THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Aeronautical and Astronautical Engineering Technical Report DOVAP DATA REDUCTION FOR IGY GRENADE AEROBEE ROCKETS SM 1.01-SM 2.10 P. A. Titus M. G. Whybra Approved by: F. L. Bartman L. M. Jones UMRI Project 2387 under contract with: DEPARTMENT OF THE ARMY PROJECT 3-17-02-001 METEOROLOGICAL BRANCH, SIGNAL CORPS PROJECT NO. 1052A CONTRACT NO. DA-36-039-SC-64659 FORT MONMOUTH, NEW JERSEY administered by: THE UNIVERSITY OF MICHIGAN RESEARCH INSTITUTE ANN ARBOR February 1959

!tunching o Aerobee SMI *.0 I 12 Aug u:;)t 1% (9i7

TABLE OF CONTENTS Page LIST OF TABLES iv LIST OF FIGURES v ABSTRACT vi THE UNIVERSITY OF MICHIGAN DATA-REDUCTION PERSONNEL vii I. INTRODUCTION 1 II. DOVAP TRACKING SYSTEM 4 III. PRELIMINARY DATA 6 IV. CYCLE COUNTING 11 V. INTERMEDIATE DATA 23 VI. CORRECTION OF PHASE ERRORS 27 VII. TRAJECTORY SOLUTIONS 67 VIII. ERRORS 73 IX. CONCLUSIONS AND RECOMMENDATIONS 76 X. ACKNOWLEDGMENTS 77 XI. REFERENCES 78 APPENDICES A Rocket Trajectories with Respect to Fort Churchill Aerobee Launcher B Rocket Positions Above the Microphone Array at the Times of Grenade Explosions C IBM 650 Trajectory Program D IBM 650 Program for Data with Respect to Microphone Array iii

LIST OF TABLES No. Page I Data For Calculating to and Initial Missile Position with Aerobee Tower as Origin 8 II Geodetic Survey Data Converted to DOVAP System Coordinates 9 III Grenade Explosion Times 15 iv

LIST OF FIGURES No. Page Frontispiece - Launching of Aerobee SM1.04, 12 August 1957. 1 Fort Churchill rocket range. 2 2 Fort Churchill Aerobee launching tower. 7 3 Flash detector recording of a grenade explosion. 12 4 DOVAP film at region of grenade burst. 14 5 DOVAP master station recording. 16 6 Digges recording. 16 7 Twin Lakes recording. 16 8 Metro recording. 16 9 Launch recording. 16 10 Film reader and associated tools. 18 11 Example of a deep null caused by a 180~ phase shift. 20 12 The effect on doppler cycles of a grenade exploded at a low altitude. 20 13 The effect on doppler cycles of a grenade exploded at higher altitudes. 20 14 Launch dipole field strength record, SM1.05. 26 15 Phase and amplitude patterns of loop antenna on Aerobee rocket. 29 16 Phase and amplitude patterns of 2-1/2 turn right-hand round helix. 31 17 Antenna coordinate system. 33 18 Phasor loci for 74-Mc helix. 36 19 Projection on the x-y plane. 40 20 Images of the vectors a'and u' in the complex plane. 42 21 Loci of the phasors AL and AR. 43 22 Diagram of the phasors AL' and AR'. 45 23 Phasor diagram for total signal voltage. 46 24 Extreme cases of phase angle versus rotation angle. 48 25 Plot of AN versus time for SM1.07. 55 26 Plot of AN versus time for SM1.05. 56 27 Plot of Z 1/2 AN' versus time for SM1.05. 58 28 Plot of Z 1/2 AN1 versus time for SM1.07. 60 29 Plot of AN versus time for SM2.06. 61 30 Plot of Z 1/2 AN' versus time for SM2.06. 62 31 Plot of AN versus time for SM1.07. 63 32 Plot of Z 1/2 AN' versus time for SM1.05. 64 33 Plot of Z 1/2 AN' versus time for SM1.07. 65 34 Portion of the DOVAP film record for Twin Lakes, SM1.07. 66 35 Trajectory solution flow diagram. Appendix C 36 Grenade position and layer program (Twin Lakes) flow diagram. Appendix D v

ABSTRACT The procedures employed to analyze the DOVAP tracking data for a series of ten grenade-Aerobee rockets fired at Fort Churchill, Canada, as part of the IGY rocket program, are described. Detailed descriptions are given of the DOVAP doppler-cycle counting method and of the procedure used to detect and eliminate false doppler cycles induced in the data by the motion of the rocket, i.e., its spin and change of orientation with respect to the ground station antenna systems. The solution of the rocket trajectory equations with the IBM 650 computer is discussed and the computer program is described. The data are presented in two appendices to the report. vi

THE UNIVERSITY OF MICHIGAN DATA-REDUCTION PERSONNEL (Both Part-Time and Full-Time) Bartman, Frederick L., M.S., Research Engineer Billmeier, William G., B.S., Assistant in Research Conboy, Thomas J., Assistant in Research Edman, Marshall W., Assistant in Research Harrison, Lillian M., Secretary Jew, Howard, M.A., Research Assistant Jones, Leslie M., B.S., Project Supervisor Kakli, G. Murtaza, B.S., Assistant in Research Kakli, M. Sulaiman, M.S., Assistant in Research Kaul, M. M., M.A., Research Assistant McKenna, Keith J., Assistant in Research Otterman, Joseph, Ph.D., Research Associate Taylor, Robert N., Assistant in Research Thayer, Carl A., Assistant in Research Titus, Paul A., B.S., Research Associate Whybra, Melvin G., M.A., Technician Wurster, John R., Assistant in Research vii

I. INTRODUCTION Ten Aerobee rockets carrying the Signal Corps-University of Michigan grenade experiment for upper-air temperature and winds were recently fired at Fort Churchill, Canada, as part of the U. S. IGY rocket program. Grenades carried aloft by each missile were ejected and exploded along the upleg portion of the rocket path. Data recovered by the DOVAP tracking system during each flight were reduced to the spatial coordinates of grenade explosions above an array of microphones on the ground and to the trajectory of the rocket with respect to the aerobee launching tower. These coordinate data, the time of each explosion and the time of arrival of the sound waves at each of the microphones, are used to calculate average temperatures and winds in the atmospheric layers defined by the grenade explosions. The DOVAP (Doppler Velocity And Position) tracking system consisted of a transmitter, four receiving stations, a rocket-borne transponder, and a master monitoring and recording station (see Fig. 1). The transmitter radiated its frequency to the transponder and to each of the four receivers. The transponder doubled the received transmitter signal and re-transmitted it to the ground stations. At the same time, the ground stations received, doubled, and heterodyned the reference transmitter frequency with the frequency received from the rocket. The two frequencies differed because the motion of the rocket induced a doppler effect on the signal received and transmitted by the rocket. This difference of doppler frequency was recorded on magnetic tape and later transcribed onto 35-mm film together with range timing signals. For a given receiving station j, each doppler cycle indicates an increase of one wavelength in the transmitter-rocket-receiver distance u; where Uj = r + rj, (I-) where r = transmitter-rocket distance, and rj = rocket-receiver j distance. Each of the four uj at a time ti define an ellipsoid of revolution having as foci the transmitter and receiver j; the intersection of three such ellipsoids defines the position of the rocket in space, and four uj permit overdetermination of the rocket position. 1

N Hudson Bay y 94010' 9 —-94~5' 940~' 93055' 930505 —CONTROLAUC 580 45' </ \ o MILESCHURCHILL,/ ~~ ^>~~~~ j^AIRFIELD I' ES tygeegend.~^~ 1 M U^^^ IETRO La /\^ ke Farnsworth fI` )~~~~~ 580 40L~ -- Farkwor th Lake 1(^TWIN LAKES 58~ 35'...j SCALE: 1: 50,000 I 2 0 I 2 3 MILES DIGGES Legend * DOVAP o TOWER Fig. 1. Fort Churchill rocket range. 2

An initial missile position was found, independently of DOVAP, at a time to. Starting at to, the doppler cycles from each receiver were hand-counted on the films and the counts were recorded for each half-second of data time and for each grenade-explosion time. The overdetermined rocket position at time ti was found by solving (see Section VII) four sets of three simultaneous equations of the form uj(ti) = r(ti) + rj(ti) = uj(ti-k) +-. ANj (I-2) where j takes the values 1,2,3,4, X = wavelength of doubled transmitter frequency, Nj = number of cycles in the time interval k, k = 0.5 second for the rocket trajectory, and k < 0.5 second for grenade explosion times ti. The average rocket position was calculated from the four position values and a least-squares solution of these data evaluated the internal consistency of the cycle counts by calculating the standard deviation of the average position. The trajectory solution was programmed for the IBM 650 digital computer and the results for each of the rockets are listed in the Appendices. The ballistic camera tracking system was also used on four flights. A comparison of ballistic camera and DOVAP grenade position data will be made and reported on separately. The definition of ANj as shown above is not complete. A spinning rocket induces false cycles into the doppler data; abnormal sections of cycles immediately followed every grenade burst; and, since each antenna of the DOVAP system had its own phase pattern, the changing orientation of the rockets with respect to the ground station antennas created anomalous sections of cycles. These as well as other sources of false cycles had to be corrected for; the methods used to eliminate them are described in Sections IV, V, and VI. The above definition of ANj should be changed to read ANj = number of corrected cycles in the time interval k. The DOVAP transmitter frequency was monitored and recorded every minute in the interval -5 to +10 minutes during each firing. The wavelength used is calculated from 2f = avg (1-3) Cavg where fav is the average of the frequencies recorded during the time for which the trajectory will be calculated, and Cav (equal to 299.748 ~ 106 meters per second) is the average of the velocity of light in a vacuum and of the velocity of light in air at mean sea level. 5

II. DOVAP TRACKING SYSTEM The Ballistic Research Laboratories (BRL) were assigned the responsibility of instrumenting and operating ballistic instrumentation at the Fort Churchill IGY rocket range. The range requirements were to instrument DOVAP, DOVAP telemetry, and ballistic cameras.2 BRL was also given the task of making a geodetic survey of the rocket range. Supporting facilities for this instrumentation, such as data-transmitting links, range timing, and frequency-monitoring equipment, were the responsibility of the White Sands Signal Corps Agency (WSSCA). The DOVAP transmitter located in the rocket preparation building, generated a continuous-wave signal approximately 38 Mc. This frequency was radiated to the rocket from a left-hand, circularly polarized helical antenna3 which insured that the receiving antenna on the rocket would receive the signal regardless of the polarizing effects due to rocket spin. The transmitter also radiated its frequency to the DOVAP receiving stations by means of a five-element, vertically polarized Yagi array which was directed at Digges, the most distant receiving station. A T-10 transponder was used on each of the grenade Aerobees. It contained a 38-Mc receiver, a frequency doubler, a 76-Mc amplifier, a power output stage, and a telemetering stage. The rocket antennas were of the balanced rectangular loop type and were located a few inches on each side of the shroud line to fin 1 and diametrically opposite; and, except for pre-IGY rocket SM 1.01, they were mounted on the rocket skin at about its center of gravity. The singlechannel FM telemeter unit was used to moniter the timer-initiated grenade ejection and firing sequence. The DOVAP equipment at each of the three outlying receiving stations-Twin Lakes, Metro, and Digges-was similar. Each station was equipped with a pair of oppositely polarized helical antennas for receiving the transponder signal, a Yagi antenna at Digges and whip antennas at Twin Lakes and Metro for receiving the transmitter reference frequency, two dual-channel receivers for heterodyning the missile signal from each helix with the doubled reference frequency, a dual-channel recorder to record the doppler frequency from the left-hand helix along with range timing, and data-transmission equipment to send the right-hand helix doppler signal to the master DOVAP station to be recorded. The fourth DOVAP receiving station, Launch, was located a few hundred feet from the rocket preparation and launching facility. This station was equipped with the normal array of DOVAP receiving equipment: a pair of oppositely polarized helical antennas, a whip antenna, and a pair of dual-channel receivers; in 4

addition, it served as the main monitor station for pre-flight checkout of DOVAP instrumentation in the rocket. A dipole antenna and a strip-chart recorder were used to furnish rocket spin-rate data as soon as the flight was over. And the dipole-whip antenna combination plus a third dual-channel receiver yielded a third set of Launch doppler data. A seven-channel tape recorder was used to record the doppler data from the left- and right-hand helices and the dipole, range-timing, and the telemetering signal. The doppler data from the two helices were also transmitted over the data-transmission link for recording at the master DOVAP station. The master DOVAP station was located in the Defence Research Northern Laboratory (DRNL) building at Fort Churchill. It was the central monitoring, recording, and telemetering station for the DOVAP system. 5

III. PRELIMINARY DATA The first step in the data-reduction process was to find, independently of DOVAP, an initial missile position at a time to to be used as a starting point for the DOVAP solution. The initial missile position was taken to be the position of the centerline of the rocket antennas with respect to a righthand cartesian system tangent to the Clarke Ellipsoid at the DOVAP transmitter at the time to, at which an emergence detector switch near the top of the launching tower was activated. Figure 2 and Tables I and II summarize the data used to calculate to and the initial missile position. Range-timing signals consisted of both 100-pps (pulses per second) and 2-pps pulses. The first 2-pps pulse following missile lift-off was blanked out and was taken as range zero time by all participating agencies. Missile lift-off to range zero time was called missile lift-off time, and missile liftoff to emergence switch activation time became tower-transit time. Therefore, to was the difference between tower-transit and missile lift-off times. Three types of emergence switches were used. The leading edge of a fin on SM 1.01 broke a wire near the top of the tower. A lug on the booster actuated a microswitch for the next five rockets and energized a magnetic pickup device for the last four missiles. The tower locations of these emergence detectors are shown on Fig. 2. Referring to Table I, the distance from the emergence switch activator on a rocket to its antenna centerline was added to the distance from the tower gimbal to the corresponding emergence switch location to yield the slant range from gimbal to antenna centerline. The tower-tilt data were used to convert the slant range to cartesian coordinates, and the distance from gimbal to the pit floor at the base of the tower was added to the coordinates to give the initial missile position with respect to the Aerobee launcher. The geodetic survey report submitted by BRL listed the cartesian spatial coordinates of the rocket-range facilities with various origins. For each of the systems the X-Y plane was tangent to the reference ellipsoid (Clarke 1866 at mean sea level 0.0) at the point of origin; each coordinate was given in meters to ten significant figures. With these data, the DOVAP system coordinates relative to the Aerobee launcher as origin were transformed into a coordinate system with the DOVAP transmitter as origin and having X positive north, Y positive west, and Z positive vertically upward from mean sea level. The converted DOVAP system coordinates, listed in Table II, were used to translate the initial missile position with Aerobee launcher as origin (Table I) 6

-TOP OF TOWER ~ /__ — WIRE FOR WIRE BREAK -TOP OF RAILS MAGNETIC PICKUP MICROSWITCH -__ 100 TILT, ANY AZIMUTH' I \I I \ / \::; \ /'I GIMBAL- - oI Tc; /\ l I / I l I, I ~ o CONCRETEWIRE BREAK POINT-0" AEROBFT. CHURCHILL AEROBEE LAUNCHING TOWERBASE = 0 BOOSTER B3ASE- w x~ cc CONCRETE PAD - 35 00" AEROBEE B ASE —U TOWE Fig. 2. Fort Churchill Aerobee launching tower. 7

TABLE I DATA FOP CALCULATING to AND INITIAL MISSILE POSITION WITH AEROBEE TOWER AS ORIGIN Pockets SM SM SM SM SM SM SM SM SM SM 1.01 1.02 1.05 1.4 1..05 2.06 1.07 1.08 1.09 2.10 Tower transit time 0.7794 0.7814 0.8100 0.8006 0.7700 0.8158 0.8110 0.8457 0.6864 0.8722 Missile lift-off time 0.1258 0.1898 0.1595 0.1951 0.4425 0.2015 0.2455 0.4187 0.2966 0.5555 to (sec) 0.6556 0.5916 0.6505 0.6055 0.5275 0.615 0.5657 0.4250 0.5898 0.5587 Antenna centerline 9 1^ Antenn centern65.25" 140.0 10. 5 14o.0O" 14o.0O" 155." 4o.O" 140 5" 140.875O 148.0" to actjv:tor co Emergence switch to p-cimbal 765.2' 647.1 647.1" 647.1 6467.1' 6..i " 658.1" 658.1" 658.1" Antenna centerline Antenn centerlie 6568. 87' 65.59' 65.65' 65. 59 6.9' 66.72' 66.51' 66.55' 66.58' 67.18' to gimbal Tower tilt 62 mils E 54 mils 89 mils 180 mils 104 mils 175 mils 110 mils 105 mils 65 mils 56 ails 6400 mils= 5600 6o o w(sP 6 157 mils s 149~ 90~ 155~ 165~ 172o l47~ 120~ 162~ 147~ Antenna centerline x(+N) - 9.22' - 2.98' 0.0 - 8.1' - 6.46' - 11.29' 6.01' - 5.56' 5.91' - 1.9' w.ith imbal y(+W) - 4.15' - 1.79 5.75' - 8.1' - 1 1.7' 0' -.2' 1.27' - 1.29' as or.n z 60.17' 60.85' 60.67' 59. 0' 60.:8' 89.' 0.' 5' 0 60. 1' 60.87' Antenna centerline x(+N) - 0_0' - 2.98' 0.0 -6.' 1 4' 1 - 1' 01' - 55 1' - 1.99' W'Ltl; p'It floor, y (+W} - 4.5 - 1.79' 8 wisth pit floor (+W) - 4.10' - 1.79' -.75' - 8.1' - 1 0' 1.' - 1.29' as oriJi z 129.0)4' 126.42' 126. 06' 152 1.''9 16.l7' i6n6.6)' 167.04' 127.11' 127.- 5' 128.00'

TABLE II GEODETIC SURVEY DATA CONVERTED TO DOVAP SYSTEM COORDINATES Digges Metro Twin Lakes Launch Aerobee LH RH LH RH LIRH LH ERH Tower _ x(+N) -70956.04' -70964.04' 1550.01' 1577.26' -42492.29' -42469.59' -144.03' -162.45' 294.77' 0.0 y(+W) 58840.70' 58840.70' 47945.24' 47941.65' - 1967.02' - 1965.59' 549.81' 576.20' -145.41' 0.0 z up - 221.25' - 221.25' - 54.99' - 54.99' 11.02' 11.02' - 6.29' - 6.57' 0.71' 69.50' MSL Initial Missile Position with Transmitter as Origin, u, SM SM SM SM SM SM SM SM SM SM 1.01 1.02 1.05 1.04 1.054 2.06 1.07 1.08 1.09 2.10 x 285.55' 291.79' 294.77' 286.62' 288.31' 285.48' 288.76' 291.41' 290.86' 292.78' y - 149.56' - 147.20' - 151.14' - lo.,6' - 147.14' - 147.00' - 149.51' - 1 1.25' - 146.68' - 146.70' 129.75' 17.' 127.01' 12.20' 1 2.0' 6.88' 127. 56' 127.75' 17.82' 128.08' 128.76' ur 9'92648. 71' 9280'0,.19' 92864.10'?2855. 59' 92849.47' 92841.79' 92852.82' 92859.12' 92853.51 92856.85' uM 4456. 52' 48456.97' 48464.95' 48461. 9' 4844.00' 84511 4840. 4457.77' 48462.66' 48455.84' 48457.66' uTL 4 5141.0' 4 5 1. 0. 7' 45157.48' 45145.26' 4 314. 09' 43513. 59 45146.06' 45151.67' 45149.02' 45152.79' u 1051. *5' lO 6.46' 1064.58' 10 55.80.' 10()1.l,' 1044.16' 10054.81' 1060.99' 10560. 02' 1058.25' f 5'.9587's;o 58.0 087 5 8. 050795 58. 05091 53. 505108 7. 050957 58. 050785 58.050608 58.050550 58. 050594 \* 15. 5129'."'..'77' 12.9209101' 12.929261'.';'409202' 12.9 9255' 12.924505' 12.92956'' 12.2.9592' 12.929570' *\ - z o').^,05 "./'- whe'e C ='0':'+ hx: oer seondr f': +: nsr,; ~":+': fS'r-,nc i n r,!, M- pr; second.

to a position with transmitter as origin; then the slant range ro from transmitter to initial missile position was calculated, and the slant ranges r. from initial missile position to each of the four receiving stations were computed. Thus a set of uj(to) = r(to) + rj(to) were found for each rocket: a set of four ellipsoids of revolution whose intersection was the initial missile position at time to and which provided the starting point for the corresponding trajectory solution uj(ti) = uj(ti-k) + X * ANj (I-2) where, in this case, (ti-k) = to, and k < 0.5 second. The remainder of the data required for the calculations consists of the wavelength X and the cycle-count data ANj. The wavelength for each flight was obtained from Eq. (I-3); values of average frequency and wavelength for each firing are shown in Table II. The ANj data are the subject of discussion of the next three sections of this report. 10

IV. CYCLE COUNTING Previous experience in the reduction of DOVAP data to a rocket trajectory had shown that counting doppler cycles by hand was the most tedious and time-consuming part of the process. Faced with the prospect of having to count millions of cycles from the proposed series of ten IGY grenade Aerobee rockets, we began an investigation of existing cycle-counting machines to determine which of the two counting methods would be the optimum one. Both existing cycle-counting machines were in use at BRL. The Stroboscopic Film Reader5 demonstrated that it could count cycles in the frequency range of 50-1000 cycles per second and to ~ 0.1 cycle for any time interval. Film was passed through the Reader at a constant speed; a series of evenly spaced vertical lines was projected on the film by a variable-velocity slotted-wheel optical device. An operator varied the spacing between the lines in synchronism with the varying spacing between cycles. A counter attached to the wheel shaft recorded cycles as a function of shaft position with respect to range-timing signals associated with the channel being counted. It was estimated that a set of film from a grenade Aerobee firing could be counted with the Reader in two days. The cost of the Reader was about $43,000 without a digitizer and printout device. The Putnam Cycle Counter, which at that time had only recently been developed, promised to permit faster counting of cycles with the same + 0.1 cycle accuracy. Film was passed through the Counter at a rate which depended on the number of cycles per unit time, and the position of the motor shaft was used as a measure of the cycle count. The estimated cost of the Putnam machine was $37,500, including the film transport mechanism. While the investigation of the two machines was going on, a re-evaluation of the hand-counting method was made. A set of doppler film which had previously been counted was re-counted with special attention given to technique and elapsed time. It was concluded that with this method about three weeks would be required to count one set (eight channels) of film and that the cost to count data from the ten firings would be less than $20,000.7 Further, except for anomalous sections of cycles which needed special interpretation in both methods, no systematic error would be introduced using the tested hand-counting technique. The decision was made to count the doppler cycles by hand. For the purposes of the grenade experiment, grenade explosion times were needed in addition to time to. A pair of flash detectors on the ground scanned adjacent areas above the rocket range and recorded the grenade bursts as shown in Fig. 3. When signals from both detectors existed for any explosion, the 11

Fstlhrilil abli imii Ibm iIImI im.. mu rn**. ill Fig. 3. Flash detector recording of a grenade explosion.

times to both were noted, the earlier time was read to four decimal places by at least four people, and the average value of the readings was taken to be the explosion time for that grenade. Four decimal places were necessary since grenades exploded in regions of the greatest cycle density-about six cycles per hundredth second-meant that, to satisfy the established + 0.1 cycle accuracy requirement, the times would have to be read to better than ~ 0.0002 second. To insure that the flashes from the explosions would be detected whenever a rocket had to be fired through heavy cloud cover, three infrared-sensitive devices were located symmetrically about the circumference of rocket SM 1.01 to detect the flashes and to telemeter the information to the ground. However, when the DOVAP films for SM 1.01 were examined, it was found that the expanding products of the explosions had interfered with the electromagnetic radiation of the transponder in such a way (Fig. 4) that the flash times could be read to better than ~ 0.001 second. The infrared devices were not flown on the remaining nine rockets; DOVAP served as a backup for the ground flash detectors. Table III shows the number of grenades carried by each rocket and lists the explosion times. A set of five rolls of film of DOVAP data was received for each firing. Two rolls were copies of the DOVAP data recorded at DOVAP master station while the other three rolls were the doppler cycles from the left-hand helix plus range-timing signals recorded at each of the outlying receiving stations. In addition, a copy of the doppler cycles received at the Launch station dipole was attached to one of the two rolls of central station film (composite film). Only two rolls of film (composite) were received for SM 1.01 because no lefthand helices had been installed when this rocket was flown. Figures 5-9 show representative portions of each of the films. The composite film (Fig. 5) shows doppler cycle channels for Launch station left- and right-hand helices (Llh, Lrh), and Digges, Twin Lakes, and Metro righthand helices (Drh, TLrh, Mrh). The dot-dash trace below Lrh was included to show at a glance the approximate phase relationship between the two Launch channels. The phase relation at any point was indicated by the ratio of dot (or dash) duration to that of the intervening dot (or dash) space and the interval of a transition from a continuous dash (360~) to a blank trace (0~) represented a difference of one cycle between the total number of cycles in the Launch channels in the interval. The phase data served as a check on the method (Section V) used to determine the number of false cycles introduced into the Launch doppler data by the spinning rocket. Three range-timing channels are shown on the composite film. Each doppler channel evaluated in terms of the timing track had to be adjacent to it. This was made necessary by the method in which the doppler data and time signals were recorded on the magnetic tape and by the fact that the propagation time error between a DOVAP station and range timing was not the same for all stations. Consequently each doppler data track was shifted on the film with respect to range time to compensate for the propagation delays. 13

AL, ~ /L. /" /............. /,z f /~....:'z:............ ~~ ~ ~....... i~"' /~! ~ /~ /' /t /] iiz " /~ /~ ~ ~:~ ~.....~ Q /~~~~~~~~~~~~~~~~~~~~~~~Ak. a ^,R, ---- - -- -- ---------—!...................:::....................... ~....... Fiulian ig. 4 OA i l ~~~~~~~~~~~~:::: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......:I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.... Fig. 4.DOVAP film at region of grenade burst.

TABLE III GRENADE EXPLOSION TIMES Grenade SM SM SM SM SM SM SM SM SM SM No. 1.01 1.02 1.03 1.04 1.05 2.06* 1.07 1.08 1.09 2.10 1 41.744 39.0358 38.3680 -- 38.7668 41.9503 -- 39.2831 38.6854 43.9582 2 45.204 42.0298 41.3773 41.6866 41.7730 45.7343 42.3572 42.3894 41.7814 46.3774 3 48.663 45.1531 44.4335 44.7869 44.8858 49.4440 45.5914 45.6181 44.9717 48.9072 4 52.188 48.4166 47.7373 48.0243 48.2113 53.2560 48.8208 48.9577 48.1783 5 55.650 51.7342 51.0017 51.53701 51.4937 57.1890 52.2612 52.2888 51.6035 54.0599 6 59.080 55.2460 54.4666 54.8197* 55.0334 61.2331 55.6803 55.7891 -- 56.7322 7 62.560 58.8352 58.0455 -- 58.6500 65.4614 59.53003 59.53840 58.6608 59.4905 8 -- 62.4407 61.6446 62. 03582* 62. 3000 69.8003 71.0338 62.9762 62.2264 62. 3377 9 69.527 66.2662 -- 65.8629* 66.1715 74.53166 79.9684 66.7758 66.2478 65.2878 10 72.945 70.2945 69.4405 69.8587* 70.1842 79.0945 84.5194 70.8234 70.2326 68.2419 11 76.462 74.5227 73. 7207 74.0596* 74.4957 84.0663 89.7604 75. 0477 74.5319 71.2078 12 79.955 79.0256 78.1320 78.5164 78.9640 89.1821 95.3477 79.5152 79.1307 74.2415 13 83.371 83.7303 82.7256 83.1269 83.7406 94.6859 101.4408 84.1491 83.7179 77.5793 14 86.873 -- 87.8266 88.2319 -- 100.5521 108.1455 89.2134 88.8781 80.6485 15 90.373 94.3385 93.3013 93.8814 94.5359 106.7755 116.1500 94.7854 94.4032 84.0572 16 93.837 100.3767 99.3007 99.9588 100.4845 -- 121.0941 100.7771 100.4068 17 97.5350 107.2573 105.9615 106.8451 107.2339 121.1494 125.7996 107.4805 107.0338 91.1299 18 -- 115.0386 113.7832 114.8679 115.1867 129.5989 132.7526 115.3818 115.0032 94.7446 19 ** 124.6256 123.2545 124.8824* 124.8305 139.5436 185.8856 124.9132 124.5022 ** *Times taken from DOVAP film. **No grenade in rocket. — No explosion detected.

i^J^UJAAJL^AJJLLLAAAJ~j~A A A A A A A A AA AA A A A A JA AA Al JA A AAAJ Ak-At44A&&L&&, AAAA&AA AJ| I~~jjIL ^.i iumi <L A^~^.fa^^ ^^ A A A A LA AL AL A, AiAAJ. Fig. 5. DOVAP master station recording. F-4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -A Fig. 6. Digges recording. Fig. 7. Twin Lakes recording. Fig. 8. Metro recording. Fig. 9. Launch recording.

Every range-timing channel consisted of (1) a series of 100-pps marker pulses, (2) a marker pulse immediately followed by a few closely spaced dots (a 2-pps pulse), and (3) a 9-digit binary code, each digit of which was either a 2-pps pulse or just a marker pulse. The 2-pps pulses were to have been blanked out every ten seconds starting with the first missing 2-pps pulse (range zero time) after missile lift-off, and the binary codes should have occurred every five seconds after range zero time. However, on all films the first binary code occurred at 4.5 seconds and every five seconds thereafter, and the first 2-pps pulse blanked out after range zero time occurred at 9.5 seconds and every ten seconds thereafter. The devices used to count doppler cycles are shown in Fig. 10. The film Reader consisted of a rectangular wooden box about 40 x 4 x 4 in. mounted on a wooden platform. An open slot ran lengthwise along the top of the box and was covered with a frosted glass plate which was slightly wider than 55-mm film. An idler was mounted at each end of the box and a film rewind mechanism was fastened to each end of the platform in line with the idlers and the glass plate. A fluorescent lamp was mounted inside the box and served to illuminate the film for easier reading. The dividers were set to step over (count) the doppler cycles in lots of 5, 10, or 20 provided the divider points were spaced from one to two inches apart. It was found that if a wider spacing was used, the probability for error when counting cycles was appreciably increased, particularly prior to rocket burnout when the density of cycles and the rate of increase of cycles per unit time was the greatest. The optical comparator with its built-in scales was used to measure the fraction of a cycle which spanned a half-second marker. And the scale (millimeter) and slide rule were used whenever it was necessary to interpolate an abnormal set of cycles which spanned a half-second marker. As soon as a set of films was received, a two-man team put the reels on Readers and checked range-timing channels for uniformity of 100-pps marker pulse spacing. Whenever a nonuniform section was found, the corresponding cycles in the doppler channel associated with this timing channel were also irregularly spaced so that the cycles had to be individually counted. And if a large part of a timing channel was nonuniform, a corrected copy of that film was requested. Of all the rolls of film received, only two timing channels had regions of uneven spacing, and of these only one, SM 2.06 TLlh, needed to be replaced. The next step prior to counting cycles was to locate and mark to time on each timing channel on the set of DOVAP films for that rocket firing. Since all times were given with respect to range zero time, time to was measured from the first missing 2-pps pulse. Grenade explosion times were also located and marked on each timing channel. And as a convenience when counting the cycles, the time at each second was written on each film with a grease pencil. The method of counting doppler cycles as described in Ref. 7 and used to count SM 1.01 was to count individual cycles from to to a time at which divid17

~z<::.i.............. coo Fig. 10. Film reader and associated tools.

ers could be used. For the purpose of illustration, let this number of cycles be k. Then the rest of the cycles on the channel was divider-counted and the accumulated total count was written on the film at convenient points in multiples of 20, 50, 100, 200, or 500 cycles. Each operator then counted and recorded the number of cycles in each half-second interval by recording the total count nearest the half-second marker, and then counting the cycles from the total count mark to the half-second marker. The sum of the two counts plus k became the number of cycles from to to the time being considered. As soon as both operators had finished counting a channel, they compared their results point by point, resolved differences, recorded the corrected counts, and differenced successive pairs of counts to find the number of cycles in each half-seond interval. The method of counting doppler cycles used for the remaining nine sets of data was comparatively simple and straightforward. Starting at 1.0 second, the fraction of the cycle which spanned the 1.0-second marker and lay in the 1.01.5-second interval was measured and recorded. Then the number of complete cycles in the interval was counted and recorded. Finally, the fraction of the cycle which spanned the 1.5-second marker and lay in the 1.0-1.5-second interval was measured and recorded. The sum of the two fractions and the number of whole cycles was recorded as the cycle count for that time interval. For any other interval, the number of complete cycles and the trailing fraction were counted in the same way; the leading fraction for this interval was the complement of the trailing fraction of the previous interval. This last statement represents the most significant difference in the two cycle-counting methods: there was no possibility of introducing systematic errors into the counts when fractions of cycles were measured by the second method. It took three days to count a channel of doppler cycles when either technique was used. When both operators had finished counting a channel, they compared their results point by point. If their counts at any point differed by more than 0.1 cycle, the error could usually be traced to one of the following causes. In a region of well-formed and apparently evenly spaced ("countable") cycles, the trailing fraction could have been measured improperly, or the trailing fraction and its complement transposed, or the leading fraction improperly calculated. Whenever a 180~ phase shift entered the doppler cycles smoothly over a small portion of the interval, a 1.0-cycle difference in the counts was caused by one of the operators using too wide a divider spacing to count the interval. In any case, the interval had to be re-counted to find the error and correct for it. A sudden, deep 180~ phase shift (Fig. 11) which appeared as a very noisy section in which from two to five countable cycles would normally be found occasionally caused a difference of 1.0 cycle. Every reasonable effort was made to count these few noisy cycles and, whether agreement on the count for this section was reached or not, the fact of the existence of the l80~ phase shift was noted on the data sheet and the comparison of counts was continued. The reasons for leaving such a disturbed region before a correct count was obtained were that, even though both operators might get the same count, this did not 19

&AhkAAA4A#4A444A44A44$4A~~~~~k44A4AA4444#AA4AAA A'AAA4AAAa AAAAAAAAAAA~tAI AAA AAAAA A AAAA, ^ttim AAAAiAAiAA A AAAAAAA AA A,,&AA. AL Aiijf A A.. t i II& II& AL,&t Aiii.-i f i ^1 iti A lA'AA~AJ^uL~cA Fig. 11. Example of a deep null caused by a 1800 phase shift. Fig. 12. The effect on doppler cycles of a grenade exploded at a low altitude. Fig. 15. The effect on doppler cycles of a grenade exploded at higher altitudes.

insure that the count was correct, and that when the cycle count data were plotted later in the data-reduction process, an error in one or both counts would show up as a sharp increase (or decrease) in the normally smooth curve presented by these data. The expanding products-of a grenade explosion which interfered with the signal transmitted from the rocket antennas appeared on the films as shown in Figs. 12 and 13. The first phase of the disturbance began less than 1 millisecond after th-.e explosion time and consisted of secondary doppler cycles superimposed on the regular cycles, an effect very probably caused by multiple paths of transponder signal propagation. The second phase began less than 5 milliseconds after the grenade burst. It consisted of a region (5 milliseconds long for low-altitude bursts to about 50 milliseconds for the last upleg grenade explosion) of uncountable and noisy cycles produced when the rocket antennas were enveloped by the shock wave of the explosion. The third phase was an extended region of secondary doppler cycles superimposed on regular cycles which was due to the multiple propagation effects that occurred after the shocks wave had passed by the antennas. The duration of this disturbance was about 10 milliseconds for the lowest altitude burst to more than half a second for the highest altitude explosions. Two cycle counts were read and recorded for each grenade explosion. The first was taken in the regular way: the complement of the trailing fraction of the previous half-second interval was recorded as the leading fraction for the half-second interval in which the explosion time was marked, and tnis fraction was added to the number of integral cycles and the trailing fraction to trie grenade-explosion time mark. The second cycle count, for the case of a disturbed region contained within a half-second interval and one that could be interpolated with a few divider steps, was taken as the difference between the count for the half-second interval and the first count. Whenever the disturbed section for this case extended into the next time interval, the whole time interval was stepped over until the divider spanned the next half-second marker. The ratio of the divider-to-marker distance to the length of the divider span times the number of cycles for which the divider was set was taken as the trailing fraction for the interval. Again, the second cycle count was recorded as the difference of the full half-second count and the grenade count. And the complement of this trailing fraction was recorded as the leading fraction for the next interval. The divider interpolation method described thus far assumes that the divider would fall on the natural dividing line between cycles in the countable region which followed the disturbed section. Whenever the uncountable region of doppler cycles which followed a grenade explosion extended over the greater part of a half-second interval, the divider interpolation method was complicated by the fact that slight adjustments had to be made in the divider spacing while stepping over the disturbed region because of the deceleration of the rocket. The countable cycles which immediately 21

followed the disturbed region were located and a representative divider spacing was established and carefully measured. Then a divider setting for the same number of cycles was made in the region just ahead of the explosion mark. The dividers were set to the average spacing of the two readings and the disturbed region was counted. These regions usually had to be counted several times before the counts of the operators would agree. After the comparison of the counts for the channel had been completed, the region from 1.0 second to to remained to be counted and involved an extrapolation. The emergence switches were located at a distance from the top of the tower such that the rocket antennas were within the tower at time to and so were partially shielded. Therefore cycles did not become countable until a small fraction of a second after to. Starting at a point some 10 to 15 cycles beyond to and working toward to, the length of each successive cycle was measured and plotted against a uniform horizontal scale. When the length of the last full cycle ahead of to had been plotted, a curve which best fit the data was drawn and extended one full horizontal division beyond the last recorded point. The length of the extrapolated full cycle was read off the graph and the zero of the scale was set at the last full cycle (at ti, say) ahead of to. The fraction of the cycle from t1 to to was taken as the ratio of the distance to to to the length of the extrapolated full cycle, and the sum of this fraction, the number of whole cycles, and the complement of the previously measured leading fraction at 1.0 second, was recorded as the cycle count from to to 1.0 second. When the operators had compared their count for this interval, the cycle-counting procedures were repeated for the remaining seven channels of doppler data. 22

V. INTERMEDIATE DATA A set of data sheets was prepared for each receiving station with columns headed Time, ANlh, Geometry Correction, Corrected ANlh, Anomalous Correction, ANrh, AN', 1/2 AN', AN, and A2N. Times were listed for every half-second from range zero time starting at the first recorded data point (usually 1.0 second). Grenade burst times were inserted in the proper half-second interval. For each receiving station, the two counts of left-hand doppler cycles were averaged for each data point and the average values listed in ink in the ANlh column and opposite the corresponding time. Then the pairs of right-hand counts were averaged and listed in the ANrh column. Whenever there had been disagreement in the two counts at a data point, no number was recorded and the space on the data sheet was marked with brackets. Occasionally agreement on the cycle count was reached but the operators felt it was incorrect. In this case, the average count was recorded in pencil and the number bracketed. Before going further, the two columns of averaged cycle counts were checked. The next operation was to spin-correct the data in the following way: ANlh - ANrh = AN', ANrh - 1/2 AN' = AN, where 1/2 AN' is the amount of spin correction necessary. Justification for this method is found in the following analysis. Let F be the transmitter frequency radiated by the left-hand helix, let fd be the induced doppler frequency, and let fs be the frequency induced by the spinning rocket. Then: frequency received by the transponder = F - fd ~ fs, and frequency transmitted by the transponder = 2 (F - fd ~ fs). The frequency received by the helices on the ground is left-hand helix (LH) = 2 (F - fd ~ fs) + fs, and right-hand helix (RH) = 2 (F - fd + fs) + fs. The heterodyned frequencies which correspond to the two possible directions of rocket spin are LH: Fd + 3fs, where Fd is the net doppler frequency, RH: Fd + fs. and LH: Fd - 3fs, RH: Fd - fs. 23

Therefore, for the first case, Fd + 3fs - (Fd+fs) = 2fs, Fd + f - fs = Fd (V-1) and for the second case, Fd - fs - (Fd-fs) = - 2f Fd - fs - (-fs) = Fd. (V-2) The procedure of spin-correction was to calculate the difference ANlh - ANrh = AN' for all data points and record the results. Taking half of each even-number AN' presented no problem; however, normal rounding of odd-number differences could have introduced a systematic error of more than a cycle into the spin-corrected cycle counts. Consequently successive pairs of oddnumber AN' values were handled in the following way: ANi + AN 2 = 2 (1/2 ANi + 1/2 AN'). (V-3) When all the data points had been spin-corrected, the calculations were checked. All the steps above were repeated for the other three receiving stations. False cycles were introduced into the doppler data by the motion of the rocket relative to the geometry of the helices at each receiving station. That is, the difference between the vectors from the helices to the rocket could change at a high enough rate to create an accumulation of several cycles of error in the doppler data from one of the two helices at each receiver. Since the right-hand helix had been chosen to represent its receiving station in all calculations, the doppler cycles from the left-hand helix were corrected for these false cycles in the following way. A trajectory was run off on the IBM 650 computer using the spin-corrected data up to 40 seconds. Although these data were imperfect, it was felt that a reasonably good trajectory would be obtained for determining the geometry corrections; it was also felt that most of the error due to the geometry of the pair of helices would be generated in the first 40 seconds of flight. Let (r) = position vector of rocket with respect to tower, (ri) = vector from left-hand helix to rocket, and (r2) = vector from right-hand helix to rocket. Then, starting at to, the total number of false cycles due to the geometry of the helices with respect to the rocket trajectory at any point was (r2)/\ - (rl)/k, and the number of cycles per unit time used for correcting the left-hand cycle counts was simply the difference between successive pairs of the last calculated values. The differenced values with the proper sign were recorded in the Geometry Correction column on the data sheet, the left-hand averaged cycle count was corrected, spin-corrections were recalculated, and the spin-corrected, geom24

etry-corrected doppler cycle counts were entered in the AN column. The data for the other receivers were corrected in the same way. The AN data were plotted on graph paper large enough to be sensitive to four-digit numbers and to permit plotting an appreciable number of points before it became necessary to stagger the curves. The vertical scale was shifted vertically when necessary to separate the curves for easier viewing; the time base remained fixed for the four sets of cycle counts. When the corrected doppler cycle counts had been plotted for each of the four receiving stations, the data sheets, the original cycle counting sheets, and the films were re-examined at the times at which discontinuities appeared on the graph. Every effort was made to resolve the points for which no averaged cycle counts had been listed, the doubtful counts which had been penciled in on the data sheets, and the discontinuities on the graph. In any case, cycle counts were listed for every point on every set of doppler data sheets even if, as a last resort, they had to be selected from the graph. Finally, the times at which nulls were detected by Launch dipole (Fig. 14) were read from the field-strength record and plotted together with the Z 1/2 AN' data for each receiving station. All the films, the cycle-counting sheets, the doppler data sheets, and the two graphs, were then turned over to an editing group whose efforts were directed to the interpretation of anomalies in the doppler cycles due to the changing orientation of the rockets with respect to the DOVAP ground stations,and to a general refinement of the data. 25

