE.FILE
ftp> bye
221 Goodbye.

FTP MTS Command 265

MTS 1: The Michigan Terminal System

November 1991

Anonymous FTP

Internet hosts often allow remote users access to public information. These
public files are available through what is called “Anonymous FTP”. With
Anonymous FTP, you can use “anonymous” as your user name and some
identification for the password. (People often enter their Internet mailname as
a password, for example, joew@um.cc.umich.edu). If you do not have an
Internet mailname, you can enter your own MTS userID or other text.) You
can then access files that have been made public on the remote host. In this
way, you can transfer files without having an account on the remote system.

Using Anonymous FTP, a logon sequence would look something like:

ftp> open sumex-aim.stanford.edu
220 sumex-aim FTP server (SunOS 4.0/3) ready.
Name (36.44.0.6.ABCD): anonymous
331 Guest login ok, send ident as password.
Password: blanked
230 Guest login ok, access restrictions apply.
ftp>

Remote FTP to MTS

In addition to using FTP to transfer files while you are signed on to MTS, you
can transfer files to and from MTS while logged on to a remote system. The
registered hostnames for the MTS systems are um.cc.umich.edu and
ub.cc.umich.edu. Some systems may require that you use the numerical IP
addresses of the MTS hosts rather than the hostnames. For UM-MTS, the
numerical address is 35.1.1.43 and for UB-MTS, it is 35.1.1.47.

You can use these names and numerical addresses to access files on your own
MTS account and files that are available for Anonymous FTP, e.g., those that
are permitted READ PKEY=*FTP. The following sample FTP session from a
remote Sun computer shows how you can access files from UM-MTS.

ftp> open um.cc.umich.edu
um.cc.umich.edu FTP Server (Version of Mar ...
Name (35.1.1.43:joew): ABCD
331 Password required.
Password (35.1.1.43:joew): blanked
230 Login successful.
ftp>

Note: The question mark (?) is used as a wildcard character on MTS rather than
the asterisk (*), which is used as a wildcard on UNIX systems.

File Types Used in Transfers

Use the following file types when transferring files ending in these suffixes:

Suffix File Type

.arc BINARY

.tar BINARY

266 FTP MTS Command

MTS 1: The Michigan Terminal System

November 1991

.shar ASCII

.tar.z BINARY

.shar.z BINARY

.z BINARY

If the remote host is a TOPS-20 or DEC-10 system, use TENEX instead of
BINARY.

The default file type is ASCII, which is used for all text files.

To change the file type before transferring a binary file, for example, use the
command

TYPE BINARY

For additional information about file types, see the MTS file RFC:RFC959.TXT.

Command Descriptions

APPEND localfile [remotefile]

Appends a local file to a file on the remote machine. If you do not specify
“remotefile”, the local filename will be used for the new file. The current
settings for type, format, mode, and structure are used for the file transfer.

ASCII

Sets the file-transfer type to network ASCII. This is the default type.

BINARY

Sets the file-transfer type to BINARY.

BYE

Terminates the FTP session with the remote server and exits FTP. QUIT
and STOP are synonyms for BYE.

CD remotedirectory

Changes the working directory on the remote machine to
“remotedirectory”. For example, a CD command to a Sun workstation
might look like:

cd /usr/bin.

CLOSE

Terminates the FTP session with the remote server and returns to local
FTP command mode.

FTP MTS Command 267

MTS 1: The Michigan Terminal System

November 1991

DELETE remotefile

Deletes the file called “remotefile” on the remote machine.

DIR [remotedirectory] [localfile]

Lists directory information for selected files on the remote host. If you
specify “localfile”, the directory listing will be written to a file with that
name. If no directory is specified, the current working directory of the
remote machine is used. If no local file is specified, the contents will be
displayed on your screen. For example:

dir /usr/bin mtsfile

EBCDIC

Sets the file-transfer type to EBCDIC.

FILESTATUS

Lists the files available in the working directory on the remote account.
This is a synonym for LS. Note: This command only works from MTS.

GET remotefile [localfile]

Retrieves “remotefile” and stores it on the local machine. If you do not
specify “localfile”, the file on the local machine is given the name it has on
the remote machine. The name will be converted to uppercase on MTS
and will be truncated if longer than 12 characters. The current settings
for type, mode, and structure are used while transferring the file.

HASH

Turns on and off the hash-sign printing, which displays a pound sign (#) as
each data block is transferred, thereby showing the progression of the
transfer. The size of a data block is approximately 1024 bytes. By
default, HASH is off.

HELP [command]

Displays an explanation of a command. If you do not specify a command,
FTP displays a list of the known commands. The question mark (?) is a
synonym for HELP.

IMAGE

Sets the file-transfer type to IMAGE, which is a synonym for BINARY.

LCD directory

Changes the default directory on the local host, which has the effect of
changing the MTS account from which you are transferring files, as in

268 FTP MTS Command

MTS 1: The Michigan Terminal System

November 1991

LCD memo. Note that for accounts on MTS, you must include a colon (:)
directly following the userID.

LPWD

Displays the name of current working directory of the local machine. On
MTS, this is the account in which you are using FTP, unless you have
specified another account with the LCD command. Note: This command
only works from MTS.

LS [remotedirectory] [localfile]

Lists the files in a directory on the remote machine. If you do not specify
“remotedirectory”, the current working directory is used. If you do not
specify “localfile”, the files are displayed on the screen. LS is a synonym
for FILESTATUS.

MDELETE remotefiles

Deletes “remotefiles” on the remote machine. This command accepts a
filename pattern using a wildcard character, such as an asterisk (*). For
example, the following command would delete all files ending in .tar on a
remote UNIX system:

mdelete *.tar

If you specify a pattern in this way and if interactive prompting is on, you
will be prompted for each file you want to delete. (See the explanation of
the PROMPT command.)

MDIR remotefiles [localfile]

This command is like DIR, except that you can specify a filename pattern
using a wildcard character (for example, an (*) in “remotefiles”. If
interactive prompting is in effect, FTP will prompt you for the file you
want. (See the description of the PROMPT command.)

MGET remotefiles

This command works like GET, except that you can specify a filename
pattern by using a wildcard character, such as an asterisk (*), in
remote-files.

MKDIR directoryname

Makes a new directory called “directoryname” on the remote machine.
Because MTS does not use directories like those found in other systems,
you cannot create directories using this command when connected to MTS
from a remote host.

FTP MTS Command 269

MTS 1: The Michigan Terminal System

November 1991

MLS remotefiles [localfile]

This command is like LS, except that you can specify a filename pattern by
using a wildcard character, such as an asterisk (*), in “remotefiles”.

MODE modename

Sets the file transfer mode to “modename”. Currently, the only mode in
FTP is STREAM.

MPUT localfiles

This command works like PUT, except that you can specify a filename
pattern by using a wildcard character, such as an asterisk (*), in
“localfiles”. If interactive prompting is in effect, FTP will prompt you for
the files.

OPEN hostname

Establishes a connection to the FTP server on the specified host.

PROMPT

Toggles interactive prompting. If prompting is on (the default), then
when you use any of the multiple remote commands (e.g., MGET, MPUT,
and MDELETE), FTP will prompt you for a confirmation for each file,
either the name of the file, or a Yes or No.

PUT localfile [remotefile]

Transfers “localfile” to the remote machine. If you do not specify
“remotefile”, the name you specify as “localfile” will be used. The file
transfer uses the current settings for type, mode, and structure.

PWD

Displays the name of the current working directory on the remote
machine.

QUIT

Terminates the FTP session with the remote server and exits FTP. It is a
synonym for BYE and STOP.

QUOTE arg1 arg2 ...

Sends the arguments you specify, verbatim, to the remote FTP server.
This command is designed to let the advanced user issue internal FTP
protocol commands. See the MTS file RFC:RFC959.TXT for more
information.

270 FTP MTS Command

MTS 1: The Michigan Terminal System

November 1991

RECV remotefile [localfile]

Retrieves “remotefile” and stores it in “localfile” on the local machine.
RECV is a synonym for GET.

REMOTEHELP [command]

Requests help from the remote FTP server. If you specify the command, it
is supplied to the server as well.

RENAME oldname newname

Renames the file “oldname” on the remote machine to “newname”.

RMDIR directoryname

Deletes a directory called “directoryname” on the remote machine.
Because MTS does not use directories like those found in other systems,
you cannot delete directories using this command when connected to MTS
from a remote host.

SEND localfile [remotefile]

Transfers “localfile” to the remote machine and stores it in “remotefile”.
SEND is a synonym for PUT.

STATUS

Shows the current status of FTP, which includes options that you can set,
and whether or not you are connected to a remote FTP server.

STOP

Terminates the FTP session with the remote server and exits FTP. It is a
synonym for QUIT and BYE.

STRUCT structname

Sets the file transfer structure to “structname”, which can be FILE,
RECORD, or PAGE. The default is FILE. Note that RECORD may not
be supported by FTP implementations on other hosts. Although TENEX
supports PAGE, the implementation is incompatible with PAGE in MTS.
STRUCT PAGE in MTS, in conjunction with TYPE LOCAL 32, is used to
transfer files between MTS sites while preserving file line numbers.

TENEX

Sets the file-transfer type to TENEX for use with computers running
TENEX.

FTP MTS Command 271

MTS 1: The Michigan Terminal System

November 1991

TYPE typename

Sets the file transfer type to “typename”. If you do not specify
“typename”, the current type is used. The default is network ASCII.
Other typenames include BINARY (or IMAGE), EBCDIC, and LOCAL
BYTE SIZE (for computers running TENEX or for MTS-to-MTS file
line-number preservation). For example:

type binary

LOCAL BYTE SIZE is entered as “local #”, where “#” is the byte size you
want to specify. For example,

type local 8

For transferring files between MTS sites while preserving line numbers,
one should issue TYPE PAGE followed by TYPE LOCAL 32.

Note: If you want to run a binary file through a program on MTS, MTS FTP
limits lines to 256 characters.

USER username [password]

Identifies you to the remote FTP server. If you do not specify a password
and the server requires it, FTP will prompt you for it; the line will remain
blank while you type. If the remote FTP server requires additional
account information, it will prompt you for it also.

VERBOSE

Toggles verbose mode, in which all responses and messages from the FTP
server are printed on your screen. In addition, when a file transfer is
completed and verbose mode is on, you will see statistics regarding the
efficiency of the transfer. By default, VERBOSE is on.

? [command]

? is a synonym for HELP.

272 FTP MTS Command

MTS 1: The Michigan Terminal System

November 1991

HELP, EXPLAIN

MTS Command Description

Purpose: To enter the MTS Help/Explain facility.

Prototype: {HELP | EXPLAIN [topic]

“topic” is an optional Help/Explain topic for which information is desired.
If omitted, the user is queried for a topic.

Program Keys: *MTS.HELP and *MTS.EXPLAIN

Description: The HELP or EXPLAIN command provides direct on-line assistance for using
MTS.

The MTS SET HELPMODE={LINE | SCREEN} command specifies whether
the help information is presented in line or full-screen format. The default is
SCREEN if the user is using a terminal with a display screen.

HELP, EXPLAIN MTS Command 273

MTS 1: The Michigan Terminal System

November 1991

IF

MTS Command Description

Purpose: To test the program execution return code.

Prototype: IF RUNRC condition integer, MTS-command

RUNRC

RUNRC is the execution return code resulting from the execution of the
previous user program (executed or loaded by RUN, RERUN, START,
RESTART, LOAD, or DEBUG).

condition

“condition” is a conditional comparison operator which may be =, ˜=, <, >,
<=, >=, .EQ., .NE., .LT., .GT., .LE., or .GE.

integer

“integer” is an (optionally signed) constant against which the comparisons
of RUNRC are made.

MTS-command

“MTS-command” is the MTS command to be executed if the comparison is
true.

Program Key: *MTS.IF

Description: The IF command tests the value of the execution return code resulting from the
execution of the previous user program. The test is in the form of a simple
comparative against an (optionally signed) integer constant. If the comparison
is true, the MTS command specified in the IF command is executed; if the
comparison is false, the MTS command is not executed.

Blanks are allowed (but not required) between RUNRC, “condition”, “integer”,
the comma, and “MTS-command”; the comma is required. The dollar-sign
command flag is optional with “MTS-command”.

The execution return code from a program is an indication of how well the
program executed. For most compilers, the value returned as the execution
return code usually matches the level of the most severe diagnostic error
message issued by that compiler. Thus, a return code of 0 means that the
program compiled successfully, 4 means that warning messages were
generated, and 8 means that serious errors were detected in the source program.
For compilers and other programs residing in public files, the appropriate
documentation should be consulted for specific meanings of the return codes.

274 IF MTS Command

MTS 1: The Michigan Terminal System

November 1991

When the execution of a program (user program, compiler, or other public file) is
initiated, MTS sets the execution return code to −1 (to mean “undefined”).
When execution of the program is terminated, MTS sets the execution return
code to the value that was in general register 15 when the program terminated.
This is traditionally a small nonnegative number which is a multiple of 4.
When the program terminates successfully, the value 0 is returned in general
register 15, and the execution return code is therefore set to 0. If the program
terminates by calling the system subroutine SYSTEM, MTS sets the execution
return code to 0; if the program terminates by calling the system subroutine
ERROR, the execution return code is set to 8. In all other cases of program
suspension, such as attention interrupts, program interrupts, timer interrupts,
or calls to the system subroutines MTS or MTSCMD, the execution return code
remains set at −1 since the program may be restarted and run to a conclusion.
For further information about return codes from programs, see the section
“Calling Conventions” in MTS Volume 3: System Subroutine Descriptions,
Reference R1003.

A more powerful and comprehensive method of testing program return codes
and other system variables is available by using the MTS command macro
processor. Complete details are given in MTS Volume 21: MTS Command

Extensions and Macros, Reference R1021.

Example: RUN *FTN INPUT=SOURCE OBJECT=PROGRAM
IF RUNRC > 0, SIGNOFF
RUN PROGRAM 5=DATA 6=RESULTS

In the above example, the FORTRAN source program in the file SOURCE
is compiled by *FTN into the file PROGRAM. If any errors are detected
during compilation, the execution return code will be set to 4 or 8 by the
compiler and the following IF command will terminate the job by signing
off the user. If the compilation is successful, the resulting program will be
executed.

IF MTS Command 275

MTS 1: The Michigan Terminal System

November 1991

LIST

MTS Command Description

Purpose: To list a file or device. This is a new version of the LIST command which has its
own subcommand language.

Prototypes: LIST FDlist [[{ON | TO}] FDname] [[WITH] options]
LIST FDlist WITH options [{ON | TO} FDname]
LIST

If no parameters are given, list command mode is entered (see below).

FDlist

“FDlist” specifies the file(s) or device(s) that contain the lines to be listed.
“FDlist” may be a single file or device name, e.g.,

LIST FILE1

or a list of file and device names, separated by commas, with optional
parentheses:

LIST (FILE1,FILE2,FILE3)
LIST FILE1,FILE2,FILE3

File names may contain the character “?” which represents zero or more
arbitrary characters in the file name and forms a pattern for matching
similar file names. In this case, all files of the userID are listed that
match the file-name pattern. For example, the file name “DATA?” could
match the files DATA, DATA1, DATA2, DATA10, DATAFILE, etc. The
“?” cannot be used in the userID portion of a shared file name.

Each element in “FDlist” may be an explicit concatenation of file and
device names with or without line-number ranges and modifiers, e.g.,

LIST (FILE1@IC,FILE2(1,10)+FILE3(1,10))

The “FDlist” parameter must be specified as the first parameter of the
LIST command.

[{ON | TO}] FDname

“FDname” specifies the file or device that is to receive the listed lines.
“FDname” may be an explicit concatenation of file and device names with
or without line-number ranges, but not a list of FDnames or a filename
pattern. If “FDname” is omitted, the output lines are written on *SINK*.

ON or TO is not required unless “FDname” follows other options.

276 LIST MTS Command

MTS 1: The Michigan Terminal System

November 1991

[WITH] options

Several options may be specified that control the format of the listing.
The word WITH implies that at least one option follows.

The WITH word is mandatory only when ON or TO FDname is given
following “FDlist”.

The options are given below. Free-verb options, options without equal signs
(=), may be negated by prefixing them with NO or “˜”.

[NO]CC Default: CC

The CC option controls whether logical carriage control is used during a
list request. If CC is specified, carriage control is generated according to
the following rules:

The first page of a file is form-fed to the next sheet, and all
subsequent pages are skipped to the next page. The first line of text
on a page is started by positioning to the top of the page. The
footing, if requested, is printed two lines below the last line of text on
a page.

Note: The actual carriage-control characters generated during a file listing
can be set using the NP, NS, PT, and SS options (see below).

{COLUMNS | COLS}={n | MAXIMUM} Default: COLUMNS=1

The file may be listed in a multi-column format specifying the COLUMNS
option. “n” is the number of columns on a page (the column widths are
determined by the page width as set by the PAGEWIDTH option), or to the
maximum number of columns that will allow a listing of the file without
folding any lines. Thus, if the longest line in the file is 30 characters, the
page width is 100, and line numbers are being excluded from the listing,
three columns would be printed per page for the COLUMNS=MAX option.

{COLWIDTH | CW}=n Default: COLWIDTH=121

The page is divided into as many columns of width “n” as will fit. The
COLUMNS and COLWIDTH options interact with one another.
Specifying COLWIDTH forces the maximum number of columns, if the
COLUMNS option was not specified. Specifying COLUMNS forces the
maximum (equal) column width, if the COLWIDTH option was not
specified. If the values specified for COLUMNS and COLWIDTH are
incompatible, an error message will be issued. COLWIDTH=121 is the
maximum value that may be specified for single-column output.

The value of COLWIDTH is also dependent on the value of PAGEWIDTH.
In this case,

LIST FILE WITH COLWIDTH=121...PAGEWIDTH=TERMINAL

LIST MTS Command 277

MTS 1: The Michigan Terminal System

November 1991

will produce an error when the terminal’s output length (OUTLEN) is 80.

[NO]CONCATENATION Default: NOCONCATENATION

When NOCONCATENATION is specified, files separated by commas are
separated by a New Sheet form-feed during listing. This also applies to
multiple files generated by use of a file pattern. When
CONCATENATION is specified, file are listed one after another as if they
were one contiguous file. The CONCATENATION option should not be
confused with the SKIP option, as SKIP applies only to implicitly or
explicitly concatenated files, whereas CONCATENATION controls the
listing of file lists only.

[NO]DOUBLESPACE Default: NODOUBLESPACE

The DOUBLESPACE option allows the simulated double-spacing of a
listing. If double-spacing of a line causes a line to be printed on a line
number greater than the current lines-per-page setting, the form is
skipped and printing is done at logical position Page Top.
NODOUBLESPACE is synonymous with SINGLESPACE.

FOOTER[={“text” | RULER}] Default: NOFOOTER

Footers (if requested) are printed at the bottom of a listing with one blank
line separating the footer from the main text of the listing. These two
additional lines are subtracted from the space available for the main text.
FOOTER=RULER prints a column-number ruler as the footer. If
FOOTER is specified, the default footer is printed (same as
FOOTER=RULER). The default footer may be changed by specifying
FOOTER=“text”. The predefined “macros” <DATE>, <TIME>, <HOST>,
<CCID>, and <FDNAME> may be used in the text string to substitute the
corresponding values in the text string to substitute the corresponding
values in the footer.

HEXCON[=(l,r)] Default: See text

The column range indicated (from “l” to “r”, inclusive) is printed in
hexadecimal. If “l” and “r” are omitted, the entire line is printed in
hexadecimal. The printed line is increased in length by the size of the
column range, since it takes two columns to print the hexadecimal code of a
single character.

[NO]IC Default: NOIC

The IC option controls implicit concatenation. (See the section on file
concatenation below.)

[NO]LENGTH Default: NOLENGTH

The LENGTH option specifies that the actual, untruncated length of each
line is printed. This length is printed to the left of the printed line, or if
line numbers are printed, to the right of the line numbers.

278 LIST MTS Command

MTS 1: The Michigan Terminal System

November 1991

{[NO]LINENUMBERS | [NO]LNR} Default: LINENUMBERS

The LINENUMBERS option specifies that line numbers are printed with
the lines in the listing. NOLINENUMBERS suppresses the printing of
line numbers.

If line numbers are requested, the line numbers returned from the read
operation on “FDlist” are appended on the front of each line.

{LINES | LPP}={n | OFF | DEFAULT} Default: LINES=DEFAULT

The LINES option sets the number of lines per page (including the header
and the footer). The maximum value for “n” is 126. LINES=OFF
suppresses pagination. LINES=DEFAULT suppresses pagination when
listing to a terminal and sets LINES=60 when listing to a file or a printer.

