

 TIME SHARING SUPERVISOR PROGRAMS

 Michael T. Alexander

 The University of Michigan

 Computing Center

 May, 1969

 Revised May, 1971

 ABSTRACT

 The structure of supervisor programs for time shared or
 multiple access operating systems is described. Those
 functions of the supervisor that are concerned with
 scheduling and resource allocation are emphasized. The four
 time sharing systems that are described are Control Program
 67 (CP/67), Time Sharing System (TSS/360), and University of
 Michigan Multi-Programming Supervisor (UMMPS) for the IBM
 System 360 Model 67 and Multics for the General Electric
 645. The emphasis is on describing and comparing the
 various supervisor programs, rather than recommending any
 specific approach. In general those aspects of the
 supervisor programs that are the direct result of some
 peculiarity of the hardware used are not included.

 KEY WORDS

 Time Sharing
 Supervisor Programs
 Scheduling Algorithms
 Resource Allocation
 Multi-Programming
 Multi-Processing

 TABLE OF CONTENTS

 1. Introduction 1

 2. Basic Concepts 2

 3. Hardware Considerations 4
 3.1 Interrupts 4
 3.2 Relocation Hardware 4
 3.3 Protection Mechanism 7
 3.4 Monitoring of Main Storage Accesses 8
 3.5 Multiple Input/Output Paths 8

 4. Supervisor Services 9
 4.1 Inter-Task Protection10
 4.2 Resource Allocation11
 4.3 Task Oriented Services in UMMPS11
 4.3.1 Scheduling of Input/Output Resources ...12
 4.3.2 Processor Management12
 4.3.3 Task Interrupts12
 4.3.4 Inter-Task Communication13
 4.3.5 Storage Management13
 4.3.6 Miscellaneous Functions13
 4.4 Interrupt Handling13
 4.5 Task-Supervisor Interface14

 5. Structure of the Supervisors17
 5.1 Attributes of the Supervisor17
 5.2 Organization of Each Supervisor18
 5.2.1 TSS Supervisor18
 5.2.2 UMMPS19
 5.2.3 CP/6719
 5.2.4 Multics Supervisor19

 6. Storage Scheduling21
 6.1 UMMPS Paging Algorithm22
 6.2 Multics Paging Algorithm31
 6.3°°CP/67 Paging Algorithm32
 6.4 TSS Paging Algorithm33

 7. Processor Scheduling36
 7.1 CP/67 ..36
 7.2 Multics39
 7.3 UMMPS ..41
 7.4 TSS ..45
 7.5 Comparison of Processor Scheduling Algorithms 48

 8. Input/Output Processing50
 8.1 Organization of Input/Output Hardware50
 8.2 Task Input/Output Control52
 8.3 Supervisor Input/Output Control54

 9. Multi-Processor Considerations59
 9.1 Organization of Multi-Processor Support59
 9.2 Hardware Consideration60
 9.3 Multi-Processor Support in UMMPS61
 9.4 Inter-Processor Interference62

 FIGURES

 1. Two Level Address Translation 6

 2. PCB Format in UMMPS23

 3. Relation of PDP and UMMPS28

 4. CP/67 Processor Scheduling States39

 5. TSS Processor Scheduling Lists48

 6. Simple Input/Output Configuration52

 Time Sharing Supervisor Programs 1

 1. INTRODUCTION

 These notes consider supervisor programs for several
 current time-sharing systems, where "time-sharing system" is
 used to indicate a system allowing simultaneous, on-line,
 conversational access by several users (who may be
 interractive terminals, small computers, or special devices)
 in competition for system resources, and the "supervisor
 programs" are those parts of the time-sharing system that
 control allocation of system resources to various users.
 The four separate time-sharing systems that have been
 selected for main consideration are Control Program/67
 (CP/67), the University of Michigan Multi-programming
 Supervisor (UMMPS), Time Sharing System/360 (TSS/360), and
 Multics. These do not by any means represent an exhaustive
 list of current time-sharing systems, but rather were chosen
 because they represent several different approaches to
 supervisor programs for time-sharing. It will be seen that
 although the organization of the four supervisors considered
 is quite diverse, there is a quite considerable similarity
 among the algorithms used for controlling the use of these
 resources.

 Introduction

 Time Sharing Supervisor Programs 2

 2. BASIC CONCEPTS

 Since terminology in computing in general and time
 sharing in particular is not well established, a few terms
 will be defined. These are not the only terms used for
 these concepts, in fact the four systems considered do not
 all use them, but to avoid confusion, they will be used
 consistently throughout these notes.

 The central concept of each of the four systems, and
 indeed of nearly all time-sharing systems, is the concept of
 a task (sometimes called a process or a job) which is the ____ _______ ___
 execution of a set of programs and subroutines. That is, a
 program is a (static) set of instructions and data while a
 task is the (dynamic) execution of a set of instructions
 operating on data. In a time-sharing system a task will
 usually have some specific purpose such as providing
 computing service for one user or controlling some specific
 portion of the input/output equipment, and each user of the
 system will have at least one task which is primarily
 responsible for providing service for that user. Some
 important attributes of tasks are (a) independence (they do ____________
 not interract directly except in fixed limited ways), (b)
 parallel execution (each task executes in parallel with all ________
 other tasks), and (c) competition for system resources (in ___________
 general there are not enough resources such as storage or
 processor time to give each task all it would take).

 The entity which executes a program in behalf of a task
 is known as a processor (or a central processing unit or _________
 CPU). Many large time-sharing systems have more than one
 processor, creating interesting problems for the supervisor
 since two or more programs may be executing simultaneously.
 In particular the supervisor itself may be executing on more
 than one processor at a time. Some of the problems
 resulting from this will be considered in section 9.

 Any medium for storing information so that it is
 available to the computing system on a random (or nearly
 random) access basis is referred to by the generic term
 storage. This normally includes some amount of main ________ ____
 storage, usually core storage, in addition to a larger ________
 amount of slower auxiliary storage such as magnetic disks _________________
 and drums or slower core storage. Usually (but not always)
 a processor is not capable of executing a program or
 referring directly to data stored anywhere but in main
 storage. In a time-sharing system a certain amount of the
 auxiliary storage is generally used to contain named private
 or shared collections of data (called files or data sets) _____ _________
 for the various potential users of the system. This use of
 storage will not be explicitly considered here since it is
 not generally the direct responsibility of the supervisor ______

 Basic Concepts

 Time Sharing Supervisor Programs 3

 program.

 Any portion of the computing system hardware which is
 primarily used for the transmission of information from one
 type of storage to another or between storage and the
 external world is known as input/output equipment. In ____________
 nearly every case this transmission is asynchronous with
 respect to processors and takes place between core storage
 (usually main storage) and something else (e.g., a disk, a
 card reader, or a teletype).

 Basic Concepts

 Time Sharing Supervisor Programs 4

 3. HARDWARE CONSIDERATIONS

 Several aspects of the hardware used for time-sharing
 system are important and will be described briefly here.
 This description applies primarily to the IBM System 360
 Model 67 (on which CP/67, TSS/360, and UMMPS all run) and to
 the General Electric 645 (on which Multics runs), but
 several other computing system for time-sharing have similar
 features.

 3.1 Interrupts __________

 Whenever any event occurs which may be important to the
 supervisor, the hardware notifies the supervisor by means of
 an interrupt. An interrupt is simply a forced call of a __________
 predetermined subroutine along with a change in the state of
 the processor. The supervisor must provide subroutines to
 service each of the various types of interrupts which may
 occur.

 The possible interrupts are generally divided into two
 categories: those due to some event external to the
 processor and those caused by some abnormal occurrence
 within the processor. The most common type in the first
 category indicates a change is the state of the input/output
 equipment, while the most common type in the second category
 is used by a task to request service of some kind from the
 supervisor.

 Interrupts are the most important tool of the
 supervisor in performing its various functions in a time-
 sharing system and in a busy system the number of interrupts
 processed will be very large. For this reason it is
 necessary that the basic code used to process interrupts be
 efficient. It is estimated that removing one micro-second
 from each interrupt handler in UMMPS running on a large
 360/67 could save as much as 20 seconds a day in processor
 time spent in the supervisor.

 3.2 Relocation Hardware ___________________

 The best known time-sharing hardware feature is the
 relocation hardware which, among other things, allows moving
 of programs in main storage without changing them. This
 facility is similar in general outline on the 360/67 and the
 645, although the details are completely different. On both
 machines the address used by a program to refer to main
 storage (the virtual or logical address) is divided into _______ _______
 three fields: the segment number, the page number, and the
 offset within the page. This division of the logical

 Hardware Features

 Time Sharing Supervisor Programs 5

 address into three fields leads to the division of the
 logical address space referenced by a program into segments ________
 and pages within segments. There are as many possible _____
 segments as can be addressed by the segment number (although
 only a few will be active at any time) each of which can
 (but won’t) be as big as can be addressed by the page and
 offset portions of the address. The division of the logical
 address into segments and pages is fixed in the 360/67, but
 in the 645 it may be changed among several possible ones by
 the supervisor; in fact the division of segments into pages
 can be disabled and the page and offset can be combined into
 a single quantity.

 The segment number, page number, and offset are used as
 follows: the segment number is used as an index into a table
 in main storage (called the segment table or descriptor _______ _____ __________
 segment) to obtain a value which gives the status of the _______
 corresponding segment and the location of a page table for
 the segment. The status information may indicate that the
 segment is not available, in which case an interrupt occurs
 to notify the supervisor that some task attempted to access
 an unavailable segment; but if the segment is available then
 the page number is used as an index into the page table
 indicated by the segment table entry to obtain a page table
 entry. (This step may be skipped on the 645.) This entry
 again contains a status field and a pointer, which (if the
 status field indicates the page is available) points to the
 actual main storage address of the page. Again if the page
 is not available the supervisor is notified by an interrupt.
 The origin of the page is added to the offset given in the
 address to give the real main storage address. More ____
 precisely, since the page must start on an address that is a
 multiple of the page size, the offset is simply concatenated
 to the high order part of the page origin. See Figure 1 for
 a diagram of this process. This very superficial
 description leaves out many of the details of the
 implementation, most of which are included for efficiency.
 In particular it does not do justice to the complexity of
 the 645 in which the virtual addresses are not simply single
 quantities divided into three fields, but rather the segment
 number is stored separately.

 Hardware Features

 Time Sharing Supervisor Programs 6

 ┌─────────────┐ ┌───────┐┌───────┐┌───────┐
 |Segment Table| |Segment||Page ||Offset |
 | Base | |Number ||Number || |
 └──────┐──────┘ └───┐───┘└───┐───┘└───┐───┘
 | ┌─┐ | | |
 └─────────>|+|<─────────┘ | |
 Segment └─┘ | |
 Table | | |
 ┌───────┐ | | |
 | | | | |
 ┼───────┼ | | |
 | | | V |
 ┼───────┼<─────────────┘ ┌─┐ |
 | ┼─────────────────────────────────>|+| |
 ┼───────┼ | └┌┘ |
 | • | Page V | |
 | • | Table Interrupt | |
 | • | ┌───────┐ | |
 ┼───────┼ | | | |
 | | ┼───────┼ | |
 └───────┘ | | | |
 ┼───────┼<─────────────────┘ V
 | ┼──────────────>┌───────┌───────┐
 ┼───────┼ | | | |
 | • | V └───────└───────┘
 | • | Interrupt Real Address
 | • |
 ┼───────┼
 | |
 └───────┘

 Figure 1: Two Level Address Translation

 It is extremely important to note that this mapping
 from virtual addresses to real addresses (or interrupts) can
 be made different for each task operating in the system at
 any time by giving each task its own segment and/or page
 tables. This has several implications of importance. First
 it means that a given virtual address may have different
 meanings in different tasks. Also it means that information
 private to a task (i.e., existing only in that task’s
 virtual address space) simply does not exist as far as other
 tasks are concerned, giving complete inter-task protection
 of private data.

 Hardware Features

 Time Sharing Supervisor Programs 7

 Since the segment tables of several tasks may contain
 entries pointing to the same page table, it is easy to share
 information between tasks, either with the same virtual
 address in each task or with a different segment number.
 Since the segment number of shared information may be
 different in different tasks, it is not possible for shared
 segments (which must have the same contents in all tasks) to
 contain pointers to other shared segments (or private
 segments of course).

 In general the division of the virtual address into
 segments is used to divide the programs and data used by a
 given task into logically separate segments of information,
 while the division of segments into pages is transparent to
 the tasks and is used by the supervisor to efficiently
 manage main storage. The general area of proper use of
 segmentation is an extremely interesting and complex one but
 it will not be covered in these notes; for our purposes we
 will consider the virtual address space of a tasks to be
 divided into pages and consider how this division is used by
 the supervisor. See [1] and [3] for discussions of ways
 segmentation may be used.

 3.3 Protection Mechanism ____________________

 Another area of the hardware which is closely related
 to relocation is the area of protection. As mentioned
 above, the relocation itself gives inter-task protection for
 private data; however, some mechanism is required to provide
 protection for sensitive data within a task and to ensure
 that the supervisor maintains control of the machine.

 The first requirement is met by assigning an access
 right to every reference by a program to a virtual storage
 location. The access right is determined by the attributes
 of both the program making the access and the data in
 question. On the 360/67 this mechanism is essentially the
 standard System 360 storage protect mechanism which assigns
 a "key" (which can be set by the supervisor) to both the
 program being executed and to all blocks of main storage.
 If the keys of the current program and the data being
 accessed are not the same, access is restricted either to
 read only or to no access. On the 645 each segment for each
 task has a mode indicating whether it can be read as data,
 changed, or executed by the task. If it can be executed the
 mode is further subdivided to indicate the privilege of the
 program contained in the segment. The mode of a segment is
 indicated in the segment table entry for the segment and to
 change the mode of any or all segments, the supervisor need
 only change the segment table pointer to point to a
 different segment table. This means that in Multics, each

 Hardware Features

 Time Sharing Supervisor Programs 8

 task may in fact have several different segment tables for
 different levels of protection.

