Advanced Nonlinear Control
Final Project Reports
Fall 1995

Dawn Tilbury, Assistant Professor

Technical Report UM-MEAM-96-01

January 12, 1996



Advanced Nonlinear Control
Final Project Reports
ME 662 / EECS 662 / Aero 672
Fall 1995

This technical memo contains the final project reports of the students taking Advanced Nonlinear
Control at the University of Michigan in the fall semester of 1995. The course was taught by Prof.
Dawn Tilbury and covered the modern geometric and algebraic approaches to the analysis and
design of nonlinear control systems. More information on the course is available on the WWW at
http://www-personal.engin.umich.edw/~tilbury/me662.html.

Each student in the course did a term project, gave an oral presentation, and submitted a written
report. This collection of papers is a record of the final projects. There was considerable
flexibility in the choice of the project, which is reflected in the diversity of the final reports. Most
students did simulation studies, implementing one or more controllers on a specific example. A
few students studied adaptive control, which was not covered in the course. There were also some
observer designs, one literature survey, and new theoretical results. Most students did an
individual project; there was one joint project.

Overall, the projects were excellent. I have reproduced here the project reports as they were turned
in. In the interests of space, I have eliminate< most of the appendices, many of which contained
Mathematica, Maple, or Matlab code, long derivations, or supplemental plots. Anyone interested
in more information on a given project may send email to tilbury @umich.edu.
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1 Introduction

Consider the single-input control system on IR" given by

(1)
z(0)

f(2(2), v(®)),
z, z(t),z € R",v(t) € IR. (1.1)

An open-loop control for this system is a choice of a control function for every initial condition z. In other

words, the initial value of the state decides the control values at all subsequent instants of time, i.e.,

v(t) = u(z,1).

As opposed to this, feedback controlis where the control value at any instant is decided by the value of the

state variables at that same instant. Thus a feedback law is given by

v(t) = é(=(1)),

where ¢ is a function on the state space.
Open-loop controls suffer from poor disturbance rejection. This is because the state is measured only at
the initial instant and any disturbance that comes into play after the initial instant cannot be accounted for.

For instance, the control
1

u(z,t) = —BTeA™ [/h ATBBTeA T dr| 2
0

drives the state of the controllable linear system (A, B) from the initial condition z to the origin in time t,.
But an impulsive disturbance acting at some instant in the interval [0,1,] causes the state at the final instant
t, to be different from 0. Feedback strategies have better disturbance rejection properties. In the case where

the.disturbances act only over a finite time interval, eventually complete rejection maybe achieved.
It would be useful if open-loop strategies could be implemented through feedback. This would enhance
disturbance rejection properties of the controller while retaining the original performance. Hence it is natural

to ask the question:
(Q) Which open-loop controls can be represented as feedback conirols?

This is a feasible question to ask, because the class of open-loop controls that can be written as feedbacks
is non empty. This follows from the fact that every feedback can be written as an open-loop control by
evaluating the feedback law along the closed-loop trajectories and then storing the result as a function of the

initial conditions. In the notation of our example,

u(z,1) = ¢(¥i(2)), | (1.2)

where 1, is the flow of the closed-loop vector field, f(z, ¢(z)).



The main thrust of this project is towards finding some answers to the question (Q) posed above. In
particular, given an open-loop control u(z,t), we attempt to find out when there exists a feedback law ¢ such
that (1.2) is satisfied.

One way of obtaining a feedback from an open-loop control is to treat the current state as the initial
condition and the current time as the initial time. This has the effect of replacing u(z,t) by u(z(t),0). In this
project we will also examine when this “resetting” is appropriate and in whaﬁ sense. We will show that if an
open-loop control arises from a feedback, then the feedback is recovered by resetting the open-loop control in
the above fashion.

In section 2, we introduce the key concept of the terminal-subarc property and show how this concept can
be used to answer the question (Q) in the time-invariant case.

In section 3, we indicate how the results of section 2 can be extended to time-varying systems.

In section 4, we show how the ideas of section 2 can be used to answer the following realization-type

question:

When can a function y(z,t) be writlen as a oulput function evaluated along the flow of a dynamical

system?

Section 5 shows how these same ideas can be used to show that solving a system of n ODEs is equivalent
to finding n solutions of a linear PDE.
Finally, in section 6, we point out some interesting connections to geometric optics and optimal control

theory that are worth exploring.

2 Open-Loop Control as Feedback: Time Invariant Case

Throughout this report, we assume that all required partial derivatives exist everywhere and are continuous,
all vector fields have uniquely defined flows and are complete. Finally, it should be noted.that depending on

the problem data, some results may hold only locally, but this will be ignored to keep the discussion simple.

2.1 Compatibility and the Terminal-Subarc Property

Given a complete vector field f on IR" with the flow gb,! and a function y : IR® x IR2° — IR, we say that
y is compatible with f if there exists a function ¢ : IR” — IR such that

y(z,t) = $ o 9{ (), 2.1)

for all ¢ > 0 and = € IR™. In this subsection, we shall attempt to find a simple test for compatibility.
We say that y has the terminal-subarc property with respect to f if

y(z,1) = y(¥ (2),1 - h), (2.2)



for all h € [0,t],2 > 0 and z € IR".

To understand this property better, we rewrite (2.2) as
y(z,T+s) = y(¥}(z),s), T>0, 5> 0. (2.3)

To every trajectory of f, we can assign the time-function y(z,t), where z is the initial point of the trajectory.
Note that the trajectory of the point 1,1)4. forms the terminal subarc of the trajectory of z. Thus (2.3) can be
interpreted roughly as saying the following:

The time-function corresponding o every terminal subarc of a given irajectory forms the terminal

part of the time-function corresponding to the given trajectory.

Hence the name terminal-subare property.

The following proposition gives a simple and useful characterization of this propeity.

Proposition 2.1. The function y has the terminal-subarc property with respect to f if and only if the

partial differential equation

(= 0)f(=) - F)=0. (2.4)
holds on IR"™ x IR2°.
= z : Fl= f(z) nt1 f
Proof. Denote z = . Consider the vector field f(z) = on IR and let ¢; be the

1 -1
1 (z)

corresponding flow. Then zﬁ,{(a’:) = . Equation (2.2) can be rewritten as

u(&) = vl (@),
for h € [0,1), t > 0. In other words, y is constant along the trajectories of f. This can happen if and only if
Lyy=0. (2.5)

Rewriting (2.5) in terms of the coordinates (z,t) yields (2.4). o
The following proposition reveals the relationship between compatibility and the terminal-subarc property,

and is a key result of this project.

Proposition 2.2. The function y is compatible with f if and only if y has the terminal-subarc property
with respect to f. If y is compatible with f, then the function ¢ satisfying (2.1) is uniquely given by

(<) = y(=,0). (2.6)



Proof. If y is compatible with f, then (2.1) holds for some ¢ : IR® — IR. Now, for ¢t > 0 and h € [0, ],

y(z,t) = ¢°¢{(z)
= $o9f_,(¥l(=)
= y(¥f(z),t - h).

Thus y satisfies the terminal-subarc property.
On the other hand, if (2.2) holds, then for h =1,

y(z,1) = y(¥{ (=), 0).

Therefore, (2.1) holds with ¢(z) = y(z, 0).
Finally, if (2.1) holds, then taking t = 0 yields (2.6). ]

The following theorem follows from the previous two propositions.

Theorem 2.1. The function y is compatible with f if and only if (2.4) holds on IR" x IR2°,

2.2 Open-Loop Control and Feedback

Consider the single-input control system
z = f(z,u) 2.7

on IR”. By an open-loop control, we mean a function u : IR" x IRZ° — IR such that for every z, the solution

to the initial value problem
z = f(z,u(z,1)), 2(0) =z,

is uniquely defined on [0,00). We say that the open-loop control u is cquiuavlent 10 a feedback for (2.7) if u is
compatible with the vector field f(z, u(z,0)). The following proposition brings out the motivation behind this
definition. Essentially, if u is equivalent to a feedback for (2.7), then resetting the open-loop control leaves the

solutions of the controlled system unchanged.

Proposition 2.3. If u isequivalent to a feedback for (2.7), then, for any given initial condition z, the two

initial value problems

(1)
(1)

it

f(z(t)s u(z,t)), Z(O) =z, (28)
f(z(2),u(2(2),0)), 2(0) = =, (2.9)

have the same solution.

Proof. Let 1; denote the flow of the vector field f(z,u(z,0)). Then the unique solution to (2.9) is
z(t) = ¥i(z). If u is equivalent to a feedback for (2.7), then it satisfies the terminal-subarc property with



respect to f(z,u(z,0)). Therefore, u(z,t) = u(th(z),0) = u(2(t),0). Thus, for a given initial condition, the
right-hand sides of (2.8) and (2.9) are equal. By uniqueness, the two initial value problems have the same

solution. o

The following corollary provides the answer to our original question (Q) and follows directly from Propo-

sition 2.2.

Corollary 2.1. The open-loop control u is equivalent to a feedback for (2.7) if and only if the partial

differential equation
(=, 1)f(z,u(z,0) — Fi(=z,1) = 0. (2.10)

holds on IR" x IR2°.

3 Time-Varying Systems

Given a time-varying vector field f(z,t) on IR" with the time-varying flow yb{o', and a function y : R" x

R2° x R2® — IR, we say that y is compatible with f if there exists a function ¢ : IR" x IR2° — IR such that

y(= 10, k) = $(], g4 (=), to+ b), (3.1)

for (z,t0,h) € R"” x R2° x IR2°,

Given a single-input time-varying control system

z = f(z,u,1) (3.2)

on IR" and a time-varying open-loop control u(z,to, k), we say that u is equivalent to a feedback for (3.2) if
u is compatible with the time-varying vector field f(z,u(z,t,0),t).

Using arguments similar to those used in Section 2, it can be shown that

1. yis compatible with f if and only if it satisfies the time-varying terminal-subarc property,
y(® 10, b) = Y(¥, to4r () to+ 7, B = 7), (3:3)
for all 7 € [0, h] and (z, to, ) € R® x IRZ° x IR2°,
2. y satisfies the terminal-subarc property with respect to f if and only if the partial differential equation
8 (z,10, h) f(z,to + k) + L (z,20, ) — §E(z,t0,h) =0 (3.4)

holds on IR™ x IRZ° x IR2°,



3. If u is equivalent to a feedback for (3.2), then, for any given initial condition z and initial time ¢o, the

two initial value problems

Z(t) = f(z(t),u(z,to,t "tO))t)t z(tO) =z, (35)
) = f(a(0),u(:(0),,0)), 2lto) ==, (3.6)

have the same solutions for ¢ > ¢o.
4. The open-loop control u is equivalent to a feedback for (3.2) if and only if the partial differential equation
%%(:I:,to, h)f(z, u(:z:,to + h, 0), to + h) + %(z, to, h) - -g%(:n, io, h) = 0 (37)

holds on R" x IR2° x IR2°.

4 A Question on Realization

Given a function y : IR® x IRZ° — IR, we say that y is time-invarianily dynamically generated if there
exists a vector field f on IR™ such that y is compatible with f. It follows from Proposition 2.2 that y is

time-invariantly dynamically generated if and only if there exists a vector field f on R® x IR2° such that

Liy = 0, (compatibility), (4.1)
[f, %] = 0, (time — invariance), (4.2)
di(f) = -1 (4.3)

For convenience, define the following codistributions on IR"*!:

0 = {dydlgy,....dL5 v}, (4.49)
O, = {dy,de_‘y,...,degTy,dt},r=1,2,3,.... . (4.5)

Remark 4.1. Let r* = max rank .. Then rank Q.. = r*. This is because if dL%_y € Q, for some k >r,
then dL’b,_y €Q, forl=kk+1,....

Remark 4.2. If f satisfies (4.1) and (4.2), then L,-LFa;y = L[!-'ﬁ]y + LFa?L‘,-y = 0. Similarly, it can be
shown that Ly ;,,_y =0forr=2,3,.... Thus f € ker Q.. On the other hand, if f € ker Q.+, then f satisfies
t

(4.1).

Remark 4.3. The codistributions ,+ and €, are invariant w.r.t. the vector field 7%. This simply follows

from our definition of r*.

These remarks lead to the following proposition.



Proposition 4.1. The function y is time-invariantly dynamically generated if and only if rank Qpe = r*+1.

Proof. The necessity follows by noting that if there exists a vector field f isatisfying (4.1) and (4.3), then
f € ker Q,+ and dt(f) # 0. Therefore, dt ¢ Q.. and rank Qe =r* +1. -

The sufficiency will not be worked out in detail, but can be established by proving the following statements:

1. There exist vector fields f;, i = r* +1,...,n+ 1, such that ker Q,. = {fr.+1,...,f,,} and ker .. =
ker e + {Fapa}.

2. The vector field f,41 can be chosen to satisfy (4.2) and (4.3).

5 An Application to Differential Equations

Given a vector field f on IR", define the vector field f on IR™** as before. The codistribution, Q = {f}* is
integrable. Therefore, there exist n functions y;(z,t) such that the differentials dy; are independent on R"H!
and dy;(f) = 0. Furthermore, the vectors %";‘(z, 0) are linearly independent over IR at every z. Consequently,
if we form the vector Y(z,t) = [y1(z,t), "+, ¥n (:c,t)]T, then ®(z) = Y(z,0) is a diffeomorphism on IR". Each
of the functions y; is compatible with the vector field f, so that Y(z,t) = @(gb{(:r)). Hence, we can obtain
the flow of f as

() =27 (Y(=,1)).
Thus solving the system of ODEs
i = f(2),
is equivalent to finding n independent solutions of the PDE

(= 1)f(z) - F(z,1) = 0.

This is also equivalent to finding a basis of exact forms for the codistribution €2.

6 Ideas to Explore

This section, which is somewhat speculative in nature, documents some of the ideas that suggested them-

selves during the course of this project.

6.1 Geometric Optics and Compatibility

We briefly review the fundamental notions of geometric optics. Concise treatments of these ideas can be

found in (1] and [2].



Consider a medium that fills out IR” and in which a disturbance propagates according to the principles
of geometric optics. Assume that the medium is inhomogeneous and anisotropic, so that the velocity of
propagation of the disturbance depends both on the position and the direction of propagation. Let f(z,v)
denote the reciprocal of this velocity at the point z € IR" in the direction v € TIR]. If v : [sp,51] — R"
is a differentiable curve in IR” joining zo = 7(so) to z; = (o), then the time taken by the disturbance to

traverse this curve is
5
| st s (6.)

According to Fermat’s Principle, the actual path taken by the disturbance in going from z¢ to z; is the
one that takes the least time, i.e., the one that minimises (6.1). Curves that minimise (6.1) are the rays
of the disturbance. A wavefront at any instant is the set of points that the disturbance has reached at
that instant. Rays take a wa.vefrént at any given instant to wavefronts at subsequent instants. Huygen’s
principle relates wavefronts corresponding to different time instants. If the wavefront at time ¢ is given by

Wi = {z : S(z,t) = 0}, then S satisfies the Hamilton-Jacobi equation,
%'f' + H(I) %;9;) =0, (62)

for a certain Hamiltonian H. Furthermore, the rays satisfy a Hamiltonian system of equations with Hamilto-
nian H.

Now, given a function y(z,t) as before and a vector field f, define wavefronts as W; = {z : y(z,t) = 0}
and the Hamiltonian H(p,z) = —pT f(z). Then, it can be shown that y is compatible with f if and only if

the flow of the vector field — f carries wavefronts to wavefronts, i.e.,
¥l (W) = Wi

Moreover, equation (2.4) can be rewritten as the Hamilton-Jacobi equation
%4 H(E,z)=0.

The function y is thus analogous to the function S in (6.2) while the trajectories of the flow J are
analogous to the rays of a disturbance. It would be interesting to see if the analogy can be completed. In

other words:

Given a dynamical system, can we ascribe the siate space with inhomogeneous and anisolropic
disturbance-carrying properties characterized by some funciion f(z,v), such that the trajectories of
the dynamical systems satlisfy Fermat’s principle? If so, then what does Huygen'’s principle tell us

about dynamical systems?

These ideas are summarized in the following table.



Optics Dynamical Systems
Medium of propagation State space
Rays Trajectories
Wavefronts Level sets of an output function
f(z,v) 77
Fermat’s Principle 7
Huygen’s Principle 77

6.2 Connections to Optimal Control Theory

The Principle of Optimalily [3] states that the solutions to certain types of optimal control problems, which
are typically in the form of open-loop controls, have the property that they are also optimal on every terminal
subarc of the optimal trajectory. Stated differently, an optimal control satisfies the iérminal—subarc properly
on the optimal trajectory. One is, therefore, led to ask if an optimal control satisfies a condition similar to
(2.10). It is also of interest to see if (2.10) is related to the maximum principle or to Hamilton-Jacobi-Bellman

theory.

7 Conclusion

Useful and satisfying answers were found to the original questions posed at the beginning of the project.
These answers further suggested other interesting questions which were also answered. In the process, a few
novel ideas were thrown up that deserve closer inspection.

An attempt was made to come up with examples to illustrate the utility of some of the results to control

problems. However, no interesting example has yet been found.
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1 Scope of Project

This term project represents the current state of the author’s research progress in the area of
virtual resetting absorbers for control. This project began only a few weeks prior to the beginning
of the Fall "95 term, and thus represents approximately one semester’s work.

The overall goals for this project include developing or modifying a theory to describe sys-
tems with virtual resetting absorbers, and developing control stategies utilizing the virtual resetting
absorbers that outperform linear time-invariant controllers in terms of energy dissipation and dis-
turbance rejection.

Due to the goal-oriented nature of this early stage of the research, Section 3, which is devoted
to theoretical developments, is neither detailed nor complete. Instead this development will be
pursued during the course of the next semester.

A description of the synthesis approaches for designing virtual resetting absorbers for control
is divided between Section 3.2, Section 4, and Section 5 of this report. Section 3.2 introduces and
develops a virtual resetting absorber design that we will refer to as 'a one-way absorber, since it
has the property that energy can flow from the primary system to the absorber, but not from the
absorber back to the primary system. The one-way energy flow property can be interpreted as
follows: the plant can do positive work on the absorbr subsystem ,but the absorber can never do
positive work on the plant. Consequently, the one-way absorber controller can never increase the
energy of the plant.

Section 4 deals with finite-time stabilization problems. Since this section contains the strongest
results, it is given the most detailed description. These results, however, are restricted to finite-time
stabilization of the double integrator and the undamped oscillator. which are feedback equivalent,
second-order systems. The extension of these results to plants of order greater than two is incomplete.
Such an extension would potentially provide some very strong results, and as such, this extension is
currently receiving the “lion’s share” of the author’s research efforts.

Section 5 deals with the application of virtual resetting absorbers to disturbance rejection
problems. The results here are fairly weak, in the sense that it is not clear what, if any, advantage
the virtual resetting absorbers can provide compared to certain linear time-invariant controllers.
However, the advantage of virtual resetting absorber for disturbance rejection could. be greatly
increased if results could be obtained for finite-time stabilization of. say, fourth-order systems. This
issue will be investigated within Section 5, in the context of a conjecture. Furthermore, the linear
time-invariant controllers used as comparisons for the virtual resetting absorbers, represent linear
absorber designs that may as yet unexplored in the literature.

Clearly, there is much work to be done in the area of virtual resetting absorbers for control.
Section 6 describes what the author sees as some of the important directions to pursue in this
research area. Some conclusions are given in Section 7.



2 Introduction

Stabilization of undamped motion is a fundamental problem in control engineering. Consider
the case of the double integrator M/§ = u. While exponential stability can be obtained by simply
setting u = —aq — bq. where a and b are positive constants, it is often of interest in practice to
stabilize the motion in finite time. For this objective the classical optimal control literature provides
two approaches, namely, the minimal-time controller and the minimal-energy controller (1, 2]. The
purpose of this paper is to develop an alternative control approach to yield a third controller that

stabilizes the double integrator in finite time, and, in addition, eliminates the need for full-state
feedback.

The controllers we develop in this paper are based upon physical principles rather than optim-
ality criteria. Inspired by the extensive literature on mechanical absorbers [3]. these new controllers
are designed to emulate the action of mechanical proof-mass absorbers by applying forces to the plant
that a physical proof-mass absorber would apply. Since the proof-mass absorbers are emulated rather
than implemented. these controllers can be viewed as virtual absorbers.

The controller design involves choosing the values of the virtual proof mass and spring elements
so that, at some instant in time, all of the energy associated with the double integrator is transferred
to the absorber subsystem. Ordinarily the absorber subsystem would possess all of the energy only
instantaneously, after which time energy would begin to return to the plant. However, since the time
at which the total energy transfer occurs is known, the controller can be turned off at that instant,
and the energy will appear to be instaneously removed, as if it had exited through a trap door. The
double integrator will then remain at rest at the origin. For this reason, this controller is called a
virtual trap-door absorber.

Since the virtual trap-door absorber is only active on a finite time interval, it is useful to
consider an extension of this controller that can be turned off, or reset, and then restarted. This
class of controllers is called virtual resetting absorber controllers, and it contains the virtual trap-door
absorber as a subclass.

Another subclass of virtual resetting absorber controllers, called one-way absorber controllers
is developed in this report. This class of controllers is characterized by allowing energy to be
transferred from the plant to the controller, while prohibiting energy from being transferred from
the controller back to the plant. The one-way absorber controllers can be shown to be passive!, and
thus they have desirable stability robustness properties.

The structure of the report is as follows: in Section 3 some theoretical foundation is given for
the description of systents with virtual resetting absorber subsystems, and in Section 3.2 the one-way
absorber controlleris developed.

In Section 4 finite-time stablization control problems are solved for the double integrator and
the undamped oscillator, using virtual resetting absorbers; in particular, virtual trap-door absorbers
are used. The virtual trap-door absorber controllers used to finite-time stabilize the double integrator
are compared to the minimal-time and minimal-energy solutions for this problem.

ITechnically, this is only a conjecture at this point. Arguments to support this statement are given in
Section 3.2 to support this conjecture, in lieu of a proof.

(S



In Section 5, virtual resetting absorber controllers are applied to the disturbance rejection
problem. Examples, weaknesses, and keys to further development are discussed. A discussion of
directions for futher research in the area of virtual resetting absorber controllers is given in Section
6, and some final conclusions are given in Section 7.



3 Theoretical Framework

The virtual resetting controllers developed in this paper can be described by “jump” or “im-
pulsive” differential equations. The (readily) available literature on systems described by impulsive
differential equations, for example [4], is not well suited to describe the systems of interest in this
paper. Consequently, the following development will not borrow much in the way of notation from
the literature, but instead will feature notation especially well suited to virtual resetting controllers.

3.1 Virtual Resetting Controllers

The virtual resetting absorber controllers considered in this paper can be described by the
following resetting differential system.

z(t) = fe(zc(t)) + Ge(z(2))y(2), t# tx, (1)
re(te) = fa(ze(ty ), y(tr)), (2)
u(t) = he(xc(t)) + Je(zc(t))y(t), (3)

where re € R,y € R, u € R™. f: R} = R. G : R} - R"™*?, hc : R = R™, J.: R} —
R™?, fa : IR x RP = IRZ, k£ = 0,1,2,...; {tx} is a sequence of time instants, not necessarily
equally spaced. such that 0 =tp < ¢y < -+ <ty and ty — o0 as k = oo and

z(lf) =

lm  r(tx —¢). (4)

£>0,0

In words, the resetting controller (1) - (3) is described by a well-behaved ordinary differential
equation, with the exception that the states z. of the controller are reset at possibly irregularly
spaced times. Notice that the mechanism for determination of the time ¢ at which the states of the
system are reset is not made explicit.

3.2 Virtual One-Way Absorbers

A novel application of resetting differential equations for control is the virtual one-way absorber
controller. This controller is useful for enhancing the energy dissipation of a lossless or lightly
damped plant. For example, consider the single-input, single-output plant

r = Az+ Bu, (5)
y = (Cz, (6)

T
SR Y R .

which describes a controlled undamped oscillator with position output. This sum of the kinetic and
potential energies of this plant provide a suitable Lyapunov function, given by

where

e

V(z) = %ITI. (8)



It follows that for the uncontrolled oscillator V 2 V' (z)z =0.

The classical Den Hartog absorber consisting of a mass m on a spring k, can be used as a

starting point for the design of the one-way absorber. The effect of the absorber on the plant is
given by the dynamic compensator

e = Aczc+ By, (9)
Cexe + D.y, (10)

u

where

T
a4 a8l 0 1 af 0 alk -}
I°_[¢c}’ ‘1°_[~’~'/m0]’ B”[l/m]‘ C"[O]’ Pk D

The total (virtual) energy of the absorber subsystem is given by the sum of its kinetic and potential
energies, as
, 1 .o, 1 2
Velze,y) = 5Mec” + Tz'k(qc -y (12)
A Lyapunov function for the closed-lbop system is given by

Va(z,zo) = V(z) + Ve(ze, y). (13)
It is readily seen that ¥, = 0, and the closed-loop system is lossless.

The next stage of the design of the one-way absorber controller, is accomplished by defining
the resetting law

;rc(zk)z[y(é’:)]. c=0,1,2,..., (14)

where to = 0. It follows from this resetting scheme that V.(z.(¢x)) = 0.

Lemma 1. The feedback interconnection of the plant (5)-(6) with the resetting compensator
(9)-(10). (14) is Lyapunov stable.

Proof: The closed-loop Lyapunov function satisfies

Va(e(t). re(t)) = Valz(te) zc(te))y L € [tritinn), k=10,1,2,..., (15)
and
Va(z(te), ze(tr)) = V(2 (tr-1)) = Velze(te) y(te) < Vala(te-1), 2e(te-1)), (16)
and thus Vi(z(t).z(t)) is nonincreasing. 0

To complete the design of the virtual one-way absorber controller, let the times ¢, correspond
to the times at which the (virtual) energy in the absorber (compensator) stops increasing. It is
possible to determine the resetting times by computing V. online, and resetting the states whenever
V. = 0. Note that

. ov.. oV, ov. . ,
Ve(re y) = 5—(—{:% + 5(-}:(y —q) + a—yy, (17)

Ut



and thus an accurate computation of V. requires the ability to compute j. If the plant dynamics
are well know, then this approach for determining the resetting times may work well. However,
the virtual one-way absorber controller is passive, and as such, it would be desirable to make the
resetting scheme be independent of the plant model.

In practice, the resetting times can be determined by monitoring the value of the compensator
energy Ve(rc,y), and resetting the states when V.(x,y) stops increasing. While technically, this
may only approximate a one-way absorber, the associated error is very small (see Conjecture 2),
and this technique is effective and easy to implement.

Conjecture 1. The virtual one-way absorber controller is passive.

By definition of the virtual one-way absorber, either the energy of the absorber subsystem is
increasing. or the states of the absorber are reset - in which case the energy in the absorber is set
to zero. If the energy of the absorber is increasing, then the plant is necessarily doing positive work
on the absorber. Equivalently, the absorber is doing negative work on the plant. Consequently, this
one-way algorithm has no mechanism for doing positive work on the plant. and this observation is
the basis for Conjecture 1.

Conjecture 2. While small delays in determining the resetting times may allow the virtual
one-way absorber to do positive work on the plant, this effect should be very small.

The control signal generated by the virtual one-way absorber must always have the opposite
sign of the velocity of the point on the plant where it is attached; otherwise, the absorber would
be doing positive work on the plant. It follows, then, that the resetting times are associated with
times at which either the velocity or the control force generated by the virtual absorber subsystem
changes sign®. Since both the velocity and the control signal are continuous functions in time, it
follows that a short time after one of these signals passes through zero, it is still close to zero, and
therefore the product of force and velocity - the rate at which work is done on the plant - is also
small. Conjecture 2 is based on this ohservation.

Results of numerical simulations of this example system consisting of an undamped oscillator
with a virtual one-way absorber controller are illustrated by the following figures. The parameters
for the one-way absorber in this example are m = 1, and k = 1. Figure 1 and Figure 2 illustrate
the response of the system to an initial velocity of the plant mass, while Figure 1 and Figure 2
illustrate the response of the system to an initial displacement of the plant mass. It is apparent in
the figures that asymptotic stability is achieved, although the proof of asymptotic stabilization by
resetting control is not easy, even for this rather simple control system.

Conjecture 3. A virtual one-way absorber controller is (asymptotically) stabilizing if and
only if the system that results from replacing the one-way absorber with a linear damped absorber
is asymptotically stable.

Generally speaking, one-way absorber controllers provide a mechanism for energy dissipation.
While they are nonlinear time-varying controllers, there are also linear controllers which can also
provide energy dissipation, for example, dashpot elements or damped absorbers. Furthermore, even

2Resetting times are always times at which either the velocity of the attachement point or the control
signal changes sign. However, it is possible, and it has been observed in simulations, that the control signal
and velocity may both pass through zero at the same time, in which case the states are not reset.
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Figure 1: Time history of the position of the oscillator mass controlled by a one-way absorber
controller (top), and control history (bottom) for an initial velocity of the oscillator mass
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controller with a nonzero initial velocity
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controller (top), and control history (bottom) for an initial displacement of the oscillator mass
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if the one-way absorber controllers are indeed passive, there are linear, output-feedback positive-real
controller synthesis techniques, for example [5, 6].

Perhaps the one-way absorber controllers can offer some advantages over linear designs in
terms of efficiency of energy dissipation. Possibly by tuning the lossless absorber portion of the
controller to some desired frequency the energy dissipation is enhanced. However, the existence
of an advantage of the one-way absorber controller over a linear design at this point is unclear,
and therefore no further investigation of the one-way absorber controller for energy dissipation is
considered here.



4 Finite-Time Stabilization of the Double Integrator Using a
Virtual Trap-Door Absorber

In this section, a particular type of resetting lossless absorber controller - called a virtual
trap-door absorber - is developed. This controller is used to achieve finite-time stabilization of
the double integrator and, by extension, finite-time stabilization of the undamped oscillator is also
achieved. The resulting controller is compared to the minimal-time and minimal-energy optimal

controllers.
4.1 System Description
Consider the double integrator described by
Mg = u, (18)
with initial conditions ¢;(0) = qi0, ¢1(0) = ¢1o. Our goal is to bring the position ¢;(t) and velocity

qi(t) of the double integrator to zero in finite time. The controller we consider emulates the lossless
system shown in Figure 5, where the springs K and k as well as the mass m are virtual elements

I 92
i 2
W M AAA ™

Figure 5: The double integrator without (above) and with (below)
the virtual absorber subsystem.

whose effect on the mass M is implemented by means of a dynamic compensator and a force actuator.
The dynamics of the closed-loop system are given by

Mi = u (19)
mg, + kg ~kq = 0, (20)
u = kqQ—(A”*‘k)(h, (21)

where q, represents the position of the virtual mass m. As shown in Figure 6, the system (19) -
(21) can be represented as the single-input, single-output feedback interconnection of the double
integrator plant with a second-order, proper dynamic compensator whose input is the position of
the mass M.