MARGINS={([l],[r]) | l} Default: MARGINS=(0,0)

The MARGINS option specifies that the left and right margins are to be
indented by “l” and “r”, respectively. MARGINS=(l,) is equivalent to
MARGINS=l; MARGINS=(,) and MARGINS=(0,0) are equivalent.

{NPI | NEWPAGEINTERVAL}=n Default: NPI=0

If the NPI option is specified, a new page is started after every “n” lines.
NPI=0 disables the option.

NP=char Default: NP=;

The NP (New Page) option sets the carriage-control character that is used
to advance to the physical top of the next page (physical line 1).

NS=char Default: NS=:

The NS (New Sheet) option sets the carriage-control character that is used
to advance to the top of the next sheet.

PAGES={n | OFF} Default: PAGES=OFF

The PAGES option limits the output per file to “n” pages. “FDlist” list
elements are treated as single files, regardless of implicit or explicit
concatenations. Thus, exceeding PAGES=n terminates processing of the
current list element. PAGES=OFF implies no page limit. See the
section below on file concatenation for further information about the
behavior of this option.

{PAGEWIDTH | PW}={n | TERMinal} Default: PAGEW=132

The PAGEWIDTH option controls the width of the printed page. The
value of “n” must be in the range (0,250). For terminals,
PAGEWIDTH=TERMINAL reduces the page width to the current
%OUTLEN device-command setting (for terminals that do not support the

LIST MTS Command 279

MTS 1: The Michigan Terminal System

November 1991

%OUTLEN command, the default is 132). The page width does not
include the carriage-control character.

PLAIN

The PLAIN option produces listings without titles, without page skips
between concatenated files, and with implicit concatenation controlled by
the system and user defaults. Any other options specified along with the
PLAIN option will be ignored.

PT=char Default: PT=1

The PT (Page Top) option sets the carriage-control character that is used to
advance to the logical top of the next page (physical line 3).

{SEPARATOR | SC}={c | OFF} Default: SEP= |

The SEPARATOR option sets the column separator character to “c” or
suppresses the printing of the separator character (SEPARATOR=OFF).

[NO]SINGLESPACE Default: SINGLESPACE

The SINGLESPACE option causes the listing of files to be single-spaced.
SINGLESPACE is synonymous with NODOUBLESPACE.

[NO]SKIP Default: NOSKIP

Files either implicitly or explicitly concatenated are printed separately, if
SKIP is specified, or as a single file, if NOSKIP is specified.

SS=char Default: SS=Blank

The SS (Single-Space) option sets the carriage-control character that is
used to advance to the next line.

TITLE[={"text" | BLANK}] Default: See text

Titles (if requested) are printed at the top of the page, with one line
separating the title from the listing. These two lines are subtracted from
the space available for the listing. TITLE=BLANK produces no title
other than a page number. The predefined “macros” <DATE>, <TIME>,
<HOST>, <CCID>, and <FDNAME> may be used in the text string to
substitute the corresponding values in the title. If TITLE is specified, the
default title is printed:

"Listing of <FDname> at <time> on <date> for
CCid=<userid> on <host>"

The default title may be changed by specifying TITLE="text". The
default is NOTITLE, when listing on a terminal, and TITLE, otherwise.

280 LIST MTS Command

MTS 1: The Michigan Terminal System

November 1991

TRUNCATE={n | OFF} Default: TRUNCATE=OFF

If the TRUNCATE option is specified, only the first “n” columns of each line
are printed.

[NO]WRAPPING Default: WRAPPING

When WRAPPING is specified, lines that are longer than the column
width are not truncated but instead continued on the next line in the same
column (or the next column if the previous line was the last line in the
column). With TRUNCATE=OFF and WRAPPING specified, all lines can
be listed regardless of length. When NOWRAPPING is specified (even if
TRUNCATE=OFF), the line is ended when it reaches the end of the line on
which it began.

Program Key: *LIST

Description: The LIST command performs a series of read and write operations. Lines are
read sequentially from “FDlist” and written to “FDname” until the end of the file
or the end of a line-number range is encountered on “FDlist”.

The LIST command (unlike the COPY command) does not treat the first
column of each line as a carriage control.

List Command Mode

If the LIST command is given without any parameters, list command mode is
entered. In list command mode, separate list and control commands may be
given to list multiple files in different formats for each file.

The following commands may be used in list command mode:

LIST FDlist [[{ON | TO}] FDname] [[WITH] options]
SET options
EXPLAIN [item]
MTS
RETURN
STOP
$mts-command

The LIST command in list mode is the same as in MTS command mode
(indicated by the “>” prefix character). Options specified on the LIST command
are effective only for that command and take precedence over options specified
by the SET command.

The SET command may be used to set format options for subsequent LIST
commands, e.g.,

SET TITLE NOLNR

enables the printing of titles and suppresses the printing of line numbers. The
same options are available for the SET command as are described above for the

LIST MTS Command 281

MTS 1: The Michigan Terminal System

November 1991

LIST command.

The EXPLAIN command may be used to obtain further information about the
LIST command processor.

Both the RETURN and MTS commands return control to the caller (normally
MTS command mode). The STOP command terminates the LIST command
processor. Other MTS commands may be executed from list command mode by
prefixing them with a dollar sign ($).

File Concatenations

Explicit concatenations of elements of an “FDlist” are treated as a single file; no
page skips are made for each file of the concatenation.

Each element in a list of files of an “FDlist” is treated as a separate file; hence,
page skips are made between each file in the list. If the CONCATENATION
option is specified (the default is NOCONCATENATION), page skips are not
made between files in the list. Note that files being listed as the result of a file
name pattern are considered to be files in a list and are treated as such.

Page skips are made between each LIST command in list command mode unless
the NOSKIP option is explicitly specified.

By default, implicit concatenations ($CONTINUE WITH lines) are ignored
unless the IC option is specified or the @IC modifier is specified on the file names
in “FDlist”. If implicit concatenations are in effect, they are treated just like
explicit concatenations (no page skips are made).

Examples: LIST A

File A is listed on *SINK* (default). If A is a line file, the line numbers
from file A are appended to the front of output lines before they are written
on *SINK*. If file A is a sequential file, line numbers starting at 1 and
incremented by 1 are appended to the output lines.

LIST A(5,20) OUTFILE

Lines 5 through 20 of file A are listed on the file OUTFILE. The line
numbers from A are appended.

LIST A+B+C ON *PRINT*

Files A, B, and C are listed on *PRINT* with line numbers. A, B, and C
are treated as a single FDname with no page skips between the files.

LIST (A,B,C) TO *PRINT*

Files A, B, and C are listed on *PRINT* with line numbers. A, B, and C
are treated as separate FDnames with page skips between the files.

282 LIST MTS Command

MTS 1: The Michigan Terminal System

November 1991

LIST (A,B,C) *PRINT* WITH TITLE NOLNR
LIST (A,B,C) *PRINT* TITLE NOLNR

Files A, B, and C are listed on *PRINT* with the default title and without
line numbers. Both of the above commands are identical in effect.

LIST A,B,C WITH CON
LIST A+B+C

Files A, B, and C are listed to *SINK* as a single file. The
CONCATENATION option suppresses page breaks in the file list. Both
of the above commands are equivalent in terms of the output produced.

LIST MTS Command 283

MTS 1: The Michigan Terminal System

November 1991

LOAD

MTS Command Description

Purpose: To load a program without initiating execution.

Prototype: LOAD [program] [I/Ounits] [limits] [mapoptions]
[{EXECPKEY | PKEY}={key | OFF}] [PAR=parameters]

The following parameters may be given:

program

“program” specifies the file or device containing the program to be loaded.
If omitted, the program is loaded from *SOURCE*.

I/Ounits

The keyword parameters “I/Ounits” are the assignments of logical I/O
units to files or devices for use by the loaded program during execution.
The logical I/O unit assignments are used to select appropriate I/O
subroutines to be used by the loaded program for the input and output of
data. Where no specifications are stated, the following default
assignments occur:

SCARDS=*SOURCE*
GUSER=*MSOURCE*
SERCOM=*MSINK*
SPRINT=*SINK*
SPUNCH=*PUNCH* (batch mode if global card est. > 0)

Synonyms may be used for the following logical I/O unit names:

INPUT for SCARDS
PRINT for SPRINT
OBJECT for SPUNCH

The logical I/O units 0 through 99 have no default specifications. See the
section “Files and Devices” in this volume and the subroutine descriptions
for INPUT (SCARDS), PRINT (SPRINT), OBJECT (SPUNCH), SERCOM,
GUSER, READ, and WRITE in MTS Volume 3: System Subroutine

Descriptions, Reference R1003, for further details on the use of these
subroutines.

FORTRAN users are reminded that MTS logical I/O units 0 through 99 are
not necessarily the same as the FORTRAN logical I/O units 0 through 99.

limits

The keyword parameters “limits” specify local limits for CPU time, pages
printed, cards punched, and plot time. These can be given in the form:

284 LOAD MTS Command

MTS 1: The Michigan Terminal System

November 1991

TIME={t | tS | tM}
PAGES=p
CARDS=c
{PLOTTIME | PT}={t | tM}

These local limits can be used in both batch and conversational mode and
are effective only for the execution of the program loaded by the LOAD
command. For further details on limits, see the section “UserIDs, Limits,
and Sigfiles” in this volume.

MAP[=mapFDname] [NOMAP] [XREF] [UXREF]

The MAP parameter specifies the file or device “mapFDname” on which
the loader is to write the loader map. If the MAP parameter is omitted, no
loader map is written. If the MAP parameter is given in the form of MAP,
“mapFDname” defaults to *SINK*. The NOMAP parameter suppresses
the printing of the loader map. NOMAP need be given only if a previous
MAP specification was made.

The XREF parameter specifies that a cross-reference listing of external
symbols occurring in the loaded programs is to be produced. If XREF is
given without the MAP parameter, MAP=*SINK* is assumed. The XREF
parameter implies the UXREF parameter.

The UXREF parameter specifies that a cross-reference listing of undefined
external symbols occurring in the loaded programs is to be produced. If
UXREF is given without the MAP parameter, MAP=*SINK* is assumed.

{EXECPKEY | PKEY}={key | OFF}

The EXECPKEY parameter “key” specifies an override program key to be
used instead of the program key associated with “program”. If OFF is
specified, the override specified by the EXECPKEY option of the SET
command is disabled. For further details on the use of program keys, see
the section “Files and Devices” in this volume.

PAR=parameters

The PAR field specifies an arbitrary string of characters to be passed to the
loaded program on initiation of execution. This is usually a parameter
list for the program and its interpretation depends on the loaded program.
The PAR field must be the last parameter specified in the command. The
parameter list is terminated by the end of the command line. Note that
the parameter field always has a blank added after the last character and
the length count is increased by one.

Program Key: *MTS.LOAD

Description: The LOAD command invokes the dynamic loader to load the object program into
virtual memory. If there are unresolved external symbol references after
loading from “program”, loading continues from *LIBRARY (the system
library). Only those parts of *LIBRARY required to resolve the references are

LOAD MTS Command 285

MTS 1: The Michigan Terminal System

November 1991

loaded. If there are still unresolved external references, a fatal loading error
exists. In conversational mode, the loader prompts for more loader input; in
batch mode, an error comment is produced and the loading terminates
immediately. The search of the system library may be modified or suppressed
by the LIBR, LIBSRCH, and *LIBRARY options of the SET command. If SET
DEBUG=ON has been specified, SDS processes any symbol table information
associated with the loaded program. For a complete description of the loading
process, see the section “The Dynamic Loader” in MTS Volume 5: System

Services, Reference R1005.

If there are no fatal loading errors, control is returned to the user; he can use
either debug mode or the DISPLAY and ALTER commands to display and
modify parts of the loaded program. Execution of the program can be initiated
by the START command or by the debug mode RUN command.

The parameter string (specified by the PAR field) is passed as follows: GR1
contains the location of a fullword address constant which points to a region
containing a halfword count (halfword aligned) followed by an EBCDIC
character region (of byte-length specified by the count) containing the
parameter string. The leftmost bit of the address constant is 1.

If a file or device specified by “I/Ounits” is nonexistent or is not available, the
logical I/O unit referring to the unavailable file or device is set up such that the
first time the program being executed refers to the logical I/O unit, either the
user is given an opportunity to respecify the FDname (in conversational mode)
or execution is terminated (in batch mode).

If “program” has a nondefault program key that is not prefixed by the current
userID, the program key will be set to the default value (for this invocation of
the program only).

Example: LOAD OBJPROG+PROGLIB 5=INPUT 6=OUTPUT

This loads the program and private library in OBJPROG+PROGLIB.
Logical I/O units 5 and 6 are specified for the input and output of data
during a later execution of the program initiated by the START command
or the debug mode RUN command.

286 LOAD MTS Command

MTS 1: The Michigan Terminal System

November 1991

LOCATE

MTS Command Description

Purpose: To determine the status of jobs released to the Resource Manager.

Prototype: LOCATE {SYSTEM | LOCAL | FULL | SHORT | HELP}

LOCATE {jobnumber | jobname} [option ...]

where

SYSTEM

Display status of all jobs in the system.

LOCAL or LCL

Display status of all local jobs in the system.

FULL

Display the status of the user’s jobs. This is the default if no parameters
are specified.

SHORT

Display the status of the user’s jobs, excluding purged or deleted jobs.

{jobnumber | jobname | JOBNAME=jobname}

Display information about specified jobs.

option

Display information about certain types of jobs, where “option” is:

PRINT display all print jobs.
EXECUTE display all batch jobs waiting execution.
IMPORT display all import jobs.
VIEW display all print jobs to ROUTE=VIEW.
PRINTQ display all print jobs excluding

ROUTE=VIEW.
SUMMARY display summary information only.

HELP

Display help information for the LOCATE command.

Program Key: *LOCATE

LOCATE MTS Command 287

MTS 1: The Michigan Terminal System

November 1991

Description: The LOCATE command enables the user to determine the status of jobs that
have been released to the Resource Manager, for example, *BATCH* or
PRINT jobs.

The following examples illustrate the use of the LOCATE command.

LOCATE PRINT SUMMARY

displays summary information about all print jobs.

LOCATE 234567

displays information about job 234567.

Any time you need help on the LOCATE command, you can enter

LOCATE HELP

at the MTS “#” prompt.

You can only get information about jobs that were submitted by the same
userID as that issuing the LOCATE command.

288 LOCATE MTS Command

MTS 1: The Michigan Terminal System

November 1991

LOCK

MTS Command Description

Purpose: To explicitly lock a file.

Prototype: LOCK filename [how] [options]

filename

“filename” is the name of the file to be locked.

how

“how” indicates how the file is to be locked and should be one of the
following:

READ Lock the file for reading

WRITE Lock the file for modification
MOD Lock the file for modification
CHANGE Lock the file for modification
EMPTY Lock the file for modification
TRUNCATE Lock the file for modification
RENUMBER Lock the file for modification

DESTROY Lock the file for destroying
RENAME Lock the file for destroying
PERMIT Lock the file for destroying

NONE Unlock the file (the same as
UNLOCK)

If “how” is omitted, the file is locked for modification.

options

“options” indicates whether MTS should wait if locking is not possible at
this particular time and/or whether MTS should terminate the job (quit) if
the file cannot be locked as requested. The legal options are as follows:

{WAIT | NOWAIT}
{QUIT | NOQUIT}

The defaults are WAIT and NOQUIT.

Program Key: *MTS.LOCK

Description: The three locking classes, reading, modification, and destroying, are inclusive in
the sense that locking a file for modification also locks a file for reading, and
locking a file for destroying also locks a file for reading and modification.

LOCK MTS Command 289

MTS 1: The Michigan Terminal System

November 1991

Any number of tasks (jobs) can have a file locked for reading at any one time, but
only one task can have a file locked for modification, and then only if no other
task has the file locked for reading. Only one task can have a file locked for
destroying, and then only if no other task has the file open or locked for reading
or modification.

The userID must have the appropriate access to the file before the file is locked
as requested.

The file is always locked as requested (assuming the job has no other locking
requests associated with the file).

If the file cannot be locked because it is locked by another task, the LOCK
command will wait until the file is released by the other task (unless the
NOWAIT option is specified). This waiting may be canceled by an attention
interrupt, in which case the message

"FDname"-Wait to lock interrupted or cancelled.

is printed.

The file may be unlocked with the UNLOCK command.

A file may also be explicitly locked from a program by calling the LOCK
subroutine (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

See Appendix D to the section “Files and Devices” for further details about using
shared files.

Examples: LOCK FILE1 EMPTY

The file FILE1 is locked for modification.

LOCK FILE2 DES NOWAIT

The file FILE2 is locked for destroying; if locking is not immediately
possible (e.g., because another job has the file locked), the locking is not
done.

290 LOCK MTS Command

MTS 1: The Michigan Terminal System

November 1991

LOCKSTATUS

MTS Command Description

Purpose: To display the locking status of a file or of the current job.

Prototype: LOCKSTATUS [item [options]]

LSTATUS is an alternate name for LOCKSTATUS.

item

“item” specifies the item whose locking status is to be displayed. If the
parameter is omitted, the locking status of the current job is displayed.

filelist

“filelist” is a single file, a file-name pattern, or a parenthesized list of
files.

JOB={nnnnnn | ME}

“JOB=nnnnnn” displays a list of files locked by the specified task
number. JOB=ME specifies the current task number (the same as
giving no “item” parameter).

USER=userid

“USER=userid” displays a list of files locked by the specified userID.

options

REPEAT=seconds

Print locking information every “n” seconds.

OUTPUT=FDname

Print information to the file or device specified by “FDname”.

The following options may be specified to filter unwanted information.

LOCK Print information only for locked files, not for files
that are just open or waiting to be locked.

LOCKDESTROY
Print information only for files locked for destroying.

LOCKMOD Print information only for files locked for
modification.

LOCKSTATUS MTS Command 291

MTS 1: The Michigan Terminal System

November 1991

LOCKREAD Print information only for files locked for reading.

WAIT Print information only for files waiting to be locked,
not for files that are already locked.

WAITDESTROY
Print information only for files waiting to be locked
for destroying.

WAITMOD Print information only for files waiting to be locked
for modification.

WAITREAD Print information only for files waiting to be locked
for reading.

WAITOPEN Print information only for files waiting to be locked
as open.

INVALID Print information only for files marked as invalid,
that is, the file was locked and is now unlocked, but
in the meantime another task changed the file so this
task’s file buffers are no longer accurate.

OPEN Print information only for files that are open
(another task can read or write to them, but cannot
destroy or permit them).

NOTONOTL Print information only for files that are not open and
not locked.

ANY Print information only for all files.

Program Key: *MTS.LSTATUS

Description: If “filelist” is given, the system indicates all the jobs (tasks) and associated
userIDs which have opened, locked, or are waiting on the file(s).

If “JOB nnnnnn” is given, the system indicates the files which that job (or the
current job, if no parameter or the ME parameter is given) has open and/or
locked.

The responses and their meanings are as follows:

NOTL The file is not locked.
LOCKR The file is locked for reading.
LOCKM The file is locked for modification.
LOCKD The file is locked for destroying.

OPEN The file is open.
NOTO The file is not open.

292 LOCKSTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

WAITR The specified job is waiting for read access to the file.
WAITM The specified job is waiting for modification access to the file.
WAITD The specified job is waiting for destroy access to the file.
WAITO The specified job is waiting to open the file.

INVLD This is of internal significance only. It signifies that while the
file was unlocked by the job which had it open, another job
locked and modified information in the file. Because of this,
certain information concerning the file is rendered invalid and
will be retrieved implicitly from the file again if it is reused.

Examples: LOCKSTATUS MFT

A possible response is

0021(IDEB)-OPEN LOCKR 0037(SX99)-WAITM

which means that job 0021 with userID IDEB has file MFT open and
locked for reading, and job 0037 with userID SX99 is waiting to modify file
MFT. The numbers 0021 and 0037 are the supervisor task numbers for
those jobs.

LOCKS

A possible response is

X-OPEN LOCKM Y-NOTO LOCKD

which means that the current job has file X open and locked for
modification, and file Y not open, but locked for destroying.

LOCKSTATUS MTS Command 293

MTS 1: The Michigan Terminal System

November 1991

LOG

MTS Command Description

Purpose: To record the input/output activity of a file or device.

Prototype: LOG [FDname1] {[ON] FDname2 [format] [options] | OFF}

FDname1

“FDname1” is the name of the file or device that is the source for the
logging operation, i.e., the information that is to be logged. “FDname1”
must be a simple file or device name (no line-number ranges or
concatenations of files or devices is allowed). The default is *MSINK*.