 In order to guarantee that the supervisor maintains
 control of the machine certain instructions which change the
 state of the machine in some basic way must be made
 unavailable to the tasks. Hence both machines (and in fact
 most current computers) have a non-privileged mode
 (sometimes called user mode, slave mode, or problem program
 mode) in which certain instructions cause interrupts if
 executed, and all tasks operate in this mode. The
 instructions which are not allowed are those which affect
 the relocation or protection mechanisms or the input/output
 state.

 3.4 Monitoring of Main Storage Accesses ___________________________________

 A minor point which should be mentioned in connection
 with hardware features is the automatic monitoring of every
 reference by any component of the hardware to every block of
 main storage. Whenever a component of the hardware (a
 processor, an input/output unit, or anything else) refers to
 a block of main storage, a bit associated with that block is
 set. In addition if the block is changed a second bit
 associated with the block is set. These bits (which are
 associated with the storage key on the 360/67 and the page
 table entry on the 645) can be tested and reset by the
 supervisor, allowing it to find out which blocks of main
 storage have been referenced and changed since the bits were
 last reset.

 3.5 Multiple Input/Output Paths ___________________________

 Another feature of the 360/67 which is much more
 important on it, although present to a limited extent in
 other models of the System 360, is the availablity of
 several "paths" from main storage to an input/output unit.
 It is possible to have up to eight possible sets of
 equipment (including channel control units, data channels,
 and control units) which can be separately assigned to
 transmit data between a particular set of input/output
 equipment and main storage. Section 8 describes how this
 affects the supervisor.

 Hardware Features

 Time Sharing Supervisor Programs 9

 4. SUPERVISOR SERVICES

 There are several functions that the supervisor of a
 time-sharing system performs. As mentioned above, the tasks
 in a time-sharing system are independent and protected from
 one another and the enforcement of this rests largely with
 the supervisor and is one of its more important functions.
 A second function of the supervisor is to provide an
 interface between the tasks and the hardware of the
 computing system. Modern computing hardware is designed to
 be flexible and efficient rather than easy to use,
 particularly the area of input/output equipment. For this
 reason most supervisor programs provide a modified interface
 to the hardware for the tasks under their control. Also to
 obtain best use of a large computing system it is essential
 that some program be responsible for allocating portions of
 the system to various uses in an intelligent manner. This
 function of the supervisor is closely related to its job of
 acting as an arbitrator to the tasks in their competition
 for system resources.

 Before looking at the services provided to the tasks by
 the supervisor, it is important to have a good understanding
 of the nature of a task in the systems we are considering.
 Although most current operating systems have the concept of
 task, the exact meaning of this varies widely from system to
 system. In the case of the systems we are considering here
 it is very much as if the separate tasks were running on
 separate computers and were completely unrelated. In fact
 CP/67 makes a special effort to treat the tasks as if this
 were true. The vast majority of the tasks active at any
 given time in one of these systems will each be serving the
 needs of a single "user" of the system, and for each user
 there will be a task responsible for him. All of the tasks
 in this category are treated as nearly the same as possible
 by the supervisor.

 There will often be a few tasks active at any time that
 serve functions that are not related to serving any specific
 user. These tasks will be created by the system to perform
 some function that is required to allow the other tasks to
 run normally. An example of such a task is the PDP task
 described below in section 6.1.

 In the case of UMMPS, every task in the system has a
 name which is specified when the task is created, either by ____
 the operator or by another task. This name determines the
 entry point of the program that the task is to execute when
 it has been initialized, and for this reason describes the
 general nature of the task. If the program specified by a
 given name is reentrant, it is possible to have many tasks
 active with that same name. Such is the case with the tasks

 Supervisor Services

 Time Sharing Supervisor Programs 10

 serving users, all of which are named MTS. In addition to
 specifying the entry point of the program the task is to
 execute, the name specifies whether the task is to be
 absolute or relocatable. An absolute task is run with the ________ ____________
 relocation hardware turned off and is allowed to execute
 certain supervisor calls that are prohibited from the
 relocatable tasks. These tasks all are system tasks that
 are not related to any specific user (for example the PDP).

 4.1 Inter-Task Protection _____________________

 The job of protecting the tasks from each other is made
 somewhat easier by the special hardware mentioned above ─
 particularly the relocation hardware and the storage protect
 mechanism; but in spite of this much care and consideration
 must be given to this problem.

 One point that seems almost too obvious to be
 mentioned, but which is often overlooked anyway, is that all
 information which is necessary for the proper functioning of
 the supervisor must be maintained in storage that is
 protected from the tasks. All of the systems considered
 here do a fairly good job of this, although the completeness
 of the safeguards vary from system to system.

 In particular it is essential that all information
 necessary to remove a task from the system, and reclaim all
 of the system resources of which it was the owner, is
 maintained in storage which can be guaranteed to be safe.
 Then it is possible to assure that no matter what happens to
 the task, at least it is possible to remove it from the
 system without causing any permanent damage. This is very
 important for a system which may expect to run continuously
 for many hours. If when a task crashes it were necessary to
 loose system resources until the next system shutdown, the
 system performance might be seriously degraded. As a result
 of this consideration it is necessary that all allocation of
 system resources to a task be done by the supervisor so that
 it will have a complete record of the current allocation to
 each task.

 When the supervisor allocates a system resource to a
 task it must be sure to maintain ultimate control of the
 resource so that it can revoke the allocation later; it must
 never unconditionally allocate part of the system to a task.
 For instance when a processor is given to a task it must be
 certain that an interrupt will eventually occur to give
 control of the processor back to the supervisor. In the
 case of less important resources, such as input/output
 devices, it may only be necessary to assure that it is
 possible to get them back if necessary (for instance if

 Supervisor Services

 Time Sharing Supervisor Programs 11

 requested to do so by the system operator).

 4.2 Resource Allocation ___________________

 In most computing environments it is not possible to
 give each task all of the resources it needs all of the
 time. In fact if this is always possible, then the system
 is probably not fully loaded and the work could be handled
 with less hardware. The job of deciding when to allocate
 each resource to each task requesting it falls in the realm
 of the supervisor because it is the only part of the system
 which maintains a global enough view of the situation to be
 able to do this intelligently. In fact nearly every
 function of the supervisor falls into the general area of
 scheduling the allocation of resources. The requirements of
 the tasks for system resources fall into three general
 categories: processor time, storage use, and input/output
 equipment. The methods used by the supervisor to control
 the allocation of each of these forms the topic of a section
 of these notes.

 In performing this basic function of controlling the
 allocation of system resources to the tasks requesting use
 of them, the supervisor program could operate with two
 somewhat contradictory goals: to minimize the total time
 tasks must wait for requested resources, and to maximize the
 utilization of all system resources. These goals are
 contradictory because to switch control of a resource from
 one task to another always requires use of some resources.
 For example to switch control of a block of main storage
 from one task to another usually requires saving the
 information in the main storage and restoring the
 information needed by the new user of it, and this procedure
 requires use of processor time, input/output equipment time,
 and main and auxiliary storage. Hence it is sometimes
 advisable to require a tasks to wait longer than the minimum
 possible time for a resource in order to reduce the number
 of times it is switched from one task to another. Since
 time-sharing systems generally are interracting with human
 users, any waiting time which is comparable with human
 reaction time is usually considered adequate. The biggest
 exception to this is tasks which are providing some system
 related function and which require faster service for this
 reason.

 4.3 Task Oriented Services in UMMPS _______________________________

 The supervisor in a sense never initiates any work in
 the system; when no tasks are active, the system is idle
 even if the supervisor is active. Hence the primary purpose

 Supervisor Services

 Time Sharing Supervisor Programs 12

 of the supervisor is to provide services for the tasks. The
 services provided by the UMMPS supervisor to the tasks it
 controls fall into several general categories:

 4.3.1 Scheduling of Input/Output Resources ____________________________________

 This function requires the largest amount of code in
 the supervisor, not so much because it is extremely
 difficult, but rather because of the multitude of special
 cases required. The tasks are able to request use of
 specific input/ouput devices (such as card readers,
 printers, telephone lines, etc.), and when they have
 received permission to use one of them they can queue
 requests for input/output operations on it. The supervisor
 will execute these operations as facilities become available
 and will notify the task when the operations are complete.
 In the case of some abnormal event in connection with the
 input/output operation the task will be notified and further
 operations on that device will be inhibited until the task
 takes some corrective action. For this purpose several
 supervisor functions are provided. (This aspect of the
 supervisor is described in Section 8.)

 4.3.2 Processor Management ____________________

 The UMMPS supervisor provides a mechanism by which a
 task can wait for some event to occur, where an event is
 defined to be a certain set of bits in some byte in the
 task’s virtual storage being all zero. The task can
 indicate whether the event will also result in a signal
 being transmitted to the waiting task or whether a periodic
 check should be made to see if the event is complete. It is
 also possible for a task to voluntarily relinquish a
 processor to another task that needs it (if any exists). In
 CP and TSS a task can wait only for any interrupt, not for a
 specific event.

 4.3.3 Task Interrupts _______________

 Certain events (such as the completion of an
 input/output operation) may cause an interrupt to the task
 to be generated, that is the current status of the task will
 be saved and it will be forced to execute at a certain
 predetermined location. The supervisor provides facilities
 which allow the management of this mechanism, such as a way
 to set up certain interrupts, a way to return to the point
 at which the interrupt occurred, and a way to delete saved
 return information.

 Supervisor Services

 Time Sharing Supervisor Programs 13

 4.3.4 Inter-Task Communication ________________________

 Although tasks are generally completely independent, it
 is sometimes necessary for some communication to take place
 between them. There are facilities provided by which a task
 may send a signal to another task or get or receive
 information from another task. Also there are a set of
 supervisor subroutines that can be used to synchronize
 several tasks by causing them to wait until some resource is
 available.

 4.3.5 Storage Management __________________

 Subroutines are provided to allocate and release
 virtual storage for the tasks. Note that what is being
 allocated in virtual storage not real storage; only the _______ ____
 address space is being allocated and the actual storage will
 not be allocated until it is needed as described in Section
 6 below. This is an area in which UMMPS is not so general
 as Multics or TSS: in TSS it is possible for several tasks
 to allocate storage that is shared between them; while in
 Multics it is possible to specify that the storage allocated
 is to be effectively preset with the contents of some data
 set that has been stored in the system previously. The data
 set is actually read into main storage only as the parts of
 it are referenced, not when it is allocated. As in TSS it
 is possible to allocate shared storage, now with the added
 complication that it may also be "preset."

 4.3.6 Miscellaneous Functions _______________________

 The supervisor is also responsible for providing
 certain small housekeeping functions such as maintainance of
 the time of day. Also it is of course responsible for the
 creation and destruction of tasks.

 4.4 Interrupt Handling __________________

 The basic tool of the supervisor in performing all of
 these diverse functions is the interrupt mechanism. In CP,
 TSS, and UMMPS (but not in Multics) this is the only way in
 which the supervisor can be entered; it is never entered
 from a task except by way of an interrupt.

 The possible causes of interrupts on the 360/67 are

 1. Change in the state of input/output equipment

 2. Signal from another processor

 Supervisor Services

 Time Sharing Supervisor Programs 14

 3. Signal from the operator

 4. Expiration of a preset time interval

 5. Malfunction detected in some component of the
 hardware

 6. Abnormal condition in the program being
 executed

 7. Specific request for an interrupt by the
 program being executed

 Interrupt types 1 through 5 are due to conditions external
 to the program being executed, while types 6 and 7 are due
 to that program and are sometimes called faults instead of
 interrupts.

 In TSS and UMMPS interrupt type 7 (called a supervisor
 call or SVC) is usually used to request some specific
 supervisor service, while interrupt type 6 (called a program
 interrupt) generally indicates a program error, except that
 missing page interrupts are categorized as program
 interrupts. However in CP SVC’s are never processed by the
 supervisor and program interrupts are used for all requests
 for service by the tasks (more will be said on this below).

 In general it is possible to think of the supervisor in
 CP, TSS, or UMMPS to be simply a set of subroutines for
 processing interrupts, although this is not exactly true in
 the case of TSS. Even in the case of Multics interrupts
 play an important part in the operation of the supervisor,
 although it is designed to hide this fact as much as
 possible.

 4.5 Task-Supervisor Interface _________________________

 The supervisor in each of these systems has a well
 defined interface with the tasks. However the particular
 interface chosen varies from one to the next. Logically the
 supervisor exists between the tasks and the hardware of the
 computing system and can be thought of either as an
 extension of the task to deal with the hardware or as an
 extension of the hardware to deal with the task. The
 particular approach used by each of the systems is at least
 partly determined by the nature of the hardware they use.
 On the 360/67 the supervisor programs are entered by
 interrupts which either request service or indicate task
 errors, while on the 645 the hardware is such that the
 supervisor may be entered either by an interrupt or by a
 direct transfer by a task to a new segment. Hence it is

 Supervisor Services

 Time Sharing Supervisor Programs 15

 natural for the Multics supervisor to be considered to be
 part of the task, in fact just a set of programs and data
 bases some of which are shared among all tasks. On the
 other hand the instructions on the 360/67 which cause
 interrupts to request supervisor service can easily be
 considered to be "extended machine instructions" and the
 supervisor appears to be almost part of the processor the
 task is running on. In fact in CP/67 and TSS/360 the
 programs and data which form the supervisor are not included
 in any tasks virtual storage (incidently making them immune
 to modification by a task). Note that even in the 645 the
 supervisor is sometimes entered by an interrupt (for
 instance when an unavailable segment or page is referenced),
 but that in these cases things are set up so that it appears
 to be running in some task anyway.