10
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Figure 6: Feedback control of the double integrator

For notational convenience, we define the quantities

A . A A
r, = Kq. 1, = Kqy, I, = Iy — Tq,

e A K A k/m
IR, =gt @ = KM

With this notation. (19) - (21) become

>

K

I, = u. (22)
1'2 + wz.r, = 0, (23)
U = KI;-— Iy, (24)

where ( " ) now represents differentiation with respect to normalized time 7. The closed-loop system
(22) - (24) has the form

I 0 1 0 0.
I = Az, r= ii , A = 01 _01 g ? (25)
Iy 0 0 —-w? o
The characteristic equation of A is given by |
sl +a+wd)s? +02=0, (26)
which can be factored as
(s> + B (s + QY =0, (27)
where
w:\/le-(l+ﬁ+w§)—%\/(l+ﬁ+w§)2—4w§ . (28)
0= _—1)—(1+K+w§)+:15\/(1+ﬂ+w§)2—4‘—”§~ (29)

11



and the eigenvalues of A are Ay ; = +jw, A3 4 = £)0. The closed-loop system (25) is thus Lyapunov
stable. By noting

(T+8+wl)? —dw? = (1 + k- w?)? +4rw? > 0, (30)
it is clear that the expressions (28) and (29) are well defined. It follows from (26), (27) that
wl=wy @+ =145+l (31)

Next, we derive an expression for the time history of the state z; due to an initial condition
of the form

ro=[110 %10 0 0]T, (32)

or. equivalently,
¢1(0) = qio.  41(0) = qio,  @2(0) = qro.  2(0) =0, - (33)
which corresponds to an arbitrary initial position g0 =%110 and an arbitrary initial velocity

Gro = \/li_W‘i“O of the mass M, with zero initial elongation of the spring & and zero initial velocity of
the virtual mass m. '

Taking the Laplace transform of (25) gives

s(s? + w? + k) st 4 w?

s4+(1+n+w§)sz+wzrlo+s“+(l+/{+w3)52+

‘\’1(3)

= To. (34)
which yields

1 1 1 1 )
(1) =110 [§(I+c1)coswr+-2-(l—cl)cosQr]+r'10 [E(l-{-cz)sinwr—}—E—(l—cz)stT , o (33)

where

>

A w—14k
C = )
\/(1+fc+w2)2—4w§

wz—'l—fc.

I+ +w)? —aw?

Cy =

(36)

4.2 Finite Settling Time Controller Synthesis

The following theorem provides a method for selecting the controller parameters K, k, and m
for the virtual trap-door absorber controller.

Theorem 4.1. Consider the double integrator (19) with the virtual absorber subsystem (20),
(21). and initial conditions (33). Let n and p be nonnegative integers, and choose positive numbers
K, k., and m such that

_/E_ _m _ 4(2(p —n) + 1)? (37)
A~ M (“Gn+D)(@p+3)

12



Then

q(ts) =0,  q(ts) =0, (38)

where

T [(4n+ 1)(4dp+3)M .
is = 3\/ K . (’39)

Furthermore, the control force u(t) given by (24) is bounded by

u(t)] S V(K + k)R + M), t20. (40)

The proof of this theorem is given in the Appendix.
Remark 4.1. If A, k, and m satisfy (37), then q(¢) is given by

/ | K /M ) /K ) /K
qi(t) = +Q {qm [Q cos wt + wcos Qt] + g0 V7 [sm A_'th + sin HQt} } 020, (41)

where

qn +1
4p+3

=1/ = (42)

Remark 4.2. Note that the time {, is independent of the initial states q)o and ¢;0. Furthermore,
the smallest value of ¢; for which ¢(¢;) = 0 and ¢i(¢;) = 0 is obtained by choosing n = p =0 in
(39), which yields

3M

=55 (43)

(O ]

This value is achieved by setting k = 4K/3 and m = 4M/3. Furthermore, note that t, can be
mnade arbitrarily small by choosing K to be sufficiently large, although large K tends to increase the
~ control amplitude as suggested by the bound in (40).

The trap-door absorber design is based on Theorem 4.1. Specifically, the controller shown in
Figure 6 is implemented for 0 < ¢ < #,. At time ¢ = {, the controller is shut off, so that the mass
M remains at rest at the origin. For the double-integrator plant written in state-space form as

¢ = Aq+ Bu, (44)
where
¢ 101 _ 0 _
q—[ql] A—[OO}, B_[l/M} c=[10], (46)



the resulting linear time-varying controller has the form

Z(t) = Acxe(t) + Bey(t), (47)
u(t) = Ce(t)zc(t) + De(t)y(t), (48)
where
[ o 1] _[ o
AC_[-—k/m 0 BC_{k/m}’
[k 0], teo,u), , (49)
Cu(t) = , De(t) ={ Rk ﬁilto’tS)
[0 0], t>4, ’ =

It now follows from Theorem 4.1 that the compensator (47), (48) is a finite-settling-time controller
with settling time ;. Furthermore, it follows from Remark 4.2 that t, can be made arbitrarily small
by choosing A sufficiently large.

4.3 Performance Analysis

In this section, we compare the trap-door absorber controller with the minimal-time and
minimal-energy countrollers.

4.3.1 Controller Designs

We first consider the classical minimal-time controller given by [1, 2]

—Umassign (G + sign(q)y/2lqu220) . 41 + sign(q)y/2la] "= # 0, i
u(q) = . (50)
"umaxs‘gn(ch)s ql + Slgn( ) Zlqll = 0.

This controller is characterized by a discontinuous control force u(t) that switches between Fumax
on the switching curve ¢ + sign(qi)y/2|q1|*2x = 0.

Next we consider the mmlmal—energy controller given in open-loop form by [1, 2],

) t -1
u(t) = = BTeAT(6=1) (/0 eA’BBTe'4T‘ds> eqo, t €0, (51)

o

and in linear time-varying feedback form by
ts -1
u(t) — __BTeAT(t,-t) (/ eAsBBTeAT.st) eA(t’—t)q(t), te [O,t,], (52)
t

where ¢(0) = qo, q(ts) = 0, and the cost functional
t
J:/zﬂnm, (53)
0

14



is minimized. For the double integrator (18) the control laws (51), (52) become, respectively,

_ 1210 , 6410 6qi0 | 4q
u(t) = M(p +&> ‘w(ﬂ 20), el (54)
6(ts —3t) . A8~ 5t 4 717
u(t) -Wa’"[m(t)— Gty Ma(t), te[0t]. (55)

It can be shown that if the initial condition g satisfies

Tio + 4o = 1, (56)

then the control amplitude satisfies the bound

2M /9 + 482

ut) £ ————, e[t (57)

To design the virtual trap-door absorber controller, we choose k = 4K/3 and m = 4M/3,

corresponding to n = p = 0 in (37). The value of the parameter A will be chosen later to satisfy a
control amplitude constraint.

To compare these three controllers, we let M/ = 1 and impose the control amplitude constraint

lu(t)| < 1. t>0. (58)

To satisfy (38) for the minimal-time controller, we set umay = 1 in (50). In order to ensure for
the minimal-energy controller that (58) is satisfied for initial conditions (56), we set t, = 3v/2 ~ 4.24.
For this value of ¢, (57) is equivalent to (58). For the virtual trap-door absorber, we choose K = 3/7,
so that k = 4/7 and m = 4/3. With these values, the control bound in (40) is equivalent to (58),
while the settling time given by (39) is ¢, \/—TF/Z ~ 4.16.

Remark 4.3. Finite-time stabilization of an undamped oscillator can be achieved by designing
a controller based on Theorem 4.1 where the parameter K represents either the stiffness of the
oscillator's actual spring element or the sum, or parallel connection, of the actual spring and a
virtual spring. The control bound (40) will require modification in this case, however.

4.3.2 Performance Comparison

In Figure 7 and Figure 8 we choose initial conditions of the form g0 = cos 8, g0 = sin8 for
= {0.6,12,...,360} degrees. A comparison of the phase portraits for the optimal controllers and
the trap-door absorber controller is given in Figure 7, while a comparison of the settling times of the
three controllers is given in Figure 8. Notice in Figure 8 that the settling times of the minimal-time
controller depend on the initial condition, while the settling times of the minimal-energy and virtual
trap-door absorber controllers, as mentioned in Remark 4.2, do not. Also notice that the settling
times of the minimal-time controller are all substantially smaller than those of the virtual trap-door
absorber controller, while the virtual trap-door absorber is marginally faster than the minimal-energy
controller.

15



In Figure 9 and Figure 10, we choose two initial conditions, specifically, q1o = cos 8§, g0 = sin 6,
for 8 = 45° and 8 = 135° degrees. The time history of the double integrator plotted as velocity
versus position is given in Figure 9, while the control history is plotted in Figure 10. It can be
seen in Figure 10 that the minimal-time controller is piecewise constant with three discontinuities
in control: switching on at t = 0, switching sign, and switching off when the mass M is at the
origin. The minimal-energy and virtual trap-door absorber controllers each have two discontinuities
in control: switching on at ¢ = 0, and swiching off when M has reached the origin.

As a final performance comparison, Figure 11 illustrates the tradeoff of control magnitude
versus settling time, while Figure 12 illustrates the tradeoff of the control energy (53) versus settling
time. The tradeoff analysis is performed for the single initial condition g0 = cos45° and gy =
sin45°. To generate the data for the minimal-time controller, values of umax were chosen and the
corresponding settling times and energy integrals were computed. For the minimal-energy controller.
values of the final time ¢, were chosen and the resulting values of umax and the energy integral J
were computed. Similarly, for the virtual trap-door absorber controller, values of i were chosen.
and the parameter A was chosen according to (43). The values of umax and the energy integral
J were determined after numerical simulation. The simulations indicate that the virtual trap-door
absorber has a better tradeoff of maximum control magnitude versus settling time than the minimal-
energy controller, and a better tradeoff of control energy versus settling time than the minimal-time
controller.

16
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5 Virtual Resetting Absorbers for Disturbance Rejection

Virtual resetting absorbers, by the nature of their energy dissipation mechanism, are well
suited for removing energy from a system; for example, dissipating finite-energy disturbances such

as a single impulse or a displaced initial condition response. To embellish this description, consider
the following analogy.

Suppose you are floating in the middle of an ocean, in a rowboat that has some water in the
bottom. Here the rowboat is the plant, and the finite-energy disturbance is represented by the finite
amount of water in the bottom of the boat. The analog for the virtual resetting absorber is a bucket,
which can be filled with water from the bottom of the bhoat, and emptied into the ocean, thereby
resetting the state of the bucket. The process of baling the water represents the closed-loop control
used to bring the plant to the desired (dry) state.

Although the virtual resetting absorber is well suited for the finite-energy dissipation problem,
now consider the infinite-energy disturbance rejection problem. Returning to the rowboat analogy,
the disturbance rejection problem might correspond to a hole in the bottem of the rowboat. Now
using the bucket to bale the water may not be a particularly effective approach for bringing the
rowboat to the desired state. A better use of the bucket/control would be to place the bucket over
the hole, so that no more water can come into the boat. While the virtual resetting absorber does
not “place the bucket over the hole,” there is a linear control system that does.

Consider the classical problem of disturbance rejection for an undamped oscillator, or isolator
[7]. Tt can be shown that disturbances at the resonant frequency of the isolator can be completely
rejected by mounting a second undamped oscillator, or absorber, onto the isolator, where the absorber
resonance frequency is tuned to the isolator resonance frequency. The addition of the absorber
subsystem effectively “places the bucket over the hole,” so that the disturbance source is completely
blocked from disturbing the isolator.

There are two basic problems with this aborber design. The first is that the resulting system
now has two resonance frequencies, one below and one above the original isolator resonance fre-
quency. This problem is considered by Snowdon (8] who proposed adding damping to the absorber
subsystem for a solution. This approach indeed is effective at removing the resonant peaks; however,
it also destroys the desired effect of complete disturbance rejection at the isolator natural frequency.

The second problem with the Den Hartog absorber design relates to the claim that in steady
state the isolator is motionless. The problem is that the isolator is motionless only after the transjent
motion is dissipated; however, because there is no damping in the system, the transient motion is
never dissipated, and thus the isolator is never brought to rest as predicted. Returning to the
rowboat analogy, the bucket is placed over the hole so that no more water leaks into the boat,
however, there is still water in the boat that doesn’t get removed, and the boat therefore never
achieves the desired “dry” condition.

It is desirable to design a controller for the undamped isolator that provides perfect disturbance
rejection at a given frequency and stabilizes the closed-loop system - one that plugs the hole in the
bottom of the boat and gets rid of any water left in the bottom. A hybrid controller consisting of a
parallel connection of an undamped absorber subsystem and a virtual resetting aborber - a one-way
absorber in particular - will solve the control problem.



Consider the undamped oscillator plant with hybrid absorber + virtual resetting absorber
shown in Figure 13. Without loss of generality, let A/, = 1, and K; = 1 with appropriate units.

I\’l k2

\/- M,
% ma
ks

Figure 13: Undamped Oscillator with Hybrid Absorber

One particular hybrid controller that puts a zero at the isolator resonance frequency while avoiding
resonant peaks is obtained by choosing k; = a, and m, = a, for some positive number a, and
implementing a one-way absorber with k3, and ms.

The particular design that is considered in a numerical exampleé uses a = 0.5, k3 = 0.5, and
mg = 0.5. The closed loop is given in state-space form by

[ 0 1 0 0 0 0] (g1 ]
_Kitkptky k2 koo .
M, M, M, qQ
, | 0 0 0 1 0 0 @ .
I = 4’1-1:, A= ﬁz; 0 _,_:22_ 0 0 01!’ = q'2 ’ (09)
0 0 0 0 0 1 @
| A 0 0 0 -& 0] [ ¢s |

where ¢,. g2, and ¢z represent the positions of the masses M;, m,, and mj respectively. The
one-way absorber is implemented by monitoring the energy of the (ms,k3) subsytem, given by
E = %mgdg + %kg(q;; — q1)%. When this energy stops increasing, the state g3 is set to q;, and the
state ¢3 is set to zero.

By running a number of simulations, a type of magnitude Bode plot is developed. It is seen
from Figure 14 that the resulting hybrid controller asymptotically rejects sinusoidal disturbances
at the isolator resonant frequency, and avoids introducing resonances at neighboring frequencies.
Figure 15 shows the disturbance rejection in the time domain.

That asymptotic disturbance rejection is achieved with a hybrid Den Hartog/one-way absorber
subsystem is not particularly remarkable since this problem can be readily solved with a linear time-
invariant controller. This is evident from the following lemma.

Lemma 2. Consider the scalar real-rational transfer function G(s) = Z;i(ﬂ"where n(s) and d(s)

s)?
have no common roots, and let w, € IR satisfy n(+)jw,) = 0. Let G.(s) = Z—Z% be an asymptotically
stable, stabilizing, real-rational transfer function description of a dynamic compensator. Then the

closed-loop transfer function Gy(s) = ﬁ-?%)iGLc(?i satisfies Gg(jw,) = 0.

Proof: The closed-loop transfer function is

Ga(s) = G(s) = %&% = ns) - (60)
c 1+ G(s)GC(S) 14 %3-%((—:)1 (l(s) + "(:’17(1:)(3] .
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Approximate Bode Plot of Lossless O-H with 1-Way Absorber
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Figure 14: Magnitude Bode-type plot for the virtual resetting absorber
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Figure 15: Asymptotic disturbance rejection: Position of the mass M, subject to sinusoidal forcing



Since G, is asymptotically stable, G.(juw,) is finite, and

n (]wz)nc (sz )

=0,
de()wz)

and thus

Gcl(]‘vz) = M =0.
a

Lemma 2 shows that, for example, we can use a Positive-Real LQG controller to stabilize the
closed loop, and still maintain the desired transfer function zero.

A potential contribution to the disturbance rejection problem that the virtual resetting ab-
sorber algorithm may be able to provide is suggested by the following conjectures.

Conjecture 4. The virtual trap-door absorber results can be extended to systems of order
greater than two.

Conjecture 5. It may be possible to design a hybrid Den Hartog/trap-door absorber that
will reject disturbances at a fixed frequency and have finite-settling-time transient response.



6

Future Work

The following items are noted as important research directions for further research in the area

of virtual resetting absorbers for control.

o

ot

-1

M

. Further develop the theoretical foundations for systems with virtual resetting absorber control-

lers. Specifically, develop or adapt notation and stability results for resetting control systems
described by impulsive differential equations.

Use a one-way absorber controller to asymptotically stabilize a lossless plant, and prove asymp-
totic stability ~ this may involve some sort of application of the invariant set theorem or
pervasive damping-type arguments.

. Extend the results of Section 4 to systems of order greater than two.

Extend the results of Section 4 to plants with damping.

Investigate the degree to which the implementation of a virtual resetting absorber (one-way
absorber) as a dissipation mechanism gives improved transient performance compared to a
linear dissipation mechanism within the context of the enhanced Den Hartog problem of Section

5.

The modified Den Hartog absorber designs of Section 5 that give perfect rejection at one
frequency as well as providing stabilization, ought to be related to disturbance accomodation
results, for example [9, 10]. The relationship should be investigated.

. Investigate the use of a tunable virtual Den Hartog absorber plus a {unable virtual resetting ab-

sorber for adaptive disturbance cancellation, and investigate the degree to which this approach
may be preferable to using tunable linear absorber subsystems.

Investigate the performance robustness of the one-way absorber controller when the resetting
subsystem is poorly tuned.

Investigate the stability and performance robustness of the virtual trap-door absorber controller
under parameteric uncertainties in the mass of the double integrator. Compare the robustness
of the virtual trap-door absorber design.to the robustness of classical optimal control results.

Conclusions

The work done this semester for this project has yielded the following results:

A new nonlinear control design technique has been introduced.

This control design technique has been shown to have two important variations, the virtual
one-way absorber and the virtual trap-door absorber. ‘
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3. The virtual one-way absorber is (more or less) shown to be a passive controller design, and
thus represents a novel nonlinear passive controller design algorithm.

4. The virtual trap-door absorber has been shown to finite-time stabilize the double integrator
and undamped oscillator.

ot

The virtual trap-door absorber has been shown to finite-time stabilize the double integrator

and undamped oscillator using only position measurements: I know of no other controller that
will do this.

6. Numerous directions for future research are given.

While only linear plants are explicitly considered in this report, the results are in no way
limited to linear systems. For example, the one-way absorber can be used as an energy dissipation
mechanism in a nonlinear system, although the benefits of a one-way absorber compared to a linear
damped absorber have not yet been determined. Furthermore, many nonlinear systems can be
effectively linearized. For such systems, it may be possible to use the-trap-door absorber approach
to finite-time stabilize the dynamics. In order to use the trap-door absorber results developed this
semester, the linearized system would have to be of order two. Clearly, the extension of the trap-door
absorber results to systems of order four or more would greatly increase the power of the approach.
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1. Introduction

I have started this project with the goal of studying stabilization problems with driftless
systems namely stabilization of trajectories, stabilization to a point etc. This was motivated by the
many practicdl applications of systems which fall into the category of driftless systems. Trajectory
generation and therefore trajectory tracking are important aspects in the motion planning of these
systems as some of their applications involve autonomous motion, docking/parking etc. When
conditions like rolling without slipping(nonholonomic constraints) are imposed these system would
also fall under the class od Nonholonomic systems. The kinematic model of a car fits in this
category and is the subject of the study here. The kinematic equations of the mid-point of the rear
axle of the car is given by

- (:OS@ C(ﬁ SA (S

@ (osph <

- U, )
G Uy

@ = R

N N
= [

Using the yaw velocity of the car as an input instead of the steering velocity, the ¢ equation

drops and we have the (sec [1]).

3= Wwlosd
{S - U\%ﬁ«\a
& = W 2)

This also results in a bound on the controls as shown in Fig. 12[1]. The constrained
controls have to remain in either of the two triangles in the figure. The fact that yaw motion-w is
not possible at 0 forward velocity-v can also be observed from the plot. The corresponding

equations for a point € distance forward from the midpoint of the rear axle are[1]
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By using the transformation R(©):(x,y)--->(z1,z3), the set of equations (2) become

®
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:'..13 = Z

where ® = u2 and v = ul. Without the second term in the right hand side of the 1st equation of (4)
the system would be in the so called chained form[2]. This will be discuésed later. (3) and (4) are
used in this study. What follows is the study of stabilizers given by [1],[2] & [3] for these
equations. R(Q) is

COS 8o g“e’b

5’% ABo — (OSQ‘O
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2. Study of the Controllers of [2] and [3]

2.1 Introduction to the controllers

In [2], the authors propose an exponential controller(stabilizer) which stabilizes the car in

(4) to a point. The control law uses a homogeneous norm p(z) and is given as follows

Wi= -¢z, + G 2z Cos.m\
(=)
Was 2w oy, 5’31 Siank
SCS) (5)
5[ a\Y v
(’(‘2\: ('-Z:’-\-Zf*rlg> " Cij's >0

The above law stabilizes the system exponentially with respect to the homogeneous norm p
and hence is called homogeneous controller(H). Note that the controls are smooth except at the
origin but continuous everywhere. '

As [3] works with the same system and with a similar control structure, it is appropriate
to study that controller alongwith. It offers a globally asymptotically stabilizing(GAS) control law

using saturation functions and is given by

2
W, - —cnz—C0 (Z) (Sal-Gort)
Uy = —Cq2a — ¢y, 23 Co&(@_\')

(6)
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This contreller is smooth everywhere and is henceforth also referred to as smooth

controller(S). Both the controllers in concept derive from [4]



2.2 Simulation with the Controllers (5) & (6)

The two controllers were simulated on the system given by (4) using MATLAB. Figures
1-10 correspond to these simulations. They are done to verify/study convergence and to study the
qualitative nature of the control laws. The system did not converge with C22>0 as specified by (5)
([2]), hence in all simulations using (5), C22 is chosen <0 (as -3). Similarly the parameters given
in (5) for the (S) did not give satisfactory results either (see fig. 2a) . The chosen structure(sign) of
the parameters for (S) is however in accordance with the one given in [3]. Figures 3 and 7 give the
system trajectories in R2 for (H) and (S) respectively. The 6 different initial conditions studied are
(x0, y0, 80) = (-.1,-.2, 0), (.3, .2, 0), (-.2, 0, -pi/2), (-.11, .15, pi/2), (O -.2,-pi/2) and (.2,-.1,-pi/2)
respectively. These real coordinates are transformed into Z coordinates and the systems simulated
and the obtained trajectories transformed back to (x,y,0) co-ordinates. In all simulations the goal

wa to stabilize the system to Xr = (0,0,0).

I he tollowing observations can be made:

* Both controllers tend to first pull the system into a sector like region and then slowly approch the
origin through movements similar to the 2nd lie brackett movements(call these Ly) - resulting in a
net y directional convergence. Also the system is first stabilized w.r.t x in the beginning in both the
cases.

* (H) stabilizes exponentially (w.r.f p) where as (S) does a poor job relatively though it is not fair
to use the homogeneous norm p as the benchmark for (S). But it can be seen that Ly movements of
(S) tend to be circular around the origin giving very small net movements.

* The inputs, states etc., with (H) exhibit the same exponential behaviour (Fig. 5,9 and Figs 6,10 )
* As the system uses sinusoids of low amplitude to converge, one might wonder in a real vehicle
will the plant dynamics (approximated to kinematics in these models) act ‘as a filter and produce no

movement at all when the system is close to Xr.



3. Other Controllers

[1] proposes a very interesting controller which can do point to point stabilzation. It uses a
two stage controller and is the most convincing controller intuitively. However, the author feels that
stagel will not take the system to an invariant manifolds as required for sage2 controller to work.
Because the system reaches the region where Vdot = d(V)/dt = 0( V() is the lyapunov potential)
only exponentially and not in finite time.(see fig. 11) Also Vdot = 0 results in many invariant

points and regions.



1’0

2 64

0= €0-

0=

S0-

1

1

co

(t'p9~)=0x
10 0

[g)salj0nu02 Yroows

20~

€0~

0=

90~

8'0

L°0-

T T

T

1

T

[2liajj01u00 snoauabowoy

0s

1

ME] [0JJU0D YlooWS

il

ME} |0J1u0d snoauabowoy

SC-



v *Big
awn

0S 14 oy 41 o€ [*14 (14 Si 04 S 0.
r ~7 Y T T T T T T T Sy

- V|
—45°€-

- ﬂl
4S8°¢-

woljoq 0} doy woy

S
9
v'e
1
2 —suompuod
[eniul 0} spuodsauod ydesb ay)

8ouabiaauoo [enuauodxe Joj Sunjoayd.

(I)6oy

e

0

520 20 S1°0 10 S00 0 s00- 10— SI'0-

¢ "bi4

20z
Geo-

T T T

T T T T

Jajjonuod snosuabowoy B yim
SUOIIPUOD [BN1Ul JuaJayIp 10} dueld A-X By} UC pasIaAel) SaLowalel)

co-

St'0-

L1o-

S0°0-

S1°0

0

T



09 oy (74 oP
0
i
4
09 oy 0e 0
NI
Fl
0
}
09 oy (014 0
Nl
0
4

aw 'sagn g In

9 014
09 ov 0z o—n
Lo
|,
4
09
2
09 oy 02 o _
0
tn 8
4

g B4

09 oy (014 0 09 oy (074 0
2= [
L= -
0 0
i 8
09 oy (074 owl 03 oy 0c owl
g <><><D<>q>GxDGbnlm, 0 b=
1 0
2 l
09 oy (074 0 09 (074 (074 0
1~ G'0-
S'0-
o 0
0
X
S0 S0

aw "SA Blayl'A'x



"8 ol 2 614

£0 STl c0 S0 1’0 S0°0 0 §0°0—- 10— SO~ N.m.lo..
T T ) 4

4151°0-

440~

500~

wonoq o} doy woyy

P

(I)6oy

€ -4S0°0

s 410
L ~—SUORIPUOD

leniul ey} 0} spuodsalsod ydesb sy

Jgo [ebajjonuod 5 e yum g S2'0

eouabieauod ay) Bukjuaa SUONIPUOD [BlIUI JuBlayIp Joj sue|d A-X ay} uj pasiaAel} sauoloales



‘01 "By

09 oy (474 0 09 oy 02 0
50~ b=
0 0
in
G0 I
} 14
09 oy 074 0 03 oy 02 0
p- e~
2= 0
0 4
4 4
0% oy o¢ ON.. 09 oy 02 0 -
Fnl
0
0
1n
} 1

ewmsagny 1n

6 615
09 ov 0z 0 09 ov 0z 0
2- c-
X
- L~ O
o 0
e184) A
_ , _
09 oy 0z - 09 ov 0z 0,_
0 b=
X 1 0
£
2 3
09 oy 0z - 09 ov 0z 0_
50~
O . » .
. 0
x VV VY
| 50

awg "sa Bley) @ A'x



cl-'oid

! ! ' ! i

w10} paueyd O} UOHEILIOJSUBS) BY) JO BSNEIAQ |04JU0D papunoq

(14




References

[1] G. J. Pappas and K. J. Kyriakopoulos. Stabilization of non-holonomic vehicles under kinematic constraints. In
International Journal Of Control, pages 933-947, 1995.

[2] R. T. M’closky and R. M. Murray. Experiments in exponential stabilization of a mobile robot towing a trailer.
In ACC, pages 988-993, 1994.

[3] A. R. Teel, R. M. Murray and G. Walsh. Nonholonomic Control Systems: From steering to stasbilization with
Sinusoids. In CDC, pages 1603-1609, 1992.

[4] R. Murray and S. Sastry. Steering nonholonomic systems using sinusoids, In CDC, pages 2097-2101, 1990.
[5] G. Walsh, D. Tilbury, S. Sastry, R. Murray and J. P. Laumond. Stabilisation of trajectories for systems with
Nonholomic Constraints. In JEEE T. A. C 39, 1994,

[6] D. Tilbury, R. Murray and S. Sastry. Trajectory generation for the N-trailer problem using Goursat normal form.
UC-Berkeley ERL memorandum, 1994.

[7) M. Fleiss, J. Levine, Ph. Martin and P. Rouchon. Nonlinear Control and Lie-Backlund Transformations:
Towards a new differential geometric standpoint. In CDC, pages 339-344, 1994,

[8] M. Fleiss, J. Levine, Ph. Martin and P. Rouchon. Flatness and defect of Non-linear systems: Introductory theory

and examples. In International Journal Of Control, pages 1327-1361, 1995.



Nonlinear Control Final Project

Craig Garvin - EECS 662

Abstract

A real time ion flux estimator was designed and implemented as a computer simulation. A reduced
order model of plasma dynamics was developed in order to serve as a nonlinear estimator. Because of
the multiple time scales in the system, the method of singular perturbation was employed to decouple
the fast and slow dynamics of the system. Two different estimator strategies were evaluated. A linear
technique based on Jacobean linearization about an operating point was compared to a non linear
constant coefficient extended Kalman filter. The linear observe gave poor performance, while the non
linear observer was capable of estimating jon flux with less than 25% error over a 50% variation in
power and a 50% variation in pressure from the nominal setpoint.

Introduction

Dynamic state estimation is a valuable tool for
estimating quantities that are difficult to measure
directly. The reactive ion etching (RIE) process used
extensively in semiconductor manufacturing is an
excellent testbed for estimator design. As in all
manufacturing processes, optimal performance is
achieved when processing parameters are maintained at
ideal levels. This goal is difficult to achieve in RIE
because many of the important processing parameters
are either difficult or impossible to measure. State
estimation offers us a way to improve these
measurements. By creating a simple model of the RIE
process, the accuracy of available measurements can be
improved by comparing these measurements to model
predictions. Probabilistic methods are used to weigat
estimate and measurement in order to arrive at an
optimal estimate of the actual quantities. The goal of
this project is to develop an ion flux estimator that gives
a better estimate of this quantity than is currently
available.

Application Background

In this section, sufficient background in the physics of
Reactive Ion Etching is given in order to place the
mode] and estimator development in a relevant context.
RIE is one of the most used processing steps in the
manufacture of semiconductor devices. To date, the
process control has lacked robustness and technical
sophistication. The University of Michigan is involved
in a major research initiative to improve the control of
the etching process. Hopefully this project can provide
some of the groundwork for parameter estimation and
control.

C. Garvin ST

Reactive lon Etching is the main way by which material
is selectively removed from semiconductor wafers, thus
allowing the generation of small scale features. RIE can
be simplified to two components: chemical etching,
which is highly selective, and physical etching, which is
highly directional. A schematic of the RIE system is
shown in figure 1. The process involves placing the
walfer to be etched on the positive electrode of an
evacuated chamber. A plasma of specific gasses is
formed by electrical excitation, resulting in reactive,
energetic ions. As a byproduct of the ionization effect,
an electric potential develops at the edge of the plasma
near the electrode surface. This region is referred to as
the sheath.

Generator

fig. 1: Plasma Chamber Schematic

The combination of ionization and sheath potential
result in the chemical and physical etching mechanisms.
By proper choice of plasma gasses, species are formed
in the plasma that react with exposed silicon, but not
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with the mask material. This results in etching
selectivity: the ability to etch the desired material
without affecting the masked areas. The combination of
sheath electrical potential and presence of positive ions
results in the acceleration of these ions towards the
surface of the wafer. The ion concentration is
multiplied by ion velocity to result in the ion flux, the
main quantity that we are interested in estimating.
Depending on the surface material and the energy of the
ions, the ion collision causes the surface molecule to be
ejected, referred to as 'sputtered'. The advantage of
physical etching is the enhanced anisotropy achieved, as
shown in figure 2. Because the ion velocity is
perpendicular to the surface, vertical etches with
straight sidewalls are possible. The result is smaller
feature sizes and more dense component layouts.

Ions

fig. 2: Anisotropic Etching

It is clear from the above discussion that control over
the chemical and physical aspects of the etch is
desirable. At present information on concentration of
reactive spedies is difficult to obtain, and information on
ion flux almost impossible to obtain. The goal of this
project is to use a simple nonlinear dynamic model of
plasma generation in comhination with a static equation
relating ion flux to easily measured quantities. A
weighted average of thesetwo is used to obtain an
optimal estimate of ion flux.