FDname2

“FDname2” is the name of the file or device that is to receive the logged
information. “FDname2” may not be a concatenation of files or devices,
but may contain line-number ranges or modifiers.

format

“format” may be one of the following:

ASIS print log output in the same format as it appears in
the session

SYMBOLIC print log output in keyword format (provides more
extensive information that may be useful for
debugging programs that perform direct I/O to files)

The default is ASIS.

options

“options” may be one or more of the options given below.

READS log all read operations (input)
WRITES log all write operations (output)
CONTROL log all control operations
BINARY log @BIN I/O operations
ALL log all operations

The default is READS WRITES for ASIS format and READS WRITES
CONTROL for SYMBOLIC format.

Program Key: *MTS.LOG

Description: The LOG command may be used to record the input/output activity of a file or
device. The most common use of this command is to obtain a hard copy of a

294 LOG MTS Command

MTS 1: The Michigan Terminal System

November 1991

terminal session from a display-screen terminal. Normally, this will be done in
the following manner:

LOG ON -LOG
.
.

(terminal session)
.
.

LOG OFF
COPY -LOG *PRINT*

Note that the logged output should be first saved in a separate log file and then
copied to *PRINT* at the end of terminal session so as not to interfere with any
use of *PRINT* during the terminal session.

Several files or devices may be logged at one time as long as the following
conditions are met:

(1) No FDname can be the source or destination for more than one
logging operation.

(2) A logging source cannot also be used as a logging destination.

(3) A logging destination cannot also be used as a logging source.

The following is an example of a legal combination of LOG commands.

LOG ON -LOG
LOG -X ON -Y

The following are examples of illegal combinations of LOG commands.

LOG ON -Y
LOG -X ON -Y

LOG -X ON -Y
LOG ON -X

LOG ON -LOG
LOG -LOG ON -Y

Warning: If the user is logging terminal I/O and either LISTs the log file or
EDITs the log file and issues the “PRINT /F” edit command, the list is
potentially infinite, since each line that is listed or printed is also added to the
end of the log file. If this occurs, the user should issue an attention interrupt.

For display-screen terminals and microcomputers, the logged output will
contain both the input and output. For batch jobs, the logged output will
contain only the job output. To log the job input, issue the command

LOG *MSOURCE* ON FDname

LOG MTS Command 295

MTS 1: The Michigan Terminal System

November 1991

The DISPLAY LOGSTATUS command may be given to display information
about what is being currently logged.

296 LOG MTS Command

MTS 1: The Michigan Terminal System

November 1991

MAKE

MTS Command Description

Purpose: To keep interrelated files in a consistent state.

Prototype: MAKE program [WITH] options

Program Key: *MTS.MAKE

Description: The MAKE command provides a facility to keep interrelated files in a consistent
state. Specifically, when one file is produced from another by some operation,
then the output file depends on the input file. Usually, changes in the input file
should be reflected in the output file. The most common example of such a
dependency is between source and object files for some program.

The MAKE command is described in The MAKE Command, Reference R1072.

MAKE MTS Command 297

MTS 1: The Michigan Terminal System

November 1991

MESSAGE

MTS Command Description

Purpose: To invoke the MTS Message System.

Prototype: MESSAGE [message-command]

message-command

“message-command” is an optional message-system command. The
command is executed as a single command and an immediate return is
made to the caller.

Program Key: *MESSAGESYST

Description: The MTS Message System may be used to send messages to other users. For
further details, see MTS Volume 23: Messaging and Conferencing in MTS,
Reference R1023.

298 MESSAGE MTS Command

MTS 1: The Michigan Terminal System

November 1991

MODIFY

MTS Command Description

Purpose: To alter the contents of a general register, floating-point register, or specified
virtual memory location(s).

Prototype: MODIFY location value

This command is identical to the ALTER command.

Program Key: *MTS.MODIFY

MODIFY MTS Command 299

MTS 1: The Michigan Terminal System

November 1991

MOUNT

MTS Command Description

Purpose: To mount magnetic tapes or UMnet/Michnet Computer Network connections.

Prototype: MOUNT [request [;request] ...]

request

“request” is the mount request for the item to be mounted. One or more
requests separated by semicolons may be entered directly on the MOUNT
command; if the requests are omitted from the command line, they must be
entered as separate input lines following the command (read from
SOURCE) until terminated by an end-of-file.

The form of the request for mounting 9-track magnetic tapes is:

tapename [*pdn* [keywords]]

The form of the request for mounting a UMnet/Michnet Network connection is:

MNET *pdn* [keywords]

Program Key: *MTS.MOUNT

Description: For mounting magnetic tapes, the user must specify the tape name. When a
tape is submitted to ITD, a tape name is assigned (the receipt code is used as the
tape name by default; this name may be changed by the user to a more
meaningful name). If a magnetic pool tape is to be mounted, the word POOL
must be used in place of the tape name.

For UMnet/Michnet connections, the MNET device type must be specified.

For magnetic tapes, the pseudodevice name (*pdn*) defaults to *T*, but other
names may be specified. For UMnet/Michnet connections, a pseudodevice
name must be specified. After the item is mounted, all command and program
references to the item are made using its pseudodevice name. The
pseudodevice name is used in the same context as a file or device name
“FDname” (see “Pseudodevice Names” in the section “Files and Devices” in this
volume for further details on specifying and using pseudodevice names).

The DISPLAY PDNS command may be used to display the pseudodevice names
for all currently mounted items.

The user may specify many different keyword parameters as part of the mount
request. Successive keyword parameters may be entered in any order and
must be separated by blanks or commas. For a complete description of the
effect of each of the keyword parameters, see the appropriate sections in MTS

Volume 19: Magnetic Tapes in MTS, Reference R1019. The tables on the
following pages summarize the keyword parameters currently available. The

300 MOUNT MTS Command

MTS 1: The Michigan Terminal System

November 1991

default values are underlined where appropriate.

Magnetic tapes and UMnet/Michnet Computer Network connections may also
be mounted from a program by calling the MOUNT subroutine (see MTS

Volume 3: System Subroutine Descriptions, Reference R1003).

Magnetic tapes and UMnet/Michnet connections may be dismounted by
specifying

RELEASE *pdn*

where “*pdn*” is the pseudodevice name of the mounted volume.

Examples: MOUNT
MYTAPE *OUTPUT* WRITE=YES
POOL *POOL*
$ENDFILE

The labeled magnetic tape with tape name MYTAPE is mounted on a
9-track magnetic tape unit; the tape is mounted with the file protect ring in
so that it may be written on (WRITE=YES); the tape is assigned the
pseudodevice name *OUTPUT* (if *OUTPUT* were omitted, the default
pseudodevice name *T* would be used instead). A pool tape is also
mounted on a 9-track tape unit; it is assigned the pseudodevice name
POOL.

MOUNT MNET *WSU* D=WU

A Merit connection at Wayne State University is mounted and assigned
the pseudodevice name *WSU*.

MOUNT MTS Command 301

MTS 1: The Michigan Terminal System

November 1991

Keyword Parameter Summary

For magnetic tapes:

BLKPFX=n Specify block-prefix length for ANSI labeled
tapes (0≤n≤99); defaults to 0 for initialized tapes

{BLOCKING | BLK}={ON | OFF} Enable or disable blocking; defaults to ON

CC={A | M} Specify nonblank control character for first new
file written

{DSNAME | DSN | NAME}=name Specify file name to be used for next new file
written

DTCHK={ON | OFF} Enable or disable expiration date checking;
defaults to ON

EXPDT=[{mm-dd-yy | mm/dd/yy}] Specify expiration date for new files

{FORMAT | FMT | RECFM}=fmt[([size][,lrecl])]
where “fmt” is {U | F | FB | FBS | V | VB | VBS | D | DB}

Specify blocking format and, optionally, block
size and/or logical record length; defaults to
U(255, 255) for unlabeled tapes

INIT={YES | NO} Initialize labeled tape; defaults to NO

LBLTYPE={MTS | OS/VS | VLO | ANSI}
Specify label type; defaults to MTS

LP={ON | OFF} Enable or disable label processing; defaults ON
for labeled tapes, OFF otherwise

LRECL=n Specify logical record length (1 ≤ n ≤ 32767);
defaults to 255 for unlabeled tapes

MINSIZE=n Specify minimum block size (1 ≤ n ≤ 100)

MODE=mode Specify tape mode; defaults to the current mode

POSN={* | *n* | *EOT* | name} Position tape to beginning of current file, nth file,
end-of-tape, or data set name

QUIT={YES | NO} Control termination of batch job if mount fails;
defaults to YES

RETRY=n Specify retry count for read errors (0 ≤ n ≤ 15);
defaults to 10

RING={IN | OUT} Specify placement of file-protect ring; defaults to
OUT

302 MOUNT MTS Command

MTS 1: The Michigan Terminal System

November 1991

{SIZE | BLKSIZE}=n Specify maximum block size (18 ≤ n ≤ 32767);
defaults to 255 for unlabeled tapes

TIMER={ON | OFF | n} Enable, disable, or specify elapsed-time interval
(in minutes) for inactive tape warning message;
defaults to ON, n=15 minutes

TRANSLATE={MTS(parity) | MTS | IBM | NONE}
Specify translation scheme for ANSI-labeled or
ASCII unlabeled tapes; parity is EVEN, ODD,
ZERO, or ONE; defaults to MTS(ZERO)

{VOLUME | VOL | LABEL | VOLSER}={name | 'name'}
Specify volume name of labeled tape

WAIT={YES | NO | PROMPT} Control terminal-user waiting for queuing of 9TP
requests if no tape drive available; defaults to
PROMPT

WRITE={YES | NO} Specify placement of file-protect ring; defaults to
NO

For UMnet/Michnet Computer Network connections:

{DEST | D}={MS | UM | WU} Specify connection destination; defaults to UM

QUIT={YES | NO} Control termination of batch job if mount fails;
defaults to YES

MOUNT MTS Command 303

MTS 1: The Michigan Terminal System

November 1991

MTS

MTS Command Description

Purpose: To return to MTS command mode.

Prototype: MTS

Program Key: *MTS.MTS

Description: If this command is executed from MTS command mode, a message is printed
stating that the user is already in MTS command mode.

If this command is executed from another command-language mode, an explicit
return is made to MTS command mode. This differs from issuing the
command-language MTS command whereby a return is made to the caller. For
example, if the MTS File Editor were invoked by another program such as the
MTS Message System, entering the edit command

MTS

would return the user to the Message System. However entering the MTS
command

$MTS

will return the user to MTS command mode.

304 MTS MTS Command

MTS 1: The Michigan Terminal System

November 1991

NET

MTS Command Description

Purpose: To enter network mode.

Prototype: NET [{hostID | *pdn*}] [.network-command}

hostID

“hostID” specifies the two-character identifier of the remote host with
which the user wishes to communicate. The hosts currently available are:

UB The University of Michigan (UB-MTS system)
UM The University of Michigan (UM-MTS system)
WU Wayne State University

pdn

“*pdn*” is the pseudodevice name of a previously acquired UMnet/Michnet
Network connection. Network connections may be acquired via the
MOUNT command or the MOUNT subroutine.

If no hostID or pseudodevice name is given, the user is prompted. If the
user previously left network command mode by entering the MTS or
RETURN network commands, the previous connection is retained unless a
new hostID or pseudodevice name is specified.

network-command

“.network-command” is an optional network command. The period (.)
prefix must be given with the command. The command is executed as a
single command and an immediate return is made to the caller.

Program Key: *NET

Description: In network mode, the user’s terminal communicates with any of the host
computers interconnected by the UMnet/Michnet Computer Network. Input
from the terminal is transmitted by MTS to the remote computer; output from
the remote computer is printed at the terminal. In this manner, the user’s
terminal functions similarly to a terminal dialed directly to the remote
computer. However, several additional facilities are available via network
mode that would not otherwise be possible, e.g., the user may transfer files
between the several UMnet/Michnet host computers.

The first character of each input line from the user’s terminal is examined for
the current network-mode selection character, normally a period (.). If found,
the input line is taken as a network command instead of a line to be transmitted
to the remote host. Network commands allow the user, for example, to return
to MTS command mode (the MTS or RETURN command), to transfer the
contents of a file to a file at the remote host (the COPY command), etc.

NET MTS Command 305

MTS 1: The Michigan Terminal System

November 1991

Information about the currently active UMnet/Michnet connections may be
displayed by issuing the command

DISPLAY PDNS

For a complete description of how to use network mode with the UMnet/Michnet
Computer Network, see the section “The NET Command” in MTS Volume 4:

Terminals and Networks in MTS, Reference R1004.

Examples: NET WU

A network connection to Wayne State University is established and
network command mode is entered.

NET *W*

Network command mode is entered for the pseudodevice *W*.

306 NET MTS Command

MTS 1: The Michigan Terminal System

November 1991

PERMIT

MTS Command Description

Purpose: To allow other userIDs or groups of userIDs to access files belonging to the user
or to which the user has been given permit access.

Prototype: PERMIT filelist [access [accessor]]

PERMIT filelist LIKE filelist2 [EXCEPT access [accessor]]

filelist

“filelist” may be a single file name, a file-name pattern, or a parenthesized
list of either, each of which is to be permitted identically. List items must
be separated by blanks and/or commas.

access [accessor]

“access” specifies the access type to be allowed and “accessor” specifies who
is to have the access. Several access-accessor pairs may be specified in
the form

access [accessor] [,access [accessor]] ...

“access” may be a single access type or a parenthesized list of access types.
If not specified, READ is assumed. The six classes of access types are:

Category Name

Read READ
Write-expand WRITEXP, WE
Write-change and empty WRITCHG, WC, EMPTY
Truncate and renumber TRUNCATE, RENUMBER, RNU
Destroy and rename DESTROY, RENAME
Permit PERMIT

Names representing the combinations of different categories may also be
given:

Combination Name

Write-change and WRITE
write-expand
Read and write-change RWCHG
Read and write-expand RWEXP
Read, write-change, and RW
write-expand
Everything except permit FULL
Everything UNLIM
Default access DEFAULT

PERMIT MTS Command 307

MTS 1: The Michigan Terminal System

November 1991

No access NONE
Run only RUN
Edit only EDIT

The names given for each of the above categories and combinations are
equivalent.

“accessor” is a single item or parenthesized list of items specifying the
userIDs, project numbers, and program keys being given access to the file.
If not specified, OTHERS is assumed.

ALL Specifies all userIDs except the owner of the file. All
previous access information for this file is discarded.

ME Specifies the userID issuing the PERMIT command.
OTHERS Specifies all userIDs not otherwise explicitly

mentioned in the accessor information.
OWNER Specifies the owner of the file.
xxxx Specifies a specific userID.

CCID=xxxx Specifies a specific userID.
ID=xxxx Specifies a specific userID.
PROJECT=xxxx Specifies a projectID.
PKEY=key Specifies a program key.

A specific userID or projectID and a program key may be specified as

xxxx&PKEY=key
ID=xxxx&PKEY=key
PROJECT=xxxx&PKEY=key

filelist2

“filelist2” may be a single file name, a file-name pattern, or a parenthesized
list of either whose access information is to be copied to the file specified by
“filelist”. If “filelist2” is a list, the copying proceeds left to right.

All previous access to the files in “filelist” is removed before the new access
is applied. If the file being permitted has a different owner than the
LIKE-file, the owner of the LIKE-file is made an explicit sharer of the file
being permitted.

Program Key: *MTS.PERMIT

Description: For a general description of the PERMIT command and the meanings of the
various parameters, see “Shared Files” in the section “Files and Devices” in this
volume.

If “filelist” is a pattern, a set of files is permitted according to the access/accessor
specifications. If “filelist2” is a pattern, the LIKE-names are generated by
replacing each question mark in “filelist2” with the string matched by the
corresponding question mark in “filelist”. “filelist” must have at least as many
question marks as “filelist2”. For example

308 PERMIT MTS Command

MTS 1: The Michigan Terminal System

November 1991

PERMIT ?.NEW LIKE ?.S

is equivalent to

PERMIT A.NEW LIKE A.S
PERMIT B.NEW LIKE B.S

if ?.NEW matches A.NEW and B.NEW.

If only “?” is specified for “filelist”, a special confirmation request

Do you really want to permit ALL your files?

is printed. If the reply is OK, the files are permitted.

The user must have PERMIT access to the files.

Verification of the new file-access information is printed.

A file may be permitted from a program by calling the PERMIT subroutine (see
MTS Volume 3: System Subroutine Descriptions, Reference R1003).

Further information about the syntax of the PERMIT command and the use of
the PERMIT command with program keys is given in the section “Files and
Devices” in this volume.

Examples: PERMIT X

Read access is given to OTHERS for the file X.

PERMIT Y WRITE WABC

Write-change and write-expand access is given to the userID WABC for
the file Y.

PERMIT Z READ W?

Read access is given all userIDs that begin with the character W.

PERMIT (A,B,C) READ OTHERS

Read access is given to OTHERS for the files A, B, and C.

PERMIT X LIKE Y

The access list of file Y is applied to file X.

PERMIT DATA? RW WXYZ

Read-write access is given to the userID WXYZ for all files beginning with
the string DATA.

PERMIT MTS Command 309

MTS 1: The Michigan Terminal System

November 1991

PERMIT OBJ RUN OTHERS

Run-only access is given to OTHERS for the program in the file OBJ.

PERMIT TEXT EDIT ME

Edit-only access is given to the owner for the file TEXT. This prevents the
owner from inadvertently damaging the contents of the file.

310 PERMIT MTS Command

MTS 1: The Michigan Terminal System

November 1991

RELEASE

MTS Command Description

Purpose: To release a pseudodevice.

Prototype: RELEASE {*PRINT* | *PUNCH* | *BATCH* | *pdn*}

Program Key: *MTS.RELEASE

Description: If the parameter specifies *PRINT*, *PUNCH*, or *BATCH*, the associated job
is released to the system for processing. This is the same as if the command

CONTROL *...* RELEASE

were given.

If the parameter specifies a pseudodevice name (*pdn*) previously mounted by
the MOUNT command or the MOUNT subroutine, that device is dismounted.

Users should be aware that *PRINT*, *PUNCH*, *BATCH*, or *pdn* are never
actually released until all outstanding references to the parameter are
terminated; at that time, a message is printed indicating that the parameter has
been released. If no message is printed immediately following the RELEASE
command, the user still has an outstanding reference to the specified parameter
(e.g., a program is currently loaded which refers to the parameter). When all
outstanding references are finally terminated (e.g., by unloading the program),
the specified parameter is released and the message is printed.

Information about the currently active *...* jobs or pseudodevices may be
displayed by issuing the command

DISPLAY PDNS

Examples: RELEASE *PRINT*

PRINT is released.

RELEASE *TAPE*

The pseudodevice *TAPE* is released.

RELEASE MTS Command 311

MTS 1: The Michigan Terminal System

November 1991

RENAME

MTS Command Description

Purpose: To rename a file or a set of files.

Prototype: RENAME oldname [AS] newname [{OK | ALLOK | PROMPT}]

Program Key: *MTS.RENAME

Description: The “oldname” parameter specifies the file or the set of files to be renamed and
may be a single file name or a file-name pattern. The “newname” parameter
specifies the new names for the files being renamed.

If “oldname” is a pattern, a set of files are renamed. If “newname” is a pattern,
the new names are generated by replacing each question mark in “newname”
with the string matched by the corresponding question mark in “oldname”.
“oldname” must have at least as many question marks as “newname”.
“newname” must be a pattern if “oldname” matches more than one file. For
example,

RENAME ?.S ?.OLD

is equivalent to

RENAME A.S A.OLD
RENAME B.S B.OLD

if ?.S matches the files A.S and B.S.

If a single file name is specified, confirmation is requested in conversational
mode. If more than one file is specified, a single summary confirmation is
requested. If the reply is OK, then all the files specified are renamed;
otherwise, none are renamed. Confirmation is not requested in batch mode.

When only a single file name is specified, the OK option may be used to bypass
the confirmation request; the OK option is ignored if more than one file name is
specified. The ALLOK option may be used to bypass the confirmation request
when several files have been specified. The PROMPT option causes prompting
for confirmation for each individual file.

The response to a prompt for confirmation may be OK to rename the file, NO to
skip the file but continue with the next file in the list, or CANCEL to terminate
the command.

The user must have RENAME access to the file (or files) given by “oldname”, and
“newname” must specify a file belonging to either the same userID as “oldname”
or the current userID. If “newname” is a pattern, it must specify a group of files
belonging to the same userID as “oldname” or the current userID.

312 RENAME MTS Command

MTS 1: The Michigan Terminal System

November 1991

Permanent files may be renamed to temporary files, and temporary files may be
renamed to permanent files if the user’s file space allocation allows it.

A file or a set of files may be renamed from a program by calling the RENAME
subroutine (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

Examples: The following examples all assume that user WABC is signed on:

RENAME DATA1 AS NEWDATA1

The file DATA1 is renamed to NEWDATA1. The terminal user is
prompted for confirmation.