 The interface between CP and its tasks is the easiest
 to describe: it is simply and exactly the same as the
 interface between the System 360 hardware and a program
 executing on a 360. Hence the instructions normally used to
 call the supervisor in System 360 are not processed by CP at
 all but are simply returned to the task as a simulated
 interrupt to be processed by whatever "supervisor" there is
 in the task. Also there are tables for each task giving its
 virtual machine’s status, such as whether it is in
 privileged state (i.e., can execute all machine
 instructions) or not. However the real machine is never put
 into privileged state while a task is executing, and any
 privileged instruction which is executed by a task causes an
 interrupt and is simulated by CP if the virtual machine for
 that task is in privileged state. This means that those
 interrupts that are used to call the CP supervisor are just
 those interrupts that are due to the attempt to execute a
 privileged instruction ─ the same interrupts in any other of
 the systems are considered to be an error.

 The interface between the tasks and the TSS supervisor
 is similar to the hardware interface on the System 360, but
 it has been changed to suit the environment. Instead of
 simulating a virtual machine that looks like a real 360, the
 TSS supervisor simulates one that has been altered a bit to
 make the interface more efficient. All request for
 supervisor service are the result of supervisor call
 interrupts rather than privileged operation interrupts as in
 CP. Furthermore the format and meaning of certain of the
 built in parts of the virtual machine are different than in
 the real 360. For instance the number and meaning of the
 interrupts are slightly different and some of them return
 significantly more information than is returned by the
 corresponding interrupt on the real 360. In spite of these
 alterations the interface still looks remarkably like the
 real 360 interface.

 Supervisor Services

 Time Sharing Supervisor Programs 16

 The interface between UMMPS and its tasks is even more
 removed from the real 360 interface. As in TSS all requests
 for supervisor services are the result of supervisor call
 interrupts, not privileged operation interrupts. Again
 there are interrupts which can be directed to the task, but
 now they are not at all like the interrupts in the real 360.
 Furthermore they are not a very important part of the
 interface. The usual case is for some specific service to
 be requested by the task and if necessary the task will be
 made to wait until the service is completed.

 It is possible for a task executing under the control
 of UMMPS to request the the next SVC or program interrupt
 that occurs in that task is not to be processed by the
 supervisor, but rather is to be sent to the task
 unprocessed. It is also possible for a task to request that
 its relocation tables be temporarily changed so that its
 address space corresponds to that of a "real" 360, either a
 standard 360 or a model 67. Using these facilities it is
 possible for a program running in a task under UMMPS to
 simulate a standard 360 much the same way that CP does, and
 in fact such a program exists. It is used to allow OS/360
 and other stand alone programs and systems to be run under
 the control of UMMPS so that it is not necessary to shut the
 system down to run a few OS jobs. This facility also allows
 UMMPS to be run under itself, providing a powerful tool for
 developing the system.

 In Multics the interface between the tasks and the
 supervisor in a sense does not exist, since the supervisor
 is simply a set of subroutines in each task. The supervisor
 always runs in some task even if it is processing an
 interrupt. To do this it requires a stack for calls that is
 hidden from the task and used only for interrupt processing.
 However most requests for service from the tasks are made
 with ordinary calls.

 Supervisor Services

 Time Sharing Supervisor Programs 17

 5. STRUCTURE OF THE SUPERVISORS

 The four systems being considered differ widely in the
 basic organization of their supervisor programs. In general
 the three systems for the 67 are basically similar in this
 respect (but in practically no other) while Multics is
 radically different.

 5.1 Attributes of the Supervisor ____________________________

 Certain attributes of a supervisor are important to an
 understanding of its organization.

 1. It may or may not run with the relocation
 mechanism described above enabled.

 2. It may or may not run entirely in privileged
 state, that is, in the state in which all
 machine instructions are legal.

 3. It may or may not run with interrupts (from
 input/output equipment, etc.) enabled.

 It is possible to disable the relocation mechanism
 mentioned above so that the address used by a program is the
 same as the actual main storage address. This is done while
 a task is running only in UMMPS and there only for special
 tasks, but TSS, CP, and UMMPS run this way in the
 supervisor. On the other hand, since the Multics supervisor
 is considered part of the task, it runs with relocation
 enabled. The advantages of the Multics approach are that
 the supervisor is not fixed in any areas of main storage,
 and in fact part of it need not remain in main storage at
 all times, although some portions of it must remain in main
 storage to service missing page interrupts.

 The supervisors for TSS, CP, and UMMPS all run in the
 privileged mode at all times allowing them complete freedom
 to execute any instruction. Again Multics is different in
 this respect since most of its supervisor runs in non-
 privileged mode, although certain portions of it must run in
 privileged mode to execute those instructions not available
 in non-privileged mode. Since most of the supervisor runs
 in non-privileged mode, it is somewhat protected form errors
 in itself. This distinction and the previous one between
 Multics and the 360/67 systems is largely due to the
 distributed supervisor concept in Multics that puts the
 supervisor in each task instead of off by itself as in other
 systems.

 Overall Supervisor Structure

 Time Sharing Supervisor Programs 18

 TSS and Multics supervisors run most of the time with
 input/output and other external interrupts enabled. This
 means that some mechanism must be maintained to process
 interrupts occurring while other interrupts are being
 processed. In Multics the supervisor is recursive and
 maintains a stack for this purpose, while in TSS an
 interrupt occurring while processing a previous interrupt is
 simply queued for later action. This queueing method in TSS
 is central to the whole supervisor and will be discussed
 below. The supervisors for CP/67 and UMMPS both run with
 all interrupts disabled, allowing them to complete
 processing one interrupt before another one occurs on the
 same processor. The biggest disadvantage of this is that no
 interrupt can be guaranteed service in less time than it
 takes to process the longest interrupt. Also, since some
 interrupts can not be completely processed immediately, some
 queueing mechanism is needed to handle actions that must be
 delayed by the supervisor, even if other interrupts can not
 occur.

 5.2 Organization of Each Supervisor _______________________________

 It will help in understanding the algorithms used by
 the supervisors to look at the general organization of each
 of them. The algorithms employed by these four supervisors
 to implement scheduling of system resources are similar in
 several cases even though the overall organization is quite
 different among them.

 5.2.1 TSS Supervisor ______________

 The TSS supervisor consists primarily of a mechanism
 for queueing interrupts as they occur, a program to scan
 this set of queues looking for work, and a set of programs
 which are called to perform the processing required when a
 non-empty queue is found. Most of these programs run with
 interrupts enabled and all of them run with the machine in
 privileged state and relocation disabled. All entries to
 the supervisor are made via interrupts (either task
 generated or generated outside the processor) and the
 supervisor appears in no tasks virtual address space. When
 the queue scanner finds no work for the supervisor to do it
 goes to a procedure which will give the processor to a task
 requiring it if any exists, using an algorithm which is
 described in some detail below.

 Overall Supervisor Structure

 Time Sharing Supervisor Programs 19

 5.2.2 UMMPS _____

 The UMMPS supervisor consists of a set of subroutines
 some of which are called as the result of hardware
 interrupts and some of which are internal. It runs in
 privileged state, with interrupts disabled, and with
 relocation turned off. All interrupts are processed to
 completion as nearly as possible before more interrupts are
 allowed in the same processor, but a queue is maintained for
 those things which must be delayed. All entries to the
 supervisor are made by interrupts as in TSS, and when an
 interrupt is completely processed (and no work which was
 delayed can be done) the supervisor gives the processor to a
 task if possible. To the tasks UMMPS appears to be an
 extension of the 360/67 hardware and the instructions used
 to call it appear to be extended machine instructions.

 Unlike the other systems, UMMPS allows some tasks to
 run with the relocation hardware disabled. This allows
 these tasks to refer to any main storage location without
 any address translation taking place. The tasks running
 this way are all special tasks providing some specific
 service such as controlling the unit record equipment.

 5.2.3 CP/67 _____

 The CP supervisor is essentially the same as the UMMPS
 supervisor at this gross level except for the meaning of
 many of the interrupts. In particular those interrupts
 which are used in TSS and UMMPS by a task calling the
 supervisor are not processed at all by the CP supervisor but
 are merely passed back to the task by simulating an
 interrupt for the task, and the privileged operation
 interrupts which in TSS and UMMPS are considered task errors
 and are passed to a special task subroutine are used by a
 task as the primary method of calling the supervisor.

 5.2.4 Multics Supervisor __________________

 The Multics supervisor is a set of programs and data
 which are part of all tasks. It always runs as part of some
 task and hence operates with interrupts enabled, relocation
 enabled, and in non-privileged state except when it cannot
 do so. The supervisor is recursive to allow it to handle
 interrupts occurring within itself. In fact in Multics the
 entire notion of a supervisor becomes rather ill defined and
 nebulous since there is no entity separate from all tasks.
 In spite of this, the functions of resource allocation and
 scheduling must still occur and it is the programs that
 implement these and certain other functions which are

 Overall Supervisor Structure

 Time Sharing Supervisor Programs 20

 referred to as the supervisor and which we will consider
 here.

 Overall Supervisor Structure

 Time Sharing Supervisor Programs 21

 6. STORAGE SCHEDULING

 The method used by all of these systems to schedule the
 use of main and auxiliary storage is usually known as demand ______
 paging. This term is used to describe a system of storage _______
 management in which information is stored partly in main
 storage and partly on several types of slower and less
 expensive auxiliary storage and in which the information is
 moved between these two (or more) levels of storage in units
 smaller than the total storage of one task. To understand
 why this method is chosen one must bear in mind two points:
 that information must be stored in main storage before a
 processor is able to utilize it, and that moving information
 between main storage and auxiliary storage is a process that
 is relativelly expensive in terms of processor time and
 other system resources. For these reasons among others it
 is desirable to store much of the information contained in
 the system as a whole on more inexpensive auxiliary storage
 and move only that part of it that is currently required
 into main storage. The relocation hardware described
 earlier allows this to be done easily since it is possible
 to have any subset of the pages associated with any task in
 main storage at any time, and furthermore these pages may be
 located anywhere in main storage.

 These consideration alone would justify this
 organization of storage, however demand paging has further
 advantages above and beyond these in that it is possible for
 the total storage available to a task to be much larger than
 actual amount of main storage available in the system. In
 fact by use of the segmentation hardware described earlier
 it is possible to consider all the data stored in the system
 and available to a task to be simply an extension to its
 virtual address space, as if it were all in some very large
 virtual storage. This is done by considering each logical
 grouping of data (data set or file) to be "mapped" into one
 or more segments in virtual storage. Then the mechanism
 described below is used to move the data from external
 storage to main storage as it is needed. This approach is
 used to some extent by TSS and to a much larger extend by
 Multics, in which it plays a very important part in the
 basic design of the system.

 One pitfall which must be avoided at all costs (which
 has not always been the case) is the error of considering
 this vast virtual storage as if it were all real storage, _______ ____
 each portion of which is directly addressable in an equally
 short time. This is not the case and programs which
 indiscriminately reference a very large virtual storage will
 suffer the consequences of requiring many transfers of pages
 between auxiliary storage and main storage at an excessive
 penalty in terms of system overhead. This effect is

 Storage Scheduling

 Time Sharing Supervisor Programs 22

 responsible for a large part of the poor reputation which
 demand paging systems enjoy today. However when properly
 used the mechanism of treating all of the data available to
 a program as an extension of virtual storage is an extremely
 powerful one.

 The methods used to control the transfer of pages
 between main and auxiliary storage in CP, UMMPS, and Multics
 are similar and the UMMPS method will be described followed
 by a summary of differences. The TSS method is quite
 different and will be discussed separately.

 In all of these systems (including TSS) a page must be
 in main storage to be used by a task and if an attempt is
 made to use a page which is not in main storage an interrupt
 will occur to notify the supervisor of this event. When
 this type of interrupt occurs the supervisor must find an
 available main storage block to hold the requested page and
 either move the page from auxiliary storage if it is stored
 there or allocate the page in the main storage block if it
 is a new page. In any case the decision of which pages are
 to be moved to main storage is not generally very difficult
 since each request is handled when it occurs.

 There are two cases in which pages must be moved to
 main storage even though they were not explicitely requested
 by a task. This can occur if certain pages must be in main
 storage before a task can even be started on a processor or
 if the supervisor attempts to "pre-read" certain pages to
 reduce the time a task must wait for the moving of pages.
 Only Multics makes use of "pre-reading" but both TSS and
 Multics require certain pages to be in main storage before a
 task can be started. These request are handled much as if
 they were page request interrupts which occur when a task is
 considered for the use of a processor and hence do not
 affect the algorithm much.

 6.1 UMMPS Paging Algorithm ______________________

 In UMMPS the function of moving pages between main
 storage and auxiliary storage is divided between the
 supervisor and one special task (called the Paging Drum
 Processor or PDP) running under control of the supervisor.
 The auxiliary storage medium used by UMMPS is one or more
 drums or disks. These devices are under complete control of
 the PDP which handles the function of constructing channel
 programs to read and write pages on them and which notifies
 the supervisor when a page has been read or written. In
 this context "reading" a page means moving it into main
 storage and "writing" it means moving it to the auxiliary
 storage medium, i.e., the drums or disks. The choice of

 Storage Scheduling

 Time Sharing Supervisor Programs 23

 which pages are to be read or written is completely up to
 the supervisor while the actually reading and writting is up
 to the PDP.

 The basic unit of information used in communication
 between the supervisor and the PDP is the Page Control Block
 (PCB) which contains all the information concerning the
 status of a single page. All PCB’s contain a main and
 auxiliary storage address for the page, status bits
 indicating the state of the page, scratch area for use while
 moving the page, and a pointer field that is used to chain
 the PCB’s on various queues. The format of the PCB’s is
 given in Figure 2.