L ~ ~ ~ ~ ~ ti i t I I ------ I I I t I t I I Itrt 1 LI I- - I i i 1. f l ir 4 +i I Ilt w! t T: It I f ------- M i~~~!itt: i t fll... t~~~~~~rTTT —,- H 1 A ill'fll t I i, r t I r r I,I rf i t,~~~~~~~~~~~~~I KI x It~-t it rt ~~~~~~~~~~~~~~~~~~I I I' i; I f A' t i I' r IFg. 1. Lanch dpolefiel strngth ecor., S1.05

VI. CORRECTION OF PHASE ERRORS The process of correcting phase errors involves an examination of the tabulated cycle-count data, the corresponding AN and AN' plots, the film record, and other available data or information, to discover whether any phase changes are present in the DOVAP signal in addition to the doppler phase change due to the motion of the missile in its trajectory. Since we are interested only in the doppler phase change, the cycle counts must be corrected to eliminate errors arising from these other phase changes. Virtually every change of phase observed on the films can be accounted for by one of the following causes: A. Changes in missile antenna orientation with respect to ground array. 1. Missile spin with circular to linear antenna polarization. 2. Departures of transmitting and receiving helices from circularity. 3. Variation of phase with altitude angle along the lobe of the helices. B. Grenade fireball. 1. Reflections. 2. Missile antenna detuning with ionization. C. Voltage breakdown on missile antenna.3 The largest systematic phase changes encountered were due to changes in antenna orientation, particularly the usual missile spin shift. Large phase shifts were also associated with the grenade bursts. The most serious of these last a considerable fraction of a second after the burst occurs. Such phase shifts could be due to antenna detuning caused by ionization in the fireball. Evidence for this,where DOVAP telemetry records are available, are sudden changes in antenna back power which occur at the same time as the grenade bursts. The phase changes at the grenade bursts are usually corrected during the cycle counting by stepping through the affected section with dividers. This amounts to an interpolation of the cycle count at the half-second interval where the phase change occurs. Spurious phase shifts attributable to rf voltage breakdown on the missile antennas3 were corrected in the same manner as those from grenade bursts. The presence of such phase shifts is evidenced by short, noisy sections on the record, 27

occurring at the same time on all channels, and, in addition, the waveform of the doppler cycle is usually distorted and irregular in such sections. Early in some of the DOVAP records, there are intervals where the algebraic sign of the difference in the cycle count of left and right receiving helices at a down-range station differs from that for Launch. Since the sign of this difference, AN', is determined by the sense of missile rotation, this discrepancy is, at first sight, a little surprising. It might be suggested that, since the missile is launched at a slight angle with the vertical, some of the down-range stations will actually be looking at the uppermost hemisphere of the phase pattern of the missile transmitting antenna. Then, the AN' of these stations will necessarily be of opposite sign to that of Launch for a short period of time. However, for most of the cases where this reversal of sign occurs, the geometry of the situation makes such an explanation unacceptable. We will show later that the measured characteristics of the helical antennas at low-elevation angles account for this sign reversal. Since changes in antenna position and orientation give rise to the largest class of phase shifts (including the doppler shift itself), we will confine our attention to these phase shifts in the following discussion. The DOVAP tracking system can be described simply as a system wherein the doppler phase modulation of a c.w. carrier is used to determine missile position. A 37-Mc (nominally) reference signal is radiated from a ground transmitter to the missile where it is doubled and re-transmitted to four ground receivers. We will refer to these two radiation paths as the 37-Mc and 74-Mc paths, respectively. At Churchill,3 the transmitting and receiving antennas are axial or beam mode helices. The transmitting antenna is a 1-3/4-turn helix with left-hand circular polarization. (Right-hand polarization means that the rotation of the electric vector is related to the direction of propagation in the same way as the rotation of a right-handed screw is related to its motion. Similarly, left-hand polarization has the same relationship to a left handed screw.) Each receiving station has a pair of 2-1/2-turn helices of opposite polarization. The field intensity or sensitivity pattern of both the transmitting and receiving helices is characterized by essentially a single lobe with a vertical maximun. The 37-Mc receiving antenna and the 74-Mc transmitting antenna on the missile are both small rectangular loops, or "magnetic dipoles." The field intensity and phase patterns of such a loop are very similar to that of a short dipole oriented normal to the plane of the loop. The sensitivity pattern of such a loop can be represented as a cosine law. Both patterns have been measured on scaled antenna models by Stanford Research Institute (S.R.I.)8 and are reproduced in Fig. 15. Similar measurements have been made for the 74-Mc helix by S.R.I.9 and are reproduced in Fig. 16 for both vertical polarization (in the plane of incidence 28

1.0 -0.8 ~0.6 i0.4 0.2 FULL SCALE FREQUENCY IS 74 Mc " —— = 0 AXIS OF SHIELDED ROTATION 244" SPLIT LOOPS OiT N s244 RADIUS =5 in. 122 MISSILE ROTATED WITH AXIS IN PLANE OF ROTATION; LOOP PERPENDICULAR TO PLANE OF ROTATION 200 1i80- / 160H /,,,140 f 120 " 100 \ 80, 60 ~40 +20 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 - DEGREES (a) Fig. 15. Phase and amplitude patterns of loop antenna on Aerobee rocket. 29