Modeling Background

The chemical and physical processes that occur in a
plasma are extremely complex and rather poorly
understood. Additionally, little work has been done to
date on understanding and modeling these processes
for the purpose of real time control. A complete

C. Garvin .

quantification of the RIE process requires close to one
hundred chemical states, and simulations of this level o
complexity can take days to run on an engineering
workstation. Fortunately, work has been done to
simplify the models in order to reduce the system to a
tractable set of equations. A major first step in
simplification is the division of the RIE process into two
subsystems, as shown in figure 3. Plasma generation is
viewed as one subsystem, wafer etching as another.
The inputs to the plasma generation subsystem are gas
flow rate into the plasma chamber, RF power, and
throttle position. These inputs combine to produce
reactive chemical spedes, or radicals, ion flux, polymer
precursors, bias voltage and pressure. These states then
act as inputs to the wafer etch process, whose outputs
are etch rate of the substrate (Rate #1) and mask (Rate
#2), and etch direction.

Throttle Position )/ \Vbias N /" \EichRate-#1
Pressure
Plasma »{ Waler
Gas Flow Rat Radicals] Etch Rate- #2
2T 222 5! Generation| l:n ;;u;] Etch >
Applied Power Process o> Process ik Dicection
L"&___)““""";_/“’

figure 3

The current thrust of the University of Michigan
controls research is to improve the observability and
controllability of the plasma generation process. It is
believed that an improved plasma generation process
will result in improved wafer etching, by simple
cascading. Observing the Plasma Generation Process is
a major challenge. The bracketed terms in figure 3:
radicals, ion flux, and polymer precursers, are
quantities for which no reliable, industry compatible
measurement technique has been developed. Detection
and measurement of radicals is achieved in research
laboratories with the use of delicate and expensive
instruments and time consuming measurements.
Progress is currently being made at the University of
Michigan in measuring important radicals using faster
and less expensive techniques. '

To date, no proven technique exists to measure ion flux.
We will tackle this problem by simplifying an existing
plasma model to form a dynamic model of ion
formation and ion velocity. We will use existing simple
plasma models to convert easily measurable quantities
to a static estimate of jon flux. We then use relative
confidence estimates to blend these two estimates into a
final estimate. We then test the estimator against the
predictions of the more complete plasma model in
order to evaluate the performance of the estimation

algorithm.
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The Plasma Factory Model

Researchers at the University of Michigan have
developed a greatly simplified plasma model that has
shown reasonable correlation with experimental
measurements. This model will be referred to as the
real time simplified plasma factory or PF model. The
PF model uses CF, as its input or ‘feed gas’, and

calculates the concentration of the main radicals
dynamically. This model is used as a starting point for
development of a simplified ion flux model.

A qualitative description of the plasma generation
process is useful. When low pressure gas is subject to
an electric field, free electrons are accelerated in the
direction of the electric field. At higher pressures, these
electrons immediately encounter other molecules and
are reabsorbed before they can do anything interesting.
As pressure drops, the distance between molecules is
sufficient that the electrons can gain enough energy that
when they collide with molecules in the gas, they cause
the molecules to dissociate, producing new radicals and
more electrons . The product of these reactions alter the
pressure in the chamber and the conductivity of the gas.
Additionally, a potential is developed in the edges of
the plasma which accelerates positively charged
particles towards the surface of the electrodes.
Typically, the potential is much larger in the positive
electrode sheath than the ground electrode sheath. As a
result, the bias between the two electrodes, Vbias, is an
accurate measure of sheath potential.

Analysis of the plasma dynamics is made difficult by
the enormous variation in time and magnitude scale of
important processes. It is obvious from the above
discussion that the electron concentration is an essential
variable affecting plasma generation. Electrons are very
sparse, comprising less than1 % of the species in the
plasma. Likewise, the ions that result in a major part of
the etch process comprise less than 0.1 % of the species
in the plasma. Additionally, electron, ion, and bias
voltage dynamics are almost instantaneous, whereas
generation of major plasma radicals such as CF; and F

has time scales in the seconds.

The existing PF model calculates the ‘fast’ quantities
such as electron density, electron energy, and bias
voltage using a large look-up table indexed by power
and pressure. One of the main assumptions of this
project is that RF power into the plasma chamber and
pressure inside the chamber are the dominant factors
affecting plasma parameters. It shouid be noted that
the ‘fast’ quantities do change slowly with time, but

only as a function of pressure changes resulting from
slower reactions.

The model tracks 5 states with the equation set shown
in figure 4. Fin is the flow rate of feed gas into the
chamber, and acts as one of the inputs. Fout is the rate
of gas flow out of the chamber and is a function of
chamber pressure and throttle angle. The rate
equations separate into two classes, those that are a
function of particles collisions, usually an electron and a
radical, and those which occure on the walls of the
chamber. Much of the model complexity is not seen in
the equation set because electron concentration, and
rate constants k1 .. k7 and kwall_1 .. kwall_3 are complex
function of power and pressure.

d |CF,

[dt4] = Fy, "kl[e-][CF4]+k2[FICF3]— Fou "XCF,
d[F -
_d[_[1=k3 [e ][CF4]—k4 [FICF:&]_L'WHII_I[CFz]- F"“‘ "XF
d {CF -

Ei :3] = ks[e ][CF4]'kle][Cl’a]““Kamll_z[CFz]‘ Fou %,
d[CF, i}

[dt ]=k7[e ][CFd]_kwall_S [CF )= Fou 2,
d|Ar
_g—[_-]. =LlnAr — Foul “KAr

Although not directly stated, these equations govern the
pressure dynamics of the system, as the pressure is
given by:

P= RT([CF4]+ [Fl+[CR]+[CR]+[Ar]) M

Similarly, the flow of species out of the model is-
governed by the partial pressure of the species:

Xx = - &)
(CE )+ [F1+[CR ]+ [CR )+ [Ar)

This division by the states can make for rapidly
increasing complexity, and is one of the issues that must
be addressed in model simplification.



Simplifying and Adapting the Model

Although the PF model is a great simplification from
previous approaches, it requires substantial
modification before it can be used for the purpose of jon
flux estimation. The reaction set must be simplified,
ions and ion flux dynamics must be included,
measurement feedback must be added and the model
must use continuous functions rather than table look up
to express reaction coefficients and other values.

A first step towards simplification is combining electron
concentrations and rate constants. Since both are
determined as static functions of power and pressure,
there is no loss of accuracy in grouping k*[e] into a
single term.

The next logical step is eliminating CF, and Ar from the

reaction set. Eliminating argon is reasonable, as its only
purpose is in fluorine estimation. Eliminating CF, is
reasonable because its concentration is an order of
magnitude below that of the CF,, CF5, and F

concentrations.

The initial simplified model keeps track of three
reactants, and calculates pressure using equation (1). A
problem arises with this approach. Since the spedes are
formed in the following reaction:

CF, ->CF, +F 3)

it is no surprise that the CF; and F states are

unobservable when pressure is used as the only output.
Since they are formed in equal quantity in equation (3),
changes in pressure are equally attributable to CF; or F.
An initial idea was to feed back a measurement of
fluorine in order to improve observability. This is
compatible with existing work on fluorine estimation,
but a more logical solution is simplify the model even
further.

Our main goal is to estimate ion flux. Since ions are
formed almost exclusively.from CF,, and formation rate

and ion velocity are functions of power and pressure,
then the only three states needed in order to estimate
ion concentration are CF,, pressure and power.
Accordingly, we can group all the plasma species
together into a single pressure state whose dynamics
are a function of the number of additional gas
molecules formed when CF, disassodiates. In addition
to reducing the model by one state, the rate constant
equations are greatly simplified, as these are now
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functions of pressure directly, rather than substituting
the quantity ([CF,] + [CF,] + [F]) for pressure.

The model so far:

d[CF, CF.

4[] = F;, = K¢, (pres,pow)-[CF4 ] +L—4] Fou (pres)
dt ’ pres

d pres

TR Fy, + K cr, (pres, pow)- pres — F, (pres)

Several reasons motivate the inclusion of power as a
model state. Since non linear systems which are afine in
the control are more easily analyzed, expressing the
power delivered to the plasma as a state greatly
simplifies the formulation. Additionally, although the
power supply voltage is unquestionably an input, the
power delivered is a dynamic function of the plasma
condition. As the.plasma’s chemical composition
changes, so does its resistance. An additional
component in the system is the matching network that
matches the plasma load to the generator, allowing
maximum power transfer. The matching network
functions by moving variable capacitors, whose time
constant is on the order of 1 second. As a result, power
delivered to the plasma is a dynamic function of the
plasma states. At present, an accurate model of power
dynamics is not available, so a first order lag is used.

d pow
dt

=T (-pow + F,)

The model may need additional coefficients to account
recombination dynamics. It is well documented that as
pressure rises, recombination reactions are favored, and
these cause the dynamics to stabilize. In order to obtain
proper equilibrium values for the states, a linear
recombination coefficient was included in the pressure
dynamics and CFy dynamics and tuned to give results

that agreed with the larger simulation. It is not clear
whether these coefficients represent corrections of
inaccurate coefficients or a physically different
recombination reactions.

Modeling the ion concentration and ion flux dynamics
is essential to developing an accurate estimator, but the
ion dynamics are difficult to represent and require
careful handling. The ion flux equation is given by:

Fi = Vb-ns (4)
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The ion flux (I} is equal to the ion density at the edge of
the sheath (1) multiplied by the jon velocity at the edge

of the sheath (V). V, can be approximated by the Bohm
velodity Vy:

kT,
m

Vp =

where T, is the electron temperature, k is the boltzmann
constant and m is the ion mass.

A reasonable course of action is to determine the jon
concentration from the dynamic equations of ion
concentration, then multiply by V}. The differential

equation can be approximated as

d
—7[:%] = K, (pres, pow)-.[CF4 1-Vo-ns ©

This equation is of little value for designing an
estimator because of the numbers involved. Ion
concentration is much lower than CF, concentration
because the Bohm velocity is 100,000 times higher than
the ionization constant. As a result equation (5) is
effectively decoupled from the rest of the system. Our
goal of estimating ion concentration by making accurate
estimates of the other states cannot be met.

Again, the solution to this problem is found by
returning to the goal of the project: ion flux estimation.
If we take the derivative of equation (4), we obtain an
expression for change in ion flux with time:

— = ——--n-‘l + Vb.—— (6)

Since V) changes with power and pressure, it is
effectively constant compared to the rate of change of
ion concentration. Accordingly, equations (5) and (6)
can be combined to give

dT;

-;;— Vb -(K,‘z [CF4]— Vb -n,) (7)

VDb ns is ion flux, and now we have an equation for ion
flux dynamics explicitly:
dT;

— = Vo(Ki [CR]-Ti)  ®

This equation still presents a problem. Although ion
flux is now strongly dependent on other states, the time
scale is orders of magnitude faster that other states.
This is a textbook example of a singularly perturbed
system, and because of the way the equations are
formed it is extremely easy to separate the fast and slow
systems (we just did). As long as the fast dynamics are
stable (which they are), we can solve for ion flux by
assuming that (8) is a static equation and setting the
right hand side equal to zero. Furthermore, since the
method of singular perturbations allows us to separate
the dynamics, the fast system (ion flux dynamics) can be
expressed as a three input, single state system. The
other states of the system are so slow that they can
effectively considered constant inputs to the ion flux
system.

The final step in modeling the plasma dynamics is
determining analytic functions for the rate constants
and electron temperature. As can be seen in figure 4,
three dimensional plots of these parameters show them
to be smooth functions of power and pressure.

lonization Constant vs power and pressure

pressure n Torr 0003 100

fig 4: Ionization Coefficient vs. Power and Pressure

A least squares algorithm is used to fit a second order
proportional and inverse polynomial function to the
data. In order to properly interpret the polynomial
coefficients, power, pressure and output variables are
all normalized. Since inverse functions are used,
variables are normalized to 0.5 to 2.5 in order to avoid
division by zero. To maintain simplicity, only the four
largest coefficients were kept for each parameter.
Further simplification is achieved by fitting a
polynomial function to the square root of electron



temperature rather than fitting to electron temperature,
then taking the square root. All data fits with less than
5% error, and the following equations are obtained:

1285 03803
<+ -—

Kcp, =—0.4549 + 0.6245 - pow

pres pres: pow
Kz =-06775+ 2143, 05503 | 0.7803
pres pow pres - pow
'\/Te- =1177-0.5846 - pres +- 1.032
pres

Since normalized power and pressure are already used
to calculate coefficients, it is an added simplification to
express the pressure dynamics, CF; dynamics, and flux

dynamics in terms of normalized pressure. The
conversion from concentration to partial pressure is
simple and flux can be expressed as a rate of partial
pressure per second.

Measurement Feedback

The model can now be used for estimator design.
However, a suitable feedback must be determined in
order to implement the design. The most common
estimation problem involves noisy signals: The actual
parameter of interest, corrupted by noise is available to
the outside world. In the case of jon flux estimaton, no
measurement however noisy is available. What we can
do is create a static estimate of ion flux based on a
different theory and use the combination of static and
dynamic estimate in proportion to their relative
certainty. The Child Langmuir law can be used to

derive an equation for jon flux:

]2
T =k——— 9
’ Vbias )

where [ is the total current into the plasma and k is an
empirically derived fitting constant. This
‘measurement’ is useful because it is constructed from
readily available measurements of electrical
parameters. Two other readily available measurements
are also used: power into the cell and pressure. A
measurement of CF, is not used because measuring

chemical spedes accurately is difficult and costly. Itis
hoped that the simple dynamic model is sufficently
accurate to estimate CF, concentration power and
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pressure.

Estimator Design

Two separate estimator designs are used. An estimator
based on a Jacobean linearization of the dynamics is
designed. Simulation shows this approach to be
inadequate, so a non linear estimator is developed.

In order to design a linear estimator, an operating point
must be chosen about which to linearize the dynamics.

A typical processing point of 400 watts input power, 25
sccm (standard cubic centimeters per minute) CF, flow,

and 12.5% throttle position is chosen. This results in a
pressure of 18.75 mTorr ( approximately 2% of
atmospheric) a CF, concentration of 1.0 E14 cm-3

(particles per centimeter cubed) and ion flux of 1.25 E14
s-1 cm-2 (particles per second per square centimeter).
These values are obtained from the PF simulation and

are input into the Jacobean of the nonlinear equations.
The result is:

(019 0024 —0.049 0 1 -18
A=|0099 -0.046 0049 | B=[0 1 =75
0 0 -l 10 0
010
“=lo o J

A linear quadratic estimator is designed using this
linear model. Since the measurements used for the
dynamic model are relatively noise free and the
dynamic model of the system is in question, this is
reflected in the choice state and measurement noise
matrices. Consideration is also given to limiting the
measurement feedback gains in order to limit the risk of
instability. The following state and measurement
covariance matrices were used, resulting in the
following estimator gain matrix:

0001 0 O 005
Ow=| 0 0001 O ny=[0 0.3}
0 0 000l
0.0616 ~0.001
L=| 0.417 0.0005
0.003 0.016
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Since a non linear estimator will be implemented,
special consideration must be given to its stability. The
stability of the LQG based linear estimator is well
established. The extended kalman filter stability has
been proved for both continuous and discrete case, but
stability with constant coefficients is not completely
certain. A simple solution at this early stage is to limit
the magnitude of the feedback gains.- As we shall see,
even with moderate gains, the estimator quickly
converges the measured values. The relationship
between actual and estimated CF; concentration is

mostly of function of model accuracy and and only be
slightly influenced by state feedback.
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figure 5: Linear Estimator CF, Calculation

Estimation methodology for the jon flux dynamics (8)
is in some ways simpler, yet in some ways it is more
unclear how to proceed. Since there is only a single
state in the perturbed system, we write the estimator
equabions as :

dT; : -
-&7' = V(K- [CR ]~V -n5)+ LO-5) (10
This equation is solved statically by setting the time
derivative to zero. The question of an estimator gain
must be addressed. The most well documented
approach is a probabalistic one, where we estimate the
relative uncertainty of the state and measurement. The
way our system is formulated, the measurement is
imprecise but not uncertain. Because of the nature of
the errors in the system, it is unlikely that a more
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sophisticated way of handling stochastic variation will
be advantageous. Accordingly, it makes sense to use a
simple constant gain feedback that reflects the relative
accuracy of the static and dynamic ion flux estimates.

Linear Estimator Performance

Despite the fact that the system dynamics are stable and
relatively simple, the linear estimator performs poorly.
The states are observable given power and pressure
feedback, but the linearized dynamics fail to capture the
relationship between CF, concentration and the

measured states. As seen in figure 5, the linear
estimator does a very poor job of estimating CF.

Since the power and pressure are accurately
determined, changing the estimator gains will no effect
on the CF, estimate. The only way to improve the
linear prediction is by changing the linear model from
the values obtained by Jacobean linearization.
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figure 6: Linear Flux Estimate

Given that the CF, estimate is so far off, we can expect

the flux estimate to be equally bad. As can be seen in
figure 6, the flux error is tempered by the static .
estimator which is quite accurate. Four values are given
in graphs of flux. “flux” is the actual jon flux, which is
not available to the estimator. “meas’d flux” is the flux
calculated by the static model, eqn (9). “ol_flux” is the
dynamic flux estimate, eqn (8). “est_flux” is the
weighted average of equations (8) and (9).



Clearly, in order to arrive at a better ion flux estimate, a
better model of the relationship between the quantities
we can measure: power and pressure, and the
quantities we estimate: CF, and ion flux, is needed.

This can be achieved through the use of a non linear
model of the dynamic and static relationships.

Non Linear Estimator

Before developing a non linear observer, we must
address the observability of the non linear system. First
let us consider the ion flux dynamics. As discussed
previously, these can be separated from the slower
dynamics by the method of singular perturbation.
Although from a physical standpoint, we cannot
measure jon flux, the system is observable from a
control systems standpoint, since the model produces
and output which we compare to the static estimate.
Accordingly, the ion flux dynamics form a three input,
single state, single output system that is trivially
observable.
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fig7: Non Linear CF, Estimate at Nominal

Operating Point

We can evaluate the nonlinear obsevability by taking
successive Lie derivatives of the output and
determining the null space of the resulting distribution.
This calculation is performed in appendix 2, and the
resulting empty null space indicates the system is
mathematically observable. We can take singular vaiue
decompositions of the linearized equations at
representative operating points to get an idea of the
relative impact of states on the output. This gives an
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indication of the relative magnitude of the effect of the
states on the output. The singular value decomposition
at the chosen operating point is representative:

173
SVD(®) =] 112
0.10

The ratio between largest and smallest value is about an
order of magnitude. This is not ideal, but is certainly in
the range where we can expect the state to be detectable
above the noise background. As the system is
observable, it is reasonable to proceed with a non linear
estimator based that uses the non linear dynamic model
and constant feedback gains. As discussed earlier, since
this is not a stochastic problem, there is not likely to be
much gained from the use of dynamic feedback gains
and a definite computational price to be paid
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fig8: Non Linear Ion Flux Estimate at Nominal

Operating Point

The performance of our estimator is evaluated at the
nominal operating point: 400 watts input power, 25
sccm flow, and 12.5% throttle opening. As can be seen
from figure 7, the CF, estimate is much better than in

the non linear case. This is not surprising, with a more
accurate model to relate power and pressure to CF

concentration, more accurate results are expected.
Given a more accurate calculation of CF,, figure 8 is no

surprise either. As can be seen, the flux estimate closely
matches actual values.
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Appendix 3 gives CF, and flux estimates at different

power levels and different input flow rates. The
accuracy of the estimate is a function of relationship
between static flux estimate, dynamic flux estimate and
actual flux values. If, for example, the static estimate
over calculates flux, and the dynamic estimate under
calculates flux, both by a constant percentage
regardless of operating point, then the total estimate
will be accurate. If, as can be seen in appendix 3, both
estimates predict the same erroneous value, then there
is nothing that the estimator as designed can do to
remedy the situation. Even when the estimate is
inaccurate, the magnitude of error is comparatively
small. Considering that almost nothing is available to
date to measure ion flux, if these estimates hold up
under actual operation, this system will be a significant
improvement.

Conclusion

At least in simulation, the estimator shows promise.
The main area requiring improvement is in the
modeling of the system and of the feedback paths. As it
stands, the ion flux esimator has no feedback to
‘reality’. Since we cannot measure jon flux, we can
track the static flux estimate very closely, and track
power and pressure exactly, and still have an erroneous
estimate with no indication that anything is wrong. The
likely approach is to include a feedback of etch rate,
cwrrently being developed in our group, along with
some probabilistic causal models. This estimator can be
included in a larger scale etch rate estimator. In this
way a feedback path is available. If the etch rate
deviates from predicted values, a model can be used to
determine which of the etching inputs is likely to be
incorrectly estimated. This feedback can then be used
to modify the flux rate estimate.
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1. Introduction

In this project the stabilization problem for a simplified planar model of a tightrope walker
is studied. The goals of this work are to model and analyze the problem, specify some
performance criteria, design several controllers that achieve these criteria and evaluate the
performances of proposed controller.

First, a simple model is considered and the equations of motion are derived. Then, the
resulting system is analyzed and several control techniques are applied to stabilize the
system.,

Later, the model is revised to obtain a more accurate model and the equations of motion is
derived. Then, these equations are normalized and by using preliminary feedback
transformation the relationship between this problem and the nonlinear benchmark
problem is established. Using this relationship, a controller is designed and its performance

is evaluated.

Finally, the conclusions of this work and suggestions for future work are presented.



2. The Tightrope Walker System Model

The planar model for the tightrope walker is shown in Fig. 1. This model involves a body
of mass M and length L whose lower end is hinged to a fixed surface. A balancing bar of
mass m and length / is hinged at its midpoint to the upper part of the body. The moment
of inertia of the body and the balancing bar about their respective center of mass are / and
i , respectively.

Fig. 1. The tightrope walker model.

Denoting the torque applied to the bar by 1, the equations of motion are given by

2 .. -
ML a5 1410+ i0- L 4 md)gsin® =0
4 2 (1)
iéb+]é='t
2
Let B= ML +md*+1 and N = (Mzi-!—md)g so that



B+1)0+i¢—Negsin0=0
(_ 1)- iQ—Ngs @
ip+70=1

Defining the states of the system as x, =6, x, =6, x, =@, x, =0, the equations (2) can

be written in state space form as

1T = 17 07

N -1

. —sin x, )
2|

x, = *, + 0 u (3)
e =N . _1.+l

_x4_‘ _?sm X | _1. B_

The equilibrium points of the system are in the form x,=[0 0 x, O]Tor

x,=[x 0 x, O]T, where x,, is an arbitrary constant. This implies that the origin is not

an isolated equilibrium point. Furthermore, the Jacobian linearization at origin

—'- r~ —— _ [— O —
: o 1o o
z, —5 000 Zy E
z"=ooo1z3+o“ (4)
1Y 6 0 0 2, L
z,] LB =72 i Bl

has eigenvalues A, =0, X, =0, A, =-/N/B, A, =+/N/B. Thus, the origin is a
critical point of this system. Fortunately, it is controllable, so that the eigenvalues of (4)
can be located arbitrarily.

Let the output be y =6 then

v . 1
=—SsSinnx, ——1u
Y= AT



which implies that the relative degree r of this system is 2 and the zero dynamics is

governed by

=0 5)

This equation implies that (3) is a non-minimum phase system.



3. Controller Specifications

Having derived the state space equation for the tightrope walker, we want to design a
controller that satisfies the following criteria:

1. The closed loop system is at least partially stable in x, =6 and x, =6.
ii. The closed loop system exhibits good disturbance rejectioh.

i11. The control effort is reasonable.

iv. The settling time behavior of the closed loop system is acceptable.

v. The closed loop system is robust with respect to parameter variations.



4. Controller Design

Our first controller is based on the Jacobian linearization of (3) at x,,=[0 0 =/2 0]

and u,, = 0. First, we design an LQR controller for (4) as
u=-Kz (6)
and using and close the feedback loop of the nonlinear system by

w=—kyx, =k, — Ky (x, ) 2)~kypx, (C1) (7)

where the controller gain X = [k

n ka kg kﬂ] is then optimized to achieve the design

goals.

This control law achieves the design specifications. However, the main drawback to this
control law is that it distinguishes the physically equivalent states 6, mod 2w,

¢, mod 27 and thus suffers from unwinding which increases the settling time and the

control effort unnecessarily. These difficulties can be overcome by the introduction of the

control law
u=-~k;sinx, ~k,x, +kycosx; —k;x, (C2) (8).

Note that (C1) is the linearized form of (C2). Then, using the total energy of the system as

a Lyapunov function the local stability of the closed loop system can be shown easily.
Our, next controller is based on input-output feedback linearization. In (3) let

u=Nsinx, + Bk, %, + By x, (C3) (9)

where &, and k , are the controller gains. This feedback transforms (3) into

x;‘ 17 X, 1
X —k % — k%,
HE X, (10)
X3 N . 1 1 1 1
bx~4 | _—;—sm X, + (; + —]§)Bkﬂx1 + (; + E)Bkﬁx2 ]



which implies that the subsystem involving x, and x, is globally asymptotically
exponentially stable for any positive £, and k. This will make x, and x, approach to
of+p and o, respectively, where o and B are some constant. That is, while the angular

position and velocity of the main body approach to zero, the motion of the balancing bar
approaches to uniform circular motion with angular velocity a.. Obviously, this control

law satisfies the first design criterion stated above and k,, k, can be used to optimize the

system response in such a way that it meets the other design specifications.

Next, the control law C3 is modified to prevent unwinding as

u=(N+ Bk, )sinx, + Bk,,x, (11)
Defining the controller gains as /,; =N + Bk, and [, = Bk, (11) becomes

u=/l,sinx, +1,x, (C4) (12)

Note that, this modification preserves the stability in the subsystem involving x, and x, .



5. Simulation Results

All controller designed are animated and simulated by using Matlab. Both closed loop and
open loop system are simulated for the following three cases: without disturbance, small
disturbance and large disturbance. The following parameter values

M=70.0kg
m=25kg
L=18m
[=30m
d=13m
1=18.9 kgm?
1=1875 kgm*
g=9.81m/s2

and the optimized controller gains

k; =-3.1879%10°
ky; =~1.1250%10°
ks =+7.0711x10
ki ==1.0225%10

1, =+1.2974%10?
l,, =+1.3826x10

are used for simulations. The initial condition is set to x,=[n/4 /2 =/4 0]. The state

trajectories and control input of the system are plotted in Fig. 2 and Fig. 3, when the
system is controlled by the controller C2 and C4, respectively. The simulation results with
C1 are very similar to those of C2 and the same is true for C3 and C4, as expected. In
these simulations, the disturbance is taken as a sinusoid of amplitude 100 Ntm at 4 Hz.

Some quantitative performance measures for C1 and C2 are given in Table. 1.



maximum torque input power settling time
C2 2822 743020 3
C4 587 511110 6
Table 1. Some performance values for C1 and C2

Furthermore, it is observed that the robustness and disturbance rejection of the system is
very good. The system can tolerate at least 100% change in parameter values and can
compensate a sinusoidal disturbance torque of amplitude 500 Ntm at 4 Hz. If friction is
included in the model, the performances of proposed controllers even become better.
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Fig. 2 Response with C2 controller: (a) without disturbance, (b) with disturbance.
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6. Model Improvement

A more accurate model for the tightrope walker is shown in Fig 4, where a spring of

spring constant k is added into the previous model to take into account the elasticity of
the rope.

N

Y

N\
7
X
Fig. 4. The tightrope walker improved model.
Using Lagrangian method, the equations of motion are obtained as
(M +m) X+ kX +E@cosd—E8%sin 6 =0
(B+i)8+ig+E Xcos®—Nsin®=0 (13)

fp+if=1

where B = ML/2+ md . With the normalization substitutions

X_\/ML2/4+md2+I
M+m



(M+m)B
w2= k

M+m
oW

sz
Cp= 1

sz
g=L

iw2

the equations in (13) can be written as

. . .2
x+x+€eBcosB—¢€0 sin6=0

0+excosf—osin@= -pT
o+6=¢t
Then, defining the states of the system as

x,=x+esin6

x, =x+€6cosb

x, =6
x4=é
Xs =0
X =0

and applying the preliminary invertible feedback transformation

.2
u= ——;—T[acose —£%0 cosOsinf— pT+0osin 0]
l1-€e“cos” 0

the state space model is obtained as

(14)

(15)

(16)



X1 [ X, 7]
X2 -X, +Esin x,
x X,
= (17)
X4 u
Xs Xs
L;'cs -1+y(1- g? cos® x, )]+ ¥ex, — e’ sin x, cosx, (1+x2 ) +yosin x, |

where v = B/i. Next, comparing (15) with the equations of the nonlinear benchmark
problem we see that the subsystem involving x,, x,, x, and x, is exactly in the form of the

nonlinear benchmark problem.

The nonlinear benchmark problem is extensively studied in literature [1]-[3] and several
controllers are designed. Using the controller designed in [2] we can achieve global
asymptotic stability in the benchmark problem block. Using a similar argument used above
it can be shown that this controller will render the states of the system asymptotically to
[0 0 0 0 ot+PB ], whichis acceptable.

The control law designed in [2] is repeated below for convenience.

kzco

u = -k (x, +arctan(cyx, )) — k,x, — *—(—x, +€sin x)
o
3
2%, (~x, +€sinx;) ———Ci——(—r +&x, CosX;) (1)
Cleelx?t Vol P TR

The simulation results are given in Fig. 5 for the controller parameters ¢, =2.3, k, =0.56,
k,=12 and the initial condition is set to x,=[0.3 01 w/4 05 /8 0]. The

disturbance is again a sinusoid of amplitude 100 Ntm at 4 Hz. The maximum torque, input
power and settling time for this controller are given in Table 2.

maximum torque input power settling time
Cs5 6487 14864325 10

Table 2. Some performance values for C5
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7. Conclusions and Suggestions

In this project, two planar model for the tightrope walker is considered; the equations of
motion are derived and analyzed. Some control goals are specified and several control
laws are designed to stabilize the system about its natural equilibrium position. The
performances of these controllers are evaluated by both animations and simulations. The
effect of parameter uncertainty and disturbance are also considered. Furthermore, the

relationship between the improved model and the nonlinear benchmark problem is
established.

Based on above work, the following conclusions are inferred.

i. The performances of C1 and C2 are quite similar. The performances of C3 and C4 are
quite similar.

ii. All controllers have reasonable settling times and control efforts. The settling times for
C1 and C2 are smaller than those of C3 and C4 at he expense of increased control effort.
The best one in terms of control effort is C3.

iii. C3 and C4 uses partial state feedback while C1 and C2 uses full state feedback.

iv. C1 and C2 guaranties semi-global asymptotic stability while C3 and C4 guaranties
global asymptotic stability only in the subsystem involving x, and x,. However, C3 and C4
always make x; and x, approach to of+ and @, respectively.

v. The robustness of all controllers are excellent.

vi. The disturbance rejection of all controllers are very good.
vii. Unwinding problem can be eliminated.

Suggestions for future work:

i. Solve the following similar problem: Instead of balancing bar, the walker uses his arms

for stabilization.
ii. Make a physical model for the system and compare this results with actual model.

iit. Make some generalizations for this kind of problems.
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1 Introduction

Our prime subject of interest is the study of blades assemblies in turbo-machineries. The
blades are subject to hard conditions of work and the design goal is to reduce their wear.

It has been proven that the motion of the N blades can be deduced from the motion of
one blade. Modal analysis enables to decouple the modes and limit the study of the blade
response to the study of only one mode response. Finally, condensation techniques allow to
reduce the model of a blade to a one degree of freedom system.

In order to prevent the blade from fluttering, when it vibrates dangerously with increasing
amplitudes, some dry-friction dampers are placed in between the blades and/or between the
blades and their rotor. Because of these dampers, the equation of motion of the single degree
of freedom system is non analytical but piecewise continuous.