 ┌─────────────────────────────────┐
 | |
 | Addr. of Next PCB For Same Task |
 | |
 ┼────────────────┼────────────────┼
 | Main | Relocatable |
 | Storage | Virtual |
 | Address | Address |
 ┼────────┼───────┼────────────────┼
 | Status | Addr. Of Next PCB on |
 | of | The Same System |
 | PCB | Queue (e.g., PIQ) |
 ┼────────┼────────────────────────┼
 | Nbr of | Addr. of Task Control |
 | Pgs In | Table For Task Owning |
 | Alloc. | This Page |
 ┼────────┼────────────────────────┼
 | Cnt of | Scratch Used by |
 | Lock | Supervisor While |
 | Reqsts | Reading This Page |
 ┼────┼───┼───────┼────────────────┼
 | St | Status | Auxiliary |
 | Key| Bits For | Storage |
 | | This Page | Address |
 └────┼───────────┼────────────────┘

 Figure 2: PCB Format In UMMPS

 To control the interraction between the supervisor and
 the PDP there are five supervisor subroutines called only by
 the PDP and four queues of PCB’s used to pass information
 between the supervisor and the PDP. The four queues are:

 Storage Scheduling

 Time Sharing Supervisor Programs 24

 1. Page In Queue (PIQ) - contains PCB’s for all
 pages which have been requested to be read
 into main storage but which the PDP has not
 started reading yet.

 2. Page In Complete Queue (PICQ) - contains
 PCB’s for all pages which the PDP has
 completed reading (or allocating if no
 reading was necessary) but of which the
 supervisor has not been notified.

 3. Page Out Queue (POQ) - contains PCB’s for all
 pages which are in main storage and which
 could be removed if necessary to make space
 for more pages.

 4. Release Page Queue (RPQ) - contains PCB’s for
 all pages which have been released by there
 owning tasks but which the PDP has not
 released yet.

 The five supervisor calls (SVC’s) used only by the PDP are:

 1. Get Real Page (GETRP) - used to request a
 main storage block into which to read (or
 allocate) a page that must be brought to main
 storage.

 2. Free Real Page (FREERP) - used to notify the
 supervisor that a main storage block that was
 previously allocated to a PCB is now
 available for reallocation. Also used to
 notify the PDP that a page was reclaimed
 while it was being written.

 3. Get Write Pages (GETWP) - used to request one
 or more pages from the Page Out Queue which
 will be removed from main storage.

 4. PDP Wait (PDPWAIT) - used to notify the
 supervisor that the PDP has no more work to
 do temporarily.

 5. Get Queues (GETQS) - used to return the PIQ
 and the RPQ to the PDP.

 Note that although there are four queues for PCBs, it
 is not necessary for a PCB to be on one of them at all
 times. In normal operation, most PCBs (including those that
 correspond to pages on auxiliary storage that are not being
 paged in or out) will be on no queue.

 Storage Scheduling

 Time Sharing Supervisor Programs 25

 Perhaps the best way to learn how these are used is to
 follow an example page request through its processing. The
 functions of the PDP and the Supervisor in this process are
 diagramed in Figure 3. When the supervisor determines that
 a page must be moved to main storage it will place the PCB
 for that page on the end of the PIQ and start the PDP if it
 is currently idle. When the PDP has completed whatever work
 it is doing at that time it will call the GETQS subroutine
 which will return to it the PCB for the page that was
 requested (and any other pages which must be brought to main
 storage or released, i.e., which are on the PIQ or the RPQ).

 At this point the PDP will place each of the PCB’s from
 the PIQ on local queues which exist for each disk and for
 each relative position on each drum. For each drum there
 are 9 queues corresponding to each of the nine possible
 locations for a page around the circumference of the drum.
 This division into nine queues allows more efficient use of
 the drum by reading the pages in the same order they appear
 on the drum.

 This process of ordering the page reads and writes by
 the position of the page on the drum is usually called "slot
 sorting" and works as follows. Since the drum is a rotating
 storage medium, there is a limited set of pages that can be
 read or written at any given time: the set that is under the
 read/write heads at that time. In the case of the drums
 used with the 360/67, there are 9 rotational positions at
 which pages start on the drum and 100 pages at each
 position, i.e., there are 9 "slots" on the drum and each one
 contains 100 pages. Whenever a page read or write is
 completed for slot "n", the pages that can be read or
 written soonest are those in slot "n+1" (or 1 if "n" is 9).
 By placing the read requests on 9 separate queues by slot,
 the PDP can build channel programs to take advantage of this
 fact. Also since a page can be written anywhere that
 another page is not already stored, the PDP will allocate a
 place for a page to be written in some slot that is not
 otherwise being used in the channel program that it is
 constructing.

 If the page is not currently stored on any auxiliary
 storage device (i.e., it has never been used before) an SVC
 GETRP will be executed immediately to attempt to get main
 storage space for it. If this is successful the PCB will be
 placed on the PICQ to indicate that it is now available, but
 if not it will be placed on a special local queue in the PDP
 so the call to GETRP can be repeated later.

 When all PCB’s received from GETQS have been processed
 (by either placing them in a local queue or calling GETRP)
 the PDP will build a channel program for a drum to read a

 Storage Scheduling

 Time Sharing Supervisor Programs 26

 page from each of the nine positions ("slots") for which
 there is an outstanding read request, first calling GETRP to
 obtain a main storage block to read each page into.

 If there is not sufficient main storage available to
 allocate a block to read into, GETRP will refuse to allocate
 a block for the PDP and no more read requests will be added
 to the channel program. In this case, since main storage is
 almost full, GETWP will return pages to be written and main
 storage will become available. This situation occurs very
 infrequently in actual operation because a few pages are
 removed from main storage whenever it is in danger of
 approaching this point.

 When all slots that have read requests have been
 filled, the PDP will call GETWP to attempt to get enough
 pages to fill all remaining slots with writes. The
 supervisor may decide to not give the PDP as many as it
 asked for if there is enough room in main storage, but
 whatever pages are received will be written by the channel
 program constructed by the PDP.

 If a page to be removed from main storage has not been
 changed since the last time it was read from an auxiliary
 storage device and the copy on the auxiliary device is still
 valid, it will not be written again but instead FREERP will
 be called immediately to release it and GETWP will be called
 again to get another one to replace it in the channel
 program.

 A channel program is constructed for a disk to read or
 write a single page at a time. No attempt is made to read
 or write more than one page in a single channel program for
 a disk.

 When all write requests have bee processed, the
 completed channel program will be queued for execution on
 some available path to the correct device using the standard
 input/output SVC’s. When an interrupt occurs indicating
 that the channel program is complete the PDP will scan the
 PCB’s used in constructing it and call FREERP to release the
 main storage blocks for all pages written, while putting all
 PCB’s for pages read on the PICQ. The supervisor will
 notice that there are pages on PICQ the next time it is
 entered and will restart the tasks that were waiting for
 them. Meanwhile the PDP will repeat the process of getting
 queues, constructing channel programs, and starting them.

 Note that the process of building channel programs goes
 on in parallel with the process of handling interrupts from
 earlier channel programs and that at any time there will be
 page requests in every stage of completion.

 Storage Scheduling

 Time Sharing Supervisor Programs 27

 If a page that is being written on an auxiliary device
 is required in main storage before FREERP is called to
 release it, the copy already in main storage will be used
 and the PDP will be notified when it calls FREERP that the
 copy on the drum is not valid. This saves the time required
 to read the page into main storage in this case. This
 should not happen very often if the the algorithm used to
 select pages to be written is satisfactory.

 Storage Scheduling

 Time Sharing Supervisor Programs 28

 |
 |
 UMMPS | PDP
 |
 ┌──────┐ |
 Page Rqst ──>┼ PIQ ┼─── GETQS ───────────┐
 └──────┘ | | Local Slot
 | V Queues
 | ┌──┼──┼──┼──┼──┼──┼──┼──┐
 | | | | | | | | | |
 | | | | | | | | | |
 | | |
 | └─────────┼─────────┘
 | |
 Get Main Storage ───── GETRP ──────────>┼
 | |
 ┌──────┐ | |
 | POQ ┼─────────── GETWP ──────────>┼
 └──────┘ | |
 | |
 Free Unchgd <─── FREERP ──────────┼
 Page | |
 | V
 | ┌───────┼───────┐
 | | Channel Prog. |
 | └───────┼───────┘
 | |
 | |
 Execute | |
 Channel <───────── I/O SVC’s ──────────┘
 Program |
 | |
 └────────── Ending Interrupt ────> Post
 | Completion
 | |
 ┌──────┐ | |
 | PICQ ┼<────────────┼──── Reads ───┼
 └───┼──┘ | |
 | | |
 V | |
 Restart Task | |
 | |
 Free Main <───────── FREERP ── Writes ─┘
 Storage |
 |

 Figure 3: Relation of PDP and UMMPS

 Storage Scheduling

 Time Sharing Supervisor Programs 29

 In summary, a page is transferred to main storage in
 the following manner:

 1. The supervisor places the PCB for the page on
 the PIQ.

 2. The PDP calls GETQS and obtains that PCB and
 all others which are on the PIQ or RPQ.

 3. The PDP places the PCB on a internal queue
 corresponding to its auxiliary storage
 location.

 4. If the page is on a drum, the PDP constructs
 a channel program to read the page together
 with pages from every position on the drum
 for which there is a read request, filling in
 the other positions with writes. If it is on
 a disk, the PDP constructs a channel program
 to read that one page.

 5. The channel program constructed in 4 is
 executed on some available path to the device
 by the supervisor.

 6. When the channel program is completed, the
 PDP places the PCB on the PICQ.

 7. The supervisor notices that the page is on
 the PICQ and restarts the task that was
 waiting for it.

 A page is removed from main storage by the following
 process:

 1. The PDP calls GETWP to request pages to fill
 up holes in a channel program constructed to
 read zero to eight pages from a drum or to
 request a page to write to an idle disk. A
 page will be written to a disk only if all
 drums are completely full.

 2. If main storage is almost full, the
 supervisor will take certain pages from the
 POQ and give them to the PDP.

 3. If the page has not been changed since the
 last time it was written on an auxiliary
 storage device, FREERP will be called
 immediately to free the main storage block
 since the copy on the auxiliary storage
 device is still valid.

 Storage Scheduling

 Time Sharing Supervisor Programs 30

 4. If the page has been changed since the last
 time it was saved in auxiliary storage, the
 PDP will include the page in its channel
 program.

 5. The channel program will be executed as in 5
 above.

 6. When the channel program is completed the PDP
 will call FREERP to release the main storage
 block occupied by the page.

 An examination of the process above will show that the
 critical step in determining overall performance is the
 subroutine GETWP, which must decide which pages to remove
 from main storage. This is the case since it is just those
 pages which will have to be read if they are subsequently
 needed by some task.

 The following algorithm is used for this function:

 1. When a page is brought to main storage it is
 placed on the top of the POQ if it is
 eligible for removal from main storage.

 2. When GETWP is called it first checks to see
 if the amount of free main storage exceeds a
 system parameter, and if so it returns no
 pages to be written.

 3. If there is relatively little main storage
 available GETWP starts at the top of the POQ
 looking for pages that can be removed from
 main storage.

 4. Before it removes a page it tests to see if
 the bit is on which indicates that the page
 has been referenced and if it is (meaning
 that some processor or input/output device
 has referred to the page since the bit was
 last reset), GETWP will reset the reference
 bit and put the page on the bottom of the
 POQ. Note that when a page is first read and
 placed on the top of the POQ its reference
 bit is set and hence it will not be removed
 by GETWP the first time it is scanned.

 5. If the reference bit is not on, the page is
 removed from main storage.

 6. GETWP will continue looking at pages until it
 has as many as were requested or until there

 Storage Scheduling

 Time Sharing Supervisor Programs 31

 are no more on the POQ.

 This use of the information concerning whether a page has
 been referenced allows those pages which are being used to
 be kept in main storage while the ones which are idle will
 be removed. Multics makes use of the same information in a
 somewhat different way. This information was not originally
 used by UMMPS (the oldest page in main storage was removed
 each time) and when it was first utilized, the improvement
 was quite dramatic.

 6.2 Multics Paging Algorithm ________________________

 The processing of page requests by Multics is similar
 in spirit to that of UMMPS but different in detail. When a
 page must be transferred to main storage, a subroutine is
 called which first calls a subroutine to allocate main
 storage block to contain the new page and then calls a
 subroutine similar to the PDP which processes the actual
 read request. If the subroutine which must allocate main
 storage determines that a page must be removed to make room
 available, it will select a page according to an algorithm
 nearly the same as the one GETWP in UMMPS uses and then call
 a subroutine which will accomplish the removal. The
 processing of the actual input/output is handled by a set of
 subroutines which run in several tasks and operate much the
 same way as the PDP.

 There are at least two important differences between
 Multics and the other systems being considered. First the
 auxiliary storage available to Multics is used as the medium
 of storing all user and system data as well as a mechanism
 of relieving main storage. This is done by considering all
 data to be stored in segments which may be attached to any
 authorized task. When a segment is removed from main
 storage, the location in auxiliary storage to which it is
 moved is permanently recorded by the system so that if the
 user requests it again at a later time it can be retrieved
 easily. This means that the mechanism for allocating and
 accounting for auxiliary storage is somewhat more
 complicated than in any of the other systems.

 The second difference is that an attempt is made to
 determine which pages each task is using most heavily at any
 time. Certain information about the last 200 pages read
 into main storage for each task is recorded at all times and
 periodically three subsets are selected from among this set
 of 200 pages on the basis of this information.

 The "purge set" is made eligible for removal from main
 storage by reseting the reference bit for each page in it.

 Storage Scheduling

 Time Sharing Supervisor Programs 32

 The pages in this set are presumably those that the task
 does not need very much.