RENAME DATA2 NEWDATA2 OK

The file DATA2 is renamed to NEWDATA2. Confirmation is given on the
command.

RENAME DATA? NEWDATA? ALLOK

All files beginning with the string DATA are renamed to corresponding
files beginning with the string NEWDATA. Confirmation is given on the
command.

RENAME WDEF:PROG AS STATPROG

The file WDEF:PROG is renamed as STATPROG. In the process, the
owner of the file changes from WDEF to WABC. The command will fail if
WABC does not have sufficient disk space. After the command is
executed, WDEF will still have the same access as it previously had (by
default, UNLIMITED). WABC may subsequently change or remove that
access.

RENAME -DATA AS DATA

The file −DATA will be changed to a permanent file. The command will
fail if WABC does not have sufficient disk space.

RENAME MTS Command 313

MTS 1: The Michigan Terminal System

November 1991

RENUMBER

MTS Command Description

Purpose: To renumber a line file (or subset thereof).

Prototype: RENUMBER filelist [first [last [beg [inc]]]] [{ALLOK | PROMPT}]

RENUMBER filelist [[[first], last] [TO [beg], inc]]
[{ALLOK | PROMPT}]

filelist

“filelist” specifies the file or the set of files to be destroyed and may be a
single file name, a file-name pattern, or a parenthesized list of either.

first, last

“first” and “last” refer to the first and last line numbers in the range to be
renumbered. If omitted, “first” and “last” default to the actual first and
last line numbers in the file, respectively.

beg, inc

“beg” and “inc” refer to the new beginning line number and the increment
to be used in the renumbering. If omitted, “beg” and “inc” default to 1.

If a single file name is specified, no confirmation is requested. If more than one
file is specified, a single summary confirmation is requested. If the reply is OK,
then all the files specified are renumbered; otherwise, none are renumbered.
Confirmation is not requested in batch mode.

The ALLOK option may be used to bypass the confirmation request when
several files have been specified. The PROMPT option causes prompting for
confirmation for each individual file.

Program Key: *MTS.RENUMBE

Description: An error comment is produced if the file does not exist or renumber access is not
allowed. The renumbering is not attempted if the process would result in
duplicate line numbers or line numbers out of sequence in the file.

A file may be renumbered from a program by calling the subroutines RENUMB,
RETLNR, CNTLNR, or SETLNR (see MTS Volume 3: System Subroutine

Descriptions, Reference R1003).

314 RENUMBER MTS Command

MTS 1: The Michigan Terminal System

November 1991

Examples: RENU FILE1
RENU FILE1 *F,*L
RENU FILE1 *F *L 1
RENU FILE1 *F *L 1 1

In each of the above examples, the file FILE1 is renumbered starting at
line 1 and in increments of 1.

RENU DATA?

In the above example, all files beginning with the characters “DATA” are
renumbered.

RENUMBER MTS Command 315

MTS 1: The Michigan Terminal System

November 1991

RERUN

MTS Command Description

Purpose: To reissue the previous RUN command.

Prototype: RERUN [{ECHO | NOECHO}] [I/Ounits] [options]

{ECHO | NOECHO}

If ECHO is specified, the text of the reissued command is echoed on the
user’s sink file or device. ECHO is the default if *SOURCE* and
MSOURCE are the same (the default) or if the ECHO option of the SET
command is ON (the default).

[I/Ounits] [options]

Any of the parameters that are valid for the RUN command may be given.
If a logical I/O unit or another option is given without a right-hand side,
that unit or option setting is removed from the next invocation of the
program.

Program Key: *MTS.RUN valid for the RUN command.

Description: The previous RUN or RERUN command is reissued (as originally entered) with
any parameters specified on this invocation overriding the corresponding
parameters of the previous invocation. The previous program is unloaded (if
still loaded) and a new copy of the program is loaded.

Only the RUN and RERUN commands are used as the base for the RERUN
command; any invocations of the DEBUG, LOAD, RESTART, and START
commands are ignored.

The text of the last RUN or RERUN command may be displayed by issuing the
command

DISPLAY RERUN

Examples: If the command

RUN PROG INPUT=FILE1

is issued, then RERUN reruns the program PROG exactly as before. If the
command

RERUN PRINT=FILE2

is issued, then the program is rerun with the file FILE2 assigned to PRINT; this
is equivalent to entering the RUN command as

RUN PROG INPUT=FILE1 PRINT=FILE2

316 RERUN MTS Command

MTS 1: The Michigan Terminal System

November 1991

If the command

RERUN INPUT=FILE3

is subsequently issued, then the program is rerun with the file FILE3 assigned
to INPUT instead of the file FILE1; this is equivalent to entering the RUN
command as

RUN PROG INPUT=FILE3 PRINT=FILE2

If the command

RERUN PRINT=

is subsequently issued, then the program is rerun with the unit PRINT
unassigned; this is equivalent to issuing the command

RUN PROG INPUT=FILE3

RERUN MTS Command 317

MTS 1: The Michigan Terminal System

November 1991

RESTART

MTS Command Description

Purpose: To restart (or initiate) execution of a program following either initial loading, an
interrupt, or a subroutine call to ERROR, MTS, or MTSCMD.

Prototype: RESTART [[AT] location] [I/Ounits] [limits] [mapoptions]
[{EXECPKEY | PKEY}={key | OFF}]

The following parameters may be given:

[AT] location

“location” specifies the address at which execution is to begin. “location”
is a virtual memory location given by an optional local relocation factor
(RF) and a displacement in the form

[RF={hhhhhh | GRx}] xxxxxx

where “hhhhhh” is the hexadecimal value of a local relocation factor; GRx
indicates the general register whose contents are used as a local relocation
factor, and “xxxxxx” is the hexadecimal value of a displacement. The
displacement is added to the current value of the relocation factor to
provide an absolute virtual memory address. If a local relocation factor is
not specified, the global relocation factor is used. The global relocation
factor is initially zero, but may be changed by the RF option of the SET
command or by calling the subroutine CUINFO. Since this value replaces
the righthand 32 bits of the PSW, “location” specifies the instruction length
code, the condition code, and the program mask as well as the address.

If “location” is specified and the currently loaded program has a nondefault
program key that is not prefixed by the current userID, the program key
will be set to the default (for this invocation of the program only).

This command is invalid if the currently loaded program is a “run-only”
program.

I/Ounits

The user can reassign the logical I/O units. See the RUN command
description.

FORTRAN users are reminded that MTS logical I/O units 0 through 99 are
not necessarily the same as the FORTRAN logical I/O units 0 through 99.

limits

The user can respecify local limits for CPU time, pages printed, and cards
punched. If no limits are specified, the remaining amounts in any limits
specified on the previous RUN, RERUN, START, RESTART, LOAD, or

318 RESTART MTS Command

MTS 1: The Michigan Terminal System

November 1991

DEBUG commands are used. For a complete description of the use of
limits, see the RUN command description and the section “UserIDs,
Limits, and Sigfiles” in this volume.

MAP[=mapFDname] [NOMAP] [XREF] [UXREF]

The user can redesignate the destination of future loader maps with the
MAP parameter. This is useful if the program is loading other modules
dynamically by calling the subroutines LOAD, LINK, or XCTL. The
NOMAP parameter can be used to suppress the printing of all future
loader maps. See the RUN command description.

{EXECPKEY | PKEY}={key | OFF}

The EXECPKEY parameter “key” specifies an override program key to be
used instead of the program key associated with “program”. If OFF is
specified, the override specified by the EXECPKEY option of the SET
command is disabled. For further details on the use of program keys, see
the section “Files and Devices” in this volume.

Program Key: *MTS.RESTART

Description: The RESTART command restarts (or initiates) execution of the currently loaded
program. This, for example, may be a program loaded by the LOAD command,
a program that was interrupted during execution by a program or attention
interrupt, or a program that terminated by a call to ERROR, MTS, or MTSCMD.

A 32-bit value is computed from the “location” specification and replaces the
righthand 32 bits of the PSW. If “location” was omitted, the PSW remains
unaltered, and execution begins at the entry point for a program loaded by the
LOAD command, or the point of interruption for a program that was interrupted
by a program or attention interrupt; for a program that returned by a call to
ERROR, MTS, or MTSCMD, execution restarts at the point following the
subroutine call as if the subroutine had returned to the program.

If logical I/O units have been reassigned, the files and devices originally
assigned are released, and the newly assigned files and devices are attached.

Examples: RESTART PRINT=A

This restarts the currently loaded program with PRINT output reassigned
to the file A.

RES AT RF=820800 28000258

The program is restarted at location 820A58 with the condition code set to
2, fixed-point overflow interruption enabled, and the other program mask
interrupts disabled.

RESTART MTS Command 319

MTS 1: The Michigan Terminal System

November 1991

RUN

MTS Command Description

Purpose: To load and execute a program.

Prototype: RUN [program] [I/Ounits] [limits] [mapoptions]
[{EXECPKEY | PKEY}={key | OFF}] [PAR=parameters]

The following parameters may be given:

program

“program” specifies the file or device containing the program to be loaded.
If omitted, the program is loaded from *SOURCE*.

I/Ounits

The keyword parameters “I/Ounits” are the assignments of logical I/O
units to files or devices for use by the loaded program during execution.
The logical I/O unit assignments are used to select appropriate I/O
subroutines to be used by the loaded program for the input and output of
data. Where no specifications are stated, the following default
assignments occur:

SCARDS=*SOURCE*
GUSER=*MSOURCE*
SERCOM=*MSINK*
SPRINT=*SINK*
SPUNCH=*PUNCH* (batch mode if global card est. > 0)

Synonyms may be used for the following logical I/O unit names:

INPUT for SCARDS
PRINT for SPRINT
OBJECT for SPUNCH

The logical I/O units 0 through 99 have no default specifications. See the
section “Files and Devices” in this volume and the subroutine descriptions
for INPUT (SCARDS), PRINT (SPRINT), OBJECT (SPUNCH), SERCOM,
GUSER, READ, and WRITE in MTS Volume 3: System Subroutine

Descriptions, Reference R1003, for further details on the use of these
subroutines.

FORTRAN users are reminded that MTS logical I/O units 0 through 99 are
not necessarily the same as the FORTRAN logical I/O units 0 through 99.

limits

The keyword parameters “limits” specify local limits for CPU time, pages
printed, cards punched, and plot time. These can be given in the form:

320 RUN MTS Command

MTS 1: The Michigan Terminal System

November 1991

TIME={t | tS | tM}
PAGES=p
CARDS=c
{PLOTTIME | PT}={t | tM}

These local limits can be used in both batch and conversational mode and
are effective only for the execution of the program loaded by the RUN
command. For a complete description of the use of limits, see the section
“UserIDs, Limits, and Sigfiles” in this volume.

MAP[=mapFDname] [NOMAP] [XREF] [UXREF]

The MAP parameter specifies the file or device “mapFDname” on which
the loader is to write the loader map. If the MAP parameter is omitted, no
loader map is written. If the MAP parameter is given in the form of MAP,
“mapFDname” defaults to *SINK*. The NOMAP parameter suppresses
the printing of the loader map. NOMAP need be given only if a previous
MAP specification was made.

The XREF parameter specifies that a cross-reference listing of external
symbols occurring in the loaded programs is to be produced. If XREF is
given without the MAP parameter, MAP=*SINK* is assumed. The XREF
parameter implies the UXREF parameter. (See also the SET XREF
option.)

The UXREF parameter specifies that a cross-reference listing of undefined
external symbols occurring in the loaded programs is to be produced. If
UXREF is given without the MAP parameter, MAP=*SINK* is assumed.
(See also the SET UXREF option.)

{EXECPKEY | PKEY}={key | OFF}

The EXECPKEY parameter “key” specifies an override program key to be
used instead of the program key associated with “program”. If OFF is
specified, the override specified by the EXECPKEY option of the SET
command is disabled. For further details on the use of program keys, see
the section “Files and Devices” in this volume.

PAR=parameters

The PAR field specifies an arbitrary string of characters to be passed to the
loaded program on initiation of execution. This is usually a parameter
list for the program and its interpretation depends on the loaded program.
The PAR field must be the last parameter specified in the command. The
parameter list is terminated by the end of the command line. Note that
the parameter field always has a blank added after the last character and
the length count is incremented by one.

Program Key: *MTS.RUN

Description: The RUN command invokes the dynamic loader to load the object program into
virtual memory. If there are unresolved external symbol references after

RUN MTS Command 321

MTS 1: The Michigan Terminal System

November 1991

loading from “program”, loading continues from *LIBRARY (the system
library). Only those parts of *LIBRARY required to resolve the references are
loaded. If there are still unresolved external references, a fatal loading error
exists. In conversational mode, the loader prompts for more loader input; in
batch mode, an error comment is produced and the loading terminates
immediately. The search of the system library may be modified or suppressed
by the LIBR, LIBSRCH, or *LIBRARY options of the SET command. If SET
DEBUG=ON has been specified, SDS processes any symbol table information
associated with the loaded program. For a complete description of the loading
process, see the section “The Dynamic Loader” in MTS Volume 5: System

Services, Reference R1005.

If there are no fatal loading errors, control is transferred to the entry point of the
program by a standard subroutine call (the entry point address in GR15, the
return address in GR14, the save area location in GR13 and the parameter list
location in GR1).

The parameter string (specified by the PAR field) is passed as follows: GR1
contains the location of a fullword address constant which points to a region
containing a halfword count (halfword aligned) followed by an EBCDIC
character region (of byte-length specified by the count) containing the
parameter string. The leftmost bit of the address constant is 1.

If a file or device specified by “I/Ounits” is nonexistent or is not available, the
logical I/O unit referring to the unavailable file or device is set up such that the
first time the program being executed refers to the logical I/O unit, either the
user is given an opportunity to respecify the FDname (in conversational mode)
or execution is terminated (in batch mode).

If “program” has a nondefault program key that is not prefixed by the current
userID, the program key will be set to the default (for this invocation of the
program only) in any of the following cases:

(1) “program” includes explicit concatenation, line-number ranges,
and/or I/O FDname modifiers,

(2) a loading error that requires prompting for additional input occurs,
or

(3) the shared-file separator character has been set to something other
than a colon (:).

In addition, the effect of the LIBSRCH option will be ignored.

If “program” is a “run-only” program, the program key used by the system
during the loading process, normally *MTS.RUN, is changed to
*MTS.ETC.RUN in the following cases:

(1) “program” includes explicit concatenation, line-number ranges,
and/or I/O FDname modifiers,

(2) if implicit concatenation is encountered during the loading process,

322 RUN MTS Command

MTS 1: The Michigan Terminal System

November 1991

or

(3) the shared-file separator character has been set to something other
than a colon (:).

In addition, the effect of the LIBSRCH option will be ignored. And finally, if a
loading error occurs that requires prompting or additional input, the loading
process will be prematurely terminated.

If the program terminates execution by restoring the registers and returning to
MTS via GR14 or by calling the SYSTEM subroutine, the program is unloaded.

All storage, files, and devices used for this RUN command are automatically
released unless execution was not terminated normally (e.g., the program calls
the ERROR subroutine, or an attention or program interrupt has occurred).

If storage, files, and devices are not released, the user can use debug mode or the
DISPLAY, ALTER, and RESTART commands to debug or continue the
program.

The return code for the program is initially set to −1 (undefined) when execution
is started. If the program terminates execution by returning to MTS, the
return code is set to the contents of general register 15. If the program
terminates execution by calling the subroutine SYSTEM, the return code is set
to zero; if the program terminates by calling the subroutine ERROR, the return
code is set to 8.

Examples: RUN -LOAD

This loads and initiates execution of the program in the temporary file
−LOAD which could, for example, contain the object module from a
FORTRAN compilation.

RUN OBJPROG+*PLOTSYS MAP 5=INPUT 6=OUTPUT

This loads and initiates execution of the program in OBJPROG which
contains references to subroutines in *PLOTSYS. A load map is printed
on *SINK*. Logical I/O units 5 and 6 are specified for the input and
output of data to the program.

RUN *C87 T=2

This loads and initiates execution of the C87 compiler. A local time
estimate of 2 seconds is specified.

RUN *ASMH INPUT=SOU OBJECT=OBJ 2=MACROS PAR=TEST,ESD,RLD

This loads the 360/370 assembler *ASMH and initiates execution of the
assembler with source input from the file SOU and object module output to
the file OBJ. The macro library MACROS is attached to logical I/O unit 2.
The parameter string in the PAR field is passed to the assembler by the
RUN command.

RUN MTS Command 323

MTS 1: The Michigan Terminal System

November 1991

SDS

MTS Command Description

Purpose: To enter or return to debug mode.

Prototype: SDS [debug-command]

Program Key: *SDS

Description: Control is transferred to debug command mode. In debug mode, the user has
the facilities of the symbolic debugging system (SDS) at his disposal. For
further details, see MTS Volume 13: The Symbolic Debugging System,
Reference R1013.

If a debug command is specified with the SDS command, that debug command is
executed, and control is returned immediately to the caller (normally MTS
command mode).

If the currently loaded program has a nondefault program key that is not
prefixed by the current userID, the program key will be set to the default value
(for this invocation of the program only).

Examples: SDS

Control is transferred to debug mode.

SDS SET ERRORDUMP=ON

The automatic errordumping option of SDS is enabled; control is returned
to MTS command mode.

324 SDS MTS Command

MTS 1: The Michigan Terminal System

November 1991

SET

MTS Command Description

Purpose: To set MTS global options.

Prototype: SET option ...

Any number of the following options may be given in a single SET command.
The options must be separated by blanks; there must be no blanks within any
option.

Unless otherwise stated, the values set by these options are in effect only until
sign-off.

Almost all of the values set by these options may be interrogated by programs
via the GUINFO subroutine and may be changed by programs via the CUINFO
subroutine. See the subroutine description for GUINFO and CUINFO in MTS

Volume 3: System Subroutine Descriptions, Reference R1003, for details.

ADDRESS="line1;line2;..." Default: No address

Specify the campus mail address for delivered output (when
DELIVERY=MAIL is set). This option applies only to page-printer
output, not to line-printer or local-printer output.

AUTOHOLD={ON | OFF} Default: OFF

If the AUTOHOLD option is ON, any *PRINT*, *PUNCH*, or *BATCH*
job is automatically held without notice when it is first used (at the time
the receipt message is printed). If AUTOHOLD is OFF, the job is
automatically released when finished. This may be locally overridden by
the CONTROL command HOLD option.

CARDS=n Default: No limit

The CARDS option specifies a card limit for a punch job. It applies only to
jobs directed to *PUNCH* or user-defined pseudodevices with
TYPE=PUNCH.

CLASS=char Default: A

The CLASS option specifies a file class to associate with a job. If no file
class is assigned to a file, a class of A will be used; otherwise, CLASS is a
single letter from A to Z. If a class is assigned, *IMPORT* is restricted to
only reading jobs of the assigned class. This option applies only to
BITNET connections. For further information, see BITNET in MTS,
Reference R1039.

SET MTS Command 325

MTS 1: The Michigan Terminal System

November 1991

CMDSCAN={AMBIGUOUS | UNAMBIGUOUS}
Default: UNAMBIGUOUS

This option affects the MTS command recognition procedure. If the
CMDSCAN option is UNAMBIGUOUS, all abbreviations of MTS
command verbs are required to be unambiguous. Furthermore, all
command-verb text beyond the minimum required abbreviation to identify
the command must be a substring of the full command text (e.g, SYSSTAT
is not an acceptable abbreviation of SYSTEMSTATUS). If the user is in
conversational mode and if the SPELLCOR option is PROMPT or ON,
spelling correction of commands is attempted. If the CMDSCAN option is
AMBIGUOUS, the MTS command recognition procedure uses the
abbreviations given at the beginning of the section “MTS Command
Mode.”

Because a few MTS commands have popular abbreviations which,
although ambiguous, are harmless if erroneously specified, these
commands retain their minimum one-character abbreviations when
CMDSCAN is UNAMBIGUOUS. These commands are COPY, DISPLAY,
LIST, and RUN. In addition, SIG is recognized both as SIGNON and
SIGNOFF depending on the user’s signon status.

CMDSKIP={ON | OFF} Default: OFF

If the CMDSKIP option is ON, a page-skip is produced in batch
automatically after any command that may generate printed output
(LIST, COPY, RUN, etc.). If the CMDSKIP option is OFF, only a triple
space is produced. The CMDSKIP keyword is ignored in conversational
mode.

COMMENT="text" Default: No comment

The COMMENT option specifies a a comment to be printed on the head
sheet of the job.

CONTCHAR=character Default: −

The CONTCHAR option specifies a single character to be used as an
indicator for continuing an input line in MTS command mode on another
input line. The continuation character must be the last character of the
line to be continued.