1.0 LI 0.8 LU 0.6 c 0.4 0.2 FULL SCALE FREQUENCY IS 74 Mc SHIELDED SPLIT LOOPS AXIS OF ROTATION RADIUS= 5 in. 244 122" MISSILE ROTATED WITH AXIS IN PLANE OF ROTATION; LOOP IN PLANE OF ROTATION 120!! I I1 I 100 8 o60 - LU LU 40 0 LU I-20 6 0. 4080 10 0 I II I I I I I I I 0 20 40 60 80 100 120 140 160 180200 220240 260280 300 320 340 360 O- DEGREES (b) Fig. 15. (Concluded) 50

~~~~~~~~~~1.0 9 ~~~~~90~ I 0.9 OO_~~~~~~~~~00 GROUND 0.9 / PLANE OF 1800 - PATTERN 0.8 FEED \ P ---— POINT 0u HORIZONTAL \ 0:7 2 POLARIZATION 0o.6 - o0 -:~^~~~ / / \ \ ~~~~~h=2 1/2 TURNS -0.4 TAE \ \ROUND HELIX ~0.~4 t- y / VERTICAL - POLARIZATION 0.3O.20.1 0 74.0-Mc HELIX PATTERN 340 I I I I! 1 I I' Fig. 16. PhaseandamplituHORIZONTAL POLARIZATION 3u0,u 180 140 100 / \TAKEN ABOUT POINT Po 60 - TAKEN ABOUT I < POINT Po 200 -20 -60 VERTICAL POLARIZATION 100 -14 0 15 30 45 60 75 90 105 120 135 150 165 180 I - DEGREES Fig. 16. Phase and amplitude patterns of 2-1/2 turn right-hand round helix. 51

defined by the incident ray and the normal) and horizontal polarization (normal to the plane of incidence). Since the 37-Mc helix has 1-3/4 turns, and the 74-Mc helix has 2-1/2 turns, while they both have the same scaled circumference, C%, and pitch, the 37-Mc helix is slightly less directive than the 74-Mc helix. Aside from this difference, the patterns of the two helices are essentially the same. From Fig. 16, we see that for elevation angles of 0~ to 90~ there exists a phase difference of about 60~ for vertical polarization and 120~ for horizontal polarization. Consequently, as the missile assumes higher angles in its trajectory, a phase error will be introduced in the doppler count. The magnitude of this error is small enough compared to other phase errors so that correction is usually unnecessary. At 90~ elevation, the phase angle between signals induced by the two polarizations is nearly 90~, and the measured amplitudes are nearly equal. This approximates true circularity where the amplitudes are both equal and in quadrature phase. At lower elevation angles, the ellipticity (ratio of the semimajor to semi-minor axis of the polarization ellipse) increases. Consider a linearly polarized antenna oriented at an arbitrary elevation angle,,, and radiating to a right-hand helix whose characteristics are those in Fig. 16. Let the linearly polarized antenna be a "short" dipole (or equivalently a magnetic dipole) rotating about an axis normal to its null axis. Since the amplitude pattern of a short dipole is essentially a cosine law, we can represent the electric vector at any look angle as being proportional to the projection normal to the direction of propagation of the dipole moment vector. The dipole moment vector, in turn, is proportional to a unit vector colinear with the null axis. Since we are interested in spin effects, it will be assumed that the only motion of the dipole is one of rotation. Without any loss of generality, we can also assume that, when the dipole is oriented for maximum coupling with vertical or horizontal polarization, the signal voltage at the helix will be numerically equal to the corresponding pattern amplitudes. As a coordinate system for the description of this situation, let the zaxis be the direction of propagation, the x-z plane be the plane of incidence, and the y-axis completes the right-handed triad (x, y, z), as in Fig. 17. + -* + The coordinate axis will be defined by unit vectors i, j, and k. Let unit vectors t and u define, respectively, the null axis and the axis of rotation. Since a is normal to u, a ~ u = 0. The plane containing the axis of rotation and the direction of propagation will be defined by the normal u x L. The intersection of this plane and the plane of rotation will be given by the vector b, such that b * u = 0 and b u x k =0. Of the two possibilities for b, choose the one so that i * b 2 0. ~ will then be the angle measured clockwise as viewed from the origin, from b to a, 0 will be measured from I to u, and if A' is the angle taken with the usual positive sense in the x-y plane from u x t to i, then X = - 2' + 7/2. The vertical, or x-component, of the plane polarized incident radiation is proportional to 32

x X- Fig. 17. Antenna coordinate system.

cos X cos 0 cos G - sin X sin G, while the horizontal, or y-component, is proportional to cos X sin ~ + sin X cos / cos Let A1 be the pattern amplitude for vertical polarization; then since the field intensity has been defined on a per-unit-signal voltage basis, the voltage induced by the vertical component will be V1 = A1 (cos X cos 0 cos G - sin X sin )ejWt. (VI-1) Similarly, if A2 is the pattern amplitude for horizontal polarization, the voltage induced by the horizontal component will be V2 = A2 (cos h sin ~ + sin X cos 0 cos G)ej(0t-_),(VI-2) where 6 is the angle by which the voltage due to horizontal polarization lags the voltage due to vertical polarization. The total induced voltage is then V = A1 (cos x cos 0 cos - sin X sin n) + A2 (cos X sin 9 + sin X cos 0 cos @)e-JS eJdt. (VI-3) The voltage phasor, A, is just the coefficient of ejut or A = A1 (cos X cos 0 cos G - sin X sin 9) + A2 (cos X sin ~ + sin X cos 0 cos G)cos 6 - jA2 (cos \ sin ~ + sin X cos 0 cos G)sin 6. (VI-4) Suppose 0 = O and the helical antenna has circular polarization so that A1 = A2 = 1 and 6 = t/2; then A = Los(X+), - sin(x+). (VI-5) Thus the phasor describes a complete rotation in a negative sense for every rotation of the dipole in a positive sense, or there is a loss of one cycle for every rotation of the dipole. Now if the axis of rotation of the dipole is oriented vertically, then X = 0, 0 = 2 - f and A = A1 sin ~ cos ~ + A2 sin ~ cos 6 - jA2 sin ~ sin 6 = (A1 sin y cos ~ + A2 sin ~ cos 6, - A2 sin ~ sin 6). (VI-6) 34

Using the S.R.I. data given in Fig. 16, analogue simulation of Eq. (VI-6) results in the phasor loci shown in Fig. 18. At low-elevation angles where the phase angle 5 exceeds 180~ the direction of rotation of the phasor is reversed. This accounts for the reversal of sign of the spin difference, AN', which is observed at the outlying stations early in many of the missile flights. Thus far in our discussion we have included the case where the transmitting antenna is a small loop or magnetic dipole. Ideally the loop antennas installed on the missiles in the DOVAP system are of this type.3 A pair of split halfloops mounted diametrically on the missile body and electrically continuous with it comprise the complete loop, with the plane of the loop containing the missile axis. The split half-loops are each fed at their centers with opposite phasing to provide a unifrom in-phase current around the entire loop. This current gives rise to a radiation mode, termed the transverse loop mode, whose vector moment, tTL, is normal to the plane of the loop. Imperfect phasing or balance of the feed to the half-loops can result in currents in the missile body with components parallel to the missile axis.8 These currents give rise to an axial dipole radiation mode whose vector moment, iA, is parallel to the missile axis. Let us consider, then, the effect of the presence of such an axial mode. As a simplifying assumption, let the phase centers of the two modes be coincident. If they are not, the phase angle between the two modes would need correcting, but the form of the result would be the same. Since the unit vector u in Fig. 17 defines the missile axis, the vector MA will be proportional to u. Let K = MA/MTL, and recall that we have defined the field components due to the transverse loop mode on a per-unit-signal voltage basis. Also let B be the angle the axial mode lags the transverse mode. Then the vertical field component will be proportional to tan 2 = tan X cos and the horizontal component proportional to n = (mi - n2) Thus the signal voltage due to the axial mode is Vt = (Alk cos X sin 0 + A2k sin X sin 0 e-j)ej(t-). (VI-7) Here the voltage phasor is A' = (Alk cos X sin 0 + A2k sin X sin 0 e~ J) e-J = Alk cos X sin 0 cos p + A2k sin sin cos (6+5) - j(Alk cos X sin 0 sin 3 + A2k sin h sin 0 sin (65+B). (VI-8) The vector addition of this equation to Eq. (VI-4) for A will result in the phasor for the total signal voltage in the presence of an axial radiation and a transverse loop mode. We see that phasor loci of A are simply displaced from 55

P=-20~ 25~ 300 500 55~ +j +1 120~ 125~ 145~ 150~ 155~ Fig. 18. Phasor loci for 74-Mc helix. 36

350 40~ 45~ 60~ 90~ 130~ 135~ 140 160~ 165~ =170~ Fig. 18. (Concluded) 573 r

the origin by the vector A'. It should be noticed that A' depends only on the orientation of the missile axis and is independent of the angle of rotation G. Let the missile axis be oriented vertically so that X = 0, and = r/2 -; then 1' = (Alk cos * cos i, - Alk cos A sin P). (VI-9) Since the left- and right-hand helices should differ only in the sense in which they are wound, and the x-axis in Fig. 17 is the axis of the helix, Equations (VI-4) and (VI-8) would apply to a left-hand helix in the left-hand coordinate system obtained by reflecting the y-axis of the original coordinate system. This amounts to asserting that the situation where a vertically polarized electric field is presented to a right-hand helix is indistinguishable from the situation where the same electric field is presented to a left-hand helix; also, as the plane of polarization of the electric field rotates from a vertical to a horizontal position through positive angles, the phase shift seen by a right-hand helix will be the same as that seen by a left-hand helix if the rotation were in the opposite sense. Reflecting the y-axis is equivalent simply to taking the sign of the horizontally polarized component in the opposite sense in the preceding discussion (or, equivalently, substituting 6 + t for 6in (VI-4) and (VI-8). Consequently, with the coordinates of Fig. 17, the corresponding phasors for a left-hand helix will be A = Al(cos X cos 0 cos G - sin X sin G) - A2 (cos X sin ~ + sin X cos 0 cos C) cos 6 + jA2 (cos X sin ~ + sin X cos 0 cos 9) sin 6, (VI-4a) and A' = Alk cos \ sin 0 cos A - A2k sin X sin 0 cos (6+~) - j(Alk cos X sin 0 sin 5 - A2k sin X sin 0 sin (6+)}j (VI-8a) In particular, Eq. (VI-5) becomes A = [cos (X+@), sin (k+@)]. (VI-5a) Thus the phasor A for a left-hand helix describes a complete positive rotation with each missile rotation. In the derivation for the phasor A, Eq. (VI-4), the projection of the unit vector a on the x-y plane in Fig. 17 was proportional to the electric vector, and the x and y components of this projection were in turn proportional to vertical and horizontal components of the electric field. As the missile rotates, 38

the terminus of this projection describes an ellipse in the x-y plane. This is illustrated in Fig. 19 with a' and u' as the projections of the unit vectors a and u, respectively. Because of the way we defined the intensity of the electric field, the amplitude of the signal voltage due to each field component was just equal to the product of the pattern amplitude of the corresponding component of the projection of a. We can write the vertical voltage amplitude as A1 (cos X cos cos G - sin \ sin e) = a sin (y+q), where a = Al cos2 X cos2 0 + sin2 X 7 + t = ~ + ~l, and tan 1 = - cot X cos 0 and the horizontal voltage amplitude as A2 (cos X sin G + sin X cos 0 cos G) = b sin where b = A2 /cos2 X + sin2 X cos2 7 = ~ + 2, and tan t2 = tan 7 cos 0; hence 0 = (il = B2), or 2 cos tan sin 2\ sin2 0 Consequently Eqs. (VI-4) and (VI-4a) become AR = a sin (7+r) + b sin 7 e-J, (VI-10) and AL = a sin (y+i) - b sin y e"-j. (VI-lOa) 39

x A x -,... 3150 ^oV^ ^2700 Y^~15 y ___1^ 225~ 45 o 180~ 135 o Fig. 19. Projection on the x-y plane. 40

Here the phasor A for right and left-hand helices are denoted by subscripts R and L respectively. The vector quantities [a sin (y+r), + b sin y] and [a sin (y+r), - b sin y] in the complex plane represent ellipses of the same shape, one being the reflection of the other about the real axis. The first of these (Fig. 20) is the image, [a' TR}, of the elliptical locus of a' in the x-y plane under the mapping given by (x, y) (A1x, A2y), while the second is the image, [(a' TL], of the mapping (x, y) L (Alx, - A2y) Thus Eqs. (VI-10) and (VI-lOa) suggest that we think of the loci of XL and AR as being the image, in turn, of these two ellipses in the oblique coordinate system defined by the unit vectors (1, 0) and e-j5. This situation is illustrated in Fig. 21 for an arbitrary missile orientation. When X = O, or X = nt/2, the elliptical loci of AL and AR are coincident. In general, however, their shapes will be distinct (although their areas will be the same), and their major axes will have different orientations. Similarly, the x- and y-components of the projection, u', of the unit vector u on the x-y plane were proportional to the vertical and horizontal components of the electric field due to axial radiation mode. The amplitude of the signal voltage due to the vertical field component was Alk cos X sin, while the amplitude due to the horizontal component was A2k sin \ sin, where k was the ratio of the magnitude of the axial dipole moment to the magnitude of the transverse loop moment. We can rewrite Eqs. (VI-8) and (VI-8a) as AR = (Alk cos x sin 0 + A2k sin X sin 0 e-JS)eJ, (VI-ll) 41

I+j V TR Fig. 20. Images of the vectors a' and u' in the complex plane. 42

)+j +1 + FigA. 21. Loi of the phasors AL and AR. Fig. 21. Loci of the phasors A and A 45

and AL = (Alk cos X sin A2k sin % sin 0 eJ6)e"j. (VI-lla) Thus if we map the vector 5 = [cos x sin 0, sin x sin 0] into the complex plane by the mappings TE and TL, as in Fig. 20, then Eqs. (VI-11) and (VI-lla) suggest that we think of the phasors 1 T and as the reLF suit of rotating the images of uT TL and u'TE in the oblique coordinate system with the basis vectors (1, 0) and e-Ji through the angle -p and multiplying their magnitudes by k. Figure 22 represents this situation. -* -4.-++ -+ Let A" be the vector sum of A and AI; then A = A" - A. Thus, if we place and -I at the origin, ^T will complete the sum from the terminus of -A' to the terminus of A. Labeling the phasors, as before, by subscripts L and R, respectively, for left and right helices, the relative phase-amplitude variation for both helices is depicted by Fig. 25 for some arbitrary missile orientation. The arrow on the locus indicates the direction of rotation of A with increasing 9. It is interesting to notice that the origin for the phasor AT" is displaced outside the locus by the phasor -AR'. Furthermore, -AR' is essentially fixed since it is independent of 9, and depends only on the orientation of the missile axis. Consequently AR1 fails to describe a rotation about its origin as the missile makes a complete rotation, and the net phase shift becomes zero. Equations (VI-4) and (VI-8) show that, when k > 0, there will always be some angle 0 for which this occurs. Early in the trajectory when the missile axis is nearly vertical, 0 = </2 - * and the phasors A and AT are given by Eqs. (VI-6) and (VI-9). The amplitude minimum will occur when 9 is such that A is 1800 out of phase with A'. The condition on G is then tan 9 A1 sin f sin (vI-12) A2 sin (6-B) The amplitude minimum will be zero when the corresponding components of A are equal in magnitude to those of AT at this point. This happens when k = A2 sin 4 sin. (VI-15) cos (A12 sin2 sin2 p + A22 sin2 (6-n)) when k exceeds the quantity on the right, the locus of the phasor fails to enclose the origin. Thus, if k is greater than zero, there will always be elevation angles 4 which satisfy this condition. At these points in the trajectory, an "anomalous spin" correction will be required. 44

"+J +1 \A\ A, k cosX sing AR'\ A2 k sinX sin0 Fig. 22. Diagram of the phasors AL' and AR. 4~

+j +1 IAIL< 1 Fig. 23. Phasor diagram for total signal voltage. 46

Between the tangent points 1 and 2 on the locus, the right-hand phasor AR" moves through positive angles while ~ ranges through the corresponding angles from 81 to 82, whereas for the remaining rotation ~R" goes through negative angles, the net phase change being zero. As the terminus of the phasor AR" moves from points 1 to 2 on the locus, the phasor goes through an amplitude minimum. The portion of the locus between these points will be termed the "null region." Before we discuss correction of anomalous spin phase, we should first introduce the normal spin correction. As missile orientation changes, there will in general be two extreme cases of normal spin-phase behavior. The first of these will be when the helical antenna looks nearly circular and 0 = 0, in which case Eq. (VI-5) holds and the phase angle varies linearly with G. The other extreme will occur when 0 = r/2 and t = sin G (- A1 sin X + A2 cos X cos S, - A2 cos \ sin 6). (VI-14) This is the case where the null axis will be aligned in the direction of propagation twice every rotation, that is, where sin G = 0, and if G is increasing there will be a sudden 180~ phase loss at these points. These two situations are represented in Fig. 24. In applying the normal spin correction, we will assume that spin phase varies linearly with rotation angle G. This will result in a small periodic phase error in the corrected data whose amplitude in the worst case will be of the order of a half cycle. Suppose that the 37-Mc path changes by AN1 "doppler wavelengths" (wavelength at 74 Mc) during the time interval in question, while the missile rotates through an angle AG. Because of reciprocity, the previous derivations apply also to the case with the helix transmitting to a loop antenna on the missile. Thus the total phase shift at 37 Mc will be AN1 + ANs, where ANs = AG/2it. This spin-phase shift is positive when AG is positive because the transmitting helix is left-handed. Upon doubling, the total phase change in cycles becomes AN1 + 2ANS. If the phase centers of the pair of receiving helices are at essentially the same point, then the change in the 74Mc-path length will be the same to both antennas. Let this change be AN2 doppler wavelengths; then for the left-hand helix the phase change will be AN2 + ANs, while for the right-hand helix the change is AN2 - ANs 47

2rr q =7r/2 PHASE ANGLE A1= A2=1 Fig. 2. Extreme cases of phase angle versus rotation angle. Fig. 24. Extreme cases of phase angle versus rotation angle. 48

Thus the total left-hand count is ANLH = (AN1 + AN2)+ 3ANs, (VI-15) while the right-hand count is ANRH = (AN1 + AN2) + ANs (VI-16) Subtracting the right-hand count from the left, we obtain AN' = ANLH - ANRH = 2ANs; (VI-17) thus 1/2 AN' = ANs and the doppler count AN = (ANl + AN2) is given by 1 AN = NRH - AN. (VI-18) Equations (VI-17) and (VI-18) then represent the normal spin correction. Because we have made no assumption about the signs of the quantities involved, the form of the correction will hold regardless of the relative motion of the missile and the antennas. If the orientation of the missile with respect to the transmitting antenna is such that the spin shift becomes anomalous, then the phase change 2ANs at 37 Mc will have an average value of zero over every missile rotation, and except for a periodic error of a fraction of a cycle, the left- and right-hand counts will be ANLH = AN + ANs ANRH = AN- ANs Thus AN = ANRH + AN' where as before AN' = ANLH - ANRH (VI-19) Suppose, now, that the spin shift becomes anomalous at 74 Tifc for both receiving antennas. Let ca and a2 be the phase angles of the right and left phasors, respectively. If AC1 and A`-2 are the change in phase angle for the time interval in question, then the cycle courts vill be ANLN = AK + - AO2 + 21A1 ANR = AN + - AO1 - A1. (VI- i) 49

In this case we could take the spin corrected doppler count to be ANRH - 2ANS. However, as with the anomalous spin correction at 37 Mc, there would remain a periodic error. The amount of this error is indicated by Eq. (VI-20) to be either Ac2/27t or Acl/2nt. In this case there is a simple alternative which will, in general, reduce this error. Consider the quantity 1 ANRH + 2 AN' - 2ANs where AN = ANLH - ANRH. By Eq. (VI-20) this quantity is equal to AN +. a1 + Aa2 2t 2 Thus if we take for the spin corrected value AN = ANR + AN' - 2AN, (VI-21) 2 the resulting error will be 1 Ac1 + Aa2 2jr 2 This error will also have an average value of zero for each missile rotation. Furthermore, since the inequality [ao + Aa2 AC sal l + lAC2! holds for all real numbers, the magnitude of this error will be less than or equal to the average magnitude of the errors (L\ \ |A+ |a2) 2Ti 2 it 2 resulting when either of the quantities (NLH - 2ANS or ANRH - 2ANS are used as a spin correction. Or, stated differently, the magnitude of the error resulting from the correction given by Eq. (VI-21) will be less than the magnitude of the error in the worst case when either ANLH - 2ANs or ANRH - 2ANs is used as a spin correction. Usually the correction given by (VI-21) is noticeably better than either of the latter corrections because as the phasors of both antennas move through the null regions or are both out of the null regions during the time interval in question, the phase errors ACa and Aa2 will be of opposite sign. On the other hand, if the phasor of one antenna moves through the null region while the other does not, then the magnitude of the error resulting from (VI-21) will be less than the error made by the correction, AN - 2ANs of the channel whose phasor is in the null region. o50

Since AN' does not equal 2ANs in this situation, the quantity 2ANs must be determined from other sources. Because of range geometry, the doppler count of the Launch station at Churchill shows few, if any, anomalous regions and generally has the most uniform spin difference, which we will denote as ANL'. Using this value for 2ANs, the correction becomes 1 AN = ANRH + 2 AN - ANL (VI-22) If this spin difference is not available from Launch or any of the other stations, then the spin rate can be usually estimated from the polarization nulls appearing on the Launch dipole field strength record. Since these nulls are separated by 180~ of missile rotation, the time between alternate nulls will be the period of rotation. Thus if the missile rotates through an angle AG in the time interval in question, then we take 2ANs as 2AG/2t and the sign of the quantity is usually determined by examining previous or succeeding normal AN's, or by taking the sign of the phase change between left and right channels in regions not containing nulls. If both the 37-Mc and 74-Mc spin-phase shifts are anomalous, then for the same reasons used in the justification of (VI-21) we will take as our spin corrected value AN = ANRH + AN'. (VI-25) It is interesting to observe that the spin correction given by Eq. (VI-22) is also applicable when the spin shift at 74 Me is normal. In this case the average value of AN' and ANL' must be equal since they accumulate to two cycles every missile rotation, and if we set AN' = ANL' (VI-22) becomes (VI-18). When only one receiving antenna shows anomalous phase shifts, as is illustrated by Fig. 23, then this antenna will show no net phase shift; the other antenna will show a gain, if it is left-handed, or a loss, if it is right-handed, of one cycle with each missile rotation in the positive sense. If this occurs in an interval where the phase shifts are predominantly anomalous at 74 Mc, then by subtracting or adding a cycle to the normal channel once every missile rotation in the interval in which the amplitude minimum occurs and the rate of change of phase is maximum, the result will be precisely the same as if the phase shifts on both channels were anomalous; and we can then apply whichever of the two corrections, (VI-22) or(VI-23), is relevant. The channel showing normal phase shifts will generally experience a deep amplitude minimum once every rotation accompanied by rapid phase shifts in the normal sense. The time interval in which this minimum occurs can usually be found by examining the second differences, A2N, obtained by differencing succes51

sive AN counts. The accompanying phase shifts will be evidenced by distinct irregularities in the trend of the second differences. Thus if the left-hand helix shows normal phase shifts, we will subtract (or add, when the rotation of the missile is in the negative sense) a cycle to the count in the interval containing the amplitude minimum, and as a result the quantity AN = (ANLH - NRH) will be decreased by one cycle, and the spin corrected value would be AN = ANRH + 1 (AN' - 1) - ANL' 1 1 = (ANRH + AN' - ANL) - (VI-24) Similarly, when the spin phase at 37 Mc is anomalous AN = (ANRH + 1 ANT) - i (VI-25) 2 2 With normal phase shifts on the right-hand helix, we would add a cycle to the right-hand count and thus decrease AN' by a cycle. Upon application of the anomalous correction, we would obtain AN = ANRH + 1 + (AN' - 1) - ANL' (ANRH + 2 AN' - ANL) + (VI-26) or for the other case 1 1 AN = (ANRH + - AN') +-. (VI-27) 2 2 On the other hand, if one of the receiving helices shows anomalous phase shifts in an interval characterized by predominantly normal phase shifts, then upon subtracting or adding a cycle, depending on whether the helix is right- or left-handed, to the count in the interval which corresponds to the null region, we can apply whichever of the corrections, (VI-18) or (VI-19), is relevant. Thus, when the left-hand receiver shows anomalous phase shifts, we would add a cycle to ANLH and consequently increase AN' by one cycle. Applying the correction given by (VI-18), we obtain AN = (AN 2 - j ANT) - (VI-28) 5 2

while the correction given by (VI-19) results in AN (ANRH + - AN ) + (VI-29) Similarly, when the right-hand receiver shows anomalous phase shifts, we obtain from (VI-18) AN = (ANRH - AN') - (VI-30) or from (VI-19) we obtain AN (AN + A' ) -. (VI-1) 2 2 Instead of actually adding or subtracting a cycle to the left- or right-hand data, the amounts indicated outside the parentheses in relations (VI-24) through (VI-31) are applied as a separate correction. When the missile is at low-elevation angles early in the trajectory for the outlying stations, the receiving helices will behave as if their polarizations were reversed. Normally anomalous phase shifts will also occur at these elevation angles and the reversal in sign of the AN' will not be evidenced. If in this interval normal phase shifts occur on one channel, then corrections (VI-24) through (VI-31) must be made as if the right and left helices had reversed their roles. If both channels show normal but reversed phase shifts, then the correction given by (VI-22) is usually employed, for in this case AN' = - ANL' so that 1 AN = ANRH + AN' - ANL' = ANRH - ANL' which is the normal spin correction for a left-hand helix. To discover which spin correction is applicable in a given interval, an examination of a plot of the cycle counts per half-second interval vs. time, a plot of the accumulated sum of half the spin difference [Z(AN'/2)],vs. time, and the film records must be made. We have taken sections of these plots and the film records to illustrate each of these cases. As we have already seen, when the spin phase is normal at both 37 Mc and 74 Me, a spin-phase shift 2ANs occurs at 37 Mc and is common to both counts, whereas at 74 Mc the phase change due to spin is ANs on the left-hand channel 55

and - ANs on the right-hand channel, making the total counts ANLH = (AN + 2ANs) + ANs ANPH = (AN + 2ANx) - ANs. (VI-52) If the phase shift at 74 Me becomes anomalous, the contributions ANs and -ANs are essentially zero, and the counts are ANLH = ANRH = AN + 2ANs. (VI-35) After burnout the slope of the AN plot is nearly constant so that, except for a scatter of the order of, at most, a half cycle, short sections of the data can be considered to lie on a straight line. Thus Eq. (VI-32) suggests that we can think of the quantity (AN + 2ANs) as being represented by a line which lies midway between the cycle counts when the spin phase is normal at both frecuencies. When the spin phase becomes anomalous on both channels at 74 Mc, Eq. (VI33) implies that the left- and right-hand counts will scatter about this line. Thus the line lying midway between the left- and right-hand data points when they are separated by the normal spin difference 2ANs, or about which the leftand right-hand points scatter when both channels are anomalous at 74 Mc, represents the sum of doppler count, AN, and the phase change, 2ANs, at 37 Mc due to spin. If the spin phase at 37 Mc is anomalous in some interval, the contribution 2ANT will have an average value of zero, and we would notice that the position of this line would be lower in such an interval by 2ANs than it would be in the sections of data surrounding the interval. These intervals can usually be found by laying a straightedge on the plot, or by simply sighting along it. Because all channels must necessarily be affected, such intervals are usually quite prominent. Thus, for example, we see that in the plot of AN for SM 1.07 (Fig. 25), the spin phase at 37 Mc is anomalous after 121-1/2 seconds. It is of interest to notice that because the phase shift is normal at 74 Me, the right-hand counts through 121-1/2 seconds lie on the same line as the left-hand counts after 121-1/2 seconds. In both cases, the counts correspond to the quantity AN + ANs. This situation is represented by the dashed line on the data for the Twin Lakes station in Fig. 25. A portion of the AN plot for SM 1.05 is shown in Fig. 26. In the neighborhood of 122 seconds, the phase shift becomes and remains anomalous at 74 Mc on all channels. After 122-1/2 seconds, the phase shift at 37 Mc is anomalous. Since thie spin difference AN' has an average value of 2AG/2t over each missile rotation when the spin phase at 74 Me is normal, a plot of Z 1/2 AN' vs. time should represent the total number of missile rotations vs. time. With no spin anomalies at 74 Mc, the sum Z 1/2 AN' should differ by no more than a half 54

_ _ _ _ R R I DIGGS MERO WIN LAKES LAUNCH ONE CYCLE 115 120 125 TIME Fig. 25. Plot of AN versus time for SMl.07. 55

TWIN LAKES LAUNCH R L ~R~~METRO DIGGES METRO 110 115 120 125 TIME Fig. 26. Plot of AN versus time for SM1.05. A~~~~~~~~N~ ~ ~ tONE CYCLE 5I

cycle for all stations, assuming that the data have already been geometry-corrected to eliminate any difference arising out of the distance between the phase centers of the receiving helices. Discrepancies will arise when either or both receivers are affected by anomalous spin shifts at 74 Mc. When both receivers are affected, the slope of the corresponding Z 1/2 AN' plot will be zero. This is illustrated by Metro in the portion of the Z 1/2 AN' plot for SM 1.05 shown in Fig. 27, and by Digges for SM 1.07 shown in Fig. 28. While both of these cases occur early in the missile flight, this type of spin anomaly can occur at any time, as it does, for example, at 122 seconds on SM 1.05. A particularly conspicuous example of anomalous spin phase at 74 Me on both left- and right-hand receivers occurs at 76 seconds on Twin Lakes for SM 2.06. Both the AN plot (Fig. 29) and the E 1/2 AN' (Fig. 30) indicate this condition clearly. Figure 31 shows a later portion of the AN plot for SM 1.07. Here the phase shifts are anomalous at both frequencies on all channels. This example was selected because it also shows the periodic phase error introduced on all channels by the anomalous phase shifts at 37 Mc. When only one receiver is affected by anomalous spin shifts at 74 Me, the average slope of the 1/2 AN' will be exactly half of what it would be if both phase shifts were normal. This situation is illustrated by Digges in Fig. 32 for SM 1.05, and by Digges and Twin Lakes in Fig. 33 for SM 1.07. SM 1.07 is an interesting example because after 164 seconds Digges shows normal phase shifts while Twin Lakes shows anomalous phase shifts on both channels at 74 Mlc. The phasor diagram corresponding to these two examples would be similar to that of Fig. 23. Two sections taken from the DOVAP film records of Twin Lakes left- and right-hand receivers for SM 1.07 corresponding to the plot of Fig. 33 are shown in Fig. 34. These sections were chosen because they illustrate clearly the type of situation depicted by the phasor diagram of Fig. 25. From 1611/2 to 162 seconds, the left-hand channel shows an amplitude minimum accompanied by a rapid normal phase gain relative to the right-hand channel. In the interval from 162-1/2 to 163 seconds, the right-hand channel shows a shallow null with an anomalous phase shift which amounts to a phase gain relative to the lefthand channel.:27

ONE CYCLE m LAUNCH (UNCORR.),d=, LLASNtf 1 t^ ^ -<*77'__'S'_. _.._4,_ _ 00 LAUNCH rfl0 ^^DIPOLE NULLS WW' T"""^"tE l__"D I 414 |'-~ - q |'"'DIGGES' t —~ — - -- -- - - -^^^^^^ rr:*i" —^l.JWVIN LAKES 1 --- i IIII iI II I TW IN L KES (UNCIORR.) ) i 10 11 12 13 14 15 16 17 18 TIME Fig. 27. Plot of 7 1/2 AN' versus time for SM1.05. 58

LAUNCH (UNCORR.) -..;i- - -'~zzzi^ ~NULLS;z^?LAuNchz., T0IN 0 X / IAt ASE.~e~'-^~,.,4-m m^' - - -- _ _ _ -- - M ETR O ---- --- - --- -- --- 0- — ^0 0^ C:CRR...-. — TWIN LAKES (UNCORR.) Fig. 27. (Concluded) 18 19 20 2 1 22 2 24 25 26 TIME

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ ~ ~ ~ ~ ~ ~~~~~~a — -- - E --- \ I I I I I: I I i l #ll Si f I i l l f l leTlld IN LAKES 3 4 5 6 7 8 9 10 11 12 Fig. 28. Plot of L 1/2 AN' versus time for SM1.07. " ~ ~~ i.2. lto / AN'vesstm fo SM.7

R 70 75 80 TIME Fi. 2. Plot of N versus time for SM2.0. 61

A/N' 1VOsE~~~~~~~~~~~~~~ONE CAE 75 80 TIME Fig. 30. Plot of 1/2 AN' versus time for SM2.06.

DIGGES METRO TWIN LAKES LAUNCH A5N ONE CYCLE. I-II I I - - - - 140 145 150 TIME Fig. 31. Plot of AN versus time for SM1.07. 63

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-0 DIGGES -- TWIN LAKES - a\ >^^^^ I I I I i^i 1 TWIN LAKES (UNCORR.) ONE CYCLE 27 28 29 30 31 Fig. 52. Plot of Z 1 2 ANT versus time for SMl.05. 4~^ ^^ *-_^ 27 2 8 2 9 3 0 3 1 TIME Fig. 32. Plot of Z1/2 AN' versus time for SM1.05.

__ - - \ TWIN LAKES -~ (DIPOLE NULLS) _ 2N' ---- _"~ -"~ DIGGES ONE CYCLE 158 160 162 164 166 168 TIME Fig. 33. Plot of Z 1/2 AN' versus time for SM1.07. 65

162 sec Left-Hand Receiver 161-1/2 sec..................I.. I. Right-Hand Receiver 0h Left-Hand Receiver _ *w.................w............ 163 sec Right-Hand Receiver l62-1/2 sec Fig. 34. Portion of the DOVAP film record for Twin Lakes, SM1.07.

VII. TRAJECTORY SOLUTIONS The problem of determining the position of a missile from doppler data has been reported by B. Garfinkel. The solution is shown below in summary form; the data of the problem are listed in Table II of this report. Let PO = coordinates of the DOVAP transmitter, and Pi = coordinates of the DOVAP receivers, j = 1,2,3,4; then uj = r+ rj = PP + PP j = 1,2,3,4, (VII-1) and P(x,y,z) the unknown position of the missile. There are four combinations. Taking stations 3 at a time, call these combinations I, II, III, IV. For each combination of three receiving stations, a hand calculation of a set of constants was made using the positions of the right-hand helices in the converted DOVAP system as data. Details of the method follow. Arrange P1, P2 and P3 so that: POPI > PoP2 > PoP3, i.e., rl > r2 > r3 (VII-2) Then calculate: r12, r22, r32 = P1P3; where a is the normalizing factor /'.\ xl Y1 zi (A) = x2 Y2 Z2, (normalized) X3 y3 Z3 (VII-3) /1 0 -1 b11 b12 b13 (B) = 1 -1). (A) = b21 b22 b23 0o 0 11,b31 b32 b33/ (II-4) 67