 The size of the "working set" is used as an estimate of
 the amount of main storage tha task needs to execute
 effectively. The individual pages in the working set are
 not treated in any special way.

 The "pre-page set" contains those pages important
 enough to be moved to main storage as soon as the task
 becomes eligible for use of a processor.

 The information recorded for each of the last 200 pages
 moved to main storage includes the reference and change
 bits, the current and permanent location of the page on
 external storage, and whether it has been read more than
 once in the last 200 reads for this task.

 Note that this procedure assumes that each task will
 periodically have no pages in main storage, a situation that
 will normally occur only in moderate to heavy paging. If
 certain pages are more or less permanently in main storage
 because not enough paging is being done to flush them out,
 they will never appear among these 200 pages. However they
 will probably be among the most heavily used pages and
 should be included in the working set and perhaps the pre-
 page set.

 6.3 CP/67 Paging Algorithm ______________________

 The processing of page requests by CP is similar to but
 more limited than both UMMPS and Multics. As in Multics the
 main storage is allocated at the time the request is
 generated and the subroutine that does this will also
 initiate writes if necessary. Unlike UMMPS or Multics, CP
 will limit the number of reads that may be outstanding at
 any time and if more are requested they will be defered to
 keep from overloading the system.

 One of the differences between CP and UMMPS or Multics
 is the method of choosing which page to remove from main
 storage. This algorithm underwent a major change in CP some
 time ago. Both the old and the new algorithm will be
 described. In the old algorithm the blocks of main storage
 were scanned looking for a page to remove in the following
 order of priority:

 1. Vacant block

 2. Unreferenced and unchanged page

 Storage Scheduling

 Time Sharing Supervisor Programs 33

 3. Unreferenced and changed page

 4. Referenced and unchanged page

 5. Referenced and changed page

 In addition each main storage block had a "FIFO" flag which
 was set when it was allocated, and no page in a main storage
 block with this flag on was removed. If all blocks had the
 FIFO flag on, they were all turned off and the scan was
 repeated. The flag was an attempt to keep from allocating a
 main storage block to a task and then immediately releasing
 it to another task, a function which is served in UMMPS and
 Multics by having the pages eligible for removal on a queue
 ordered in part by when a page was allocated.

 The more recent CP algorithm (current as of July, 1969)
 works as follows. When a block must be allocated in main
 storage, a round-robin scan of the blocks in main storage is
 commenced, starting with the block after the last one
 allocated. This scan will make up to two passes over all
 the blocks in main storage looking for a block that can be
 allocated to the page to be read in. On the first pass any
 block that is available or that contains a page belonging to
 a task that is not on either of the two processor queues
 (see section 7.1) will be selected. If this pass does not
 find a block into which to read the page, the next pass will
 select the first block that is not permanently allocated to
 some specific page. This has the affect of looking for a
 block that is not very important first, but if no such block
 can be found, take any one.

 This change to the paging algorithm was made because it
 was felt that the older one required too much processor time
 in the supervisor to implement. This may have been the
 case, but it seems that the new one is so primitive that
 serious paging problems can be expected in any but a very
 light load.

 Another important difference between CP and the other
 three supervisors is that the auxiliary storage address of a
 page in CP is fixed (as are the number of pages assigned to
 each task) when the task is created. This means that when a
 page is removed from main storage it is always written back
 in the same place and no optimization of drum or disk
 transfer can be made by filling in write requests around
 reads. Similarly each read in CP is handled as a separate
 request and no ordering on the basis of rotational position
 on the drum or disk is done.

 A further distinction is that there is no task involved
 in the process; all the work including actual input/output

 Storage Scheduling

 Time Sharing Supervisor Programs 34

 operations is done in the supervisor.

 6.4 TSS Paging Algorithm ____________________

 The algorithm used to control paging in TSS is almost
 completely different than in any of the other system. The
 most important difference is that unshared pages are removed
 from main storage only when the task owning them is removed
 from consideration for use of a processor, that is, when it
 reaches a point know as Time Slice End. This may occur
 because the task has used up its allotment of processor time
 or for any of several other reasons to be described in
 Section 7.4. At this time the pages belonging to the task
 which are in main storage are written to auxiliary storage
 (if they have been changed since the last time they were
 written) and the main storage is made "pending". This means
 that if another page needs the main storage it will be
 released for the use of the new page, but if the original
 task makes a request for the same page again before the
 storage has been reused then it will be reallocated to it.
 In actual practice there are several pending lists for
 different categories of pages so that the ones most likely
 to be reclaimed will be left around.

 If a page is requested that can not be found on a
 pending list, the request is first passed by the queue
 scanner to a subroutine that attempts to find main storage
 block for the page. This subroutine first looks for an
 unassigned block, then for a pending block in each of the
 categories. If there is too little main storage available,
 it will call a subroutine that will write out some pages
 that are shared between two or more tasks and which have not
 been referenced, or if this does not produce enough storage
 it will write shared pages which have been referenced. If
 this fails it will then attempt to force a time slice end
 for some other task, thereby forcing its pages to be removed
 from main storage; or if this is not possible it will force
 a time slice end for the task requesting the new page, thus
 forcing it to give up some of its own main storage for the
 new page.

 Certain tasks may be forced to give up main storage
 blocks when they accululate more than a certain number of
 them. This is called "page stealing" and allows a task to
 reference a larger number of pages in one time slice without
 being forced to time slice end.

 Periodically (every n time slices) the system will
 write out shared pages that have not been referenced, even
 if main storage is not full.

 Storage Scheduling

 Time Sharing Supervisor Programs 35

 This method ties the scheduling of page transfers
 closely with the scheduling of processor time since the
 primary reason for writing pages is that the task owning the
 pages has temporarily lost its access to a processor. This
 is the only case among the four systems in which there is a
 close connection between page scheduling and processor
 scheduling although there is some connection in each of
 them, if only implicitly.

 TSS recognizes two levels of auxiliary storage and will
 attempt to assign each page written to the catagory most
 appropriate to it. If the faster and smaller storage (drum
 storage) becomes nearly full, the subroutine responsible for
 allocating auxiliary storage will select an inactive task
 for "migration," which means that its pages which are on the
 drum will be moved to slower (disk) auxiliary storage. The
 pages of a task that waits for a console interraction will
 automatically be migrated at that time.

 Storage Scheduling

 Time Sharing Supervisor Programs 36

 7. PROCESSOR SCHEDULING

 The method used by these systems to schedule the use of
 processors differs radically from system to system. In
 spite of this, all of the systems have certain goals in
 common with regard to processor scheduling. Stated in the
 most general terms these are to allow the task requiring a
 small amount of processor time to be serviced quickly while
 requiring that all tasks with the same status get about the
 same amount of time. A secondary consideration in all the
 systems is to make sure that no tasks waiting for processor
 time must wait too long for it. The algorithms used by each
 of the systems to achieve these goals will be discussed,
 with the simplest being considered first. One thing common
 to all of them is that there is no fixed priority among
 tasks such as is found in systems (e.g. OS/360) which cater
 to batch or real time operation.

 7.1 CP/67 _____

 At the same time that the paging algorithm of CP was
 changed, the processor scheduling algoritmh was also
 changed. The old algorithm will be described first followed
 by a desription of the new one.

 The old algorithm used by CP to schedule the processor
 (CP is unique among these systems in that it will handle
 only one processor) is the simplest and most standard ─ as
 much as any scheduling algorithm can be considered standard.
 This algorithm is quite similar to the one used by the
 Compatible Time Sharing System [9] of Project MAC and MIT.
 A task running under CP was in one of three states with
 respect to processor scheduling:

 1. Running ─ task is the one currently running.

 2. Ready ─ task could be running if no other
 task was running.

 3. Waiting ─ task is waiting for some event to
 occur.

 All tasks were on one of several queues each of which
 represented a level of priority in the race for a processor.
 The maximum level queue a task could occupy was set when the
 task was created and the task was put on top of this level
 whenever it completed an interraction with a console. This
 attempted to assure that a task which is interracting with a
 console would get processor service fast enough to keep the
 user happy.

 Processor Scheduling

 Time Sharing Supervisor Programs 37

 Whenever the processor was to be given to a task, the
 queues were scanned from highest priority to lowest looking
 for a ready task. Within any queue the scan was round-
 robin; that is, the task next considered was the one after
 the task last considered. If a ready task was found it was
 given the processor after first setting up a timer interrupt
 to occur after an amount of time depending on the queue
 which the task was in and the amount of processor time it
 had already used while in that queue.

 When the tasks allowed time in a queue had expired, the
 task was moved to the next lower queue if it was not in the
 lowest queue already. Hence, the more time the task used
 the lower its priority. To make sure that no task got
 completely left out for a long time, a scan of all queues
 was made every fifteen seconds looking for a ready task
 which had not received any processor time since the last
 scan. If such a task was found it was moved to the next
 higher queue unless it was in the highest queue allowed for
 that task.

 There was some feed-back from processor scheduling to
 storage scheduling in CP: periodically (every minute) the
 percent of the time the processor had been idle while at
 least one task was waiting for page transfers to be
 completed was computed. If this number was too small, the
 maximum allowed number of simultaneous page reads was
 increased; if it was too large, the maximum number was
 decreased unless it was already at a set minimum. This was
 an attempt to keep the system from becoming completely
 paging bound.

 It is easy to see which aspects of this algorithm
 attempted to meet each of the goals set forth above. A task
 completing an interraction with a console was placed in a
 queue in which it would receive a relatively small amount of
 processor time quickly, but if it needed more time it would
 be moved to a lower priority queue where it would not
 interfere with other tasks needing a small amount of time.
 Any given queue was scanned round-robin which attempted to
 guarantee equal service to all tasks in that queue.
 Furthermore any task which got no processor time at all for
 fifteen seconds had its priority increased so it would have
 a better chance the next fifteen seconds.

 The newer scheduling algorithm used by CP (again
 current as of July, 1969) uses two queues. Q1 contains all
 tasks that are not putting a heavy processor time load on
 the system, while Q2 contains all tasks which require a
 large amount of processor time. The number of tasks that
 can be in either of these queues at any time is limited so
 that there are two other queues of tasks waiting to get into

 Processor Scheduling

 Time Sharing Supervisor Programs 38

 either Q1 or Q2. This leads to 5 possible states for a
 task:

 1. In Q1

 2. Waiting to get into Q1

 3. In Q2

 4. Waiting to get into Q2

 5. Dormant and not requiring a processor

 A task may be in Q1 or Q2 even though it is not currently
 runnable, for example if it is in page wait. When the
 processor is to be given to a task, a runnable task in Q1 is
 given first priority, followed by a runnable task in Q2,
 except that if Q1 is not full a runnable task waiting to get
 into it may be moved to Q1. A task is allowed 0.4 seconds
 of processor time in Q1 before it is moved to Q2 and it is
 allowed 5 seconds of time in Q2 before it is removed from
 the queue to allow another task to be moved into it. A task
 is put back into Q1 (or waiting to get into Q1) whenever it
 does a read from the console. These operations on the
 queues in CP is illustrated in Figure 4.

 The processor scheduling algorithm of CP was changed
 for much the same reason as the paging algorithm was
 changed: to reduce the amount of processor time required by
 the supervisor. The new processor scheduling algorithm
 seems to be similar to the old one, but not so general, and
 it probably contains many of the good features of the old
 one with less overhead.

 Processor Scheduling

 Time Sharing Supervisor Programs 39

 ┌────────────┐ ┌────────────┐
 | | Q1 Not Full | |
 | Waiting ┼────────────>┼ On Q1 |
 | For Q1 ┼<────────────┼ |
 | State 2 | Term. Read | State 1 |
 └──────┼─────┘ └─────┼──────┘
 A |
 | Term. Read |
 └────────────┐ | 0.4 Sec. of
 | | Proc. Time
 ┌────────────┼────────────┘
 | |
 | └────────────┐
 | |
 V |
 ┌──────┼─────┐ ┌─────┼──────┐
 | | Q2 Not Full | |
 | Waiting ┼────────────>┼ On Q2 |
 | For Q2 ┼<────────────┼ |
 | State 4 | 5 Sec of | State 3 |
 └────────────┘ Proc. Time └────────────┘

 Figure 4: CP/67 Processor Scheduling States

 7.2 Multics _______

 The processor scheduling algorithm of Multics is
 similar to the old algorithm of CP, but it is somewhat more
 complex. There are a set of queues which contain tasks
 which could use a processor if one were available, and a
 task enters at a high priority queue and works down to a
 lower priority queue as it uses more time. However, two new
 concepts are added to this: a task may or may not be loaded ______
 and it may or may not be eligible. The first condition _________
 pertains to whether the pages needed to run the task are
 present in main storage and is really only an incidental
 detail as far as processor scheduling is concerned. The
 eligibility of a task is very important for processor
 scheduling and will be considered below.

 A task in Multics may be in any one of five execution
 states:

 1. Running ─ task is currently using a

 Processor Scheduling

 Time Sharing Supervisor Programs 40

 processor.

 2. Ready ─ task could use a processor if one
 were available.

 3. Waiting ─ task is waiting for some event for
 which notification will be broadcast.

 4. Blocked ─ task is waiting for specific
 notification of some event.

 5. Stopped ─ task is no longer in competition
 for a processor and is in a state in which it
 can be removed from the system.

 In addition there are three loading states

 1. Loaded ─ task has enough information in main
 storage to be run.

 2. Being loaded/unloaded ─ task is either being
 loaded or being unloaded.

 3. Unloaded ─ task has none of the required
 pages in main storage.

 Finally there are two eligibility states

 1. Eligible ─ task is to be considered for a
 processor.

 2. Ineligible ─ task is not be considered for a
 processor because there are too many tasks
 already vying for them.

 It is important to note the relationship between these
 states: the execution states and loading states are
 independent except that a running process must be loaded,
 and the eligibility state applies only to running, ready, or
 waiting tasks. There is an upper bound enforced for both
 the number of loaded and the number of eligible tasks.