COPIES=n Default: 1

The COPIES option specifies the default number of copies of printed
output for any *PRINT* job. This may be locally overridden for a given
job by the CONTROL command. This option is ignored for printed output
routed via the UMnet/Michnet Computer Network. The COPIES
keyword is ignored in batch mode.

326 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

COST={ON | OFF} Default: OFF

If the COST option is ON, the cost since the last cost was printed (not
necessarily the cost of the last command) and the total current cost of the
session are printed after every MTS command. These costs are
approximate and subject to roundoff; items which are not immediately
charged for, such as tape-drive time, are not included until the actual
charge is made. If COST is OFF, these costs are not printed.

CROUTE=station Default: CNTR

The CROUTE option specifies the default destination for *PUNCH*
output. The parameter “station” is the destination identification code to
which the output is being sent. This may be locally overridden for a given
job by the CONTROL command. The station specified may not be a
UMnet/Michnet Computer Network host. The default is CNTR except for
certain hardwired terminals located at remote batch stations equipped
with card punches. The CROUTE keyword is ignored in batch mode.

DEBUG={ON | OFF} Default: OFF

If DEBUG is ON, all programs loaded are processed by SDS for any symbol
table information associated with them. This allows debug mode
commands to refer to symbols in programs compiled with the TEST option.
Also, all programs run in execution mode are monitored by SDS and any
errors produce debug mode error comments.

DELIVERY={station | MAIL | NONE} Default: NONE

The DELIVERY option specifies destination for output delivered by
courier service. The parameter “station” is the destination identification
code for the station to which output is being sent. The default is NONE
which specifies that output is to remain at the station where it was
printed. If MAIL is specified, the output will be delivered by campus mail
or the US Postal Service. The DELIVERY keyword is ignored in batch
mode. The delivery schedule is given in the public file *DELIVERY.

DESTINATION=userid@node Default: None

The DESTINATION option specifies a BITNET destination, e.g.,
userID@site, proute@site, or croute@site. A destination must be specified
for all file transfers (from MTS) over BITNET. The destination specifies
where the file is to be sent. The “node” part is the remote machine name;
the “userid” part is the individual user on that machine.

The node name of UM-MTS is UMICHUM and UB-MTS is UMICHUB.
The “userid” under MTS is your MTS userID preceded by the word USER.
For example, if your MTS userID is ABCD, your “userid” for network
purposes would be USERABCD.

This option applies only to BITNET connections. For further
information, see BITNET in MTS, Reference R1039.

SET MTS Command 327

MTS 1: The Michigan Terminal System

November 1991

DISPATCHES={ON | OFF} Default: ON
DISPATCHES(filter)={ON | OFF}

The DISPATCHES option specifies whether dispatch messages may be
received. If the DISPATCHES option is OFF, dispatch messages are
refused (not printed on the terminal). If the DISPATCHES option is ON,
dispatch messages are printed immediately when received. See the
DISPATCH command in the section “The Message System” of MTS

Volume 23: Messaging and Conferencing in MTS, Reference R1023, for
details on sending dispatch messages.

The use of dispatch filters to selectively filter dispatches from various
types of users is also described in MTS Volume 23. The valid filters are
VIEW, LOCAL, NETWORK, USER, SYSTEM, and ALL.

EBM=characters
ETM=characters

The EBM and ETM options control the format of the “execution begins”
and “execution terminated” messages, respectively. “characters” consists
of from 0 to 7 characters selected from the following sets:

For EBM and ETM:

W means print the words “Execution begins”, “Execution
terminated”, or “Error return”.

H means print the time of day in the form HH:MM:SS.

For ETM only:

T means print the CPU time used to execute the program (does
not include the time to load the program).

R means print the return code produced by the program (subject
to the RCPRINT option).

$ means print the cost of executing the program (does not include
the cost of loading the program).

The defaults are

EBM=W ETM=WR (conversational mode)
EBM=WH ETM=WHTR$ (batch mode)

ECHO={ON | OFF} Default: ON

If the ECHO option is ON, MTS command lines are echoed to *SINK* if
SINK differs from *SOURCE* and to *MSINK* if *MSINK* differs from
both *SINK* and *SOURCE*. If ECHO is OFF, echoing is suppressed.

328 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

ENDFILE={ALWAYS | SOURCE | NEVER}
Default: SOURCE

If the ENDFILE option is ALWAYS, a $ENDFILE line is recognized as an
end-of-file whenever it is read; if ENDFILE is SOURCE, a $ENDFILE line
is recognized as an end-of-file only when read from *SOURCE* or
MSOURCE; if ENDFILE is NEVER, a $ENDFILE line is never
recognized as an end-of-file. This option may be overridden by the
@ENDFILE and @˜ENDFILE I/O FDname modifiers. The alternate form
for this command is ENDFILE={ON | OFF | NEVER}, where ON and OFF
are the same as ALWAYS and SOURCE, respectively.

ERRMAP={ON | OFF} Default: ON

If the ERRMAP option is ON, the loader map is printed if execution
terminates abnormally in batch mode and if a map has not already been
printed. If ERRMAP is OFF, the loader map is not printed. This option
has no effect in conversational mode.

ERRORDUMP={NOLIBRARY | OFF | LIBRARY}
Default: OFF

If the ERRORDUMP option is NOLIBRARY and execution terminates
abnormally in batch mode, a storage dump of the user’s loaded program is
given; if ERRORDUMP is LIBRARY, the storage dump includes any
library subroutines loaded; if ERRORDUMP is OFF, no dump is given.
NOLIBRARY is the same as LIBRARY if SYMTAB=OFF was specified
before the program was loaded. If a global time or page limit is exceeded
while producing a program dump, the dump is completed and the CPU
time and page costs are charged to the user’s account. This option has no
effect in conversational mode. Note that this is not the same as the
similar debug mode command which produces a symbolic dump. The
alternate form for this command is ERRORDUMP={ON | OFF | FULL}.
The ERRORDUMP keyword is ignored in conversational mode.

ERRORPROMPT={ON | OFF} Default: ON

If the ERRORPROMPT option is ON, the user is prompted for error
correction for invalid files, commands, and keyword parameters.

{EXECPFX | EXECPREFIX}=character Default: blank

The EXECPFX option specifies the default prefix character to be used for
executing programs.

EXECPKEY={key | OFF} Default: OFF

The EXECKEY option specifies the override program key to be used
instead of the program key associated with the program object file for all
subsequent program invocations. If EXECPKEY is OFF, an override
program key is not in effect. For further details on programs keys, see the
section “Files and Devices” in this volume.

SET MTS Command 329

MTS 1: The Michigan Terminal System

November 1991

FILE={filename | "file name"} Default: Blanks

The FILE option specifies a file name to associate with the job. If the file
name contains blanks or special characters, it must be enclosed in quotes.
For *IMPORT*, this option can be used to select from a number of
incoming jobs. This option applies only to BITNET connections. For
further information, see BITNET in MTS, Reference R1039.

FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
Default: LANDSCAPE

The FORMAT option specifies the format for page-printer output (see
Using the Xerox 9700 Page Printer, Reference R1038, for a complete
description and list of formats).

HELPMODE={LINE | DEFAULT | SCREEN}
Default: DEFAULT

The HELPMODE option specifies the format in which the user assistance
information is to be displayed. If LINE is specified, the information is
printed in line format. If SCREEN is specified, the information is printed
in full-screen format. If DEFAULT is specified, the information is printed
in full-screen format if the terminal supports full-screen output; otherwise,
the information is printed in line format.

IC={ON | OFF} Default: ON

If the IC option is ON, the line “$CONTINUE WITH” specifies implicit
concatenation; if IC is OFF, this line is treated as a data line. The IC
option can be overridden by the @IC modifier on I/O operations (see
Appendix A to the section “Files and Devices” in this volume).

INITFILE(command)={FDname | OFF} Default: OFF

The INITFILE option specifies a file to be read by the specified MTS
command processor (such as the EDIT or DEBUG command) when it is
initialized. “command” is the name of the command or any valid
abbreviation of the command. The file “FDname” may contain
initialization commands for the command processor to preset various
options. Any command may be included that is recognized by the
command processor. The initialization processing by a command
processor may be disabled by specifying INITFILE(command)=OFF.

JOBNAME={jobname | DEFAULT} Default: RMnnnnnn

The JOBNAME option specifies a job name of 1 to 8 alphanumeric
characters for all subsequent jobs sent to the printer. The first character
must be a letter. DEFAULT specifies the default format of “RM” plus six
digits.

330 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

LIBR={ON | OFF} Default: ON

The LIBR option interacts with the LIBSRCH and *LIBRARY options. If
LIBR is ON, all the library files specified by LIBSRCH, and the file
*LIBRARY and LCSYMBOL (the low-core symbol directory) specified by
the *LIBRARY option are searched for unresolved external symbols after a
program is loaded; if LIBR is OFF, this search is not made.

LIBSRCH={OFF | FDname} Default: OFF

The LIBSRCH option indicates that specific public or private libraries are
to be searched if there are unresolved symbols in a loaded program. This
option interacts with the LIBR and *LIBRARY options. If LIBR is OFF,
then the LIBSRCH option is ignored. If LIBR is ON, but LIBSRCH is
OFF, then only *LIBRARY (the system library) and LCSYMBOL (the
low-core symbol directory) are searched (if the *LIBRARY option is ON).
If LIBR is ON and LIBSRCH is not OFF, then LIBSRCH specifies a library
or concatenation of libraries to be searched. The libraries are searched in
the order specified in the option. After these libraries are searched,
*LIBRARY and LCSYMBOL are searched if there are still any unresolved
symbols (if the *LIBRARY option is ON). If the program being loaded has
a nondefault program key that is not prefixed by the current userID, the
program is loaded as if LIBSRCH were OFF.

MACROS={ON | OFF} Default: ON

If the MACROS option is ON, the MTS command extensions and macro
processor is enabled. If MACROS is OFF, the processor is not enabled.

MAILCALL={ON | OFF} Default: ON

The MAILCALL option specifies that conversational users will be notified
immediately when an MTS Message System message is received.

MAPDOTS={ON | OFF} Default: ON

If the MAPDOTS option is ON, the dotted lines which delimit the loader
map are printed whenever the loader map is printed. If MAPDOTS is
OFF, the dotted lines are not printed.

MARGIN={n.nn | NO} Default: See text

The MARGIN option sets the left margin for page-printer output to “n.nn”
inches. “n.nn” must be less than the current page width (8.5 for portrait
orientation, 11.0 for landscape). MARGIN=NO turns off the margin
override and resets the margins to the default for the current format (0.5
for PORTRAIT and 0.65 for LANDSCAPE).

NAME={name | 'name' | NONE}

The NAME option assigns an individual name to the current userID.
This is useful for routing mail messages to the current userID. See MTS

SET MTS Command 331

MTS 1: The Michigan Terminal System

November 1991

Volume 23: Messaging and Conferencing in MTS, Reference R1023, for
further details.

NAMELIB={FDname | OFF}

The NAMELIB option specifies a name-library to be used with the MTS
Message System. This is useful for sending messages to group names.
See MTS Volume 23: Messaging and Conferencing in MTS, Reference
R1023, for further details.

{NEWFILEACCESS | NFA}={'string' | "string" | OFF}
Default: OFF

The NEWFILEACCESS option specifies the permit access to be given to all
permanent files created by the CREATE command. The access string
may be any access/accessor pair that is valid for the PERMIT command.
If the NEWFILEACCESS option is OFF, only the access UNLIM OWNER
is given.

NUMBER={(b,l,c) | NO} Default: NO

NUMBER=(b,l,c) numbers page-printer output pages automatically,
starting with number “b”, printing the number on line “l”, ending in
column “c”. NUMBER=NO (the default) disables automatic
page-numbering. The page number is always printed in the first font of
the current format or FONTLIST specification.

OVERLAY={NONE | SHADED | LINED} Default: NONE

The OVERLAY option specifies an overlay for page-printer output (see
Using the Xerox 9700 Page Printer, Reference R1038, for a complete
description of overlay options).

PAGES=n Default: No limit

The PAGES option specifies a page limit for a print job. It applies only to
jobs directed to *PRINT* or user-defined pseudodevices with
TYPE=PRINT.

PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
Default: PLAIN

The PAPER option specifies the output form to be used for the page
printer. PLAIN specifies unpunched (plain) paper; 3HOLE specifies
3-hole punched paper; LABEL24 and LABEL33 specify 24-up and 33-up
label stock, respectively. The obsolete ANY option is synonymous with
PLAIN.

PARFIELDCASE={UC | MC} Default: UC

If the PARFIELDCASE option is UC, the PAR field of the RUN command
that is passed to programs is mapped to uppercase before program

332 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

execution begins. If this option is MC (mixed case), the PAR field is not
changed.

PDMAP={ON | OFF} Default: OFF

If the PDMAP option is ON, the predefined symbol section of the loader
map is printed whenever the loader map is printed. If PDMAP is OFF,
this section is not printed.

{PFX | PREFIX}={ON | OFF} Default: ON

If the PFX option is ON, the prefix character is printed at the front of each
input or output line at the user’s terminal. If PFX is OFF, the printing of
the prefix character is suppressed. The terminal prefix character
indicates which programs are communicating with the user. The prefix
character is not printed in batch mode.

PRINT={T3 | TN} Default: T3

The PRINT option specifies the default line printer character set to be used
for *PRINT* output, either the T3 or TN character set. See Appendix G to
“Files and Devices” in this volume for further information. This option
may be locally overridden by the CONTROL command. This option is
ignored for printed output routed via the UMnet/Michnet Computer
Network. The PRINT keyword is ignored in batch mode.

PRINTER={PAGE | LINE} Default: PAGE

The PRINTER option specifies the type of printer to be used for printed
output. PAGE specifies the Xerox 9700 page printer. LINE specifies the
standard line printer which is available only at the Computing Center
batch station.

PRMAP={ON | OFF} Default: OFF

If the PRMAP option is ON, the pseudoregister section of the loader map is
printed whenever the loader map is printed. If PRMAP is OFF, this
section is not printed.

PROJECTPWCHANGE={ON | OFF} Default: ON

The PROJECTPWCHANGE option specifies whether the project director
may change the password of the userID via the Accounting Management
system. If this option is ON, the password may be changed. This option
only needs to be set once (not in each session) and may only be used by
nonstudent userIDs (userIDs not beginning with a digit).

PROUTE=station Default: CNTR

The PROUTE option specifies the default destination for *PRINT* output.
The parameter “station” is the destination identification code to which the
output is being sent. This may be locally overridden by the CONTROL

SET MTS Command 333

MTS 1: The Michigan Terminal System

November 1991

command. The station specified may not be a UMnet/Michnet Computer
Network host. The default is CNTR except for certain hardwired
terminals located at remote batch stations. The PROUTE keyword is
ignored in batch mode.

{PW | PASSWORD}

The PW option specifies a new password to be used for the user’s account.
Terminal users will be prompted for the new password and confirmation.
Batch users may enter the new password and confirmation on the next
line. See the section “UserIDs, Limits, and Sigfiles” for details.

RCPRINT={NEVER | OFF | POSITIVE | NONZERO |
NONNEGATIVE | ALWAYS | ON}

The RCPRINT option controls the printing of the user program return
code. The return code is set to the contents of general register 15 at the
time of program termination. If the R appears in the ETM option, the
return code is printed as follows:

NEVER or OFF means never print the return code
POSITIVE means print if >0 and <256
NONZERO means print if ≠ 0
NONNEGATIVE means print if ≥0 and <256
ALWAYS or ON means always print the return code

The default is POSITIVE for conversational mode and NONNEGATIVE
for batch mode.

RF={hhhhhh | GRx} Default: 000000

The RF option sets a global relocation factor which is used in the
DISPLAY, ALTER, and RESTART commands. “hhhhhh” is a
hexadecimal constant to be used as the global relocation factor; GRx
specifies a register whose contents are to be used as the relocation factor.
The relocation factor is set to zero initially. If GRx is specified, the
current contents of that register at the time of the SET command is used as
the relocation factor.

ROUTE=station Default: CNTR

The ROUTE option specifies the default destination for *PRINT* or
PUNCH output. The parameter “station” is the destination
identification code to which the output is being sent. This may be
overridden by the CONTROL command. This option is equivalent to
specifying both the CROUTE and PROUTE options. The station specified
may not be a UMnet/Michnet Computer Network host. The default is
CNTR except for certain hardwired terminals located at remote batch
stations. The ROUTE keyword is ignored in batch mode.

334 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

SEPCOPY={YES | NO} Default: NO

Specify whether each copy will have separate head and tail sheets (YES) or
whether all copies will be printed together as one job with a single head
and tail sheet (NO). The option is only effective for page-printer output
and if COPIES=n is specified. If each copy is more than 50 pages, then
SEPCOPY=YES is forced.

SEQFCHK={ON | OFF} Default: ON

Normally, an attempted indexed operation on a sequential file or an
attempted sequential operation starting at other than line 1 on a
sequential file causes an error condition and an error message to be
printed. If SEQFCHK is OFF, the message is not issued and the
operation is performed as if not indexed.

SHIFT={YES | NO} Default: NO

The SHIFT option specifies whether page-printer output is shifted away
from the binding edge.

SHOWNAME={ON | OFF} Default: ON

The SHOWNAME option specifies whether the user’s name is printed on
the header sheet for batch jobs.

SIGFILE={OFF | FDname} Default: OFF

The SIGFILE option specifies a file as the special signon file to be used as
an implicit SOURCE file each time the user signs on. The user may, for
example, place commands in this file to set various global options. The
total number of characters in the sigfile name is limited to 50. If SIGFILE
is set to OFF, the file or device still exists, but is not used as a sigfile. The
setting of SIGFILE affects only subsequent signons. For further details,
see the section “UserIDs, Limits, and Sigfiles” in this volume.

SIGFILEATTN={ON | OFF} Default: ON

If the SIGFILEATTN option is ON, an attention interrupt during the “last
signon” message or while the sigfile is being processed, interrupts the
processing and resets *SOURCE* to *MSOURCE*. If SIGFILEATTN is
OFF, attention interrupts are stacked, but not taken, during the sigfile
processing. There is one exception: if the sigfile runs a program which
calls the subroutine ATTNTRP, the attention is taken at that point and
given to the program. If the sigfile cannot be processed and
SIGFILEATTN is OFF, the signon is not allowed. The setting of
SIGFILEATTN affects only subsequent signons. For further details, see
the section “UserIDs, Limits, and Sigfiles” in this volume.

SET MTS Command 335

MTS 1: The Michigan Terminal System

November 1991

SPELLCOR={OFF | PROMPT | ON} Default: PROMPT

If the SPELLCOR option is PROMPT, conversational users are prompted
for corrections to some errors detected in MTS command parameters; the
corrected form presumed by MTS is printed and the user is prompted for
confirmation to the correction. If SPELLCOR is ON, the assumed correct
form to an error is used without prompting for both batch and
conversational mode (a statement of what was assumed is printed). If
SPELLCOR is OFF, no correction is performed. For batch users,
PROMPT and OFF are equivalent.

SRVREPLY={ON | OFF} Default: OFF

If the SRVREPLY option is ON, a server can function in interactive mode.
If the SRVREPLY option is OFF, the server may function only in batch
mode (users may not reply to queries by the server). This option is useful
only for server programs.

SYMTAB={ON | OFF} Default: ON

If the SYMTAB option is ON, the loader symbol table is retained whenever
a program has been loaded. This allows external symbols used in a
program to be used by MTS and other user programs; if SYMTAB is OFF,
the loader symbol table is not retained.

TDR={ON | OFF} Default: OFF

If the TDR option is ON, MTS prints on *SINK* after each MTS command
the number of page-in operations performed since the last time they were
printed. This allows a user to easily obtain a timing estimate for the
execution of a program.

TERSE={ON | OFF} Default: OFF

If the TERSE option is ON, many informational and error messages from
MTS are suppressed or abbreviated. If TERSE if OFF, all messages are
given in full. BRIEF is a synonym for TERSE; VERBOSE is an antonym
for TERSE.

TIME={t | tS | tM | OFF} Default: OFF

The TIME option specifies the default local CPU time limit to be used for
all RUN, RERUN, START, RESTART, LOAD, or DEBUG commands that
do not have an explicit local time limit or that are not continuing execution
with a remaining local time limit. If given in the form “t” or “tS”, the time
limit is in seconds; if given in the form “tM”, the time limit is in minutes.
The maximum value that can be specified is 27000 seconds. If OFF is
specified, the local time limit will be disabled.

336 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

TRIM={ON | OFF} Default: OFF

If the TRIM option is ON, lines read or written to files (either line or
sequential) are trimmed (trailing blanks are removed). If TRIM is OFF,
the lines are not trimmed. The TRIM option can be overridden by the
@TRIM modifier on I/O operations (see Appendix A to the section “Files
and Devices” in this volume).