~1 i2 ~3\ (S) = m1 Mn2 Mn3 (VII-5) n1 n2 n3 where ~1 = b ml = b12 nl = bli kl = b12b23 - b13b22 k2 = - (bllb23 - blsb21) k3 = bllb22 - bl2b21 k2 = k12 + k2 + ks2 ~3 = kl/k m3 = k2/k n3 = k3/k ~2 = nlm3n - n3mS M2 = ln3 - ~snl n12 = mli3 - m3~1 (VII-6) Note: If n3 < 0, change the signs of ~3, m3, n3. 1.0 0 0 (B') = (B) ~ (S) b= b2 (VII-7) 31 32 33 = b'33 (VII-8) 2 2 1 r1-rJ 1 2 2 (') - r r2- = 2' ) 3 \ \3/ (vII-9) 11 o o 14 (t) = t^1 /22 0 /24 ~31 032 33 034 (VII-10) where 011 = 033 = 0.5 021 = - -2 2b2 22 /22 = 2 b? b3 -b 3 1 /31 -= 32 22 31 2b2 032 b22 2b22 314 = -01b2 68

024 = 021a1 + 022a2 034 = 031a1 + 032a2 + 033a3 (VII-ll) uj(to) normalized. j = 1,2,3 (VII-12) X normalized. (VII-15) After these precomputations have been made, the solution of the trajectory problem for each combination of three receivers at time ti is obtained as follows: uj(ti) = uj(ti-k) + N ~ ANj (VII-14) Uj = (r) + r (VII-15) where k < 0.5 second, k < 0.5 sec for grenade burst times, % = normalized wavelength of double-transmitter frequency, AN. = number of cycles in time interval k. Compute /U3 - U1 (u3-U1)ul (U) = 3 - U2 (U3-U2)U 2, -uu3 0 \ 0 1 (VII-16) and /Cl C12/ (C) = ()) ~ (U) = C21 C22 \C31 C32 (VII-17) Start the solution with c = 0, then compute r = O.5(u3-c) xt = C11 + C12 y' = C21c + C22 (z )2 = r2 - (x')2 - (yt)2 ZtZt-C =.3 32 C31 Is ]c'-C| - 6? where 6 = 0.0000001 Yes, recalculate r,x',y',z', using c' No, compute (VII-18) 69

(r) = S(S) Y - (r) (VII-19) where (r ) = position of launching tower with respect to transmitter. (r) = position of missile with respect to launching tower (MSL). After calculating x,y and z for each combination I, II, III, and IV, calculate (r) avg = (/4 ZEm, 1/4 Zym, 1/4 zm, m = IIIIII (VII-20) a(r)m = (X-xm, Y-Ym, z-zm) (VII-21) a(r) avg = [(r)m]2 (VII-22) 12 The flow diagram for this calculation is shown in Fig. 35. Instructions for use of the IBM 650 program and the program (list of machine instructions) is given in Appendix A. F'or purpose of the grenade-experiment temperature and wind calculations, it is necessary to calculate grenade-explosion position with respect to the center microphone at Twin Lakes. The second IBM trajectory solution is that for rotating and translating the spatial coordinates of missile position at the time of grenade explosions with the launching tower (MSL) as origin to a set of corresponding positions above a coordinate system tangent to the Clarke Ellipsoid having the center geophone of the microphone array at Twin Lakes as origin. Geographic positions taken from the geodetic survey were 0o = latitude of launcher = 58~ 44' 9.038" 01 = latitude of center geophone = 580 37' 11.646" to = longitude of launcher = 93~ 49' 8.613" t1 = longitude of center geophone = 93~ 48' 41.151" Then AO = 01- 0o (VII-23) Ar = t%- to (VII-24) cos(A%) w 1 for the present case 70

cos AX - sin 01 sin Ar - sin AO (M) = sin 0o sin At 1 - cos 0, sin A ( sin AO cos 01 sin At cos AO (VII-25) Now sin 0o = 0.8547837 cos 0o = 0.5189844 sin 01 = 0.8557318 cos,1 = 0.5207131 sin AX = 0.0020256 cos AO = 0.9999980 sin At = 0.0001332 (VII-26) and / 0.9999980 0.0001137 0.0020256 (M) = - 0.0001139 1 0.0000691 0.002026 - 0.0000oooo694 0.9999980 (VII-27) The center geophone coordinates taken from the geodetic survey data were x(+N) = - 42371.959' y(+W) = - 1454.364' z = 24.007m corrected to 23.877m = 78.336' In the rotated system, the translation became /TL\ - 42371.96\ 42371.88' YTL = (M) 144.5 36' - 1449.53' zTL=/ (M 78.34 164.18, (vII-28) The solution of the rotation and translation problem is /x\ ~x \X XTL y = (M) * y ) yTL) (vII-29) Vzy \~z avg ZTy whe re yx = (r)avg (VII-30) \z, avg 71

The altitude intervals between successive grenade explosions were computed by x x z /Gn+l \z Gn \z AG (VII-31) where n = number of grenade for the position given by each combination of three receivers. Then IV: y =:y = (AG)avg (VII-32) Z ZAG z AG and o(AG) = (AG)avg - (AG) for each receiver combination (VII-33) Finally, Y 2 jE[cr(AG)] a(AG)avg = I 12. (VII-34) The flow diagram for this calculation is shown in Fig. 36. Instructions for use of the IBM 650 program and the program is given in Appendix B. 72

VIII. ERRORS Although a complete evaluation of errors has not been made at the time of writing this report, it will be useful to list a few of the possible sources of significant error and to estimate the magnitude of error possible for the data given in the appendices. It is hoped that a more complete error analysis will be a part of the future work to be done on this data-reduction project (see Section IX, Conclusions and Recommendations). Reference to Eqs. (1-2) and (1-3) i.e., uj(ti) = uj(ti-k) + X * An (I-2) 2f avg (-5) C avg will suggest the possible sources of error. It will be convenient to refer tothe magnitude of an error in terms of the quantities uj, either in feet or in an equivalent number of cycles. The relationship between errors in the uj and errors in horizontal and vertical coordinates can then be estimated from the equations used in calculating the trajectories. From the above equations we can see that possible sources of error fall into at least four categories: (1) Error in initial position, i.e., in the values of uj/to. (2) Errors in timing, i.e., in the values ti. (3) Errors in cycle count, i.e., in the values of Anj. These may arise from several sources: (a) A mistake may be made in counting. (b) Phase errors introduced by missile spin and by change of attitude between missile and ground antenna systems may not be properly corrected. (c) Errors may occur in extrapolating over a bad section of the record. (d) There may be random phase shifts in the DOVAP equipment. (4) Errors in wavelength \, which may be due to: (a) Errors in f avg. (b) Errors in C avg. 73

Additional possibilities arise when we consider the fact that the equations themselves may not completely describe the physical situation. The equations do not account for the effects of: (5) Vultipath radiation. (6) Curvature of transmission path due to refraction by the atmosphere. The error of category (1) is completely negligible. It is estimated that the values of uj(to) have been counted accurately to within a few feet or a few, tenths of a cycle. The errors of categories 2,5, and 6 are negligible as explained in Refs. 11 and 12. The net result of errors in these four categories can be considered to be a random error of a few tenths of a cycle, i.e., an error of a few feet in the u.. J WIith the care taken in counting and editing and handling of the cycle-count data as described in Sections IV, V, and VI, it is estimated that random errors of the order of a half cycle may occur in the count for a 0.5-second interval inasmuch as the spin correction, although correct in total, may leave errors as high as a half cycle in any such interval. In addition, a systematic error of a few cycles may accumulate in the cycle-count data for all four stations. The values of ax, cy, and az listed for the data in the appendices enable one to evaluate the consistency of the counts from the four stations. These a values are calculated from the difference between the average solution and each of the four individual solutions. R. B. Patton of BEL, Aberdeen Proving Ground, has calculated the relation between ax, oy, az, and an for points in space over the Ft. Churchill range.13 The data is provided as a series of graphs of the ratio crx/a, cy/ u,and acrz/ cos x,y,and z over the Pt. Churchill range. From these data of Patton's, it can be shown that the x, aUy, and Uz values of tlie data in the Appendices correspond to values of au less than 5 feet for all data except the very end of the data of Sr 2.06 which has alu equal to 8 feet. The values of a. equal to 5 and 8 feet, respectively, correspond to random errors in the cycle counts of about 0.4 to 0.7 cycles, respectively. The ax,'y, az do not tell us anything about the possibility of systematic errors in all four of the sets of cycle-count data. As mentioned above, it is possible that systematic errors of as much as 2 cycles could exist in the cyclecount data (this is equivalent to a )5-foot error in the uj). Such a systematic error in uj would produce a vertical coordinate error as large as 25 feet and horizontal coordinate errors as large as 150 feet. The error of category (4) above, error in wavelength A, may introduce systematic errors in the Uj values as great as 15-20 feet at altitudes of 60 kilometers, according to the approximate analysis of Ref. 12. This source of error would produce a systematic error in vertical coordinate of 15-20 feet and in horizontal coordinate of 90-120 feet. It could be of the same sign or of sign opposite to the systematic error in cycle count. 74

The errors in layers between grenade explosions are very small, corresponding to random errors of less than + 0.5 cycle. The corresponding errors in vertical and horizontal distance between two consecutive grenade explosions is less than + 6 feet and + 36 feet, respectively. 75

IX. CONCLUSIONS AND RECOMMENDATIONS The DOVAP data for the ten rocket-grenade Aerobees SM 1.01 - SM 2.10 have been reduced to position (of antenna) versus time (see Appendix A). The position of the rocket antenna system with respect to the center microphone at Twin Lakes, at the time of each grenade explosion, has been calculated (see Appendix B); and the layers between successive grenade explosions have been calculated (see Appendix B) with an accuracy sufficient for the grenade experiment for upper-air temperatures and winds (+ 36 feet in horizontal coordinates of a layer and ~ 6 feet in vertical coordinates of a layer). It is recommended that the data reduction for these ten Aerobee flights continue as follows: (A) The data for SM 1.01, SM 1.02, SM 1.05 and SM 1.05 should be refined and a comparison of D'IVAP, ballistic camera, and radar data for these four flights should be made. (B) The data reduction for SM 2.10 should be carried out up to the peak of the rocket trajectory. (C) Velocity and acceleration data should be calculated for all ten flights. 76

X. ACKNOWLEDGMENTS We are indebted to the Meteorological Branch of the U. S. Army Signal Research and Development Laboratories for their continued cooperation and financial support. Thanks are also due the Ballistic Research Laboratories, Aberdeen, Maryland, and the White Sands Signal Corps Agency, Las Cruces, New Mexico, for the excellence of their data and the promptness with which they were sent. Finally, we would like to acknowledge the assistance of the DOVAP data-reduction group at Aberdeen Proving Ground and of the Antenna Research Laboratory of Stanford Research Institute,for the work described in this report rests heavily on the data-reduction and antenna-analysis work of these two groups. The frontispiece of this report is a U. S. Army photograph. 77

XI. REFERENCES 1. Stroud, W. G., et al., "Temperatures and Winds in the Arctic as Obtained by the Rocket Grenade Experiment," IGY Rocket Report Series (Nat. Acad. Sci., Washington, D. C.), No. 1, 58-79 (July 50, 1958). 2. Zancanata, H. W., Ballistic Instrumentation for the IGY Rocket Project at Ft. Churchill, Mem. Report No. 1094, Ballistic Research Laboratories, Aberdeen Proving Ground, September, 1957. 3. Richer, K. A., DOVAP Antennas for Pre-IGY, Mem. Report No. 1087, Ballistic Research Laboratories, Aberdeen Proving Ground, July, 1957. 4. A Geodetic Reference System for the IGY Rocket Program at Ft. Churchill, Manitoba, Canada, Geodetic and Photogrammetric Section, Ballistic Research Laboratories, Aberdeen Proving Ground, July 1, 1957. 5. Leeder, J., The Stroboscopic Film Reader, Tech. Note No. 5, Ballistic Research Laboratories, Aberdeen Proving Ground, March, 1949. 6. Putnam, R.E.A., DOVAP Film Reader (Integrating Motor Type), Tech. Riote No. 1076, Ballistic Research Laboratories, Aberdeen Proving Ground. 7. Atmospheric Phenomena at High Altitudes, Univ. of Mlich. Eng. Res. Inst. Quart. Reports 2387-6-P and 2587-13-P (Dept. of the Army Project iNo. 5-1702-001, Contract No. DA-56-039-SC-64659), Ann Arbor, Mich., November 15, 1955, and June 15, 1956. 8. Steele, C. W., and Morita, T., Pattern Characteristics of DOVAP TMissile Antennas, Tech. Report No. 5, Stanford Res. Inst., Menlo Park, Cal. (Contract No. DA-O4-200-ORD-273), August, 1957. 9. Morita, T., and Steele, C. W., DOVAP Ground Antenna Measurements, Tech. Report No. 3, Stanford Res. Inst., Menlo Park, Cal. (Contract No. DA-04-200ORD-273), February, 1956. 10. Garfinkel, B., Doppler Determination of Position, Report No. 658, Ballistic Research Laboratories, Aberdeen Proving Ground, April, 1947. 11. Brown, D., and Patton, R. B., Jr., A Comparison of Optical and Electronic Trajectory Measuring Methods, Mem. Report No. 965, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., January, 1956. 12. Otterman, J., The Effect of the Atmosphere Refractive Indexes on the Accuracy of DOVAP, Univ. of Mich. Res. Inst. Report 2387-42-T, Ann Arbor, Mich., August, 1958. 1i. Report being prepared by W. Dean, Data Reduction Section, Ballistic Measure-.eit,abloratory, Ballistic Research Laboratories, Aberdeen Proving Ground. 78

APPENDIX A ROCKET TRAJECTORIES WITH RESPECT TO FORT CHURCHILL AEROBEE LAUNCHER These are the average solutions for each half second of time. Tabulations of the four individual solutions, from which these averages were obtained, can be obtained by request from The University of Michigan Research Institute. The position data from 115.5 seconds through 124.5 seconds on SM 1.02 and from 54.0 seconds through 99.0 seconds on SM 1.04 are three-station data.

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 23.C7-.42 1.93-.43 310.62 1.32 1.5 61.80- 1.46 8.47- 1.58 545.45 2.69 2.0 118.32-.79 10.55-.84 871.26 1.07 2.5 184.57-.28 11.00-.29 1288.19.31 3.0 260.40-.96 9.00- 1.03 1759.94 1.02 3.5 343.13-.76 11.21-.80 2249.29.75 4,0 427.58- 1.21 12.45- 1.27 2749.51 1.14 4,5 517.68- 2.15 11.60- 2.26 3261.84 1.95 5.0 608.36- 3.16 9.18- 3.31 3784.91 2.78 5.5 695.63-.79 4.61-.83 4314*41.67 6.0 789.68-.26 3.57-.27 4853.83.21 6.5 891.43- 2.56 3.41 2.68 5404.96 2.08 7.0 991.92- 3.99 6.69 4.19 5963.47 3.19 7.5 1094.86- 5.11 9.89 5.37 6532.24 3.99 8.0 1199.93- 5.31 13.85 5.59 7109.32 4.07 8.5 1311.26- 5.48 20.16 5.77 7694.05 4.11 9.0 1423.62- 6.85 29.96 7.22 8289.45 5.03 9,5 1537.19- 7.16 39.26 7.56 8895.58 5.15 10.0 1651.75- 6.19 54.26 6.54 9510.25 4.37

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 1768.50- 5.36 64.46 5.67 10135.13 3.70 11.0 1891.80- 3.07 74.00 3.25 10769.22 2.08 11.5 2022.81- 6.52 93.53 6.91 11418.02 4.32 12.0 2150.62- 7.08 107.39 7.51 12076.19 4.60 12.5 2284.07- 9.48 122.09 10.07 12746.15 6.03 13.0 2417.74- 9.51 138.30 10.11 13425.99 5.92 13.5 2554.53- 9.45 157.66 10.06 14117.32 5.76 14.0 2695.92- 13.31 181.87 14.18 14821.35 7.94 14.5 2843.13- 15.14 208.86 16.14 15537.69 8.83 15.0 2990.96- 15.82 232.09 16.88 16263.75 9.02 15.5 3140.24- 15.78 257.45 16.85 17003.15 8.80 16.0 3291.19- 14.26 290.53 15.24 17754.39 7.78 16.5 3446.28- 14.87 320.47 15.91 18518.36 7.93 17.0 3607.51- 18.14 357.16 19.42 19297.33 9.44 17.5 3767.88- 20.19 391.89 21.63 20088.36 10.27 18.0 3932.61- 20.95 425.69 22.46 20891.91 10.41 18.5 4103.89- 23.34 457.89 25.05 21710.41 11.33 19.0 4274.56- 22.72 494.67 24.40 22542.64 10.76 19.5 4447.08- 21.12 530.23 22.70 23389.16 9.77

SM 1.ul 16, 1959 TIME X(N) SIG X v( ) SIG Y Z(SL) SI Z 20.0 4624.01- 19.33 571.22 20,47 2451.12 8.59 20,5 4804.12- 18.46 62.78 19.86 25129.09 8.13 21.0 4986.35- 18.27 669.08 19.67 26023.4 7.t85 21.5 5179.25- 20.75 721.9 22.36 26935.99 8.69 22.0 5370.63- 20.35 773.55 21.94 27865.19 8.31 22.5 5562.83- 8.53 829.57 19.98 28810.64 7.38 23.0 5758.81- 15.62 883.6u 16.86 29777.54 6.06 23.5 5960.35- 15.15 943.99 16.36 30762.07 5.73 24.0 6164.84- 13.86 1,13.46 14.97 31768.42 5.10 24.5 6364.62- 16.62 1084.72 17.96 32798.73 5.96 25.0 6589.15- 11.4 1147.32 12.37 338^4.35 3.99 25.5 68;8.36- 9.37 1222.95 1. 14 34915.73 3.19 26.0 72.- 8.25 129.6 8.93 369.95,273 26.5 72 1.43- 54 1376.77 5.91 37127.12 1.76 27.0 7495. 4- 4.48 1467.,49 4.86 30271.83 1.41 27.5 7 7 5.:- 2. }1546.67 2.3 39440.84.65 28.0 7 9B2..', — 1...' 1642,.30 i1.13 40636.01.31 28.5 8 2,;. 2.62 7177.2.67 41859.13.18 29.0 4 97. - 4.3 i 1834. 1 4.6 43110.711.22

S.0116 MAR 1959 TIME X ( )0i X Y 5 I G Y Z(,SL.) SIG Z 29.5 8763.22- 5.11 1941.40 5.54 44391.701.40 30.0 90;i35....4- 7.11 2j 46.27 7.70 45703.27 1.90 30.5 9317.53- 8.18 2158.53 8.87 47046.29 2.12 31.0 9610.27- 9.35 2275. 2 10.14 48421.10 2.36 31.5 9912.4- 6.9 4 245. i 1 7.52 49828.6 1.71 32.010217.54- 8.532532.51 9.26 51271.32 2.04 32.5 10537.84- 7.66 2667.73 8.31 52749.90 1.79 33.0 10861.87- 7.99 2807. 8.67 54263.71 1.82 33.5 11198.14- 8.102953.11 8.79 55814.151.80 34.0 11537.19- 6.91 3103.25 7.51 57400.44 1.50 34.5 1181.59- 6.35 3257.-5 6.90 59024.30 1.34 35.0 1225u.76- 6.85 3417.37 7.44 60673.33 1.42 35.5 12616.94- 6.22 3586,.77 6.76 62340.36 1.26 36.0 12984.33- 5.71 747.44 6.21 64031.96 1.13 36.5 13359.38- 6.2; 3915.77 6.74 65730.75 1.21 37.0 13731.J7- 5.64 4 82.9] 6.13 67417.18 1.08 37.5 1412 ~ 5-.4 425 1.62 5.87 69089.86 1.01 38.0 14471.99- 6.16 4419.21 6.70 70748.23!.14 38.5 14841.23- 5.1.4 4582.25 5.59 72392.38.94

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 15209.08- 6.27 4748.41 6.83 74022.08 1.13 39*5 15573.84- 6.68 4911.92 7.27 75638.70 1.19 40.0 15939.83- 4.56 5077.11 4.97 77242.20.80 40.5 16303.21- 5.66 5239.41 6.15 78833.02.99 41.0 16667.95- 5.72 5403.17 6.23 80411.05.99 41.5 17030.24- 6.16 5564.48 6.71 81977.321.06 42.0 17391.20- 4.27 5727.44 4.65 83530.90.73 42.5 17748.46- 5.45 5891.37 5.93 85073.25.92 43.0 18110.06- 4.39 6049.29 4.77 86603.91.74 43.5 18468.92- 4.95 6209.29 5.39 88122.69.83 44*0 18823.94- 4.01 6373.50 4.36 89631.31.67 44*5 19181.76- 5.38 6534.11 5.86 91129.55.90 45.0 19537.20- 5.00 6692.32 5.44 92617.49.83 45.5 19893.78- 3.90 6851.19 4.24 94094.31.65 46.0 20247.74- 3.93 7012.39 4.27 95560.68.65 46.5 20606.05- 4.08 7168.36 4.44 97016.90.68 47.0 20959.12- 4.52 7329.88 4.92 98464.16.75 47.5 21314,20- 4.04 7486.87 4.40 99901.20.67 48.0 21665.26- 2.36 7648.06 2.57 101329.73.39

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 22018.54- 2.79 7804.13 3.04 102747.86.45 49.0 22372.55- 2.44 7962.86 2.66 104156.50.40 49.5 22723.06- 1.41 8120.50 1.52 105555.45.23 50.0 23072.84- 1.78 8278.89 1.94 106946.36.29 50.5 23423.48-.45 8437.18.48 108327.76.07 51.0 23778.65- 1.07 8594.73 1.16 109699.70.17 51.5 24126.99-.02 8754.51.03 111062.56.01 52.0 24478.07- 1.51 8911.51 1.65 112417.43.25 52.5 24828.82- 1.12 9067.15 1.22 113762.45.18 53.0 25178.13- 1.47 9226.27 1.60 115098.48.25 53.5 25528.20- 1.1 9384.49 1.09 116426.62.16 54.0 25879.49- 1.43 9542.;6 1.56 117744.81.24 54.5 26231.68- 2.82 9698.31 3.07 119055.19.48 55.0 26580.22- 1. 5 9853.46 1.14 120356.60.18 55.5 26926.28- 2.18 1: 17.46 2.38 121650.3.37 56.0 27276.68- 1.53! 017.16 1.67 122935.06.26 56.5 27623.64- 1.68 19328.2' 1.82 124209.82.28 57.0 27972.85- 1.4' -486. 3 1.53 125 77. 61.24 57.5 28325.57-.25 1C641.83.28 126735.35.05

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 28670.17- 1.20 10801.64 1.31 127986.21.20 58.5 29020.53-.27 10957.87.31 129228.21.05 59.0 29367.05-.90 11114.99.98 130462.71.15 59.5 29715.05- 1,36 11267.75 1.48 131687.69.24 60.0 30061.87-.53 11428.52.57 132903.49.09 60.5 30408.36-.12 11586.51.13 134111.63.03 61.0 30756.43-.77 11743.07.84 135311.75.13 61a5 31103.00-.07 11900.55.08 136502.74.02 62.0 31448.63-.48 12U57.11.53 137687.32.09 62.5 31796.73-.09 12213.68.10 138862.99.02 63.0 32145.08-.29 12368.11.32 140028.86.06 63.5 32491.91-.15 12525.91.17 141188.15.03 64.0 32837.15-.97 12683.55 1.06 142338.44.17 64.5 33184.95-.28 12841.10.30 143480.45.06 65.0 33531.68- 1.04 12998.43 1.15 144613.45.18 65.5 33877.01-.15 13156.00.16 145739.77.03 66.0 34223.79-.24 13315.75.25 146858.16.05 66.5 34568.41-.18 13470.74.19 147967.45.04 67.0 34911.19- 2.69 13625.54 2.94 149070.19.50

SM 1.01 16 A"R 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 35261.20- 2.10 13783.17 2.30 150163.38.39 68.0 35607.11-.31 13937.90.34 151248.99.06 68.5 35954.38-.16 14099.43.18 152326.58.04 69.0 36296.37- 1.1) 14257.55 1.20 153396.84.21 69.5 36646.28- 2.43 14411.21 2.65 154457.37.47 70.0 36993.54-.49 14571.38.54 155509.94.10 70.5 37334.04- 1.76 14731.55 1.92 156555.44.34 71.0 37680.77- 2.61 14885.35 2.86 157591.35.51 71.5 38023.79- 2.73 15040.87 2.98 158620.61.53 72.0 38370.03- 3.22 15200.39 3.52 159641.13.63 72.5 38716.57- 2.73 15356.59 2.98 160653.10.54 73.0 39063.98- 1.79 15517.95 197 161658.04 34 73.5 39407.97- 2.73 15670.46 2.97 162653.81.54 74.0 39748.38- 3.80 15828.89 4.14 163642.56.75 74.5 40092.92- 3.29 15982.68 3.59 164622.25.65 75.0 40440.30- 3.11 16139.91 3.39 165593.99.62 75.5 40784.59- 3.00 16299.98 3.27 166557.52.60 76.0 41128.70- 1.77 16455.82 1.93 167514.42.36 76.5 41474.43- 3.42 16614.73 3.72 168462.22.69 77.0 41817.84- 2.91 16772.32 3.16 169400.41.59

S'1 1.01 16 v' Aii 1959 TIME X(N) SIG X Y(W) SIG Y Z(iSL) SIG Z 77.5 42159.6C-.5 16929.52 3.86 170331.51.73 78." 42503.87- 4.49 17 39.76 4.89 171255.43.92 78.5 42847.48- 4.33 17245.41 4.71 172171.14.89 79.0 43193.56- 4.11 11399.65 I.20 173077.73.98 79.5 43538.53-.49 17558.'3 3.79 173977.02.72 80.0 43880.08- 5./4 177'4.46 5.89 174869.68 1.12 80.5 44221.97- 4.18 1/877.2' 4.54 175752.17.87 81.0 44569.45- 5.2 Q 18?].61.76 176625.65 1.10 81.5 44913.93- 3.7? 18188.21 4.06 177492.75.78 82.0 45259.30- 5.14 18347.24 5.61 178350.58 1.09 82.5 45604.43- 2.36 18505.87 2.56 179201.45.50 83.0 45945.78- 3.16 18667.76?3.43 18044.53.67 83.5 4629.45- 2.1 18823.7 2.31 180879.21.46 84.0 46629.47- 3.84 1898. J8 4.18 181706.02.82 84.5 46973.17- 4.3] 19136.76 4.69 182523.81.93 85.0 47321.51- 3.53 19293.23 3.84 183331.93.76 85.5 47658.45- 2.15 19455.45 2.33 184133.56.47 86.0 47999.56- 2.82 19607.14 3.07 184929.07.62 86.5 48341.99- 3.44 19765.92 3.75 185716.12.76

SM 1.01 16 MMAR 1959 TIME X(N) SIG X Y(') SIG Y Z (SL.) SIG Z 87. 0 48684.02- 3 45 19925.37 3.75 186493.01 76 87.5 49u22.7- 4.67 20 83.18 5.09 187262.54 1.03 88.0 49369.25- 2.68 2~242.4'+ 2.91 188023.03.60 88.5 497)9.81- 4.11 20392. 5 4.41 t88777.12.91 89. 0 50u52. 57- 2.62 20550.78 2.85 1952256.59 89.5 50393.77- 3F 22820708.51. 57 190260.16.73 90.0 50734.49- 3.24 20866.47 3.52 190990.06.73 90.5 51 76.44- 3.4 3 21026.40 3 74 191711 69.78 91.0 5 141623- 2.30 21179.73 2.51 192425.35.53 91.5 51755.66-.99 21339.6 3 4.35 193129.84.91 92.3 52097.70- ^.31 21496.69'.61 193827.01.76 92.5 52439.83- 6.1' 21650. 18 6.69 194515 35 1.40 93.0 5278.47- 3.96 2180 7.22 4.32 195197.24.91 93.5 5312.99- 4.94 21965.59 5.39 195871 51 1.14 94.0 53463.63- 3.56 22121. 1 3.88 196'35. 10 83 94.5 538 u2.23- o. v7 22279. 36 3. 35 197191.79.72 95.,O 54141. 63- 2.8 2249.,06 197839.60.66 95.5 54486.17- 5.34 225 4.2. "5.83 198479 72 1.25 96.0 54818.6- 4. 2 22754.74 4.60 199114 38.99

S M 1.01 16 MI R 195 TIME X(N) SIG X Y(W) IG Y Z(SL) SIG Z 96.5 55161.44- 5.57 22903.9' 6.09 199738.901.32 97.0 55502.59- 5.4 6 23u63.13 5.97 200355.14 1.30 97.5 55847.62- 3.9u 23220.96 4.26 200961.48.93 98.0 56183.39- 4.27 23377.23 4.67 201562.22 1.02 98.5 56521.98- 6.17 23531.52 6.75 202155.07 1.48 99.0 56864.16- 6.22 23669.53 6.81 202738.1 31.50 99.5 57203.13 - 4.09 238;,5.41 4.4 203315.19 1,00 1l0.0 57553.30- 1.06 2405,.14 1.i7 203881.54.27 104.5 60614.02- 6.86 25406.29 7.50 208638.64 1.71 109.5 63997. 08- 758 26982.81 8.29 213177.47 1.97 114.5 67360.15- 24.96 28512.45 27.31 216937.18 6.79 119.5 7063u.75- 1. 41 3 38.22 1.54 219917.47.39 124.5 73939.17- 12.u7 31527'.35 13.22 222105.42 3.58 129.5 77269.25- 3.1 9 33 91. 17 3.48 223494.07.98 130.0 77610.70-'3. l 33248. 8 3. 39 223586.4.95 130.5 77942.68- 2.7 3340 7.41 2.94 223675.42. 3 131.0 78279.79-3.9 33D62./ 3.37 223754. 9.96 131.5 78617.79- 1.6 33722. 1.8 7 223023.94.52 132.0 78954.15- 3.17 338b1.56 3.47 223886. i 1.00

SM 1.01 16 hAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 132.5 79288.63- 4. 5 34039.93 4.46 223941.37 1.26 133.0 79625.21- 2.28 34198.66 2.51 223987.76,71 133.5 79962.67- 3.13 34357.95 3.42 224026.64.98 134.0 80299.77- 4.74 34516.52 5.18 224058.55 1.50 134.5 80630.63- 3.18 34678.45 3.49 224083.07.99 135.0 80971.20- 3.57 34833.32 3.87 224097.40 1.13 135.5 81306.54- 3.12 34989.33 3.40 224105.17.99 136.0 81641.52- 3.54 35149.07 3.83 224104.77 1.13 136.5 81977.72- 2.70 35306.98 2.92 224096.22.85 137.0 82312.72- 2.43 35467.17 2.65 224081.39.77 137.5 82646.64- 2.13 35623.18 2.30 224058.82.67 138.0 82980.65-.87 35780.8,.,92 224027.38.25 138.5 83314.35- 1.1)'35938.24 1.29 223988.26.42 139.0 83651.44-.3, 36E97.98.42 223940.33.15 139.5 83988.21- 1.59 36259.06 1.69 223884.24.49 140.0 84323.C7-.89 36415.58.04 223821.14 36 140.5 84659.37-.16 3657,0.4.29 223750.97.07 141.0 4+993.73-.3. 36732.62.39 223672.79.06 141,5 85330.28-.14 3 680.69.32 223585.34.07

ST 1.0 16 E,,A, 1959 TIME X(N) $IG X Y(i) oCi Y iZ(MSL) sIi Z 142. 0 56664.94-.14 37 5.76.31 23490. 07 142.5 86 O0 31-.67 37 08.d2.73 223 8.17.16 143.0 86335.85- 1. O 37366.36 1.93 22 77.3.56 143.5 86671.41-.79 37525.57.85 223158.99.20 144.0 87"005.66-.63 37686.54.80 223034.62.30 144.5 87343.61-.89 37842.85.95 222900.59.24 145.0 87676.48-.30 37999.32.47 222757. i.18 145.5 88)008.44-.21 38163.47.34 222609. 09.07 146.0 88344.80 —.17 38319.61.35 222451.46.10 146.5 88679.78- 1.67 36476.93 1.77 222285.43.52 147.0 89017.93- 1. 2 386i3.91 1.09 222110.08.29 147.5 89353.53- 2.15 387'.79 2.31 221932.40.71 148.0 89686.09- 2.32 38956.33 2.49 221744.15.77 148.5 90)25.62- 1.67 39112.54 1.77 221544.02.54 149. 90359.71- 2. 3 37 271. 3 72.16 221 39. 3.66 149.5 9069u.24-.31 39433.11.40 221126.70.07 154.5 93910.38- 18.20 41,37.14 20.06 218599.61 7.24 159.5 97258.18- lt8.65 42618.09 20.55 215274.47 7.83 164.5 1006 00.5)0- 17.98 4420 v.97 19.83 211153.54 7.99

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 169.5 103928.98- 19.88 45784.00 21.92 206249.81 9.36 174.5 107252.06- 19.34 47367.21 21.34 200561.76 9.70 179.5 110576.67- 20.87 48948.95 23.05 194092.49 11.17 184.5 113884.86- 21.96 50515.61 24.27 186818.62 12.60 189.5 117189.17- 23.48 52088.49 25.96 178776.07 14.50 194.5 120482.91- 24.42 53650.65 27.03 169932.19 16.35 199.5 123768.44- 26.97 55215.05 29.88 160309.73 19.68 204.5 127044.10- 27.44 56764.92 30.44 149907.68 22.01 209.5 130313.09- 30.00 58307.37 33.33 138738.78 26.68 214.5 133561.42- 32.46 59838.38 36.13 126807.19 32.39 219.5 136800.76- 40.69 61374.96 45.37 114137.97 46.19 224.5 140002.27- 39.92 62863.14 44.61 100804.54 52.54 229.5 143152.56- 42.22 64321.63 47.29 86929.46 65.89 234.5 146197.15- 44.33 65713.66 49.76 72734.16 84.43 239.5 149088.72- 14.15 66977.62 15.95 58614.11 34.34

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 5.45-.42 6.59-.43 327.97 1.29 1.5 18.94-.45 7.95-.47 589.64.82 2.0 41.37-.81 1.14-.85 958.64 1.12 2.5 73.36-.94 11.63.99 1431.69 1.11 3.0 108.35-.85 27.79.89 1940.05.91 3,5 146.61-.76 43.95.79 2464.33.77 4.0 185.20-.72 60.40.75 3002.75.70 4.5 225.96-.51 78.26.53 3551.77.48 5.0 267.18-.34 97.07.36 4111.47.31 5.5 309.70-.24 115.62.25 4681.37.21 6.0 353.32-.07 134.76.07 5261.17.05 6.5 398.68-.26 155.45.27 5851.16.22 7.0 445.59-.37 176.48.39 6451.54.31 7.5 493.79-.17 198.15.18 7062.78.14 8.0 544.28-.25 220.49.26 7683.95.20 8.5 595.37-.77 242.14.80 8315.59.60 9.0 647.96- 1.10 264.44 1.15 8958.85.84 9.5 702.60- 1.51 287.74 1.57 9613.48 1.12 10.0 758.51- 1.55 311.88 1.62 10280.17 1.13

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 815.16- 1.13 337.13 1.18 10959.96.80 11.0 875.90-.41 363.31.43 11652.68.29 11.5 937.40-,30 389.53.31 12357.91.20 12.0 1000.68-.23 415.19.24 13077.02.15 12.5 1065.38-.22 441.07.23 13809.23.15 13.0 1130.69-.48 469.19.51 14555.55.31 13.5 1197.61-.64 497.41.67 15316.47.40 14.0 1265.49-.21 527.03.22 16092.66.13 14.5 1335.01-.41 558.77.43 16883.72.24 15.0 1404.78-.99 591.19 1.03 17690.20.57 15.5 1477.60-.87 624.45.92 18511.53.49 16.0 1552.80-.94 659.85.98 19349.24.52 16.5 1629.46-.64 695.77.67 20202.59.34 17,0 1708.40-.94 734.72.99 21073.92.49 17.5 1790.14- 1.18 774.62 1.24 21962.31.61 18.0 1873.62- 1.31 816.60 1.38 22869.23.66 18.5 1959.58- 1.30 859.92 1.37 23793.77.63 19.0 2048.82- 1.28 905.99 1.35 24737.41.61 19.5 2140.02-.97 952.34 1.02 25700.80.45

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 2235.17-.23 998.82.24 26684.10.11 20.5 2332.46- 2.23 1045.17 2.36 27687.45.98 21.0 2432.63- 3.04 1094.33 3.22 28713.27 1.31 21.5 2538.06- 2.98 1145.02 3.16 29761.44 1.25 22.0 2646.78- 3.24 1196.23 3.44 30832.29 1.32 22.5 2758.05- 3.32 1247.21 3.52 31927.33 1.32 23.0 2872.19- 3.64 1299.80 3.87 33046.67 1.40 23.5 2989.17- 3.48 1353.00 3.70 34191.31 1.31 24.0 3108.74- 4.13 1406.96 4.39 35361.75 1.50 24.5 3229.37- 3.52 1463.65 3.74 36559.64 1.25 25.0 3351.78- 3.42 1522.72 3.64 37785.34 1.18 25.5 3476.27- 3.14 1583.25 3.35 39039.56 1.05 26.0 3603.36- 2.68 1646.02 2.86 40324.15.87 26.5 3733.10- 2.68 1710.94 2.86 41639.73.85 27.0 3864.85- 2.45 1780.23 2.61 42988.41.75 27.5 4000.36- 1.92 1852.54 2.05 44370.38.57 28.0 4137.18- 2.18 1928.59 2.34 45787.36.63 28.5 4277.62- 2.16 2007.19 2.31 47240.57.60 29.0 4420.16- 2.06 2089.78 2.21 48730.85.56

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 4565.42- 1.67 2177.64 1.78 50260.06.44 30.0 4714.71- 2.10 2269.45 2.25 51829.39.53 30.5 4866.91- 2.88 2366.53 3.09 53440.21.71 31.0 5021.53- 1.89 2468.58 2.03 55093.34.45 31.5 5178.77- 2.02 2575.73 2.17 56790.94.47 32.0 5342.03- 1.93 2685.41 2.08 58533.41.43 32.5 5507.43- 3.06 2801.70 3.30 60323.10.66 33.0 5672.96- 3.11 2922.05 3.35 62161.07.65 33.5 5841.28- 3.21 3044.18 3.46 64049.79.65 34.0 6013.54- 4.45 3170.92 4.79 65991.24.87 34.5 6191.25- 4.13 3295.88 4.45 67985.73.78 35.0 6372.50- 5.67 3424.87 6.12 70025.12 1.04 35.5 6554.78- 4.67 3551.69 5.04 72069.38.83 36.0 6739.25- 4.45 3678.45 4.80 74098.12.76 36.5 6926.69- 4.52 3804.28 4.88 76111.43.75 37.0 7110.77- 3.85 3929.49 4.17 78109.67.62 37.5 7296.48- 4.01 4053.77 4.33 80093.13.63 38.0 7482.34- 4.65 4174.11 5.04 82061.83.72 38.5 7667.93- 5.25 4298.85 5.68 84016.71.79

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 7856.16- 6.06 4423.63 6.56 85958.71.88 39.5 8040.48- 5.40 4543.25 5.83 87885.78.77 40.0 8226.69- 6.09 4666.33 6.58 89800.48.85 40.5 8413.32- 5.94 4790.41 6.42 91703.03.80 41.0 8596.24- 5.69 4914.61 6.15 93593.87.75 41.5 8782.47- 6.34 5038.85 6.85 95473.41.82 42.0 8967.08- 6.34 5163.18 6.86 97341.35.80 42.5 9149.88- 6.05 5285.62 6.54 99197.56.75 43.0 9335.02- 7.07 5409.06 7.65 101043.39.86 43.5 9517.33- 6.15 5530.84 6.65 102878.64.74 44.0 9701.51- 7.26 5654.79 7.86 104704.04.85 44.5 9882.67- 7.66 5777.65 8.29 106519.00.88 45.0 10066.77- 8.04 5899.43 8.70 108324.47.91 45.5 10247.29- 7.05 6025.37 7.63 110119.38.79 46.0 10427.26- 6.62 6146.77 7.16 111904.28.73 46.5 10610.90- 6.97 6269.55 7.55 113680.18.75 47.0 10792.89- 7.68 6393.37 8*32 115446.44.82 47.5 10973.64- 6.31 6514.01 6.84 117202.99.66 48.0 11153.91- 6.02 6636.75 6.52 118950.73.63

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 11337.86- 7.65 6760.89 8.29 120689.20.78 49.0 11519.33- 7.69 6882.58 8.33 122417.96.78 49.5 11696.58- 5.49 7005.37 5.94 124137.99.55 50.0 11879.28- 7.13 7131.09 7.72 125849.07.70 50.5 12060.57- 8.06 7250.40 8.73 127551.37.79 51.0 12240.63- 6.74 7372.30 7.30 129245.27.65 51.5 12422.67- 8.35 7497.46 9.05 130930.35.80 52.0 12601.61- 6.70 7618.15 7.26 132606.44.64 52.5 12782.34- 8.08 7744.37 8.76 134273.71.76 53.0 12963.20- 8.95 7866.36 9.70 135932.17.83 53.5 13142.24- 7.67 7988.84 8.31 137582.30.70 54.0 13323.82- 8.17 8112.95 8.86 139224.13.75 54.5 13502.60- 7.89 8235.18 8.55 140857.25.72 55.0 13680.00- 9.17 8359.66 9.94 142482.30.83 55.5 13860.30- 8.07 8483.51 8.74 144098.34.72 56.0 14039.11- 7.71 8606.17 8.35 145705.98.68 56.5 14220.74- 8.13 8728.65 8.80 147305.26.72 57.0 14398.87- 7.91 8852.75 8.57 148896.04.69 57.5 14581.20- 9.01 8974.83 9.76 150478.99.79

SM 102 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 14759.75- 9.05 9097.97 9.80 152053.42.79 58.5 14939.14- 7.66 9223.52 8.30 153619.63.66 59.0 15115.66- 6.10 9345.01 6.60 155177.59.53 59.5 15296.43- 7.60 9470.01 8.23 156727.10.66 60.0 15472.59- 6.17 9593.74 6.68 158268.01.53 60.5 15654.63- 7.45 9715.63 8.07 159801.12.64 61.0 15835.09- 6.47 9840.37 7.00 161325.93.55 61.5 16014.46- 6.65 9962.87 7.20 162842.76.57 62.0 16191.08- 6.44 10088.96 6.97 164351.61.55 62.5 16368.82- 6.67 10217.57 7.22 165852.53.56 63.0 16549.11- 5.59 10338.47 6.04 167344.02.47 63.5 16728.01- 5.71 10463.80 6.18 168827.76.49 64.0 16903.21- 6.05 10588.67 6.55 170303.65.51 64.5 17082.36- 5.66 10710.60 6.13 171771.53.48 65.0 17263.25- 6.81 10832.87 7.37 173231.04.57 65.5 17440.83- 7.29 10961.66 7.89 174682.85.62 66.0 17618.10- 5.79 11083.32 6.26 176126.52.49 66.5 17799.32- 7.61 11207.71 8.24 177561.62.64 67.0 17976*65- 7.35 11331.05 7.96 178988.63.62

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 18154.67- 8.09 11457.16 8.76 180407.36.68 68.0 18331.72- 7.11 11582.78 7.69 181818.61.60 68.5 18509.68- 6.15 11707.75 6.65 183221.39.52 69.0 18691.57- 9.24 11830.26 10.01 184616.25.78 69.5 18866.42- 5.52 11957.34 5.96 186003.55.47 70.0 19044.42- 6.13 12078.71 6.63 187382.48.52 70.5 19221.20- 5.27 12203.15 5.69 188753.11.44 71.0 19400.29- 7.86 12330.69 8.50 190115.45.66 71.5 19578.00- 6.21 12449.79 6.71 191469.64.52 72.0 19756.75- 7.28 12581.08 7.87 192815.93.62 72.5 19934.85- 7.59 12702.61 8.21 194154.35.64 73.0 20110.66- 5.35 12828.11 5.77 195484.95.45 73.5 20290.93- 8.27 12954.01 8.94 196807.44.70 74.0 20471.48- 8.27 13077.98 8.95 198121.80.70 74.5 20651.38- 7.98 13201.11 8.63 199427.64.68 75.0 20824.17- 6.14 13326.41 6.63 200725.89.52 75.5 21006.36- 6.18 13448.66 6.67 202015.92.53 76.0 21181.50- 6.41 13575.97 6.92 203298.02.55 76.5 21358.06- 5.65 13702.85 6.09 204572.07.48

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 21538.44- 7.11 13825.17 7.68 205838.13.61 77.5 21714.93- 5.83 13946.45 6.29 207096.34.50 78.0 21897.26- 5.90 14073.76 6.37 208346.31.51 78.5 22074.68- 6.99 14198.20 7.54 209588.68.61 79.0 22251.61- 5.83 14323.39 6.28 210823.52.51 79.5 22427.72- 5.94 14449.41 6.39 212049.08.52 80.0 22606.26- 7.66 14575.58 8.27 213266.82.67 80.5 22783.58- 7.41 14701.22 8.00 214476.37.64 81.0 22964.88- 9.39 14827.62 10.16 215678.23.82 81.5 23140.93- 8.80 14948.32 9.51 216872.28.77 82.0 23316.89- 9.95 15077.67 10.76 218058.68.87 82.5 23494.69- 6.63 15201.76 7.15 219236.85.58 83.0 23670.80- 8.07 15328.97 8.71 220407.10.71 83.5 23853.09- 11.22 15455.45 12.14 221569.42.99 84.0 24030.20- 11.76 15584.38 12.72 222723.51 1.04 84.5 24205.26- 10.65 15707.24 11.52 223869.34.95 85.0 24381.03- 10.95 15834.49 11.85 225007.10.98 85.5 24559.11- 10.67 15956.79 11.54 226136.84.95 86.0 24733.68- 10.28 16085.45 11.13 227258.87.93

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 24914.19- 11.98 16208.68 12.97 228372.57 1.08 87.0 25093.92- 11.42 16334.06 12.36 229478.67 1.04 87.5 25270.80- 12.16 16461.34 13.17 230576.73 1.10 88.0 25453.24- 12.43 16584.50 13.45 231666.53 1.13 88.5 25629.17- 12.19 16715.88 13.19 232749.04 1.11 89.0 25802.35- 10.81 16842.02 11.69 233823.09.99 89.5 25985.89- 14.62 16969.23 15.83 234888.36 1.34 90.0 26160.86- 13.69 17094.77 14.82 235946.32 1.26 90.5 26336.67- 11.72 17219.94 12.67 236996.39 1.08 91.0 26511.36- 9.55 17350.26 10.28 238038.36.89 91.5 26686.62- 10.67 17480.21 11.49 239072.67.99 92.0 26859.03- 8.87 17607.01 9.55 240098.70.83 92.5 27037.58- 9.58 17730.28 10.33 241117.26.89 93.0 27216.60- 7.74 17852.50 8.32 242127.58.73 93.5 27392.91- 8.78 17984.74 9.44 243130.20.83 94.0 27570.44- 9.61 18112.32 10.38 244124.59.90 94.5 27752.49- 10.43 18233.42 11.27 245110.64.99 95.0 27928.39- 9.15 18360.27 9.86 246088.48.87 95.5 28102.48- 7.63 18486.73 8.24 247058.82.73