 All ready ineligible tasks are kept on a set of queues
 which are used in the same way as in the old CP algorithm.
 A task is put on a high priority queue after an interraction
 with a console and moves to lower priority queues as it uses
 more processor time. The amount of processor time allowed
 on each queue is greater than the amount of time allowed on
 the immediately higher priority queue. The amount of
 processor time allowed a task on the highest priority queue
 is called a "quantum" and the amount of time allowed on
 queue n is 2*n quanta. Each task has a lowest and highest

 Processor Scheduling

 Time Sharing Supervisor Programs 41

 allowed queue number which establish its general range of
 service.

 The most important difference between this scheduling
 algorithm and the old CP algorithm is the concept of
 eligibility. The number of eligible tasks in the system is
 limited to reduce the contention for main storage. This is
 done by computing the working set size for each eligible
 task as described in section 6.2, and by requiring that the
 total size of all working sets of all eligible tasks can be
 no larger than a certain value. A task will be made
 eligible if it is the highest priority ready, ineligible
 task and the total size of all working sets of eligible
 tasks is less than the maximum. It will maintain its
 eligibility until (1) it uses a specified amount of
 processor time, (2) it enters the blocked or stopped (but
 not wait) state, or (3) it is pre-empted (see below).

 There is a priority associated with each eligible task
 such that the task that has been eligible longest has
 highest priority. This means that a task will receive
 better and better service the longer it is eligible, until
 it has used the maximum processor time allowed. This should
 reduce paging by allowing tasks to accumulate more pages in
 main storage as they remain eligible longer.

 When a task is removed from the eligible state, the
 last 200 pages read into main storage for it are divided
 into the three subsets described in 6.2.

 When a task is made eligible it will be loaded if it is
 not loaded already, hence the number of loaded tasks is
 always at least as large as the number of eligible tasks. A
 task will be unloaded if an eligible task must be loaded and
 there are the maximum number of loaded tasks. Finally a
 task is selected for use of a processor only if it is the
 highest priority ready, eligible, and loaded task.

 7.3 UMMPS _____

 The processor scheduling algorithm of UMMPS is somewhat
 similar to that of CP and Multics but is different in
 several significant details. Instead of the multiple queues
 for ready tasks only one queue is used and it may contain
 tasks in any of several states. The basic states that a
 task may occupy in UMMPS are:

 1. Running ─ currently running on some
 processor.

 2. Ready ─ could use a processor if one were

 Processor Scheduling

 Time Sharing Supervisor Programs 42

 available.

 3. Wait ─ waiting on some event.

 4. Page wait ─ waiting for a page to be brought
 to main storage.

 All tasks which are running or ready and some tasks which
 are waiting will be on the processor queue.

 In UMMPS a task may be put into wait state either until
 any interrupt is directed to the task or until certain bits
 in some byte of its virtual storage are zero. In the first
 case and in the second case when it is known that an
 interrupt will cause the task to be added to the processor
 queue when the wait is complete, the task is removed from
 the processor queue during the wait; but if the task will
 not be notified when the wait is done, it is left on the
 processor queue and treated as if it were a ready task
 except that it is not given a processor. This would occur
 if, for instance, the task is waiting for some byte in
 shared storage to be reset to zero and whichever task will
 clear that byte will not notify the task(s) waiting for it
 to be cleared that it has been cleared. The task will be
 removed from the processor queue during a wait in the
 following cases:

 1. The wait was initiated by the supervisor
 itself for an input/output operation or a
 page read.

 2. The byte defining the wait is in the tasks
 private virtual storage.

 3. The tasks specifically requests to be removed
 from the queue during the wait.

 In case (3) it is up to the task to ensure that it is
 properly notified when the wait is complete. For this
 purpose there is a supervisor subroutine which may be called
 by any task and which will place some other task on the
 processor queue if it is not already there. (The task is
 not otherwise affected.) There is an overhead associated
 with leaving a waiting task on the processor queue (because
 the task must be periodically checked to see if its wait is
 up) and for this reason all of the more common waits are
 such that the task is removed from the queue.

 Whenever a task is added to the processor queue for any
 reason it is added to the top of the queue, thus making it
 the next task to be given a processor. This means that very
 quick service is usually given to interrupts and to tasks

 Processor Scheduling

 Time Sharing Supervisor Programs 43

 which have just had a page brought to main storage. It has
 been observed that a task requesting a page will often
 request another one soon, and if it is given a processor
 right away it will select quickly which page is next to be
 read. A disadvantage of this is that several tasks which
 each want many pages available in main storage will force
 the system to continually read and re-read the pages they
 need. This effect is largely overcome by the privileged
 task mechanism described below.

 Another desirable result of putting new tasks on top of
 the processor queue is that it is possible for ordinary
 tasks to control input/output devices fairly efficiently
 even though this requires rapid interrupt response. An
 extreme example of this is the PDP which controls the paging
 drums as described in section 6.1. This task does not
 receive any special treatment as far as processor scheduling
 is concerned, yet it can easily keep up with the interrupts
 from the paging drums.

 Each task is alloted a certain amount of processor time
 (a time slice) and when this time is used up the task is
 taken from wherever it is on the processor queue and placed
 on the bottom, after it has been given a new time slice. It
 is very important to note that this is the only time the
 task is given a new time slice; it is not given a new one if ___
 it goes into wait state for any reason, hence no matter how
 many times it goes on and off the processor queue it will
 eventually run out of time and relinquish its place to
 another task. It is possible for a task to request that it
 be prematurely forced to the end of the processor queue and
 given a new time slice, but any waits or page waits by the
 task do not affect the time slice in progress.

 This mechanism obviously partly defeats the advantages
 mentioned above which allow efficient input/output
 management by ordinary tasks. This does not seem to be a
 major problem, but if it were, certain tasks which are known
 to be input/output limited by their nature (for example the
 tasks used to drive card readers and printers or the PDP)
 could be given a very large time slice so they would never
 be forced to the bottom of the queue.

 A further aspect of processor scheduling in UMMPS which
 was alluded to above is the privileged/non-privileged task
 mechanism. (The choice of names for this is somewhat
 misleading since it has nothing to do with what the task is
 allowed to do, but rather only affects how much processor
 time and paging the task is allowed.) This mechanism is
 designed to do what the eligibility mechanism of Multics or
 the maximum number of concurrent read requests in CP is
 designed to do; namely, to reduce the possibility of having

 Processor Scheduling

 Time Sharing Supervisor Programs 44

 too many tasks vying for a processor and main storage. This
 mechanism works as follows in UMMPS:

 1. Whenever a task is initially added to the
 processor queue it is added as a "neutral"
 task. This means that no assumption is
 initially made concerning whether the task
 will require many pages in main storage or
 not.

 2. When a task accumulates more than a certain
 number of blocks of main storage it reaches a
 decision point. The next time it requests a
 main storage block it is either made non-
 privileged or privileged, depending on other
 tasks in the system.

 3. If the task reaches this decision point and
 the number of main storage blocks allocated
 to privileged tasks is less than the maximum
 allowed then the following things are done:

 (a) The task is made privileged, meaning
 that it is allowed to get as many blocks
 of main storage as it wants.

 (b) The task is given an extra long time
 slice.

 4. If, when the task reaches the decision point,
 there are already the maximum number of main
 storage blocks allocated to privileged tasks
 then this task is made non-privileged. This
 means that the task is not allowed to have a
 processor again until some privileged task
 leaves that state.

 5. A task that is privileged remains so until
 either it uses up its (extended) time slice,
 it voluntarily asks to be placed at the end
 of the queue, or it enters wait state except
 page wait. When a task leaves privileged
 state it is made neutral, unless it is at
 time slice end and still has a large number
 of main storage blocks, in which case it is
 made non-privileged.

 6. When a task leaves privileged state a non-
 privileged task can now be made privileged.

 7. A non-privileged task maintains its place on
 the processor queue relative to other non-

 Processor Scheduling

 Time Sharing Supervisor Programs 45

 privileged tasks, and when it is started
 again it is made privileged, not neutral.

 The maximum blocks that will be allocated to privileged
 tasks and the threshold are set depending on the amount of
 main storage available.

 For the purpose of counting the main storage blocks
 allocated to privileged tasks, each such task is counted as
 having a number of blocks equal to the threshold if it
 temporarily has less than that number. This limits the
 total number of privileged tasks to the maximum number of
 pages for privileged tasks divided by the threshold. This
 mechanism is required because when a non-privileged task is
 made privileged (e.g., because a privileged task used up its
 time slice) it will often have few or no pages in main
 storage.

 In addition to the queue mentioned above which controls
 which tasks may use a processor at any time, there are two
 queues for each task which control that task’s use of a
 processor: the local processor queue and the wait queue.

 The local processor queue is used to control task
 interrupts and each entry contains information about the
 tasks status at some point in its execution. Each time an
 interrupt is passed to a task, this queue is pushed down and
 a new entry is added to the top, and when a task is given a
 processor the information in the top entry is used to start
 the task executing.

 The wait queue parallels this local processor queue and
 contains one entry for each level of the queue at which a
 wait condition is outstanding. This means that a task can
 wait on some event, be interrupted for something else, can
 wait on something at that level, and when it returns to the
 original level the first wait will still be in force.

 There are supervisor subroutines callable by the tasks
 to remove the top entry from the local processor queue
 (return to the point of an interrupt) and to remove all
 levels below the top (throw away return information). It
 should be noted that these queues do not play any part in
 the scheduling of processors to tasks, but only what happens
 when a task gets a processor.

 7.4 TSS ___

 TSS is the only one of these systems to have a table
 driven processor scheduling algorithm. The state of each
 task relative to processor scheduling is defined by an entry

 Processor Scheduling

 Time Sharing Supervisor Programs 46

 in a table called the schedule table. Since there can be up _______________
 to 256 entries in the schedule table any task can be in any
 of up to 256 states. A schedule table entry contains
 several types of information summarized below.

 1. The priority of the task in this state. This
 is used only for assigning a priority in
 processor scheduling.

 2. The processor time allowed before time slice
 end, expressed as a quantum length and the
 number of quanta.

 3. A quantity known as "delta to run" which is
 essentially the time the task will wait for a
 processor without being considered behind
 schedule.

 4. A flag indicating whether the task may be
 pre-empted.

 5. The maximum number of main storage blocks and
 page reads allowed before the task is forced
 to time slice end.

 6. The maximum time a task is allowed to wait
 for an interrupt before it is forced to time
 slice end.

 7. The maximum number of page reads that can
 occur in a quantum before the task is
 considered paging bound.

 8. The next schedule table entry to be used in
 each of several cases.

 As perhaps can be seen already, the concept of time
 slice end is very important in processor scheduling in TSS.
 This term refers to any event which forces the task to be
 removed temporarily from consideration for use of a
 processor, such as using too much processor time (called
 normal time slice end), too many pages requests, waiting too
 long for an interrupt, waiting for console interraction, too
 little main storage available (see Section 6.4 above), etc.

 When a task reaches time slice end its pages which are
 in main storage will be written onto auxiliary storage
 unless so few tasks are in the system that this one is run
 again immediately. In addition if the time slice end is due
 to a wait on a console interraction, the pages of the task
 which are on fast auxiliary storage (drum) will be moved to
 slow auxiliary storage (disk). Since time slice end will

 Processor Scheduling

 Time Sharing Supervisor Programs 47

 free up some main storage, it is used as described in
 Section 6.4 by the subroutine which allocates main storage
 when too little of it is available.

 For the purposes of processor scheduling three lists or
 queues are maintained by TSS: the dispatchable list, the
 eligible list, and the inactive list. The dispatchable list
 contains those tasks that are authorized to use a processor;
 the eligible list contains those tasks that are waiting to
 get onto the dispatchable list; and the inactive list
 contains those tasks that are waiting for an interrupt.

 The task will be moved from the dispatchable list to
 the inactive list when a time slice end due to (1) request
 by the task, (2) waiting on console interraction, or (3)
 waiting too long for an interrupt. The task will be moved
 from the dispatchable list to the eligible list for any
 other time slice end. A task will be moved from the
 inactive list the eligible list when it receives an
 interrupt. Finally a task will be moved from the eligible
 list to the dispatchable list when there are few enough
 tasks on the dispatchable list, enough main storage is
 available to hold the pages used by the task last time
 slice, and the task is the highest behind schedule task on
 the eligible list. If there is a behind schedule task on
 the eligible list which can not be moved to the dispatchable
 list (because too little main storage is available or too
 many tasks are on the dispatchable list), an attempt will be
 made to find a lower priority pre-emptable task on the
 dispatchable list and if one is found it will be forced to
 time slice end.

 Processor Scheduling

 Time Sharing Supervisor Programs 48

 ┌─────────────┐
 Console Wait, etc. |Dispatchable |
 ┌───────────────────────┼List |
 | Time Slice End └───────┌─────┘
 | A |
 | | |
 | Few Enough | | Normal
 | Dispatchable| | Time
 | Tasks | | Slice
 | | | End
 | | |
 V | V
 ┌─────────────┐ ┌────└────────┐
 | Inactive ┼──────────────>| Eligible |
 | List | Task | List |
 └─────────────┘ Interrupt └─────────────┘

 Figure 5: TSS Processor Scheduling Lists

 The order of the tasks on the eligible list is
 determined by the priority from the schedule table entry and
 a quantity known as the scheduled start time, which is
 computed from the delta to run in the schedule table entry.
 The order on the dispatchable list is paging bound tasks
 first followed by compute bound tasks. The task to get an
 available processor is the first one on the dispatchable
 list that is not waiting for an interrupt and has no
 outstanding page requests.

 7.5 Comparison of Processor Scheduling Algorithms ___

 Although the processor scheduling algorithms used by
 these three systems are quite dissimilar, they do have a
 number of things in common.