TWOSIDED={YES | NO} Default: YES

The TWOSIDED option specifies printing on one or both sides of the paper
for page-printer output.

USMSG={ON | OFF} Default: ON

If the USMSG option is ON, any undefined symbols that occur during the
loading process are noted and the user is prompted for additional input.
If USMSG is OFF, the error message is suppressed and the user is not
prompted for more input. This is equivalent to providing an NCA (no
care) load record for the undefined symbols.

UXREF={ON | OFF}

If the UXREF option is ON, all references to undefined symbols are printed
whenever a program is loaded. This is the same as the UXREF option on
the RUN command. If UXREF is OFF, these symbols are not printed.
The default is ON for batch mode and OFF for conversational mode.

VERSION(command)={NEW | OLD | CURRENT}
Default: CURRENT

The VERSION option may be used to invoke a different version of an MTS
command. “command” may be any MTS command or its abbreviation,
which may be optionally preceded by a dollar sign. This feature is
normally used to phase in new versions of MTS commands. CURRENT
refers to the standard, default version of a command; NEW and OLD refer
to new and old versions of the commands. Most MTS command will not
have new or old versions; a warning message will be issued to that effect if
such a version is requested.

XREF={ON | OFF} Default: OFF

If the XREF option is ON, a loader cross-reference listing is printed
whenever a program is loaded. This is the same as the XREF option on
the RUN command. If XREF is OFF, the cross-reference listing is not
printed.

*LIBRARY={ON | OFF} Default: ON

If the *LIBRARY option is ON, the file *LIBRARY is searched for any
unresolved external symbols after a program is loaded (if the LIBR option
is ON). If *LIBRARY is OFF (or if LIBR is OFF), this search is not made.

SET MTS Command 337

MTS 1: The Michigan Terminal System

November 1991

Program Key: *MTS.SET

Examples: SET IC=OFF ENDFILE=OFF

This example forces the lines “$CONTINUE WITH” and “$ENDFILE” to
be interpreted as data lines rather than implicit concatenation or
end-of-file indicators.

SET PRINTER=PAGE

This example specifies that all output is to be printed on the page printer.

CREATE SFYLE
COPY *SOURCE* SFYLE
SET COST=ON AUTOHOLD=ON ERRORDUMP=ON
$ENDFILE
SET SIGFILE=SFYLE

This example creates a file SFYLE to be used as a signon file. This signon
file contains a SET command to set the COST, AUTOHOLD, and
ERRORDUMP options to ON. Each time the user signs on, this file is
invoked causing the specified options to be set.

338 SET MTS Command

MTS 1: The Michigan Terminal System

November 1991

SIGNOFF

MTS Command Description

Purpose: To notify the system that the current job is finished.

Prototype: SIGNOFF [{SHORT | $ | LONG}]

In conversational mode, an abbreviated form of the signoff statistics is
produced when the SHORT option is given; if $ is specified, only the time
and date of the user’s signoff, the approximate cost of the session, and the
user’s remaining balance of funds are printed. In batch mode, the
parameter is ignored and the long form is always printed.

Program Key: *MTS.SIGNOFF

Description: The user is signed off the system. All storage acquired and devices attached
are released, and all files are closed (temporary files are destroyed). A
summary of the job statistics is printed at the end of the job. A list of the
statistics produced is given in the section “Batch Use of MTS” in this volume.

If the abbreviation SIG is used, its meaning is taken in context: if the user is not
signed on, SIG means SIGNON; if the user is signed on, SIG means SIGNOFF.

SIGNOFF MTS Command 339

MTS 1: The Michigan Terminal System

November 1991

SIGNON

MTS Command Description

Purpose: To identify a user to the system.

Prototype: SIGNON {userid | *} [option ...] ['comment']

Only the “userid” parameter giving the user’s ITD identification number
(userID) or “*” specifying the current userID (for *BATCH* jobs) is required.
The other legal option parameters that may be given are:

{NOMESSAGES | NOMSGS}

The NOMESSAGES option specifies that the user’s mailbox will not be
checked for incoming messages and no message notification will be
printed. The default is that the mailbox is checked.

{PLOTTIME | PT}={t | tM} Default: None

The PLOTTIME option gives the maximum plot time in “t” seconds or “tM”
minutes allowed for any plotting associated with this job. If no plot time
limit is specified, the plot time allowed is unrestricted. If a plot time is
specified and is exceeded, no plot is generated and the user is signed off
immediately (if batch mode).

QUICK

The QUICK option is a combination of the SHORT and NOMSG options.
A condensed signon message will be printed and the mailbox will not be
checked for incoming incoming messages and no message notification will
be printed.

{SHORT | LONG} Default: LONG

The SHORT option specifies that a condensed signon message is to be
printed giving only the userID and current signon date and time, and the
signon date and time of the previous sign-on. The job-type, rate period,
and billing class are omitted. If LONG is specified, the full form of the
signon message is printed. SHORT is effective only in conversational
mode. In addition, the SHORT parameter bypasses the printing of the
“Enter password.” message and prompts the user for the password with a
question mark (?).

SIGFILE={ON | OFF} Default: ON

If SIGFILE=OFF is specified on the SIGNON command, user and project
sigfile processing will be suppressed if possible. If the SIGFILEATTN
option has been set to OFF, user sigfile processing cannot be suppressed.
If the project SFATTN option has been set to OFF, project sigfile
processing cannot be suppressed.

340 SIGNON MTS Command

MTS 1: The Michigan Terminal System

November 1991

TIME={t | tS | tM} Default: 3S

The TIME option specifies the global CPU time limit for the job. If given
in the form of the number “t” or “tS”, the time limit is in seconds; if given in
the form “tM”, the time limit is in minutes. If the TIME option is not
specified, a default time limit of 3 seconds is enforced for batch jobs or
enough time to expend the remainder of the user’s funds for a terminal job.
The maximum value that can be specified is 27962 seconds.

'comment'

The comment field is used to enter a comment on the SIGNON command
line and the front of the printed output (for batch). This may be used to
specify the user’s name, project, etc. The comment must be enclosed in
primes. Any primes internal to the comment field must be doubled.
Other parameters may appear after the comment field only if it is properly
terminated with a prime.

The following options are effective in batch mode only (they are ignored in
conversational mode).

ADDRESS="line1;line2;..." Default: No address

Specify the campus mail address for delivered output (when
DELIVERY=MAIL is set). This option applies only to page-printer
output, not to line-printer or local-printer output.

CARDS=c Default: 0

The CARDS option specifies the global punched card limit for the job. If
the CARDS option is not specified, a default card limit of 0 is enforced and
PUNCH is undefined. The maximum value that can be specified is
99999 cards.

COPIES=n Default: 1

The COPIES option specifies the number of printed copies of the output to
be produced. If the COPIES option is not specified, one copy of the output
is printed. This option is ignored for printed output routed via the
UMnet/Michnet Computer Network.

DELIVERY={station | MAIL | NONE} Default: NONE

The DELIVERY option specifies destination for output delivered by
courier service. The parameter “station” is the destination identification
code for the station to which output is being sent. The default is NONE
which specifies that output is to remain at the station where it was
printed. If MAIL is specified, the output will be delivered by campus mail
or the US Postal Service. The delivery schedule is given in the public file
*DELIVERY.

SIGNON MTS Command 341

MTS 1: The Michigan Terminal System

November 1991

FORMAT={LANDSCAPE | PORTRAIT | TWOUP | format-name}
Default: LANDSCAPE

The FORMAT option specifies format for page-printer output (see Using

the Xerox 9700 Page Printer, Reference R1038, for a complete description
and list of formats).

JOBNAME={jobname | DEFAULT} Default: RMnnnnnn

The JOBNAME option assigns a job name of 1 to 8 alphanumeric
characters to the current job. The first character must be a letter.
DEFAULT specifies the default format of “RM” plus six digits.

{LANDSCAPE | PORTRAIT | TWOUP} Default: LANDSCAPE

These options specify the orientation of page-printer output (synonymous
with FORMAT for the corresponding values).

MARGIN={n.nn | NO} Default: See text

The MARGIN option sets the left margin for page-printer output to “n.nn”
inches. “n.nn” must be less than the current page width (8.5 for portrait
orientation, 11.0 for landscape). MARGIN=NO resets the margins to the
default for the current format (0.5 for PORTRAIT and 0.65 for
LANDSCAPE).

{ONESIDED | TWOSIDED} Default: TWOSIDED

The ONESIDED option specifies that page-printer output will be printed
on one side only. TWOSIDED specifies that output will be printed on both
sides.

OVERLAY={NONE | SHADED | LINED} Default: NONE

The OVERLAY option specifies an overlay for page-printer output (see
Using the Xerox 9700 Page Printer, Reference R1038, for a complete
description of overlay options).

PAGES=p Default: 50

The PAGES option specifies the global printed page limit for a single copy
of the job. If the PAGES option is not specified, a default page limit of 50
pages is enforced. The maximum value that can be specified is 99999
pages.

PAPER={PLAIN | 3HOLE | LABEL24 | LABEL33}
Default: PLAIN

The PAPER option specifies the paper type to be used for page-printer
output. PLAIN specifies unpunched (plain) paper; 3HOLE specifies
3-hole punched paper; LABEL24 and LABEL33 specify 24-up and 33-up
label stock, respectively. The obsolete ANY option is synonymous with

342 SIGNON MTS Command

MTS 1: The Michigan Terminal System

November 1991

PLAIN.

PRINT={T3 | TN} Default: T3

The PRINT option specifies the line-printer character set to be used for
printing the job, either the T3 or TN character set. See Appendix G to
“Files and Devices” in this volume for further information. This option is
ignored for printed output routed via the UMnet/Michnet Computer
Network.

PRINTER={PAGE | LINE} Default: PAGE

The PRINTER option specifies the type of printer to be used for printed
output. PAGE specifies the Xerox 9700 page printer. LINE specifies the
standard line printer which is available only at the Computing Center
batch station.

RATEGROUP={NORMAL | LOW | DEFERRED | MINIMUM}

The RATE option specifies the rates at which the job is to be charged.
NORMAL-rate jobs are eligible for immediate execution. LOW-rate jobs
are automatically held until the next low-, deferred-, or minimum-rate
period occurs. DEFERRED-rate jobs are automatically held until the
next deferred- or minimum-rate period occurs. MINIMUM-rate jobs are
automatically held until the next minimum-rate period occurs. Details
on the assignment of rates and the schedule of rate periods is given in the
section “Batch Use of MTS” in this volume. PRIORITY is a synonym for
RATEGROUP.

RERUN={YES | NO} Default: YES

The RERUN option controls the number of times a job may be rerun. If
RERUN=NO is specified, the job will not be allowed to be executed more
than once. Thus, if the system crashes or the job must be rerun for any
reason (such as the lack of tape-drive availability), the job will be aborted.
No output listing will be produced for the aborted job. The default is
RERUN=YES, in which case the job may be rerun from the start.

ROUTE=station
PROUTE=station
CROUTE=station

These options specify the destination for printed and punched output.
PROUTE and CROUTE specify only printed or punched output,
respectively; ROUTE specifies both. The parameter “station” is the
destination identification code for the station to which the output is being
sent. If these options are not specified, the output is returned to the
station where the job originated, except if that station has no card punch,
then punched output is routed to CNTR. If “station” is CNTR or LOCAL,
the appropriate output is routed to the Computing Center. These options
may be used to route printed and punched output to stations at Wayne
State University (see the section “UMnet/Michnet Computer Network

SIGNON MTS Command 343

MTS 1: The Michigan Terminal System

November 1991

Batch” in this volume).

SEPCOPY={YES | NO} Default: NO

Specify whether each copy will have separate head and tail sheets (YES) or
whether all copies will be printed together as one job with a single head
and tail sheet (NO). The option is only effective for page-printer output
and if COPIES=n is specified. If each copy is more than 50 pages, then
SEPCOPY=YES is forced.

SHIFT={YES | NO} Default: NO

The SHIFT option specifies whether page-printer output is shifted away
from the binding edge.

TAPES=n Default: 0

The TAPES option specifies the number of tape drives required at any one
time. Although this is not absolutely necessary, it is highly recommended
as it will improve that chances that tape drives are available when your job
starts executing.

TWOSIDED={YES | NO} Default: YES

The TWOSIDED option specifies printing on one or both sides of the paper
for page-printer output.

WAITUNTIL='time and/or date'

If the WAIT option is given, the batch job will not be executed before the
specified time. If a date alone is given, the time is assumed to be 00:00 on
the morning of that date. If a time alone is given, the current date is
assumed provided that the time is later in the day; otherwise the next day
is assumed.

The time should be given as a 24-hour time (hh:mm) with a limit of
resolution in minutes, e.g., '13:00'. The date should be given as a month
spelled out, followed by the day, followed by an optional year separated by
a comma, e.g., 'January 3, 1983' or 'July 10'. If the year is omitted, it will
be assumed to be the first future occurrence of the specified date. The
time must precede the date if both are given, e.g., '8:00 August 30, 1983'.

Note that the system only guarantees that the job will not be run before the
specified time and date. No guarantee is made about the exact time the
job will execute. The job will execute at the first opportunity after the
specified time (subject to the usual limits of execution time limit requested,
system availability and load, and the time of job submission).

Program Key: *MTS.SIGNON

Description: The SIGNON command identifies the user to the system (signs him on), and in
the case of batch jobs, establishes certain constraints for the job. The SIGNON

344 SIGNON MTS Command

MTS 1: The Michigan Terminal System

November 1991

command must be the first command of the user’s job.

For batch jobs, the system expects to find the password starting in column 1 on
the card following the SIGNON card.

For terminal jobs, the system prompts for the password. Conversational users
are given three attempts to enter a valid userID and password before being
disconnected. If an end-of-file is given while the user is being prompted for the
password, the signon will be aborted immediately.

If errors are detected while processing the options on the SIGNON command,
the signon will be aborted immediately if in batch mode.

A user may be signed on more than once at any one time for any given userID, if
the userID was so authorized when it was created or by the project director
using accounting mode.

If the abbreviation SIG is used, its meaning is taken in context: if the user is not
signed on, SIG means SIGNON; if the user is signed on, SIG means SIGNOFF.

The user may designate a signon file (sigfile) which is used as an implicit
SOURCE file after the user signs on. For the complete details of using sigfiles,
see the section “UserIDs, Limits, and Sigfiles” in this volume.

Examples: SIGNON 2AGA 'JOHN Q. DOE'

The user with userID 2AGA is signed on to the system. All global limits
and output specifications are defaulted.

SIG 2AGA T=1M P=100 C=50 'JOHN Q. DOE'

The user with userID 2AGA is signed on to the system. The global limits
are 1 minute of CPU time, 100 pages of printed output, and 50 punched
cards.

SIGNON MTS Command 345

MTS 1: The Michigan Terminal System

November 1991

SINK

MTS Command Description

Purpose: To change the destination or “sink” for normal output lines.

Prototype: SINK {FDname | PREVIOUS}

One of the two following parameters must be given:

FDname

The name of the file or device that is to become the current sink of output
lines.

PREVIOUS

The PREVIOUS parameter specifies that the previous sink is to be
restored as the current sink.

Program Key: *MTS.SINK

Description: When the SINK command is given, the pseudodevice *SINK* is reassigned to
the file or device specified. Output which defaults to *SINK* is written on that
file or device. The master sink *MSINK* remains as the terminal in
conversational mode or the printer in batch mode. Initially, *SINK* has the
same assignment as *MSINK*.

In conversational mode, error messages requiring user interaction are directed
to *MSINK*.

An attention interrupt reverts *SINK* to *MSINK*.

A one-level pushdown list of sink devices is maintained. The PREVIOUS
parameter uses this pushdown list to restore the previous sink device.

The current status of *SINK* and the previous sink file or device (if any) may be
displayed by issuing the command DISPLAY *SINK*.

Example: SINK A

The file A becomes the current sink for output lines.

346 SINK MTS Command

MTS 1: The Michigan Terminal System

November 1991

SOURCE

MTS Command Description

Purpose: To change the source of input lines.

Prototype: SOURCE {FDname | PREVIOUS}

One of the two following parameters must be given:

FDname

The name of the file or device that is to become the current source of input
lines.

PREVIOUS

The PREVIOUS parameter specifies that the previous source is to be
restored as the current source.

Program Key: *MTS.SOURCE

Description: When the SOURCE command is given, the pseudodevice *SOURCE* is
reassigned to the file or device specified. The next input line in MTS command
mode is read from that file or device. Input that defaults to *SOURCE* is read
from this file or device. The master source *MSOURCE* remains as the
terminal in conversational mode or the card reader in batch mode. Initially,
SOURCE has the same assignment as *MSOURCE*.

In conversational mode, responses to error messages requiring user interaction
are read from *MSOURCE*.

An attention interrupt, an end-of-file condition on *SOURCE* when trying to
read an MTS command, or an invalid MTS command reverts *SOURCE* to
MSOURCE.

A one-level pushdown list of source devices is maintained. The PREVIOUS
parameter uses this pushdown list to restore the previous source device.

The current status of *SOURCE* and the previous source file or device (if any)
may be displayed by issuing the command DISPLAY *SOURCE*.

Example: SOURCE A

The file A becomes the current source for input lines.

SOURCE MTS Command 347

MTS 1: The Michigan Terminal System

November 1991

START

MTS Command Description

Purpose: To restart (or initiate) execution of a program following either initial loading, an
interrupt, or a subroutine call to ERROR, MTS, or MTSCMD.

This command is identical to the RESTART command.

Program Key: *MTS.START

348 START MTS Command

MTS 1: The Michigan Terminal System

November 1991

SYSTEMSTATUS

MTS Command Description

Purpose: To provide information about the status of jobs and other various aspects of the
system operation.

Prototype: SYSTEMSTATUS [systemstatus-command]

systemstatus-command

“systemstatus-command” is any single systemstatus command. The
systemstatus command is executed and an immediate return is made to
MTS command mode. If “systemstatus-command” is omitted,
systemstatus mode is entered.

Program Key: *SYSTEMSTATU

Description: Systemstatus mode provides status information about various aspects of the
system. This information includes the status of individual jobs, the current
system load, the current tape-mount queue, and the current batch execution,
print, and punch queues.

If “systemstatus-command” is omitted, systemstatus mode is entered. In
systemstatus mode, all input lines are treated as systemstatus commands until
either an end-of-file, MTS, MCMD, RETURN, or STOP command is entered.
In addition, any input line beginning with a dollar sign ($) is treated as an MTS
command.

Commands: Any of the systemstatus commands described below may be used either as a
single parameter on the SYSTEMSTATUS command or directly in
systemstatus mode.

DELAY T=n

The DELAY command causes a “n”-second real-time delay before the next
command is processed.

DISPLAY location[+disp[+disp...]] [count]

The DISPLAY command displays a block of virtual memory beginning at
the address specified by “location”. The number of words in the block is
specified by “count”. “location” must be a valid hexadecimal address.
“count” must be a decimal integer; if omitted, the default is 1. Optional
hexadecimal displacements may be added to “location” in specifying the
beginning address of the block. If the currently loaded program is a
“run-only program”, then user and system storage may not be displayed.

SYSTEMSTATUS MTS Command 349

MTS 1: The Michigan Terminal System

November 1991

LOAD [job]

If “job” is omitted, various information about the total system operation is
displayed at 20-second intervals. The information included is as follows:

DT (delta time) is the actual time between successive intervals of
output (nominally 20 seconds).

EXQ (execution queue) is the number of batch jobs waiting to
execute.

PRT (print queue) is the number of jobs waiting to print.
PCH (punch queue) is the number of jobs waiting to punch.
BP (batch preferred) is the desired number of batch jobs the system

would prefer to execute under the current system load. An
asterisk (*) following this number indicates that the system is
currently overloaded.

AB (actual batch) is the number of batch jobs currently executing.
BPH (batch per hour) is the approximate batch throughput rate (in

jobs per hour) measured over the last several minutes.
AL (actual lines) is the total number terminal users currently

signed on.
VP (virtual pages) is the total number of pages of virtual memory

currently in use by all jobs.
RP (real pages) is the number of virtual pages occupying real pages

for all jobs.
DPA (drum pages available) is the number of pages available for use

on the primary paging devices.
PA (paging activity) is the average number of page-in operations

(drum reads) per second over the previous interval.
DA (disk activity) is the average number of disk I/O operations per

second over the previous interval.
CA (channel activity) is the average number of channel I/O

operations per second over the previous interval (this includes
DA and a fraction of PA).

%PI (percent processor idle) is the average CPU idle (wait state)
time over the previous interval.

Q (queue) is the current number of jobs on the system CPU queue.
TQ (tape queue) is the current number of jobs in the tape-mount

queue.