In order to study the forced response, we elaborated a multi incremental harmonic bal-
ance method (MIHB) with use of Toeplitz jacobian matrices and fast Fourier transforms
(TIM/FFT), based on alternating time/frequency techniques (AFT). These methods are
extremely efficient and powerful to predict forced responses but, so far, nothing has been
published with respect to the free response, that is the stability problem of these systems. A
few numerical integrations have been performed but the extremely low time step required in
order to avoid bifurcations from critical points prevents the method from being technically
efiicient.

This project wanted to explore new ways of studying the stability of these systems. The
systems we mentioned aboved are rational (each of the different ways they can be expressed
in is rational), and the theories presented here were developped for rational systems only.

It was beyond the scope of that project to implement these techniques to our research
systems. Instead, we applied them to the system that is traditionally used as their first
non-linear approximation, the cubic spring, which is represented by the Duffing’s equation.

In conclusion, this project introduces the Linear Matrices Inequalities (LMI) used to
study the Linear Fractional Representations (LFR) of the rational systems. It presents some
of the properties of these representations and, in particular, how to determine domains of
attraction and how to design state-feedback controllers. Finally, we applied these techniques
to the Duffing’s equation.
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2 Notation

For a real matrix P, P > 0 means that P is symmetric and positive-definite. £p denotes the
ellipsoid {z| z7 Pz < 1}. For o > 0, B, denotes the set {z] |z;| < 071, i=1,---,n}. I, is
the identity matrix of R"*". e, stands for the k-th column of I,,. For a given integer vector
r € N7, we associate the sets

I(r) {iE{l,---,n}l r; # 0},

D(r) = {A=diag(8il;,,---,é:lr,)| & € Ryi€ I(r)},
B(r) = {B=diag(By,- -, B,),| B; € R"*" ie1I(r)},
S(r) (S e E{r),] §=58%,8>0},

G(r) {G € B(r),| G=GT).

3 Numerical Techniques
We consider a nonlinear, time-invariant, continuous-time system

£ = A(z)+ Byu(z)u
y = Cy(z)+ Dyu(z)y,

where z € R" is the state vector, u € R™ is the input, and y € R™ is the output. We
furthermore assume that:

(1)

* A,B,, C, and Dy, are multi variable rational functions of z.
o A(0)=0,0is an equilibrium point of the unforced system.
¢ Cy(0) =0 and By, D,y have no singularities at the origin.

The systems satisfying (1) and verifying the three previous assumptions are called rational
systems.

This project shows how to compute quadratic Lyapunov functions for the analysis of
system (1): stability region estimates, decay rate bounds, L; gain bounds, etc. The results of
this analysis are extended to the synthesis of static, state-feedback control laws. The results
can also be applied to a restricted class of rational systems, those for which only the non-
linear part is measured in order to design output-feedback controllers. The linear-fractional
representation (LFR) that can be established for system (1) is suitable for the use of Linear
Matrix Inequalities (LMI) techniques.

3.1 Linear Matrices Inequalities

Each of the previously mentioned problems is a convex optimization problem over Linear
Matrix Inequalities (LMIs). A LMI is a matrix inequality of the form

F(§)=Fo+ Y &F >0, (2)

1=1
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where £ € R™ is the variable, and F; = F}T € R**" ¢ =0,--+,m are given. A typical
problem is the feasibility problem: “find £ such that F(£) > 0”. Another optimization one is
the generalized eigenvalue minimization problem

minimize A
subject to  AB(¢) — A(§) > 0, (3)
B(¢)>0, C(§)>0

where A, B and C are symmetric matrices that are affine functions of {. The LMIs being
convex, these problems can be solved very efficiently.

3.2 Methods and software

LMI problems such as (2) and (3) are solved using dual problems. The duality results are
weaker for semidefinite programs than for linear programming, and there is no straightforward
or practical simplex method for semidefinite programs. If we write our problem as

minimize CTz
subject to F(z) >0

(4)

where F' has the same expression as in (2) and the problem data are the vector ¢ € R™ and

m + 1 symmetric matrices Fo,- -, Frn € R**™. The dual problem associated with (4) is
maximize -T2
subject to TrF;Z=¢;, i=1,---,m (5)
Z>0.

The variable is here the matrix Z = Z7 € R™*™ which is subject to m equality constraints
and the matrix non negativity condition.

It is not within the scope of this project to look at the algorithms used to solve these
problems. A comprehensive paper by Vandenberghe details the.whole procedure [2].

The software to solve these problems is available by anonymous ftp at fip.ensta.fr in
/pub/elghaoui/Imitool for LMITOOL and at isl.stanford.edu in /pub/boyd/semidef_prog for
the SP package. SP solves problems of the form of (2) and (3). LMITOOL is a user-friendly
package that makes the interface with SP for LMI optimization problems. More information
can b2 obtained by ftp at those sites.
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4 Representation of Rational Systems

4.1 Existence of a LFR

In order to establish the Linear-Fractional Representation (LFR) of system (1), let us first
consider such a representation for a rational matrix.

For any rational matriz function M : R" — RPX9, with no singularities at the ori-
gin. there erisls nonnegative integers ry,-++,1,, and mairices A € RPX9,B ¢ RP*N (¢ ¢
RV*e4, D € RVX" with N = vy + -+ -7,, such that M has the following Linear-Fractional
Representation (LFR): For all z where M is defined,

M(z) = A+ BA(z)(I - DA(z))*C, (6)
where
A(z) = diag(zy Iy, -+, zpdrn). (7)

If M does not depend on, say, the variable z1, the LFR can be constructed such that
ry = 0.

The algorithm to construct a LI'R turns out to be relatively easy in the special case wi2n
the rational matrix can be written as M(z) = N(z)/d(z), where N is a polynomial matrix
function and d(z) is a scalar polynomial, such that d(0) # 0.

It is important to notice that, when n = 1 (that is, for a mono variable rational matrix
function), the matrices A, B, C, D are simply a state-space realization of the transfer matrix
A+ B(sI - D)~'C, where s = 1/z. Thus, the LFR generalizes the state-space representation
known for (mono variable) transfer matrices, to the multi variable case. The previous theorem
can be extended to any rational vector field.

Any rational vector field f: R™ — R™ such that f(0) = 0 can be written as follows: For
every z such that f(z) is well-definec,

f(z) = (A + BA@)(I - DA(=))7C)=

with A(z) = diag(z11r,,- -+, 2nlr,), for appropriate nonnegative integers ry,- -+, 5, and ap-
propriate matrices A,B,C,D. If f is linear in, say, the variable z,, we can choose r; = 0.

Using that last property and assuming that we are dealing with a system (1) satisfying the
assumptions of 'section (3), we can write, for every z such that A(z),B,(z), Cy(z),Dyu(z)
are well-defined,

{ A(z) Buy(z) } _ [ A B,
{ Cy(z) Dyu(z) Cy Dyu

for appropriate integers ry, -+ -, 7 and matrices A, By, By, Cy, Dy, Dgp, Cy, Dyy and Dy, Sys-
tem (1) thus admits the following LI

i [ I?ypp } A(z)(I = Dgptr(2))™* [ Co Do ]
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LTI

A (x)

Figure 1: Linear-Fractional Representation of the rational system ( 1).

z = Az+ Byu+ Byp,
q Coz + Dgyu+ Dypp,
y = Cyz+ Dyyu+ Dyyp, (8)
p = Az)g,
A(z) = Diag(zily,, -, znlr,)-

The LFR can be interpreted as follows: the rational system can be viewed as an LTI
system, with a feedback connection between some fictitious inputs p and fictitious outputs
q (Fig. 4.1). The feedback matrix A is linear in the state z, and its structure (the integers
ry, -+, ryn) reflects the “degree of nonlinearity”.

We furthermore assume that there is no direct feedthrough term from u to y (Dyy, = 0)
and that the matrix Cy in (1) is a constant matrix (D, = 0).

4.2 Construction of a LFR

The construction is an iterative process. The following rules show how to construct such
a representation in the case where M(z) = N(z)/d(z), where N is a polynomial matrix
function, d(z) is a scalar polynomial, such that d(0) = 0.

First, we construct a LFR for polynomial matrices. The function of the scalar variable
z, M(z) = z has the following LFR: A = B = C =1, D = 0. To construct an LFR for
an arbitrary polynomial matrix function of several variables, all we need to know is how
to get the LFR (A4, B,C, D,r) from a “combination” of two LFR’s (4;, By, Cy, Dy, 1) and
(Aa, By, Co, Da, 7). Let us denote A(z) = diag(A;(z), Ay(z)), and

M;(z) = A; + Bidi(2)(I - D;Ay(2))72C;,  i=1,2,

The following rules apply:
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Addition The sum of M;(z) and M,(z) equals

M(z) M;(z) + My(z)
= A+ BA(z)(I - DA(z))"1C,

with

A=A +4, B=][B m],

c:[a],p=m%whmy
2

Multiplication The product of M;(z) and My(z) is given by:

M(z) = Mi(z)My(z)
= A+ BA(z)(I - DA(z))"'C,

where

A=didy, B=[B, AB]

C = Cr42 D= Dy CyB, '
C 0 D,

Stacking The combination of M;(z) and Ma(z) is

M(z) = [ Myz) Ma(o) ]
A+ BA(z)(I - DA(z))"C,

il

with
A=A 4|, B=|B B |
C = diag(Cy,C3), D + diag(Dy,D,).

(14)
(15)

More rules apply (in order to compute the LFR of a shuffled matrix, or the LFR of the

inverse of a matrix for example) but we will not need them here.

4.3 LFR of the equation of Duffing
We write the eq'uation of Duffing under the form:

- ky+oi(y+ey’) = u

(16)

We choose as a state vector z = [ y g )7. This system has an LFR, determined according

to the previous rules:

(17)
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For a given scalar ¢ > 0, we associate to the system a “Linear Differential Inclusion”
(LDI).
= Az 4 Byu+ Byp,

Cqe + Dy + Dopp (18)
Cyz

= A(g, 1A < o™, A(t) € D(r), >0,

= @ a8
|
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5 Analysis of Rational Systems

In this section, we look at the properties of systems as (1), using their LFR.

5.1 Well-posedness

Let R be a region containing 0. The LFR (8) is well-posed in the region R if for every
z € R, det(I — DgpA(z)) # 0. If the LFR (8) is well-posed over R, then it is an accurate
representation of (1) over R.

We seek a condition which ensures that over a given ball B,, the LFR is well-posed.
A conservative condition is that over the unit-ball B, ||Dg,|| < 1. this does not take into
account the structure (diagonal, with repeated elements) of the matrix function A(z).

If the structure of A(z) is taken into account, a less conservative condition for the system
to be well-posed in the ball B, is that the LMI

DI.SDy+ DG -GD,, - 0?$ <0 (19)

holds for some S € D(r) and G € G(r). This sufficient condition for well-posedness can
be checked by solving an LMI problem. Moreover, finding the smallest ¢ > 0 such that the
system is well-posed over B, is also an LMI problem (use as an objective function a decreasing
function of o).

5.2 Stability

\We consider the input-free version of the system of (1). That is £ = A(z),y = C,(z). For
this system, we construct a LFR

z = Az+ Bpp,
g = Cyz+ Dypp,
y = CyCE (20)
p = Az)g
A(z) = Diag(zilyy, - 2nls,).

In (20), the matrix A can be viewed as the “linearized model” around the equilibrium
point 0. Local.stability can thus be inferred from the stability of the constant matrix A.
Here, we look at a more “global” stability analysis of the system: we look for a region R
which is a domain of attraction, that is,

z(0)eR = tlin;o z(t) = 0.
Since system (20) is time-invariant, any domain of attraction R is also invariant, that is,
z(0) e R=1t2>0,z(t) € R.

R is called a stable region.
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We look for a condition ensuring that the LDI associated to (20) for a given scalar ¢ > 0 is
quadratically stable. That is, we want to prove the existence of a quadratic, positive-definite
function V' which decreases along every trajectory of (18) with zero input.

For a given 0 > 0, the LDI system (18) is quadratically stable if there ezist P = PT ¢

"R™*"™, 5 € §(r) and G € G(r) such that the LMI in variables P, S,G

P >0,
ATP+ PA+CTSC, PB,+CTG+ CTSD,,
(PB, +CTG +CTSD,,) DT SDg,—0®S+ DLG — GD,,

(21)

<0,

holds. Then, for every A € B(r), such that ||A]] < 0™, we have
det(I ~ Dyph) # 0
and
(A + ByA(I = DgpA)"'C)T P + P(A+ BA(I = DgpA)IC,) < 0

That is, the ellipsoid Ep 1s an invariant domain of attraction for (18).

Performing this analysis for different values of o, we can find the domain of attraction of
(18). In order to find the domain of attraction of largest volume, we have to use log det P~}
as objective function (in the previous analysis, the absence of objective function converted
the problem into an existence problem).

Tc obtain lower bounds on the decay rate of the trajectories over an ellipsoidal domain
of attraction, we have to solve the following problem:

If there ezist matrices P = PT € R™*" S € §(r),G € G(r) and scalars a > 0,0 > 0 such
that

P>0, [”
€L

2P + ATP + PA+CISC, PB,+CTG + C,5D,,
(PBy + CIG +CySDyp)T  DISDy, — 025 + DgpG — GDy,

. e{]>0 FeT
) (r)’
d (22)

Then, system (1) is well-nosed over the ellipsoid Ep, and for every trajectory initiating in
Ep, we have

Jim e“|z(¢)]| = 0

In order to check the stability of a polytope P defined by its vertices vy,---, vy, that is
in order to ensure that every trajectory initiating in P converges to 0, we just have to add
the condition the P is contained in a sufficient large elhpsoxd Ep satisfying the conditions of
(22). This condition can be written as:

‘UJTP‘UJ' Sl: ]=1a)p

11
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We can also impose an upper bound on output peak, which is defined as max;yo ||y(2)]]-
To do so, we only have to add the extra condition

y'r2na.7:I Cy >0
cr p |~

where ¥, is the desired upper bound on the output peak for every trajectory initiating in
Ep.

Finally, we can impose conditions on the gain of the system. We consider the rational
system (8) with a non-zero input, and zero initial condition. We assume moreover that the
system is locally stable. The L, gain of the system is said to be less or equal to 7 if, for every
T' > 0, and for every piecewise continuous input u € Ly(0,T) such that

/OT u(t) T u(t)dt < 1,

the corresponding output y exists and satisfies

T
/0 y(0)Ty(t)dt < 7.

To implement that condition, we write the following LMI.
If there ezist matrices P = PT € R™", § € S(r),G € G(r) and a scalar ¢ > 0 such that

-2.=2 T
[7 g ek J>0’ kEI(T),
e P

AT + PA+CISC,+CIC, PB,+CTSDy,+CIG PB,
DL SD,, - o2S
PB,+CISD,, + CIG)T - 0 | <o,
( pT Vg op T q ) (-{-DZPG-—GDQP
BTp 0 -7

(23)

then, we have:

. Sy'stem (1) is well-posed over By (and thus on the ellipsoid v€p).

—

. Every trajectory of system (1) with zero initial condition, and input u € Ly such that
l|lull2 £ 1, is entirely contained in v€p.

o

. For every trajectory, and T > 0,

o

T
/ y(1)Ty(t)de < 77
0

That is the Ly gain of the system is less than 7.
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6 Controller Synthesis

6.1 State-feedback controller synthesis

In this section, we look for a control law of the form u = Kz, with K a constant matrix,
which achieves stability properties for the closed-loop system. The latter has the LFR

t = (A+BuK)z+ B,P,
g = (Co+ DguK)z + Dy, P,
= A(z)g,
A(z) = diag(zily,, ,2znl;,).

(24)

We have the stability theorem: If there ezist matrices Q = QT € R"™" Y € R™X» T ¢
S(r), H € G(r) and a scalar o > 0 such that

Q>0, efQer<o™? kel(r),
( AQ + QAT + B,TBY ) ( QCT+YTDL, )
+B,Y +YTBT +B,TDL + B, H
CeQ + DgY
< +D,,TBY - HBT

<0, (25)

) DgpTDY, - 6T + Dy H — HDT,

then, the static, state-feedback law u = YQ 1z is such that:

—

. The closed-loop system (24) is well-posed over B, and thus, over the ellipsoid Ep.

o

The ellipsoid £g-1 is an invariant domain of attraction for the closed-loop system (24).
3. The function V(z) = 27Q"'z is a Lyapunov function that proves it.

As for the study of the stability of the open-loop system (1), we may impose additional
conditions on the previous system in order to meet some requirements. For example, we may
desire to compute K that maximizes the volume of an ellipsoidal domain of attraction for
the closed-loop system (in that case, the objective function should be trace(Q). We may also
want to impose a given decay rate a on the trajectories of the closed-loop system initiating
in the ellipsoid £p-1 (change A by A+ ol in (25)). As we did for the open-loop system (1),
we may be interested by the stability of a given polytope (ie its inclusion inside a domain

of attraction). If the vertices of the polytope P are denoted (v, -+, v,), the extra condition
would be
1 of )
[ ’ }20: J=1--+p
v; @

To impose saturation constraints on the command input, the additional condition to add to
(25) is

ur IY
mezx > O
Yy Q| ~

13
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and then, with the control law v = YQ~'z, any trajectory of the closed-loop system ini-
tiating in £g-1 will converge to zero, while the corresponding command input satisfies:
Ve, |lu(t)|l2 € %mez. If one wants to impose an upper bound Ymar on the output peak,
the following LMI has to be added

CyQCT < Yhaal.

6.2 Dynamic Output-feedback Controller Synthesis

The method allows us to construct dynamic output feedback controller for some special
systems. The condition is that the system should be linear in the non-measured states. The
conditions on the controller design are much more complex and there was no time to apply
them to the Duffing equation (that verifies by the way all the necessary conditions).
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7 Application to the Duffing’s equation

Notice: all the Maple and Matlab files are available on request.
We consider the following Duffing’s equation (1, 7, 6]

J+ki+o(y+e®)=u (26)

In the first part of this section, we look at the stability of this equation. In the second
part, we focus on the control (state-feedback controller synthesis). Unlike what is usually
done, we do not consider harmonic forcing: as exposed in the introduction, we are mostly
interested in the stability point of view. The forced motion is studied by multi-harmonic
balance method. This method cannot, to our knowledge, predict the domain of stability of
such an oscillator. That is why the LMI study that can be made of (26) is of uttermost
importance.

7.1 Well-posedness
The Duffing equation admits the following LFR

A=[—2)2 _lk} Bu=[(1)'], cy=[1 0],

(27)
0 0 0 0 0 1
B, = , Co= , D= ,
P [—w%o] ? [10} w” [o o}

The matrix Dgp is strictly upper triangular. Hence, according to (19), the system is
weil-posed. Therefore, every trajectory of (26) is a trajectory for the LFR (27).

7.2 Stability

For this particular analysis, we chose &k = 1,¢ = 1,w = 1. We minimize log det P-1 subject
to (21) for various values of o. This has the effect of finding the ellipsoid satisfying these
conditions with the largest sum of squared semi-axis lengths. The best estimate was found
for o = 0.582 and the corresponding ellipsoid is shown in (Fig.2). It is important to stress
that the LMI problem of finding some matrices verifying (21) is associated with a line search
over o in order to find the domain of attraction with the largest volume.

It is worth stressing that this stability concept means that this ellipsoid £p is an invariant
domain of attraction for (26), that (27) is well-posed over B, and that V(z) = zT Pz is a
Lyapunov function that proves it.

The region is not the largest one that can be found with, say, backtracking but it is of
the same order of magnitude 3] and the computation time to find it is extremely low (a few
seconds). Hence, we can find easily a rather goods estimate.

We also performed the same study for different values of the parameters and we find a
domain of the same kind but where the trajectories need a much larger time to reach the
equilibrium point (Fig.3). The optimal value of o for that case is o = 0.219.

\We also performed a L, gain stability analysis. In that case, we are looking for an
optimal function over an R? space because we have two parameters: the L, gain 7 and the
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Figure 2: Invariant domain of attraction (plain stability) of Duffing equation for k = 1,w =
l.e=1

Figure 3: Invariant domain of attraction (plain stability) of Duffing equation for k = 1,w =
10,¢ = .01

1A
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Figure 4: Invariant domain of attraction of Duffing equation , L, gain less than 100, for
k=1lw=1le=1

well-posedness ball parameter . We have been unable to perform the line searches over the
2 parameters but, if we fix one parameter, say, the gain, we can perform the line search over
the ¢ parameter. As an example, we fixed a L, gain of 100 and we searched over o in order
to get the largest domain of attraction possible. \We found an optimal value of ¢ close to one.
The corresponding ellipsoid is shown in (Fig.4).

In order to prove the stability of this domain, we simulated the time response of the system
subject to “fancy” inputs that satisfv the required gain conditions. The results, shown in
(Fig,5), shows that the ellipsoid we found is invariant (the trajectories never go out) and
a domain of attraction: the trajectories eventually converge towards the equilibrium point
after a relatively long time (due to the chosen inputs).

As an illustration, we included in (Fig.6) the phase plot of the first instants of the previous
case.

7.3 State-feedback controller

We were interested to design a controller that would meet the following conditions
¢ Largest volume of the domain of attraction.
¢+ Decay rate of the trajectories of a = 0.3.
+ Output peak less than 1000.

Ve performed the corresponding simulations and the results are presented in (Fig.7) and
(I'ig.8).

It is important to notice that the stability regions are increased with respect to the open
loop case. The enlargement is greater in the linear direction (more or less one hundred times)
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Figure 5: Invariant domain of attraction of Duffing equation , L, gain less than 100, stability
for some inputs: the trajectories never escape and they converge towards the origin, & =
lw=1le=1

Figure 6: Invariant domain of attraction of Duffing equation , L, gain less than 100, phase
plotfork=1,w=1e=1
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Iigure 7: Invariant domain of attraction of Duffing equation , state-feedback controller, decay
rate of @ = 0.3, output peak less than 1000, for k= 1l,w=1,e=1

Iligure 8: Invariant domain of attraction of Duffing equation , state-feedback controller, decay
rate of @ = 0.3, output peak less than 1000, for £ = 1,w = 10,¢ = .01
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307

204

Iigure 9: z time response , state-feedback controller, decay rate of & = 0.3, output peak less
than 1000, for £ = 1,w = 10,¢ = .01

than in the non-linear direction (more or less ten times) because it is more difficult to control

in the non-linear direction than in the linear one. It is also worth noting that the influence

of the numerical parameters is greatly reduced by the feedback, the stability domains for

the closed-loop system have almost the same size, whereas they were a lot more different in

the open loop case. It is also interesting to see that the trajectories that were very slow to

converge in the open loop case, are now constrained to converge with the imposed decay rate.
The vector X used in the control law, X = Y Q™! is found to be equal to

1

K
K

-75.992 -7.764 } for the first set of parameters
-67.65 -5.133 ] for the second set of parameters

We can see that the control laws are not excessive in size.
As a final iHustration, we show in (Fig.9) and (Fig.10) the time response in the closed
loop case of the two states.
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Figure 10: y time response , state-feedback controller, decay rate of & = 0.3, output peak
less than 1000, for k = 1,w = 10,e = .01
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8 Conclusion

Linear Matrices Inequalities were presented. We showed what a Linear Fractional Represen-
tation of a system was and we focused on some on their properties.

We stated some existence theorems that can provide us with quadratic Lyapunov functions
in order to prove the stability of such systems, along with some extra properties, like a fixed
rate of decay, saturation constraints on inputs and outputs, fixed L, gain, etc. We showed
how to design controllers with such conditions.

The techniques proved to be extremely amenable to Duffing’s equation and we found
stability domains, controllers that satisfy given requirements, etc.

In conclusion, from a class point of view, this project introduced another way to look at
some special non-linear systems and showed how to control them. From a research point of
view, we proved that the techniques were valuable in order to get stability domains of attrac-
tion of certain non-linear oscillators. The challenge is now to try to expand this formulation
to non-analytical problems.

22
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Abstract

The objective of this project is to control the tip of the telescopic robot arm to follow a
desired trajectory. Several existing tracking control methods are used, which include full
state feedback linearization, robust control and adaptive control. A different approach for
tracking control is proposed in this project, which is termed as disturbance estimation based
tracking control. The proposed tracking control method need not knowing the dynamic
structure of the system and the parameter value. Since it involves the disturbance
estimation, not only the effect of system uncertainty but also the effect of external
disturbance and unmodeled mechanism can be compensated. The results of simulation
show that the proposed method can perform well in driving the telescopic robot arm to a
desired trajectory with system uncertainty and external disturbance.

1. Introduction

Nonlinear systems actually appear in many engineering disciplines, e.g. chemical
engineering, electrical circuits, robot manipulator etc. Since the powerful tools for linear
systems have been developed successfully, it is quite intuitively and is a common practice
to linearize the nonlinear system. State feedback linearization of nonlinear system has been
extensively investigated and applied in literature [1-8]. There are several methods of the
state feedback control to linearize the nonlinear system. One of them is the exact input
output linearization which didn’t have any approximation is used{9-10] . The other one is
the full state linearization which uses a set of coordinates and a feedback law such that the
input-to-state of the transformed is linear [10].

In this project we would like to control a nonlinear system (telescopic arm ) to follow a
desired trajectory which is referred to as tracking control. Tracking control can be
quantitatively stated as the determination of the system input to keep the error of system
output and desired output (varied with time) within prescribed values [11]. If the
characteristics of the system is completely known and the system is feedback linearizable, a
controller based on the feedback linearization can be designed. But in real life it is quite
rare to exactly know the parameter value and in fact uncertainty is inevitable in system.
Under this situation the controller design based on the feedback linearization will likely fail.

The system uncertainty is an important issue in many applications of robot manipulator
control. Most of the proposed controllers thus far to compensate the system uncertainty are
either adaptive control or robust control methods. The majority of the researches in



MEAM 662

adaptive manipulator control assume that the structure of the manipulator dynamics is
known and the system is linear to unknown parameters [12-21]. These schemes can be
termed as model-based adaptive control [22], because they rely on the information of the
system dynamic model. These controllers have been successfully applied in some
computer simulations and experiments. However, there are some potential difficulties
associated with these approaches. These designs require precise knowledge of the
structure of the entire manipulator dynamic model, which rarely happens in real life. In
practice, it is very likely that some unrealized mechanism wasn't included in the model and
some unknown external disturbance will be present in system. Additionally, [23-24] have
indicated that these model-based adaptive controllers can lack robustness to unmodeled
dynamics, sensor noise, and other disturbance. Recently, there are many authors [22] [25-
31] who are interested in developing adaptive controllers that require less model
information than the model based adaptive controller. This kind of approach is referred to
as performance-based adaptive control because the adaptive law adjust the controller gains
based on the system performance rather than on system model. None of the adaptive
schemes proposed in [22] [25-31] required the knowledge of system structure and
parameter values, and the bound of the system signal are assured. In [25-28] the adaptive
law is derived based on the variable structure control methods. In [22] [29-31] a more
standard adaptive laws are used. In these project we will introduce a different approach to
design the controller, which is termed as the disturbance estimation based tracking control.
All the system dynamic structures and system uncertainty will be lumped with external
disturbance and unmodeled mechanism, which is considered as the system disturbance.
Then the controller can be designed by canceling the system disturbance with the
application of a disturbance observer. Since the:system dynamic structure and system
uncertainty are considered to be the system disturbance, we don't need to know the
dynamic structure and parameter values of the system. In fact the proposed method is
robust to the unmodeled effects and external disturbance, because we don't rely on the
model information and the external disturbance and unmodeled mechanism will be
estimated.

This project is organized as follows. In section 2 the system model will be described. In
section 3 the controller of feedback linearization, robust control and adaptive control will be
investigated. The proposed control method (disturbance estimation based tracking control)
will be introduced in section 4. The simulation results of the different controllers will be
presented in section 5. And in section 6 we.will summarize the project and make
conclusions.
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2. System Description

The system studied in this project is a telescopic robot arm in a vertical plane ( Fig. 1),
which is driven by two motors to control the angle ¢ and the arm length £. It is assumed
that the arm mass is negligible with respect to the mass M. The motion equations of the
telescopic arm can be derived by the Lagarange method as

v . g R u]
+o ¢+ o,p+=sin(d) =0, —= 2.1
¢+ong+ oy , in(¢) " M 2.1)
E+ ob+ 0t~ goos(9) =K, 2.2)
o ' k .
where o =—f-+2£, o, =—2= o, =-L, a4=%—¢2, M denotes the mass of the

ME L M T M
load, £(t) is the variable length of the arm, ¢(t) is the angle between the arm and the
vertical axis, @, and k, are the stiffness coefficients, ¢, and k, are the viscous friction
coefficients, % and u, are the voltages applied to the electrical motors in the joint and the
arm, respectively. The torque in the joint and the longitudinal force in the arm are 7=, i,
and T,=k_ u,, respectively, where ¢, and k,, are constants.

=7
Fig. 1 Telescopic Robot Arm
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3. Existing Control Method

In this section we would like to briefly introduce some existing controller for tracking
control.

3.1 Full State Feedback Linearization

It is easily seen from equation. (2.1) , (2.2) that they are full state feedback linearizable [
0-10 ]. The controller can be chosen as

2 N
4 = ’Z‘ (6, +op+o,p+< S“;("’) +hé, +he,) (3.1)
M . . .
u, =Z—(£d + ol + o, L — gcos(P) + ke, + k,e,) (3.2)

m

where ¢, is the desired angle, £, is the desired arm length, k; i= 1-4. which are feedback
gains, e,=¢—¢,, ¢, =L—1,.

Substitute. (3.1) and. (3.2) into. (2.1), (2.2) we can get the error dynamics as

4% "y = (3.4)
é,—ke,— ke, =0
The appropriate gains k, i=1-4 can be chosen to let the error system (3.4) be
asymptotically stable.
The application of feedback linearization needs that the parameter values are well known, or
the system performance cannot be satisfied. It is a unrealizable situation in real life. To
compensate the system uncertainty, the robust control and adaptive control can be applied.

3.2. Robust Control
Assume that the nominal system is described as

d5+&l¢+a'2¢+-%sin(¢)= ‘7"‘7&4%7 (3.5)
P+ el +a,—goos(d) =Em% (3.6)
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- G« A A P 2
I | — s = -1 :
where @, = 7 + 2-(;, o, = ok 03 =—— , O =—=, and - denotes the nominal value
of the parameter.

The robust controller designed by Lyapunov method can be given as [9]

_Me :
= (, + 0,0+ +—%wl+k,e¢+@eo+vl) 3.7)
u, ’.C.M(l +a3£+ o, f—gcos(§)+ ke, +ke,+v,) (3.8)
Moot Ty1 Wy
where v, = ——— "w,," 2€
1=k |wi, 2
=T ¥ Nl Wy I, |, <&
1-k, ¢ *lh
Mo T My W,
Vy, == w,l, 2 €
2 1-k, “Wl"z ” l"z
Moo T Ny Wy
=--0 _d_t wil. <&
ot Il
Substitute (3.7), (3.8) into (2.1), (2.2), we get the error dynamics as
€, =ké, +ke,+v +6, (3.9)
é, =k, +kse,+v,+9, (3.10)
where
o o, R o A o,
= [‘&f o -0+ (?m‘ — Dk Jé, + [Em‘ O, =0y + (5’: -1k, le,
o - . o, . o
HE DI+ SIn) ) R0~ 0)d H(2 T o), (1)
k i k .k _m k i
o, = [—E-'l‘- O, — 0+ (—EA -Dk,lé, + [Z."i o, — 0, + (Z_"l -1k, le,
koo k. _ .
+(_——1)[£’d+v2]+(—],c.—oc3—oc3)£d+(—];—-a4—064)£d (3.12)

m m m
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Neo> Mg1> K4» TMws Ny and k, are determined by the system uncertainty caused by

parameter variation
Take the Euclidean norm of (3.11) and (3.12) gives
6.0, <Pa0 + Palrcsten)], + il (3.13)
162, < pro + pullxeCenl, + oy, (3.14)
where 7040 2Py 20, My 2P 20, 1>k, >0, Mg 2P, 20, Ny 20,20, 1>k,>0
Wy, W,, K, and K, are determined by the Lyapunov function candidate
V(e,)=E,P,E, (3.15)
V(e,)=E,PE, (3.16)
where E; = [e¢ e‘¢], E;=[e, ¢,), P, and P, are positive definite matrix that satisfy

A;P,, +P¢A¢ = —Q¢, AP,+P,A, =-0,,if A¢ and A, are Hurwitz matrix, Q¢ >0 and
0,>0.