 All of them except UMMPS use a number of queues of
 decreasing priority and increasing processor time for jobs
 that need a great deal of processor time (assuming that the
 TSS schedule table has been set up this way). UMMPS
 achieves somewhat the same effect by accumulating processor
 time over wait periods as well as running and ready periods,
 although this is not quite the same thing.

 TSS is the only one of the systems that has a close
 connection between storage scheduling and processor
 scheduling, the rest of them are willing to let each area
 take care of itself as much as possible. In spite of this
 all the systems have some mechanism to keep from getting too

 Processor Scheduling

 Time Sharing Supervisor Programs 49

 many tasks in main storage at once. Multics does this by
 limiting the number of eligible tasks, while TSS makes a
 number of tests on each individual task as well as
 attempting to avoid starting a task unless enough storage is
 available to hold all the pages the task used the last time
 it ran.

 The newer CP algorithm sets a fixed maximum on the
 number of tasks considered for the processor, while the
 older one limited the number of pages that could be read
 simultaneously, an approach that was once tried in UMMPS and
 abandoned in favor of attempting to detect those relatively
 few tasks that were using an excessively large number of
 main storage blocks and limiting the number of them that can
 run simultaneously.

 The scheduling algorithm of TSS is the most general
 since by properly constructing the schedule table, any of a
 wide variety of algorithms could be implemented, including
 the ones used by Multics or CP and perhaps the one used by
 UMMPS.

 All in all it can be seen that the parallels between
 these systems in the area of processor scheduling, while not
 as great as in the area of storage scheduling, are
 significant.

 Processor Scheduling

 Time Sharing Supervisor Programs 50

 8. INPUT/OUTPUT PROCESSING

 This section describes the processing of input/output
 requests and applies TSS and UMMPS since the features of the
 supervisor being described apply to the 360/67 rather than
 the 645 and CP does not have the same flexibility in this
 area.

 8.1 Organization of Input/Output Hardware _____________________________________

 On the 360/67 the input/output equipment is divided
 into a three (or sometimes four) level heirarchy. The top
 level of this heirarchy (if there are three levels) is the
 channels, which are general devices for transmitting data
 between main storage and some external destination. The
 channels are nearly completely independent of the type of
 device with which they are communicating at any time and any
 channel may be used to communicate with any device. There
 are two general types of channels which are distinguished by
 whether they can handle several simultaneous low speed
 transmissions (multiplexor channels) or only one potentially
 higher speed transmission (selector channels). Typically a
 360/67 will have about four channels (one multiplexor and
 three selector) per processor.

 The next lower level in the input/output heirarchy is
 the control unit, which is a unit responsible for
 interfacing the various specific input/output devices to the
 channels. The control units handle all of the specific
 peculiarities of the individual devices so that the channels
 may be independent of these peculiarities. Whereas there
 are only two types of channels on a 360/67, there may be
 many different types of control units, since a different
 type is required for each type of device interfaced.

 The lowest level in this heirarchy is the individual
 input/output devices. There may be as many as 200 of these
 in a large 360/67 installation and they may be of as many as
 twenty different types. Typical input/output devices are
 card readers, printers, magnetic tape units, magnetic disks,
 or interfaces to telephone lines.

 Whenever the state of any of the components of this
 heirarchy changes in any significant way, the supervisor is
 notified by an interrupt indicating the particular channel,
 control unit, and device (if any) which is affected by the
 change and the nature of the change. At this time the
 supervisor can take whatever action is necessary to notify
 the tasks affected and can also initiate any input/output
 requests which can now be started. The only other reason
 for an input/output interrupt is some asynchronous event

 Input/Output Processing

 Time Sharing Supervisor Programs 51

 which may be of interest to the supervisor, for example a
 user at a terminal striking an attention key to indicate
 that he wants service of some kind. This kind of interrupt
 normally requires no action by the supervisor except
 notification of the task involved.

 The fourth (and highest) level in this heirarchy, which
 is present in all multi-processor 67’s and in some single
 processor 67’s, is the channel controller, which is a unit
 which interfaces between the channels and the rest of the
 system, allowing the channels to be independent of the
 processors. This unit is not generally significant directly
 to the programming of input/output support, except that
 without it solving the problem of input/output control in a
 multi-processor 67 would be much more difficult. This is
 the case because without the channel controller, each
 individual channel would interface to a specific processor
 and only that processor would be able to control that
 channel or receive interrupts from it. In fact this is the
 way the multi-processor 360/65 is organized and partly as a
 result of this the input/output control for that system is
 both more complicated and less general than that of either
 TSS or UMMPS. In spite of their importance to input/output
 programming in multi-processor 67’s, the channel controllers
 are almost completely transparent to the supervisor.

 It is important to note that any given control unit may
 be attached to up to two channels and any given device may
 be attached to up to four control units. To execute an
 input/output operation on any device requires the use of a
 control unit to which it is attached and a channel to which
 that control unit is attached. Such a combination is called
 a "path" to the device, and any device can have up to eight
 paths to it. In the small configuration shown in Figure 6,
 device D1 has one path, devices D2 and D3 have four paths,
 and devices D4 and D5 have two paths. The concept of a path
 is important to an understanding of input/output processing
 in UMMPS or TSS.

 The importance of the channel controllers can clearly
 be seen by considering that without them the specific paths
 available to a device would depend upon which processor is
 processing the input/output request. This is true since
 without the channel controller only certain channels would
 be accessible to each processor, and paths to a device
 passing through any other channels would not be available to
 that processor. Referring to Figure 6, without the channel
 controllers the paths passing through C1 and C2 would be
 accessible to only processor 1, while the paths passing
 through C3 and C4 would be accessible to only processor 2.
 This means that processor 1 would have paths to D1, D2, and
 D3 but not to D4 or D5 while processor 2 would have paths to

 Input/Output Processing

 Time Sharing Supervisor Programs 52

 all devices except D1. This sort of situation is not at all
 unlikely to occur without the channel controllers and
 obviously complicates input/output programming.

 ┌─────────────────────────────┐
 | |
 | Main Storage |
 | |
 └────┐───────────────────┐────┘
 | |
 | |
 ┌─────└─────┐ ┌─────└─────┐
 | | | | Channel
 | CC1 | | CC2 | Controllers
 | | | |
 └─┐───────┐─┘ └─┐───────┐─┘
 | | | |
 | | | |
 ┌──└──┐ ┌──└──┐ ┌──└──┐ ┌──└──┐
 | C1 | | C2 | | C3 | | C4 | Channels
 └──┐──┘ └─┐─┐─┘ └─┐┐┐─┘ └──┐──┘
 ┌───┘ ┌──┘ | ||└─┐ └───┐
 | | ┌──┼─────────┘| | |
 | | | └───┐ ┌────┘ | |
 ┌──└──┐ ┌─└─└─┐ ┌─└─└─┐ ┌──└──┐ ┌──└──┐
 | CU1 | | CU2 | | CU3 | | CU4 | | CU5 | Control
 └──┐──┘ └─┐─┐─┘ └─┐─┐─┘ └─┐─┐─┘ └─┐─┐─┘ Units
 | | └──┐ | | | └──┐ | |
 | | ┌──┼───┘ | | ┌──┼───┘ |
 | | | └───┐ | | | └───┐ |
 ┌──└──┐ ┌─└─└─┐ ┌─└─└─┐ ┌─└─└─┐ ┌─└─└─┐
 | D1 | | D2 | | D3 | | D4 | | D5 | Devices
 └─────┘ └─────┘ └─────┘ └─────┘ └─────┘

 Figure 6: Simple Input/Output Configuration

 8.2 Task Input/Output Control _________________________

 The basic entity in the programming of input/output for
 the 67 is the device, which is the unit that the task deals
 with directly. A device may be allocated to a task by the
 supervisor, either with exclusive control or to be shared
 with other tasks, and from that time until the device is
 released by the task (either voluntarily or forcibly) the
 task is allowed to control it through calls to appropriate

 Input/Output Processing

 Time Sharing Supervisor Programs 53

 supervisor subroutines. In any case nothing will be done to
 or with the device unless the task specifically requests it
 to be done, and all recovery from abnormal conditions is the
 responsibility of the task. This contrasts with the action
 of some other systems (for example OS/360) which include
 some of the device error recovery as part of the supervisor.
 In UMMPS all input/output is initiated at the request of the
 tasks except for the operator’s console; the supervisor
 never initiates other input/output on its own.

 The basic operation of a task with respect to a device
 it owns is the queuing of an input/output request for that
 device. This input/output request is defined by a set of
 commands to the channel, control unit, and device which will
 be used to execute the request. The supervisor will
 maintain a queue of requests for each device and will
 execute them in the order given when equipment becomes
 available. At any given time the queue will be divided into
 two sections: the portion that has been completed but about
 which the task has not been notified (see below for a
 description of how the task is notified), and the portion
 that has not been completed. In UMMPS the first entry on
 the second portion of the queue is called the "active entry"
 and it represents the input/output request which the actual
 device is working on or is about to work on, while in TSS
 two separate queues are kept. An entry is deleted from the
 queue by UMMPS when it has been completed with no abnormal
 conditions and the task has been notified of this.

 The task can be notified by UMMPS of the completion of
 an input/output request in one of two ways depending on the
 option selected by the task: the task can wait until the
 current top request on the input/output queue for a specific
 device is complete or the task can receive an interrupt when
 the next request on the queue for a particular device is
 complete (this is the method used by TSS). In either case
 if an abnormal condition is detected with respect to an
 input/output request, the active entry in the input/output
 queue for that device is prevented from moving further
 (i.e., further operations on that device are not started)
 until the task has been notified of the abnormal condition
 and taken some action with respect to it. The actions open
 to the task at that point in UMMPS are to either ignore the
 abnormal condition or to save the input/output queue while
 some recovery is attempted. After the queue has been saved
 the task may do one of several things:

 1. Execute other input/output requests for the
 device.

 2. Retry the request that caused the original
 problem.

 Input/Output Processing

 Time Sharing Supervisor Programs 54

 3. Ignore the error after having possibly done
 other operations on the device.

 4. Delete the request that caused the trouble
 and go on to the next one.

 8.3 Supervisor Input/Output Control _______________________________

 The supervisor’s main responsibility with regard to
 input/output processing is to schedule the operations
 requested by the tasks on the available paths to the
 devices. In order to execute an input/output request, the
 supervisor must be able to allocate a channel (possibly
 including channel controller) and a control unit to the
 request. If the channel used is a selector channel, then
 the device must have exclusive use of the channel and
 control unit; but if a multiplexor channel is used, then it
 usually need not have exclusive use of the channel. However
 it is necessary to guard against overloading the multiplexor
 channel by executing too many operations on it
 simultaneously, and in some cases a control unit attached to
 a multiplexor channel will not support more than one
 operation at a time. Considerations such as these make it
 much more complicated to decide when a path to a device is
 free and when it is busy. Also complicating the problem is
 the fact that there may be several possible paths to a
 device each of which shares equipment with some paths to
 other devices.

 In the face of this complexity the supervisor’s job is
 to make sure that no section of the input/output equipment
 sits idle when it could be working and that no input/output
 request waits longer than necessary before being started.
 Some devices require better service than others and if two
 devices are competing for the same channel, the one with the
 higher priority will be given first consideration, while
 within a particular priority level the scheduling is round
 robin to give each device equal service.

 The general strategy used to implement these goals is
 to attempt to restart any idle part of the input/output
 equipment whenever an interrupt occurs indicating a change
 in its state. However because of the very large number of
 interrupts and the number of devices, it is not practical to
 look at each device whenever an interrupt occurs. The
 method used to avoid this will be set forth below.

 An additional fucntion that the supervisor performs
 with respect to input/output processing is the relocation of
 channel programs. Any channel program passed to the
 supervisor for execution by a (relocatable) task will

 Input/Output Processing

 Time Sharing Supervisor Programs 55

 contain relocatable addresses that must be translated into
 absoulte addresses required by the input/output hardware
 before the channel program is executed. In addition, the
 pages referenced by the channel program must be "locked"
 into main storage for the duration of the channel program so
 that the input/output equipment can refer to them.

 Since locking these pages into main storage represents
 a significant demand on a scarce resource, the supervisor
 attempts to delay doing this as long as possible and to
 release the main storage blocks as soon as possible. A
 channel program will be translated into absoulte addresses
 and its pages locked into main storage only when it is the
 next channel program to be executed on a device that is
 idle, and the pages will be unlocked as soon as the channel
 program is completed.

 Before considering the algorithms involved in
 scheduling the input/output equipment it is necessary to be
 aware of the tables maintained by the supervisor for this
 purpose. These tables fall into 4 general categories in
 UMMPS (and similar tables exist in TSS):

 1. Device oriented tables contain the status of
 each device in use by any task, including the
 input/output queue for the device. In
 addition there is an indication of which
 channels the paths to the device start from.

 2. Control unit tables (one per control attached
 to the machine) contain status of the control
 unit in addition to a list of the devices
 which are attached to the control unit.

 3. Channel tables (one per channel attached to
 the machine) contain status of the channel
 and a list of the control units which are
 attached to the channel.

 4. Interaction tables indicate which paths may
 interract with each other, i.e., which paths
 share components, so that if an interrupt
 indicates that a particular channel or
 control unit is now free, it is possible to
 determine which paths to which devices may
 now be free. Included with each such table
 is a count of the number of requests for
 input/output service that have not been
 filled yet within the group of paths
 indicated by this table. This count is
 included so that unnecessary scans of the
 input/output tables may be avoided, thus

 Input/Output Processing

 Time Sharing Supervisor Programs 56

 reducing the overhead in the supervisor.

 Note that more than one control unit table may point to a
 given device table and more than one channel table may point
 to a given control unit table.