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 28280.65- 8.68 18610.69 9.36 248021.13.83 96.5 28459.28- 6.90 18734.98 7.44 248975.16.67 97.0 28634.46- 9.13 18862.09 9.85 249921.51.88 97.5 28812.96- 10.01 18989.68 10.81 250859.82.97 98.0 28989.71- 11.96 19117.16 12.92 251790.51 1.16 98.5 29163.05- 10.57 19242.89 11.40 252713.52 1.03 99.0 29341.63- 9.76 19368.20 10.50 253628.44.95 99.5 29516.13- 8.61 19492.37 9.21 254535.61.84 100.0 29692.12- 9.91 19621.75 10.61 255434.66.97 100.5 29863.33- 5.27 19747.40 5.54 256325.70.52 101.0 30044.00- 12.89 19874.87 13.82 257207.54 1.28 101.5 30221.85- 13.55 20004.64 14.54 258082.07 1.34 102.0 30397.64- 11.65 20130.90 12.46 258948.95 1.16 102.5 30572.44- 11.22 20257.01 11.99 259807.92 1.11 103.0 30748.06- 12.12 20384.65 12.97 260658.92 1.21 103.5 30927.43- 12.49 20507.90 13.36 261501.92 1.25 104.0 31101.57- 10.98 20636.94 11.70 262337.20 1.10 104.5 31282.63- 11.58 20760.25 12.36 263164.63 1.16 105.0 31453.32- 10.59 20894.46 11.28 263984.41 1.06

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 105.5 31630.26- 12.02 21017.44 12.85 264796.08 1.21 106.0 31808.42- 12.44 21146.98 13.30 265599.77 1.26 106.5 31985.23- 12.44 21274.44 13.32 266395.71 1.26 107.0 32162.16- 14.18 21401.15 15.19 267183.79 1.45 107.5 32341.25- 17.79 21524.12 19.07 267963*33 1.83 108.0 32524.06- 21.47 21648.66 23.07 268734.60 2.22 108.5 32701.23- 21.30 21777.22 22.90 269498.02 2.22 109.0 32876.10- 20.75 21902.74 22.28 270254.22 2.17 109.5 33050.02- 21.11 22034.00 22.69 271001.81 2.21 110.0 33224.32- 20.59 22164.73 22.11 271741.82 2.16 110.5 33400.45- 22.56 22289.75 24.24 272473.98 2.38 111.0 33580.75- 24.74 22413.75 26.60 273198.22 2.63 111.5 33760.67- 25.36 22534.56 27.30 273914.57 2.70 112.0 33938.66- 26.11 22661.03 28.09 274623*39 2.79 112.5 34104.87- 23.74 22792.65 25.51 275324.36 2.54 113.0 34280.25- 25.57 22920.92 27.49 276017.46 2.76 113.5 34458.37- 25.67 23052.38 27.57 276702.10 2.78 114.0 34633.79- 26.34 23178.82 28.33 277379.37 2.85 114.5 34810.25- 27.53 23301.23 29.61 278048.92 2.99

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 115.0 34989.04- 27.68 23427.05 29.76 278710.13 3.02 115.5 35235.17- 23418.64 279370.85 116.0 35435.95- 23518.08 280018.20 116.5 35571.83- 23656.43 280656.69 117.0 35702.31- 23818.67 281286.57 117.5 35899.55- 23931.99 281907.78 118.0 36068.93- 24055.38 282521.72 118.5 36242.07- 24193.60 283127.17 119.0 36428.52- 24302.04 283724.55 119.5 36598.34- 24434.74 284314.41 120.0 36768.35- 24568.67 284896.25 120.5 36945.10- 24693.36 285470.76 121.0 37120.72- 24825.34 286036.95 121.5 37293.53- 24951.23 286595.67 122.0 37475.20- 25075.49 287146.04 122.5 37648.20- 25199.34 287689.68 123.0 37822.68- 25330.50 288224.63 123.5 38000.96- 25447.97 288752.59 124.0 38154.86- 25587.76 289273.59

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 124.5 38346.70- 25689.29 289785.60

SM 1,03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 2.59-.32 17.74-.32 318.50 1.02 1.5 11.18-.11 40.80-.12 569.03.23 2.0 33.55- 1.07 71.16- 1.15 917.50 1.63 2.5 68.14- 1.50 104.80- 1.59 1372.59 1.94 3.0 102.22- 1.85 137.58- 1.96 1877.12 2.21 3.5 146.66-.87 167.89-.92 2403.47.98 4.0 190.59-.78 204.91-.82 2943.60.84 4.5 238.39-.10 243.52-.11 3497.45.11 5.0 287.87-.59 282.66-.62 4062.65.58 5.5 338.61-.81 323.52-.85 4638.83.78 6.0 391.43- 1.26 365.45- 1.32 5226.24 1.18 6.5 446.30- 1.34 408.37- 1.41 5824.57 1.23 7.0 502.43- 1.01 452.43- 1.06 6433.99.90 7,5 561.54- 1.22 497.87- 1.28 7055.20 1.07 8.0 622.69- 1.09 544.55- 1.15 7687.89.94 8.5 685.51- 1.02 592.19- 1.07 8332.47.85 9.0 750.99-.81 641.25-.85 8989.81.66 9.5 818.22-.07 691.27-.08 9659.68.05 10.0 889.39-.03 743.97-.04 10342.80.02

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 962.12-.15 797.39-.15 11039.81.12 11.0 1037.58-.49 852.34-.51 11750.74.38 11.5 1116.88-.43 908.48-.45 12475.80.32 12.0 1197.93-.50 966.35-.53 13215.44.37 12.5 1283.56- 1.95 1027.72- 2.06 13969.19 1.41 13.0 1372.14- 2.32 1090.23- 2.47 14738.52 1.64 13.5 1462.73- 2.31 1153.55- 2.46 15523.73 1.60 14.0 1555.83- 2.01 1218.86- 2.13 16325.14 1.36 14.5 1651.08- 1.64 1286.11- 1.75 17143.021.09 15.0 1749.14-.98 1354.43- 1.04 17977.48.64 15.5 1849.95-.02 1425.95-.03 18829.26.01 16.0 1952.01-.28 1499.41-.30 19698.91.17 16.5 2056.10-.59 1573.99-.64 20585.97.36 17.0 2164.34-.88 1648.79-.96 21491.80.52 17.5 2274.01-.75 1725.55-.81 22415.99.43 18.0 2385.22-.26 1804.74-.29 23359.34.14 18.5 2498.50-.62 1885.01-.66 24322.15.35 19.0 2616.35-.69 1965.37-.74 25305.10.38 19.5 2737.28-.53 2046.81-.56 26308.94.29

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 2860.82-.91 2128.83-.97 27334.59.47 20.5 2989.03-.70 2212.23-.75 28382.30.36 21.0 3121.44-.55 2296.98-,58 29452.96.27 21.5 3257.84-.54 2383.42-.58 30547.23.27 22.0 3399.03- 1.36 2471.83- 1.48 31666.47.63 22.5 3543.96- 1.53 2559.62- 1.67 32810.62.69 23.0 3691.95- 1.59 2647.90- 1.73 33981.14.71 23.5 3844.82- 1.53 2737.27- 1.67 35178.89.66 24.0 4002.66- 1.04 2828.28- 1.14 36405.19.44 24.5 4165.48- 1.66 2921.05- 1.81 37660.74.68 25.0 4333.55- 1.56 3014.52- 1.70 38946.98.63 25.5 4508.77- 1.63 3109.77- 1.79 40263.80.64 26.0 4692.30- 1.41 3206.12- 1.55 41611.59.54 26.5 4885.14- 1.18 3304.12- 1.29 42991.29.44 27.0 5088.47- 1.56 3400.81- 1.71 44404.00 57 27.5 5302.78- 1.01 3499.51- 1.11 45851.10.36 28.0 5529.36- 1.08 3598.75- 1.19 47333.76.37 28.5 5768.29-.66 3699.31-.73 48853.44.22 29.0 6021.99- 1.09 3801.56- 1.20 50410.91.36

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 6289.43- 1.51 3906.47- 1.66 52007.98.48 30.0 6571.99- 1.90 4016.69- 2.08 53646.11.60 30.5 6865.74- 2.27 4130.50- 2.49 55326.73.70 31.0 7175.27- 2.93 4248.95- 3.21 57051.37.88 31.5 7496.56- 3.18 4372.75- 3.48 58820.80.93 32.0 7833.13- 3.07 4502.21- 3.36 60636.60.88 32.5 8186.34- 2.09 4634.99- 2.29 62501.39.58 33.0 8552.54- 2.67 4770.92- 2.92 64416.16.73 33.5 8935.14- 2.17 4909.66- 2.38 66383.26.58 34.0 9328.03- 2.48 5053.02- 2.72 68385.49.65 34.5 9720.35- 2.66 5194.89- 2.91 70376.83.68 35.0 10114.04- 3.19 5338.34- 3.49 72351.29.80 35.5 10505.33- 3.48 5476.83- 3.81 74309.10.86 36.0 10895.27- 2.37 5613.95- 2.61 76250.52.58 36.5 11286.26- 2.70 5753.58- 2.96 78175.61.65 37.0 11677.71- 2.45 5891.57- 2.69 80084.88.58 37.5 12069.08- 2.68 6028.07- 2.95 81979.58.63 38.0 12456.74- 3.67 6162.82- 4.03 83860.51.85 38.5 12845.25- 2.81 6298.28- 3.09 85724.75.64

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 13235.33- 2.39 6432.08- 2.62 87578.40.54 39.5 13622.84- 3.23 6565.63- 3.54 89419.36.72 40.0 14008.57- 2.56 6697.46- 2.80 91248.29.57 40.5 14396.28- 2.03 6832.03- 2.23 93064.68.45 41.0 14779.76- 2.74 6963.81- 3.01 94869.87.61 41.5 15162.65- 3.11 7093.49- 3.41 96664.12.68 42.0 15547.21- 2.46 7224.39- 2.71 98446.30.53 42.5 15930.75- 2.43 7354.29- 2.67 100217.94.52 43.0 16314.57- 2.37 7484.00- 2.60 101979.26.51 43.5 16697.08- 2.25 7613.24- 2.48 103730.08.48 44.0 17078.74- 1.70 7740.97- 1.87 105471.05.36 44.5 17461.62- 2.64 7869.75- 2.91 107202.04.56 45.0 17843.01- 2.45 8000.85- 2.70 108921.31.52 45.5 18222.10- 2.62 8126.06- 2.89 110632.62.56 46.0 18603.58- 1.99 8255.06- 2.20 112333.40.42 46.5 18983.38- 3.43 8382.26- 3.77 114025.00.72 47.0 19362.77- 3.64 8509.18- 4.00 115707.56.76 47.5 19746.98- 1.54 8636.43- 1.70 117380.65.32 48.0 20124.32- 2.40 8762.73- 2.64 119044.70.50

SM 1,03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 20505.76- 1.32 8889.31- 1.45 120698.88.27 49,0 20883.07- 2.75 9014.42- 3.02 122344.67.56 49.5 21263.18- 1.49 9139.55- 1.64 123981.25.30 50.0 21643.55- 1.39 9266.39- 1.52 125608.51.28 50.5 22020.87- 1.91 9393.52- 2.10 127227.20.39 51.0 22401.22-.25 9521.34-.27 128836.27.05 51.5 22777.82- 1.09 9646.59- 1.20 130436.96.22 52.0 23155.56-.93 9773.44- 1.02 132028.75.18 52.5 23533.46-.47 9899.30-.52 133612.00.09 53.0 23907.69- 1.97 10022.38- 2.17 135187.65.40 53.5 24290.26-.53 10150.13-.59 136753.08.10 54,0 24665.31- 1.11 10272.40- 1.21 138311.78.22 54.5 25043.38- 1.00 10398.00- 1.09 139862.01.22 55.0 25421.42-.62 10521.13-.69 141401.91.14 55.5 25799.02-.95 10646.57- 1.05 142933.85.21 56.0 26174.38-.22 10769.12-.24 144458.17.05 56.5 26552.93-.62 10892.91-.69 145973.78.14 57.0 26931.21-.88 11018.62-.96 147480.67.17 57.5 27309.72-.03 11144.95-.04 148979.28.02

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 27686.25-.93 11267.32- 1.02 150470.39.18 58.5 28060.36- 1.24 11392.14- 1.36 151952.56.25 59.0 28428.49- 1.70 11512.14- 1.87 153428.19.35 59.5 28804.17- 2.13 11635.95- 2.33 154894.02.43 60.0 29178.78- 2.91 11758.30- 3.18 156351.89.60 60.5 29555.08- 2.73 11880.30- 2.99 157801.26.57 61.0 29932.45- 1.71 12005.23- 1.87 159242.19.35 61.5 30306.98-.70 12123.32-.76 160676.39.14 62.0 30683.69-.05 12246.86-.05 162100e76.01 62.5 31060.33-.54 12368.21-.59 163517.38.11 63.0 31438.39-.16 12491.81-.18 164925.38.05 63.5 31811.20- 1.11 12613.98- 1.21 166325.63.23 64.0 32188.85-.87 12736.28-.95 167717.28.18 64.5 32560.58- 1.54 12857.01- 1.70 169101.80.33 65.0 32940.00-.48 12981.42-.53 170477.01.09 65.5 33313.83-.99 13102.77- 1.08 171845.02.21 66.0 33688.73- 1.09 13224.61- 1.20 173204.36.23 66.5 34064.90-.94 13346.88- 1.04 174555.53.20 67.0 34437.24- 1.99 13468.63- 2.18 175899.14.42

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 34812.42-.97 13589.78- 1.07 177234.83.20 68.0 35188.44- 1.00 13714.90- 1.10 178561.75.21 68.5 35562.89- 1.14 13836.10- 1.26 179881.30.24 69.0 35939.88- 1.38 13955.99- 1.51 181192.72.29 69.5 36317.01-.11 14077.06-.12 182495.81.02 70.0 36689.22-.96 14197.50- 1.04 183790.85.20 70.5 37059.14- 1.36 14319.66- 1.49 185078.30.29 71.0 37434.65- 2.57 14441.01- 2.81 186356.56.56 71.5 37806.69- 2.02 14562.39- 2.21 187627.68.43 72.0 38185.77- 2.10 14682.36- 2.30 188890.01.46 72.5 38555.85- 3.43 14803.61- 3.76 190145.54.75 73.0 38935.14- 1.97 14922.75- 2.16 191392.31.43 73.5 39307.61-.45 15042.83-.49 192631.84.09 74.0 39684.61-.38 15163.56-.41 193861.98.08 74.5 40056.59- 1.77 15283.70- 1.94 195084.70.39 75.0 40431.46- 2.34 15403.98- 2.57 196298.99.52 75.5 40806.06- 2.71 15523.38- 2.98 197505.29.60 76.0 41178.14- 3.03 15642.32- 3.33 198704.05.68 76.5 41550.74- 2.68 15761.96- 2.94 199894.90.60

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 41925.79- 3.55 15884.03- 3.90 201077.32.80 77.5 42301.74- 1.81 16004.60- 1.99 202251.70.40 78.0 42674.52- 2.97 16122.51- 3.26 203419.21.67 78.5 43049.48- 1.68 16240.24- 1.84 204577.60.38 79.0 43425.06-.73 16361.13-.80 205727.38.16 79.5 43801.20-.71 16481.30-.77 206869.35.15 80.0 44176.13-.17 16598.68-.19 208003.95.05 80.5 44548.13-.93 16715.36- 1.02 209131.08.21 81.0 44919.34- 2.92 16836.96- 3.20 210249.62.67 81.5 45292.07- 2.83 16956.93- 3.10 211360.41.65 82.0 45663.16- 2.95 17074.81- 3.23 212463*96.68 82.5 46036.75- 3.34 17198.27- 3.66 213558.29.77 83.0 46409.39- 3.54 17315.43- 3.88 214645.28.82 83.5 46785.35- 2.04 17433.19- 2.24 215723.46.47 84.0 47160.27- 1.30 17550.34- 1.43 216793.65.30 84.5 47533.39-.53 17667.14-.58 217856.13.12 85.0 47906.66- 1.74 17786.87- 1.92 218910.43.41 85.5 48279.88- 1.16 17902.02- 1.28 219957.33.27 86.0 48650.68- 2.44 18021.70- 2.68 220995.79.57

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 49021.93- 2.67 18138.67- 2.93 222026.97.63 87.0 49393.08- 3.31 18257.27- 3.63 223050.07.79 87.5 49766.36- 3.67 18376.83- 4.02 224064.73.87 88.0 50139.01- 3.26 18493.69- 3.57 225071.36.78 88.5 50514.94- 2.55 18614.13- 2.79 226068.87.61 89.0 50884.87- 3.83 18727.77- 4.19 227060.49.92 89.5 51256.57- 3.29 18847.21- 3.58 228042.81.79 90.0 51633.83- 3.70 18968.78- 4.06 229016.23.89 90.5 52003.89- 3.84 19080.56- 4.21 229984.59.93 91.0 52372.91- 5.91 19199.43- 6.49 230944.04 1.44 91.5 52743.13- 5.95 19316.74- 6.54 231895.60 1.46 92.0 53112.90- 7.19 19431.99- 7.88 232839.50 1.76 92.5 53488.98- 6.56 19550.04- 7.21 233774.441.61 93.0 53861.62- 6.70 19665.43- 7.35 234701.68 1.66 93.5 54234.11- 3.02 19784.61- 3.33 235620.26.75 94.0 54605.02- 5.62 19895.93- 6.17 236532.08 1.40 94.5 54979.62- 3.32 20013.53- 3.67 237434.21.83 95.0 55355.02- 2.36 20131.63- 2.59 238327.84.59 95,5 55724.52- 2.15 20250.12- 2.35 239214.61.54

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 56095.99- 3.10 20366.85- 3.37 240093.11.78 96.5 56463.65- 4.38 20484.87- 4.79 240964.64 1.10 97.0 56835.09- 4.75 20599.30- 5.21 241828.08 1.20 97,5 57207.10- 6.02 20718.03- 6.63 242683.04 1.53 98.0 57579.29- 3.40 20831.24- 3.76 243531.37.86 98.5 57950.05- 5.38 20949.64- 5.93 244371.00 1.37 99.0 58327.63- 6.07 21065.78- 6.67 245201.66 1.55 99.5 58701.77- 4.84 21178.92- 5.35 246024.86 1.24 100.0 59075.42- 4.00 21293.98- 4.41 246839.84 1.02 100.5 59444.06- 3.51 21411.90- 3.88 247647.72.89 101.0 59814.90- 3.81 21524.44- 4.20 248447.74.98 101.5 60179.63- 6.12 21639.11- 6.72 249241.17 1.58 102.0 60552.40- 6.14 21753.18- 6.75 250024.70 1.60 102.5 60928.13- 2.33 21868.54- 2.58 250800.00.60 103.0 61298.24- 5.87 21986.98- 6.45 251567.72 1.53 103.5 61670.93- 4.75 22102.37- 5.25 252327.84 1.24 104.0 62043.26- 4.09 22217.42- 4.52 253079.81 1.07 104.5 62418.94- 2.80 22329.26- 3.10 253823.92.73 105.0 62792.24- 3.64 22443.08- 4.00 254560.48.95

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 105.5 63164.47- 1.83 22556.40- 2.03 255288.88.47 106.0 63535.93- 4.80 22667.62- 5.26 256010.14 1.27 106.5 63897.37- 3.04 22770.73- 3.34 256725.79.80 107.0 64263.54- 1.69 22888.44- 1.84 257430.57.44 107.5 64632.55- 1.40 23003.53- 1.48 258127.17.36 108.0 64999.15- 3.52 23115.71- 3.83 258816.82.94 108.5 65367.83- 3.67 23231.51- 4.01 259497.74.98 109.0 65736.60- 2.41 23344.84- 2.61 260171.16.64 109.5 66110.59- 3.19 23459.62- 3.45 260835.43.85 110.0 66481.01-.71 23569.87-.75 261492.95.18 110.5 66853.49- 2.25 23679.75- 2.44 262142.10.60 111.0 67223.90- 2.66 23792.61- 2.90 262783.50.72 111.5 67595.64- 1.49 23906.84- 1.61 263416.55.40 112.0 67966.88- 2.89 24020.46- 3.14 264041.87.79 112.5 68340.08- 4.39 24132.46- 4.80 264659.09 1.20 113.0 68711.06- 4.66 24246.29- 5.13 265269.09 1.29 113.5 69083.17- 3.34 24360.90- 3.67 265870.68.92 114.0 69458.88- 2.17 24472.88- 2.37 266463.37.59 114.5 69832.60- 3.87 24588.28- 4.21 267048.01 1.07

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 115.0 70204.57- 3.16 24703.62- 3.44 267624.79.88 115.5 70577.12- 2.87 24819.19- 3.10 268193.46.80 116.0 70953.92- 4.37 24940.97- 4.73 268752.77 1.23 116.5 71332.92- 6.18 25062.48- 6.74 269304.03 1.76 117.0 71696.10- 7.96 25163.03- 8.70 269853.52 2.27 117.5 72067.70- 8.37 25275.43- 9.12 270391.95 2.39 118.0 72434.61- 7.18 25388.84- 7.79 270923.70 2.06 118.5 72800.55- 5.55 25501.02- 6.01 271447.90 1.60 119.0 73161.71- 8.03 25607.52- 8.75 271965.05 2.32 119.5 73530.77- 6.54 25718.27- 7.11 272472851.90 120.0 73901.45- 7.28 25830.75- 7.92 272971.92 2.12 120.5 74270.86- 5.53 25941.77- 6.01 273463.18 1.61 121.0 74642.66- 4.83 26053.44- 5.25 273946.21 1.42 121.5 75015.35- 3.26 26171.82- 3.49 274419.78.96 122.0 75382.95- 4.91 26283.09- 5.34 274888.03 1.45 122.5 75751.58- 5.03 26395.18- 5.46 275348.20 1.49 123.0 76122.33- 5.06 26507.59- 5.52 275800.02 1.52

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 26.59-.70 28.00-.73 334.48 2.09 1.5 70.95-.27 59.77- *28 604.26.49 2.0 139.25-.91 96.89-.97 980.16 1.25 2.5 222.50- 1.16 143.30- 1.23 145561 1.39 3.0 316.73- 1.17 191.53- 1.23 1967.76 1.29 3.5 414.81- 2.30 240.80- 2.43 2496.48 2.40 4.0 517.71- 1.25 294.06- 1.31 3034.91 1.25 4.5 625.35- 1.47 346.16- 1.56 3585.45 1.43 5.0 734.31- 1.79 398.33- 1.89 4146.99 1.68 5.5 846.86- 2.17 451.97- 2.30 4720.04 2.00 6.0 960.64- 1.22 505.52- 1.29 5303.44 1.10 6.5 1076.81-.05 558.63-.05 5897.38.04 7.0 1200.71- 1.35 617.44- 1.43 6502.75 1.16 7.5 1331.47-.49 672.19-.52 7123.06.41 8.0 1461.47-.90 731.48-.96 7754.38.74 8.5 1590.52-.55 790.52-.59 8396.72.45 9.0 1725.83-.87 854.66-.93 9052.89.69 9.5 1874.89- 2.44 914.55- 2.61 9725.54 1.90 10.0 2027.28- 4.03 979.22- 4.33 10408.86 3.08

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 2177.20- 3.62 1046.67- 3.90 11106.54 2.72 11.0 2330.67- 1.74 1115.84- 1.88 11818.61 1.28 11.5 2497.77- 3.16 1184.81- 3.41 12546.96 2.28 12.0 2661.85- 3.81 1258.29- 4.12 13290.36 2.69 12.5 2826.16- 2.33 1330.11- 2.52 14049.58 1.61 13.0 3001.02- 2.56 1409.48- 2.78 14824.56 1.74 13.5 3179.42- 1.73 1497.95- 1.88 15610.93 1.16 14.0 3361.22- 1.42 1576.92- 1.54 16416.54.93 14.5 3551.63- 2.96 1660.01- 3.23 17236.68 1.90 15.0 3751.92- 1.41 1742.19- 1.53 18074.05.88 15.5 3947.11- 2.06 1825.44- 2.25 18927.96 1.27 16.0 4156.11-.38 1910.89-.42 19800.27.23 16.5 4366.49- 3.97 2011.65- 4.34 20683.43 2.34 17.0 4583.03- 4.75 2102.85- 5.21 21587.77 2.75 17.5 4805.95- 3.54 2194.24- 3.88 22512.32 2.00 18.0 5036.19- 1.01 2287.52- 1.10 23455.33.56 18.5 5269.03- 2.51 2384.72- 2.76 24416.06 136 19.0 5513.51- 1.85 2486.79- 2.03 25394.95.98 19.5 5766.15- 1.60 2585.60- 1.76 26395.63.83

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 6024.43- 1.92 2684.36- 2.11 27418.49.97 20.5 6296.39- 3.91 2785.02- 4.31 28461.84 1.94 21.0 6563.51- 2.68 2897.86- 2.96 29526.56 1.30 21.5 6847.04- 3.61 3007.36- 3.99 30612.72 1.72 22.0 7134.20- 5.09 3117.03- 5.63 31725.41 2.38 22.5 7427.04- 3.51 3236.39- 3.88 32858.51 1.60 23.0 7728.39- 3.67 3355.14- 4.07 34018.84 1.64 23.5 8038.78- 2.95 3477.18- 3.26 35202.73 1.29 24.0 8353.89-.04 3606.31-.05 36414.23.02 24.5 8673.24- 3.06 3737.98- 3.39 37652.53 1.29 25.0 9013.35- 1.02 3863.69- 1.12 38919.69.42 25.5 9353.34- 2.97 3996.01- 3.29 40218.06 1.21 26.0 9701.82- 5.35 4135.77- 5.93 41543.52 2.13 26.5 10070.54- 3.71 4269.07- 4.11 42902.40 1.45 27.0 10436.83- 5.54 4411.43- 6.14 44293.98 2.13 27.5 10821.54- 6.00 4556.31- 6.65 45718.16 2.26 28.0 11219.45- 3.75 4699.42- 4.16 47176.721.39 28.5 11625.62- 3.00 4847.49- 3.34 48672.83 1.10 29.0 12042.85- 3.99 5001.98- 4.43 50205.73 1.43

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 12474.22- 2.65 5155.25- 2.94 51777.25.94 30.0 12912.71- 4.32 5321.96- 4.79 53387.70 1.50 30.5 13370.96- 3.11 5485.72- 3.45 55038.37 1.07 31.0 13834.71- 2.87 5657.17- 3.19 56727.60.97 31.5 14315.27- 3.45 5831.26- 3.83 58449.92 1.15 32.0 14799.27- 3.05 6007.66- 3.38 60191.56 1.01 32.5 15284.97- 2.88 6185.46- 3.19 61925.61.94 33.0 15768.11- 3.64 6360.03- 4.04 63644.04 1.18 33.5 16249.46- 2.94 6534.68- 3.26 65341.37.95 34.0 16726.62- 2.95 6707.80- 3.27 67021.01.94 34.5 17201.82- 3.24 6879.23- 3.59 68682.46 1.02 35.0 17672.99- 3.02 7051.83- 3.35 70326.15.95 35.5 18142.29- 3.91 7221.86- 4.34 71953.79 1.22 36.0 18609.99- 3.35 7391.43- 3.71 73565.49 1.04 36.5 19076.13- 4.13 7560.41- 4.58 75162.00 1.28 37.0 19539.85- 3.74 7726.81- 4.15 76743.91 1.15 37.5 20000.55- 3.29 7891.74- 3.65 78311.96 1.01 38.0 20460.44- 2.66 8057.54- 2.94 79865.55.81 38.5 20918.17- 2.95 8223.68- 3.27 81406.06.90

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 21375.46- 3.47 8389.59- 3.85 82933.34 1.06 39.5 21830.98- 3.21 8553.84- 3.56 84448.60.97 40,0 22285.84- 3.56 8715.86- 3.95 85951.61 1.08 40,5 22738.33- 2.89 8877.56- 3.20 87442.80.87 41.0 23188.23- 2.74 9040.93- 3.03 88921.98.82 41.5 23639.96- 2.63 9202.99- 2.91 90389.61.79 42.0 24089.43- 3.49 9365.34- 3.88 91846.49 1.05 42.5 24539.89- 3.60 9526.54- 4.00 93291.98 1.08 43.0 24990.84- 4.05 9686.69- 4.49 94726.73 1.22 43.5 25439.15- 4.12 9848.19- 4.56 96150.54 1.24 44.0 25886.58- 4.09 10008.34- 4.53 97564.42 1.23 44.5 26333.68- 4.30 10168.86- 4.76 98968.08 1.29 45.0 26781.47- 4.48 10327.11- 4.96 100361.81 1.34 45.5 27228.93- 4.18 10484.17- 4.63 101745.49 1.26 46.0 27672.97- 4.83 10641.63- 5.35 103119.72 1.45 46.5 28116.30- 5.50 10800.07- 6.09 104484.10 1.66 47.0 28559.20- 5.78 10959.29- 6.40 105839.23 1.75 47.5 29003.47- 6.17 11117.12- 6.83 107184.72 1.86 48.0 29447.20- 5.79 11274.54- 6.41 108520.70 1.75

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 29887.41- 6.26 11432.24- 6.93 109847.44 1.89 49.0 30327.12- 6.64 11590.21- 7.34 111165.07 2.01 49.5 30769.26- 5.83 11747.80- 6.46 112473.34 1.76 50.0 31209.77- 5.86 11903.38- 6.49 113772.82 1.78 50.5 31651.75- 6.13 12059.30- 6.79 115063.03 1.86 51.0 32090.38- 6.54 12216.45- 7.24 116344.82 1.99 51.5 32531.11- 7.42 12371.97- 8.22 117617.60 2.27 52.0 32969.82- 7.16 12526.63- 7.93 118881.62 2.19 52.5 33407.11- 7.22 12683.81- 7.99 120136.20 2.21 53.0 33843.51- 6.86 12839.64- 7.60 121382.67 2.11 53.5 34281.80- 7.79 12995.53- 8.63 122620.32 2.39 54.0 34705.84- 13137.03- 123855.28 54.5 35143.40- 13292.17- 125075.32 55.0 35579.86- 13445.92- 126287.42 55.5 36019.80- 13602.48- 127489.29 56.0 36459.38- 13758.39- 128682.94 56.5 36896.90- 13912.70- 129869.12 57.0 37334.92- 14065.76- 131046.75 57.5 37771.22- 14216.92- 132216.49

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL.) SIG Z 58.0 38208.06- 14370.04- 133377.54 58.5 38644.80- 14521.96- 134530.41 59.0 39081.20- 14671.91- 135674.87 59.5 39516.39- 14823.31- 136810.68 60.0 39953.72- 14975.21- 137937.92 60.5 40390.78- 15125.46- 139056.64 61.0 40826.12- 15277.35- 140167.35 61.5 41261.76- 15428.05- 141270.36 62.0 41695.69- 15578.75- 142365.03 62.5 42130.58- 15729.16- 143451.06 63.0 42564.43- 15880.21- 144528.40 63.5 42996.24- 16026.45- 145598.85 64.0 43432.62- 16177.54- 146659.20 64.5 43869.81- 16328.82- 147711.05 65.0 44300.88- 16476.93- 148756.82 65.5 44734.28- 16627.62- 149793.43 66.0 45167.60- 16779.17- 150821.20 66.5 45601.84- 16931.17- 151840.11 67.0 46035.01- 17083.56- 152851.53

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 46468.98- 17233.02- 153855.24 68.0 46906.80- 17384.09- 154849.30 68.5 47341.00- 17535.20- 155835.90 69.0 47771.92- 17685.61- 156815.77 69.5 48205.65- 17836.96- 157786.29 70.0 48639.59- 17989.48- 158748.46 70.5 49073.77- 18143.80- 159702.39 71.0 49502.94- 18293.70- 160649.88 71.5 49930.44- 18443.02- 161589.61 72.0 50361.18- 18592.86- 162520.81 72.5 50794.25- 18744.15- 163442.97 73.0 51227.89- 18894.44- 164356.75 73.5 51660.20- 19042.47- 165263.16 74.0 52093.90- 19191.67- 166160.99 74.5 52525.32- 19338.04- 167051.28 75.0 52957.07- 19486.23- 167933.06 75.5 53389.96- 19635.38- 168806.66 76.0 53821.90- 19785.51- 169672.39 76.5 54253.09- 19936.59- 170529.62

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 54680.60- 20079.0- 171381.41 77.5 55115.24- 2C228.18- 172222.61 78.0 55545.26- 20374.39- 173057.36 78.5 55978.99- 20521.62- 173882.50 79.0 56412.81- 20669.00- 174699*38 79.5 56841.34- 20813.11- 175510.55 80.0 57272.81- 20961.02- 176311.74 80.5 57707.80- 21109.76- 177103.92 81.0 58137.90- 21257.42- 177889.78 81.5 58568.84- 21407.61- 178666.82 82.0 58999.93- 21556.59- 179435.83 82.5 59429.82- 21709.37- 180196.67 83.0 59856.25- 21861.25- 180950.82 83.5 60277.01- 22012.59- 181697.97 84.0 60692.80- 22159.67- 182439.10 84.5 61108.38- 22301.30- 183173.26 85.0 61532.16- 22442.89- 183897.65 85.5 61959.87- 22587.17- 184611.95 86.0 62391.14- 22734.24- 185316.43

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 62819.67- 22881.48- 186013.24 87.0 63251.04- 23024.96- 186702.00 87.5 63680.26- 23172.73- 187382.80 88,0 64109.79- 23320.14- 188055.26 88.5 64536.47- 23463.97- 188721.25 89.0 64964.88- 23610.16- 189377.53 89,5 65393.29- 23755.39- 190025.28 90.0 65818.67- 23896.65- 190667.18 90.5 66240.26- 24036.69- 191302.61 91.0 66659.64- 24181.68- 191929.35 91.5 67086.46- 24339.78- 192543.50 92.0 67508.97- 24499.57- 193150.10 92.5 67932.91- 24661.71- 193747.83 93.0 68352.59- 24826.35- 194338.42 93.5 68783.94- 24984.84- 194918.45 94.0 69208.85- 25131.12- 195494.47 94.5 69639.09- 25278.54- 196061.18 95.0 70071.01- 25430.23- 196619.18 95.5 70499.05- 25574.81- 197171.09

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 70925.98- 25721.86- 197714.99 96.5 71349.98- 25863.04- 198252.78 97.0 71778.73- 26007.32- 198781.26 97.5 72205.46- 26154.14- 199301.70 98.0 72633.85- 26299.86- 199813.97 98.5 73059.11- 26444.50- 200319.14 99.0 73485.02- 26589.83- 200815.80 99.5 73907.90- 3.20 26734.14- 3.54 201306.13 1.27 100.0 74332.56- 4.25 26878.6u- 4.70 201787.61 1.70 100.5 74757.03- 4.23 27u2U.80- 4.68 202261.u9 1.70 101.0 75181.13- 3.59 27166.22- 3.97 202726.01 1.45 101.5 75604.35- 3.41 27313.51- 3.78 203183.10 1.38 102.0 76027.19- 2.93 27462.89- 3.25 203631.99 1.19 102.5 76449.16- 2.45 27610.u7- 2.71 204073.62 1.00 103.0 76874.58- 1.17 27754.47- 1.30 204506.30.48 103.5 77301.43-.95 27899.68- 1.06 204930.64.39 104.0 77726.30- 1.24 28041.76- 1.38 205348.08.51 104.5 78151.19- 1.2 2817.15- 1.36 205756.75.51 105.0 78578.46-.91 2833.85- 1.01 206157.06.37 105.5 79006.91- 1.99 28475.43- 2.19 206548.83.82

S9 1. 04 ] c6 1A R ] 950 TIMYE X(N) x I a XOG Y Z( SL) 1 Z 106.0 79432.85-.1] 28625.65-.13 206932.47.05 1 0 6.5 79861.91 - 9. 28 70. 26-.99 207307.55.38 107.0 80287..j4- 1.7 2o691.39- 1.30 207675.76.49 107. 5 8071 2. u2- 2. 54. 2.82 22 2 8036.22 1 08 108.0 81129.66- 4.4 29209. 8- 4.87 208389.30 1.7 108.5 81549.14- 6. 14 2356.25- 6.79 208734.63 2.62 109.0 81974.12- 4.:1 295o1.83- 5.43 209070.58 2.10 109.5 82396.54- 4. 1 29647. 3- 4.55 209399.59 1.76 110.0 8281.47- 3. 7 29792. 64- 3.39 209721.041.32 110.5 83239.02- 1.59 29936.85- 1.77 210035.37.69 111.0 83661.54-.92 3J 3.45- 1.,1 210340.87.41 111.5 84083.53- 1.4j 3 2/7.25- 1.54 210638.74.62 112.0 84512.95- 1.44 30369.66- 1.58 210926.41.63 112.5 84937.76-.42 3J515.33-.47 211206.80.18 113.0 85360.15- 2.13 3u661.64- 2.36 211480.35.94 113.5 85782.50- 2.42 30807.85- 2.67 211745.99 1.06 114.0 86207.06- 2.55 30953.41- 2.82 212002.91 1.12 114.5 86628.34- 1.27 31 97.63- 1.42 212253.55.56 115.0 87051.14-.42 31243.31-.47 212494.75.18

SM 1. 0'4 16 MA R 1959 TIME X(N) 3SI X Y(M ) SIG Y Z(MSL.) SIG Z 115.5 87473.95-.69 31387.31-.76 212728.24.32 116.0 87893.51- 2.69 3153U.91- 2.97 212955.11 1.23 116.5 88308.36- 4.63 3167.39- 5.13 213176.66 2.10 117.' 88724.61- 5.82 31811.63- 6.44 213389.41 2.66 117.5 89143.26- 6.61 31952.53- 7.31 213593.51 3.03 118.0 89561.88- 5.83 32J97.0u- 6.46 213789.06 2.68 118.5 89978.10- 3. 0 32241.57- 3.33 213977.56 1.39 119.0 90394.14-.81 32385.26-.89 214158.44.39 119.5 90811.47-.45 32525.45-.51 214331.49.22 120.0 91228.89- 1.73 32664.58- 1.92 214496.72.82 120.5 91645.28- 1.77 32801.92- 1.96 214654.81.84 121.0 92066.35- 1.93 32940.58- 2.10 214803.05.91 121.5 92488.29- 4.01 33079.39- 4.46 214943.31 1.90 122.0 92912.88- 6.74 33217.29- 7.47 215075.28 3.20 122.5 93336.97- 8.92 33357.42- 9.89 215199.12 4.25 123.0 93758.61- 9.01 33496.34- 9.97 215316.31 4.31 123.5 94179.58- 6.94 33639.86- 7.68 215425.12 3.34 124.0 94599.98- 4.32 33785.66- 4.79 215525.83 2.10 124.5 95018.91- 1.94 33935.79- 2.16 215618.33.95

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 124.5 26910.06-.27 4144.76-.26 289127.48.03.5 11,29- 1.08,34- 1.24 244.16 4.82 1.0 38,35- 4.16,80- 4.62 447.17 9.38 1.5 65.04- 3.76 7.14- 4.11 750.51 5.89 2.0 99.45- 4.03 13.32- 4.33 1157.84 5.17 2.5 140.88- 3.11 19.71- 3.30 1652.89 3.55 3.0 181.91- 2.78 28.46- 2.93 2168.13 2.96 3.5 223.31- 2.58 38.36- 2.71 2695.87 2.63 4.0 266.24- 2.48 48.84- 2.60 3234.29 2.43 4.5 310.45- 2.48 59.56- 2.59 3781.47 2.36 5.0 355.99- 2.29 70.52- 2.40 4337.702.12 5.5 401.71- 2.30 82.98- 2.40 4903.77 2.08 6.0 449.13- 2.55 95.34- 2.67 5478.38 2.26 6.5 496.81- 2.53 109.11- 2.64 6063.64 219 7.0 545.18- 2.70 123.32- 2.82 6658.51 2.29 7.5 596.54- 2.65 137.37- 2.77 7263.66 2.20 8.0 648.39- 2.48 151.97- 2.59 7879.86 2.02 8.5 701.40- 2.23 166.93- 2.34 8507.09 1.79 9.0 754.79- 2.90 182.29- 3.03 9144.74 2.27

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 9.5 808.19- 2.93 199.07- 3.06 9795.70 2.25 10.0 863.02- 3.75 215.24- 3.93 10457.31 2.82 10.5 918.71- 3.50 231.52- 3.67 11132.87 2.59 11.0 975.40- 4.20 250.70- 4.41 11820.67 3.04 11.5 1036.11- 4.09 268.96- 4.31 12521.86 2.91 12.0 1098.77- 3.04 287.11- 3.20 13237.53 2.12 12.5 1163.02- 2.39 305.86- 2.51 13967.241.63 13.0 1227.51- 2.28 323.70- 2.40 14711.04 1.53 13.5 1292.24- 2.20 342.01- 2.32 15469.91 1.44 14.0 1357.96- 2.98 361.89- 3.14 16243.60 1.91 14.5 1426.66- 3.43 381.88- 3.62 17033.95 2.16 15.0 1495.21- 2.96 398.33- 3.13 17842.91 1.82 15.5 1563.39- 3.25 417.31- 3.43 18668.25 1.95 16.0 1633.02- 3.75 438.86- 3.96 19511.14 2.21 16.5 1706.30- 2.40 458.02- 2.53 20374.17 1.38 17.0 1781.22- 2.25 479.17- 2.38 21255.50 1.27 17.5 1856.06- 1.33 500.97- 1.41 22158.37.73 18.0 1929.17- 1.82 523.62- 1.93 23080.99.98 18.5 2003.27- 2.53 546.73- 2.68 24024.47 1.33

SM 1.05 16 MAR 1959 T!TE X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 19.0 2080.51- 4.06 567.37- 4.32 24989.83 2.08 19.5 2160.47- 3.26 586.93- 3.46 25978.71 1.63 20.0 2239.68- 3.47 610.07- 3.69 26989.99 1.69 20.5 2317.10- 3.63 633.82- 3.86 28024.92 1.73 21.0 2396.15- 1.62 654.95- 1.72 29085.98.75 21.5 2475.68-.81 676.99-.86 30170.85.37 22.0 2554.77-.79 699.53-.83 31280.57.35 22.5 2637.58- 2.16 719.67- 2.30 32417.15.93 23.0 2718.66- 1.94 740.84- 2.06 33581.45.81 23.5 2807.21-.93 762.09-.99 34773.37.38 24.0 2895.92- 1.24 787.86- 1.32 35993.46.50 24.5 2978.48- 1.43 810.81- 1.53 37242.85.56 25.0 3066.11- 1.61 832.52- 1.71 38522.46.61 25.5 3153.18-.90 853.10-.95 39833.01.33 26.0 3243.52- 2.58 880.03- 2.76 41174.19.93 26.5 3331.37- 4.53 897.52- 4.86 42549.19 1.58 27.0 3421.09- 4.78 921.63- 5.12 43958.411.62 27.5 3516.97- 3.63 941.40- 3.90 45403.271.20 28.0 3610.73- 3.81 961.37- 4.09 46884.551.22

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 28.5 3713.89- 2.51 984.02- 2.69 48403.76.78 29.0 3808.45- 5.36 1004.03- 5.76 49961.681.63 29.5 3912.06- 4.59 1025.78- 4.93 51560.49 1.35 30.0 4014.47- 4.15 1045.68- 4.46 53201.31 1.19 30.5 4123.66- 3.45 1067.88- 3.71 54886.12.96 31.0 4229.09- 5.70 1089.75- 6.13 56614.93 1.54 31.5 4342.66- 5.28 1110.96- 5.69 58390.771.39 32.0 4454.81- 5.91 1134.19- 6.36 60213.21 1.51 32.5 4575.40- 5.41 1155.66- 5.83 62083.84 1.34 33.0 4693.43- 6.25 1179.84- 6.74 63999.90 1.51 33.5 4817.60- 5.25 1198.66- 5.67 65958.26 1.23 34.0 4945.67- 6.08 1225.32- 6.56 67947.85 1.38 34.5 5069.63- 7.07 1247.93- 7.63 69958.97 1.57 35.0 5200.42- 6.62 1269.15- 7.15 71986.90 1.43 35.5 5327.84- 7.45 1297.64- 8.06 74003.26 156 36.0 5453.75- 7.64 1315.05- 8.26 76005.84 1.56 36.5 5582.39- 7.11 1339.08- 7.69 77992.89 1.42 37.0 5707.99- 7.73 1366.65- 8.36 79965.10 1.51 37.5 5836.35- 8.10 1384.60- 8.76 81923.781.54

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 38.0 5962.10- 8.09 1405.74- 8.76 83869.02 1.50 38.5 6087.41- 8.71 1432.66- 9.43 85800.30 1.58 39.0 6214.49- 8.80 1449.50- 9.53 87719.14 1.56 39.5 6340.27- 7.92 1472.20- 8.57 89624.84 1.38 40.0 6465.49- 8.97 1497.01- 9.72 91518.44 1.53 40.5 6589.91- 7.81 1515.29- 8.46 93400.37 1.30 41.0 6717.06- 9.22 1536.60- 9.99 95271.49 1.51 41.5 6840.22- 8.35 1561.23- 9.05 97130.64 1.34 42.0 6963.71- 8.21 1578.91- 8.90 98979.40 1.30 42.5 7089.71- 9.20 1599.68- 9.98 100817.24 1.43 43.0 7215.40- 8.13 1622.84- 8.81 102644.12 1.24 43.5 7336.71- 8.82 1641.80- 9.57 104460.971.33 44.0 7459.78- 8.66 1661.12- 9.39 106268.50 1.28 44.5 7585.71- 8.43 1682.49- 9.15 108065.83 1.23 45.0 7706.96- 8.56 1704.48- 9.29 109853.36 1.23 45.5 7831.78- 9.61 1726.82- 10.43 111630.651.35 46.0 7956.16- 9.06 1743.03- 9.83 113398.99 1.25 46.5 8077.54- 8.01 1765.23- 8.70 115158.04 1.10 47.0 8201.63- 8.61 1785.21- 9.34 116907.68 1.16

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 47.5 8324.36- 9.55 1803.84- 10.37 118648.01 1.27 48.0 8446.70- 8.74 1825.24- 9.49 120379.73 1.15 48.5 8572.00- 9.56 1847.43- 10.38 122101.68 1.24 49.0 8691.30- 9.64 1863.09- 10.47 123814.68 1.24 49.5 8815.05- 9.60 1885.66- 10.43 125518.96 1.21 50.0 8939.08- 11.09 1905.90- 12.04 127214.631.38 50.5 9060.24- 10.26 1922.57- 11.14 128901.47 1.27 51.0 9181.74- 10.81 1940.73- 11.74 130580.191.32 51.5 9309.83- 12.13 1968.52- 13.17 132249.88 1.46 52.0 9428.60- 9.72 1982.86- 10.55 133909.90 1.16 52.5 9550.07- 9.08 2001.27- 9.86 135562.25 1.07 53.0 9674.92- 9.68 2022.07- 10.51 137205.67 1.13 53.5 9796.14- 10.38 2040.15- 11.27 138841.03 1.20 54.0 9918.83- 9.87 2060.85- 10.72 140467.94 1.13 54.5 10042.12- 9.18 2079.18- 9.97 142086.72 1.04 55.0 10162.77- 11.29 2096.24- 12.27 143696.81 1.27 55.5 10282.01- 9.29 2116.09- 10.09 145298.17 1.03 56.0 10406.25- 9.27 2136.07- 10.07 146891.10 1.02 56.5 10524.97- 9.45 2152.43- 10.27 148475.76 1.04

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 57.0 10648.19- 11.10 2173.08- 12.07 150052.49 1.21 57.5 10775.56- 10.00 2193.44- 10.86 151620.89 1.08 58.0 10894.59- 10.58 2209.64- 11.50 153180.80 1.13 58.5 11015.93- 11.51 2228.01- 12.51 154733.40 1.22 59.0 11137.31- 10.48 2250.03- 11.39 156276.36 1.10 59.5 11261.26- 12.63 2264.98- 13.73 157811.48 1.32 60.C 11381.42- 12.51 2282.95- 13.60 159339.00 1.30 60.5 11504.71- 11.14 2303.48- 12.11 160857.33 1.15 61.0 11627.75- 12.89 2319.05- 14.02 162368.29 1.31 61.5 11746.45- 11.45 2336.64- 12.45 163871.44 1.16 62.0 11870.23- 11.75 2356.84- 12.78 165365.76 1.18 62.5 11996.26- 12.12 2372.66- 13.18 166852.29 1.21 63.0 12111.91- 8.75 2391.73- 9.51 168330.26.88 63.5 12236.90- 11.34 2407.18- 12.33 169800.05 1.12 64.0 12360.88- 12.11 2425.80- 13.17 171262.12 1.19 64.5 12477.62- 11.32 2442.56- 12.31 172716.06 1.11 65.0 12601.46- 11.81 2462.40- 12.84 174161.56 1.15 65.5 12724.36- 11.60 2478.72- 12.61 175599.73 1.12 66.0 12846.76- 12.12 2495.54- 13.17 177029.42 1.16

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(iNSL.) SIG Z 66.5 12974.91- 12.53 2514.30- 13.63 178450.51 1.20 67.0 13088.48- 11.38 2526.55- 12.38 179864.07 1.09 67.5 13207.92- 12.57 2546.1i- 13.68 181269.54 1.19 68.0 13337.35- 13.34 2568.82- 14.51 182666.15 1.25 68.5 13454.50- 13.87 2581.99- 15.09 184055.55 1.30 69.0 13578.46- 13.50 2595.28- 14,69 185436.97 1.26 69.5 13695.93- 11.22 2611.51- 12.20 186810.47 1.04 70.0 13817.19- 13.07 2626.32- 14.21 188175.84 1.20 70.5 13949.85- 9.60 2645.u0- 1C.44 189532.50.89 71.0 14063.30- 13.32 2655.21- 14.49 190881.73 1.22 71.5 14176.56- 11.57 2675.65- 12.59 192222.811.06 72.0 14304.45- 15.78 2710.79- 17.17 193554.22 1.44 72.5 14431.82- 13.88 2704.81- 15.10 194879.22 1.26 73.0 14544.60- 12.48 2719.55- 13.58 196197.44 1.13 73.5 14663.61- 13.92 2752.51- 15.15 197505.13 1.25 74.0 14792.85- 16.13 2764.14- 17.55 198805.48 1.44 74.5 14903.72- 17.32 2784.39- 18.85 200099.08 1.54 75.0 15023.29- 20.25 2803.03- 22.04 201381.56 1.80 75.5 15140.56- 17.62 2820.19- 19.17 202658.00 1.56

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 76.0 15262.11- 18.08 2837.75- 19.67 203926.16 1.60 76.5 15385.21- 19.04 2851.70- 20.71 205187.09 1.68 77.0 15503.95- 18.50 2870.02- 20.13 206439.75 1.62 77.5 15627.80- 18.61 2883.12- 20.24 207684.16 1.63 78.0 15745.77- 17.28 2899.35- 18.80 208921.35 1.51 78.5 15867.58- 18.15 2918.50- 19.74 210149.75 1.58 79.0 15998.09- 17.45 2936.29- 18.98 211371.40 1.52 79.5 16110.86- 9.16 2948.16- 9.96 212584.43.80 80.0 16232.01- 10.08 2964.60- 10.97 213788.63.88 80.5 16351.28- 8.18 2983.06- 8.90 214984.99.71 81.0 16477.15- 9.01 2996.67- 9.80 216173.27.78 81.5 16598.19- 9.02 3012.02- 9.80 217354.15.78 82.0 16714.15- 7.97 3026.83- 8.67 218526.62.69 82.5 16837.61- 7.07 3041.25- 7.68 219691.44.61 83.0 16958.14- 8.41 3056.34- 9.14 220848.26.72 83.5 17078.04- 8.70 3072.26- 9.47 221997.41.75 84.0 17201.75- 9.30 3089.38- 10.12 223137.6].80 84.5 17323.87- 9.58 3099.99- 10.42 224269.48.82 85.0 17439.00- 9.95 3112.07- 10.82 225394.71.85

SM 1.05 16 MAR 1959 TIME X(N) SIC X Y(W) SIG Y Z(MSL) SIG Z 85.5 17559.54- 11.10 3129.48- 12.08 226510.90.94 86.0 17684.44- 8.67 3145.11- 9.43 227618.86.74 86.5 17810.85- 11.61 3156.40- 12.63 228719.24.99 87.0 17923.51- 10.28 3169.88- 11.17 229813.11.88 87.5 18044.45- 9.03 3183.72- 9.82 230897.57.77 88.0 18169.97- 8.09 3207.59- 8.79 231973.33.69 88.5 18292.53- 10.25 3212.09- 11.15 233042.57.87 89.0 18413.53- 10.49 3226.84- 11.41 234104.44.89 89.5 18521.44- 2.97 3236.96- 3.21 235157.32.26 90.0 18649.62- 5.71 3259.85- 6.20 236200.10.49 90.5 18774.73- 9.75 3268.49- 10.57 237236.81.83 91.0 18895.41- 9.71 3283.93- 10.57 238266.41.82 91.5 19002.14- 1.26 3295.14- 1.36 239287.23.12 92.0 19133.54- 6.76 3317.33- 7.37 240298.68.58 92.5 19258.41- 9.46 3329.02- 10.32 241303.92.80 93.0 19380.16- 9.48 3340.98- 10.37 242301.99.81 93.5 19488.31- 2.17 3352.30- 2.43 243291.27.19 94.0 19611.68- 4.73 3377.45- 5.25 244271.63.41 94.5 19736.28- 7.34 3384.90- 8.10 245245.41.63