Then w,, w,, Kk, and K, are defined as
W, = 2E;P¢B¢ (3.17)

w, =2E.P,B, (3.18)

K, =1/E;Q¢E¢ (3.19)
K, = E}Q.E, (3.20)

0
where B¢ = B, =|:1:|.

If p,>0 and p,, >0, then e, and e, are uniformly bounded in a neighborhood of the

origin, whose size can be made arbitrarily small by choosing € small enough.
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3.3. Adaptive Control
The other way to compensate the uncertainty caused by the bias between nominal

parameter value and true parameter value is to estimate the parameter. The well known
adaptive observer [11] is applied to estimate the parameters @,,, ¢;, &, k,,, k;, k.

The adaptive observer is briefly introduced as follows
Assume that a nonlinear system can be described as

x=Ax+BO" f(y,u)+g(y,u) (3.21)
%= A%+BOf(y,u)+ g(y,u) + K (y-3) (3.22)

where y=Cx, u is the system input, € is the unknown parameter, K is the feedback

gain, A denotes estimation.

The adaptive law to estimate the parameter 0 is given by
6 =—f*(y,u)B'Pe (3.23)

where e=X—x, P is a positive definite matrix that satisfies the relationship
AlP+PA, =-0, 0>0, A, =A-KC which is a Hurwitz matrix. To assure the

estimated parameters converge to true value, it needs that f(y,u) is a persistent excited

function.

The system described in (2.1) and (2.2) can be rewritten as

. i 0
o [0 1]¢] |0 4 -
[45]:[0 0][¢]+[1][a, P W+{_2§ -Lsi 4 (3.24)

U

~£

[ 1?+Fp A PR ] (3:25)
717 lo ofe) {1t "‘uzM ¢*0+gcos ¢ ’

We can see that (3.24) and (3.25) are in the form of (3.21). Then the adaptive observer is
derived according to (3.22) and the adaptive law of estimating unknown parameters can be
obtained according to (3.23).
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The controller can be defined as

ME . .. si .
n=" (,+6,0+a,0+8 l;(¢)+kle,+kle,)

m

uy = EM(L + 0, + 8,8 - geos() +ké, + ke,)

m

4. Proposed Tracking Control Method

(3.26)

(3.27)

We can see that the objective of adaptive or robust control shown in section 3 and in the

literature [12-31] is to compensate the system uncertainty or disturbance. In fact we can

say that it is somewhat in the sense of estimating the system uncertainty and disturbance.

So why don't we estimate the uncertainty and disturbance directly instead of applying some

robust controller or adaptive laws?

4.1 Disturbance Based Tracking Controller

First, I come out the following disturbance based tracking controller which needs the

system dynamic structure.

We can rewritten the system shown in (2.1) and (2.2) as the nominal system plus the

uncertainty and external disturbance as.

b+ T+ T,0 +%sin(¢) =a A;22

+ 8,y
YT _ _EZ_
L+ l+al—geos(P)=k, 7, +6,
The controllers are chosen as
M2

= 5 (¢, + 0,0+, 0+

m

g S“;(‘P) +ké, +ke, —5,)

= -’Li()é,, LT+ T geos() +ké, + ke, — 8,,)

where §,; and J,, are the estimation of §,, and J,,, respectively.

(4.1)

4.2)

(4.3)

4.4)
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Substitute (4.3), (4.4) into (4.1) and (4.2), we have the error dynamics as

&y~ ke, ~ ke, = 8,,—b,, 4.5)
é,—ke,—ke,=6,,-b, (4.6)

From (4.5) and (4.6), we can see that if we can have accurately estimation of ,, and §,,

we can drive the system to follow the desired trajectory by choosing appropriate feedback
gains. The method of disturbance observer will be shown later.

Then I thought that why don't we lump all the system dynamic structure with the

uncertainty and external disturbance as the system disturbance? According to this idea, we
can rewrite (2.1) and (2.2) as

$=u+3, 4.7

f=u+6, (4.8)

The controller can be chosen as

W= (ﬁd +keé, +ke, — SM 4.9)

~

u, =0, +ke,+ke,~0, | (4.10)
The system error dynamics is the same of (4.5) and (4.6).

We can see that the controller described in (4.9) and (4.10) need not knowing the system
dynamic structure and the parameter value. Since the external disturbance and the
unmodeled mechanism are also estimated, it should be more robust than the existing
tracking methods. The controller is more compact and easier to derived by comparing with
the existing methods. The disturbance estimation is listed in the following.

4.2 Disturbance Observer

In the following we would like to introduce the disturbance observer in which the structure
of the disturbance need not knowing. Assume that a system can be represented by

X=Ax+Bu+g(y) (4.11)
y=Cx

where u is an unknown function, g(y) is a known function, B is a full column rank
matrix.

The disturbance observer is chosen as

X= AR+ Bi+g(y)+K(y—-9) (4.12)
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where K is the observer gain vector selected in a way such that the eigenvalues of the

closed-loop state matrix A — KC are located at desired locations. The error dynamics of
this observer can be obtained by subtracting (4.11) from (4.12)

é=Ae+Be, 4.13)

where e=X~-x, e, =ii(t) ~u(t) and A, = A—KC. The adaptive law for the estimation of
the unknown input is chosen to be

é,(t)=—B"Pe (4.14)
u@)=u,t)-K,e (4.15)
ATP+PA, =-Q (4.16)
K,A +KBK,+B"P=0 (4.17)

where e, =i () —u(t), i, () is the estimated input before correction, #(t) is the
estimated input after correction, K is the linear correction gain, and P and Q are positive
definite matrices. The detail derivation of the updating law can be referred to [32].

Here we will show a simple example to demonstrate the validation of the proposed
disturbance observer. Assume that a system can be represented by

I=—z+W (4.18)

where w =sin(5¢) is a unknown disturbance.
Following the procedures listed from (4.14) to (4.17), we have the following results

1.5 L Ll T T

it

Input
o

0 0.2 04 06 0.8 1
time (sec)
Fig. 2 Example of Input Estimation

10



MEAM 662

We can see that the disturbance estimation is very accurate.

5. Simulation Results
In the following we will show the simulation results of different controllers. We will focus
on the variation of the parameter ¢, and k,,, since they will have much more significant

effect on the system performance than the other parameters do. The nominal parameter
values are assumed to be &, =k,=1.0, &=£k=0.65, &’f=1?f =0.65. The desired

trajectories are ¢, = —g—sin(zm) + 7 and £, =0.2sin(27t) +1.

5.1 Feedback Linearization

Here we will exam the controller designed by full-state feedback linearization. We will
have three cases to study the performance of the controller based on the feedback
linearization. First we assume that the paramctér values of nominal system are the same of
the true parameter values, ie., o, ,=0,=k,=k,=1.0, oa=0=k=k=0.65,
=0, =k,=l?f =0.65. The result is shown in Fig.3. We can see that the controller can

drive the robot arm to follow a desired trajectory.

Since in real life we cannot exactly know the parameter values of the system. In Fig. 4, we
assume that the true parameter values become o, =k,=0.54, «,=k=0.85, o,=k,=0.45.
We can see that the system cannot follow the desired trajectory well. This case shows that

feedback linearization controller will fail when the parameter is variant. In Fig.5, we
assume that the true parameter values become «,=k,=0.35, a,=k=0.85,
o, =k,=0.45. We can see that the performance even worse than case (2).

5.2 Robust Control
Here we will study two cases which are the same conditions of case (2) and (3) in section

5.1; one satisfies the controller criterion, and the other doesn't. We assume the maximum
variation of ¢, and k,, is 0.8, of ¢, and £, is 0.4, of @, and k, is 0.4. The bound of the

states is 5.5 >¢>0:5, 20> ¢ >-20, 2.0>¢>0.5, and 10> ¢>-10. & is chosen as
0.01, k,=k,=0.98 , 1,,=0.1, 7,,=0.2, 7,4 =0.5, 7,,=0.3.

Fig. 6 is the case that ¢, =k, =0.54, o,=k=0.85, or,=k,=0.45. Comparing with Fig. 4

we can see it has much better performance than the feedback linearization controller does,
but it has steady state error of the state £.

11
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When «,=k,=0.35, the value of k, and k, will greater than one, which contradict the
requirement that k,, k, <l. In Fig. 7 the true parameter values are assumed to be
a,=k,=0.35, o,=k=0.85, c,=k,=0.45. We can see that for this case the robust

controller doesn't work.

5..3 Adaptive Control
We can see that when o,=k,=0.35, o,=k,=0.85, o,=k,=0.45, both methods of

feedback linearization and robust control don't work. Right now we will try to use the
adaptive control to control the system when «,=k,=0.35, o,=k=035, o,=k,=0.45.

The result is shown in Fig. 8, we can see that it can follow the desired trajectory well.

In Fig. 9 we assumed that the system has unknown external disturbance which is assumed
to be 50sin(2xt). Under this situation, we can see from Fig. 9 that the adaptive observer
fails to drive the system to the desired trajectory. Itis because that when there is unknown
external disturbance present, the estimated parameter value cannot converge to the true
parameter value.

5.3 Disturbance Estimation Based Tracking Control

First we will apply the disturbance estimation based control (4.3), (4.4) which use the
system dynamic structure. The true parameter values are ¢,=k,=0.35, o =k =0.85,
af=kf=0.45. The result is shown in Fig. 10., we can see that it follows the desired
trajectory well. Then the disturbance estimation based control (4.9) (4.10) without
considering the system dynamic structure is applied in Fig. 11, which still shows a good
tracking performance. The disturbance estimation based control without considering the
system dynamic structure is also applied in Fig. 12 in which the system contained an
unknown external disturbance assumed to be 50sin(27t). We can see that even there
exists unknown external disturbance, it still works very well. It is expected, since the
disturbance estimation can cancel the effect of the unknown external disturbance and
unmodeled dynamics.

12
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(_) Real Trajectory ( _.) Desired Trajectory

5 > ] L] L)
¢ X
0 1 ] 1
500 05 1 15 2
5 Of > -
- 05 ! .
00 0.5 1 15 2
..2 L - - !
0 0.5 1 1.5 2
time (sec)

Fig.3 Feedback Linearization (&,=k,=1.0, ¢,=k=0.65, a,=k,=0.65)

(_) Real Trajectory ( _.) Desired Trajectory

time (sec)
Fig. 4 Feedback Linearization (,=k,=0.54, «,=k,=0.85, a,=k,=0.45)
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(_) Real Trajectory ( _.) Desired Trajectory

1
time (sec)
Fig. 5 Feedback Linearization (&,=k,=0.35, &,=k,=0.85, o =k,=0.45)

(_) Real Trajectory ( _.) Desired Trajectory

1
time (sec)
Fig. 6 Robust Control (¢,=k,=0.54, ,=k,=0.85, a,=k,;=0.45)
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(_) Real Trajectory ( _.) Desired Trajectory

1
time (sec)
Fig. 7 Robust Control (,=k,=0.35, o,=k,=0.85, a,=k,=0.45)

(_) Real Trajectory ( _.) Desired Trajectory

1
time (sec)
Fig. 8 Adaptive Control (¢, =k, =0.35, &, =k=0.85, o;=k;=0.45)
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(_) Real Trajectory ( _.) Desired Trajectory

time (sec)
Fig. 9 Adaptive Control ( &, =k, =0.35, o,=k,=0.85, o ,=k,=0.45) with Unknown
External Disturbance 50sin(27t)

(_) Real Trajectory ( _.) Desired Trajectory
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¢ |
o 1 1 1
50O 015 1 1.5 2
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_50 1 1 1
1_50 0.5 1 1.5 2
0.5 - 1 1 i
0. 0.5 1 1.5 2
5 - T ;
¢ o U= .
-5 1 1 i}
0 0.5 1 1.5 2
time (sec)

Fig. 10 Disturbance Estimation Based Tracking Control with Considering System Dynamic
Structure ( &,,=k,=0.35, @,=k,=0.85, a,=k,=0.45)
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(_) Real Trajectory ( _.) Desired Trajectory

5 7= T - T
O 1 1 K
500 0.5 1 15 2
N
_50 1 1 1
1.59 0.5 1 1.5 2
0.5 1 [l [l
50 0.5 1 1.5 2
? -
oF N ]
-5 I 1 '
0 0.5 1.5 2
time (sec)

Fig. 11 Disturbance Estimation Based Tracking Control without Considering System
Dynamic Structure ( @, =k, =0.35, o, =k,=0.85, a,=k,=0.45)

(_) Real Trajectory ( _.) Desired Trajectory

5 , . T T ]
¢
O 1 1 1
500 0.5 1 1.5 2
é /N .
_50 1 1 |
150 05 1 £5 2
7 1 w
.5 1 - ul 1
050 0.5 1 1.5 2
£ o= :
>0 0.5 1 15 )
time (sec)

Fig. 12 Disturbance Estimation Based Tracking Control without Considering System
Dynamic Structure ( &,,=k,,=0.35, a,=k,=0.85, ¢,=k,=0.45). The System is Presented

with the Unknown External Disturbance 50sin(27t)
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Conclusions
From the analysis and simulation results we can have the following conclusions.

1. For feedback linearization control, we need accurate system dynamic structure and
parameter value or the controller will fail.

2. For robust control, we need accurate system dynamic model. The bound of parameter
value and external disturbance should be known. The tracking accuracy will be sacrificed
to maintain the robustness of system. If the system cannot satisfy the criterion of the
controller, it will fail.

3. For adaptive control, we need accurate system dynamic model. The system input
should be persistent excited to guarantee the convergence of the system parameter. If the
system isn't persistent excited or some unmodeled mechanism and external disturbance
present, it will fail.

4. The proposed tracking control method ( disturbance estimation based tracking control )
will overcome the aforementioned limitations. We don't need the system dynamic model
and the parameter value. Since the controller don't need the information of system model,
it will be a more robust method. And since the unknown external disturbance and
unmodeled mechanism can be estimated, we don't have to sacrifice the tracking accuracy to
assure the system robustness. The controller is compact and easy to formulate. From
simulation results we can see that it can work well in trajectory tracking.

In this project we have applied several existing control methods to drive the telescopic robot
arm to follow a desired trajectory. The situations that these methods will fail or succeed are
investigated. And a different approach which overcomes the limitations of the investigated
controller is successfully applied to do the tracking control.

18
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Abstract

An overview of the recent developments in the control of chaotic
systems is presented. Though the most visible of this work is the so-
called OGY algorithm, there has been some other work in this area,
which is also presented. Both system stabilization and targeting are
discussed, and then some experimental work which attempts to con-
firm the theory is presented. Throughout, questions about originality
and value of the work are touched upon. Finally, the lack of adequate
simulation results is Jamented over, and a long list of possible future
work is enumerated.

1 Background and Motivation

1.1 Background

The staid old field of physical dynamics has gone through something of a rev-
olution over the last twenty years. Through most of the twentieth century
this established discipline, originally based on Newtonian physics, has been
overshadowed by newer and more stimulating developments, such as relativ-
ity, quantum mechanics, and particle physics. Work in the area for decades
consisted of touching up what had become an imposing, but apparently basi-
cally finished, theoretical structure. And this was true even though (or could
it be because? there are few other cases in human thought where such a



beautiful conceptual and theoretical scientific understanding had been trans-
lated so successfully into a useful body of practical design tools. Probably
no other area of scientific achievement has been of such benefit to mankind,
making possible, for example, the Industrial Revolution.

Hence few were expecting profound new results to arise out of this old
paradigm of scientific thinking. But scientists for many decades had also
been musing about one of their great non-achievements: their inability to
handle even some of the simplest of nonlinear equations analytically. The
great Poincaré had attacked the problem head-on, and had ended up devel-
oping an extremely useful method for generating qualitative results on how
many nonlinear systems develop over time. But he had failed to achieve a
systematic solution method. Stanislaw Lem had likened the idea of studying
nonlinear equations, to some still a great novelty of little scientific interest,
to deciding to study "non-human animals”. That is, the vast majority of real
problems in the world start out nonlinear, and only through vast approxima-
tions do we make linear systems out of them. The fact remains: there are
some systems in which nonlinearities lead to behaviors wholly unexplainable
by any linearization technique (though bifurcations and chaos are among
the best known today, parasitic oscillation in nonlinear electronic amplifiers
is another, and has been known for decades).

It was only when some recent researchers, through a combination of fortu-
nate experimental discoveries and then solid scientific groundwork, and surely
under the influence of research environments in which the digital computer
was first coming into its own, went back to the simplest of nonlinear systems
and looked (or better yet, computed) more closely did it become clear how
a brand-new science of deterministic dynamics was possible. In short, they
then made some fascinating discoveries, the field of Chaotic Dynamics was
born, and a plethora of new types of predictable dynamical behaviors came
into the light.

A well-known popular retelling of the story behind the origins of chaos
theory can be found in [Glei 87]. A good practical overview for engineers of
the basic results of the new field can be found in [Moon 92].

Interest in nonlinear equations in many other areas of science and en-
gineering has also been increasing. The linear theories all share the same
strengths and weaknesses: they are wonderfully tractable, often allowing
for entirely analytic solutions to important problems. For design problems
where they are a sufficient approximation, they allow for the simplest and
most powerful design tools, sometimes even taking such a straight-forward
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algorithmic form that a few commands at a computer screen suffices to pro-
duce optimal solutions. But the nagging difficulty remains: there are just too
many problems where the nonlinearities produce behavior that can’t be cap-
tured by linear equations. Hence, attempts to deal analytically with systems
of nonlinear equations of all types (not simply chaotic) has been a major
focus of numerous researchers over some decades. In the field of Control,
the current state of much of this research can be found in such standard
textbooks as [Isid 95] and [Vidy 93].

The evidence that chaos might be something control engineers should at
least be aware of continues to mount. [Goln 91] describes an experiment
where a simple 2nd order system with a 1st order feedback signal showed
chaotic behavior under some conditions. [Holm 82] describes a simple case
where a ball bouncing on a sinusoidally vibrating table shows chaotic motion,
and then goes on to discuss physical mechanisms for which this is a good
model. Later authors showed how this theory can be used to improve the
design of impact print heads [Tung 88}, though this isn’t the most pressing
- engineering need anymore. And somebody was so impressed that he actually
built one and controlled it using the OGY algorithm [Vinc 95). The point is
that chaotic phenomena can occur in the simplest of systems, and engineers
need to understand the basic mechanism, and how it might be controlled.

1.2 Motivation

A good engineer knows a good theory when she sees it. A good theory has
beauty and potential, both. The beauty is often found in the connections
between different areas of knowledge, and the entirely new perspective on
well-known phenomena one gains, leading to the proclamation: this is truth.
The potential is visualized as new design power: what new behavior does this
allow me to model, predict and control, what old problem can I approach
anew, in short, what can I build with it? ‘

Many agree who study it with care agree: chaos theory has great beauty.
The simplest of equations, over easily testable ranges of parameters, behaves
in exceedingly complicated ways, yet with the proper application of the the-
ory, even the most random looking outputs can be predicted and understood.
So to the engineering mind, the next question is only too clear: what can we
do with it? Is this theory actually good for something?

How common is chaos? That is, do the phenomena of chaos occur regu-
larly enough that those interested in controlling real-world dynamic systems
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must have an understanding of their mechanisms? Should we try to remove
all chaotic effects from any given system? How do we know if some aspects of
a system are behaving in a chaotic manner? Could chaos actually be useful
if designed purposefully into a system?

Many, if not most, of the chaos researchers cited below believe that careful
research over the past decade (the first studies where chaotic phenomena are
being looked for) has shown that chaos is in fact quite common in real physi-
cal systems. For example, Moon [Moon 92] describes in some detail a variety
of physical systems in which chaos has been observed (e.g. pendulums, ro-
tors, comets, planetary orbits, electrical circuits, biological signals, turbulent
phenomena). The practical question for each of these cases is whether or not
the chaos in question is objectionable (perhaps it is of quite small magni-
tude, for example), and if so, whether it is feasibly controllable. We will not
attempt to fully answer this question here, but we will give some indication
as to the types of practical areas researchers are looking at today where in-
fluence of chaotic dynamics is believed (by some) to have a clear benefit, and
what kind of success they are having doing so.

What do we mean by "controlling” chaos? We might mean that when
chaos is detected in a system, we perform whatever steps is necessary to
remove it. Usually, this has meant we drastically change the system itself,
if this is possible (analogous to when your high-frequency circuit is oscillat-
ing, you move your components around, rather than try to figure out what
exactly is going on). Often, this isn’t possible or desireable (it could be a
planetary orbit, or it could be the print head of a dot-matrix printer, whose
dynamics you can’t very well change). We might think to try and fully feed-
back linearize the system, if this is possible, and then see if we can stabilize it
to remove the strange chaotic flows. But this might require extreme control
effort, and we might also not know the system parameters well enough to
make this feasible.

We also might mean not changing the system dynamics in any funda-
mental way, ‘but instead only applying small perturbations (control) to the
system (such as little thrusts to our cruising rocket) which will have the ef-
fect of removing the undesired traits of chaotic orbits (e.g. wandering over
each point in the attractor, trajectory sensitivity to initial conditions), but
still allowing mostly the natural dynamics to flow. This is the challenging
problem which most of the results in this paper tackle.



2 Approaches to Control of Chaos

In discussing chaotic control, we must differentiate between stabilization,
trajectory generation, and targeting. If our goal is to simply ensure long-term
stability, we can use Lyapunov or other techniques, and the chaotic nature of
the system doesn’t really matter. But as is well-known in nonlinear control,
systems with unstable fixed points can sometimes be locally linearized and
stabilized, to the point where future dynamics are entirely controlled, so long
as the trajectory doesn’t deviate too far from the fixed point. This is the
type of stabilization we will refer to here.

Trajectory generation, generally a much harder problem, refers to finding
time-paths of the system close to a desired path. A related problem is that
of targeting, where we have a desired destination at some time in the future,
but we don’t care how we get there. One can imagine that targeting can
be used for trajectory generation, where we just simply target at each time
step, and hence produce the desired trajectory, but more general targeting
allows for arbitrary paths before the target is reached. That is, I can target a
point I wish to get to, and then the controller can figure out how long it will
take him to move the system there. In general for chaotic systems without
very strong control, input trajectory generation is basically an intractable
problem, as the natural chaotic dynamics are unlikely to lead in any given
desired direction. But targeting, even in the presence of noise, is feasible, as
will be shown below.

We start our study of current techniques for chaotic control with the work
of a group at the University of Maryland which has gained much notoriety,
and in fact is responsible for the current widespread use of the term chaos
control.

2.1 The OGY Method and its Kin
2.1.1 OGY Stabilization Theory

For better or worse, much of the interest over the past five years in the
control of sytems with chaotic dynamics arises from reaction to the original
research work of Ott, Grebogi, and Yorke [Ott 90]. The resulting method has
thus come to be know as the OGY method. In this short paper the authors
spell out results both simple, and yet perhaps also a bit subtle. Their main
insight is that once a dynamic system has entered a chaotic state, it now has



an infinite number of embedded unstable fixed points. An example of how
this occurs can be imagined by considering the well-known logistic equation:

Tny1 = A zo(l = z,) (1)

As ) increases in the range 3 < A < 4, the system progressively bi-
furcates, where at each bifurcation the previous stable fixed point becomes
unstable (i.e. | slope |> 1), and a new stable fixed point at twice the pe-
riod comes into being (see the Appendix for a description of bifurcation for
equation 1). At the point beyond where the system goes chaotic, there are
an infinite number of these unstable fixed points of varying periodicities, and
a chaotic dynamic sequence is simply one where the orbit is cycling in the
neighborhood of these numerous fixed points. Understanding this process as
it occurs in the logistic equation allows us to understand it in other nonlinear
systems as well, as the underlying mechanism and behavior are virtually the
same in these higher dimensional cases. The main difference is the presence
of both stable and unstable directions at fixed points in the problems with
higher dimension.

So then the following simple little insight is possible: when even a chaotic
dynamic system is near a fixed point, it will tend to spend a bit of time there
before flinging off to other portions of the attractive basin (assuming, of
course, a reasonably smooth nonlinear function), just as a ball will always
roll off of a hill, but is slower near the top. Fig. 1 plots Eq. 1, where the
initial condition is calculated to be precisely at the period one fixed point,
though there is a small error due to finite precision round-off. This small
error builds up over time, to the point that by iteration 80 the trajectory
has again become chaotic. But note also that at later times there tend to be
clumps of points near the fixed point, and that the orbit itelf tends to return
to neighborhoods of the fixed point. The OGY control method is based on
these latter points.

The ideas can be summarized as:

1. Chaotic orbits are ergodic, in the sense that all points in the basin of
the attractor are eventually visited in the unperturbed dynamics.

2. No matter how small a finite control we are willing to make, the orbit
will eventually come close enough to the fixed point that our control
will be able to bring it into the fixed point.



3. Once the orbit is nearly on the fixed point, it takes only minimal control
energy to keep it there.

4. Because there are an infinite number of such fixed points, each with
different orbits associated with them, it is possible, with very small
control effort, to stabilize the system in a wide variety of orbits by
merely turning on and off control to stabilize different fixed points.

In a nutshell, that’s it. Really. In [Ott 90] they also provide one way to
stabilize the fixed point, but it’s clear that this method is a bit ad hoc, and
anyway it’s unlikely control engineers need to be taught how to do this. The
only really new derivation they perform is a formula for estimating how long
we must wait in a given system for the chaotic trajectory to get within a
certain distance of our fixed point of interest. Using previous work of their
own, they show that the probability distribution of this time has the form:

P(r) m e 2)

where the exact formula and j7 are functions of a given problem.

The ability to switch from one orbit to another with minimal control
effort might be considered the one really important insight in the OGY work,
though others before them had similar conceptions (e.g. see [Jackl 91)
or [Mohl 73], Ch. 2). Immediately it is intriguing to consider what sort of
systems we can think of where we might use the ability to make large changes
quickly and with little energy. But the authors go on (and one senses perhaps
a trace of that o’ Cold Fusion variation on Pascal’s wager):

Thus, when designing a system intended for multiple uses, pur-
posely building chaotic dynamics into the the system may allow
for the desired flexibility. Such multipurpose flexibility is essen-
tial to higher life forms, and we, therefore, speculate that chaos
may be a necessary ingredient in their regulation by the brain.

The idea of .purposefully building chaotic dynamics into a system, to take
advantage of large potential behavior change with minimal control effort, is
a very intriguing one. The engineer’s alarm bells go ring, ring! But perhaps
bravado speculation of the more novel and, to be kind, unproven sort should
be relegated to to the less accessible portions of the document, say, after the
list of citations, i.e. once the science is over.



Later work by the same authors, in collaboration with two others, pro-
vides the most clarifying description of the method [Rome 92]. One gets the
feeling while reading this paper that the authors from two years previous have
now gotten together with some control engineers, and together they finally
understand what they’re doing. Instead of the ad hoc stabilization design pro-
cedure shown previously, they perform Jacobian linearizations around fixed
points, discuss linear controllability and pole placement, and then proceed
to stabilize any desired fixed point in this manner. The only difference from
what control engineers can presumably do in their sleep is the discussion
of the underlying chaotic nature of the dynamics, again allowing only very
small controls to be used, as the trajectory is guaranteed to arrive ”close”
to the fixed point if we just wait long enough. The bottom line on the work
is that they have coupled together very well-known results on Jacobian lin-
earization from nonlinear control theory (which works whether a system is
chaotic or not) with some of the more recent advances in the understanding
of nonlinear dynamical systems, specifically chaos theory. The result is a
method of control which uses some facts from chaos theory (ergodicity, mul-
tiple stable fixed points) to show how the system evolves over time before
control 1s applied, so as to allow the control effort to be applied only when it
is most effective. That is , you should wait until the trajectory gets near to
the desired fixed point, which it is guaranteed to do, eventually. If you can’t
wait, you can use the targeting ideas, which are spelled out below, but even
these can’t get you to the target quicker than some pre-specified amount of
time. ‘

To get the basic idea of how this control can be done, Fig. 2 plots a
MATLAB simulation of a chaotic system, the logistic equation, where the
parameter ) is slightly adjusted as the control parameter (this is a convenient
way to formulate the problem, and it is equivalent to nudging or shepherding
the current = value). The plot alternates between chaotic behavior (as at the
beginning) and controlled behavior. In the first controlled strip, the system
is linearized around the fixed point for period 1, and a pole is placed at .9 in
the digital frequency domain. This control only turns on when the point has
come close enough to the fixed point that it can be easily brought in (in this
simulation, the point must be within .05 of the fixed point). As can be seen,
the system pretty quickly converges to the fixed point, and then is stabilized
there. Rather trivial? Yes.

The other two bands are for higher order periods, being periods 2 and
8, respectively. The difference here is that a different linearization point is
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chosen (say, one of the two for the period 2 case), and the feedback and
capture range are applied to this point. The period 8 case is even more
interesting. Note that even when the point is stabilized, we are only providing
control inputs when the point is at the stabilized fixed point, i.e. every
8th time point in the map. Hence, this very simple method is extremely
sensitive to noise, and was even somewhat troublesome to make work in the
noiseless case. In [Rome 92] a different, more robust method to improve the
performance of locking onto higher order orbits is given, which essentially
consists of breaking up, say, an n-orbit control into n dynamic terms, and
then apply this control at each time point, thus reducing the effective noise
at each control input.

A major remaining question in all this, though, is how exactly the esti-
mation of the system dynamics is to be performed if they. aren’t known a
priori. In the above simulation, the logistic equation was simply known, and
the fixed points calculated. If this type of technique is ever to be practical,
we must have a way of estimating the fixed points of the attractor just from
the measured data. In the original OGY paper [Ott 90] it is pointed out that
the well-known (in chaos circles) delay-coordinate embedding method can
be used to estimate the local eigenvectors and eigenvalues of the Jacobian
linearization of the fixed point. It is an interesting question as to how this
relates to nonlinear system identification methods in control theory.

In related work, [Dres 92] modify the OGY method to improve it when
used with the time delay-embedding method of experimental practice. This
work, often cited, seems to superceded with the summary paper [Rome 92].
[Auer 92] is a later OGY work where the system identification and control
algorithms are modified to allow for much higher-dimensional systems. The
form of the algorithm is unchanged, however, and the basic idea is to only
model those dimensions of the underlying space that are actually chaotic.
It turns that many, if not most, chaotic attractors are only of a few dimen--
sions, but they are embedded in a higher dimensional space of more stable
dynamics. A more recent paper [Blei 95]

2.1.2 OGQGY Stabilization Experiment

After the original OGY paper [Ott 90] there began a flurry of experiments
to attempt to show experimentally what had been proposed theoretically
(though given the simplicity of the theory, it is hard to imagine how the
basic ability to stabilize these systems could have been so in doubt). The



biggest question was clearly how well the identification of chaotic phenomena
worked in real life, so that the simple feedback algorithm would be sufficient
to stablize certain orbits. We will only touch on some of the more important
examples of claimed success of controlling chaos in the lab. The review
article [Shin 93] gives a nice listing of most of these experiments, though as
it is written by the interested parties, it is not unbiased.