 When an interrupt occurs in UMMPS indicating a change
 in the state of the input/output equipment, the first order
 of business is to find out which components of the
 input/output equipment are now free and update the
 appropriate tables to indicate this. Then UMMPS performs
 any functions required to notify the task of the state of
 its input/output requests. When this is completed UMMPS
 goes to a section of code which attempts to start any
 pending input/output requests which were waiting for a
 component which is now free. (This is the same section that
 is executed whenever a new request is added to a device
 queue.) The operation of this section is as follows:

 1. From the interraction tables find the list of
 all channels which could have been affected
 by this interrupt.

 2. If the count of pending requests on these
 channels is zero quit.

 3. Find the first (next) free channel in this
 list. If there is none quit.

 4. Find the first (next) free control unit
 attached to the channel under consideration.
 Go to step 3 if none exists.

 5. Scan for an idle device which has a request
 that needs to be started and which is
 attached to this control unit. This scan is
 round robin, i.e., it starts each time with
 the device after the last device considered
 the previous time this control unit was
 inspected. If no device needs service, go to
 step 4. If a multiplexor channel is being
 restarted, there will generally be a specific
 device to restart and only that device will
 need to be considered.

 6. Attempt to start the operation pending on the
 device.

 7. If the operation started then (a) if this is
 a selector channel go to step 3, or (b) if
 this is a multiplexor channel then quit if

 Input/Output Processing

 Time Sharing Supervisor Programs 57

 only one device needs to be considered (the
 usual case) or go to step 5 if the control
 unit supports multiple operations and step 4
 if it does not. The only time that it is
 necessary to start more than one operation on
 a multiplexor channel is when the channel was
 quiesced earlier for some reason (e.g., to
 allow a burst mode operation to be executed).

 8. If the device is busy in spite of what the
 tables say (unlikely) then go to step 5.

 9. If the control unit is busy then go to step
 4. This is more likely to happen because the
 control units are not very consistent about
 notifying the supervisor when they are not
 busy. Also it may be necessary to repeat
 this whole process if a control unit
 indicates that it is busy but refuses to
 present an interrupt when it is free again
 (something which is allowed).

 10. If the channel is busy (very unlikely) go to
 step 3.

 11. If nothing is busy, but some status was
 presented by one of the components involved,
 then leave this section and go process the
 status as if there had been an interrupt.

 This process is somewhat more complex than indicated to
 allow for such things as control units which are connected
 to two channels, but which will operate with only one of
 them at a time or control units which are connected to a
 multiplexor channel but require the channel to operate in
 burst mode (only one operation at a time).

 This completes the description of input/output
 processing in UMMPS. The processing in TSS is similar in
 spirit except that when restarting the input/output system
 after an interrupt, it will scan the devices which could
 have been affected by the interrupt and for each one which
 has an outstanding request, it will try to find a path on
 which to execute the request. This is slightly less
 efficient since each time a path is needed it is necessary
 to start all over again from the top, while in UMMPS the
 channel and possibly control unit may already be known.
 This multiple path mechanism does not exist in Multics or
 CP; in Multics it is not necessary because of the hardware
 of the 645 (the actual processing of input/output is quite
 different and less interrupt oriented) and in CP only one
 path to any device is used except in a few limited cases.

 Input/Output Processing

 Time Sharing Supervisor Programs 58

 It is possible to make this simplification in CP since it
 does not (currently) support multi-processor systems and the
 multiple paths are most common in that type of system.

 Input/Output Processing

 Time Sharing Supervisor Programs 59

 9. MULTI-PROCESSOR CONSIDERATIONS

 All of the systems being considered here support
 multiple processors except CP. This section will consider
 the aspects of the supervisor specifically intended to allow
 this.

 9.1 Organization of Multi-Processor Support _______________________________________

 There are at least three ways in which multi-processor
 support may be implemented: as separate systems for each
 processor, as a master-slave relationship between
 processors, or as a symmetric treatment of all processors.
 Each of these organizations has certain things to recommend
 it.

 In a separate system organization each task in the
 system is assigned to a particular processor and always runs
 on that processor. Furthermore all input/output operations
 are controlled by the processor assigned to the task making
 the request for the operation and all input/output
 interrupts are directed to the processor that initiated the
 associated input/output operation or which controls the task
 owning the input/output device. Main storage is shared
 between all of the processors and only one copy of reentrant
 programs needs to be in main storage.

 This organization is inefficient since it is possible
 for one processor to be overworked while the other ones are
 idle. This is possible since the work to be done is
 assigned in advance to a processor and can not be switched
 from one to another as the load shifts. Furthermore, since
 each processor has its own set of input/output equipment,
 there will not be a single pool of auxiliary storage
 available to all tasks in the system unless special code is
 included to allow sharing of input/output equipment among
 independent systems. Without this each user will have to
 have a processor assigned to him which will have access to
 the data sets belonging to that user. For these reasons
 none of the systems being considered use this organization.

 In the master-slave organization, one processor is
 assigned the function of controlling the system and the
 other processors simply execute tasks, i.e., the supervisor
 always runs in only one of the processors. This means that
 the supervisor need not be reentrant and need not be as
 concerned with problems of multiple processors accessing
 common tables simultaneously. It is necessary for the
 processor receiving an interrupt requesting task service
 (which will always occur in the processor executing the
 task’s program) to direct the interrupt to the processor

 Multi-Processor Support

 Time Sharing Supervisor Programs 60

 executing the supervisor. If there is any idle time in the
 control processor, it can also execute task programs then.

 This organization has the disadvantage of allocating
 only one processor to the work of the supervisor, which may
 require more than one processor to accomplish with
 reasonable response time. Normally not more than one
 processor is required in the long run for the supervisor,
 but it is possible for many interrupts to occur in a short
 time and temporarily overload one processor. Also the
 processor executing the supervisor is very important to the
 system and any failure in that processor will probably bring
 the system down. Again this organization is not used by any
 of the systems being considered.

 The symmetric processor organization treats all
 processors the same; every interrupt is handled by the
 processor on which it occurs and every processor executes
 task programs when it is not executing the supervisor. On
 the 360/67 interrupts associated with a program occur on the
 processor executing that program, while input/output
 interrupts occur on the processor that is least busy at the
 time. This automatically evens out the load on the several
 processors by assuring, for instance, that an input/output
 interrupt will be directed to the processor that is in wait
 state rather than one that is executing.

 The disadvantages of this organization are that it
 requires the supervisor to be able to execute in several
 processors simultaneously and to handle the problem of
 simultaneous access to common tables. In spite of the
 difficulties all of the three systems use this method of
 multi-processor support.

 9.2 Hardware Considerations _______________________

 Several aspects of the hardware are important to multi-
 processor support. One that has already been discussed is
 the multiple path input/output configuration of the 360/67.
 The important aspect of this for multi-processor operation
 is the fact that the input/output programming is independent
 of which processor the supervisor is executing on. This may
 seem like an obvious thing, but some current multi-processor
 systems do not have this ability.

 In order to make the supervisor reentrant it is
 convenient for each processor to have a certain amount of
 private storage which can be used to contain those things
 which are private to that processor. On the 360/67 this is
 done by assigning real page zero (i.e., the page with the ____
 real address 0 thru 4095) to a different actual storage

 Multi-Processor Support

 Time Sharing Supervisor Programs 61

 location for each processor. This assignment of page zero
 is independent of the address relocation described above and
 occurs after it is complete. Unlike that address
 relocation, it applies to input/output operations as well as
 the processors and is fixed rather than specified by tables
 in main storage.

 In order to assure that only one processor is changing
 common tables at any time, it is necessary to have some way
 in which the processors can "lock" these tables and assure
 that no other processor is accessing them. This is done by
 providing instructions that simultaneously (on one storage
 cycle) test a storage location and set it to some
 predetermined value. Since the testing and the setting is
 done on the same storage cycle, it is not possible for
 another processor to access the same storage location
 between the two operations. To use this mechanism a storage
 location is assigned to each table (or other thing) which
 must be locked at some time. When this storage location is
 zero, the table is considered to be "unlocked," and if it is
 non-zero the table is "locked." If a processor needs to
 lock the table, it will use the special instruction to test
 this storage location and "simultaneously" set it. If the
 storage location is zero, it will be set to some non-zero
 value and the processor will have locked the table, but if
 it was already non-zero, the processor will get an
 indication that the table is already locked and can then
 either loop until it can lock the table or go on to
 something else.

 In rare cases it is necessary for one processor to
 directly signal another one. For this purpose there is a
 method by which a processor can cause an interrupt on
 another one and a method by which it can start another one
 no matter what state it is in. In UMMPS the inter-processor
 interrupt is rarely used and the external start is used only
 once for each processor.

 9.3 Multi-Processor Support in UMMPS ________________________________

 UMMPS is unusual in the respect that it was originally
 written to use only one processor like CP, but was later
 changed to use up to four. (It is rumored that a similar
 change is contemplated for CP.) This section will discuss
 the changes required to do this.

 Only the supervisor portion of the system need be aware
 that there is more than one processor. This is true since
 no task will run in more than one processor at any given
 time, so that from the point of view of a task there is only
 one processor ─ the one on which it is running. In spite of

 Multi-Processor Support

 Time Sharing Supervisor Programs 62

 this, a task may switch from one processor to another very
 frequently, in fact whenever an interrupt occurs in that
 task. This independence of tasks from multi-processing made
 the conversion effort much easier since no program executed
 only by tasks needed to be changed.

 The general approach to multi-processor support in
 UMMPS was to move all temporary and private locations of the
 supervisor to the storage that is private to the processor
 and to use locks as described above to guarantee the
 integrity of any information that needed to be common to all
 processors. These locks fall into two general categories:
 those that are set for a short time and on which the
 supervisor can wait, and those which are set for a long time
 and for which a queueing mechanism must be provided. In the
 first category are all locks that refer to input/output
 devices and tables and all locks that refer to processor and
 storage scheduling tables. In the second category are those
 locks which refer to a particular task, since these locks
 are set whenever the task is executing on a processor. It
 would have been possible to reset the lock after the task is
 selected for execution on a processor, but it was decided
 that it would be easier to leave the lock set.

 A further distinction among locks is the type of
 information they refer to. Some locks refer only to an
 individual table entry (e.g., a device table entry) while
 others refer to a global quantity (e.g., all chains of
 PCB’s). The global ones must be used in such a way that
 they are set for as little time as possible to avoid
 interference between the various processors, while this is
 not quite so important with the ones referring to only one
 specific quantity. There are 16 global locks and about 200
 specific locks in UMMPS.

 9.4 Inter-Processor Interference ____________________________

 The problem of interference between processors is an
 important one and must be considered when designing a multi-
 processor system. This problem can take one of at least two
 forms. The first is the lock interference mentioned above,
 while the other is interference in the hardware, primarily
 in storage accesses. The additional processors will put a
 rather heavy load on the main storage of the system and
 unless it is specifically designed to handle this a serious
 degradation in performance can result.

 It is difficult to measure the amount of degradation
 due to interference between processors, but judging from
 measurements of overall supervisor behavior on a two
 processor 360/67, it is not a severe problem. In UMMPS

 Multi-Processor Support

 Time Sharing Supervisor Programs 63

 running on such a system the degradation is certainly less
 than a few percent and probably less than one percent.

 Studies of lock byte interference in UMMPS running on
 two processors show that it is not a significant problem.
 Although locks are set very frequently (about 5000 times a
 second in a two processor system), the time required to set
 one is very short, ranging from 4.5 micro-seconds to 21
 micro-seconds and averaging 6.3 micro-seconds for the 16
 global locks.

 Any degradation due to interference between processors
 is more than offset by the benefits resulting from multi-
 processor operation. These benefits are due to the ability
 to shift the load from one processor to another as its
 characteristics change and to share main storage and
 input/output equipment between processors. Experiments have
 shown that in many cases it is possible to run effectively
 far more than twice as many tasks one a two processor system
 than on half of it. This is particularly true of programs
 that require a large amount of main storage.

 Multi-Processor Support

 Time Sharing Supervisor Programs 64

 REFERENCES

 1. Arden, B. W., O’Brien, T. C., and Westervelt, F. H.,
 "Program and Addressing Structure in a Time-Sharing
 Environment," Journal of the ACM, 13,1 (Jan 1966), 1-16

 2. Bayels, R. U., et al, Control Program-67/Cambridge _____________________________
 Monitor System (CP-67/CMS), Program Number 360D ___
 05.2.005, Cambridge, Mass, 1968 _________

 3. Dennis, Jack B., "Segmentation and the Design of
 Multiprogrammed Computer Systems," Journal of the ACM,
 12,4 (Oct 1965), 589-602

 4. Dennis, Jack B. And Glaser, Edward L., "The Structure
 of On-Line Information Processing Systems," Proceedings ___________
 of the Second Congress on the Information Sciences, ___
 November 1964, Washington D. C., 1965, 5-14

 5. Multics System Programmer’s Manual Project MAC, 1968 __________________________________

 6. IBM System/360 Model 67 Functional Characteristics, ___
 Form A27-2719-0, IBM Corporation, New york, 1967 ________________

 7. IBM System/360 Time Sharing System Resident Supervisor ___
 Program Logic Manual, Form Y28-2012-2, New York, 1968 ______________________________________

 8. Organick, Elliot I., A Guide to Multics for Sub-System __________________________________
 Writers, Project MAC, 1969 ________

 9. Saltzer, J. H., CTSS Technical Notes, Project MAC _____________________________________
 Report MAC-TR-16, Boston, 1965 _________________

 10. Vyssotsky, V. A., Corbato, F. J., and Graham, R. M.,
 "Structure of the MULTICS Supervisor," Proceedings of ______________
 the AFIPS 1965 Fall Joint Computer Conference, Part I, ___
 Washington D. C., 1965, 203-212

 References