The values for DPA, PA, DA, CA, and %PI may be followed by a plus sign
(+) indicating that the condition represented by the number is excessive,
i.e., that the system is overloaded in this aspect. The presence of any plus
sign causes the asterisk summary mark to be shown after the BP value.

If the optional job number parameter is specified, then a sampling of
information about the specified job is displayed every 20 seconds as
follows:

DT (delta time) is the same as above.
DPT (delta processor time) is the number of seconds of CPU time

used by the job during the previous interval.
VP (virtual pages) is the number of pages of virtual memory

350 SYSTEMSTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

currently in use by the job.
RP (real pages) is the number of virtual pages owned by the job

currently in real memory.
RPN (real pages needed) is the number of pages currently estimated

to constitute the job’s working set.
PA (paging activity) is the average number of page-in operations

per second for the job over the previous interval.
DA (disk activity) is the number of disk I/O operations during the

previous interval.
%PT (percent processor time) is the percentage of total system

processor time used by the job during the previous interval.
%VP (percent virtual pages) is the percentage of the total virtual

memory being used by the job.
%RP (percent real pages) is the percentage of the total real memory

being used by the job.
%PA (percent paging activity) is the percentage of the total paging

activity being done by the job during the previous interval.
%PI (percent processor idle) is the same as above.

This command continues to print information every 20 seconds until
interrupted by an attention interrupt.

MCMD MTS-command

The MCMD command executes an MTS command while in systemstatus
mode. As an alternative, any input line beginning with a dollar sign ($) is
also executed as an MTS command in systemstatus mode.

MTS

The MTS command returns control to the caller (normally MTS command
mode). This command is identical to the RETURN command.

QUEUE [{receipt | USER | ALL | ROUTE=station | *} ...]

The QUEUE command displays the status of individual batch, *PRINT*,
or *PUNCH* jobs and/or the status of any or all remote batch stations.

If a receipt number is specified, the queue status of the specified job (e.g.,
awaiting execution, executing, awaiting print, printing, etc.), the rate
period and routing of the job, and the relative position of the job within its
queue are printed.

If USER is specified, all jobs awaiting execution for the current user are
displayed.

If ALL or no parameter is specified, counts of the total number of pages
waiting to be printed and cards waiting to be punched along with the print,
punch, and execution queue lengths are printed.

If a particular station is specified, the connect status of that station, in
addition to the information specified by ALL, is printed. The print and

SYSTEMSTATUS MTS Command 351

MTS 1: The Michigan Terminal System

November 1991

punch counts and queues reflect only the jobs routed to that station. The
execution queue reflects the entire execution queue, not just the jobs
submitted from that station. Codes for some of the remote stations are as
follows:

CNTR Computing Center (North Campus)
NUBS North University Building Station
UNYN Michigan Union Station
DRBN U–M Dearborn Campus
FLNT U–M Flint Campus

If “*” is specified, the status of all queued jobs waiting to be imported is
displayed.

REPEAT [T=n]

The REPEAT command repeats the most recent non-REPEAT command
entered. It may be used conveniently to reenter an input line. If T=n is
specified, the command is repeated every “n” seconds until interrupted by
an attention interrupt.

RETURN

The RETURN command returns control to the caller (normally MTS
command mode). This command is identical to the MTS command.

STOP

The STOP command (or an end-of-file) returns control to the caller
(normally MTS command mode).

TAPEQUEUE [LIST]

The TAPEQUEUE command displays information about the current
tape-mount queue. If the LIST parameter is given, the command prints
one line for each user waiting in the queue (the display gives the job
number, userID, project number, total number of 9TP drives requested,
and number of 6250 bpi and 800 bpi drives required, if known). If no
parameter is given, the command prints the current number of terminal
users and batch jobs waiting in the queue, and the total number of 9TP
drives required.

TASKS [descriptor]

The TASKS command prints one line of output for each job which fits the
descriptor category. Each output line contains, from left to right:

The job number
The job name
The job table address
The number of virtual memory pages in use by the job

if relocatable (such as MTS)

352 SYSTEMSTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

The job status
The job table parameters (if any)
The I/O devices attached to the job (if any)

For MTS, the job table parameters are the four-character userID (blank if
the job has no user signed on), the four-character project number (IDLE if
no user is attached, and BUSY if a user is attached, but not signed on), and
the receipt number (if it is a batch job).

The descriptors specify the types of jobs to be displayed. The valid
descriptors are:

xxxx job number “xxxx”
B all batch jobs
F all jobs
M all MTS jobs
N [xxxx] all non-MTS jobs, or job name “xxxx”
D xxxx device name “xxxx”
T xxxx device type “xxxx”
U xxxx user userID “xxxx”
P xxxx projectID “xxxx”

If a job number is specified, the first nonnumeric character terminates the
number; the remainder of the input line is ignored. If the first nonblank
character in the descriptor is B, F, or M, then the remainder of the input
line is ignored, e.g., it is permissible to enter MTS instead of M. If the first
nonblank character is D, T, U, or P, then the argument for the descriptor
begins with the next nonblank character, unless there are more than four
characters given, in which case only the last four are used. The N
descriptor followed by a 1 to 8-character job name (e.g., PDP) specifies all
jobs with the given name. If no name is given, all non-MTS jobs are
printed. In the argument for the D, U, and P descriptors, the pound sign
(#) is used as a fill character which matches any character.

USERS

The USERS command displays counts of the current number of terminal
users, batch jobs executing, available terminal lines, non-MTS jobs
running, pages of virtual memory in use, and pages of real memory in use.

Examples: SYSTEMSTATUS
DISPLAY 803064+20 4

The above command sequence enters systemstatus mode and displays four
words of virtual memory beginning at address 803084.

SY LOAD

The above command displays system load information at 20-second
intervals until interrupted by an attention interrupt.

SYSTEMSTATUS MTS Command 353

MTS 1: The Michigan Terminal System

November 1991

SY QUEUE 608999 MS1336

The above command displays the status of the batch, *PRINT*, or
PUNCH jobs with receipt numbers 608999 and MS1336. Control
returns to MTS command mode.

SY
Q 610112
REP T=15
STOP

The above command sequence is similar to the preceding example except
that the QUEUE command is entered in systemstatus mode. In this
manner, the REPEAT command may be used to repeat the QUEUE
command every 15 seconds until interrupted by an attention interrupt.

354 SYSTEMSTATUS MTS Command

MTS 1: The Michigan Terminal System

November 1991

TRUNCATE

MTS Command Description

Purpose: To deallocate unused space at the end of a file or a set of files.

Prototype: TRUNCATE filelist [{ALLOK | PROMPT}]

Program Key: *MTS.TRUNCAT

Description: The “filelist” parameter specifies the file or the set of files to be truncated and
may be a single file name, a file-name pattern, or a parenthesized list of either.

Confirmation is not requested in conversational mode if a single file name is
specified. If more than one file is specified, a single summary confirmation is
requested. If the reply is OK, then all the files specified are truncated;
otherwise, none are truncated. Confirmation is not requested in batch mode.

The ALLOK option may be used to bypass the confirmation request when
several files have been specified. The PROMPT option causes prompting for
confirmation for each individual file.

The response to a prompt for confirmation may be OK to truncate the file, NO to
skip the file but continue with the next file in the list, or CANCEL to terminate
the command.

The user must have TRUNCATE access to the files. This command only
truncates files. It does not compact or optimize files; the DUPLICATE
command may be used to do this.

Any unused space at the end of the each file truncated is deallocated and the
accounting and billing information is correspondingly adjusted.

A file or a set of files may be truncated from a program by calling the TRUNC
subroutine (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

Example: TRUNCATE DATA1

The file DATA1 is truncated.

TRUNCATE DATA? PROMPT

This command truncates all files beginning with the string DATA. The
terminal user is prompted for confirmation for each file to be truncated.

TRUNCATE MTS Command 355

MTS 1: The Michigan Terminal System

November 1991

UNLOAD

MTS Command Description

Purpose: To unload the currently loaded program in virtual memory or command
language subsystem (CLS).

Prototype: UNLOAD [CLS=clsname] [EVERYTHING]

CLS=clsname

If CLS=clsname is specified, the corresponding command language
subsystem (CLS) is unloaded. This is normally only useful for system
programmers.

EVERYTHING

If EVERYTHING is specified, the currently loaded program and all loaded
command language subsystems (CLSs) are unloaded.

Program Key: *MTS.UNLOAD

Description: If no keywords are specified, the UNLOAD command unloads the current
program (if any) in virtual memory that was previously loaded by a LOAD,
RUN, RERUN, or DEBUG command. If a program returns normally by
returning to the system with a return code of zero or by calling the SYSTEM
subroutine, it is unloaded automatically at that time (unless it was loaded via
the DEBUG command). All storage allocated to the program is released, and
all files and devices opened at execution time are closed.

356 UNLOAD MTS Command

MTS 1: The Michigan Terminal System

November 1991

UNLOCK

MTS Command Description

Purpose: To explicitly unlock a file that has been previously locked explicitly by the LOCK
command.

Prototype: UNLOCK filename

filename

“filename” is the name of the file to be unlocked.

UNLK is an alternate name for UNLOCK.

Program Key: *MTS.UNLK

Description: The file is unconditionally unlocked (if the job has no other locking requests
associated with the file). This command has no effect on any locks set implicitly
or via the LOCK subroutine (see MTS Volume 3: System Subroutine

Descriptions, Reference R1003). Implicit locks or locks set via the LOCK
subroutine can be reset by unloading the currently loaded program or command
language subsystem (e.g., the $EDIT command).

A file may be unlocked from a program by calling the UNLK subroutine except
that a file locked by the LOCK command cannot be unlocked by the UNLK
subroutine.

Example: UNLOCK FILE1

The file FILE1 is explicitly unlocked.

UNLOCK MTS Command 357

MTS 1: The Michigan Terminal System

November 1991

VIEW

MTS Command Description

Purpose: To look at print and batch jobs that are queued by the Resource Manager for
execution or printing.

Prototype: VIEW [jobnumber [;view-command]]

Commands: The following commands are recognized by the VIEW command in view mode:

CANCEL

This cancels the entire job like the MTS $CANCEL command.

DISPLAY

This displays information about the currently viewed job.

HELP

This provides assistance with using the VIEW command.

MTS

This returns control to the calling program, normally MTS. Reissuing the
VIEW command will restart the VIEW program.

ROUTE station

This reroutes the job to the specified station. Another VIEW command
must be given in order to continue viewing the job.

STOP or end-of-file

This terminates the VIEW program and returns control to the calling
program (normally MTS).

TAILSHEET

This displays the signoff statistics (for batch jobs only).

edit-command

Any MTS File Editor command may be given to look at the job, including
the VISUAL command. Editor commands that attempt to change the
contents of the job will not be effective.

Program Key: *VIEW

Description: The VIEW command allows users to look at batch and print jobs that are queued

358 VIEW MTS Command

MTS 1: The Michigan Terminal System

November 1991

by the Resource Manager for execution or printing.

For example, you can look at the contents of the print job 123456 by first
entering the command

VIEW 123456

at the MTS “#” prompt. Then, you can use MTS File Editor commands
(including visual mode) to examine the job. You can copy sections of the job to
other files, cancel it, or reroute it. If the job is queued for execution, you will see
the commands that make up the batch job. If the job is queued for printing, you
will see the output produced by the job.

Print jobs must be released to the Resource Manager before they can be viewed.
That is, you cannot give the commands

COPY file *PRINT*
> *PRINT* assigned job number 123456
VIEW 123456

but you can give

COPY file *PRINT*
> *PRINT* assigned job number 123456
RELEASE *PRINT*

PRINT RM123456 released to ...
VIEW 123456

You can view print output only while it is queued for printing. Once printed, it
can no longer be viewed.

You can send jobs to the VIEW command by using the ROUTE=VIEW option on
the $CONTROL or $SIGNON commands. Jobs submitted with this routing
will not print but will remain queued in the system for up to 11 days until
rerouted or canceled (both described later).

For example, to use ROUTE=VIEW for a print job, use the commands

CONTROL *PRINT* ROUTE=VIEW
COPY file *PRINT*
RELEASE *PRINT*

You can then use the VIEW commands described below. For batch jobs, place
the parameter ROUTE=VIEW on your $SIGNON command.

If you currently submit batch jobs and only examine the printed output to
determine the success or failure of the job, then VIEW can be of use to you. If
you submit your job with a ROUTE=VIEW, you can examine the output from
your terminal. Having looked at it, you can then cancel it.

If you submit a batch job that is going to generate a lot of output, it might be
worth first routing the output to VIEW. You can then examine the output and,
if the job is correct, reroute it to the printer.

VIEW MTS Command 359

MTS 1: The Michigan Terminal System

November 1991

The VIEW command requires a job number to identify the job. You can find the
job number by using the LOCATE command. To see what jobs you have in the
system, enter the command:

LOCATE

or, to see only the jobs with ROUTE=VIEW:

LOCATE VIEW

You will see a message such as

RM299444 (234567) waiting print, posn 0, Route=VIEW.
RM299593 (234568) waiting print, posn 1, Route=VIEW.

Then, you can use the VIEW command to view a job; e.g.,

VIEW 234567

You will see a message such as

* Print job 234567 RM234567 1ABC 3 pages submitted at
11:34:32 Tue Jul 30/91

The asterisk “*” is a prompt that indicates the VIEW command is active. To
examine the job in visual mode, enter the following command at the “*” prompt:

V

Subsequently, you could cancel the job with the command

CANCEL

To exit the VIEW command, enter

STOP

at the “*” prompt. For more help on the VIEW command, enter

HELP

while you are in the VIEW command.

You can reroute jobs from VIEW to a printer by entering the following command
at the “*” prompt:

ROUTE station

For example,

ROUTE CNTR

360 VIEW MTS Command

MTS 1: The Michigan Terminal System

November 1991

will route the output of a job to the CNTR printer. You can send jobs to other
printers, such as the printer at NUBS, by substituting NUBS for CNTR.
Please note that you will probably not want to view text-formatted jobs, such as
.DVI files, since their output normally is not readable using the File Editor.

A one-shot VIEW command may be given in the form

VIEW nnnnnn; view-command

The “;” after the job number is required. For example, you could reroute a job
from one printer to another by giving the commands

LOCATE PRINT
RM123456 (123456) waiting print, posn 0, Route=UNYN.

VIEW 123456; ROUTE NUBS

If you work under more than one MTS userID, please note that you can only
view jobs from the userID on which you originally executed them.

VIEW MTS Command 361

MTS 1: The Michigan Terminal System

November 1991

362 VIEW MTS Command

MTS 1: The Michigan Terminal System

November 1991

ABNORMAL CONDITIONS

The following paragraphs describe various abnormal conditions that may occur during the
execution of a program, how the resulting interrupts are usually handled, and how the user may
prepare to intercept them if they should occur.

There are several categories of interrupts which may occur while a program is executing. In this
section, four categories of interrupts which may be controlled by a program are discussed. They are
program interrupts, attention interrupts, timer interrupts, and input and output errors.

PROGRAM INTERRUPTS

There are fifteen different classes of program interrupts (exceptions). They are the following:

Program Interrupt Class Interruptio Code (hex)

Operation 1
Privileged operation 2
Execute 3
Protection 4
Addressing 5
Specification 6
Data 7
Fixed-point overflow 8
Fixed-point divide 9
Decimal overflow A
Decimal divide B
Exponent overflow C
Exponent underflow D
Significance E
Floating-point divide F

For a complete description of the meaning of these program interrupt classes, see the IBM System/370

Principles of Operation, form GA22-7000. Normally, when a program interrupt occurs in a program,
the message

interrupt exception at xxxxxxxx

is printed, where “interrupt” is the program interrupt class (as given in the table above) and “xxxxxxxx”
is the hexadecimal or symbolic address of the instruction that caused the interrupt.

Addressing and protection exceptions are caused by the user’s program specifying an invalid
address. An addressing exception is caused by an address specified outside the range of virtual
memory. A protection exception is caused by specifying an address in virtual memory which is not
legal for the user’s program to specify (usually an address reserved for the system supervisor).

After a program interrupt has occurred, the following happens:

(1) The general registers, floating-point registers, and PSW are saved. In batch mode, the

Abnormal Conditions 363

MTS 1: The Michigan Terminal System

November 1991

general registers, floating-pointing registers, and PSW are displayed even if the
ERRORDUMP option is OFF.

(2) A storage dump is given for batch jobs, if previously requested by the user via one of the
following MTS or debug commands:

SET ERRORDUMP=ON
SET ERRORDUMP=LIB

(3) Control is returned to MTS command mode or debug mode.

When a return is made to MTS command mode, the user can give any MTS command, including
RESTART, which causes the program to continue execution at the instruction following the one
causing the program interrupt.

There are several ways that a programmer can alter the normal processing of a program interrupt.

The BPI (branch on program interrupt) macro may be used in 360/370-assembler programs to
specify a branch address to be taken when one of a specified class of interrupt types occurs. See the
BPI macro description in MTS Volume 14: 360/370 Assemblers in MTS, Reference R1014, for the
complete description, calling sequences, and examples of use.

The subroutine PGNTTRP (program interrupt trap) allows the user to specify an exit routine to
transfer to when a program interrupt occurs. After the interrupt occurs and the exit is taken, the
intercept is cleared so that another call to PGNTTRP is necessary in order to intercept the next
program interrupt. PGNTTRP can be called directly from a 360/370-assembler program and
indirectly through the subroutine RCALL in FORTRAN and other higher-level languages. See the
PGNTTRP subroutine description in MTS Volume 3: System Subroutine Descriptions, Reference
R1003, for the complete description, calling sequences, and examples of use.

The subroutine SPIE (specify program interrupt exit), which is callable from a 360/370-assembler
program, not only allows the user to specify an exit routine, but also provides the facility to specify the
class of program interrupts for which this exit should be used. For any of the fifteen program
interrupts not specified, the normal program interrupt procedure is followed. The specifications set
up by a call to SPIE remain in effect until a subsequent call overrides them except while executing a
SPIE exit routine. This subroutine is normally called by using the SPIE macro. See the SPIE
subroutine and macro descriptions in MTS Volume 3: System Subroutine Descriptions, Reference
R1003, and MTS Volume 14: 360/370 Assemblers in MTS, Reference R1014, for the complete
descriptions, calling sequences, and examples of use. SPIE and PGNTTRP are mutually exclusive;
either one overrides the other.

When a program interrupt occurs, a check is first made to determine if the instruction(s)
immediately following the instruction that caused the interrupt is a BPI macro instruction. If it is, the
type of program interrupt that occurred is compared with the type specified by the BPI macro. If there
is a match, the condition code is set to reflect the interrupt that occurred and the branch is taken. If
there is no BPI transfer made (either because there was no BPI instruction or because the program
interrupt type did not match the BPI type), then a check is made to determine if a PGNTTRP (or SPIE)
exit is active. If there is one, the exit is taken; otherwise, the program interrupt message is printed
and a return is made to MTS command mode or debug mode.

In PL/I, many asynchronous conditions are predefined as ON-conditions. Therefore the user can
determine by means of the ON statement what processing should occur when one of these conditions

364 Abnormal Conditions

MTS 1: The Michigan Terminal System

November 1991

occurs. The following program interrupts are among these predefined conditions:

Program Interrupt PL/I On-Condition Code

Fixed-point overflow FIXEDOVERFLOW
Fixed-point divide ZERODIVIDE
Exponent overflow OVERFLOW
Exponent underflow UNDERFLOW
Floating-point divide ZERODIVIDE

Those asynchronous conditions that are not predefined cannot be intercepted. Those that cannot be
intercepted and those that the user chooses not to intercept are handled by the PL/I library. For
further details, see the IBM System/360 PL/I (F) Language Reference Manual, form GC28-8201.

ATTENTION INTERRUPTS

Attention interrupts usually occur when a terminal user depresses the ATTN or BREAK key. The
system responds with

Attn!

or, if a program was in execution

Attention interrupt at xxxxxxxx

where “xxxxxxxx” is the hexadecimal or symbolic address of the point of interruption. The system
returns to MTS command mode or debug mode.

Normally, an attention interrupt is taken by MTS when it occurs. However, under the following
circumstances, the interrupt is not taken, but is left pending:

(1) The interrupt has occurred during the execution of a sensitive portion of the system such
as an I/O subroutine call.

(2) The ATTNOFF bit (accessible through the CUINFO subroutine) has been set to inhibit
attention interrupts.

(3) The interrupt has occurred during the processing of a sigfile with the SIGFILEATTN
option set to OFF and no ATTNTRP exit routine is active.