Fast on the heels of the original paper was [Ditt 90], which used the OGY
technique to control a simple iron sheet coupled to a magnetic coil [Ditt 90].
They claimed to be the first to control chaos! Hunt controlled higher period
orbits with his resonator circuit made with a nonlinear diode [Hunt 91). OGY
has been used to control an electrochemical cell [Schi 94], and a ball to bounce
at a fixed height [Vinc 95] (though see [Holm 82] and [Pust 78] for the basic
theory).

But by far the most well-known and, shall we say, loud proclamations
concerning control of chaos have been heard from biology researchers, who
claim to be able to control the regularity of heartbeats [Garf 92], to the
“naturally chaotic” signals in the brain [Schi 94]. These experiments have
been performed on rabbit hearts and rat brains, respectively, and the idea
that if can regulate these types of signals we might be able to control heart
attacks and epilepsy has many corners abuzzing. But for a report which
questions the very fact that chaos is being controlled at all, see [?], where
the algorithm is applied to a simple deterministic plus random noise signal,
with very nice results.. And though this paper is not down on the idea
of trying to control these signals, and in fact sees the possibilities of such
control as being potentially quite useful, we are left staring the matter in the
face, wondering: then what exactly is new here? Why haven’t you done this
before?

What are we to make of these experiments? First, none of them seem to
be anywhere near solving practical problems. Though it can be argued that
this is because the field itself is in its infancy, it would be nice if someone
would come up with some examples of chaotic systems that really need to be
controlled, besides rat brains (are we really going to allow real-time estima-
tion of fixed points of human brain signals?). Second, it is still unclear which
of these signals actually are chaotic, and which are just noisy. The current
criteria for chaos might not be very good at distinguishing noise from chaos.
After all, applying nice linear feedback to noise will also stabilize the noise.
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2.1.3 OGY Targeting Theory

A more interesting set of ideas to come out of the OGY school has been
the idea of targeting future values of the state. The idea is that a very
small control now can potentially have a big benefit in the future, given the
positive Lyapunov exponent of a chaotic system. So you simulate the sytem
running into the future, until you get a range which fully spans the space
(i.e. measure 1). You can then pick a local initial condition which will lead
to this final results.

Fig. 3 shows how an initial very small difference between points grows
over time. We just take where we want to go, and then find the nearest
point in a mesh between the two extreme points in a plot like this, and we
judge the point locally to achieve the proper starting point. In the presence
of noise, we can nudge at each time step.

The major reference works on this topic are [Shin 90], [Shinl 92], [Shin2 92],
and [Kost 93].

2.2 The Work of Hubler and Jackson

This is a whole other tradition of control of chaotic systems which does not

include any feedback, just sinusoidal input signals. Some major reference
works are [Jack 90], [Jackl 91], and [Jack2 91].

2.3 Stochastic Control

This is an interesting counterpart to the other ideas, and again it is open
loop. This author [Fahy 92] has found that in certain chaotic systems, if

2.4 Control of Turbulence

Other work that has been going on entirely independently of the OGY school
on control of chaotic phenomena has been focussed on the very real engineer-
ing problem of turbulent flow at at fluid boundary layers. The idea is that
if you can adequately model turbulence as deterministic dynamics, then by
proper control (say on the surface of a wing) you might be able to reduce the
drag on the wing (a prospect with some amazing potential economic benefit,
it seems clear).

11



It is thought that the major extra drag of turbulent flow occurs due to
the bursting effect, which is modelled as a jump (aka heteroclinic cycle) from
one unstable fixed point to another. With control, these researchers try to
slow down these jumps (in some respects similar to the OGY method)

The results they’ve achieve have been quite promising in simulation when
there is no noise, and a bit less promising, though not hopeless, in the pres-
ence of noise. And there are major outstanding issues, such as system identi-
fication, which need to be solved before anything like this could be practical.

The major references on this very recent work include [Colll 94], [Coll2 94],
and [Coll 95).

To give some perspective on how some other scientists view the OGY
work, we will quote one of the main turbulence researchers (also revealing
perhaps a bit of youthful ardor):

The shepherding technique to derive a stabilizing controller is at
least several decades old, although many in the dynamics com-
munity incorrectly attribute it to the often cited 1990 paper by
Ott, Grebogi, and Yorke [Ott 90] who use the technique to stabi-
lize linearly controllable saddle points in two dimensional maps.
Nearly twenty years before the original "OGY” paper, Mohler,
in his monograph on bilinear systems [Mohl 73], used a similar
technique on much more difficult problems. Unlike OGY, who
suggest that their work might be the way in which the brain reg-
ulates itself . . ., Mohler makes not such dramatic claims but
casually presents the technique in a manner which suggests that
many others before him had done similar things. [Coll 95)

2.5 harmonic balance

It turns out that harmonic balance methods can be used to detect for chaotic
phenomena. .See the references [Gene 92] and [Atha 95].

3 Simulation

The only simulation results presented in this paper are in Figs 1-3. These
have already been explained, are for the logistic equation 1, and include
stabilization and targeting results. I have some other patchy simulation
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results, but nothing that is more illuminating than the results presented
here.

I really wanted to try and simulate at least a major subset of the following

work (using MATLAB):
e Basic OGY stabilization and targeting algorithms for:

— Logistic equation
— Lorenz equations
— Double kicked-rotor equations

— Ball bouncing on a vibrating plate

Some quick simulations of the stochastic trajectory tracking of [Fahy 92)

The periodic control of [Jack 90], at least using the logistic equation

o Compare the targeting ideas of OGY with the cost and accuracy of
performing the same work with other methods, most notably:

— Jacobian linearization control

— Full-state linearization control
e Try out some techniques for the detection of chaotic systems, and then
compare them in detecting systems of different types, including real

chaotic systems in noise, and just non-chaotic systems that are very
noisy. This work motivated by [Chri 95].

o Perform all of the above simulations with varying noise sources, to try
and get a feel for performance robustness. -

Sure would be nice to have had more time to simulate these systems
properly. Yup, sure would have been nice.

4 Conclusion and Looking Ahead

We have looked at a few different aspects of chaos control, which is in reality
a very big field. Chaos control is a work-in-progress, and is sure to become
a larger part of control in the future.

My hopes:
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I would like to be able to complete all the work in the simulation section
at some point in the future.

I would like to look at the relatin of delay coord embedding and nonlinear
system identification.

I would like to compare trajectory destination generation comparison of:

e chaotic trajectory vs. feedback lin LQR
e lorenz attract

e double kicked-rotor

Are the methods for detecting chaos in physical systems reliable? It would
be interesting to test this.

We need more comparison of what’s gone on in the past in control with
what’s happening now.

I would like to find practical uses of these ideas!!

In what sorts of systems would building in chaos provide a benefit? .

Whatever creativity and technical merits one ascribes to the OGY work, it
is impossible not to see the service they have performed in bringing the issue
of control of chaotic systems to the attention of researchers in many fields.
By creating the buzzword chaos control, their work has spurred many others
on to share the research dollar pie, as prestige and buzzwords are the bread
and butter of dollar-distributing bureaucrats. Hence, we have research in
scientific journals of the highest-repute reporting experimental results using
techniques that could have been performed many years ago, if these same
researchers had simply spoken more carefully with the control theorists (or
vice versa). By bringing up these issues in the traditionally more scientific
journals, rather than merely the engineering ones, OGY has made researchers
in these other disciplines (and most notably biology) realize the possibities
of control for their own disciplines, which are inherently extremely nonlinear.
This is the true value of the OGY work.

It would be interesting for control theorists themselves to become more
involved in the problems of these other disciplines, in as they can be modelled
as tractable nonlinear systems, and in as control has a useful role to play in
solving their problems.
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EECS 662 FINAL PROJECT
Advanced Nonlinear Control

A Nonlinear Sliding Observer for Estimating Vehicle Dynamics

ABSTRACT

Longitudinal vehicle speed is estimated given only measured angular wheel speeds and
known brake torque inputs using a nonlinear sliding observer. A fourteen degree-of-
freedom vehicle dynamics model including compound tire force dynamics is used to
simulate true vehicle dynamics. The wheel speed measurements are obtained from the
vehicle dynamics model. A reduced order observer model is constructed and simulated in
conjunction with the vehicle dynamics model. Simulation demonstrates that vehicle speed
can be estimated to within some desired accuracy. Robustness of the observer is analyzed
through simulation by introducing steering to the vehicle dynamics model, but not the
observer model, adding sensor noise to the wheel speed measurement, and changing
vehicle parameters. Concluding remarks present ideas for future research pertaining to the
estimation of vehicle dynamics using nonlinear sliding observers.

1.0 INTRODUCTION

Control systems in general require knowledge about the plant dynamics in order to
compensate for undesirable behavior. Modern control theories have been developed using
state feedback. Compensation designs using state feedback assume that the plant states
are available as feedback information. The need for state estimation arises from the fact
that, in general, not all of the states can be directly measured. In order to apply
compensation to stabilize, to optimize, or to decouple a system, the states of a system
must be used as feedback information. If the states cannot be measured directly, then it is
necessary to estimate the state dynamics based on a model of the system dynamics. The
system dynamics are either represented with a linear or nonlinear model which gives rise
to the development of linear and nonlinear state estimation techniques. Several techniques
have been developed for estimating states of linear and nonlinear plant models [1-8,10-
16]. Sliding observer theory presented in [14] is the technique of interest and thus the
motivation behind the following work.

The control of vehicle dynamics for safety and performance enhancement purposes is one
such problem where the need for accurate robust state estimation is required. Sensor
technology for measuring vehicle state dynamics, such as longitudinal vehicle speed and
tire forces, has not'met the cost targets required to be production viable. This is not to say
that the trend in sensor technology has not been in the right direction, but in order to meet
the constraints defined today, sensor technology is not where it needs to be for
automotive application. Therefore, vehicle state estimation given a minimal number of
measured inputs is the current problem to be investigated. In particular the estimation of
longitudinal vehicle speed given only angular wheel speed measurements is the focus.

The following outlines the state estimation problem in terms of the vehicle dynamics
model, the reduced order vehicle dynamics model used for state estimation, and the
model] assumptions. A nonlinear sliding observer for estimating vehicle speed is

D. Milot 1
12/6/95



proposed. The nonlinear sliding observer along with the vehicle dynamics model are
simulated and results analyzed. Finally, concluding remarks are given to summarize and
to propose future work.

2.0 PROBLEM DEFINITION

Plant state estimation is an important detail in developing a comprehensive robust control
system. State estimators are useful in eliminating the number of required feedback
sensors and providing for feedback sensor diagnostic capability. The motivation behind
the following is to estimate longitudinal vehicle speed given only angular wheel speed
measurements. This may sound simple in concept, but in reality without knowing the
nonlinear time-varying compound tire force properties, estimating the true longitudinal
vehicle speed is a challenging problem. The estimation of longitudinal vehicle speed
enables wheel slip to be regulated to an optimal value so that optimal vehicle acceleration
or deceleration is achieved though the modulation of wheel brake pressure or engine drive
torque (e.g., anti-lock braking system (ABS) and traction control system (TCS)).

In addition to estimating longitudinal vehicle speed, vehicle dynamics such as lateral
vehicle speed and yaw rate can be estimated as more state dynamics are measured. Lateral
vehicle dynamics information is necessary for controlling vehicle handling characteristics
and yaw stabilization.

2.1  Vehicle Dynamics Model

The fourteen degree-of-freedom vehicle dynamics model used for simulating true vehicle
motion contains the conventional longitudinal, lateral, vertical, roll, pitch, and yaw
dynamics as well as four wheel speed dynamics and four independent suspension
dynamics. The vehicle dynamics model was designed and implemented by the University
of Michigan Transportation Institute (UMTRI) using the programming language
AUTOSIM. In addition to the nonlinear system dynamics, the vehicle dynamics model
also contains a compound tire force model originally developed by Pacejka [9]. The
compound tire force model is the nonlinear component of the vehicle dynamics model
with the most uncertainty from an estimation standpoint. For simulation purposes, a
compound tire force profile is defined, but knowledge of the compotind tire force profile
is not incorporated into the observer dynamics. The equations of motion for the vehicle
dynamics model are:
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m is the total vehicle mass

m; is the sprung vehicle mass

h is the height of the c.g.

Ly is the distance from the c.g. to the front axle

L, is the distance from the c.g. to the rear axle

M, is the aligning torque moment about the z axis
Myis the aligning torque moment about the roll axis
I is the inertia of the entire vehicle about the x axis
I, is the inertia of the entire vehicle about the z axis
I, is the product of inertia of the entire vehicle

I, is the wheel inertial about the wheel axle

R\, is the rolling radius of the wheel

trand t, are the track width of the front and rear of the vehicle, respectively

The remaining six degrees-of-freedom are defined by the following suspension model:
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where, for small 6,

dzs = z¢- (25 + L;0) )
dz, =z, - (25 - L,6) (10)

K, is the sprung mass spring stiffness

B is the sprung mass damping coefficient

K. is the unsprung mass spring stiffness

B, is the unsprung mass damping coefficient

I,y is the inertia of the entire vehicle about the y axis

Fyrand Fy, are the transmitted longitudinal forces for the front and rear,
respectively :

hs and h, are the distances from the center of the wheel axle to the
horizontal axis of the sprung mass for the front and rear, respectively

The components of x(t) = [v, VyZs T § 0 Wy W O O 20 257 211 z,,]T are longitudinal
velocity, lateral velocity, yaw rate, roll angle, pitch angle, front left and right and rear left
and right angular wheel velocities and front left and right and rear left and right unsprung
mass deflections. The inputs to the vehicle dynamics model are front wheel steering
angle, &, (assume steering on left front wheel equals steering on right front wheel) and
individual wheel brake torque; u(t) = [ Ty Tofr Tort Tprr). Therefore, only braking and
steering maneuvers are analyzed. If additional dynamics are augmented for drive train
dynamics, then vehicle acceleration maneuvers can be also considered.

2.2 Vehicle Dynamics Model for State Estimation
Given the defined vehicle dynamics model, if only wheel speeds are measured, then

obviously not all of the vehicle states are observable. Since the initial objective is to only
estimate longitudinal vehicle speed, v, the vehicle dynamics can be reduced from those
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defined above. An initial reduction results by assuming a bicycle model, hence the roll
dynamics are eliminated. The two front wheel dynamics are lumped into one equation and
the two rear wheel dynamics are also lumped into one equation. If relatively small
steering inputs are used, then a bicycle model adequately depicts the dynamics desired.
Another assumption is to assume quasi-static weight transfer characteristics (i.e., the
suspension dynamics will be neglected). The reduced vehicle state equations are
formulated as:

—;L—[—F#cos&,-—F,,sin5,—F;,]+Vyr-
~::x- %[F».cos%—F#sin5,+F,,]“er
r’ _ %[L,(Fﬂcosé'j—F#Sinaf)—L,Fyr] (11)
o) | e

_ {;[FX,RW,-T,,,] |

The components of x(t) = [vx vy r @ ;)" are longitudinal velocity, lateral velocity, yaw
rate, front and rear angular wheel velocities. The inputs to the reduced order vehicle
dynamics model are the front steer angle and the applied brake torque via brake pressure;
u(t) = [& Ty T,)T. m is the total vehicle mass, I, is the moment of inertia of the vehicle
about its yaw axis, and I, is the moment of inertia of the wheel about its axle.
Components of the force vector, F(t) = [Fyr Fy, Fyr Fy,], are the front are rear longitudinal
and lateral tire forces. Sign conventions for the forces and motion, and the remaining
parameters in (11) are defined in Fig. 1. The analytic tire model of [9] is used to simulate
the true tire forces. The model generates a tire force in the longitudinal direction given a
wheel slip (A) and a normal load (F) and in the lateral direction given a wheel slip angle
(o) and a normal load (F,). Note that the tire force model is used for simulation of the
vehicle dynamics only. The estimation process does not contain information pertaining to
the actual tire force profile.

.' 4/ vr —> Rv e
af — ‘?\
or
VX < e @ > Fxr
—
6fI l/ VT r\) l
Y

Fyr

Figure 1: Five degree-of-freedom bicycle model: Schematic and sign convention corresponding to
(11)
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3.0 OBSERVER DESIGN AND ANALYSIS

Designing an observer for nonlinear systems generally amounts to defining a model of the
system dynamics and then applying extended Kalman filter techniques. Extended Kalman
filters have been shown to meet the requirements of many nonlinear control systems, but,
in general, strict model dependent observers tend to have robustness problems with plant

uncertainty.

In order to address the problems with robustness due to plant uncertainty in observer
designs, probabilistic techniques have been explored in conjunction with extended
Kalman filters [11]. Fuzzy logic based observers have also been studied in [8]. Additional
research has explored the notion of sliding surfaces. Sliding surfaces have been
predominately researched by Soviet mathematicians, where it has been used to stabilize a
class of nonlinear systems. Slotine et al studied the concepts of sliding mode control and
proposed a dual problem of designing state observers using sliding surfaces [14].

The following three subsections define the basic concepts behind the sliding observer
theory presented in [14] and the design of a nonlinear sliding observer for estimating
longitudinal vehicle speed.

3.1  Nonlinear Sliding Observer Theory

The basic concepts of the nonlinear sliding observer are developed as the dual of the
sliding mode control problem [14]. The following briefly outlines some of the important
ideas behind sliding mode control.

Consider the nonlinear system

x () =fix,0) + glx,Hu(t) + d(t) (12)

where, u(t) is a scalar control input, x is the scalar output, and x = [x,x, ... ,x("'l)]T is the
state. fix,?) and g(x,?) are nonlinear functions that are not exactly known except for an
upper bound on the parameter variation. | Af | and | Ag l denote the parameter variation
bounds for fx,?) and g(x,?), respectively. d(f) is unknown, but bounded in absolute value
by a continuous function of time. The control problem is to design a control law, u, such
that the state x tracks a desired state xg = [x4, %, , ... ,xd(“'])]T. In order to achieve this goal
with a finite control, u, the following assumption must be made about the initial
condition:

%, =0 (13)
where, X=x-xg=[X ,5c'" yeee s X ("'1)]T is the tracking error vector. A sliding surface is
defined on R" as (X ,t) = 0 with
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n-1
o(% 1) = (g;m) F,450 (14)

Given initial condition (13), the problem of tracking x= x, is equivalent to that of
remaining of the surface o(t) for all t > 0. The sliding condition for initial conditions
different from (13) must have control law u designed such that the following holds:

o6 < 1lol (15)

The idea behind (14) and (15) is to define a well behaved function of the tracking error,
o, according to (14) and then design a control law u such that (14) is satisfied despite the
presence of model parameter uncertainty and disturbances. Note that if the initial
condition is not as defined in (13), then satisfying (14) still guarantees that o(t) will be
reached in finite time. Also, note that control laws that satisfy the defined equations are
discontinuous about the sliding surface, thus in practice the control, u, chatters.

Additional topics pertaining to sliding surfaces have been explored such as shearing
effects and sliding patches. Shearing generates sliding behavior over a known region
called the sliding patch. In order to obtain the shearing effect in the phase plane
trajectories, input switching according to a single value of the state, rather than a linear
combination, must be applied. In order to increase the region of direct attraction for the
sliding surface, ¢, damping in terms of the single input must be added to each state
equation.

The basic concepts of sliding mode control are used to define an observer structure for
nonlinear systems. Slotine et al derive the basic concepts of a nonlinear sliding observer
using a second order nonlinear system model in companion form and assume only a
single measurement. This assumption allows for observability to be assumed. Given a
single measurement, the sliding observer structure is as follows:

J?l =-q,%, + X, -k, sgn(¥,) 16)
J?z =—0,X, +f -k, sgn(X,) '

where, ¥,=X,-x;, f is the estimated nonlinear dynamics of f, and the constants o; are
chosen as in a Luénberger observer.

The analysis is extended to an n state problem with a single measurement by adding n o
terms and n sgn(-) terms; one to each linear differential equation. The general nonlinear
observer structure is defined in a similar manner except the system equations are not
necessarily in companion form. Given the following general nonlinear system

x =f(x,1), xe R" (17)
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assuming a vector measurement linearly related to the state vector
z=Cx, ze R, (18)

the observer structure is defined as
$=F(&n-L7 -K1, (19)

where, £ eR", f is a model of f, L and K are nXp gain matrices to be defined, and 15is a
pX1 vector defined as:

1, = [sgn(Z,) sgn(Z,) ... sgn(Z, )" (20)

where,

Z; =C,~J’E-Z,' (21)
and c; is the ith row of the pxn C matrix.

Defining the sliding surface to be 6(7 ), equations (13), (14) and (15) defined for sliding
mode control can help define the matrix gains L and K. The specifics of this analysis are
dependent on Af, the error between the system model, f , and the actual nonlinear system,

f, and therefore, will not be discussed in detail. An example of how to derive the matrix
gains L and K is illustrated in [14].

To summarize, the basic concepts involved with designing a nonlinear sliding observer
are:

o Define a sliding surface, ¢, for a given nonlinear dynamics model

o Define the elements of K associated with the measured states such that ¢ is
attractive '

o Derive the reduced order dynamics for when the states are confined in

o Define the remaining elements of K such that the reduced dynamics are stable

o Define the elements of L as in a Luenberger observer assuming K =0

A caveat to the nonlinear sliding observer derivation is that in order to design an observer
for any system, the system must be observable given the defined measurements. If the
system is not observable with the defined measurements, then an observer cannot be
defined that is guaranteed to accurately estimate the desired state dynamics.

3.2  Observer Model Definition and Observability Analysis

The nonlinear sliding observer design for the model defined in (11) begins with the
determination of nonlinear system observability given ay and @, as measurements. The
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model defined in (11) can be represented in the following form assuming & is sufficiently
small (i.e. sindr= & and cosdy= 1)

x =fx) + g(x,u) (22)
where,
( Fy F, P )
m m m
(vyr\ Fyf F45+Fyr
vy m m m
. LF, LF,_ LF

fx)=1{ 0 | and g(x,u) =

I, I, I,
0 szRM’ ];Jf
\ 0 1, I,
F. R, T
L L. )

By augmenting dynamics to account for the longitudinal tire forces, the system can be
represented as: '

x = flx) + gx)u (23)
where,
( A
(_Getx) ) IR
m m
.(_xli‘.xg_) + x]xs _"26— O O
m m
(fos - er9) - fo6 O 0
I, I,
(xGRWI) 0 _:.1_ 0.
fx) = 1. and g(x) = I,
wf ’
(x'l Rwr) 0 0 .:.1_
oI, I,
Kf(wax4—xl) 0 0 0
Kr (Rwrxs - xl) 0 0 O
0 - , C, 0 O
The states [x; ... xg] are defined as:
D. Milot 9
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=
X, =V,
Xy =r
X =0, (24)
xg =F,
X7 Fxr
xg =F
| X = Fy,_

The concept of augmenting the force dynamics to the vehicle dynamics model is similar
in concept to the notion of a random walk formulation proposed by Ray for a similar
problem [10]. The longitudinal tire force dynamics are assumed to be linear with respect
to the difference between angular wheel speed and longitudinal vehicle speed, but this
model is far from exact and is enormously uncertain. Note that the tire force dynamics are
defined given heuristic knowledge of the dynamics, but the model is by no means an
accurate depiction of the actual tire profiles. K;, K;, Cs, and C, can be chosen arbitrarily.

Given the basic model assumptions and representation, the observability of the nonlinear
system can be analyzed given x4 and x5 as measurements. It can be shown that given only
X4 and X5 as measurements, the nonlinear system defined in (23) is not observable,
therefore, either more states must be measured or additional assumptions must be made in
order to reduce the observer model. The direction chosen is to reduce the observer model
because additional measurements result in the requirement of additional sensor elements
in the physical system which is unacceptable.

If the assumption is made that &= 0 => v, =0, r =0, F; = 0, then the observer model
reduces to the following

x = flx) + gx)u (25)
where,
( 3\
Xyt xs ‘o 0)
m -1
x4RM -I——
I "
_ wf — -1
fo=| R |adgw=| g L
I, 0 0
K, (R,;x, —x,) “lo o
\Kr (Rwrx3 - xl ) )
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The state [x; ... xs5] are defined as

[ x,=v, ]

x3=wr (26)
x,=F,

_x6 =Fxr_

The reduced order vehicle dynamics model can be shown to be linearly and nonhnearly
observable given X, and X3 as measurements.

Since the lateral dynamics have been eliminated from the model, robustness of the
observer to small steering inputs is analyzed. Model parameter variation can exist in the
vehicle mass and wheel inertia for obvious reasons. The assumption that R, is a constant
generates uncertainty in the nonlinear system model because the actual tire rolling radius
varies as a function of the normal force loading. The dynamics of the change in rolling
radius are defined in the suspension model, equation (8).

Given a brief analysis of the uncertainty associated with the observer model, the design of
the nonlinear sliding observer can commence because the system is nonlinearly
observable. The following subsection defines the observer structure and the means by
which the matrix gains L and K are defined.

3.3  Nonlinear Sliding Observer Design

Given the nonlinear model defined in (25), the concepts presented in section 3.1 are
employed to design a nonlinear sliding observer. The general structure of the nonlinear
sliding observer is

= f(#)+ g(#)u-L7 -K1, @7

where, L, K, and 1; are defined above and the sliding surface ¢ is defined as 7
where, 7, = £, —x, and Z, = X, — x,.

As a means to simblify the notation, let f{x,u) represent f{x)+g(x)u. The following briefly
defines the design of the matrix gains L and K in order to estimate longitudinal vehlcle
speed.

Since the observer model is linear, the gain matrix L can be computed as if a linear
observer was being designed. From f{x,u) and the fact that x, and x3 are the measured
states, the matrix pair (A,C) can be defined. The gain L is chosen such that the matrix (A-
LC) has desired linear observer tracking response.

D. Milot 11
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The derivation of K is more complex because it takes into account the uncertainty
involved with the system. The elements of K are defined such that sgn( Z,) only affects

the dynamics of oy, Fy;, and v, and, similarly, sgn(Z, ) only affects ®,, F;,, and v,. Given

this assumption, the derivation for one element is illustrated. The remaining elements are
derived in a similar manner.

For the sliding surface, 6 = 7 , to be attractive, the following must be true:
zz, <0 (28)
Therefore, the following condition results:’

7,(4f,,, (x,6) ~ 0, — 07, — K, sgn(z;)) <0 (29)
= k> |4, () +0u7 + o7, | (30)

When the state dynamics are confined in 6 = Z, =0, then the following results:

_ Afwf (x,u)
sgn(z,) = Y €)Y

If we look at the dynamic equation for Fy, then the following holds:

& k
Fxf =——]iAfwf +Afr,, (32)

The next step is to define k2 such that the error dynamics are stable. This process is
repeated for each element of K until all of the error dynamics are stable and the
parametric uncertainty of the model is considered.

~ Once L and K are initially defined, it is desirable to simulate the response of the observer
with respect to the actual plant. The next section outlines the simulation that is used to
analyze the performance of the designed nonlinear sliding observer and analyzes the
results obtained.

4.0 SIMULATION RESULTS
Given the defined vehicle dynamics model and observer model, a SIMULINK block
diagram is constructed to serve both as an means of illustrating the model and to test the

accuracy of the observer design.

Figure 2 illustrates the top level of the simulation model.

D. Milot 12
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Figure 2: SIMULINK Block Diagram of Top Level Simulation Topology

Note that the sliding observer only receives as input, the brake torque applied to the
vehicle dynamics model and the front and rear angular wheel speeds from the vehicle
dynamics model. In order to evaluate robustness, three different simulation scenarios are
analyzed; (1) apply a steering input to the vehicle dynamics model, (2) add noise to the
wheel speed measurement, and (3) modify model parameters such as vehicle mass or
wheel inertia. This is by no means an exhaustive list of robustness issues that need to be
investigated, but these three scenarios will illustrate important concepts of nonlinear
sliding observers.

The first simulation (Figure 3) illustrates the basic performance of the nonlinear sliding
observer. Note the chattering of 7, and Z,. The chattering is function of the switching

feedback used. The chattering is characteristic of the dynamics oscillating about the
sliding surface. The absolute percent difference (percent error) is less than 5%. The
estimation performance is acceptable given the large uncertainty factor in the observer
model versus the actual nonlinear vehicle dynamics model.

D. Milot
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Vehicle Speed Estimation

time (sec)

Figure 3: Basic Performance Evaluation Simulation. Plot (a) - Actual Vehicle Speed, -. Estimated
Vehicle Speed, -- Wheel Speed (f and r)

The next simulation (Figure 4) exploits the robustness of the observer due to uncertainty
in the modeling of the tire force dynamics. The linear model for the tire force dynamics
defined in the observer model was chosen so that the system would be observable. The
tire force model does not take into account any information pertaining to the actual tire
force profile used in the simulation. If enough brake torque is applied to the wheel, then
the wheel will lock. During this mode of operation the tire force dynamics will pass
through a linear operating region to a nonlinear operating region. The wheel speed
dynamics during the locked operation mode are considered unstable.

The simulation results tend to match those of the first simulation in terms of absolute
percent difference for about the first 1.5 seconds. Once the wheel is locked for a short
length of time, the estimation of the wheel dynamics deviates and causes the force
dynamics and hence the vehicle speed estimate to deviate to an unacceptable error level.
Generally, wheel speed control will keep the wheels from locking, therefore, the
erroneous estimation during extended periods of wheel locked may not be a concern. The
main point to note is that the robustness due to wheel lock tends to be time dependent.

D. Milot 14
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Figure 4: Locked Wheel Mode of Operation. Plot (a) - Actual Vehicle Speed, -. Estimated Vehicle
Speed, -- Wheel Speed (f and r)

The remaining four simulations (Figures 5-8) illustrate robustness properties that are of
major concern to the problem being studied. The first is that longitudinal vehicle speed is
not only a function of longitudinal tire forces, but also a function of lateral speed and yaw
rate. The assumptions defined with respect to the steering input were made to reduce the
model dynamics, but now it is crucial to investigate what the assumptions have done to
the ability to estimate vehicle speed during turning maneuvers. Figure 5 illustrates a
simulation response for the same brake torque application as simulated in Figure 3, but
now a sinusoidal steering input is applied. The steering input has an amplitude of 2.5
degrees at the road and a frequency of 0.5 Hz. Note from the illustration that the absolute
percent difference is relatively close to that without steering. This result depicts the
robustness of the observer to steering input and validates the previously made
assumptions. Figure 6 illustrates a similar maneuver except the amplitude is increased to
5 degrees at the road. This time the lateral force is operating in a nonlinear region and the
estimation error i$ not as good. Hence, the defined observer structure is valid for small
steering inputs where the lateral tire force is linear, but not for nonlinear lateral tire force
operation. In order to increase estimation accuracy for the modes when the nonlinear
lateral tire dynamics are dominant, additional state measurements are required.

D. Milot 15
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Figure 6: Vehicle Speed Estimation with 5 deg. 0.5Hz Sinusoidal Steering Input. Plot (a) - Actual
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The next robustness issue to be investigated is the accuracy of the estimation process in
the presence of measurement noise. The example simulation shown in Figure 7 is the
result of applying the same brake torque input as simulated in Figure 3 with zero-mean
Gaussian white noise added to the wheel speed measurement. The maximum amplitude
of the noise is 0.5 m/sec. Measurement noise robustness of a sliding observer is
mathematically analyzed by Slotine et al [14]. The simulation results obtained are similar
to those presented by Slotine et al. The percent difference is larger than the simulation
illustrated in Figure 3. Sliding observers tend to have the same robustness problem with
measurement noise as other observer techniques. Hence, sliding observers are not
necessarily robust to measurement noise.