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 95,0 19852.96- 4.01 34()4.44- 4.46 246210.25.35 95.5 19963.04- 3.92 3417.62- 4.34 247167.31.34 96.0 20097.12- 8.31 3450.92- 9.09 248113.35.71 96.5 20225.00- 4.36 3452.03- 4.77 249055.28.38 97.0 20342.91- 7.28 3461.13- 7.93 249990.20.62 97.5 20463.45- 7.19 3479.+7- 7.83 250913.96.61 98.0 20580.82- 6.38 3494.07- 6.94 251831.36.55 98.5 20705.85- 7.26 3505.66- 7.88 252741.67.62 99.0 20822.6^- 7.49 3519.15- 8.14 253643.75.64 99.5 20949.20- 11.54 3532.84- 12.55 254537.00.98 100.0 1 068.2- 9.73 3545.94- 10.60 255422.82.83 100.5 21188.57- 8.,2 3557.95- 8.76 256301.32.69 101,0 21290.47- 5.71 3568.70- 6.24 257172.74.49 101.5 21404.20- 3.57 3587.06- 3.92 258033.60.32 102.0 21527.79- 4.26 3598.12- 4.65 258886.58.37 102.5 21649.20- 3.27 3612.34- 3.57 259733.03.29 103.0 21768.50- 4.99 3621.52- 5.48 260571.50.43 103.5 21886.61- 3.46 3638.57- 3.82 261401.07.31 104.0 22008.25- 4.14 3652.36- 4.57 262222.20.36

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 104.5 22126.57- 3.45 3665.58- 3.82 263037.26.30 105.0 22254.93- 2.49 3678.92- 2.79 263844.04.23 105.5 22375.16- 4.01 3687.75- 4.46 264644.26.36 106.0 22482.53-.80 3691.44-.98 265435.86.09 106.5 22599.93- 4.36 3695.41- 4.84 266218.07.38 107.0 22733.10- 2.28 3735.55- 2.58 266990.97.22 107.5 22837.17- 4.57 3740.79- 4.91 267758.71.37 108.0 22962.39- 2.78 3755.19- 3.13 268516.72.26 108.5 23084.71-.45 3769.37-.55 269266.97.06 1()9. 23206.97-.30 3789.04-.26 270009.12.02 109.5 23331.84- 1.04 3796.45- 1.20 270745.04.11 110.0 23445.36-.34 3805.48-.31 271472.45.02 110.5 23566.52-.76 3818.31-.88 272190.56.08 111.0 23683.49- 1.26 3832.88- 1.32 272901.53.09 111.5 23807.54-.27 3845.60-.25 273605.15.02 112.0 23933.22- 1.12 3855.70- 1.30 274301.25.12 112.5 24043.24-.27 3867.44-.23 274988.12.02 113.0 24172.82- 2.69 3885.36- 2.99 275665.92.25 113.5 24288.83-.96 3894.35- 1.08 276339.13.10

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 114.0 24412.02- 2.03 3904.94- 2*26 277004.31.19 114.5 24525.39- 1.36 3918.89- 1.45 277660.96.10 115.0 24648.68-.06 3933.11-.14 278307.65.03 115.5 24770.95- 10.43 3949.38- 11.30 278947.58.89 116.0 24859.64- 10.39 3919.45- 11.22 279584.34.88 116.5 24979.38- 12.47 3929.04- 13.51 280208.75 1.06 117.0 25094.11- 14.48 3941.64- 15.73 280824.71 1.24 117.5 25219.83- 12.69 3952.69- 13.75 281431.24 1.08 118.0 25336.47- 13.89 3964.91- 15.07 282032.80 1.19 118.5 25458.86- 13.70 3975.39- 14.85 282626.52 1.17 119.0 25575.84- 14.64 3986.09- 15.89 283212.14 1.26 119.5 25698.00- 12.60 4000.85- 13.64 283786.97 1.08 120.0 25816.66- 9.34 4017.91- 10.12 284355.75.80 120.5 25955.57- 2.52 4050.95- 2.68 284915.37.20 121.0 26074.00- 2.58 4062.70- 2.74 285470.92.21 121.5 26192.28- 2.35 4073.04- 2.46 286016.74.19 122.0 26303.30- 2.75 4081.51- 2.90 286555.40.22 122.5 26422.67- 2.44 4096.42- 2.54 287085.95.20 123.0 26547.65- 2.01 4108.61- 2.09 287606.66.16

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 123.5 26670.88- 1.40 4117.88- 1.43 288118.97.11 124.0 26792.65- 1.34 4129.56- 1.35 288627.11.11

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 27.92- 1.93 6.65- 2.19 291.64 6.79 1.5 66.75- 3.23 15.45- 3.58 534.65 6.22 2.0 111.33- 4.24 34.02- 4.61 862.48 6.12 2.5 166.81- 5.32 58.66- 5.70 1280.92 6.54 3.0 225.49- 5.46 88.47- 5.79 1733.63 6.15 3.5 285.56- 5.13 121.45- 5.42 2202.68 5.47 4.0 347.82- 5.11 157.21- 5.39 2686.54 5.24 4.5 411.46- 4.73 194.41- 4.98 3186.13 4.69 5.0 481.47- 5.19 235.35- 5.46 3698.98 5.01 5.5 547.24- 6.37 276.08- 6.70 4223.76 6.02 6.0 619.85- 2.41 310.70- 2.54 4764.94 2.22 6.5 694.67-.65 353.87-.69 5313.20 59 7.0 770.87- 1.03 401.62- 1.08 5871.42.90 7.5 846.66-.94 450.96-.99 6438.10.81 8.0 925.84-.12 503.42-.13 7014.74.10 8.5 1007.25-.04 553.15-.04 7603.58.04 9.0 1084.89- 1.04 605.37- 1.09 8202.16.86 9.5 1164.03- 1.89 662.75- 1.99 8811.65 1.53 10.0 1250.57-.79 720.25-.83 9433.68 63

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 1339.39-.05 781.20-.06 10066.66.04 11.0 1429.02-.14 844.40-.15 10710.51.11 11.5 1524.17-.52 908.90-.56 11366.24.40 12.0 1619.34-.80 971.73-.84 12035.23.59 12.5 1714.70-.94 1038.70- 1.00 12716.66.69 13.0 1806.87- 1.92 1110.41- 2.05 13410.23 1.38 13.5 1910.45- 1.02 1181.78- 1.09 14117.88.72 14.0 2015.52-.57 1256.70-.61 14838.47.40 14.5 2122.97- 1.05 1335.32- 1.13 15572.24.72 15.0 2235.34- 1.5, 1413.17- 1.61 16319.25 1.00 15.5 2349.32-.95 1490.99- 1.03 17081.61.63 16.0 2463.52-.56 1572.21-.61 17858.29.36 16.5 2580.22- 1.07 1655.20- 1.15 18650.40.67 17.0 2701.27- 1.12 1744.02- 1.21 19455.91.69 17.5 2826.40- 1.92 1833.26- 2.08 20276.68 1.16 18.0 2954.65- 1.23 1925.54- 1.33 21112.26.73 18.5 3083.64- 1.77 2017.39- 1.91 21964.66 1.03 19.0 3214.26-.93 2115.05- 1.01 22832.06.53 19.5 3346.01-.38 2216.16-.41 23715.74.21

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 3486.49-.24 2319.85-.26 24615.81.13 20.5 3631.76-.50 2422.00-.54 25533.51.27 21.0 3780.23- 1.26 2525.52- 1.37 26469.17.67 21.5 3928.72-.70 2634.33-.76 27422.48.36 22.0 4077.93-.02 2748.03-.02 28393.85 01 22.5 4236.55-.82 2862.76-.89 29383.46.41 23.0 4395.04- 5.26 2966.54- 5.74 30398.17 2.57 23.5 4561.15- 4.91 3082.11- 5.36 31428.61 2.35 24.0 4727.98- 4.27 3203.23- 4.66 32479.99 2.00 24.5 4900.67- 3.57 3327.31- 3.91 33551.80 1.64 25.0 5083.09- 4.56 3449.40- 4.99 34646.07 2.05 25.5 5267.84- 4.75 3573.24- 5.20 35764.24 2.10 26.0 5454.78- 4.61 3702.19- 5.04 36905.34 1.99 26.5 5646.06- 3.73 3836.79- 4.08 38070.90 1.58 27.0 5848.43- 4.70 3969.81- 5.15 39261.61 1.95 27.5 6053.57- 4.56 4105.84- 5.00 40479.69 1.86 28.0 6261.38- 4.47 4247.83- 4.90 41724.31 1.78 28.5 6477.83- 3.94 4395.07- 4.32 42995.65 1.54 29.0 6702.02- 4.77 4540.36- 5.23 44296.18 1.83

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 6928.91- 4.37 4691.24- 4.80 45625.99 1.65 30.0 7160.95- 4.19 4849.08- 4.59 46985.35 1.55 30.5 7404.86- 4.53 5008.52- 4.97 48375.74 1.64 31.0 7652.76- 3.97 5169.24- 4.35 49798.66 1.41 31.5 7903.98- 4.18 5338.37- 4.59 51254.24 1.46 32.0 8168.15- 4.37 5512.21- 4.79 52742.12 1.50 32.5 8437.82- 3.94 5685.58- 4.33 54265.83 1.33 33.0 8711.52- 4.13 5866.91- 4.53 55824.761.37 33.5 8996.89- 4.18 6055.45- 4.59 57420.14 1.36 34.0 9291.97- 3.23 6245.42- 3.55 59052.781.04 34.5 9590.51- 3.17 6440.34- 3.48 60725.01 1.00 35.0 9900.87- 3.09 6644.54- 3.39 62436.00.96 35.5 10219.74- 2.89 6849.51- 3.18 64189.17.88 36.0 10543.90- 2.95 7061.11- 3.24 65985.03.89 36.5 10883.37- 2.96 7282.72- 3.25 67822.96.88 37.0 11232.01-.81 7506.95-.88 69706.78.24 37.5 11584.31- 1.21 7738.73- 1.32 71637.76.35 38.0 11952.82-.66 7978.49-.72 73615.33.19 38.5 12328.18-.68 8218.70-.75 75642.84.20

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 12713.51- 1.08 8472.72- 1.19 77719.59.30 39.5 13113.07-.42 8728.93-.46 79847.32.12 40.0 13517.47-.98 8990.41- 1.08 82023.68.27 40.5 13937.45-.71 9266.62-.77 84242.10.19 41.0 14362.11-.43 9537.77-.47 86496.44.11 41.5 14788.91-.20 9815.85-.23 88778.49.06 42.0 15228.95-.23 10102.42-.25 91081.87.06 42.5 15669.97-.24 10387.09-.26 93407.82.06 43.0 16119.43-.89 10680.28-.98 95755.51.23 43.5 16570.39-.31 10971.08-.34 98120.44.08 44.0 17023.68-.65 11263.52-.71 100492.71.17 44.5 17484.08-.67 11560.16-.74 102862.69.17 45.0 17939.03-.97 11855.15- 1.07 105226.18.24 45.5 18400.50-.39 12153.72-.43 107578.77.10 46.0 18855.30- 1.80 12443.56- 1.98 109924.82.45 46.5 19309.52-.88 12740.07-.98 112259.90.22 47.0 19767.83- 2.78 13032.66- 3.06 114586.43.69 47.5 20219.75-.63 13323.26-.70 116905.59.16 48.0 20680.61- 2.43 13619.00- 2.68 119213.12.60

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 21131.91- 1.15 13909.77- 1.28 121514.14.29 49.0 21592.50-.66 14207.93-.73 123803.45.17 49.5 22047.48- 2.88 14494.54- 3.16 126087.87.70 50.0 22505.46- 1.33 14791.78- 1.45 128359.64.32 50.5 22957.82- 2.69 15077.85- 2.94 130625.81.65 51.0 23410.47-.50 15372.81-.54 132881.74.12 51.5 23869.57- 2.81 15664.98- 3.08 135129.26.68 52.0 24318.80-.83 15954.21-.90 137370.62.20 52.5 24780.08- 2.93 16248.81- 3.20 139600.00.71 53.0 25227.88- 1.43 16534.01- 1.56 141825.12.34 53.5 25683.18- 6.73 16823.77- 7.38 144039.101.63 54.0 26141.83- 3.67 17118.70- 4.02 146244.22.89 54.5 26599.65- 2.76 17418.74- 3.02 148440.28.67 55.0 27052.44- 4.99 17701.62- 5.46 150631.12 1.21 55.5 27503.40- 1.32 17996.72- 1.44 152813.07.32 56.0 27961.34- 4.10 18283.75- 4.49 154986.13.99 56.5 28409.43- 2.72 18572.95- 2.97 157152.51.66 57.0 28875.17- 3.15 18871.22- 3.45 159307.60.76 57.5 29316.23- 2.80 19150.63- 3.06 161461.97.68

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 29773.47- 9.86 19439.67- 10.81 163607.89 2.40 58.5 30227.25- 4.06 19733.05- 4.44 165746.03.99 59.0 30675.45- 7.37 20018.65- 8.07 167877.79 1.79 59.5 31141.73- 6.70 20318.34- 7.33 169997.01 1.63 60.0 31584.86- 6.92 20602.07- 7.58 172113.77 1.69 60.5 32047.36- 9.20 20898.17- 10.08 174217.27 2.25 61.0 32508.35- 11.66 21200.34- 12.79 176312.17 2.85 61.5 32955.00- 11.99 21479.32- 13.15 178404.42 2.94 62.0 33418.72- 9.45 21775.55- 10.36 180483.73 2.32 62.5 33868.19- 15.50 22065.30- 17.00 182557.71 3.80 63.0 34323.80- 9.66 22351.08- 10.58 184624.08 2.37 63.5 34778.59- 15.19 22647.07- 16.65 186680.35 3.74 64.0 35228.80- 10.93 22927.62- 11.97 188732.09 2.69 64.5 35684.10- 14.58 23227.96- 15.98 190771.10 3.60 65.0 36131.14- 13.97 23506.56- 15.31 192807.97 3.44 65.5 36599.08- 13.91 23806.29- 15.25 194830.45 3.44 66.0 37045.47- 17.85 24091.81- 19.56 196848.10 4.42 66.5 37501.34- 10.82 24375.82- 11.86 198858.34 2.68 67.0 37950.36- 16.15 24666.04- 17.70 200859.44 4.00

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 38403.98- 15.84 24955.11- 17.35 202852.58 3.93 68.0 38868.81- 16.44 25252.81- 18.03 204834.41 4.10 68.5 39316.15- 18.97 25532.59- 20.80 206813.40 4.72 69.0 39771.90- 9.61 25820.04- 10.53 208783.84 2.40 69.5 40227.25- 20.39 26110.57- 22.35 210743.265.10 70.0 40676.73- 17.92 26397.89- 19.65 212696.89 4.48 70.5 41143.59- 19.57 26691.42- 21.45 214639.02 4.91 71.0 41588.55- 21.22 26969.44- 23.25 216578.03 5.32 71.5 42050.24- 17.60 27259.41- 19.29 218505.56 4.42 72.0 42498.08- 21.41 27543.74- 23.47 220427.85 5.39 72.5 42947.87- 20.44 27830.13- 22.40 222341.36 5.15 73.0 43411.08- 21.56 28126.70- 23.63 224242.71 5.44 73.5 43864.43- 23.71 28405.81- 25.99 226141.21 6.00 74.0 44309.59- 26.12 28701.78- 28.65 228030.20 6.62 74.5 44771.19- 23.32 28980.95- 25.57 229910.75 5.92 75.0 45214.48- 19.22 29258.36- 21.06 231786.61 4.89 75.5 45678.24- 23.17 29554.55- 25.37 233646.91 5.90 76.0 46134.07- 23.84 29840.10- 26.09 235503.81 6.08 76.5 46585.55- 19.83 30119.54- 21.70 237353.86 5.07

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 47038.79- 23.79 30411.80- 26.02 239192.95 6.09 77.5 47503.00- 29.44 30691.72- 32.24 241026.19 7.55 78.0 47947.61- 24.07 30983.59- 26.34 242850.72 6.18 78.5 48399.04- 24.38 31269.18- 26.70 244667.62 6.27 79.0 48867.71- 31.79 31549.85- 34.78 246476.27 8.18 79.5 49305.44- 23.60 31837.21- 25.81 248278.02 6.08 80.0 49760.06- 25.44 32120.94- 27.82 250070.65 6.56 80.5 50226.63- 31.95 32403.28- 34.98 251854.42 8.26 81.0 50667.54- 24.92 32692.06- 27.30 253631.69 6.46 81.5 51119.97- 26.11 32973.86- 28.61 255401.72 6.78 82.0 51595.39- 34.20 33259.48- 37.49 257160.05 8.91 82.5 52028.90- 27.47 33545.28- 30.12 258915.02 7.17 83.0 52480.92- 28.26 33828.97- 30.95 260661.25 7.38 83.5 52952.23- 38.62 34106.44- 42.33 262397.69 10.11 84.0 53387.79- 28.90 34395.41- 31.67 264128.37 7.58 84.5 53849.44- 19.02 34701.68- 20.82 265845.50 4.99 85.0 54291.01- 21.68 34980.21- 23.73 267560.21 5.70 85.5 54748.33- 27.98 35250.69- 30.62 269267.34 7.36 86.0 55200.86- 28.82 35531.73- 31.52 270965.56 7.59

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 55670.33- 38.21 35808.95- 41.86 272654.33 10.10 87.0 56107.36- 29.00 36101.66- 31.76 274335.98 7.67 87.5 56560.71- 30.12 36381.33- 32.99 276010.50 7.98 88.0 57016.49- 30.71 36667.00- 33.66 277675.84 8.16 88.5 57469.43- 30.66 36949.79- 33.64 279333.80 8.16 89.0 57921.59- 30.72 37232.00- 33.70 280984.48 8.20 89.5 58389.39- 35.19 37508.22- 38.59 282626.70 9.42 90.0 58868.32- 34.47 37759.06- 37.80 284264.64 9.24 90.5 59324.70- 34.83 38043.16- 38.23 285891.23 9.37 91.0 59778.50- 34.71 38323.92- 38.12 287510.19 9.35 91.5 60229.71- 33.59 38611.25- 36.93 289119.48 9.08 92.0 60684.08- 34.13 38889.20- 37.51 290722.48 9.24 92.5 61135.81- 33.87 39168.42- 37.26 292317.40 9.19 93.0 61591.53- 34.20 39452.46- 37.62 293903.67 9.31 93.5 62043.99- 34.28 39732.74- 37.73 295482.51 9.35 94.0 62497.52- 34.01 40013.71- 37.43 297053.29 9.29 94.5 62950.09- 34.14 40295.78- 37.59 298616.65 9.35 95.0 63382.46- 27.53 40562.20- 30.32 300178.467.55

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 17.97- 1.78 15.93- 2.02 346.56 5.38 1.5 53.72- 1.61 30.57- 1.78 633.57 2.88 2.0 110.05- 1.33 53.92- 1.42 1019.85 1.79 2.5 175.02-.32 77.04-.34 1499.23.38 3.0 247.78- *12 101.89-.13 2007.20.14 3.5 323.85-.01 128.33-.02 2525.76.02 4,0 402.21-.77 155.75-.81 3055.45.76 4.5 481.11-.10 182.94-.10 3594.48.10 5.0 563.34-.04 211.76-.04 4144.65.04 5.5 649.63-.40 240.86-.43 4705*82.36 6.0 736.63-.26 273.66-.28 5277.31.23 6.5 825.89-.59 306.22-.62 5858.27.51 7.0 920.37-.02 338.53-.02 6450.07.02 7.5 1017.04-.05 372.76-.05 7050.45.04 8.0 1115.32-.52 407.83-.55 7658.66.42 8.5 1217.15-.17 441.78-.18 8276.63.13 9.0 1320.93-.32 478.32-.34 8900.55.25 9.5 1421.28- 3.05 513.85- 3.23 9530.60 2.34 10.0 1529.25- 2.51 553.19- 2.67 10170.18 1.89

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 1644.44-.53 592.14-.57 10817.77.40 11.0 1754.57- 2.39 628.82- 2.55 11470.47 1.73 11.5 1868.61- 2.91 669.97- 3.10 12130.27 2.07 12.0 1989.55-.21 708.81- *23 12798.65.15 12.5 2104.85- 1.82 750.10- 1.95 13470.82 1.25 13.0 2223.40- 3.12 791.52- 3,34 14150.29 2.10 13.5 2350.63- 1.27 834.29- 1.36 14836.90.84 14.0 2477.97- 1.86 877.54- 2.00 15528.14 1.21 14.5 2602.89- 3.29 919.10- 3.53 16225.10 2.09 15.0 2735.42-.30 960.74-.32 16930.35.19 15.5 2866.07- 1.73 1007.55- 1.85 17639.01 1.06 16.0 2998.04- 4.25 1051.91- 4.58 18353.76 2.56 16.5 3136.43- 2.22 1097.24- 2.39 19077*30 1.31 17.0 3275.98- 2.23 1141.07- 2.41 19806.61 1.29 17.5 3414.40- 3.61 1186.01- 3.90 20542.59 2.05 18.0 3557.00- 2.66 1233.29- 2.87 21287*15 1.48 18.5 3699.44- 4.33 1276.59- 4.69 22038.14 2.37 19.0 3848.76- 3.94 1324.36- 4.27 22796.67 2.12 19.5 4002.11-.14 1365.92-.14 23565.03.07

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 4152.70- 1.04 1409.59- 1.12 24339.64.54 20.5 4307.28- 1.16 1458.27- 1.26 25122.59.59 21.0 4465.15- 3.96 1508.05- 4.30 25914.16 1.97 21.5 4621.35- 3.02 1551.91- 3.27 26718.77 1.48 22.0 4784.10- 3.00 1600.38- 3.25 27533.28 1.44 22.5 4947.21- 1.79 1642.98- 1.94 28358.87.84 23.0 5110.94- 3.28 1694.65- 3.57 29193.49 1.52 23.5 5277.03- 3.28 1736.23- 3.56 30040.72 1.48 24.0 5448.06- 1.62 1782.50- 1.76 30898.92.72 24.5 5619.73- 2.86 1830.45- 3.11 31767.82 1.24 25.0 5792.33- 2.23 1875.31- 2.42 32649.84.95 25.5 5970.61- 3.07 1924.16- 3.34 33543.54 1.29 26.0 6149.79- 2.71 1964.83- 2.96 34451.56 1.12 26.5 6332.64- 2.88 2014.25- 3.13 35372.43 1.16 27.0 6518.71- 2.78 2056.97- 3.03 36308.14 1.11 27.5 6707.68- 3.69 2106.41- 4.03 37258.16 1.44 28.0 6900.29- 3.01 2147.43- 3.29 38224.33 1.15 28.5 7095.43- 3.61 2197.58- 3*94 39205.94 1.36 29.0 7296.95- 2.10 2238.86- 2.29 40204.74.77

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL.) SIG Z 29.5 7501.11- 2.54 2288.45- 2.77 41219.94.92 30.0 7708.38- 2.36 2330.60- 2.57 42253.69.84 30.5 7922.58- 1.51 2378.32- 1.64 43305.70.52 31.0 8137.19- 2.82 2427.41- 3.08 44376.06.96 31.5 8359.37- 2.02 2473.59- 2.21 45466.39.68 32.0 8585.01- 1.69 2523.22- 1.85 46576.28.56 32.5 8814.35- 2.41 2571.23- 2.64 47706.60.78 33.0 9052.73- 1.80 2621.52- 1.96 48857.64.57 33.5 9290.28- 2.59 2670.91- 2.83 50032.72.81 34.0 9537.51- 2.24 2720.62- 2.45 51230.67.69 34.5 9790.58- 1.57 2771.37- 1.72 52452.52.47 35.0 10044.90- 2.76 2822.84- 3.02 53698.29.82 35.5 10310.66- 2.83 2875.00- 3.09 54969.59.82 36.0 10580.07- 2.39 2925.04- 2.61 56269.30.68 36.5 10855.25- 2.37 2980.53- 2.59 57594.20.67 37.0 11137.75- 3.52 3033.78- 3.86 58946.16.98 37.5 11423.76- 2.56 3088.59- 2.81 60325.15.70 38.0 11721.22- 2.77 3143.24- 3.03 61733.61.75 38.5 12023.72- 2.45 3198.75- 2.68 63172.41.65

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 12330.79- 3.14 3254.68- 3.44 64642.25.82 39.5 12649.43- 3.69 3311.92- 4.04 6613910.95 40.0 12971.10- 3.35 3366.04- 368 67665.86.85 40.5 13302.01- 3.62 3423.38- 39769219.50.91 41.0 13634.96- 3.39 3477.79- 3.71 70796.60.84 41.5 13974.94- 3.06 3539.44- 3.36 72385.79.75 42.0 14319.08- 3.46 3595.68- 3.80 73989.58.83 42.5 14665.55- 3.28 3655.97- 3.59 75611.13.78 43.0 15020.91- 3.60 3711.83- 3.94 77255.98.85 43.5 15380.35- 3.21 3773.07- 3.52 78929.35. 44.0 15749.82- 4.27 3829.05- 468 80626.64.98 44.5 16118.55- 4.07 3890.58- 4.46 82336.67. 45.0 16491.77- 4.33 3946.14- 4.75 8404259.98 45.5 16861.84- 5.19 4007.39- 5.69 85738.981.17 46.0 17233.38- 4.97 4063.57- 5.45 87424.271.11 46.5 17603.54- 5.08 4122.48- 5.57 89099.231.13 47.0 17974.20- 5.28 4181.68- 5.79 90762.621.16 47.5 18342.26- 4.82 4240.44- 528 92416.291.05 48.0 18709.70- 4.79 4300.56- 5.25 94060.211.04

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 19079.97- 5.11 4358.54- 5.60 95693.83 1.10 49.0 19446.17- 5.86 4414.74- 6.42 97318.26 1.26 49.5 19813.25- 5.51 4473.97- 6.04 98931.92 1.18 50.0 20181.94- 6.44 4531.23- 7.05 100536.211.37 50.5 20548.49- 6.06 4588.48- 6.65 102131.41 1.29 51.0 20914.53- 5.57 4645.78- 6.11 103717.60 1.18 51.5 21280.31- 5.76 4704.74- 6.31 105294.24 1.21 52.0 21646.63- 5.21 4761.76- 5.70 106862.13 1.10 52.5 22010.81- 6.39 4819.91- 7.00 108421.03 1.34 53.0 22377.24- 6.49 4880.25- 7.11 109970.291.36 53.5 22742.61- 6.40 4934.98- 7.01 111511.111.34 54.0 23108.39- 6.25 4994.77- 6.85 113043.41 1.31 54.5 23475.87- 7.68 5048.40- 8.42 114566.94 1.60 55.0 23836.18- 6.22 5105.55- 6.81 116082.97 1.29 55.5 24205.42- 6.51 5161.67- 7.13 117589.421.35 56,0 24568.36- 6.43 5219.71- 7.04 119087.641.34 56.5 24936.32- 6.94 5277.77- 7.60 120576.87 1.44 57.0 25295.92- 6.85 5332.34- 7.50 122059.03 1.41 57.5 25660.09- 6.63 5392.54- 7.26 123532.20 1.37

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 26024.58- 6.82 5445.17- 7.46 124997.10 1.41 58.5 26389.24- 7.15 5504.00- 7*83 126453.83 1.48 59.0 26759.47- 8.75 5559.05- 9.58 127901.39 1.81 59.5 27118.17- 7.24 5616.10- 7.93 129341.71 1.50 60.0 27489.08- 8.33 5672.62- 9.13 130772.14 1.73 60.5 27844.68- 8.41 5725.48- 9.22 132197.36 1.75 61.0 28208.59- 9.24 5791.74- 10.12 133612.11 1.91 61.5 28573.37- 8.63 5842.34- 9.46 135019.09 1.79 62.0 28940.44- 9.73 5900.11- 10.66 136417.20 2.02 62.5 29307.36- 8.89 5954.27- 9.73 137808.11 1.84 63.0 29668.32- 8.81 6010.29- 9.64 139190.851.83 63.5 30029.87- 8.66 6065.30- 9.48 140565.97 1.80 64.0 30390.95- 8.09 6121.25- 8.85 141933.01 1.69 64.5 30755.71- 9.97 6176.91- 10.92 143291.68 2.08 65.0 31117.31- 9.29 6232.40- 10.17 144642.30 1.94 65.5 31482.73- 9.32 6287.70- 10.21 145984.851.95 66.0 31846.90- 8.93 6346.01- 9.78 147319.141.87 66.5 32209.84- 9.56 6399.79- 10.47 148645.85 2.00 67.0 32573.49- 9.50 6456.01- 10.39 149964.47 2.00

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 32938.86- 10.40 6509.06- 11.39 151275.02 2.19 68.0 33304.32- 11.05 6565.56- 12.11 152576.79 2.33 68.5 33667.79- 11.36 6621.78- 12.44 153871.31 2.40 69.0 34028.48- 10.61 6675.14- 11.62 155158.49 2.24 69.5 34387.84- 8.58 6729.43- 9.39 156438.08 1.81 70.0 34750.80- 8.93 6787.66- 9.79 157708.39 1.90 70.5 35113.08- 9.22 6843.59- 10.10 158972.02 1.96 71,0 35474.57- 7.33 6899.87- 8.03 160226.32 1.57 71.5 35839.99- 9.79 6951.00- 10.74 161472.27 2.10 72.0 36203.85- 9.83 7004.98- 10.78 162710.8] 2.11 72.5 36564.70- 7.83 7u60,66- 8.59 163940.89 1.69 73.0 36925.79- 8.39 7114.98- 9.21 165164.11 1.81 73.5 37294.93- 11.10 7167.64- 12.18 166377.87 2.40 74.0 37657.75- 11.77 7220.02- 12.91 167583.91 2.55 74.5 38021.04- 11.61 7277.09- 12.74 168782.31 2.52 75.0 38383.16- 9.63 7330.54- 10.56 169972.92 2.09 75.5 38742.25- 8.85 7383.37- 9.70 171156.43 1.93 76.0 39105.04- 10.38 7438.37- 11.38 172331.17 2.26 76.5 39465.63- 11.39 7491.03- 12.49 173498.62 2.49

SM 1,07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 39827.73- 10.65 7547.02- 11.68 174656.87 2.33 77.5 40190.50- 10.54 7596.90- 11.55 175808.23 2.32 78.0 40546.77- 8.24 7650.49- 9.03 176952.95 1.81 78.5 40913.76- 9.54 7710.64- 10.45 178085.92 2.10 79.0 41274.16- 9.67 7763.97- 10.59 179214.51 2.14 79.5 41638.46- 11.71 7821.46- 12.84 180332.02 2.60 80.0 42013.34- 11.88 7889.74- 13.03 181440.15 2.65 80.5 42375.16- 12.21 7948.34- 13.39 182539.69 2.72 81.0 42731.06- 13.37 7997.62- 14.66 183635.50 2.99 81.5 43095.09- 13.04 8054.49- 14.30 184722.06 2.92 82.0 43461.53- 12.89 8104.29- 14.14 185799.27 2.90 82.5 43819.50- 12.81 8155.11- 14.05 186871.35 2.89 83.0 44184.53- 12.44 8212.70- 13.64 187933.46 2.81 83.5 44544.06- 12.92 8260.04- 14.17 188989.28 2.92 84.0 44908.05- 14.15 8317.43- 15.52 190035.42 3.21 84.5 45276.37- 13.71 8370.18- 15.04 191073.45 3.12 85.0 45628.57- 12.07 8417.92- 13.24 192106.10 2.75 85.5 45993.75- 12.36 8474.61- 13.56 193127.53 2.83 86.0 46357.36- 14.53 8529.56- 15.94 194141.52 3.33

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 46718.21- 13.45 8581.26- 14.75 195148.75 3.09 87.0 47076.60- 13.17 8633.76- 14.45 196148.21 3.04 87.5 47440.29- 13.32 8689.08- 14.61 197138.64 3.08 88.0 47802.89- 14.31 8740.17- 15.70 198121.32 3.32 88.5 48159.41- 11.82 8792.54- 12.97 199097.65 2.75 89.0 48518.25- 11.76 8847.00- 12.89 200065.04 2.74 89.5 48885.04- 14.25 8902.04- 15.62 201023.42 3.33 90.0 49246.30- 14.68 8952.85- 16.09 201974.62 3.44 90.5 49601.52- 13.51 9003.97- 14.81 202919.013.17 91.0 49962.95- 12.56 9058.50- 13.76 203854.51 2.96 91.5 50325.25- 14.64 9109.18- 16.04 204780.78 3.46 92.0 50683.24- 13.17 9163.87- 14.43 205700.133.12 92.5 51042.63- 11.28 9215.92- 12.36 206612.76 2.68 93.0 51404.50- 13.14 9268.29- 14.40 207515.233.13 93.5 51766.84- 13.93 9319.78- 15.26 208410.563.32 94.0 52129.70- 12.74 9372.98- 13.96 209298.50 3.05 94.5 52486.30- 12.61 9423.63- 13.82 210177.99 3.03 95.0 52848.65- 13.74 9478.46- 15.06 211049.713.31 95.5 53208.42- 12.51 9527.58- 13.71 211913.92 3.02

SM 1.07 16 AR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 53567.49- 13.05 9578.44- 14.30 212768.583.16 96.5 53928.28- 13.49 9632.43- 14.79 213616.78 3.28 97.0 54289.81- 13.60 9681.92- 14.90 214456.12 3.32 97.5 54647.22- 11.74 9734.03- 12.87 215287.22 2.87 98.0 55008.08- 14.03 9789.66- 15.39 216111.18 3.44 98.5 55371.38- 13.50 9840.02- 14.80 216926.35 3.32 99.0 55727.03- 12.64 9890.62- 13.86 217734.43 3.12 99.5 56086.25- 13.59 9942.97- 14.91 218535.19 3.37 100.0 56453.04- 14.80 9993.07- 16.23 219325.85 3.68 100.5 56805.77- 11.90 10043.82- 13.05 220111.26 2.96 101.0 57164.30- 12.62 10095.07- 13.84 220888.31 3.15 101.5 57528.55- 8.58 10157.17- 9.41 221653.34 2.15 102.0 57897.01- 8.98 10203.55- 9.86 222412.33 2.26 102.5 58247.09- 14.71 10244.82- 16.14 223166.12 3.71 103.0 58604.41- 14.24 10297.52- 15.62 223910.90 3.60 103.5 58968.06- 12.21 10352.01- 13.40 224645.72 3.10 104.0 59323.48- 14.91 10401.55- 16.36 225374.95 3.79 104.5 59681.94- 15.60 10450.87- 17.12 226095.15 3.98 105.0 60038.34- 15.18 10503.24- 16.66 226808.20 3.88

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 105.5 60401.84- 16.13 10553.20- 17.68 227511.91 4.14 106.0 60759.35- 15.67 10606.97- 17.16 228208.23 4.03 106.5 61116.85- 13.94 10657.,9- 15.29 228898.15 3.60 107.0 61479.09- 13.81 10712.52- 15.12 229578.00 3.57 107.5 61834.07- 13.74 10760.04- 15.03 230251.78 3.57 108.0 62198.53- 15.88 10811.99- 17.41 230915.48 4.14 108.5 62545.90- 11.86 10857.u5- 13.03 231576.51 3.10 109.0 62920.42- 14.07 10914.71- 15.45 232217.93 3.69 109.5 63272.28- 15.25 10960.86- 16.73 232860.97 4.01 110.0 63625.58- 13.86 11013.77- 15.22 233496.59 3.66 110.5 63985.96- 5.27 1u61.48- 5.80 234119.33 1.38 111.0 64347.60- 14.19 11113.12- 15.59 234734.52 3.76 111.5 64698.96- 11.53 11164.60- 12.63 235347.88 3.06 112.0 65068.87- 15.52 11222.53- 17.04 235944.74 4.14 112.5 65423.96- 15.13 1126z.45- 16.59 236537.49 4.04 113.0 65794.74- 24.90 11332.49- 27.27 237119.50 6.68 113.5 66189.59- 26.01 11397.80- 28.48 237688.33 7.00 114.0 66504.85- 14.18 11422.21- 15.50 238268.28 3.82 114.5 66847.84- 13.00 11466.35- 14.21 238834.793.51

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 115.0 67220.92- 5.92 11501.19- 6.45 239388.66 1.59 115.5 67575.77- 13.91 11571.31- 15.24 239931.59 3.78 116.0 67925.36- 15.60 11617.15- 17.08 240471.38 4.25 116.5 68278.25- 13.34 11669.41- 14.58 241003.39 3.65 117.0 68636.07- 11.82 11715.28- 12.95 241527.12 3.25 117.5 69002.47- 13.57 11775.02- 14.85 242037.22 3.74 118.0 69349.60- 14.90 11812.13- 16.29 242545.24 4.12 118.5 69707.28- 14.15 11863.35- 15.44 243045.02 3.92 119.0 70061.56- 12.32 11913.44- 13.46 243536.09 3.42 119.5 70421.32- 11.61 11964.54- 12.68 244015.19 3.24 120.0 70777.32- 16.22 12017.03- 17.75 244490.69 4.55 120.5 71136.88- 12.08 12060.00- 13.22 244959.29 3.39 121.0 71497.42- 13.11 12122.26- 14.36 245415.28 3.69 121.5 71847.85- 14.49 12160.96- 15.91 245868.77 4.10 122.0 72198.92- 14.84 12213.86- 16.31 246309.79 4.21 122.5 72559.90- 13.82 12261.17- 15.18 246744.66 3.93 123.0 72915.18- 13.30 12314.29- 14.64 247172.85 3.80 123.5 73269.81- 14.95 12361.69- 16.42 247589.91 4.28 124.0 73627.36- 12.18 12409.57- 13.37 248001.02 3.50

SM 1,07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 124.5 73979.83- 15.42 12466.97- 16.91 248406.21 4.45 125.0 74338.90- 15.23 12512.06- 16.70 248801.05 4.41 125.5 74690.37- 14.50 12564.45- 15.88 249187.27 4.21 126.0 75052.55- 9.43 12624.50- 10.32 249564.42 2.75 126.5 75408.64- 12.17 12671.28- 13.32 249937.72 3.57 127.0 75762.40- 16.09 12713.53- 17.62 250300.50 4.74 127.5 76120.67- 18.99 12764.34- 20.82 250654.08 5.61 128.0 76475.75- 18.41 12807.13- 20.20 251002.30 5.46 128.5 76839.30- 15.90 12864.96- 17.44 251341.37 4.73 129.0 77188.00- 19.08 12911.58- 20.97 251672.94 5.69 129.5 77545.00- 18.21 12968.72- 20.03 251995.255.45 130.0 77910.42- 10.67 13029.99- 11.77 252307.83 3.19 130.5 78286.16- 1.85 13096.07- 2.11 252611.92.54 131.0 78637.01- 2.43 13154.25- 2.75 252910.52.72 131.5 78995.15- 2.43 13210.21- 2.74 253201.63.72 132.0 79375.41- 6.36 13257.83- 7.04 253480.27 1.92 132.5 79714.15- 4.74 13299.94- 5.24 253762.54 1.43 133.0 80058.97- 2.30 13353.54- 2.57 254030.72.68 133.5 80413.12- 2.51 13407.35- 2.81 254291.39.75

SM 1.07 16 MAR 1959 TIMg X(N) SIG X Y(W) SIG Y Z(MSL)SIG Z 134.0 80768.40- 4.02 13451.65- 4.49 254547.18 1.22 134.5 81129.72- 4.23 13502.82- 4.71 254794.05 1.29 135.0 81482.86- 3.79 13553.66- 420 255030.451.16 135.5 81833.58- 1.95 13607.21- 2.18 255261.03 59 136.0 82190.15- 2.95 13654.45- 3.26 255483.84.91 136.5 82556.82- 1.20 13766.19- 1.32 255689.42.40 137.0 82911.46-.08 13820.30-.16 255893.09.02 137.5 83263.34-.37 13869.98-.41 256092.67.09 138.0 83618.59- 1.49 13921.17- 1.65 256282.96.50 138.5 83978.37- ~64 13965.40-.71 256462.68.23 139.0 84332.70-.10 14018.82-.20 256634.79.01 139.5 84686.26-.08 14069.65-.16 256802.3902 140.0 85041.14-.41 14118.62-.48 256961.47 11 140.5 85399.86- 1.29 14164.50- 1.44 257109.85.45 141.0 85754.33-.24 14218.30-.32 257250.42.10 141.5 86099.58- 5.04 14274.42- 5.58 257387.781.68 142.0 86453.50- 5.07 14323.74- 5.62 257515.691.70 142.5 86811.84- 6.91 14364.61- 7.62 257633.79 2.31 143.0 87166.83- 5.49 14420.85- 6.06 257742.13 1.85

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 143.5 87527.23- 6.03 14470.56- 6.66 257844.34 2.04 144.0 87875.82- 3.76 14520.26- 4.14 257942.55 1.29 144.5 88235.32- 6.17 14563.55- 6.79 258028.68 2.10 145.0 88589.68- 3.80 14617.54- 4.19 258105.811.30 145.5 88950.56- 4.96 14667.16- 5.46 258176.16 1.71 146.0 89308.16- 9.76 14706.23- 10.76 258240.90 3.34 146.5 89656.22- 5.81 14758.95- 6.45 258298.68 2.01 147.0 90009.31- 4.26 14814.92- 4.76 258344.42 1.48 147.5 90373.12- 5.53 14867.74- 6.20 258381.68 1.93 148.0 90726.55- 10.79 14905.77- 11.99 258416.76 3.75 148.5 91074.94- 6.17 14954.04- 6.91 258443.50 2.17 149.0 91429.00- 3.25 15011.48- 3.68 258457.10 1.16 149.5 91789.41- 3.67 15060.18- 4.17 258463.83 1.31 150.0 92146.34- 10.39 15099.83- 11.56 258466.81 3.67 150.5 92494.80- 4.84 15147.25- 5.46 258462.01 1.7151.0 92847.26- 2.09 15207.97- 2.41 258444.43. 151.5 93203.89- 2.51 15258.01- 2.86 258420.03.92 152.0 93552.49- 3.38 15307.93- 3.81 258390.89 1.23 152.5 93906.67- 7.84 15361.79- 8.73 258353.48 2.84

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 153.0 94265.42- 2.30 15404.41- 2.63 258306.04.86 153.5 94617.45- 1.42 15452.67- 1.64 258250.61.55 154.0 94970.41- 4.01 15503.81- 4.48 258190.12 1.49 154.5 95328.86- 4.43 15560.93- 4.97 258119.64 1.64 155.0 95666.06- 15.81 15607.79- 17.51 258046.19 5.80 155.5 96020.19- 15.29 15661.20- 16.91 257959.00 5.63 156.0 96361.32- 9.67 15721.11- 10.71 257867.23 3.58 156.5 96717.86- 8.15 15785.84- 9.05 257764.02 3.04 157.0 97055.99- 2.03 15832.92- 2.31 257658.49.78 157.5 97406.86- 3.32 15878.11- 3.74 257541.55 1.26 158.0 97750.16- 7.83 15929.55- 8.67 257418.39 2.96 158.5 98121.73-.16 15974.16-.23 257280.11.07 159.0 98488.01- 18.11 16062.24- 20.03 257130.18 6.87 159.5 98848.72- 19.99 16113.48- 22.11 256978.94 7.61 160.0 99230.52- 15.85 16170.48- 17.59 256813.99 6.08 160.5 99587.61- 14.03 16217.41- 15.59 256649.39 5.40 161.0 99907.35- 19.65 16262.96- 21.78 256489.54 7.58 161.5 100263.32- 19.32 16308.54- 21.43 256308.42 7.49 162.0 100645.99- 15.21 16364.17- 16.91 256110.86 5.93

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 162.5 101000.12- 15.32 16413.30- 17.03 255916.15 6.00 163.0 101323.51- 20.05 16456.67- 22.25 255723.80 7.88 163.5 101678.81- 19.40 16503.11- 21.53 255511.43 7.66 164.0 102059.71- 14.88 16558.98- 16.53 255282.78 5.91 164.5 102414.48- 15.12 16608.23- 16.78 255056.41 6.03 165.0 102759.11- 9.31 16668.97- 10.38 254822.50 3.73 165.5 103110.77- 9.15 16712.60- 10.22 254580.04 3.70 166.0 103474.10- 13.64 16750.44- 15.15 254328.87 5.52 166.5 103828.09- 14.23 16799.13- 15.82 254071.31 5.78 167.0 104171.46- 9.16 16860.86- 10.24 253806.10 3.76 167.5 104522.47- 8.69 16904.53- 9.69 253532.84 3.58 168.0 104887.34- 14.29 16940.41- 15.84 253249.23 5.89 168.5 105241.37- 14.27 16991.80- 15.82 252960.08 5.91 169.0 105608.17- 20.55 17027.54- 22.72 252663.20 8.54 169.5 105960.38- 19.90 17075.44- 22.03 252357.52 8.31 170.0 106313.61- 20.94 17123.24- 23.17 252046.10 8.78 170.5 106666.71- 19.80 17169.90- 21.91 251726.20 8.34 171.0 107016.78- 25.14 17226.32- 27.84 251402.44 10.63 171.5 107367.06- 25.53 17274.61- 28.24 251065.69 10.84

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 172.0 107717.04- 25.89 17330.34- 28.66 250721.99 11.04 172.5 108075.12- 27.26 17399.54- 30.14 250365.23 11.67 173.0 108419.34- 26.05 17463.14- 28.82 250009.62 11.21 173.5 108783.73- 30.04 17530.24- 33.22 249635.02 12.99 174.0 109133.59- 30.39 17586.34- 33.60 249257.95 13.20 174.5 109488.89- 33.43 17650.81- 36.97 248872.77 14.60 175.0 109845.36- 30.88 17709.21- 34.20 248479.67 13.56 175.5 110200.82- 29.87 17752.31- 33.10 248080.61 13.18 176.0 110550.37- 30.40 17803.77- 33.70 247671.64 13.48 176.5 110909.78- 31.42 17855.50- 34.85 247253.76 14.01 177.0 111254.36- 30.03 17897.42- 33.30 246834.75 13.46 177.5 111615.25- 30.59 17946.29- 33.94 246402.12 13.77 178.0 111961.46- 29.30 17992.76- 32.52 245964.05 13.27 178.5 112316.82- 29.93 18041.22- 33.24 245515.35 13.62 179.0 112666.90- 28.71 18087.50- 31.91 245061.83 13.13 179.5 113026.27- 27.92 18134.88- 31.05 244598.92 12.83 180.0 113371.19- 28.48 18181.38- 31.68 244131.23 13.17 180.5 113724.36- 28.38 18231.22- 31.58 243650.47 13.19 181.0 114077.35- 29.25 18277.61- 32.50 243164.18 13.67

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 181.5 114425.41- 27.80 18325.10- 30.91 242672.64 13.06 182.0 114779.88- 28.10 18370.31- 31.26 242171.84 13.27 182.5 115129.75- 28.30 18417.72- 31.51 241661.96 13.43 183.0 115486.63- 27.88 18466.45- 31.07 241141.21 13.31 183.5 115833.98- 28.21 18513.70- 31.47 240618.04 13.53 184.0 116189.93- 26.73 18559.28- 29.84 240084.87 12.90 184.5 116536.18- 26.54 18605.66- 29.62 239546.45 12.87 185.0 116889.72- 26.34 18653.94- 29.38 238994.90 12.84 185.5 117241.02- 26.61 18700.34- 29.66 238438.16 13.05

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 15.41-.51 25.86-.60 405.50 1.38 1.5 35.37-.79 51.70-.84 683.821.36 2.0 64.54-.20 81.62-.23 1053.08.31 2.5 98.48- 1.51 114.84- 1.62 1512.44 1.91 3.0 138.12- 1.56 155.45- 1.66 2016.37 1.82 3.5 179.79- 1.22 197.70- 1.28 2532.86 1.35 4.0 222.39-.83 240.53-.87 3060.19.88 4.5 267.26-.44 284.69-.47 3598.22.46 5.0 313.60-.61 330.00-.65 4146.20.61 5.5 360.46-.03 375.62-.03 4705.97.04 6.0 411.37- 1.66 426.41- 1.74 5273.82 1.58 6.5 463.85- 2.85 476.72- 2.99 5853.61 2.65 7.0 516.44- 1.32 524.53- 1.39 6446.86 1.21 7.5 571.15-.21 573.42-.22 7051.16.18 8.0 628.17- 3.20 625.91- 3.37 7667.95 2.79 8.5 683.95- 4.12 677.29- 4.35 8294.99 3.52 9.0 743.40- 2.14 735.17- 2.26 8930.65 1.79 9.5 806.28- 4.43 786.70- 4.68 9583.20 3.64 10.0 867.23- 4.20 843.88- 4.44 10246.52 3.39

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 927.41- 2.43 899.46- 2.57 10922.27 1,92 11.0 992.50- 3.30 959.71- 3.49 11612.65 2.56 11.5 1062.58- 8.42 1014.53- 8.93 12320.58 6.40 12.0 1134.15- 10.33 1076.62- 10.96 13040.17 7.70 12.5 1200.78- 8.13 1136.36- 8.64 13772.65 5.94 13.0 1273.73- 8.57 1203.08- 9.12 14520.81 6.14 13.5 1355.37- 9.51 1270.47- 10.13 15284.55 6.68 14.0 1433.47- 10.94 1337.66- 11.66 16064.84 7.52 14.5 1509.30- 10.02 1403.23- 10.69 16860.74 6.75 15.0 1589.46- 10.32 1475.61- 11.02 17673.17 6.81 15.5 1674.53- 12.46 1548.00- 13.32 18503.93 8.05 16.0 1767.98- 17.26 1615.82- 18.47 19354.08 10.91 16.5 1851.10- 15.29 1690.96- 16.37 20218.46 9.46 17.0 1943.67- 16.11 1768.66- 17.27 21103.05 9.76 17.5 2038.81- 20.44 1842.33- 21.94 22009.50 12.11 18.0 2133.09- 16.76 1925.46- 18.00 22930.65 9.71 18.5 2232.21- 17.48 2008.14- 18.79 23874.55 9.91 19.0 2330.77- 16.92 2097.51- 18.20 24839.01 9.38 19.5 2439.32- 15.34 2188.36- 16.52 25824.21 8.32

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 2545.06- 14.87 2274.74- 16.02 26833.90 7.88 20.5 2651.87- 13.54 2368.79- 14.60 27865.71 7.01 21.0 2766.67- 11.68 2463.85- 12.61 28921.67 5.91 21.5 2880.88- 11.63 2554.07- 12.56 30003.59 5.75 22.0 2998.51- 11.98 2652.46- 12.95 31111.18 5.78 22.5 3122.71- 10.06 2754.82- 10.88 32244.10 4.74 23.0 3247.19- 9.60 2852.62- 10.40 33405.85 4.42 23.5 3374.21- 6.88 2959.94- 7.45 34594.89 3.09 24.0 3505.68- 6.48 3060.11- 7.02 35815.34 2.84 24.5 3641.96- 7.48 3165.22- 8.12 37067.21 3.21 25.0 3781.24- 5.21 3278.63- 5.66 38348.75 2.18 25.5 3925.26- 4.31 3387.69- 4.69 39664.55 1.76 26.0 4070.89- 2.11 3504.33- 2.30 41013.34.84 26.5 4222.90- 2.43 3614.23- 2.65 42398.93.94 27.0 4381.84- 3.58 3731.03- 3.90 43820.68 1.35 27.5 4543.85- 2.81 3849.47- 3.06 45278.63 1.03 28.0 4713.57- 3.36 3968.61- 3.67 46775.35 1.21 28.5 4881.36- 2.04 4092.26- 2.23 48311.35.71 29.0 5060.33- 3.51 4217.90- 3.82 49888.04 1.20

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 5243.05- 2.20 4348.34- 2.41 51505.00.73 30.0 5427.06- 2.43 4474.70- 2.66 53166.69.79 30.5 5616.92- 2.37 4611.39- 2.59 54872.35.75 31.0 5817.67- 2.76 4748.36- 3.02 56623.41.85 31.5 6021.91- 2.89 4883.49- 3.16 58422.18.87 32.0 6227.25- 2.60 5023.93- 2.85 60270.05.77 32.5 6445.18- 2.66 5170.17- 2.92 62167.25,77 33.0 6669.48- 2.48 5316.86- 2.71 64112.78.70 33.5 6895.98- 2.66 5461.49- 2.91 66105.37 73 34.0 7127.14- 3.19 5616.02- 3.50 68130.33.86 34.5 7365.30- 2.59 5769.67- 2.84 70175.90.68 35.0 7603.99- 2.94 5920.21- 3.22 72241.90.75 35.5 7841.04- 2.42 6078.98- 2.66 74306.22.61 36.0 8082.10- 2.40 6230.21- 2.64 76357.46.59 36.5 8320.41- 3.21 6380.66- 3.51 78396.66.78 37.0 8556.73- 3.88 6538.89- 4.25 80421.73 92 37.5 8799.33- 2.72 6689.10- 2.99 82433.72.63 38.0 9035.60- 3.37 6840.01- 3.70 84433.87.78 38.5 9270.10- 2.99 6996.45- 3.29 86421.37.68

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 9510.58- 3.56 7146.53- 3.91 88397.37.79 39.5 9745.22- 3.81 7296.33- 4.18 90362.83.84 40.0 9978.33- 4.84 7450.95- 5.31 92316.03 1.05 40.5 10216.37- 4.75 7600.94- 5.20 94258.98 1.02 41.0 10451.10- 3.68 7751.50- 4.04 96191.79.78 41.5 10683.77- 3.87 7906.44- 4.25 98114.17.81 42.0 10922.56- 3.29 8055.69- 3.61 100026.51.68 42.5 11155.78- 4.71 8204.02- 5.17 101930.06.97 43.0 11389.80- 3.69 8359.05- 4.05 103822.63.75 43.5 11626.93- 3.05 8508.74- 3.35 105705.07.61 44.0 11856.33- 4.49 8657.47- 4.92 107580.25.89 44,5 12094.17- 4.84 8811.74- 5.31 109444.68.96 45.0 12326.01- 5.04 8958.78- 5.53 111300.60.99 45.5 12557.99- 4.82 9107.34- 5.28 113148.34.94 46.0 12793.26- 5.69 9260.18- 6.24 114985.62 1.10 46.5 13027.72- 5.05 9410.87- 5.54 116813.70.97 47.0 13262.28- 6.21 9556.42- 6.82 118634.25 1.19 47.5 13493.42- 6.20 9708.30- 6.80 120445.77 1.18 48.0 13725.66- 6.57 9858.96- 7.20 122248.78 1.24