When an interrupt occurs in these cases, but is not immediately taken, the ATNBIT bit (accessible
through the subroutine GUINFO) is set, indicating that an interrupt is pending. The ATNBIT bit also
may be explicitly set to cause a pending attention interrupt. Each time the device support routine
interface is entered in MTS (when an I/O subroutine is called or returns), the ATNBIT bit is tested for a
pending interrupt; if there is one, it is taken at that point. The pending interrupt may be explicitly
suppressed by resetting the ATNBIT bit before it is tested.

The subroutine ATTNTRP (attention interrupt trap) allows the user to specify an exit routine to
transfer to upon the occurrence of an attention interrupt. When the interrupt occurs and the exit is
taken, the intercept is cleared so that another call to ATTNTRP is necessary to intercept the next
attention interrupt. ATTNTRP can be called directly from a 360/370-assembler program and

Abnormal Conditions 365

MTS 1: The Michigan Terminal System

November 1991

indirectly through the subroutine RCALL in FORTRAN and other higer-level languages. See the
ATTNTRP subroutine description in MTS Volume 3: System Subroutine Descriptions, Reference
R1003, for the complete description, calling sequences, and examples of use.

TIMER INTERRUPTS

Three different types of timer interrupts may occur while a program is executing. These are:

(1) Global time limit exceeded (which happens if the time estimate specified by the TIME
parameter on the SIGNON command is exceeded or if the balance of funds remaining in
the user’s account is depleted).

(2) Local time limit exceeded (which happens if the time estimate specified by the TIME
parameter on the RUN, RERUN, START, RESTART, LOAD, DEBUG, or SET commands
is exceeded during the execution of a program).

(3) Program-specified timer interrupts, which are established by calls on certain system
subroutines.

The first two types result in the system message

Global time limit exceeded [at xxxxxxxx]

or

You have run out of money [at xxxxxxxx]

or

Local time limit exceeded at xxxxxxxx

where “xxxxxxxx” is the hexadecimal or symbolic address of the point of interruption. These
conditions cause a dump in batch mode if the ERRORDUMP option is specified in MTS command mode
or debug mode. Neither of these interrupts can be intercepted by a program, but it is possible to
determine the times at which they may occur (via the GUINFO subroutine) and set up a
program-specified timer interrupt to occur before the global or local limit is reached. Thus, a program
can be organized to print more useful diagnostic information in cases of infinite loops, etc.

Program-specified timer interrupts are set up by calls to the subroutines TIMNTRP, SETIME,
GETIME, RSTIME, TWAIT, and TICALL which are described in MTS Volume 3: System Subroutine

Descriptions, Reference R1003. These subroutines provide for the enabling and disabling of timer
interrupts, and the specification of time intervals in several forms, including real time or task time,
relative or absolute time, and in units of microseconds, timer units, or character string time of day.

INPUT AND OUTPUT ERRORS

The input and output of data by programs is handled by I/O subroutines called from the program.
The I/O subroutines always provide a return code, the exact meaning depending on the file or device
used in the operation. A description of the return codes that may occur with a particular file or device
is given in the section “I/O Subroutine Return Codes” in MTS Volume 3: System Subroutine

Descriptions, Reference R1003.

366 Abnormal Conditions

MTS 1: The Michigan Terminal System

November 1991

In general, a return code of zero means successful completion of the input or output operation, and a
return code of 4 means end-of-file-or-device. A return code greater than 4 normally signifies an error
condition and is not passed back to the caller, but instead causes an error comment to be printed and
saved for later reference by the GUINFO subroutine and control to be returned to MTS command mode
or debug mode. The error comment usually describes the error condition and its location.

Normally, when an input or output error occurs in a program, the message sequence

error-message
I/O interrupt at xxxxxxxx

is printed where “error-message” is the error comment describing the error condition and “xxxxxxxx” is
the hexadecimal or symbolic address of the point of the interruption. The system returns to MTS
command mode or debug mode.

The user may suppress the error comment and return control to the calling program by specifying
the ERRRTN I/O modifier. If this modifier is specified in an I/O subroutine call, then when an error
occurs, no error comment is printed, the SETIOERR-SIOERR exit is ignored, and the return code is
passed back to the calling program. The error comment that would have been printed is available by
calling the GUINFO subroutine (see MTS Volume 3: System Subroutine Descriptions, Reference
R1003).

PL/I has predefined many of the I/O errors as ON-conditions. Thus, processing of these interrupts
can be determined by ON statements.

A call to the CONTROL subroutine always returns without printing an error message, but it may
return a message to the caller and also save it for later reference by the GUINFO subroutine.

OTHER SYSTEM ERRORS

If an error occurs during the execution of a system subroutine, the following message will be printed
in addition to any other error messages that may be appropriate:

Error occurred in a system subroutine.
RESTART inadvisable. Callers GR14=xxxxxxxx

where “xxxxxxxx” is the contents of the calling program’s general register 14 at the time the system
subroutine was called, i.e., the location from which the system subroutine was called. The most
common reason for this type of error is a bad parameter list to a system subroutine, although other
types of errors such as an internal system error may also produce this error comment.

If a program interrupt occurs within MTS or one of its subcomponents such as the File Editor or
SDS, or if an invalid SVC instruction is executed, a message will be printed in one of the following
forms:

MTS program interrupt. PSW=xxxxxxxx xxxxxxxx
SDS program interrupt. PSW=xxxxxxxx xxxxxxxx
Invalid SVC(n). PSW=xxxxxxxx xxxxxxxx
Fatal exit. Code=xxxx

If one of the above messages or any other similar message is printed, please return the output to the
ITD Consulting Staff. This will aid in detecting and correcting system errors.

Abnormal Conditions 367

MTS 1: The Michigan Terminal System

November 1991

Users should report errors in MTS, public-files, or other software supported by ITD to the
consultants. If the consultants are not available and the error is potentially serious, the system
operators should be notified. Equipment problems should be reported to the system operators.

If the system crashes (halts due to a catastrophic and nonrecoverable error), the user will not be
charged for the session; hence, rebates will not be granted for the work lost.

368 Abnormal Conditions

MTS 1: The Michigan Terminal System

November 1991

INDEX

file transfer, 264

$ command flag, 183
$CONTINUE WITH delimiter, 98, 102, 111, 179, 330
$ENDFILE delimiter, 102, 111, 147, 179, 329

* comment line, 210
*APC, 117
BATCH, 33, 34, 91, 208, 213, 236, 311, 325, 334
*CDUPDATE, 116
*COMPARE, 118
*DELIVERY, 164, 327, 341
DUMMY, 90, 112, 179
*EXEC program key, 132
EXPORT, 59, 91
*F (first line), 92
IMPORT, 59, 91
*L (last line), 92
*LIBRARY option, 321, 337
MSINK, 90, 105
MSOURCE, 90, 105
*PAGEFONTCONVERT, 164
PRINT, 49, 91, 208, 213, 236, 311, 325, 326, 333, 334
PUNCH, 90, 105, 208, 213, 236, 311, 325, 327, 334
*RESTORE, 116
*SIDEBYSIDE, 164
SINK, 90, 105
SOURCE, 90, 105
*UNEDIT, 116

ACCOUNTING command, 176, 196
accounting mode, 176, 196
ADDRESS option, 42, 54, 60, 69, 325, 341
ALL accessor, 123, 308
ALTER command, 199
attention interrupt, 149, 365
AUTOHOLD option, 69, 325

batch, *BATCH*, 34
advantages, 33
checking your job, 36
conditional sign-off, 47
cost of using, 38

Index 369

MTS 1: The Michigan Terminal System

November 1991

creating a batch file, 35
definition, 33
default options, 38
errors, 37
job names, 41
job statistics, 44
output, 36, 44
queues, 36
rerunning, 46
sigfiles, 47
submitting a job, 34
tapes, 41
turn-around time, 35

batch mode, 18
BINARY modifier, 142
BITNET, 59
BKWD modifier , 93, 100, 147
BUFFERS control option, 120

CALC command, 176, 203
Cancel, batch jobs, 57

print jobs, 57
CANCEL command, 37, 45, 55, 57, 62, 208
CANCEL option, 60
cancelling for another user, 57
card limits, 29, 320, 341
CARDS option, 42, 325
carriage control, logical, 143, 167

machine, 146, 168
case conversion, 142
CC modifier, 143
character set, 51
charges, 57
CLASS option, 325
CMDSCAN option, 183, 326
CMDSKIP option, 326
command flag ($), 183
command macros, 180, 331
command mode, 174, 183, 303
COMMENT command, 210
COMMENT option, 60, 69, 326
concatenation, 98

explicit, 99, 103
implicit, 147, 179

CONTCHAR option, 185, 326
continuation character, 185, 326
CONTROL command, 59, 114, 118, 119, 132, 211
conversational mode, 18
COPIES option, 42, 54, 60, 69, 326
COPY command, 49, 111, 112, 216
COST option, 28, 327
CREATE command, 45, 55, 62, 110, 220

370 Index

MTS 1: The Michigan Terminal System

November 1991

cross-reference listing, 337
CROUTE option, 327

DEBUG command, 176, 222
debug mode, 24, 176, 222, 324, 327
DEBUG option, 327
default access, 124, 307
deferred rates, 39, 343
DELIVERY option, 42, 53, 60, 69, 164, 327, 341
DESTINATION option, 327
DESTROY command, 64, 115, 224
device support routine (DSR), 15
devices, 19, 87, 89, 141, 146

names, 89
types, 89

DISPATCHES option, 328
DISPLAY command, 52, 62, 64, 227

pseudodevices, 65
DSR, 15
DUMP command, 238
DUPLICATE command, 113, 240

EBCD modifier, 142
EBM option, 328
ECHO option, 184, 328
EDIT command, 176, 243
edit mode, 18, 24, 176
EMPTY command, 113, 244
EMPTY control option, 119
ENDFILE modifier, 147, 179
ENDFILE option, 147, 179, 329
ERRMAP option, 329
error messages, 329
ERRORDUMP option, 329, 364
ERRORPROMPT option, 329
ERRRTN modifier, 149
ETM option, 328
EXECPFX option, 329
EXECPKEY option, 139, 321, 329
execution mode, 20, 175, 274, 316, 317, 320
execution priority, 39
EXPFAC control option, 118, 120
EXPLAIN command, 273
explicit concatenation, 99, 103

FDname modifiers, 94, 141
FDnames, 19, 87, 91, 100, 104

concatenation, 98
FDUB-pointer, 107, 153
FDUBCONT modifier, 148
File Editor, 18, 24, 112, 115, 176, 243
FILE option, 330

Index 371

MTS 1: The Michigan Terminal System

November 1991

File Transfer Protocol, 177
file-name character (#), 91
file-name patterns, 185
FILEMENU command, 246
files, 15, 19, 87

access, 121, 307, 332
accessors, 122, 307
changing, 112, 243
control operations, 114
copying, 216
creating, 110, 220
destroying, 115, 224
duplicating, 113, 240
emptying, 113, 244
error messages, 108
expansion, 110, 118
information, 246, 254
line, 88, 101, 141, 154
line number, 91
line-number range, 92
listing, 276
locking, 140, 156, 289, 291
names, 88
permanent, 87
private, 87
public, 87
renaming, 114, 312
renumbering, 114, 313
restoring, 116
sequential, 88, 102, 141, 152, 155, 335
sharing, 121, 156, 307
size, 110, 220
temporary, 87
truncating, 114, 355

FILESTATUS command, 64, 119, 254
FIRST (first line), 92
FORMAT option, 42, 51, 60, 69, 330
FSMESSAGE command, 177, 262
FTP command, 177, 264
funds limit, 27
FWD modifier, 147

global CPU time limit, 27, 341, 366
global limits, 37
GRAB device command, 83
GUSER logical I/O unit, 105, 320

hardcopy, 49
head sheet, 44
HELP command, 273
HELPMODE option, 330
hexadecimal dump, 238

372 Index

MTS 1: The Michigan Terminal System

November 1991

HOLD option, 60

I/O errors, 366
I/O modifiers, 94, 141
IC modifier, 99, 147, 179
IC option, 99, 147, 179, 330
IF command, 274
implicit concatenation, 98, 147, 179, 330
INDEXED (I) modifier, 100, 141
indexed I/O operation, 100
INITFILE option, 330
initialization file, 330
INPUT logical I/O unit, 105, 320
INSERT edit command, 112

job names, 57
job numbers, 57
job priority, 39
job status information, 287, 349
JOBNAME option, 42, 60, 69, 330

LANDSCAPE option, 42, 60
LAST (last line), 92
LC (LOWERCASE) modifier, 142
LIBR option, 321, 331
LIBSRCH option, 321, 331
limits, card, 29, 320

funds, 26
page, 29, 320
plot-time, 28, 320
time, 26, 320

line files, 88, 101, 141, 154
line number, 91
line printer, 166, 333, 343
line-number range, 92
LIST command, 49, 177, 276
LOAD command, 284
load map, 321, 329, 331, 333
local CPU time limit, 27, 320, 336, 366
LOCATE command, 287
LOCK command, 140, 289
LOCKSTATUS command, 140, 291
LOG command, 36, 57, 59, 66, 294
LOG modifier, 150
logical carriage control, 143, 167
logical I/O units, 104, 320

GUSER, 105, 320
INPUT, 105, 320
OBJECT, 105, 320
PRINT, 105, 320
SCARDS, 105, 320
SERCOM, 105, 320

Index 373

MTS 1: The Michigan Terminal System

November 1991

SPRINT, 105, 320
SPUNCH, 105, 320
0-99, 105, 320

low rates, 39, 343
LSTATUS command, 291

machine carriage control, 146, 168
MACRO modifier, 150
MACROS option, 150, 331
magnetic tapes, 211, 300
MAILCALL option, 331
MAKE command, 297
map (load), 321, 329, 331, 333
MAPDOTS option, 331
MARGIN option, 42, 60, 70, 331
MAX, 92
MAXBUFS control option, 120
MAXLEN modifier, 148
MAXSIZE control option, 120
MAXSIZEINC control option, 120
MCC modifier, 146
ME accessor, 123, 308
MESSAGE command, 177, 298
Message System, 177, 262, 298, 328, 331, 332
MFR modifier, 150
MIN, 92
minimum rates, 39, 343
modifiers, BINARY, 142

BKWD, 93, 94, 147
CC, 143
EBCD, 142
ENDFILE, 147, 179
ERRRTN, 149
FDUBCONT, 148
FWD, 147
IC, 99, 147, 179
INDEXED (I), 141
LC (LOWERCASE), 142
LOG, 150
MACRO, 150
MAXLEN, 148
MCC, 146
MFR, 150
NOATTN, 149
NOCC, 143
NOEC, 103, 149
NOPROMPT, 148
NOTIFY, 149
PEEL, 144
SEQUENTIAL (S), 141
SP (SPECIAL), 103, 146
TRIM, 146

374 Index

MTS 1: The Michigan Terminal System

November 1991

UC (CASECONV), 142
MODIFY command, 299
MOUNT command, 84, 300
MTS command, 303
MTS command mode, 21, 174, 183, 303
multiple print streams, 45

NAME option, 331
NAMELIB option, 332
NET command, 177, 305
NEWFILEACCESS option, 121, 126, 332
NOATTN modifier, 149
NOCC modifier, 143
NOEC modifier, 103, 149
NOPROMPT modifier, 148
normal rates, 39, 343
NOSAVE control option, 120
NOTE subroutine, 152
NOTIFY modifier, 149
NUMBER option, 60, 70, 332

OBJECT logical I/O unit, 105, 320
ONESIDED option, 42, 61
OPEN option, 56
OTHERS accessor, 123, 308
OVERLAY option, 42, 51, 61, 70, 332
OWNER accessor, 123

page limits, 29, 320, 342
page printer, 163, 332, 333, 343
PAGES option, 37, 40, 42, 61, 70, 332
PAPER option, 42, 61, 70, 332
PAR field, 321, 332
PARFIELDCASE option, 332
password, 25, 334
patterns, 185
PDMAP option, 333
PEEL modifier, 144
permit access, 121, 307
PERMIT command, 121, 123, 132, 307
PFX (PREFIX) modifier, 143
PFX option, 178, 333
PKEY control option, 120, 132
plot-time limits, 28, 320, 340
POINT subroutine, 152
PORTRAIT option, 42, 60
prefix characters, 177, 329, 333
PRINT logical I/O unit, 105, 320
PRINT option, 166, 333
print priority, 39
printed output, 59
PRINTER option, 43, 61, 70, 333

Index 375

MTS 1: The Michigan Terminal System

November 1991

printing, altering options, 50
cancel, 55
carriage-control, 49
control options, 51
COPY command, 49
creating a device, 55
default options, 50
delivery, 53
DISPLAY command, 52
large jobs, 49
lined paper, 51
LIST command, 49
multiple copies, 54
queue, 49
routes, 53
set options, 50
signon options, 50
summary of options, 53
9700 commands, 53

PRMAP option, 333
program interrupt, 363
program keys, 126, 321, 329

*EXEC, 132
command-processor, 134
current, 135

project sigfiles, 30
projectID, 25
PROJECTPWCHANGE option, 333
PROUTE option, 333
pseudodevices, 45, 59, 62, 64, 89

creating, 220
destroying, 224
mounting, 300
names, 89
releasing, 311

public files, 87
purge, 75
PW option, 25, 334

RATE option, 35, 40, 43
rates, 39, 165, 343
RCPRINT option, 334
read access, 121, 307
refunds, 57, 66
RELEASE command, 67, 311
RELEASE option, 61
relocation factor, 200, 228, 334
rename access, 121
RENAME command, 114, 312
RENUMBER command, 114, 313
RENUMBER control option, 120
RERUN command, 175, 316

376 Index

MTS 1: The Michigan Terminal System

November 1991

RERUN option, 43
RESTART command, 28, 175, 317
return code, 274, 334
RF option, 334
ROUTE option, 43, 53, 61, 70, 334
RUN command, 27, 29, 175, 320
run-only programs, 139, 322

SAVE control option, 120
SCARDS logical I/O unit, 105, 320
SDS command, 324
SEPCOPY option, 43, 54, 335
SEQFCHK option, 102, 335
sequential files, 88, 102, 141, 152, 155, 335
SEQUENTIAL (S) modifier, 100, 141
sequential I/O operation, 100
SERCOM logical I/O unit, 105, 320
server mode, 18, 79
servers, 79, 215, 336
SET command, 59, 64, 69, 325
SHIFT option, 43, 61, 70, 335
SHOWNAME option, 335
sigfiles, 29, 47, 50, 64, 335, 340
SIGFILE option, 29, 335
SIGFILEATTN option, 31, 335
SIGNOFF command, 339
SIGNON command, 25, 27, 29, 38, 40, 47, 340
signon ID, 25
SINK command, 346
SIZE control option, 120
SIZEINC control option, 120
SOURCE command, 347
SP (SPECIAL) modifier, 103, 146
SPELLCOR option, 336
SPRINT logical I/O unit, 105, 320
SPUNCH logical I/O unit, 105, 320
SRVREPLY option, 336
START command, 348
Symbolic Debugging System (SDS), 24, 176, 222, 324, 327
SYMTAB option, 336
SYSTEMSTATUS command, 35, 55, 59, 71, 165, 177, 349

tail sheet, 44, 66
tapes, 41
TAPES option, 43
TDR option, 336
temporary files, 87
terminal mode, 18
TERSE option, 336
time limit (global CPU), 27, 341, 366
time limit (local CPU), 27, 336, 366
time limits, 320

Index 377

MTS 1: The Michigan Terminal System

November 1991

TIME option, 27, 37, 40, 43, 336
timer interrupt, 366
TN character set, 166
TOUCH control option, 121
trailing blanks, 146
TRIM modifier, 146
TRIM option, 337
TRUNCATE command, 114, 355
TRUNCATE control option, 119
TWOSIDED option, 43, 61, 70, 337
TWOUP option, 42, 60
TYPE option, 56
T3 character set, 166

UC (CASECONV) modifier, 142
UMnet/Michnet network, 177, 212, 300, 305
UNLK command, 357
UNLOAD command, 356
UNLOCK command, 140, 357
user-defined pseudodevices, 45, 62, 65
userID, 25
USMSG option, 337
UXREF option, 337

VERSION option, 337
VIEW command, 75, 177, 358
virtual memory, 16

WAITUNTIL option, 43
write access, 121, 307

Xerox page printer, 163
XREF option, 337

9700, 53

378 Index

Reader’s Comment Form
--

The Michigan Terminal System

November 1991

--

Errors noted in publication:

--

Suggestions for improvement:

--

Date ___

Name __

Address __

Your comments will be greatly appreciated. Please fold the completed form as shown on the reverse
side, seal or staple, and drop in Campus Mail or in the Suggestion Box at any Campus Computing Site.

379

fold here

--

Documentation Group
ITD Consulting and Support Services
The University of Michigan
611 Church, 2nd Floor
Ann Arbor, Michigan 48104-3056
USA

--
fold here

380

381

382