Vehicle Speed Estimation
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Figure 7: Vehicle Speed Estimation in the Presence of Measurement Noise. Plot (a) - Actual Vehicle
Speed, -. Estimated Vehicle Speed, -- Wheel Speed (f and r)

The final robustness issue to be investigated is the robustness of the estimation process
given parameter uncertainty. In order to exploit this issue, the mass of the vehicle was
changed by 10%. The simulation results illustrated in Figure 8 are for the same brake
torque input as simulated in Figure 3 and the vehicle mass modified by 10%.

Sliding observers are characteristically robust to plant uncertainty. Given the simulation
results for the observer design defined, the estimation of vehicle speed is acceptable, but
not quite as accurate as originally anticipated. However, given the level of uncertainty
present in the basic observer model, the result is not unexpected.
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Figure 8: Vehicle Speed Estimation with the Vehicle Mass Different by 10%. Plot (a) - Actual
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5.0 CONCLUSION

Given a vehicle dynamics model, a state estimation process using sliding mode theory is
developed. A fourteen degree-of-freedom nonlinear vehicle dynamics model is used to
generate the true vehicle motion. Front wheel steering and brake torque are used as
inputs. From the vehicle dynamics model a reduced order vehicle dynamics model is
defined. The nonlinear observability of the reduced order model is investigated. Given a
dynamics model that is observable, a nonlinear sliding observer is designed. Simulation
of the nonlinear sliding observer is used to analyze the basic operation and robustness of
the defined observer structure. Simulation results are illustrated with additional comments
about the data obtained.

Vehicle state estimation is an important topic for automotive suppliers of active control
systems. Sensors tend to drive the cost of most advanced vehicle dynamic control
systems. If an estimation process is designed such that a sensor can be eliminated, then
the cost of the entire system to the end users is decreased. This study of sliding observer
theory for estimating longitudinal vehicle speed is just a small component of what needs
to be done. The simulation testing presented is only a minute part of the testing that is
required to prove feasibility. Nonlinear sliding observers seem to work well in the
presence of large model uncertainty. Given the nature of the vehicle dynamics model,
uncertainty is major concern. Future research will be focused on the addition of more
complex dynamics to the basic observer structure so that additional states can be

D. Milot 18
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estimated given a minimal number of sensors. Additional work will also be done to
analyze how the longitudinal vehicle speed estimation can enhance wheel speed control
for systems such as ABS or TCS.

D. Milot
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Summary

This project is an investigation of what can be gained by using more
complex models in the study of the dynamic effects of four wheel steering
(4WS). In order to correctly ascertain what effects are important to study, a
literature survey was done. After that a non-linear six degree of freedom
dynamic model was formulated. The model was transferred into Simulink for
verification and simulation, and both linear and non-linear control techniques
were applied.

Introduction

The cornering behavior of a motor vehicle is an important performance
mode often equated with handling. The equations that govern high-speed
turning and low-speed turning are different. At high speeds, lateral
-accelerations will be present. To counteract the lateral acceleration, the tires
must develop lateral forces, which they do by deforming and undergoing a
change in slip angle. Slip angle is the angle between the direction the tire is
oriented and the direction the car is traveling.

In conventional two wheel steering cars it is obvious that only the front two
tires are used in a controlled way to generate lateral accelerations. Indeed
the rear tires generate cornering force only by the sideslip angle resulting
from vehicle motion [rotation around the cg]. The rear tires are not directly
involved in controlling the course of the vehicle. This observation has led
to the concept that if the rear wheels were directly steered as well to
control the sideslip angle, vehicle lateral movement could be changed
more quickly. The idea, theoretical, in a sense, of steering the rear wheels
simultaneously with the front ones as a means of improving the vehicle
performance in lateral motion marks a great, innovative step forward in this
technological area based on a drastically different concept. Steering the
rear wheels could help not only reduce a delay in the generation of
cornering force but also permit the vehicle path and attitude (a body
sideslip angle) to be controlled independently of each other. Making the
most of this characteristic would therefore decrease the required motion of
the vehicle body around the z-axis and offer better responsiveness during
a change in vehicle course. Another favorable result would be a reduction
in off-tracking between front and rear tires at low speed which has been
annoying to inexperienced drivers. 2

Literature Review

Basics of Steering Dynamics

! Gillespie, Thomas D., Fundamentals of Vehicle Dynamics, SAE ,1992, 195-196pp.
? Furukawa, Yoshimi, “A Review of Four-Wheel Steering Studies from the Viewpoint of Vehicle
Dynamics and Control,” Vehicle System Dynamics, Volume 18, No.1-3, 1989, 198p.




Turning dynamics can be categorized as low and high speed. In low-
speed steering, it is assumed that the wheels are aligned with the vehicle
velocity. Low-speed turning happens with the wheels pointed in the direction the
vehicle is traveling. This does not generate side slip angles. At high speeds,
the velocity direction of the vehicle at the wheel is not equal to the velocity
direction of the wheel. The difference between these two directions is defined
as the side slip angle.

Side Slip Angle

HI'
i

High Speed Steering

Turning center

Side Slip Angle

High Speed Steering Turning center

From the above diagram|[ the lower plot of which should be labeled low
speed steering], we see the need for the wheels to be steered differently at low
speeds. We are interested in handling which is a dynamic effect present only in
high speed steering. Having limited ourselves to high speed analysis we still
must determine what performance measures we might be able to affect and what
tests we would want to perform. At high speeds the turning radius is assumed to
be much larger than the wheelbase of the vehicle, and thus the difference in
angles between the front wheels is unimportant. This leads to the use of bicycle
models for much of the performance analysis. However, the simple bicycle ,
model does not handle roll. There is an augmented version of the bicycle model
that adds a “fake” torsional spring to allow the calculation of roll in cornering.

For control, most work is performed on the basic bicycle model.



Basic Bicycle Augmented Bicycle

Starting from the simple two degree of freedom bicycle model and making the
usual small angle approximations yields the following set of equations:’

Linearized Equations
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Assuming that the steering response characters of the vehicle are close to
neutral [the same for front and rear], the primed and unprimed variables will be

equal. This allows us to reduce the equations to the following:*
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From this it is clear that as k is increased so is lambda. This will increase the
gain at low frequencies as well as the phase since we are moving a zero toward
lower frequencies.” Another view of the equations can be arrived at by
describing what they mean in words. The motion of a turning vehicle is complex
but can be reduced to a set of elemental steps. When front wheel steering is
applied, the following steps occur:
Driver Inputs Desired Steering Angle

3 Sano et al., “The Effect of Improved Vehicle Dynamics on Driver Control Performance,” 7th
International Technical Conference on Experimental Safety Vehicles, 1979, 10p.

* Furukawa, p153-153.
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Slip Angle at Front Tires

Lateral Force on Front Tires

Start of Turning Around Vehicle C.G.

Vehicle Slide-Slip Angle

Slip Angle at Rear Tires

Lateral Force on Rear Tires

Centripetal Force by Front and Rear Tires Resulting in Vehicle Turn®

Steering Performance Measures

There are two measures of performance that appeared in virtually every
paper. First, there is phase lag between steering input and lateral acceleration.
In “Improvement of Vehicle Dynamics by Vehicle-Speed-Sensing Four-Wheel
Steering System” by Yasuda and Furutani, summaries of several physical tests
on a Mazda SS 4WS are provided. These results should be useful for verifying
performance of full mathematical models. In “Four Wheel Steering:
Maneuverability and High Speed Steering,”” by Whitehead, an analysis is
presented that allows one to bound steering wheel input frequencies. He
concludes that human drivers cannot produce steering frequencies in excess of
10rad/s. Further, he derives a formula for maximum frequency before tire
adhesion limits are exceeded at 3rad/s. In most of the literature, the double lane
change is a standard maneuver and its is approximated by a sin wave for
simulation. It is argued that the delay between phase lag and steering is
important from an ergonomic perspective. Reducing the yaw is thought to
improve both ergonomics and dynamics. The dynamic argument is that it leads
to more balanced use of the tires. This is clearly illustrated in reference 8%, All
reference mentioned so far uses mechanical linkages to steer the wheels.

Given how ubiquitous the bicycle model is, a natural question to ask is
would a more complex model be of interest? In Mathematical Formulation of
Wheeled Vehicle Dynamics by Peter Jurkat, an analytical model for the full car
model is derived. Unfortunately, as is the case for most existing models, it was
designed for simulation but not control work. As such, all motions are described
in the car’s coordinate system. However, for the problem we want to explore, we
would like to track trajectories described in the inertial frame. However, analysis
of these equations did turn out to be useful. We noted that the transformation
between car coordinates was defined differently from that defined by Sastry. As
it turned out, Sastry’s equation was incorrect.

Finally, we wanted to see what controller strategies had already been
implemented. In general two strategies are proposed. Feed forward where the
rear wheels are steered in proportion to the front wheels. This scheme is easy

8 Sano et al., “Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of
Steering Wheel Angle,” SAE #860625, 1989.

’ Whitehead J., “Four Wheel Steering: Maneuverability and High Speed Stabilization,” SAE# 880642,
1989, 4.674p.

8 Takiguchi et al., “Improvement of Vehicle Dynamics by Vehicle-Speed-Sensing Four-Wheel Steering
System,” AE#860624, 1987, 3.878p.
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to implement and has the advantage that it provides a built in predictability from
the drivers view point.

Feed Forward
O driver -I:-Gears
Ej__ Vehicle
K —_—

course
~Active control of the rear wheel has been proposed in several papers but we
were unable to find any physical implementations. The biggest concern with
active 4WS is that an improperly designed controller could make the car
unpredictable.
Rear wheel control

course
O—{iver|—{eeary
Vehicle
Research

Derivation of Equations of Motion

Since most papers use the bicycle model for development, an obvious
question is would a higher order model provide some useful information? In
order to answer this question a new model needed to be developed. Currently, it
is assumed that the steering angle and DC motor driving torque for each wheel
will be controlled. The model developed must relate the earth-fixed frame
position and velocity of the vehicle to input torques and steering angles so that a
given vehicle trajectory can be tracked. In addition, the model must calculate the

roll, pitch and yaw velocities and corresponding Euler angles of the: vehicle from

" these inputs so that ride comfort constraints can be placed on the control action.

Since the development of an inertial frame model for the vehicle is
necessarily nonlinear from a theoretical and practical standpoint, the model will
be built as a combination of simpler blocks representing different systems within
the vehicle. This construction allows future use of integrator-backstepping
control methods to deal with the nonlinearities of the system. Although it is
uncertain what level of model complexity is adequate for simulation of an actual
vehicle like the one described above, performance simulations using this model
and varying its parameters should determine whether a controller is robust
enough to deal with inevitable modeling inaccuracies.

Car Body Block:




The car body block inputs forces and torques (expressed in terms of the
inertial frame) applied to the center of gravity of the car. Its states are the x, v,
and z, positions and linear velocities and roll (f), pitch (q) and yaw (y) angles and
angular velocities of the vehicle in the inertial frame.

We know that

ml,c = C(x)jl,c +F;,c
HX, . =P(x)x,.+T,,

and
*10 Rxl,c’
J.Cr,o =Jxr,c

J.‘%1,0 = Ril,c +ijl,c:

x0=JxC+ch

where )Zc=[i p: 40 x/'/]T = [t %] and %, =[5e ji98 Q}]T are the velocity and
acceleration vectors, respectively, in the non-inertial car frame,

and x,=[%, j, z, ¢, 8, Vo] =[#.0 %, and % =[% ¥ % o 6, l//o] are the velocity
and acceleration state vectors in the inertial frame. It should be noted that for the
center of gravity, many of the terms in R, namely those dependent on x. states
can be disregarded since the center of gravity is always at the origin of the non-
inertial frame. The state-dependent matrices P,, the skew-symmetric equivalent
of the angular momentum vector, P,, a similar matrix representing Coriolus’
forces, and R and J, the correlation matrices between the inertial translational

and Euler angular velocities and the car frame translational and angular
velocities, can be expressed as :

where each of the elements represents a 3x3 matrix and the star symbol
represents the skew-symmetric equivalent matrix of a vector cross product. Also,



J=|0 cosg -sing

1 singtand cosgtand
| 0 singsecd cosgsecd

[cosy cos@ cosy sinfsing —siny cosg cosy sinfcosg +siny sing
R=|sinycosf siny sinfsing+cosy cosg siny sinfcosg —cosysing |=R™T
| —siny cosfsing cosy coséd

P; and P, can therefore be rewritten as

0 0
F=lo mots,
p 00
P10 MU )

The vector F represents force and torque inputs to the system from the four
wheel/suspensions and is of the form F, =[F;.c Foe Foo Tee Tye r,,]r. In this case,

since we assume four wheel are present, F is a 12x1 vector. For this model
M=diagim m m I, I, 1, ]. Lastly, we can also say that

T |[RO
B =[Fx,l F1 Ep Tt Ty Tz.l] = 0 JT F,

Using these equations, it is possible to derive a set of equations relating
inertial frame force and torque inputs to inertial frame linear and angular
positions and velocities. It can be expressed as

HEAE
Xy X;
where A, = [xJ", A = R'([J'g"-R)R

B,=JH'J" B,=R'™M'R=1/m |

Suspension block:

- The suspension block is constructed in order to calculate z forces from
inertial state information and to correlate suspension forces in the car frame x
and y coordinates to forces in the inertial x and y coordinates. For the z-
direction, the suspensions are assumed to be simple sets of sprung masses and
linear springs and dampers, as shown in Figure 1. The unsprung (tire) mass and
tire stiffness (K ) are neglected for the time being. The z forces are thus
calculated according to the equation



E,i =-kz, - bz,

where z; can be expressed as a function of the z position of the center of gravity,
the roll angle and the pitch angle, which are all inputs to the block from the car
body block. Similarly, the vertical velocity at each of these suspension points
can be expressed as a function of the equivalent velocity states.

The x and y forces at the suspension points (inputs from the road-tire
block) are projected onto the inertial frame axes. These forces are then summed
in order to get the total forces in the inertial x and y directions. The inertially-
expressed forces at the suspension points are also multiplied by their moment
arms from the center of gravity in order to calculate torques in the inertial frame.
This process is reflected in the equation

F| RFC

Road-Tire Contact Block:

The road-tire contact block uses steering wheel angle (in the car
frame), and the car frame suspension point vertical forces calculated in the
suspension block as well as the inertial states of the car body block to calculate
the x and y (car frame) forces exerted by the road on the tire. It is assumed that
the force in the y direction is directly proportional to the tire slip angle (a) i.e.

Fy'i = Ca‘ia

where C,; is the cornering stiffness associated with the /" tire. As seen in Figure
2, the cornering stiffness can be assumed constant over the small range of slip
angles normally encountered in driving. The tire slip angle is calculated as the
angle between the velocity of the car body suspension point related to the tire
and the car frame. Therefore, '

a,=6- arctan )
WX — W, d/2

a, =06~ arctan(

+w.,b
a;=06- arctz:{ Vet 0
X, —w,d/2

yc+a)b)
= § - arctan| ————
@a arcan(x -w.d/2

X, =W, d/2)

In the above equation, the car frame velocities %, and y, can be obtained from
the inertial velocity states using the transformation matrix R and its Jacobian



with respect to g.
The force in the x direction is modeled as having a maximum possible
value of

Fx,i = m(l)Fz,i

where m is the friction coefficient between the tire and the road and lambda is
forward slip, defined as

where r is the radius of the tire and w is the rotational velocity of the tire. the
longitudinal friction force traction force is, therefore, modeled as saturating at
this boundary value, which is a highly nonlinear function. It is evident from
Figure 3 that the correlation between m and | is nonlinear but that it can be
parametrically expressed as an exponential function. Since it is not possible to
measure these parameters as they change during vehicle operation, any applied
control system must be robust over the range of possible m parameter values.

Mechanical Tire Block:

The mechanical tire block performs a torque balance on each wheel.
Torques applied by the DC wheel motor, road forces in the x direction, brakes
and kinetic friction are added together to determine the rotational speed of the
wheels (the only states in this block). The general equation used is

de)i = —bwwn + Ti - Tb.i - er;,i

v is the rotational inertial of the wheel, b, is the frictional damping associated
with the wheel, ty; is the braking torque and t; is the motor torque.

Motor Block:

Finally, the motor block is a linear, dynamic electrical model of the DC
motors on each of the wheels. Assuming that a voltage e is input to a motor with
internal resistance R, inductance L and motor constant K; the general state
equation used (according to Kirchoff's Law)

The output of the block is actually motor torque, whichis directly proportional to

10



current.

Implementation of Equations of Motion

In order to be able to verify control design and test that the dynamic
equations performed reasonably, they needed to be placed in a simulation
environment. The first equation of motion we tried to implement was the car
body block. This seemed like both the most important and most difficult block to
implement. All equations were originally derived in Mathematica. Originally,
they were fully expanded in Mathematica and transferred to C MEX files for
speed. This method turned out to be impossible since it required entering
hundreds of expressions by hand, and verifying the correctness of the equations
was nearly impossible. '

In parallel we also developed a model in Autosim. Autosim has the
advantage that it produced C code optimized for speed that was easy to port to
Simulink. Early testing was highly encouraging, Appendix one contains the code
used for testing, the Simulink diagram and one out of 4 plots from a set of 120.
The first set of 120 was just inputting forces into the four corners of the car that
would produce pure moments and pure translations. Since this appeared to be
going better than the manual derivation of the equations we tried to use
Mathematica on the raw equations to derive the equations in a symbolic form.
This produced equations that were no doubt valid but were not analytically
useful, as they were 7-8 pages long in Mathematica. We wrote a program to run
Simplify on a matrix term by term saving each simplified term. Unfortunately,
one day latter the equations were still not of reasonable length.

However, it did look like we could use the equations in Simulink and at
least perform the Matlab command linmod to generate a linearized model. The
non-linear nature of the system was clear in attempting to linearize the system.
Depending on the chosen point, to linearize around the system was either
controllable or uncontrollable. Specifically, attempting to linearize around 0
velocity led to an uncontrollable system, whereas any non-zero velocity made
the system controllable. This block was used to design the suspension block.
Unfortunately, the code turned out to be unstable and calls to Mathworks
revealed that the C MEX interface for windows is not yet “stable.”

~Inthe meantime, the analytical equations were being implemented as
Matlab MEX files. This allowed the equations to be represented as matrices and
made debugging possible. However, these equations are extremely slow -- over
two orders of magnitude slower than the C MEX equations. The speed decrease
is to be expected as Matlab MEX files are slower than C MEX files. More
significantly, the C MEX files were already multiplied out whereas the Matlab
files performed the matrix multiplications at each step. The Matlab MEX files
were tested with the same procedure used on the Autosim model. However,
since these equations take in forces at the center of gravity the testing set was
much smaller.

11



Control Work

As a first attempt at control work we decided to attempt the method of Slotine

and Li.° Starting with the dynamic equations which were in the proper form.
1.ME+Cx=F

The tracking error, e is defined by the equation

2.e=x"'xd

where x4 is the desired trajectory. We can also define a intermediate variable r
such that '

S.r=oe+é
From these equations, we, can calculate the following derivatives

4.é=x-x,
S.é=%-%,

B.F=aé+é
Substituting these derivatives into the dynamic equation, we get
7. MG -3, —ae')+C(r-ae—xd)=F
and thus
8. Mr = M(3, +aé)+C(x, +ae)-Cr+F

We propose a Lyapunov function of the form

9.v=-l—rTMr
2

The matrix M is a positive definite matrix which is the equivalent of the car frame
mass and inertia matrices represented in the inertial frame. We can prove that v

is also positive definite by the following

H which is the inertia in the car frame is full rank, positive, and diagonal.
xTHx>0

Create the synthetic vector

¥x=Jx

Then

? Slotine et Li, Applied Nonlinear Control Prentice Hall,1991.
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¥THE >0

xTITHI x>0

by definition

M=JTHJ!

QED M will always be positive definite.

10.v = %rTMr +rT M

Substituting from the dynamics in terms of r
1. 5= hfr 427 (M, + )+ Cg +ae) ~Cr + F)
12. F=—(M(E, +aé)+C(%, +ae) + Kr)

13.v= —;—rTMr+rT(—Cr) -r'Kr

From physics of the system this matrix will be skew symmetric. Note that this
applies to the torque transformation matrix and NOT to the linear transformation
matrix. Slotine and Li do not develop the equations for linear translation.

14.r7{%M— C]r =0
15.v==rTKr

Therefore since K is a free design parameter, we can make it positive definite
and thus v dot is negative definite and we have a valid Lyapunov function.

We would also like to have some information about the stability or rate of
convergence of this system. Following the method present by Dawson et al.*°
We will propose canceling the terms in 13 with a bounding function rather than
exact cancellation. Assume 16
16. (MG, +aé) +C(%, + ae))
Is bounded by 17
17. p(x,%,1)
Then we can propose to cancel the terms with
18, v =2

o+
Rather than attempting exact cancellation.
With this formutation we get the general bound on error refer to Dawson for
details.’

19.e <O+ 5 (1) + 2 o7 -e7)

20.a=l4 21.4=—%

M1i*k

19 Dawson et al, Nonlinear Control of Robotic Systems for Environmental Waste and Restoration Prentice
Hall, 1995.
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M2 2 &
22.b = J 23.B=—* -
A B Ol - 37

If we attempt the deterministic case first then the following will be true
1. M1=M2=M

2, p=~(M(%, +ae)+C(x, +ar))

3. =0

Then the bound on the error will reduce to

- 0 i -kt -at
24.e(t) <e ||e(0)||+";(f)|1|c(e —e™)

25. 7T (AM(%, + aé) +C(x, + ae))

26.-rTkr

As long as the term 26 dominates the term 25 our stability properties will be
preserved. :

Controller Performance

Early on we achieved a standard exponential response to a step input.
This seemed quite encouraging and we turned to the tracking problem. Since
we knew a we wished to track a sinusoid that was the next logical input. At his
point we discovered that we did NOT have the correct controller. Sinusoids
should have been tracked within a decaying exponential, however they were
simply tracked in a lagging fashion with constant error. After examining the
system we discovered that we had assumed that a translational terms has a
similar cancellation property to equation 14. This is not the case and we turned
to trying to control an angle.

Control of the angles in the car is not of particular use. However, we
wished to verify the control design technique so we turned to this simpler
problem. Note that the equations for the plant and the Simulink diagram are
presented in Appendix Il. Init_Par was used to hold car parameters it also
calculates the “precomputed” values needed in AutoSim. Carmex implements
the basic equations for the car. Latcont is the Lypanov controller. Cal_r
calculates matrices used in both carmex and latcont. While reducing speed this
assures that the controller and the plant are being calculated from equations of
the same form.
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‘Yaw Angle tracking test k=1e+004 alpha=1000
0.25 y : v
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High gains yield a quick response. The error is lower herat two seconds than it
is for gains that are a factor of 10 lower. Interestingly, this one has one of the
better controller effort curves. This only helps to reinforce that tuning these
controllers is exceptionally difficult. As a matter of fact we are aware of no
methodology for doing tuning of these controllers, except for controlling error

envelop size.
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Lower gains leading to slower response times and more persistent error. Note
that this case also perturbs the inertia matrix by 20%. The unperturbed case has
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an identical shape the only difference is that the maximum error goes down to

«.Y Be-3. Note there is still a problem in the system. The error is clearly not within
the theoretical error envelop. Since the controller is successfully tracking a
sinusoid we believe it is an error in our transformation of the error bounding
equations rather than a controller problem.

Conclusions

Difficulty does NOT increase linearly with increasing complexity. This is
undoubtedly why almost all vehicle controls work is done on simple models. We
originally we trying to see how we could improve on the simple linear models.
The answer is that we never got close to controlling real car dynamics. In
implementing large systems you need either an automatic program writer like
Autosim, or you must express the equations in an inefficient but debuggable
format. The full model might be useful in that it would allow one to examine if
steering the wheels to different angles based on the load at each tire would
improve turning performance. The Lyapnov controller turned out to be quite
simple to implement. However, it would be much more difficult in the context of
the entire model, which would include suspension and tire dynamics. For the full
model we envision the use of integrator backstepping to glue the various
subsystems together.
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1. Introduction

The underactuated system refers to the fact that the system has more joints than
control actuators. A common design for the underactuated system is realize the manipulator
with kinematically redundancy but using only a minimum number of actuators. A
manipulator is said to be kinematically redundant if the dimension of the task space is less
than the number of the degrees of freedom (DOF). The kinematically redundant
manipulators are able to change the internal structure of configuration of the mechanisms
without changing the end effector or of the object. Therefore, they have the advantages of
avoiding obstacles, geometrical singularities, and joint limits, and optimizing various
performance criteria.

Redundant manipulators using only a minimum number of actuators, equal to the
dimension of the task space, are important from the viewpoint of energy saving,
lightweight design and compactness.

In the case of rigid manipulators the inverse dynamics control and the feedback
linearizing control are the same. This inverse dynamics control technique guarantees that
the fully actuated n-link manipulator is always exactly linearizable. Because it can always
decouple this nonlinear system into n linear second order system without considering the
friction and flexibility at the joints. That gives us the intuition that we can decouple the
underactuated system into the linearizable subsystem and the internal dynamics.

Assume that the Jacobian of the task equations has full rank, i.e., the manipulator is
not at a geometrically singular configuration. The singularity occurs if the control forces
cannot effect the end-effector accelerations instantaneously in some directions. This project
deals with the singularities by using the modified equations to approximately get the
solutions. However, without trajectory planning to avoid the singular points, the
manipulator still undergoes some unexpected movements and needs extremely large control
torque to go through them.

2. Feedback Linearization and Riemannian curvature

For a manii)ulator with n degree of freedom, if we write the kinetic and potential
energies as

=43 d,(@)dd, @.1)
i,j
U=U(q;..»9,) (2.2)

The traditional Lagrange’s equations of motion can be written as

idkj@)"i; + il“,-,-k (@44, + 89 =T, (2.3)
j=l

ij=1



1|ddy; od, dd
where T, =={—L+ =2 4+ —¥ 4 are known as Christoffel symbols of the first kind, and
2|\ dg; dg; Igy
2.
o, = % (2.4)
q

It is common to write Eq.2.3 in matrix form as

M(g)§+C(q.9)q+¢(g)=1 (2.5)

This equation will be in later use to derive the equations of the under-actuated system.
Although this equation is extremely complicated , there are a number of dynamic effects
that are not included in it. For example, friction at the joints and flexibility of the robot
arms.

Hamiltionian is defined as the sum of the kinetic and potential energy
H=p"g-L=P"Q-L (2.6)
which implies the canonical transform

P=P(p.q)

2.7
0=0(p.q) @7

such that pTg = P7Q
If the inertia matrix M(g)of an n-link robot manipulator can be factored as NT(q)N(q)
where N(g)is integrable,i.e.,the Jocobian of a function Q(q)

dQ = iQ—dq = N(g)dg (2.8)
o

then O andP =N(g)q define a canonical transformation relative to which the robot
dynamic equations are particularly simple.

Theorem 1. Hamilton’s equations in the canonical variables Q,P are given by
Q=P
P=NTT

Hence 0=NT"t= a,, results in the double integrator, definitely a linear system. The mass

matrix is the identity matrix, and there are no Coriolis forces. But the condition is that the

factorization M(¢)=N"(g)N(q) exists. It is known that the mass matrix M defines a metric
tensor on the configuration manifold. M can be diagonalized if and only if the metric tensor
1s a Eucliidean metric tensor. Thus we have the following theorem.

(2.9

Theorem 2 . Let M be the Riemannian manifold defined by the robot inertia matrix
D(q). Then M is locally flat, i.e., there exists an isometry Q(q) such that

2. dydaidq; = d0? (2.10)



if and only if the Riemann symbols vanish identically.

The Riemannian curvature is defined in local coordinates by constructing a covariant tensor

of order 4

Rijkl = z dx‘hRiII:l
h=l

where
. aI"‘_i arii n . .
Riit = E:‘ - '§q‘;" - Zl,[ri:rlfl - E?r;fk]
l": = dehrijh

h=1

For example, the inertia matrix of following two-link manipulator is

M) = [mllfl +mll+ 1 mbl, 003(92)]

mylil,, cos(6,) n121c22 +1,

the curvature tensor for this case is not zero

_ _ Coleg ©05(6,)
22 det[D(6)]

Figure 1. Two-link manipulator

(2.11)

2.12)

(2.13)

(2.14)

(2.15)

Thus the factorization does not exist. A. Jain and G.Rodriquez[l] argued that the
conditions in the theorem are very restrictive and are rarely satisfied by practical multibody
system. They proposed an alternative approach to diagonalize the equation of motion that is
broadly applicable to complex multibody systems. They do not require N(q) be a Jacobian



matrix. They finally led to a simpler equation v+ C(68,v) = ¢ but Coriolis force term is no
longer zero.

Because the zero curvature condition can not be satisfied in some cases, the imaginary
robot concept is presented as an alternative robust design methodology [Gu and Loh 1990].
The methodology starts out by decomposing M(q) as follows:

M(g)=J" ()] (q)+M(g) | (2.16)

where J is the Jacobian between output and joint variables y =Jq. and M(q) is small in
some appropriate sense.

3. Feedback Linearization for the under-actuated system

Consider a manipulator with n DOF whose joint variables are denoted
g;(t),i=1,...,n. The prescribed end-effector Cartesian variables r(¢),i=1,...,m(m<n)
represent tasks of the manipulator. The relations between the joint variables due to the
prescribed motions, f(g,,....q,) =, can be written at velocity level as

Jqu,lzn izlr--’ma j=l,...,n (31)

where J is an mXn Jacobian matrix and J; are, in general, functions of g;.

Differentiation of Eq.3.1 yields the task equations expressed at the acceleration level

Jid, =E—-Jyq, =1, (3.2)
The equation of motion of the manipulator can be expressed as
M(q)G+h(g.g) =7 (3.3)

where h(g,9) = C(¢,9)¢+ ¢(q).
Let there be m actuators for performing the m prescribed motions. Then 7 is

7=A"u (3.4)
where A is an m Xn full rank control force direction matrix being functions of g;, and u is

an m X1 vector of control force magnitudes. Each row of A represents the direction of one
actuator force in the generalized space. Depending on the locations of the actuators, the
control forces may have arbitrary directions in relation to the task surfaces. Substitution of
Eq.3.4 into Eq.3.3 yields

M - A"u=—h(g,q) (3.5)

Let B be an nX(n—m) matrix that is an orthogonal complement to A. There are several
methods to obtain B. These include row equivalence transformation, zero eigenvalue



method, and singular value decomposition. Premultiplying Eq.3.5 by B” yields reduced
equations

B™M§=-B"h (3.6)
These n—m equations constitute the internal dynamics.

Rewrite Eq.3.5 as
Jg—=IM ATu=~IM"h (3.7)

In order to linearize the under-actuated system by using mput-output linearization

procedure, let us define a new input v =7 = J§j+ Jg. Substituting J§ =v - J¢ into Eq.3.7,
we obtain

v=Jg-JIM h+ M ATy (3.8)
or u=MIATY UM h-Jg)+(IMTATY Y (3.9)
Then we have the linearized subsystem, with the change of coordinates

Z,=r

3.10
z,=F=Jq (3.10)
and the input v such that
2=z
L (3.11)

Thus this subsystem turns out to be a double integrator, and we can determine v by the
feedback control law v=-Kz

4. Singularity problem

From Eq.3.9 we can solve for control force u only if the matrix JM™A” is
invertible, i.e., it is nonsingular. Let’s assume that the Jacobian matrix J has full rank,
i.e.,the system is pot at a geometrically singular configuration. Then the control force
direction matrix A determines if we can always obtain the solutions of u. How to arrange
the limited amount of actuators among the joints becomes an significant issue. But this
design problem is not going to be investigated in this project.