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 13961.02- 5.33 10005.47- 5.85 124043.47 1.00 49.0 14192.38- 7.02 10158.25- 7.70 125829.451.31 49.5 14427.50- 6.64 10308.77- 7.28 127606.121.23 50.0 14661.46- 5.78 10453.37- 6.34 129374.78 1.06 50.5 14892.45- 6.61 10602.65- 7.25 131135.88 1.21 51.0 15122.79- 6.90 10755.32- 7.57 132887.37 1.26 51.5 15361.15- 6.96 10900.23- 7.63 134631.45 1.27 52.0 15589.44- 7.10 11050.59- 7.78 136367.45 1.29 52.5 15821.24- 7.75 11203.57- 8.49 138094.27 1.40 53.0 16058.32- 7.88 11345.31- 8.64 139812.96 1.42 53.5 16285.34- 7.16 11492.92- 7.85 141524.00 1.28 54.0 16513.94- 8.70 11644.39- 9.53 143225.99 1.56 54.5 16755.51- 8.59 11789.40- 9.42 144919.80 1.53 55.0 16982.09- 8.46 11937.36- 9.28 146606.55 1.51 55.5 17212.10- 7.45 12089.16- 8.17 148284.40 1.32 56.0 17448.59- 9.51 12236.79- 10.42 149953.69 1.68 56.5 17678.73- 8.28 12382.84- 9.08 151614.91 1.46 57.0 17906.34- 8.53 12533.93- 9.35 153268.18 1.50 57.5 18152.08- 10.98 12688.86- 12.03 154911.32 1.93

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.0 18376*07- 8.61 12825.45- 9.44 156549.00 1.51 58.5 18608.08- 8.08 12975.23- 8.86 158177.73 1.41 59.0 18840.11- 9.09 13129.61- 9.96 159797.92 1.59 59*5 19076.10- 9.15 13269.45- 10.02 161410.94 1.59 60.0 19306.16- 9.34 13415.47- 10.24 163015.10 1.63 60.5 19540.88- 8.06 13566.98- 8.84 164610.00 1.40 61.0 19769.89- 8.65 13711.69- 9.48 166198.35 1.50 61.5 20000.69- 10.32 13858.84- 11.31 167779.05 1.79 62.0 20232.58- 9.12 14008.23- 10.01 169350.33 1.58 62.5 20463.41- 11.78 14151.83- 12.91 170914.35 2.05 63.0 20692.30- 11.98 14303.03- 13.12 172469.93 2.08 63.5 20926.87- 9.99 14447.60- 10.95 174017.34 1.73 64.0 21159.09- 11.71 14594.06- 12.83 175556.26 2.02 64.5 21396.52- 11.67 14743.98- 12.78 177086.04 2.02 65.0 21627.67- 11.51 14888.95- 12.60 178610.10 1.98 65.5 21860.64- 11.5] 15036.15- 12.60 180125.19 1.99 66.0 22094.68- 11.80 15182.44- 12.92 181631.95 2.04 66.5 22324.81- 12.87 15327.86- 14.08 183131.33 2.23 67.0 22559.33- 11.41 15471.86- 12.49 184622.02 1.97

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 22785.46- 12.35 15618.64- 13.52 186105.12 2.13 68.0 23017.46- 11.94 15771.16- 13.06 187578.73 2.06 68.5 23251.86- 12.30 15913.94- 13.46 189045.53 2.12 69.0 23484.10- 11.78 16053.85- 12.88 190504.78 2.03 69.5 23712.27- 10.99 16200.95- 12.03 191956.02 1.89 70.0 23949.64- 11.92 16356.26- 13.05 193397.07 2.06 70.5 24181.89- 11.40 16496.21- 12.48 194832.01 1.97 71.0 24411.00- 12.09 16643.82- 13.23 196258.59 2.09 71.5 24641.73- 11.72 16791.87- 12.83 197676.19 2.02 72.0 24876.10- 10.26 16936.78- 11.23 199086.78 1.77 72.5 25107.87- 10.96 17081.66- 12.00 200489.34 1.89 73.0 25341.20- 10.23 17224.50- 11.20 201883.59 1.76 73.5 25572.59- 11.73 17375.05- 12.85 203269.33 2.03 74.0 25807.52- 10.28 17518.32- 11.26 204647.55 1.78 74.5 26037.71- 10.92 17665.83- 11.96 206017.89 1.89 75.0 26273.67- 10.00 17809.29- 10.96 207380.08 1.73 75.5 26501.75- 12.34 17952.85- 13.51 208735.24 2.14 76.0 26741.48- 9.50 18102.58- 10.41 210078.15 1.65 76.5 26962.64- 8.68 18239.41- 9.50 211418.91 1.51

SM 1,08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 27195.21- 9.02 18387.77- 9.88 212749.78 1.57 77.5 27430.42- 12.22 18535.56- 13.38 214071.00 2.13 78.0 27660.76- 11.15 18676.00- 12.21 215384.31 1.94 78.5 27883.18- 10.58 18822.52- 11.59 216691.82 1.84 79.0 28118.44- 8.96 18970.36- 9.82 217990.48 1.56 79.5 28348.69- 11.68 19115.58- 12.78 219281.04 2.04 80.0 28585.14- 10.24 19260.23- 11.21 220561.34 1.79 80.5 28816.54- 12.56 19406.46- 13.74 221835.61 2.20 81.0 29051.64- 8.72 19548.48- 9.54 223101.37 1.53 81.5 29275.26- 11.82 19691.52- 12.93 224360.90 2.07 82.0 29510.43- 10.29 19836.14- 11.27 225610.24 1.81 82.5 29744.28- 13.43 19984.78- 14.70 226852.53 2.37 83.0 29976.72- 8.82 20123.11- 9.65 228087.53 1.55 83.5 30200.88- 11.53 20267.26- 12.62 229315.16 2.03 84.0 30436.48- 11.01 20411.90- 12.05 230533.13 1.94 84.5 30662.25- 12.93 20558.52- 14.18 231743.51 2.29 85.0 30904.47- 9.16 20696.85- 10.06 232945.58 1.62 85.5 31122.02- 10.09 20836.21- 11.10 234141.80 1.79 86.0 31354.81- 11.82 20983.41- 12.95 235327.94 2.09

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 31586.43- 12.84 21133.55- 14.07 236505.40 2.28 87.0 31823.70- 10.02 21269.65- 10.98 237676.05 1.78 87.5 32050.58- 9.92 21414.42- 10.84 238839.08 1.75 88.0 32278.77- 12.27 21558.74- 13.37 239995.04 2.18 88.5 32509.54- 9.87 21705.88- 10.76 241141.08 1.74 89.0 32749.05- 11.03 21846.84- 12.02 242279.40 1.96 89.5 32977.85- 2.84 22003.44- 3.10 243409.42.48 90.0 33197.71- 11.83 22168.41- 12.91 244531.87 2.11 90.5 33432.42- 7.41 22302.57- 8.09 245647.25 1.30 91.0 33659.08- 11.47 22449.29- 12.53 246754.14 2.04 91.5 33892.72- 8.69 22592.14- 9.49 247852.22 1.54 92.0 34120.26- 9.60 22734.96- 10.49 248943.29 1.71 92.5 34348.04- 10.49 22878.83- 11.46 250026.92 1.88 93.0 34583.27- 11.43 23018.41- 12.45 251102.23 2.05 93.5 34812.35- 12.80 23163.37- 13.93 252169.95 2.30 94.0 35044.78- 10.52 23305.62- 11.43 253228.40 1.88 94.5 35271.98- 12.67 23447.55- 13.76 254280.51 2.28 95.0 35516.32- 12.24 23572.49- 13.29 255325.96 2.20 95.5 35769.51- 7.40 23704.48- 8.01 256360.92 1.31

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 36007.95- 9.71 23845.00- 10.51 257387.01 1.74 96.5 36233.99- 7.29 23980.80- 7.86 258406.45 1.29 97.0 36459.17- 7.13 24119.78- 7.70 259419.21 1.27 97.5 36687.17- 10.62 24265.85- 11.51 260423.56 1.93 98.0 36925.14- 6.94 24414.02- 7.49 261418.28 1.25 98.5 37156.07- 12.08 24557.12- 13.08 262405.35 2.20 99.0 37387.92- 9.58 24693.03- 10.35 263385.22 1.75 99.5 37611.85- 10.52 24831.80- 11.35 264358.66 1.92 100.0 37836.83- 12.72 24976.31- 13.76 265323.83 2.34 100.5 38070.00- 11.71 25120.35- 12.64 266280.23 2.15 101.0 38303.12- 13.04 25264.48- 14.11 267228.67 2.41 101.5 38541.37- 16.61 25411.95- 18.00 268168.14 3.09 102.0 38776.04- 15.16 25557.70- 16.41 269099.78 2.83 102.5 39006.48- 15.48 25696.55- 16.77 270024.64 2.89 103.0 39237.95- 14.70 25838.80- 15.89 270941.03 2.75 103.5 39464.18- 15.59 25977.39- 16.88 271851.25 2.93 104.0 39702.24- 13.46 26119.42- 14.56 272751.05 2.53 104.5 39928.36- 15.78 26261.46- 17.07 273643.94 2.98 105.0 40159.15- 15.63 26403.34- 16.92 274528.68 2.96

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 105.5 40391.98- 12.80 26542.34- 13.82 275406.05 2.41 106.0 40616.79- 15.62 26680.65- 16.94 276277.13 2.96 106.5 40850.37- 15.05 26822.49- 16.33 277138.27 2.86 107.0 41078.72- 15.64 26967.03- 16.97 277991.59 2.98 107.5 41311.67- 14.50 27091.91- 15.80 278839.06 2.77 108.0 41557.70- 13.98 27256.63- 15.24 279673.31 2.68 108.5 41788.66- 13.91 27438.97- 15.15 280500.58 2.66 109.0 42023.27- 10.67 27575.66- 11.60 281325.72 2.04 109.5 42248.68- 9.02 27715.88- 9.80 282142.00 1.71 110.0 42487.66- 7.98 27884.46- 8.65 282941.87 1.52 110.5 42705.19-.64 28007.66- *74 283742.11.17 111.0 42925.68- 2.86 28149.64- 3.09 284535.00.52 111.5 43157.12- 1.22 28288.50- 1.29 285318.53.19 112.0 43384.90-.95 28431.50-.99 286093.55.14 112.5 43617.66- 3.57 28606.37- 3.94 286853.70.76 113.0 43837.32- 5.05 28722.67- 5.58 287615.23 1.06 113.5 44060.72- 3.97 28860.31- 4.38 288369.16.85 114.0 44289.19- 4.67 29000.30- 5.14 289113.77.99 114.5 44517.03- 3.20 29142.20- 3.54 289849.72.69

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 115.0 44752.18- 3.98 29310.90- 4.39 290571.73.85 115.5 44935.72- 11.86 29403.90- 12.96 291302.10 2.43 116.0 45141.11- 7.41 29535.06- 8.10 292017.39 1.54 116.5 45371.33- 2.13 29637.28- 2.31 292724.77.38 117.0 45645.20- 21.88 29758.05- 23.95 293415.73 4.49 117.5 45876.29- 24.50 29895.31- 26.81 294102.49 5.04 118.0 46113.09- 22.73 30039.65- 24.86 294780.02 4.68 118.5 46332.62- 22.00 30171.78- 24.07 295453.79 4.55 119.0 46558.69- 21.76 30306.54- 23.83 296122.11 4.51 119.5 46788.38- 21.72 30449.59- 23.80 296777.68 4.52 120.0 47024.51- 21.48 30598.17- 23.53 297422.45 4.48 120.5 47244.47- 20.33 30728.28- 22.27 298065.11 4.26 121.0 47479.50- 19.09 30883.58- 20.91 298694.21 4.01 121.5 47704.39- 20.80 31006.76- 22.78 299315.32 4.38 122.0 47922.83- 19.78 31145.40- 21.64 299934.54 4.17 122.5 48168.26- 22.95 31284.89- 25.09 300544.34 4.85 123.0 48393.15- 21.83 31426.84- 23.90 301147.76 4.63 123.5 48624.69- 21.01 31563.35- 23.02 301746.73 4.47 124.0 48854.62- 21.63 31701.60- 23.67 302336.01 4.61

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 124.5 49080.33- 22.24 31844.27- 24.33 302914.95 4.74

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 21.13- 1.11 5.93- 1.20 450.31 2.50 1.5 53.16- 1.78 13.67- 1.91 775.57 2.73 2.0 94.16-.87 19.85-.94 1202.84 1.11 2.5 149.25-.59 31.83-.64 1704.01.68 3.0 204.94-.69 44.07-.73 2221.04.74 3.5 263.95-.59 56.91-.62 2750.55.59 4.0 326.36-.02 69.55-.03 3291.21.03 4.5 390.43-.59 82.49-.61 3843.41.54 5.0 457.79-.98 96.55- 1.02 4406.20.89 5.5 527.77- 1.16 110.63- 1.22 4979.84 1.03 6.0 599.73- 1.70 125.42- 1.78 5565.58 1.47 6.5 674.27- 2.12 140.85- 2.21 6162.92 1.79 7.0 751.32- 2.34 156.83- 2.46 6772.02 1.94 7.5 828.60-.72 170.89-.75 7392.21.58 8.0 909.98-.31 186.56-.33 8025.78.24 8.5 994.65-.13 203.39-.14 8672.82.10 9.0 1081.79-.08 220.44-.09 9333.47.06 9.5 1171.60-.08 238.09-.08 10008.37.05 10.0 1263.98-.04 256.32-.04 10697.62.02

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL.) SIG Z 10.5 1358.05- 1.31 272.68- 1.38 11403.16.93 11.0 1457.91- 2.23 290.47- 2.35 12123.33 1.55 11.5 1559.08- 1.71 311.56- 1.80 12858.20 1.17 12.0 1664.96- 1.72 332.34- 1.82 13609.76 1.15 12.5 1774.25- 1.71 353.73- 1.81 14377.72 1.12 13.0 1888.81- 2.53 377.14- 2.68 15162.63 1.62 13.5 2005.29- 1.99 398.77- 2.11 15964.35 1.24 14.0 2126.71- 1.94 421.32- 2.06 16783.65 1.18 14.5 2254.18- 2.14 444.04- 2.28 17620.90 1.28 15.0 2387.90- 1.04 469.14- 1.11 18475.40.61 15.5 2526.62-.68 493.17-.73 19349.55.39 16.0 2669.86- 1.09 516.20- 1.17 20243.93.61 16.5 2818.21- 1.84 539.36- 1.96 21159.42 1.00 17.0 2972.89- 3.52 562.73- 3.77 22096.08 1.87 17.5 3130.76- 3.90 584.60- 4.18 23053.95 2.01 18.0 3293.98- 4.19 606.16- 4.49 24034.17 2.11 18.5 3463.18- 4.36 627.79- 4.69 25037.22 2.14 19.0 3638.01- 4.41 649.72- 4.74 26063.43 2.11 19.5 3820.62- 4.24 674.28- 4.56 27113.01 1.97

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 4010.47- 3.99 696.98- 4.30 28187.281.81 20.5 4206.91- 4.38 719.18- 4.72 29286.70 1.93 21.0 4409.05- 3.82 738.97- 4.12 30411.891.64 21.5 4620.05- 3.76 760.80- 4.07 31563.641.57 22.0 4840.05- 4.43 783.05- 4.79 32743.09 1.80 22.5 5071.96- 5.52 803.67- 5.98 33950.72 2.18 23.0 5310.33- 6.73 823.82- 7.29 35189.22 2.58 23.5 5554.33- 7.08 842.67- 7.67 36458.39 2.64 24.0 5803.82- 5.63 859.50- 6.11 37759.952.04 24.5 6064.52- 5.70 880.83- 6.19 39095.292.01 25.0 6332.00- 5.31 905.62- 5.77 40464.79 1.82 25.5 6609.66- 4.14 928.87- 4.50 41871.26 1.38 26.0 6896.45- 3.96 949.48- 4.30 43315.23 1.28 26.5 7191.89- 2.78 972.18- 3.03 44797.64.88 27.0 7499.88- 3.28 994.41- 3.57 46320.771.00 27.5 7817.39- 3.60 1017.24- 3.92 47886.061.07 28.0 8141.09- 2.10 1039.89- 2.28 49494.30.60 28.5 8477.78- 1.60 1063.59- 1.75 51147.37.45 29.0 8826.05- 1.20 1088.23- 1.31 52847.22.33

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 9189.32- 2.59 1109.70- 2.83 54595.54.69 30.0 9558.60- 2.16 1133.11- 2.35 56394.49.56 30.5 9939.94- 1.26 1158.11- 1.38 58245.38.32 31.0 10332.88- 1.85 1182.87- 2.02 60150.85.46 31.5 10740.35- 1.43 1209.94- 1.56 62112.19.34 32.0 11158.00- 2.92 1237.44- 3.19 64128.01.69 32.5 11588.33- 2.78 1266.12- 3.04 66193.19.64 33.0 12025.66- 2.33 1295.72- 2.55 68283.15.52 33.5 12461.43- 2.59 1324.87- 2.83 70364.21.57 34.0 12897.26- 2.84 1356.19- 3.11 72430.43.61 34.5 13329.98- 2.18 1384.71- 2.38 74481.72.46 35.0 13762.99- 2.59 1415.56- 2.84 76517.71.54 35.5 14194.52- 1.88 1445.59- 2.06 78539.35.39 36.0 14624.75- 2.53 1474.79- 2.77 80547.07.51 36.5 15055.14- 2.72 1505.24- 2.98 82541.17.55 37.0 15482.69- 2.70 1534.80- 2.96 84522.48.53 37.5 15909.99- 2.30 1563.29- 2.52 86491.56.45 38.0 16336.93- 2.28 1592.26- 2.50 88448.30.44 38.5 16763.05- 1.43 1623.07- 1.57 90393.29.27

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 17188.67- 1.92 1650.25- 2.11 92326.69.37 39.5 17614.54- 1.31 1678.89- 1.45 94247.85.25 40.0 18038.48- 1.41 1705.89- 1.55 96158.49.27 40,5 18464.57- 1.02 1734.70- 1.13 98057.91.19 41.0 18891.63- 1.04 1762.09- 1.15 99946.85.20 41.5 19315.73- 1.72 1790.71- 1.88 101825.54.32 42.0 19744.17- 1.35 1818.04- 1.49 103693.66.25 42.5 20168.97- 1.54 1847.67- 1.70 105551.73.29 43.0 20595.76- 1.40 1875.33- 1.54 107399.69.26 43.5 21020.86- 1.59 1900.66- 1.75 109238.72.29 44.0 21447.05- 1.82 1929.10- 2.01 111068.17.33 44.5 21872.85- 1.75 1957.94- 1.93 112887.90.32 45.0 22298.98- 1.52 1984.79- 1.67 114699.42.28 45.5 22724.64- 2.09 2009.91- 2.30 116500.48.38 46.0 23151.32- 1.93 2037.52- 2.13 118292.77.35 46.5 23579.03- 1.81 2062.47- 2.00 120076.43.33 47.0 24005.17- 1.51 2087.36- 1.67 121851.36.27 47.5 24431.35- 1.82 2111.26- 2.01 123617.76.33 48.0 24857.46- 2.02 2137.80- 2.23 125375.30.37

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 48.5 25282.35- 1.53 2160.70- 1.70 127124.31.28 49.0 25707.47-.97 2185.55- 1.08 128864.41.17 49.5 26132.42- 2.52 2208.07- 2.77 130596.30.46 50.0 26557.66- 1.36 2234.49- 1.51 132319.49.25 50.5 26982.61-.79 2256.03-.88 134035.01.15 51.0 27406.58-.67 2279.79-.76 135742.05.12 51.5 27830.42-.16 2301.44-.19 137440.89.03 52.0 28253.62- 1.55 2327.07- 1.72 139131.12.28 52.5 28677.00-.65 2349.04-.73 140813.34.12 53.0 29100.10- 1.73 2373.16- 1.92 142487.19.32 53.5 29522.52- 1.93 2396.04- 2.14 144153.13.35 54.0 29948.34- 1.51 2420.24- 1.68 145810.44.28 54.5 30372.67- 2.85 2443.04- 3.15 147459.80.52 55.0 30795.73- 1.33 2471.99- 1.48 149100.92.25 55.5 31220.82- 1.75 2495.21- 1.95 150733.21.33 56.0 31645.21- 2.90 2518.89- 3.21 152357.39.54 56.5 32071.75- 2.16 2540.45- 2.40 153973.33.40 57.0 32497.82- 4.00 2564.43- 4.41 155580.96.75 57.5 32921.49- 3.94 2584.09- 4.34 157181.44.74

SM 1.09 16 MAR 1959 TIME X(N) SIC X Y(W) SIG Y Z(MSL) SIG Z 58.0 33345.38- 4.74 2607.55- 5.22 158773.46.89 58.5 33771.58- 4.92 2626.76- 5.42 160357.50.93 59.0 34187.08- 3.75 2652.20- 4.14 161934.14.71 59.5 34611.66- 4.03 2672.02- 4.44 163501.89.76 60.0 35030.92- 3.25 2692.70- 3.59 165062.31.62 60.5 35454.41- 4.51 2716.57- 4.97 166613.57.86 61.0 35880.18- 2.97 2737.01- 3.28 168156.85.57 61.5 36300.81- 2.33 2759.05- 2.59 169692.78.45 62.0 36723.00- 3.31 2782.46- 3.66 171220.40.63 62.5 37145.78- 2.86 2802.63- 3.17 172739.95.55 63.0 37569.29- 2.89 2826.04- 3.20 174250.82.56 63.5 37992.12- 1.80 2846.41- 2.00 175754.06.35 64.0 38413.16- 1.98 2867.01- 2.21 177249.54.38 64.5 38837.62- 1.52 2888.83- 1.70 178736.47.30 65.0 39257.59- 2.57 2911.39- 2.86 180216.05.50 65.5 39678.21- 3.36 2932.26- 3.72 181687.57.66 66.0 40101.77- 3.37 2952.89- 3.73 183150.57.66 66.5 40522.21- 4.44 2975.51- 4.91 184605.93.87 67.0 40945.61- 4.13 2995.50- 4.56 186052.77.81

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 67.5 41365.44- 6.02 3015.61- 6.64 187492.18 1.19 68.0 41787.61- 6.02 3034.79- 6.63 188923.18 1.20 68.5 42210.07- 6.37 3056.60- 7.02 190346.24 1.27 69.0 42630.37- 6.65 3077.63- 7.31 191761.50 1.33 69.5 43052.24- 5.99 3097.26- 6.60 193168.69 1.20 70.0 43474.02- 6.67 3118.65- 7.34 194567.851.34 70.5 43893.33- 6.53 3136.99- 7.19 195959.46 1.31 71.0 44317.34- 6.18 3158.78- 6.82 197341.61 1.25 71.5 44737.80- 7.30 3178.06- 8.04 198716.63 1.48 72.0 45159.98- 6.45 3197.63- 7.11 200083.49 1.31 72.5 45583.03- 6.32 3217.71- 6.97 201442.00 1.29 73.0 46003.60- 7.54 3238.62- 8.30 202793.25 1.54 73.5 46425.73- 6.26 3255.72- 6.90 204136.55 1.28 74.0 46848.12- 7.05 3276.44- 7.77 205471.66 1.45 74.5 47278.46- 5.20 3296.93- 5.73 206796.81 1.07 75.0 47695.19- 6.97 3317.03- 7.67 208115.85 1.44 75.5 48115.30- 6.01 3336.17- 6.63 209426.57 1.25 76.0 48533.21- 6.51 3354.05- 7.18 210729.97 1.35 76.5 48959.38- 5.34 3374.39- 5.89 212024.14 1.11

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.0 49380.64- 6.15 3395.70- 6.78 213310.61 1.28 77.5 49804.12- 5.00 3414.25- 5.52 214589.49 1.05 78.0 50224.78- 5.63 3433.71- 6.21 215860.98 1.18 78.5 50648.06- 4.76 3454.40- 5.26 217123.75 1.01 79.0 51068.52- 6.12 3474.08- 6.74 218378.81 1.29 79.5 51492.37- 8.61 3492.28- 9.47 219626.27 1.83 80.0 51914.10- 8.85 3508.99- 9.73 220865.37 1.88 80.5 52334.67- 8.29 3528.49- 9.12 222096.46 1.77 81.0 52754.08- 10.4U 3548.94- 11.44 223319.62 2.23 81.5 53176.26- 8.14 3562.86- 8.96 224535.01 1.75 82.0 53596.08- 10.99 3583.69- 12.08 225742.22 2.37 82.5 54015.67- 9.49 3601.85- 10.43 226941.71 2.05 83.0 54436.23- 12.13 3622.44- 13.33 228133.18 2.63 83.5 54858.64- 10.33 3637.85- 11.36 229316.58 2.24 84.0 55278.87- 12.25 3656.03- 13.49 230491.67 2.67 84.5 55700.23- 11.19 3676.13- 12.34 231658.57 2.45 85.0 56124.87- 10.66 3692.35- 11.76 232816.94 2.33 85.5 56543.16- 10.34 3711.60- 11.40 233968.45 2.27 86.0 56960.22- 13.84 3728.46- 15.25 235112.32 3.05

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 86.5 57381.76- 11.77 3748.73- 12.98 236247.59 2.60 87.0 57804.21- 11.33 3763.17- 12.52 237374.85 2.51 87.5 58224.32- 9.39 3779.24- 10.36 238494.79 2.08 88.0 58643.41- 10.45 3798.04- 11.52 239606.82 2.33 88.5 59067.29- 10.55 3817.12- 11.65 240710.14 2.36 89.0 59484.04- 13.60 3820.05- 14.95 241806.66 3.04 89.5 59901.12- 13.47 3845.63- 14.82 242895.09 3.02 90.0 60320.17- 13.22 3863.93- 14.55 243974.95 2.98 90.5 60739.08- 17.29 3885.92- 19.02 245046.59 3.91 91.0 61159.83- 12.66 3895.36- 13.95 246110.82 2.87 91.5 61578.99- 13.03 3915.57- 14.36 247166.67 2.96 92.0 61995.69- 12.45 3927.36- 13.72 248215.79 2.84 92.5 62414.37- 12.78 3944.31- 14.09 249256.16 2.92 93.0 62834.16- 9.90 3958.16- 10.95 250288.78 2.27 93.5 63252.99- 10.59 3975.32- 11.70 251313.67 2.43 94.0 63672.67- 11.84 3996.13- 13.09 252330.11 2.73 94.5 64095.25- 9.09 4009.07- 10.07 253339.31 2.10 95.0 64503.74- 14.19 4017.76- 15.66 254343.61 3.29 95.5 64921.95- 13.28 4036.17- 14.67 255336.14 3.09

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 96.0 65338.78- 15.16 4050.97- 16.70 256321.48 3.54 96.5 65760.84- 15.25 4070.86- 16.78 257297.32 3.57 97.0 66183.64- 11.91 4083.71- 13.13 258265.42 2.80 97.5 66599.62- 15.56 4103.23- 17.13 259226.95 3.67 98.0 67020.94- 13.93 4116.74- 15.32 260179.87 3.29 98.5 67441.57- 15.03 4137.17- 16.51 261124.65 3.56 99.0 67861.40- 18.33 4149.91- 20.12 262062.12 4.35 99.5 68279.02- 14.64 4168.02- 16.08 262991.82 3.49 100.0 68698.63- 15.32 4182.52- 16.82 263913.43 3.66 100.5 69124.63- 4.85 4186.52- 5.37 264827.32 1.16 101.0 69540.22- 2.75 4191.29- 3.08 265735.09.66 101.5 69957.89- 18.02 4235.28- 19.84 266628.55 4.35 102.0 70379.46- 14.58 4247.88- 16.07 267517.60 3.53 102.5 70795.61- 18.83 4261.23- 20.72 268399.65 4.58 103.0 71217.10- 15.84 4275.56- 17.47 269272.98 3.86 103.5 71635.46- 16.75 4293.10- 18.48 270138.84 4.10 104.0 72051.72- 15.69 4309.09- 17.34 270997.52 3.85 104.5 72468.49- 17.09 4320.92- 18.89 271848.34 4.20 105.0 72887.71- 14.66 4337.62- 16.19 272690.44 3.62

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 105.5 73302.62- 15.21 4350.80- 16.80 273526.05 3.76 106.0 73721.97- 13.48 4366.77- 14.90 274352.38 3.34 106.5 74136.92- 15.36 4382.06- 16.94 275172.10 3.82 107.0 74557.32- 14.85 4396.42- 16.39 275982.67 3.70 107.5 74985.03- 20.60 4410.44- 22.63 276782.68 5.15 108.0 75403.76- 19.13 4443.94- 21.06 277576.47 4.80 108.5 75823.63- 18.21 4459.29- 20.05 278362.27 4.59 109.0 76238.68- 20.38 4473.56- 22.40 279141.53 5.15 109.5 76656.24- 20.47 4488.05- 22.47 279912.52 5.18 110.0 77073.76- 20.05 4503.96- 22.03 280675.51 5.09 110.5 77493.29- 21.59 4522.74- 23.70 281430.14 5.52 111.0 77908.68- 21.22 4533.92- 23.32 282178.15 5.44 111.5 78327.17- 20.15 4545.20- 22.14 282917.72 5.18 112.0 78744.35- 21.09 4563.73- 23.16 283649.12 5.44 112.5 79160.80- 23.00 4579.44- 25.27 284373.30 5.95 113.0 79579.64- 21.68 4591.08- 23.83 285089.08 5.62 113.5 79999.07- 22.25 4604.61- 24.45 285797.25 5.79 114.0 80416.25- 23.71 4618.81- 26.05 286497.72 6.19 114.5 80836.01- 23.77 4636.17- 26.11 287189.79 6.22

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 115.0 81253.48- 23.49 4648.88- 25.82 287874.02 6.16 115.5 81664.42- 24.78 4662.79- 27.23 288551.46 6.53 116.0 82079.52- 24.01 4677.60- 26.35 289219.85 6.34 116.5 82497.18- 21.61 4691.01- 23.75 289879.93 5.72 117.0 82912.97- 21.83 4702.97- 23.99 290533.31 5.80 117.5 83329.58- 22.74 4717.38- 24.99 291177.87 6.06 118.0 83743.44- 22.58 4727.11- 24*84 291815.59 6.04 118.5 84162.03- 21.90 4744.12- 24.10 292443.92 5.87 119.0 84579.73- 22.24 4756.60- 24.46 293064.92 5.98 119.5 84993.81- 21.14 4765.93- 23.27 293679.01 5.70 120.0 85408.72- 7.92 4775.45- 8.80 294286.52 2.14 120.5 85826.16- 10.23 4788.96- 11.36 294884.07 2.78 121.0 86243.30- 9.39 4802.31- 10.44 295474.19 2.55 121.5 86658.28- 9.07 4815.50- 10.10 296057.18 2.47 122.0 87076.52- 8.93 4831.70- 9.93 296631.37 2.44 122.5 87489.43- 4.01 4857.51- 4.55 297198.95 1.10 123.0 87902.45- 4.92 4885.46- 5.55 297758.17 1.35 123.5 88320.81- 10.49 4905.50- 11.64 298308.28 2.90 124.0 88736.78- 14.49 4926.74- 16.01 298851.03 4.02

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 124.5 89154.45- 18.78 4949.99- 20.69 299385.31 5.23

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 1.0 12.41- 3.62 2.19 4.05 347.24 10.76 1.5 20.77- 5.56 2.99- 6.11 599.57 10.44 2.0 29.60- 8.64 15.82- 9.32 942.70 12.75 2.5 46.82- 6.92 22.54- 7.37 1378.40 8.76 3.0 64.00- 5.07 29.75- 5.36 1833.96 5.89 3.5 83.27- 4.98 40.03- 5.24 2303.12 5.46 4.0 104.68- 5.04 51.98- 5.28 2786.42 5.30 4.5 127.52- 4.33 63.81- 4.53 3285.08 4.40 5.0 152.44- 1.45 67.84- 1.52 3799.52 1.43 5.5 180.91- 1.93 80.17- 2.01 4322.67 1.84 6.0 208.84- 1.01 91.31- 1.05 4856.86.95 6.5 236.72-.05 103.69-.05 5401.78.05 7.0 265.05-.61 116.89-.64 5956.08.55 7.5 293.68- 1.26 130.84- 1.31 6520.49 1.10 8.0 322.45- 1.64 145.53- 1.70 7094.50 1.40 8.5 351.44- 1.59 160.22- 1.66 7678.33 1.34 9.0 381.69- 1.53 175.77- 1.59 8272.55 1.27 9.5 412.76- 1.47 191.29- 1.53 8877.14 1.19 10.0 444.94- 1.53 207.34- 1.59 9492.89 1.22

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 10.5 478.02- 1.45 223.59- 1.51 10119.77 1.13 11.0 512.12- 1.52 239.30- 1.58 10757.93 1.16 11.5 546.30- 1.64 255.76- 1.72 11408.02 1.24 12.0 582.48- 1.89 272.80- 1.98 12070.09 1.40 12.5 620.94- 2.07 289.60- 2.17 12744.48 1.50 13.0 660.25- 2.48 306.12- 2.60 13432.15 1.77 13.5 700.45- 2.64 323.05- 2.77 14132.34 1.84 14.0 741.57- 2.59 340.73- 2.72 14845.79 1.77 14.5 783.72- 2.86 358.41- 3.00 15573.03 1.91 15.0 826.76- 3.18 377.29- 334 16314.21 2.09 15.5 872.10- 3.58 395.65- 3.77 17069.72 2.30 16.0 918.77- 4.10 413.89- 4.32 17840.23 2.59 16.5 966.63- 4.46 432.62- 4.70 18624.89 2.75 17.0 1016.06- 4.75 451.87- 5.00 19425.32 2.87 17.5 1066.97- 5.27 470.81- 5.56 20241.203.12 18.0 1120.65- 5.69 489.79- 6.01 21073.06 3.29 18.5 1176.75- 6.05 508.30- 6.40 21921.22 3.42 19.0 1234.51- 6.33 527.47- 6.69 22786.47 3.50 19.5 1294.51- 6.54 547.11- 6.92 23668.63 3.54

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 20.0 1356.51- 6.63 566.84- 7.03 24568.22 3.51 20.5 1424.02- 5.44 588.78- 5.77 25484.86 2.82 21.0 1492.94- 5.88 606.97- 6.23 26421.23 2.97 21.5 1562.26- 5.72 622.47- 6.08 27376.81 2.82 22.0 1636.30- 6.74 640.38- 7.16 28352.20 3.25 22.5 1716.69- 6.16 660.73- 6.55 29346.58 2.90 23.0 1799.47- 6.28 679.11- 6.68 30362.19 2.88 23.5 1879.79- 4.63 690.19- 4.93 31398.73 2.08 24.0 1967.43- 5.97 705.21- 6.36 32457.81 2.61 24.5 2058.79- 7.63 720.35- 8.14 33538.70 3.25 25.0 2156.11- 8.18 737.96- 8.73 34642.69 3.40 25.5 2256.05- 7.57 754.43- 8.08 35770.70 3.07 26.0 2356.45- 6.43 768.00- 6.87 36923.19 2.54 26.5 2461.87- 7.37 782.30- 7.89 38101.51 2.84 27.0 2572.87- 6.75 797.77- 7.22 39306.07 2.53 27.5 2683.74- 6.59 809.13- 7.06 40538.41 2.40 28.0 2796.78- 5.50 822.42- 5.90 41798.88 1.96 28.5 2913.75- 5.95 837.70- 6.38 43088.41 2.06 29.0 3035.80- 5.56 855.72- 5.97 44407.41 1.87

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 29.5 3166.17- 7.66 869.23- 8.22 45757.87 2.51 30.0 3295.77- 5.91 886.11- 6.35 47138.78 1.89 30.5 3428.75- 5.29 903.25- 5.69 48551.57 1.64 31.0 3571.97- 7.34 913.55- 7.89 49999.30 2.22 31.5 3713.58- 6.16 927.49- 6.63 51480.61 1.81 32.0 3853.54- 4.88 941.62- 5.26 52997.22 1.40 32.5 3999.02- 5.79 960.28- 6.23 54550.01 1.61 33.0 4148.86- 5.62 984.01- 6.06 56139.421.52 33.5 4305.80- 5.57 1008.24- 6.01 57767.171.47 34.0 4471.90- 6.59 1031.66- 7.12 59434.42 1.69 34.5 4639.73- 4.65 1054.62- 5.03 61140.95 1.16 35.0 4812.44- 5.27 1078.34- 5.70 62888.94 1.28 35.5 4993.77- 6.01 1095.28- 6.50 64680.851.42 36.0 5171.33- 6.90 1112.05- 7.46 66517.031.59 36.5 5348.72- 5.55 1131.48- 6.00 68398.61 1.24 37.0 5529.35- 5.73 1155.25- 6.20 70327.421.25 37.5 5715.01- 4.89 1185.86- 5.29 72304.52 1.03 38.0 5910.67- 6.30 1220.78- 6.82 74330.94 1.30 38.5 6116.79- 6.48 1253.28- 7.03 76408.39 1.30

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 39.0 6326.24- 5.36 1286.72- 5.81 78537.00 1.05 39.5 6542.33- 5.73 1320.12- 6.22 80720.20 1.09 40.0 6762.65- 5.38 1346.67- 5.84 82959.19.99 40.5 6980.42- 4.90 1368.63- 5.32 85254.57.88 41.0 7195.95- 3.94 1398.23- 4.28 87604.87.69 41*5 7412.44- 3.96 1437.01- 4.31 90004.71.68 42.0 7631.62- 3.79 1479.02- 4.11 92439.18.63 42.5 7856.78- 4.28 1526.86- 4.65 94889.33.70 43.0 8081.85- 4.78 1572.80- 5.19 97352.03.76 43.5 8310.00- 5.17 1620.40- 5.62 99818.32.81 44.0 8543.32- 5.15 1668.16- 5.60 102277.55.78 44.5 8772.28- 5.48 1712.38- 5.95 104727.52.81 45.0 9004.68- 4.85 1759.89- 5.27 107169.07.71 45.5 9230.31- 4.99 1799.91- 5.43 109603.44.71 46.0 9457.92- 5.61 1843.91- 6.10 112029.02.79 46.5 9686.47- 4.03 1889.14- 4.38 114445.20.56 47.0 9911.78- 3.75 1936.21- 4.08 116852.34.51 47.5 10137.14- 4.20 1979.64- 4.57 119251.53.56 48.0 10362.23- 5.22 2027.74- 5.68 121641.96.68 48.5 10591.92- 6.75 2073.99- 7.35 124024.64.87

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 49.0 10820.93- 5.99 2120.34- 6.52 126398.49.76 49.5 l1045.67- 5.38 2163.72- 5.85 128763.23.67 50.0 11271.30- 5.13 2205.83- 5.58 131120.31.63 50.5 11498.91- 6.64 2248.72- 7.22 133469.51.81 51.0 p1730.44- 6.52 2297.44- 7.10 135809.81.79 51.5 11955.88- 6.59 2339.92- 7.18 138142.59.79 52.0 12178.93- 4.90 2381.02- 5.33 140466.15.58 52.5 12406.83- 4.23 2427.83- 4.61 142782.19.49 53.0 12634.35- 8.36 2474.25- 9.10 145089.54.97 53.5 12859.99- 7.48 2517.09- 8.14 147389.45.85 54.0 L3090.31- 4.63 2563.66- 5.04 149680.23.52 54.5 13314.36- 6.32 2602.58- 6.88 151963.37.71 55.0 13541.06- 7.34 2642.86- 7.99 154238.38.82 55.5 13767.58- 8.60 2688.31- 9.36 156504.90.95 56.0 13992.92- 5.11 2732.52- 5.56 158763.36.56 56.5 14220.33- 5.45 2776.34- 5.93 161014.21.59 57.0 14444.75- 7.31 2818.70- 7.96 163256.99.79 57.5!4674.64- 8.30 2870.23- 9.04 165490*32.89 58.0 14898.13- 4.87 2908.63- 5.31 167716.67.52

SM 2,10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 58.5 15124.16- 4.05 2948.80- 4.40 169935.12.43 59.0 15351.70- 7.17 2997.18- 7.81 172145.09.75 59.5 15578.97- 5.42 3040.28- 5.89 174347.23.56 60.0 15807.36- 2.22 3082.45- 2.41 176540.33.23 60.5 16025.78- 5.05 3127.37- 5.50 178725.79.52 61.0 16257.89- 6.18 3169.44- 6.73 180903.31.63 61.5 16486.13- 6.74 3211.75- 7.34 183072.94.69 62.0 16712.41- 4.69 3251.40- 5.11 185234.35.48 62.5 16936.59- 6.50 3291.92- 7.08 187387.46.65 63.0 17161.57- 8.37 3331.22- 9.12 189532.98.84 63.5 17392.67- 6.28 3377.18- 6.83 191669.88.63 64.0 17617.42- 3.04 3412.66- 3.30 193799.33.30 64.5 17844.49- 5.43 3455.23- 5.91 195920.42.54 65.0 18063.38- 7.10 3496.51- 7.73 198034.33.70 65.5 18296.66- 4.64 3536.98- 5.05 200139*40.46 66.0 18522.17- 4.94 3573.18- 5.37 202236.53.48 66.5 18746.89- 3.78 3619.22- 4.11 204324.91.37 67.0 18967.83- 8.09 3657.83- 8.81 206406.61.79 67.5 19199.14- 4.58 3699.03- 4.99 208479.79.44

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 68.0 19426.19- 4.58 3742.41- 4.99 210544.78.44 68.5 19646.08- 2.88 3786.56- 3.14 212600.97.28 69.0 19870.11- 4.43 3824.35- 4.83 214650.28.43 69.5 20102.69- 6.19 3869.08- 6.75 216690.96.60 70.0 20332.58- 3.57 3908.39- 3.89 218723.97.35 70,5 20554.39- 6.07 3947.11- 6.62 220749.29.58 71.0 20779.29- 6.83 3987.30- 7.44 222766.63.66 71.5 21001.39- 7.60 4030.28- 8.28 224775.33.72 72.0 21231.13- 8.46 4074.66- 9.23 226775.90.81 72.5 21460.86- 4.81 4114.50- 5.24 228768.30.46 73.0 21684.50- 6.08 4148.07- 6.63 230753.16.58 73.5 21905.38- 8.75 4189.73- 9.54 232730.09.84 74.0 22130.78- 9.96 4234.62- 10.87 234701.04.95 74.5 22370.67- 11.69 4256.54- 12.76 236660.66 1.12 75.0 22595.39- 13.22 4297.10- 14.40 238613.90 1.26 75.5 22816.23- 16.54 4341.32- 18.03 240559.43 1.58 76.0 23043.08- 16.89 4376.78- 18.40 242496.17 1.61 76.5 23268.08- 15.00 4410.54- 16.36 244426.081.43 77.0 23494.82- 12.20 4456.40- 13.29 246346.99 1.16

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 77.5 23719.31- 12.22 4501.69- 13.36 248259.49 1.17 78.0 23982.90- 12.64 4514.12- 13.71 250166.03 1.21 78.5 24216.11- 14.04 4549.86- 15.24 252062.13 1.34 79.0 24435.37- 13.15 4588.17- 14.27 253950.82 1.26 79.5 24659.14- 14.79 4627.71- 16.09 255831.93 1.42 80.0 24885.31- 12.65 4668.26- 13.77 257704.84 1.21 80.5 25111.36- 14.57 4704.51- 15.89 259570.63 1.40 81.0 25354.09- 13.46 4717.54- 14.71 261428.71 1.29 81.5 25576.47- 16.25 4737.67- 17.74 263279.31 1.55 82.0 25798.57- 11.06 4784.63- 12.04 265119.72 1.06 82.5 26029.33- 13.43 4817.22- 14.64 266952.46 1.29 83.0 26256.90- 13.01 4851.37- 14.19 268777.65 1.25 83.5 26480.48- 13.67 4892.11- 14.95 270594.12 1.32 84.0 26700.53- 13.09 4930.14- 14.35 272403.71 1.26 84.5 26925.94- 19.22 4959.17- 21.07 274205.44 1.85 85.0 27145.10- 17.14 4992.52- 18.82 275998.86 1.65 85.5 27367.55- 18.35 5026.70- 20.13 277784.56 1.77 86.0 27593.64- 16.61 5065.70- 18.25 279560.93 1.60 86.5 27819.18- 15.67 5113.06- 17.23 281329.89 1.52

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z(MSL) SIG Z 87.0 28046.63- 18.09 5141.90- 19.83 283092.13 1.75 87.5 28275.61- 13.31 5185.54- 14.63 284844.16 1.29 88.0 28502.55- 23.87 5216.82- 26.14 286589.59 2.31 88.5 28721.18- 15.40 5257.30- 16.92 288328.07 1.49 89.0 28944.09- 17.24 5294.96- 18.96 290058.62 1.67 89.5 29169.81- 12.90 5334.16- 14.26 291780.17 1.26 90.0 29397.04- 13.98 5372.43- 15.39 293491.07 1.36 90.5 29624.89- 19.53 5409.27- 21.44 295195.95 1.90 91.0 29842.26- 14.82 5434.61- 16.32 296895.52 1.45 91.5 30056.46- 26.62 5472.20- 29.21 298586.73 2.59 92.0 30263.62- 25.27 5504.45- 27.75 300271.58 2.47 92.5 30490.75- 21.08 5511.62- 23.18 301946.71 2.06 93.0 30729.12- 17.29 5533.87- 19.10 303615.10 1.69 93.5 30955.72- 15.58 5564.50- 17.26 305272.49 1.53 94.0 31166.66- 9.70 5582.64- 10.86 306925.22.96 94.5 31392.94- 19.59 5619.30- 21.65 308568.80 1.92 95.0 31612.03- 7.07 5667.86- 8.01 310203.57.70

APPENDIX B ROCKET POSITIONS ABOVE THE MICROPHONE ARRAY AT THE TIMES OF GRENADE EXPLOSIONS Position data without standard deviations on SM 1.04 are three-station data.

SM 1.01 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 41.7440 25332.78 6.69 7103.35 7.29 82607.41 1.14 3,4600 2455.05- 4.23 1110.86 4.61 10489.17.74 45.2040 22877.73 2.46 8214.21 2.68 93096.58.41 3.4590 2426.95-.38 1104.08.42 9992.03.08 48.6630 20450.78 2.85 9318.29 3.10 103088.61.47 3.5250 2454.30- 1.75 1116.51 1.91 9720.50.29 52.1880 17996.48 1.09 10434.79 1.18 112809.10.18 3.4620 2412.56- 1.87 1089.60 2.05 9117.35.32 55.6500 15583.92 2.97 115243.90 3.23 121926.45.49 3.4300 2368.65- 1.99 1076.61 2.18 8626.68.33 59.0800 13215.27.98 12601.00 1.05 305531.30.16 3.4800 2398.69- 1.12 1093.70 1.22 8348.99.19 62.5600 10816.58.14 13694.69.17 138902.12.03 6.9670 4793.70- 3.18 2188.06 3.48 15521.14.60 69.5270 6022.87 3.32 15882.75 3.64 154423.26.63 3.4180 2349.36- 1.22 1080.05 1.33 7037.67.21 72.9450 3673.51 2.11 16962.80 2.32 161460.93.41 3.5170 2407.02- 1.28 1105.51 1.38 6847.48.26 76.4620 1266.49 3.38 18068.31 3.70 168308.40.68 3.4930 2391.66-.60 1100.41.64 6403.07.10

SC 1.0 16 MAR 1959 TINE X(N) SIG X Y(W) SIG Y Z SIG Z 79.9550 1125.17- 2.78 19168.72 3.05 174711.47.58 3.4160 2335.87-.84 1079.42.91 5880.60.16 83.3710 3461.04- 1.95 20248.14 2.14 180592.07.42 3.5020 2385.91- 1.02 1098.92 1.11 5636.82.23 86.8730 5846.~- 2.96 21347.05 3.25 186228.89.64 3.5000 2385.62-.87 1108.41.95 5237.76.17 90.3730 8232.57- 2.09 22455.46 2.30 191466.65.47 3.4640 2352.81- 1.32 1084.73 1.44 4793.72.29 93.8370 10585.38-.77 23540.19.86 196260.37.18 3.5130 2375.56- 3.09 1102.62 3.38 4467.37.73 97.3500 12960.94- 3.85 24642.81 4.24 200727.74.91

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 39.0358 34678.56 5.00 5888.48 5.41 85947.95.73 2.9940 1086.87- 2.52 741.54 2.72 11357.47.24 42.0298 33591.69 7.52 6630.02 8.13 97305.42.96 3.1233 1122.23-.47 767.50.52 11425.67.11 45.1531 32469.47 7.98 7397.51 8.64 108731.09.90 3.2635 1160.00-.38 801.58.41 11526.59.15 48.4166 31309.47 7.60 8199.09 8.24 120257.68.78 3.3176 1174.44-.04 815.50.05 11319.44.10 51.7342 30135.04 7.63 9014.59 8.27 131577.12.72 3.5118 1241.36- 1.01 866.48 1.09 11563.88.10 55.2460 28893.68 8.64 9881.07 9.36 143140.99.77 3.5892 1265.36- 1.12 885.96 1.21 11389.81.15 58.8352 27628.32 7.52 10767.02 8.14 154530.80.65 3.6055 1271.77- 1.39 893.15 1.51 11011.69.15 62.4407 26356.55 6.13 11660.18 6.64 165542.49.51 3.8255 1340.32- 1.54 953.08 1.67 11219.30.13 66.2662 25J16.23 7.67 12613.25 8.30 176761.78.64 4.0283 1413.36- 2.34 1001.33 2.53 11302.20.21 70.2945 23602.87 10.01 13614.58 10.83 188063.98.83

SM 1.02 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 4.2282 1483.25- 2.69 1061.75 2.93 11299.14.23 74.5227 22119.62 7.31 14676.34 7.90 199363.12.61 4.5029 1580.39-.75 1121.17.82 11402.59.07 79.0256 20539.24 6.57 15797.51 7.08 210765.71.56 4.7047 1651.85- 5.59 1181.39 6.08 11219.17.51 83.7303 18887.39 12.16 16978.90 13.16 221984.88 1.06 10.6082 3706.31- 3.76 2692.95 4.11 22698.51.30 94.3385 15181.08 8.40 19671.84 9.05 244683.38.79 6.0382 2112.07- 7.18 1516.04 7.71 11318.68.73 100.3767 13069.U2 15.58 21187.88 16.77 256002.06 1.52 6.8806 2411.70- 5.40 1762.46 5.95 11483.22.49 107.2573 10657.31 10.18 22950.34 10.82 267485.28 1.03 7.7813 2723.43- 16.97 1960.67 18.39 11179.80 1.91 115.0386 7933.88 27.15 24911.01 29.20 278665.08 2.93

SM 1.03 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 38.3680 29800.02 3.59 4803.21- 3.94 85097.19.82 3.0093 2304.27-.04 800.72-.04 10994.25.10 41.3773 27495.76 3.60 5603.93- 3.94 96091.43.78 3.0562 2317.98- 1.07 787.58- 1.16 10752.49.26 44.4335 25177.78 2.52 6391.51- 2.78 106843.92.53 3.3038 2491.00-.45 843.56-.49 11204.59.10 47.7373 22686.78 2.98 7235.07- 3.27 118048.51.62 3.2644 2456.68- 3.31 825.03- 3.64 10674.87.69 51.0017 20230.11.34 8060.10-.37 128723.38.08 3.4649 2594.44- 1.06 864.16- 1.16 10921.19.22 54.4666 17635.67 1.40 8924.25- 1.53 139644.57.30 3.5789 2676.81- 1.15 891.35- 1.26 10854.21.24 58.0455 14958.86.25 9815.60-.27 150498.77.06 3.5991 2679.33-.48 882.95-.52 10487.56.10 61.6446 12279.53.23 10698.56-.25 160986.33.04 7.7959 5808.52-.90 1894.22-.99 21265.91.20 69.4405 6471.01 1.13 12592.78- 1.24 182252.23.24 4.2802 3182.31-.78 1034.13-.85 10840.16.18 73.7207 3288.71 1.92 13626.91- 2.10 193092.39.42

SM 1.03 16 MAR 1959 TIME X(N) Si X Y(W) SIG Y Z SIG Z 4.4113 3282.21-.67 1063.79-.75 10555.22.16 78.1320 6.50 2.59 14690.70- 2.84 203647.61.58 4.5936 3412.49-.35 lu91.62-.37 10331.54.10 82.7256 3405.99- 2.93 15782.31- 3. 21 213979.15.67 5.1010 37d(,04- 2.34 1203.49- 2.56 10681.52.58 87.8266 7186.03- 5.27 16985.80- 5.78 224660.67 1.25 5.4747 4054.67-.06 1275.09-.07 10542.73.06 93.3013 11240.69- 5.31 18260.89- 5.83 235203.401.30 5.9994 4448.64-.26 1403.19-.33 10448.63.12 99.3007 15689.33- 5.57 19664.08- 6.16 245652.03 1.42 6.6608 4931.13- 1.67 1526.48- 1.87 10267.17.40 105.9615 20620.46- 3.91 21190.56- 4.29 255919.19 1.02 7.8217 5768.40- 1.54 1760.20- 1.71 10265.16.38 113.7832 26388.86- 2.36 22950.75- 2.58 266184.35.64 9.4713 6996,81- 2.54 2140.78- 2.77 9832.83.82 123.2545 33385.67- 4.90 25091.53- 5.34 276017.18 1.46