According to S.K.Ider [3], Eq.3.2 and Eq.3.6 can be reformulated as

(O



. — [H
where H=B"M, R=-B"h, I=v-Jjandlet H=[J]

these n differential equations can be integrated to get ¢,4,4, and u can be expressed as
u=(AAT) A(h+ M§) 4.2)

In a redundant manipulator, if A is chosen such that H is singular then it cannot be
inverted, hence a solution cannot be obtained from the dynamical equations written at the
acceleration level. However, the realization of the prescribed motions with the control
forces is usually still possible due to the effects of the right-hand side term A. Then, to
obtain the solution one should consider higher order information by further differentiation
of the related equations. To this end, let the singularity be detected during the inversion of
H by comparing the pivot elements with a specified small number ¢ . the linearly

dependent rows in H can be identified, and the linear combination constants can be
determined from the Gaussian form as obtained by elementary row operations.

Ider used the following modified equation to replace Eq.4.1 in the neighborhood of

the singular conﬁgura_tions
H| [R 4.3)
p|?7 |4 ‘

. J o g=a,,k=1,..,n-r
where D, = .
* qu - aIu‘Gb,-p - :Bijjp q= bi I = 1,...,m—n+r
g - Iq g=a,,k=1,...,n~r
T\ B, — ok, — ByF; g=b.,i=l...,m-n+r

jkpqp -l = Gypd, + Ey
H, 4, —R} =K;4,+F

Jp

where

5. Simulation results

The dynamic and kinematic equations of the 2 and 3 link manipulator are listed in
the Appendix A. However, the equation set that is really used in the simulation is Eq.4.3.

New control input v can be directly used in Eq.4.3 to solve for 6,6,6 , and then u can be
constructed by Eq.4.2.

(a). In the two-link planar manipulator the generalized coordinates are 8, and 6,
(n=2). The end point A is prescribed to move along the horizontal line shown as Figure
1.,ie., y,=1 (m=1). The task is required to be performed by only one actuator, which is



located at the lower joint of the first link. Let /, =%ml* I, =4m,l,* and choosing

numerical values /| =/, =1, m, =m, =6, different 1n1t1a1 conditions can be tested. Figure 3.
shows that the end point A is stabilized around the set points y=1 by carefully choosing the
initial condition. Figure 4. presents the similar scenario as Figure 3., but as time proceeds
the manipulator will approach the singular configuration. We can identify that by the
outraging control torque.

Given the numerical values, because the left hand side matrix of Eq.4.1 has the
following determinant

—2co0s6, + 3cos8, cos(6, +6,)
which will be zero at 6,6, = £90° and some other configurations.

Figure 5 shows that the modified equations can help us construct the control torque
in the reasonable range when system goes through “minor” singularities. But Figure 6 tell
us even the modified equation does not work at some “major” singularities.

(b). Let’s consider now a 3-DOF planar manipulator (Figure 2.) with generalized
coordinates 8,,6, and 6,. This case will have richer results because the end point A can get

to any point on the plane as long as the kinematical constraints are not violated. We have to
place two actuators to the manipulator to complete the task because the dimension of the
task space is two.

Figure 7. shows that the control scheme presented here can stabilize the set point at
the velocity level, thus the end point of the manipulator can trace a trajectory, which is a
straight line. As can be seen from Figure 8., end A is also capable of getting to the desired
point (1,1). The singularity problem still become serious sometimes. Figure 9. shows that
when the end A approaching the desired point the singular configuration is encountered.
The link 1 spins around its lower joint several times before it settles down. Note that the
singular configurations for this case are 8, = or 7.

c 9‘\

Figure 2. Three-link manipulator
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6. Conclusion

There has been recent interest in finding a canonical transformation that can linearize
the robot dynamics except for gravity terms. The existence of such a transformation is that

the inertia matrix M(q) of an n-link robot can be factored as NT(q)N(g) with N(gq)
integrable. And that requires the Riemannian curvature of M(q) vanish identically. These
conditions are well-established in the theory of Hamiltonian mechanics and Riemannian

geometry [2]. However, such a transformation can not be found for a planar two-link arm.
Therefore, we have to turn to another approach to solve the problem.

Because the traditional inverse dynamics or computed torque method works for the
fully actuated n-link robot manipulators, this technique and the feedback linearization are
used in this article to control the underactuated system. Considering deriving the control
algorithm directly in the Cartesian task space, kinematic equations and internal dynamics
are solved for the joint variables and their higher order derivatives simultaneously. Then
control torques are derived from these information.

The control scheme is verified by the simulation. When singularities happens, the
dynamical equations are modified by utilizing higher-order derivative information.
However, simulations showed that this method can not be realized very well and
sometimes it fail to give reasonable control input. Therefore, the trajectory planning should
be further investigated to avoid the singular configurations.
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Abstract :

The purpose of this project is to study the application of adaptive nonlinear control. A
simple nonlinear inverted pendulum-cart system is chosen as the candidate to understand
these control methods. By investigating its derived flag, this is system can not be full state
linearized. Also, the zero dynamics of this system is either stable or unbounded depend on
the input we give. A modified inverted pendulum system which is a MIMO system is used
in this project. We can design adaptive trajectory tracking control for this system.
Performance of computed torque controller and Lyapunov controller with gradient
estimator and weight least squares estimator are shown. Results of time-varying systems

and system with friction force are also shown.

Background

Adaptive nonlinear control

In recent years adaptive control of nonlinear system has become as an interesting area.
Many papers relative to this research area have been published. Lots of efforts have been
made to push this area further. One of the pioneers of this area is Professor Petar V.
Kokotovic. His early work focus on the adaptive control method of feedback linearizable
systems [1]. A systematic design procedure called adaptive bcakstepping is developed by
him and co-workers. He and co-workers further extend adaptive control area to the
output-feedback problems [2,3,4]. In their recent paper[5], Kokotovic and co-worker
propose three new control schemes to remove the drawbacks of Marino-Tomei
controller. In 1995 Professor Kokotovic published a book [6] to introduce the resent

development of adaptive nonlinear control.

The ability of parameter convergence of adaptive output-feedback nonlinear control is
studied by Kanellakopoulos and co-worker [7]. They show that parameter convergence is

guaranteed if an appropriately defined matrixes persistently exciting.



Other control methods are studied by many researchers. Miyasato investigated model
reference adaptive control for nonlinear systems with unknown degrees [8]. Robust
adaptive nonlinear control is studied by Yao and co-worker [9].

There are still lots of the papers relative to adaptive nonlinear control. Thus the first work

for this project is to do literature survey of adaptive nonlinear control.

Inverted pendulum-cart system

Inverted pendulum mounted on a motor-driven cart is shown in the following figure.

The purpose of this model is used as the attitude control of a space booster on takeoff.
The attitude control problem is to take space booster in a vertical position. The difference
between actual space booster and inverted pendulum system in this problem is that it is
unstable and fall over any time in any direction unless a suitable control force is applied.
While the inverted pendulum system is assumed to be a two-dimensional problem so that
the pendulum moves only in the plane of the page.

The system dynamics of inverted pendulum can be found in many books relative to control
system design. By considering the cart moving in the x direction, we have

(M + m)F +micos80 = micos06® + F

For the rotational motion of the inverted pendulum about pivot, we have



mlcos6F +(J +mil*)0 = mlgsin®
where

r . cart position

0 : pendulum angle

F : force input

M : cart mass

m : pendulum mass

1: pendulum length

J : moment of inertia

Re-arrange equation 1 and 2, we have

‘o (J +mi*)mlsin68? — m*I*gsinBcosO . (J +mi?)
(M + m)(J +mi*)—m?I* cos6? (M +m)(J + mi*)—m*I* cos6?

- (M +m)mlgsin 6 — m*[? cosBsin 662 _ micos 6
(M +m)(J +ml*)—m?*I* cos6? (M +m)(J + ml*)—m*1? cos 6?

By choosing
xl=r,x2= f,x3=9,x’4=é,u =F

We can express this nonlinear system as

x = f(x,x)+ g(x,%)u (3)

where

~ -

X
(J +mi*)mlsinx3x4* — m*1* g sin x3cos x3

N (M +m)(J +ml*)— m*1* cos x3°
f(x’x) - x4

(M + m)mlgsinx3 - m*I* cos x3sin x3x4’
(M + m)(J +ml*) = m*1? cos x3*




T 0 '

(J+mi?)
(M +m)(J +mi*) = m*I* cos x3*
0
—mlcosx3
(M +m)(J+mi*)—m*I* cos x3” |

8(x,x) =

Relative Degree of inverted pendulum-cart system

Since our interest is to control position of inverted pendulum, we may choose x3, 6, as

output. Thus
y=x3
take derivative of y twice, u shows up.
y=x3=x4
j=id= (M +m)mlgsin x3—m*I’ cos x3sin x3x4’ _ —mlcosx3 )
(M +m)(J +mi*) - m*I* cos x3 (M +m)(J +mi*)—m** cos x3’

Therefore, relative degree of this system is 2. This means in this two degree of freedom
system, we always has a second degree zero dynamics if we choose x3 as output. To
investigate the stability of zero dynamics, we may choose {1 =x3,02 =x4.Let Nl =x1

and L,ml=0.Tochoose N2, assume N2 =N2(x2,x3,x4) . We have

on?2 (J +mi?) on2 mlcosx3
L:le = 2 272 2 + 2 252 2
0x2 (M+m)(J+ml*)—m*l° cosx3* ox4 (M +m)(J+ml*)—m"l" cosx3
We can find
02 = mlcos x3x2 — (J + mi*)x4
2
or x2___n2+(]+ml )l
micoscl

Substitute ¢l,¢2,m1,m2 into equation 3, we get
¢l=q2

_ (M+m)mlgsingl —m*I* sinclcosclg2? micoscl
(M +m)(J +mi*)—m*1* cosgl? (M +m)(J +ml*)—m*I* cosgl?

G2

and



Al= N2+ (J+mi*)cl
micosgl

(J +ml*)m*I*gsinglcosclc2? — m*I® singlcoscl
(M +m)(J +ml*)—m** coscl?
N (J +ml*)m*I? singlcosclg2? — (J +ml*)mlgsingl
(M +m)(J +mi*)—m*1* coscl?

N2 =-mlsinglg2 +

If c1=62=0, 7Nl and 172 become

nl=n2

n2=0
So, 1l =constant and 1l is unbounded or zero. We can understand that if the inverted
pendulum is regulated to the origin, 0 degree, the cart will move in constant velocity or
stop moving depends on the given input.
In Lewis’s books [18], several examples with pole placement method or LQR method by
using Jacobian linearization of this model are demonstrated. Many papers deal with this
inverted pendulum cart system either to regulate or to stabilize the pendulum to the origin
position. Mori and co-workers [10] designed an observer-regulator type dynamic stabilizer
to keep pendulum from falling down. Wang [11] use linear robust control theory and H__
control theory to solve this problem. Linden and co-worker [12] consider dry friction
effect for this system and used H_ control theory to stabilize the pendulum. Double or
triple inverted pendulum systems are also studied by many researchers [13;14,15,16,17].
We can design a linear controller to regulate pendulum to the vertical position. Its

performance is shown in figure 1.

Modified inverted pendulum-cart system

Since the original system has a second degree zero dynamics and its stability depends on
the given input. This means that there will be two uncontrollable and unobservable states.
If we try to control the degree of pendulum, the position of cart might become

unbounded.



The inverted pendulum-cart system has two degree of freedom. Our goal is to track the
positions of pendulum and cart for a sinusoid reference input. Also, our interest is to apply
adaptiVe control method to this system. To make thing easy, we may add an extra input
which is the torque applied on the pivot of pendulum. The original SISO system will
become MIMO system. Thus with these two inputs, we can trace two outputs which we
choose as the positions of pendulum and cart. We may think this modified system as a one
arm robot moving back and forth in one direction and trying to lift its arm. Application of

this model may be control of the position of the lifting ladder of a moving firefighter car.

By applying a pivot torque input, the equation of motion becomes
(M + m)¥ + mlcos 88 = mlcos80” + F
mlcos®F +(J +mi*)0 = mlgsin®+T

where T is the applied torque.
Thus we have state space equation as
x = f(x,x)+ g (x, X)ul + g, (x,%)u2

and

[ x2
(J + mi*)misin x3x4? —m*I*gsinx3cos x3

N (M + m)(J +mi*)—m*I* cos x3*
fx,%)= x4

(M + m)mlgsin x3 — m*[* cos x3sin x3x4’
(M +m)(J +mi*)~m?I* cosx3?

0
(J+mi?)

(M +m)(J +mi*)—m?I? cosx3*
0

& (x,x) =
—mlcosx3
| (M +m)(J +mi*)—m?I? cosx3* |

0
—mlcosx3

(M +m)(J 4+ ml*)—m?1? cosx3*
0

8, (x,x) =
M+m
| (M +m)(J +mi*)—=m*I? cos x3* |




Full state feedback linearization condition
We try to test full state linearization condition. We have

—(J +ml?)
(M +m)(J +mi*)=m?I* cos x3?
0

g =Lfgl= micosx3

(M +m)(J +mi*)—m?1? cos x3*
milsin x3x4

| (M +m)(J +mi*)—m?I* cosx3?

i mlcosx3

(M +m)(J +mi?) - m*I? cos x3?
—milsin x3x4

8 =1f,8 1= (M+m)(J +mi*)-m?I? cos x3*
(M +m)

(M +m)(J +mi*)=m?I* cosx3?
5 0 N

and [g,,8,]=0indicates G, is involutive. Also, g1, g2, g3 and g4 are all independent.
Therefore, G, has dimension as 4. Thus we can full state feedback linearize this system.
By defining ¢, =x1, ¢, =x2, ¢’ =x3, ¢ =x4, we transform the system as

S =6

&2 = a1(61,62:61163) + b1(1,62.614G3 )

& =6

&1 = a2(61,62161+62) + 62(51,62.G1, 67 )u
where u =[ul u2]"

We may define
v1=al(g1,63,67,63) +b1(G1,63.G1,63 u

v2=0a2(G1,6,,G;,63) +b2(G1,62,61 63 u
We have



We can use pole placement method to design a linear controller to stabilize this system.
Fig. 2 shows its performance. We can see that all the states are driven to zero after lots of
vibration. The other case indicates that this vibration cah be eliminated if appropriate

control gain is chosen as shown in fig. 3.

Trajectory Control

Computed torque method
We can view this system as the following equation
H(g)j+C(g,9)q+Q(g) =1
Assume determinant of H(q) is always not zero at any position along trajectory.
We can replace T as
T=H(qv+C(9:9)q+0Q(q)
where v is the new control input. The above equation is called as the “computed torque”.
If we let v = §, the computed torque equation and system equation are identical.

Now, we may defined the tracking erroras g =¢-¢,

and let

v=§, 20 - Mg
where A >0
The closed-loop system becomes

g+2M+Ng =0
Thus the closed-loop system is exponentially stable.

Fig. 4a illustrates the system follow the desired sinusoid reference inputs by using

computed torque method. Fig. 4b shows tracking error of each state.

Lyapunov function method [19]



Given g,(#) as desired trajectory. We want output g(?) to track this desired trajectory. We

may define a position error term as g =g — g, , and a velocity error term as
s=§+A7=¢-4,

where ¢, =g, —Ag and A is a symmetric positive definite matrix.

Also we may define a parameter estimation erroras d =d—a,

where a is the system’s unknown parameter vector.

M+m
a=| ml
J +mi?

and 4 is its estimation value.

M+m
a=| ml
J+ mi?

estimated
Thus we can choose Lyapunov function candidate as
V(@t)=+s"Hs++a'T™'a
Differentiating the above equation
V() =sT(Hj- Hé,)-i»—;—sTHs +al'a
Substitute Hj=1-Cq—-Q=1-C(s+4,)—Q into above equation, yields
V(t)=s"(x~Hj, - C4, - Q) +’%sT(H ~2C)s+al™a

where

H 7 2C is a skew-symmetric matrix and %ST(H -20)s=0.
Thus,

V() =sT(1-Hj, —Cq, -Q)+al™'a (4)

We can rearrange the system equation as function of the unknown parameter vector a as :

H(q)qr + C(q’ q)q.r + Q(‘]) = Y(Q‘ q.’ ér ’ Qr )a (5) [Appendix 1]

and use control law as



t1=Ya-K, s (6)
substitute (5) (6) into (4) leads to
V(e)=sTYa-s"K, s+ala
If we choose @ which leads to (s7Y +al'™) =0 , then we get
Vi)=-s"K, s

This indicates that g and q"'will converge to 0 as t goes to infinity.

Adaptive Control [19]

We can combine the above control laws with gradient estimator or weighted least-squares

estimator to form the adaptive control of this modified inverted pendulum - cart system.

Design of control law

We can use control laws derived from computed torque method or Lyapunov function

method. We have

1= H(g,8)(§, — 2\ —A'@)+ C(q,4,3)§ + 0(.8) (Computed torque method)
and
1=Ya-K,; s (Lyapunov function method)

Parameter estimation

We can represent output y as function of system parameters
y6)=W(a
where
y() is output vector, a is system’s unknown parameter vector.
W(t) is a known signal matrix.
We can define prediction error as
el(t) = y(t)~ y(t) = Wa - Wa = Wa

Gradient estimator



The basic idea is that we can update estimated parameter vector in the opposite direction
of the gradient of the squared prediction error with respective to the system parameter
vector. thus we have

dlel” el]

4d=-P
Y

=-PWT el

where P, is positive definite matrix.

Weighted Least-Squares estimator

The basic idea is that we want to minimize the total estimation error function, J,
t ] 2
J = [expl-[Mr)dr)ly(s) - W(s)a(e)] ds
0 s

We can have the parameter update law is still of the same form

G=-PO)WT el

but the gain update law is
%[P“‘] =-AOP+WI(OW()
or
d r
EP =A(t)P-PW  ()W(t)P

where P(t) is the positive definite matrix for all time.

Simulation results

for frictionless inverted pendulum system

Adaptive control

We design different adaptive control law with different parameter estimators. In order to
let the estimated parameters approach to the real values, we use a sinusoid reference input

to excite the system. Adaptive controller can track this sinusoid reference input.



In fig. 5 we use Lypunov controller with gradient estimator. Fig. 5a shows its
performance. After 10 second, the system will approach the desired trajectory. Fig. 5b
shows the performance of parameter convergence. The convergence speed is slow. After

150 seconds, the system reaches its real parameter value.

In fig. 6, we use the same Lyapunov controller with WLS estimator. The tracking
performance of x1 and x2 are not as good as x3 and x4 shown in fig. 6a. However, the
WLS estimator performs very good, parameters will reach its real values. after 2.5

seconds shown in fig. 6b.

In fig. 7, the computed torque controller with WLS estimator is used. The tracking
performance shown in fig 7.a is not as good as the other cases. But estimated parameters

will reach to real values after 1.5 seconds shown in fig. 7.b.

Trajectory tracking
In this section, we want to track the system outputs to the different desired reference

inputs. We may define sinusoid reference inputs as x1, = —mag, sin(®,#) and

x3, = —mag, sin(©,?).

Table 1 shows the trajectory variables for fig. 8, 9, 10 and 11. The performances of
trajectory tracking are good as shown in fig. 8a, 9a, 10a and 11a. From fig. 8b, 9b and
10b we can see the parameter convergence speed is related to the frequency of reference
inputs. If we give a fast frequency inputs, the parameters will converge to the real values

faster than the slow frequency reference inputs did.

If we don’t give enough excited reference input, the estimated parameters will converge to
the wrong values. In fig. 11b, we maintain the pendulum to the vertical position when the

cart is moving. The estimated 4, stay at its initial value, 0, instead of converging to the

real value. The reason is that persistent excitation guarantees parameter estimator

13



converges to desired value. For a constant reference input, the parameter may not reach to
the correct value. The adaptive controller just deal with trajectory tracking. So, when
system follows its desired trajectory, the output error, s, will be zero. This leads to

estimator may approach to the wrong parameter value.

Time-varying parameter estimation

Now we assume the system’s parameters might vary according to time. We want to see
the performance of adaptive controller to track desired trajectory and performance of

estimator to adjust estimated parameters to the correct values.

In fig 12 the mass of cart is varying according to the following relation
M =0.48(1-0.5cos(2)). Fig. 12a shows system outputs will follow the desired trajectory

after 30 seconds. The estimated parameters will not approach to desired value smoothly

shown in fig. 12b.

Next we assume pendulum mass is time-varying according to m = 0.16(1—-0.1cos(¢)) .Fig.
13a shows this case yields worst trajectory tracking. The outputs are totally lost to follow

trajectory. And results of parameter convergence is very bad. In fig. 13b it shows that 4,

is too much sensitive to the small change of pendulum mass.

In the third case we change length of pendulum by ! = 0.25(1 - 0.1cos(0.25¢)) . Fig. 14a
shows that outputs-will need a long time, 30 seconds, to track the desired trajectory.

Again 4, is sensitive to variation of pendulum length.

Modified frictional inverted pendulum system

Consider now the inverted pendulum - cart system consists of friction. The equation of

motion becomes :

(M +m)F +mlcos®8 = —f7+mlcos®8’ + F



micosOF +(J+mi*)0 = —cO+mlgsin0+ T
where
f: friction coefficient
c : angular friction coefficient
The state equation becomes

x = f(x,x)+ g (x,X)ul + g, (x,%)u2

[ x2
(J + mi*)(—fx2 + mlsin x3x4%) - (ml cos x3)(—cx4 + m1gsin x3)

Foni) = (M +m)(J +mi*)—m*I* cos x3*
’ x4
(M + m)(—cx4 + mlgsin x3) = (ml cos x3)(— fx2 + misin x3x4?)

(M +m)(J +mi*)—m?I* cos x3 |

0
(J+ml?)

(M +m)(J +mi*)—m*I* cos x3
0
—mlcosx3
(M +m)(J+ml*)—m*I* cosx3? |

8 (x,x) =

—mlcosx3

8 (x,%)= (M +m)(J + ml:(")) ~m?1? cos x3?

M+m
| (M +m)(J +mi*) = m?*I? cos x3? i

Then the estimated parameter vector is

[ M+m’

N>
1

L
+
g

L Jestimated

The simulation conditions are shown in table 2. Fig. 15 to fig. 24 are their results.
We can compare the frictionless cases and friction cases to see their performance.
Intuitively, friction in the inverted pendulum system likes a damper which will absorb

energy. Thus we expect the time need to follow trajectory in friction cases will be faster



than that of ideal cases because mechanical energy will dissipate during vibration or
moving due to existence of damper. We can find this phenomena in fig. 16, 17, 18,19, 20
and 21 which are friction cases and use the same initial conditions, controller law and
estimation law as ideal cases in fig. 6, 7, 8, 9, 10 and 11 respectively. Especially, in fig. 21
we find the angle and angular velocity of pendulum will soon reach to desired zero value
in about 2 seconds compared to those of the ideal case shown in fig. 11, which will
oscillate quit a long time before pendulum stay at vertical position. Again, in fig. 21, the
third estimated parameter will not converge to correct.value because lack of enough
excitation. But surprisingly, the fifth estimated parameter which is angular friction

coefficient will illustrate the same situation.

Fig. 22,23 and 24 are the time-varying parameter cases for frictional system. In fig. 22,
the cart mass is time-varying . We can see that it takes a long time to follow the desired

trajectory. In this case, the situation of parameter convergence is good.

In fig. 23, the pendulum mass is varying. Again, we see the system is lost in tracking the

trajectory and convergence of third and fifth estimated parameters are bad. We can make
sure that the pendulum’s mass is the most sensitive parameter in this system.

In fig. 24, the time varying pendulum length will yield slow trajectory tracking. The third

and fifth estimated parameters have bad convergence.

Conclusion

The original inverted pendulum system can not use full state feedback linearization. The
input-output linearization shows that this system has a zero dynamics which is either
unbounded or stable depends on the given input. Most of the previous work try to
stabilize this system with various methods. Actually, the original system is suitable for
optimal control instead of adaptive control because the positions of pendulum and cart can

not be trace at the same time by one input with presence of zero dynamics.



In order to apply the adaptive nonlinear control, we medify the original system by adding
another input, the pivot torque, to make the system controllable and full state feedback
linearizable. So, the equation of motion of this system has the same form as that of two-
link robot. Therefore, we can use computed torque method and Lyapunov function to
design control laws. We can use gradient estimator or weighted least-squares estimator
incorporated with control laws to design adaptive nonlinear control system. It shows that
the gradient estimator is slower than WLS estimator to drive estimated parameters to
correct values. However, the performance of both control laws with same estimator are
quit the same.

Simulations for the system without friction and with friction for different sinusoid
reference input are presented. The results illustrate that the trajectory tracking and
parameter convergence are very good. To investigate the parameter convergence, we use
a constant reference input. One of three estimated parameters will not converge to correct
value due to lack of excitation. The estimation of time-varying parameters also present in
this project. The results show that the pendulum mass is the most sensitive parameter in
this system. A slight variation in pendulum mass will cause estimation law failed and
system will become unstable. We also investigate inverted pendulum system with friction
force. The simulation results show that the time need to follow the desired trajectory is
less than that of the frictionless system. We may consider the friction coefficient as
parafnem'c uncertainty. Thus a robust adaptive nonlinear controller [20] can be applied in
this case. Because we have run out of time, we have no choice but to give up.

We spend lots of time in finding linearization method for the original system.
Approximation linearization and Riemannian manifold decoupling method are investigated.
But with presence of zero dynamics, it is very difficult to find a trajectory-tracking
controller. This give us an idea to investigate adaptive nonlinear control method for

tracking multi-outputs system with single input in the future.



Table 1 Simulation conditions for frictionless inverted pendulum system

figure * | initial condition reference inputs control law | estimator
(time-varying parameter ) ok ok
1 [0.05, 0, -0.1, 0] xr1 =0, xr3=0 PD None
2 [1,0,0,0] xrl =0, xr3=0 Place None
3 [0.05, 0,-0.1, 0] xrl =0, xr3=0 CT None
4 [0,0,0,0] xrl = -0.1sin(t), xr3 = 0.05sin(t) CT None
5 0,0,0,0] xrl =-0.1sin(2t), xr3 = 0.05sin(2t) LY Grad
6 [0,0,0,0] xrl =-0.1sin(2t), xr3 = 0.05sin(2t) LY WLS
7 [0,0,0,0] xrl =-0.1sin(2t), xr3 = 0.05sin(2t) CT WLS
8 [0,0,0,01 xrl =-0.1sin(2t), xr3 = -0.05sin(2t) LY WLS
9 [0,0,0,0] xrl = -0.1sin(2t), xr3 = -0.05sin(4t) LY WLS
10 [0,0,0,0] xrl = -0.1sin(4t), xr3 = -0.05sin(2t) LY WLS
11 [0,0,0,0] xrl =-0.1sin(2t), xr3 =0 LY WLS
12 [0,000) | xrl =-0.1sin(21), x3=-0.05sin@t) | CT WLS
M = 0.48(1-0.1cos(t))
13 [0,0,0,0] xrl =-0.1sin(2t), xr3 =-0.05sin(2t) CT WLS
m = 0.16(1-0.1cos(t))
14 [0,0,0,0] xrl =-0.1sin(2t), xr3 =-0.05sin(2t) CT WLS
1=10.25(1-0.1co0s(0.25t))

* Fig. 1 is ideal inverted pendulum system, fig 2 to 14 are modified inverted pendulum

case. All initial estimated parameters are set to zero.

** PD : PD controller

ul =10g, +40g, +100g; +20g,

u2=0

Place : pole-placement method. place closed poles to Butterworth position

CT : controller designed by computed torque method




u= fl(éjd -s)+ (:‘q'd +( where s = 0.4&" +20g
LY : controller designed by Lyapunov function method
u=Hj,+Cg,+Q-s where s=0.43 +203
***x WLS : weighted least-squares estimator

Grad : gradient estimator



Table 2 Simulation conditions for frictional inverted pendulum system

figure initial reference inputs control | estimator
condition ( time-varying parameter ) law ** ook
15 [0,0,0,0] xrl = -0.1sin(t), xr3 =0.05sin(t) CT None
16 [0,0,0,0] xrl = -0.1sin(2t), xr3 =0.05sin(2t) LY WLS
17 [0,0,0,0] xrl =-0.1sin(2t), xr3 = 0.05sin(2t) CT WLS
18 [0,0,0,0] xrl =-0.1sin(2t), xr3 =-0.05sin(2t) LY WLS
19 [0,0,0,0] xrl = -0.1sin(4t), xr3 =-0.05sin(2t) LY WLS
20 [0,0,0,0] xrl =-0.1sin(2t), xr3 = -0.05sin(4t) LY WLS
21 [0,0,0,0] xrl =-0.1sin(2t), xr3 =0.0 LY WLS
22 [0,0,0,0] xrl =-0.1sin(2t), xr3 =-0.05sin(2t) CT WLS
M =0.48(1-0.1cos(t))
23 [0,0,0,0] xrl = -0.1sin(2t), xr3 =-0.05sin(2t) CT WLS
m = 0.16(1-0.1cos(t))
24 [0,0,0,0] xrl =-0.1sin(2t), xr3 =-0.05sin(2t) CT WLS

1=0.25(1-0.1cos(0.25t))

* All initial condition and all initial estimated parameters are set to zero.

** CT : controller designed by computed torque method

u=H@G, -s)+Cq, +0 where s =043 +20F

LY : controller designed by Lyapunov function method

u= I:Iéjd +'E‘q'd +0—s where s= 0.421"+202j

*** WLS : weighted least-squares estimator

Grad : gradient estimator




Appendix 1

Derive H(q)g, +C(q,9)q, + O(q) = Y(¢,4.4,.4,)a
Frictionless system:
We have

(M +m)g,, + mlcosq,§,, —mlcosq,q,q,, = G, (M +m)+(cosq,g,, —C08qg,4,4,, )m!

mlcosg,d,, +(J +mi*)g,, —mlgsing, = (cosq,§,, —gsing,)ml+ 4, (J +mi*)

where
4 =r ¢,=6, q,=r1, q, =6,
which yields
H(q)4, +C(¢.9)q, + Aq) = ¥(¢,4.4,,4,)a
where

c e G, (c0sq,4,, —€05q,4,4,;,) O
Y(9.9,4,.4,) =

0 (cosq,g,, —gsing,) Gar

al M+m
a=|a2|=| ml
a3 J+ ml?

Frictional system :
We have

(M + m)g,, + mlcosq,§,, + fq,, —mlcosq,q,q,, = §,, (M +m)+(cosq,q,, —C08¢,4,4,, )mi+q,, f
and

mlcosq,d,, +(J +mi*)g,, +cq, —mlgsing, =(cosq,d,, —gsing,)ml+g, (J+mi*)+q,, c
where

QI =T, q2 =e’ er =rr’ q2r =er
which yields
H(g)4, +C(g,9)q, + Q(q) = Y(9,9.4,.4,)a

where



Y(q'q.’q.r’qr) =[

G4, (COqu'q'g,-COquq'zq'z,)
(cosq,g,, —gsing,)

['M-f-m-

0

[al]

a2
a3
ad

as |

mi

J+ml?

f

c

1

0 q.lr O
qu 0 q.2r

|
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