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 41.6866 18742.33 3.50 7804.59- 3.88 90819.86 1.05 3.1003 2760.97-.33 995.39-.37 8839.55.12 44.7869 15981.36 3.83 8799.98- 4.24 99659.41 1.15 3.2374 286U.31- 2.38 1U21.91- 2.63 8821.86.72 48.0243 13121.05 6.21 9821.89- 6.88 108481.27 1.86 3.3458 2930.59-.42 1046.39-.47 8709.13.17 51.3701 10190.47 6.63 10868.28- 7.34 117190.40 2.01 3.4496 2993.57- 1061.79- 8568.12 54.8197 7196.90 11930.07- 125758.52 7.2185 6268.30- 2195.94- 16610.95 62.0382 928.60 14126.01- 142369.47 3.8247 3303.45- 1147.41- 8097.63 65.8629 2374.85- 15273.42- 150467.10 3.9958 3450.83- 1203.51- 7946.40 69.8587 5825.68- 16476.93- 158413.50 4.2009 3612.84- 1268.95- 7796.03 74.0596 9438.52- 17745.88- 166209.53 4.4568 3833.18- 1315.67- 7648.94 78.5164 13271.70- 19U61.55- 173858.47

SM 1.04 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 4.6105 3955.33- 1369.80- 7241.76 83.1269 17227.03- 20431.35- 181100.23 5.1050 4329.63- 1490.96- 7230.82 88.2319 21556.66- 21922.31- 188331.05 5.6495 4788.97- 1705.82- 7003.70 93.8814 26345.63- 23628.13- 195334.75 5.0774 5174.22- 1766.50- 6401.28 99.9588 31519.85- 3.88 25394.63- 4.29 201736.03 1.55 6.8863 5841.37- 2.55 2003.65- 2.83 5827.45 1.00 106.8451 37361.22- 1.32 27398.29- 1.46 207563.48.55 8.0228 6783.63-.97 2330.64- 1.06 4881.07.40 114.8679 44144.85-.36 29728.92-.40 212444.54.15 10,0145 8385.67-.97 2852.02- 1.02 3271.53.46 124.8824 52530.51- 1.32 32580.94- 1.42 215716.08.61

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SG Z 38.7668 36388.19 9.46 15.34 10.24 86673.79 1.70 3.0062 728.79-.77 126.71- *82 11318.20.32 41.7730 35659.40 8.69 111.36- 9.42 97991.99 1.39 3.1128 745.99-.07 128.79-.09 11304.79.16 44.8858 34913.41 8.66 240.15- 9.41 109296.78 1.25 3.3255 795.68-.73 136.47-.79 11664.65.07 48.2113 34117.73 9.39 376.62- 10.20 120961.43 1.23 3.2824 782.81-.25 127.49-.27 11122.10.09 51.4937 33334.93 9.63 504.11- 10.46 132083.52 1.16 3.5397 839.66-.19 130.91-.22 11576.53.09 55.0334 32495.27 9.82 635.02- 10.67 143660.05 1.10 3.6166 863.53-.89 138.85-.97 11394.88.06 58.6500 31631.75 10.71 773.87- 11.64 155054.93 1.13 3.6509 872.35- 1.77 132.49- 1.93 11066.52.14 62.3009 30759.39 12.48 906.36- 13.56 166121.45 1.25 3.8706 913.67- 2.38 130.72- 2.59 11258.38.29 66.1715 29845.73 10.10 1037.08- 10.98 177379.83.96 4.0127 957.93- 1.79 131.74- 1.95 11160.46.14 70.1842 28887.80 11.89 1168.81- 12.93 188540.29 1.09

SM 1.05 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 4.3115 1011.71- 4.43 147.89- 4.83 11413.96.36 74.4957 27876.09 16.32 1316.71- 17.76 199954.24 1.44 4.4683 1061.41- 1.14 146.81- 1.24 11197.12.10 78.9640 26814.68 17.46 1463.51- 19.00 211151.37 1.50 4.7766 1127.97- 8.78 150.40- 9.57 11266.03.76 83.7406 25686.71 8.68 1613.91- 9.43 222417.39.74 10.7953 2568.14-.42 301.92-.57 22772.63.09 94.5359 23118.57 9.09 1915.84- 10.00 245190.02.77 5.9486 1421.34-.10 173.42-.06 10961.46.05 100.4845 21697.23 9.15 2089.26- 9.97 256151.48.77 6.7494 1573.56- 6.78 176.24- 7.34 11081.87.56 107.2339 20123.67 2.37 2265.49- 2.63 267233.34.22 7.9528 1877.67- 4.88 197.14- 5.30 11199.71.41 115.1867 18246.00 2.51 2462.63- 2.67 278433.05.20 9.6438 2283.31-.05 213.40-.05 10912.41.02 124,8305 15962.69 2.56 2676.03- 2.70 289345.46.21

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y SIG Z 41.9503 27368.99.13 8618.03-.14 90718.55.03 3.7840 3392.25- 1.22 2211.97- 1.35 17834.61.31 45.7343 23976.74 1.35 10830.u0- 1.49 108553.16.34 3.7097 3347.20- 1.43 2170.35- 1.58 17160.67.34 49.4440 20629.55 2.78 13000.35- 3.06 125713.82.68 3.8120 3429.11- 1.41 2215.96- 1.55 17134.90.34 53.2560 17200.44 4.19 15216.32- 4.61 142848.72 1.02 3.9330 3559.05- 5.05 2306.01- 5.54 17165.63 1.22 57.1890 13641.39.86 17522.33-.93 160014.34.20 4.0441 3630.60- 15.18 2329.80- 16.67 17132.64 3.69 61.2331 10010.79 14.33 19852.13- 15.74 177146.98 3.49 4.2283 3802.77- 1.70 2436.70- 1.88 17348.60.41 65.4614 6208.02 12.63 22288.82- 13.87 194495.58 3.11 4.3389 3901.88- 4.48 2486.78- 4.93 17206.20 1.16 69.8003 2306.15 17.11 24775.61- 18.80 211701.78 4.26 4.5163 4065.71- 1.37 2586.04- 1.51 17266.77.43 74.3166 1759.57- 18.48 27361.65- 20.30 228968.54 4.67 4.7779 4313.36- 9.97 2713.94- 10.94 17559.85 2.65 79.0945 6072.92- 28.45 30075.59- 31.25 246528.39 7.31

SM 2.06 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y ZSIG Z 4.9718 4442.46- 6.91 2819.87- 7.64 17507.32 1.68 84.0663 10515.38- 21.54 32895.46- 23.61 264035.72 5.63 5.1158 4571.09- 19.94 2842.4U- 21.86 17204.93 5.39 89.1821 15086.47- 41.48 35737.86- 45.47 281240.65 11.03 5.5038 5004.85- 4.20 3072.40- 4.47 17577.49.91 94.6859 20091.32- 37.28 38810.27- 41.00 298818.14 10.14 5.8662 5209.77- 12.13 3244.07- 13.30 17695.55 3.57 100.5521 25301.09- 49.41 42054.34- 54.30 316513.69 13.71 6.2234 5577.87- 60.16 3580.83- 65.73 17539.72 16.71 106.7755 30878.96- 10.75 45635.17- 11.44 334053.413.01

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) S Y SIG G Z 42.3572 27959.29 3.60 2181.11- 3.95 75012.33.86 3.2342 2344.36-.99 377.45- 1.09 10905.72.20 45.5914 25614.93 4.59 2558.55- 5.03 85918.05 1.03 3.2294 2360.87-.34 377.9u-.37 10694.60.11 48.8208 23254.06 4.92 2936.45- 5.40 96612.65 1.05 3.4404 2500.83- 1.71 394.70- 1.88 10945.28.35 52.2612 20753.23 6.64 3331.16- 7.27 107557.93 1.38 3.4191 2476.51-.49 390.65-.55 10458.68.16 55.6803 18276.72 6.15 3721.81- 6.73 118016.61 1.26 3.6200 2618.72- 1.61 410.90- 1.76 10641.95.34 59.3003 15658.00 7.75 4132.70- 8.49 128658.56 1.59 11.7335 8462.75- 2.13 1304.47- 2.35 31560.18.58 71.0338 7195.25 9.88 5437.17- 10.84 160218.74 2.09 8.9346 6436.96-.56 963.14-.60 21074.58.28 79.9684 758.29 10.44 6400.31- 11.44 181293.33 2.30 4.5510 3288.88- 3.35 504.46- 3.68 9748.24.81 84.5194 2530.59- 13.79 6904.76- 15.12 191041.57 3.11 5.2410 3758.90- 2.09 553.96- 2.30 10414.91.41 89.7604 6289.49- 11.7U 7458.72- 12.82 201456.47 2.71

SM 1.07 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 5.5873 4011.57-.06 582.25-.06 10138.89.11 95.3477 10301.06- 11.66 8040.97- 12.77 211595.36 2.79 6.0931 4367.10- 2.79 628.41- 3.08 9921.54.81 101.4408 14668.15- 14.45 8669.38- 15.85 221516.90 3.59 6.7047 4792.86-.65 685.25-.69 9553.94.09 108.1455 19461.01- 13.80 9354.63- 15.16 231070.84 3.57 8.0045 5704.79-.37 798.52-.44 9537.40.14 116.1500 25165.80- 13.49 10153.15- 14.74 240608.24 3.65 4.9441 3522.73- 2.87 490.65- 3.12 4875.42.68 121.0941 28688.53- 10.62 10643.80- 11.63 245483.66 2.97 4.7055 3338.51- 3.67 483.07- 4.01 3919.98 1.17 125.7996 32027.04- 14.29 11126.87- 15.63 249403.64 4.13 6.9530 4973.41- 11.25 724.68- 12.26 4494.17 3.23 132.7526 37000.45- 3.04 11851.55- 3.38 253897.81.90 53.1330 37655.95- 28.15 5414.86- 31.34 15818.79- 13.21 185.8856 74656.39- 25.11 17266.41- 27.97 238079.02 12.31

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 39.2831 32909.72 3.28 5775.48- 3.60 89366.79.73 3.1063 1436.32- 1.81 938.83- 1.98 12001.40.33 42.3894 31473.41 5.09 6714.30- 5.59 101368.18 1.04 3.2287 1484.58- 1.69 973.49- 1.85 12076.05.29 45.6181 29988.83 6.78 7687.79- 7.43 113444.23 1.32 3.3396 1536.44-.38 998.76-.42 12099.72.10 48.9577 28452.39 7.16 8686.55- 7.85 125543.951.33 3.3311 1529.72-.91 992.73-.99 11689.49.15 52.2888 26922.68 8.07 9679.28- 8.84 137233.44 1.46 3.5003 1598.33-.65 1040.77-.72 11888.17.12 55.7891 25324.35 8.72 10720.05- 9.56 149121.61 1.54 3.5949 1653.36-.83 1050.05-.90 11790.21.15 59.3840 23670.99 9.55 11770.09- 10.46 160911.82 1.66 3.5922 1634.41- 1.37 1058.59- 1.50 11363.04.24 62.9762 22036.58 10.91 12828.68- 11.96 172274.86 1.88 3.7996 1747.89- 1.10 1116.28- 1.18 11562.15.19 66.7758 20288.70 12.01 13944.96- 13.14 183837.00 2.06 4.0476 1850.04- 1.26 1179.09- 1.37 11805.80.22 70.8234 18438.66 10.76 15124.05- 11.77 195642.81 1.84

SM 1.08 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 4.2243 1947.48- 1.17 1232.22- 1.28 11756.02.21 75.0477 16491.18 9.59 16356.26- 10.49 207398.83 1.65 4.4675 2028.65- 2.91 1299.42- 3.18 11815.11.53 79.5152 14462.53 12.50 17655.68- 13.68 219213.93 2.18 4.6339 2122.28- 1.53 1335.44- 1.70 11578.99.29 84.1491 12340.26 14.03 18991.12- 15.38 230792.92 2.46 5.0643 2329.47- 5.31 1447.65- 5.87 11872.45.94 89.2134 10010.79 8.72 20438.77- 9.51 242665.37 1.53 5.5720 2528.39- 4.02 1618.77- 4.32 12121.74.75 94.7854 7482.41 12.74 22057.53- 13.83 254787.11 2.28 5.9917 2774.05-.54 1671.14-.68 11933.15.10 100.7771 4708.36 12.20 23728.68- 13.15 266720.26 2.23 6.7034 3073.63- 4.56 1891.48- 5.07 12005.84.95 107.4805 1634.73 16.75 25620.16- 18.23 278726.10 3.18 7.9013 3595.00- 33.77 2320.26- 36.85 12323.88 6.63 115.3818 1960.28- 17.02 27940.41- 18.62 291049.97 3.45 9.5314 4330.21- 4.01 2540.90- 4.40 12276.00 1.02 124.9132 6290.48- 21.03 30481.31- 23.02 303325.97 4.46

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 38.6854 25637.91 2.41 173.81- 2.64 90981.73.46 3.0960 2613.87-.90 174.07-.98 11771.89.18 41.7814 23024.04 1.51 347.88- 1.66 102753.61.28 3.1903 2695.60-.32 173.64-.35 11723.89.07 44.9717 20328.44 1.19 521.52- 1.32 114477.50.22 3.2066 2710.75-.98 162.78- 1.08 11408.52.18 48.1783 17617.69 2.17 684.30- 2.40 125886.01.39 3.4252 2882.91- 1.21 158.60- 1.32 11797.84.23 51.6035 14734.78.96 842.90- 1.08 137683.85.17 7.0573 5944.23- 3.01 327.56- 3.30 23085.90.58 58.6608 8790.55 3.97 1170.46- 4.38 160769.74.74 3.5656 2989.02- 2.75 152.66- 3.01 11049.95.51 62.2264 5801.54 1.22 1323.12- 1.37 171819.69.23 4.0214 3369.49- 4.96 176.56- 5.44 11970.64.98 66.2478 2432.05 6.18 1499.67- 6.81 183790.33 1.21 3.9848 3340.20-.85 161.13-.93 11349.07.20 70.2326 908.15- 7.03 1660.80- 7.74 195139.40 1.40 4.2993 3607.33-.48 170.72-.53 11672.87.15 74.5319 4515.48- 7.51 1831.51- 8.26 206812.26 1.53

SM 1.09 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 4.5988 3842.05- 4.08 177.99- 4.47 11834.49.82 79.1307 8357.53- 3.42 2009.50- 3.79 218646.75.72 4.5872 3846.45- 8.28 159.71- 9.10 11130.97 1.81 83.7179 12203.98- 11.70 2169.21- 12.89 229777.72 2.52 5,1602 4319.48- 2.18 186.12- 2.41 11717.65.42 88.8781 16523.46- 9.53 2355.33- 10.48 241495.37 2.11 5.5251 4602.92- 2.91 183.77- 3.25 11613.65.74 94.4032 21126.38- 12.43 2539.10- 13.73 253109.02 2.85 6.0036 5003.31- 4.38 185.88- 4.74 11523.64 1.15 100.4068 26129.69- 16.81 2724.98- 18.47 264632.67 3.99 6.6270 5526.38- 2.92 198.48- 3.16 11390.87.56 107.0338 31656.06- 13.89 2923.45- 15.31 276023.53 3.43 7.9694 6648.76- 9.54 246.33- 10.44 11854.21 2.67 115.0032 38304.82- 23.43 3169.78- 25.75 287877.74 6.10 9.4990 7873.19- 3.99 299.62- 4.34 11526.03.75 124.5022 46178.01- 19.44 3469.40- 21.40 299403.76 5.36

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 43.9582 34057.35 5.82 208.56- 6.32 101924.76.89 2.4192 1086.10-.10 219.23-.11 11783.40.11 46.3774 32971.25 5.73 427.79- 6.23 113708.16.79 2.5298 1124.22- 1.03 221.29- 1.12 12108.19.20 48.9072 31847.02 4.70 649.08- 5.11 125816.35.60 5.1527 2289.98-.78 454.72-.85 23999.77.18 54.0599 29557.04 3.91 1103.80- 4.26 149816.11.43 2.6723 1185.06- 1.68 226.04- 1.83 12105.50.17 56.7322 28371.98 5.59 1329.84- 6.09 161921.61.60 2.7583 1233.75- 7.81 259.87- 8.51 12250.36.79 59.4905 27138.23 13.41 1589.71- 14.60 174171.971.38 2.8472 1254.58- 6.36 229.07- 6.93 12387.30.68 62.3377 25883.66 7.04 1818.78- 7.67 186559.27.71 2.9501 1311.15- 2.07 241.54- 2.27 12560.02.23 65.2878?4572.51 4.97 2060.32- 5.40 199119.29.48 2.9541 1307.91- 3.24 231.78- 3.52 12296.66.32 68.2419 23264.61 1.73 2292.10- 1.88 211415.95.16 2.9659 1316.53- 6.64 247.32- 7.24 12064.90.63 71.2078 21948.08 8.37 2539.42- 9.12 223480.85.80

SM 2.10 16 MAR 1959 TIME X(N) SIG X Y(W) SIG Y Z SIG Z 3.0337 1345.18- 4.51 247.84- 4.92 12048.60.44 74.2415 20602.90 3.86 2787.26- 4.20 235529.45.36 3.1378 1390.59- 1.64 236.08- 1.81 12154.13.15 77.3793 19212.32 5.50 3023.35- 6.01 247683.57.51 3.2692 1506.04- 13.84 211.15- 15.12 12325.51 1.30 80.6485 17706.28 8.34 3234.50- 9.11 260009.09.79 3.4087 1508.07- 5.25 220.44- 5.77 12491.17.50 84.0572 16198.21 13.59 3454.94- 14.88 272500.26 1.29 7.0727 3127.90- 8.50 516.44- 9.36 24730.74.83 91.1299 13070.32 22.08 3971.38- 24.24 297231.00 2.11 3.6147 1603.99- 3.77 213.61- 3.97 12034.59.35 94.7446 11466.33 18.32 4184.98- 20.27 309265.59 1.77

APPENDIX C IBM 650 TRAJECTORY PROGRAM

Instructions for the use of the IBM 650 trajectory program. Use University II board Set console switches to 70 1951 9000 +, Programmed: Stop Half Cycle: Run Address: Any Control: Run Display: Distributor or Program Register Overflow: Sense Error: Stop There is a trajectory program deck for each rocket. First card: Drum zero Deck: 5-word load cards Last card: Transfer to data card The data cards which are stacked behind the program deck are: 8-word, 10-digit format with Word 1: Time in fixed point to one decimal place Word 2: AND in floating point Word 5: Zero Word 4: ANM in floating point Word 5: Zero Word 6: ANTL in floating point Word 7: Zero Word 8: ANL in floating point The number of blanks needed are 5(n+G) where n = number of data points G = number of grenade points IBM 650 running time: Between 9 and 10 seconds per data point There are no programmed stops in the program.

READ DATA CARD START J->-TIME AND ANM - (U) ip (C) x —-r — X Y' z ------- ANTIL ANL_"______/ ______ NO NO NO IS YES IC-el -8<NO -IS YF C=- (r) -— IS^., YES A=YESC= (r)AVG ES NO -— *- o-(r) -~-<A=O,> ~ (PUNCH RESULTS + -(r)(r) I A=0 + +(r)o-(r)L YES + (r)o-(r) I1 _____ + (ro- (r)Ig ___ cr(r)AVG RT ~~PUNCH RESULTS r)AVG, o(r) AVG Fig. 355 Trajectory solution flow diagram.

2 0960 45 0967 8001+ 0010 NZE 0017 F8001 3 0967 46 0970 0964+ 0017 BMI 0020 0014 4 0964 24 0968 0971+ 0014 STD 0018 0021 5 0971 20 0977 0956+ 0021 STL 0027 0006 6 0956 65 0959 0963+ 0006 RAL 0009 0013 7 0963 10 8001 0972+ 0013 AUP F8001 0022 8 0972 19 0977 0965+ 00?2 MPY 0027 0015 9 0965 65 8003 0974+ 0015 RAL F8003 0024 10 0974 10 0977 0981+ 0024 AUP 0027 0031 11 0981 16 8002 0989+ 0031 SLO F8002 0039 12 0989 64 8001 0980+ 0039 DVR F8001 0030 Square root subroutine 13 0980 16 8001 0988+ 0030 SLO F8001 0038 Fixed point 14 0988 46 0950 0958+ 0038 BMI 0000 0008 (relocatable) 15 0950 15 8001 0957+ 0000 ALO F8001 0007 16 0957 15 8001 0966+ 0007 ALO F8001 0016 17 0966 10 0969 0973+ 0016 AUP 0019 0023 18 0973 30 0001 0979+ 0023 SRT FOOO1 0029 19 0979 16 8002 0987+ 0029 SLO F8002 0037 20 0987 19 8001 0974+ 0037 MPY F8001 0024 21 0958 15 8001 0968+ 0008 ALO F8001 0018 22 0959 50 0009 50 FOOOO FOOOO 23 0977 00 0027 00 FOOOO FOOOO 24 0969 00 0000 0050+ 0019 00 FOOOO F0050 25 0970 69 0968 9201+ 0020 LDD 0018 F9201 27 0900 24 0903 0906+ 0000 STD 0003 0006 28 0906 46 0909 0910+ 0006 BMI 0009 0010 29 0910 30 0002 0917+ 0010 SRT F0002 0017 30 0917 44 0921 0922+ 0017 NZU 0021 0022 31 0921 20 0925 0916+ 0021 STL 0025 0016 32 0916 16 8002 0928+ 0016 SLO F8002 0028 33 0928 30 0008 0943+ 0028 SRT F0008 0043 34 0943 20 0901 0904+ 0043 STL 0001 0004 35 0904 10 0907 0911+ 0004 AUP 0007 0011 36 0911 64 0914 0902+ 0011 DVR 0014 0002 37 0902 20 0908 0912+ 0002 STL 0008 0012 38 0912 60 0901 0905+ 0012 RAU 0001 0005 39 0905 64 0908 0920+ 0005 DVR 0008 0020 40 0920 16 8001 0926+ 0020 SLO F8001 0026 41 0926 45 0930 0934+ 0026 NZE 0030 0034 42 0930 46 0933 0934+ 0030 BMI 0033 0034 Square root subroutine 43 0933 15 8001 0939+ 0033 ALO F8001 0039 Fating point 44 0939 15 8001 0911+ 0039 ALO F8001 0011loat t 45 0934 65 0925 0929+ 0034 RAL 0025 0029 (relocatable) 46 0929 15 0932 0936+ 0029 ALO 0032 0036 47 0936 30 0008 0942+ 0036 SRT F0008 0042 48 0942 14 0914 0937+ 00-2 DIV 0014 0037 49 0937 15 8003 0919+ 0037 ALO F8003 0019 50 0919 20 0925 0931+ 0019 STL 0025 0031 51 0931 44 0935 0941+ 0031 NZU 0035 0041 52 0935 60 0908 0913+ 0035 RAU 0008 0013 53 0913 30 0001 0927+ 0013 SRT F0001 0027 54 0927 19 0923 0938+ 0027 MPY 0023 0038 55 0938 31 0010 0918+ 0038 SRD F0010 0018 56 0918 35 0002 0924+ 0018 SLT F0002 0024 57 0924 15 0925 0940+ 0024 ALO 0025 0040 58 0940 60 8002 0903+ 0040 RAU F8002 0003 59 0941 65 0908 0915+ 0041 RAL 0008 0015 60 0915 31 0002 0918+ 0015 SRD F0002 0018 61 0922 65 8003 0903+ 0022 RAL F8003 0003 62 0907 00 0000 0001+ 0007 00 FOOO0 F0001

63 0914 00 0000 0002+ 2 0014 00 FOOOO F0002 64 0932 50 2 0032 50 FOOOO FOOO0 65 0923 03 1622 7766+ 2 0023 03 F1622 F7766 66 0909 44 4444 4444+ 2 0009 44 F4444 F4444 67 0903 00 2 0003 00 FOOOO FOOOO 68 0925 00 2 0025 00 FOOOO FOOO0 69 0901 00 2 0001 00 FOOOO FOOOO 70 0908 00 2 0008 00 FOOOO FOOOO 82 0436 00 0000 0080+ 83 0486 00 0000 0080+ 0486 00 0000 0080 84 0536 00 0000 0080+ 0536 00 0000 0080 Data outt format 85 0586 00 0000 0080+ 0586 00 0000 0080 8o 10 it 86 0636 00 0000 0080+ 0636 00 0000 0080ord, -digit 87 0686 00 0000 0080+ 0686 00 0000 0080 89 0011 70 0650 0050+ ST RCD 0650 Read data card 90 0050 69 0651 0004+ LDD 0651puh (0 91 0004 24 0477 0030+ STD 0477 pch an ( 92 0030 69 0652 0005+ LDD 0652 93 0005 24 0751 0054+ STD 0751 94 0054 24 0801 0104+ STD 0801 95 0104 24 0851 0154+ STD 0851 96 0154 69 0654 0007+ LDD 0654 97 0007 24 0701 0204+ STD 0701 98 0204 24 0802 0055+ STD 0802 AN data reordered into 99 0055 24 0852 0105+ STD 0852 2 sets of 3 AN1,2,3 100 0105 69 0656 0009+ LDD 0656 101 0009 24 0702 0155+ STD 0702 102 0155 24 0752 0205+ STD 0752 103 0205 24 0853 0006+ STD 0853 104 0006 69 0658 0061+ LDD 0658 105 0061 24 0703 0056+ STD 0703 106 0056 24 0753 0106+ STD 0753 107 0106 24 0803 0156+ STD 0803 108 0156 81 0200 0012+ RSA 0200 109 0012 83 0206 0018+ RSB 0206 Set index accumulators A,B,C 110 0018 89 0006 0024+ RSC 0006 P2 111 0024 60 2904 0059+ P2 RAU 0904A 112 0059 39 2901 0001+ FMP 0901A 113 0001 32 2905 0031+ FAD 0905A 114 0031 21 2905 0008+ STU 0905A 115 0008 60 2904 0109+ RAU 0904A 116 0109 39 2902 0002+ FMP 0902A 117 0002 32 2906 0033+ FAD 0906A 118 0033 21 2906 0159+ STU 0906A 119 0159 60 2904 0209+ RAU 0904A 120 0209 39 2903 0003+ FMP 0903A (U) 121 0003 32 2907 0083+ FAD 0907A 122 0083 21 2907 0010+ STU 0907A 123 0010 33 2905 0081+ FSB 0905A 124 0081 21 0036 0039+ STU U11 125 0039 39 2905 0255+ FMP 0905A 126 0255 21 0060 0013+ STU U12 127 0013 60 2907 0111+ RAU 0907A 128 0111 33 2906 0133+ FSB 0906A 129 0133 21 0038 0041+ STU U21 130 0041 39 2906 0206+ FMP 0906A 131 0206 21 0110 0063+ STU U22 P3 132 0063 60 0036 0091+ P3 RAU U11 133 0091 39 2908 0058+ FMP 0908A

134 0058 21 0062 0015+ STU Cll 135 0015 60 0060 0065+ RAU U12 136 0065 39 2908 0108+ FMP 0908A 137 0108 32 2909 0035+ FAD 0909A 138 0035 21 0040 0043+ STU C12 139 0043 60 0036 0141+ RAU Ull 140 0141 39 2910 0160+ FMP 0910A 141 0160 21 0014 0017+ STU T1 142 0017 60 0038 0093+ RAU U21 143 0093 39 2911 0161+ FMP 0911A 144 0161 32 0014 0191+ FAD T1 145 0191 21 0046 0049+ STU C21 146 0049 60 0060 0115+ RAU U12 147 0115 39 2910 0210+ FMP 0910A 148 0210 21 0064 0067+ STU T2 149 0067 60 0110 0165+ RAU U22 150 0165 39 2911 0211+ FMP 0911A (C) 151 0211 32 0064 0241+ FAD T2 152 0241 32 2912 0089+ FAD 0912A 153 0089 21 0044 0047+ STU C22 154 0047 60 0036 0291+ RAU Ull 155 0291 39 2913 0113+ FMP 0913A 156 0113 21 0068 0021+ STU T3 157 0021 60 0038 0143+ RAU U21 158 0143 39 2914 0114+ FMP 0914A 159 0114 21 0118 0071+ STU T4 160 0071 61 2907 0261+ RSU 0907A 161 0261 39 2915 0215+ FMP 0915A 162 0215 32 0068 0045+ FAD T3 163 0045 32 0118 0095+ FAD T4 164 0095 21 0100 0053+ STU C31 165 0053 60 0060 0265+ RAU U12 166 0265 39 2913 0163+ FMP 0913A 167 0163 21 0168 0121+ STU T5 168 0121 60 0110 0315+ RAU U22 169 0315 39 2914 0164+ FMP 0914A 170 0164 32 0168 0145+ FAD T5 171 0145 32 2916 0193+ FAD 0916A 172 0193 21 0048 0051+ STU C32 P4 173 0051 60 0062 0117+ P4 RAU Cll 174 0117 39 2917 0167+ FMP 0917A 175 0167 32 0040 0217+ FAD C12 176 0217 21 0022 0025+ STU Xl 177 0025 39 8001 0028+ FMP 8001 178 0028 21 0032 0085+ STU T6 179 0085 60 0046 0101+ RAU C21 180 0101 39 2917 0267+ FMP 0917A 181 0267 32 0044 0171+ FAD C22 182 0171 21 0026 0029+ STU Y1 r x' y', z e' 183 0029 39 8001 0082+ FMP 8001 184 0082 21 0086 0139+ STU T7 185 0139 60 2907 0311+ RAU 0907A 186 0311 33 2917 0243+ FSB 0917A 187 0243 39 0096 0146+ FMP HALF 188 0146 69 8003 0052+ LDD 8003 189 0052 39 8001 0305+ FMP 8001 190 0305 33 0032 0259+ FSB T6 191 0259 33 0086 0213+ FSB T7 192 0213 69 0016 0900+ LDD 0900

193 0016 21 0020 0023+ STU Z1 194 0023 39 2918 0218+ FMP 0918A 195 0218 33 0048 0075+ FSB C32 196 0075 34 0100 0150+ FDV C31 197 0150 21 0254 0057+ STU T10 198 0057 33 2917 0293+ FSB 0917A 199 0293 69 0254 0107+ LDD T10 200 0107 24 2917 0070+ STD 0917A 201 0070 67 8003 0027+ RAM 8003 202 0027 60 8002 0135+ RAU 8002 203 0135 33 2919 0195+ FSB 0919A I - < ~? 204 0195 46 0098 0051+ BMI P5 P4 - 205 0098 60 2920 0125+ P5 RAU 0920A 206 0125 39 0022 0072+ FMP X1 207 0072 21 0076 0079+ STU T8 208 0079 60 2921 0175+ RAU 0921A 209 0175 39 0026 0126+ FMP Y1 210 0126 21 0080 0183+ STU T9 211 0183 60 2922 0077+ RAU 0922A 212 0077 39 0020 0120+ FMP Z1 213 0120 32 0076 0103+ FAD T8 214 0103 32 0080 0157+ FAD T9 215 0157 39 2923 0073+ FMP 0923A 216 0073 33 2924 0151+ FSB 0924A 217 0151 02 0304 0127+ UFA UN 218 0127 30 0002 0233+ SRT 0002 219 0233 21 4684 0037+ STU 0684B 220 0037 10 6684 0189+ AUP 0684C 221 0189 21 6684 0087+ STU 0684C 222 0087 50 0005 0343+ AXA 0005 223 0343 52 0002 0099+ AXB 0002 224 0099 58 0002 0355+ AXC 0002 225 0355 48 0098 0309+ NZC P5 226 0309 50 0035 0365+ AXA 0035 227 0365 52 0044 0221+ AXB 0044 228 0221 89 0006 0177+ RSC 0006 229 0177 40 0024 0131+ NZA P2 230 0131 81 0200 0137+ RSA 0200 accumulators A, 231 0137 83 0206 0393+ RSB 0206 P6 232 0393 60 6684 0239+ P6 RAU 0684C 233 0239 19 0042 0263+ MPY QRTR 234 0263 21 6684 0187+ STU 0684C (r)a 235 0187 58 0002 0443+ AXC 0002 236 0443 48 0393 0097+ NZC P6 237 0097 89 0006 0153+ RSC 0006 D1 Reset index accumulator C 238 0153 60 0678 0283+ D1 RAU 0678 239 0283 11 2678 0333+ SUP 0678A 240 0333 21 2679 0132+ STU 0679A 241 0132 19 8001 0405+ MPY 8001 242 0405 15 0679 0383+ ALO 0679 243 0383 20 0679 0182+ STL 0679 244 0182 60 2679 1283+ RAU 0679A 245 1283 35 0004 0493+ SLT 0004 246 0493 21 2679 0232+ STU 0679A o(r) 247 0232 60 0680 0185+ RAU 0680 248 0185 11 2680 0235+ SUP 0680A 249 0235 21 2681 0034+ STU 0681A 250 0034 19 8001 0207+ MPY 8001 251 0207 15 0681 0285+ ALO 0681

252 0285 20 0681 0084+ STL 0681 253 0084 60 2681 0335+ RAU 0681A 254 0335 35 0004 0147+ SLT 0004 255 0147 21 2681 0134+ STU 0681A 256 0134 60 0682 0237+ RAU 0682 a(r) 257 0237 11 2682 0287+ SUP 0682A 258 0287 21 2683 0136+ STU 0683A 259 0136 19 8001 0359+ MPY 8001 260 0359 15 0683 0337+ ALO 0683 261 0337 20 0683 0186+ STL 0683 262 0186 60 2683 0387+ RAU 0683A 263 0387 35 0004 0197+ SLT 0004 264 0197 21 2683 0236+ STU 0683A 265 0236 71 2677 0227+ PCH 0677A 266 0227 69 0130 0983+ LDD ZERO Punch ti, (r), o(r): 4 cards 267 0983 24 0477 0180+ STD 0477 268 0180 50 0050 0286+ AXA 0050 269 0286 40 0153 0090+ NZA D1 ____Rstidxac 270 0090 81 0200 0196+ RSA 0200 D2 Reset index accumulator A 271 0196 65 0679 1033+ 02 RAL 0679 272 1033 35 0002 0289+ SLT 0002 273 0289 14 0092 0203+ DIV TWLV 274 0203 69 0256 0960+ LDD 0960 275 0256 31 0006 0123+ SRD 0006 276 0123 35 0004 1083+ SLT 0004 277 1083 20 0679 0282+ STL 0679 278 0282 65 0681 0385+ RAL 0681 279 0385 35 0002 0341+ SLT 0002 280 0341 14 0092 0253+ DIV TWLV 281 0253 69 0306 0960+ LDD 0960 282 0306 31 0006 0173+ SRD 0006 o r 283 0173 35 0004 0985+ SLT 0004 avg 284 0985 20 0681 0184+ STL 0681 285 0184 65 0683 0437+ RAL 0683 286 0437 35 0002 0543+ SLT 0002 287 0543 14 0092 0303+ DIV TWLV 288 0303 69 0356 0960+ LDD 0960 289 0356 31 0006 0223+ SRD 0006 290 0223 35 0004 1133+ SLT 0004 291 1133 20 0683 0336+ STL 0683 292 0336 71 0677 0277+ PCH 0677 Punch (r)avg, o(r)avg: 1 card 293 0277 69 0130 1183+ LDD ZERO 294 1183 24 0678 0181+ STD 0678 295 0181 24 0679 0332+ STD 0679 296 0332 24 0680 1233+ STD 0680 297 1233 24 0681 0234+ STD 0681 298 0234 24 0682 0735+ STD 0682 299 0735 24 0683 0011+ STD 0683 STurn to ST 304 0708 50 0000 0050+ 0708 50 0000 0050 e r d i 4 305 0709 50 7773 9050+ 0709 50 7773 9050ro t datm, insert cards: 306 0710 46 0331 0049+ 0710 46 0331 0049, uj for combination I 307 0711 56 4039 8050+ 0711 56 4039 8050 308 0712 49 6720 3050+ 0712 49 6720 3050 309 0713 40 5720 0048- - 0713 40 5720 0048 310 0714 20 8650 0048- - 0714 20 8650 0048 Constants and parameters 311 0715 50 0000 0050+ 0715 50 0000 0050 312 0716 57 4780 0048- - 0716 57 4780 0048or I 0717 00 314 0718 13 4700 0047- - 0718 13 4700 0047

315 0719 10 0000 0044+ 0719 10 0000 0044 316 0720 36 5502 0049+ 0720 36 5502 0049 317 0721 99 9331 8050- - 0721 99 9331 8050 318 0722 38 3400 0047+ 0722 38 3400 0047 319 0723 47 5972 6055+ 0723 47 5972 6055 320 0724 29 4770 0053+ 0724 29 4770 0053 321 0725 99 9331 7050+ 0725 99 9331 7050 322 0726 36 5504 0049+ 0726 36 5504 0049 323 0727 58 3400 0047+ 0727 58 3400 0047 324 0728 47 5972 6055+ 0728 47 5972 6055 325 0729 14 5410 0053- - 0729 14 5410 0053 326 0730 59 7100 0047- - 0730 59 7100 0047 327 0731 36 1800 0047+ 0731 36 1800 0047 328 0732 99 9999 8050+ 0732 99 9999 8050 329 0733 47 5972 6055+ 0733 47 5972 6055 330 0734 69 5000 0052- - 0734 69 5000 0052 335 0758 50 0000 0050+ 0758 50 0000 0050 336 0759 50 3973 0050+ 0759 50 3973 0050 For each rocket datum, insert 4 cards: 337 0760 54 1579 1050- - 0760 54 1579 1050 X, uj for combination II 338 0761 15 9730 5351+ 0761 15 9730 5351 339 0762 20 3471 8050- - 0762 20 3471 8050 340 0763 30 8750 0048- - 0763 30 8750 0048 341 0764 32 4730 0048+ 0764 32 4730 0048 342 0765 50 0000 0050+ 0765 50 0000 0050 343 0766 24 0600 0048- - 0766 24 0600 0048 0767 00 345 0768 55 9000 0046- - 07t8 55 9000 0046 Constants and parameters 346 0769 10 0000 0044+ 0769 10 0000 0044 for II: D TLL 347 0770 77 1086 8050- - 0770 77 1086 8050 348 0771 63 6729 9050- - 0771 63 6729 9050 349 0772 19 9300 0047+ 0772 19 9300 0047 350 0773 91 8205 4055+ 0773 91 8205 4055 351 0774 29 4770 0053+ 0774 29 4770 0053 352 0775 63 6725 7050+ 0775 63 6725 7050 353 0776 77 1080 4050- - 0776 77 1080 4050 354 0777 39 1340 0048+ 0777 39 1340 0048 355 0778 91 8205 4055+ 0778 91 8205 4055 356 0779 14 5410 0053- - 0779 14 5410 0053 357 0780 23 3800 0048- - 0780 23 3800 0048 358 0781 31 4450 0048+ 0781 31 4450 0048 359 0782 99 9992 3050+ 0782 99 9992 3050 360 0783 91 8205 4055+ 0783 91 8205 4055 361 0784 69 5000 0052- - 0784 69 5000 0052 366 0808 50 0000 0050+ 0808 50 0000 0050 367 0809 50 3973 0050+ 0809 50 3973 0050 For each rocket datum, insert 4 cards: 368 0810 38 3020 0050+ 0810 38 3020 0050 uj for combination III 369 0811 12 1504 2051- - 0811 12 1504 2051 370 0812 54 4929 0049+ 0812 54 4929 0049 371 0813 12 0780 0048- - 0813 12 0780 0048 372 0814 24 6990 0048- - 0814 24 6990 0048 373 0815 50 0000 0050+ 0815 50 0000 0050 374 0816 18 8150 0048- - 0816 18 8150 0048 0817 00 376 0818 64 4000 0046- - 0818 64 4000 0046 Constants and parameters 377 0819 10 0000 0044+ 0819 10 0000 0044 for III: D,M,L 378 0820 77 1086 8050- - 0820 77 1086 8050 379 0821 63 6725 3050- - 0821 63 6725 3050 380 0822 24 6430 0048- - 0822 24 6430 0048 381 0823 91 8205 4055+ 0823 91 8205 4055

382 0824 29 4770 0053+ 0824 29 4770 0053 383 0825 63 6725 7050+ 0825 63 6725 7050 384 0826 77 1090 1050- - 0826 77 1090 1050 385 0827 68 7500 0047+ 0827 68 7500 0047 386 0828 91 8205 4055+ 0828 91 8205 4055 387 0829 14 5410 0053- - 0829 14 5410 0053 388 0830 23 3800 0048- - 0830 23 3800 0048 389 0831 10 3900 0048- - 0831 10 3900 0048 390 0832 99 9996 8050+ 0832 99 9996 8050 391 0833 91 8205 4055+ 0833 91 8205 4055 392 0834 69 5000 0052- - 0834 69 5000 0052 397 0858 50 0000 0050+ 0858 50 0000 0050 398 0859 74 1897 2050+ 0859 74 1897 2050 For each rocket data, insert 4 cards: 399 0860 21 6981 3050+ 0860 21 6981 3050, uj for combination IV 400 0861 54 9859 7050- - 0861 54 9859 7050 401 0862 26 1790 7050+ 0862 26 1790 7050 402 0863 24 7903 1050- - 0863 24 7903 1050 403 0864 32 1719 8050+ 0864 32 1719 8050 404 0865 50 0000 0050+ 0865 50 0000 0050 405 0866 13 2209 2050- - 0866 13 2209 2050 0867 00 407 0868 14 3820 0048+ 0868 14 3820 0048 408 0869 10 0000 0044+ 0869 10 0000 0044Constants and parameters 409 0870 42 4341 5050- - 0870 42 4341 5050 for IV: D,M,T 410 0871 90 5499 7050- - 0871 90 5499 7050 411 0872 21 4470 0048- - 0872 21 4470 0048 412 0873 67 1502 8055+ 0873 67 1502 8055 413 0874 29 4770 0053+ 0874 29 4770 0053 414 0875 90 5495 7050+ 0875 90 5495 7050 415 0876 42 4346 2050- - 0876 42 4346 2050 416 0877 28 1480 0048+ 0877 28 1480 0048 417 0878 67 1502 8055+ 0878 67 1502 8055 418 0879 14 5410 0053- - 0879 14 5410 0053 419 0880 34 5890 0048- - 0880 34 5890 0048 420 0881 74 7600 0047- - 0881 74 7600 0047 421 0882 99 9993 7050+ 0882 99 9993 7050 422 0883 67 1502 8055+ 0883 67 1502 8055 423 0884 69 5000 0052- - 0884 69 5000 0052 _ 424 0096 50 0000 0050+ HALF 50 0000 0050 425 0042 25 QRTR 25 0000 0000 426 0130 00 ZERO 00 0000 0000 Additional constants 427 0092 00 0000 0012+ TWLV 00 0000 0012 428 0304 00 0000 0056+ UN 00 0000 0056

APPENDIX D IBM 650 PROGRAM FOR DATA WITH RESPECT TO MICROPHONE ARRAY

Instructions for the use of the IBM 650 grenade position, layer and a (with respect to Twin Lakes) program. Use University II board Set console switches to 70 1951 9000 + Programmed: Stop Half Cycle: Run Address: Any Control: Run Display: Distributor or Program Register Overflow: Sense Error: Stop There is one program deck to be used for all 10 missiles: First Card: Drum zero Deck: Five-word load cards Last Card: Transfer to data card The data cards which are placed immediately following the transfer to data card are the trajectory and C program result cards for the grenade times only. They are in the 8-word 10-digit format: Word 1: Time in fixed point to 4 decimal places Word 2: X(N) in feet fixed point 2 decimal places Word 3: oX in feet fixed point 2 decimal places Word 4: Y(W) in feet fixed point 2 decimal places Word 5: aY in feet fixed point 2 decimal places Word 6: Z(MSL) in feet fixed point 2 decimal places Word 7: oZ in feet fixed point 2 decimal places Word 8: All zeros The number of blanks required are 5(2G-1) where G = number of grenades. IBM 650 running time approximately 5 minutes. There are no programmed stops in the program.

NO START TREAD DATA NO GRENADE I EX =0 ES X~ _ 2. - - AVG yly - A=0YES Y YAVG Z A=OYES NO -- IS^ (PUNCH RESULTSN' C'PUNCH RESULT o-(r)AV yES A=OTIME (r),o(r) - (o-(r) < ZAVG I r )A AVG' A GRENADE —--- ^s^^YavG n ZZ - A=0YES NO N NO, r IS^' —— I~s.~ YES A=0>~ (A G) o-(rr)AVG Y- > YES B=0 GAVG 1,,.,:I____,NO Fig (AG 36.GiiPUNCH RESULTS i A-T, - A(AG) c(A(G) A 0 YES. PUNCH RESULT Gn-Gno-(AG) A (V G)AVG, - (A G)AVG NO PUNCH RESULT A=T (, CHREr) )AVG,'()AVG TIME (r),o-(r) Fig. 36. Grenade position and layer program (Twin Lakes) flow diagram.

2 0710 45 0717 8001+ 0010 NZE 0017 F8001 3 0717 46 0720 0714+ 0017 BMI 0020 0014 4 0714 24 0718 0721+ 0014 STD 0018 0021 5 0721 20 0727 0706+ 0021 STL 0027 0006 6 0706 65 0709 0713+ 0006 RAL 0009 0013 7 0713 10 8001 0722+ 0013 AUP F8001 0022 8 0722 19 0727 0715+ 0022 MPY 0027 0015 9 0715 65 8003 0724+ 0015 RAL F8003 0024 10 0724 10 0727 0731+ 0024 AUP 0027 0031 11 0731 16 8002 0739+ 0031 SLO F8002 0039 12 0739 64 8001 0730+ 0039 DVR F8001 0030 Square root subroutine 13 0730 16 8001 0738+ 0030 SLO F8001 0038 14 0738 46 0700 0708+ 0038 BMI 0000 0008 Fxed point 15 0700 15 8001 0707+ 0000 ALO F8001 0007 (relocatable) 16 0707 15 8001 0716+ 00^7 ALO F8001 0016 17 0716 10 0719 0723+ 0016 AUP 0019 0023 18 0723 30 0001 0729+ 0023 SRT F0001 0029 19 0729 16 8002 0737+ 0029 SLO F8002 0037 20 0737 19 8001 0724+ 0037 MPY F8001 0024 21 0708 15 8001 0718+ 0008 ALO F8001 0018 22 0709 50 0009 50 F0000 F000 23 0727 00 0027 00 F0000 F0000 24 0720 00 0000 9201+ 0020 00 FOOO F9201 25 0719 00 0000 0050+ 0019 00 FOOO F0050 26 0718 00 0018 00 FOOO FOOO 51 0136 00 0000 0080+ 0136 00 0000 0080 52 0186 00 0000 0080+ 0186 00 0000 0080 53 0236 00 0000 0080+ 0236 00 0000 0080 54 0286 00 0000 0080+ 0286 00 0000 0080 55 0336 00 0000 0080+ 0336 00 0000 0080 Data output format 57 0436 00 0000 0080+ 0436 00 0000 0080 8-word, 10-digit 58 0486 00 0000 0080+ 0486 00 0000 0080 59 0536 00 0000 0080+ 0536 00 0000 0080 60 0586 00 0000 0080+ 0586 00 0000 0080 61 0636 00 0000 0080+ 0636 00 0000 0080 63 0011 70 0101 0001+ ST RCD 0101 64 0001 70 0151 0051+ RCD 0151 65 0051 70 0201 0351+ RCD 0201 Read 5 data cards 66 0351 70 0251 0651+ RCD 0251 67 0651 70 0301 0701+ RCD 0301 68 0701 69 0101 0004+ LDD 0101 ti + punca band (0127) 69 0004 24 0127 0030+ STD 0127 70 0030 81 0200 0036+ RSA 0200 B2 Reset index accumulator A 71 0036 60 2302 0007+ 82 RAU 0302A 72 0007 19 0010 0080+ MPY Mll 73 0080 21 0034 0037+ STU T1 74 0037 60 2304 0009+ RAU 0304A 75 0009 19 0012 0032+ MPY M12 76 0032 10 0034 0039+ AUP T1 77 0039 21 0034 0087+ STU T1 XI 78 0087 60 2306 0061+ RAU 0306A Xi 79 0061 19 0014 0084+ MPY M13 XIII 80 0084 10 0034 0089+ AUP T1 xIv 81 0089 11 0042 0047+ SUP XTL x J 82 0047 21 2303 0006+ STU 0303A 83 0006 10 0059 0013+ AUP T2 84 0013 21 0059 0062+ STU T2 85 0062 50 0050 0018+ AXA 0050 86 0018 40 0036 0022+ NZA B2

87 0022 60 0059 0063+ RAU T2 88 0063 19 0016 0086+ MPY QRTR 89 0086 31 0002 0045+ SRD 0002 90 0045 20 0328 0031+ STL 0328 91 0031 81 0200 0137+ RSA 0200 Reset index accumulator A 92 0137 69 0040 0043+ LDD ZERO 93 0043 24 0059 0112+ STD T2 B3 94 0112 60 2302 0057+ B3 RAU 0302A 95 0057 19 0060 0680+ MPY M21 96 0680 10 2304 0359+ AUP 0304A 97 0.359 21 0064 0017+ STU T3 98 0017 60 2306 0111+ RAU 0306A YI 99 0111 19 0114 0684+ MPY M23 YII 100 0684 10 0064 0019+ AUP T3 YII G 101 0019 11 0072 0027+ SUP YTL 102 0027 21 2305 0008+ STU 0305A Iv 103 0008 10 0161 0015+ AUP T4 104 0015 21 0161 0164+ STU T4 105 0164 50 0050 0020+ AXA 0050 106 0020 40 0112 0024+ NZA 83 107 0024 60 0161 0065+ RAU T4 108 0065 19 0016 0686+ MPY QRTR 109 0686 31 0002 0095+ SRD 0002 110 0095 20 0330 0033+ STL 0330 111 0033 81 0200 0139+ RSA 0200 Reset index accumulator A 112 0139 69 0040 0093+ LDD ZERO 113 0093 24 0161 0214+ STD T4 84 114 0214 60 2302 0357+ B4 RAU 0302A 115 0357 19 0360 0780+ MPY M31 116 0780 21 0734 0187+ STU T5 117 0187 60 2304 0659+ RAU 0304A 118 0659 19 0162 0082+ MPY M32 119 0082 10 0734 0189+ AUP T5 120 0189 21 0734 0237+ STU T5 ZI 121 0237 60 2306 0211+ RAU 0306A II 122 0211 19 0264 0784+ MPY M33 zIII G 123 0784 10 0734 0239+ AUP T5 124 0239 11 00C92 0097+ SUP ZTL 125 0097 21 2307 0660+ STU 0307A 126 0660 10 0113 0067+ AUP T6 127 0067 21 0113 0066+ STU T6 128 0066 50 0050 0122+ AXA 0050 129 0122 40 0214 0026+ NZA 84 130 0026 60 0113 0117+ RAU T6 131 0117 19 0016 0736+ MPY QRTR 132 0736 31 0002 0145+ SRD 0002 133 0145 20 0332 0035+ STL 0332 134 0035 81 0200 0041+ RSA 0200 Reset index accumulator A 135 0041 69 0040 0143+ LDD ZERO 136 0143 24 0113 0116+ STD T6 B5 137 0116 60 0328 0083+ B5 RAU 0328 138 0083 11 2303 0657+ SUP 0303A 139 0657 24 2328 0081+ STD 0328A r 140 0081 21 0786 0289+ STU T7 rII 141 0289 19 8001 0212+ MPY 8001 OrIII 142 0212 15 0115 0069+ ALO T8 orIVJ 143 0069 20 0115 0068+ STL T8 144 0068 60 0786 0091+ RAU T7 145 0091 35 0004 0751+ SLT 0004

146 0751 21 2329 0682+ STU 0329A 147 0682 60 0330 0085+ RAU 0330 148 0085 11 2305 0759+ SUP 0305A 149 0759 24 2330 0683+ STD 0330A 150 0683 21 0038 0141+ STU T9 151 0141 19 8001 0314+ MPY 8001 152 0314 15 0167 0021+ ALO T10 153 0021 20 0167 0070+ STL T10 154 0070 60 0038 0193+ RAU T9 155 0193 35 0004 0003+ SLT 0004 156 0003 21 2331 0834+ STU 0331A 157 0834 60 0332 0287+ RAU 0332 158 0287 11 2307 0261+ SUP 0307A 159 0261 24 2332 0685+ STD 0332A 160 0685 21 0090 0243+ STU Tl1 161 0243 19 8001 0166+ MPY 8001 162 0166 15 0119 0023+ ALO T12 163 0023 20 0119 0172+ STL T12 164 0172 60 0090 0195+ RAU T11 165 0195 35 0004 0005+ SLT 0004 166 0005 21 2333 0836+ STU 0333A 167 0836 71 2327 0077+ PCH 0327A Punch ti, x, ox, y, sy, z, oz: 4 cards: G 168 0077 50 0050 0733+ AXA 0050 169 0733 40 0116 0337+ NZA 85 170 0337 81 0200 0293+ RSA 0200 66 Reset index accumulator A 171 0293 65 0115 0169+ B6 RAL T8 172 0169 35 0002 0025+ SLT 0002 173 0025 14 0028 0088+ DIV TWLV 174 0088 69 0191 0710+ LDD SQRT 175 0191 31 0006 0757+ SRD 0006 176 0757 35 0004 0217+ SLT 0004 177 0217 20 0329 0732+ STL 0329 178 0732 65 0167 0071+ RAL T10 179 0071 35 0002 0677+ SLT 0002 180 0677 14 0028 0138+ DIV TWLV 181 0138 69 0241 0710+ LDD SQRT 182 0241 31 0006 0807+ SRD 0006 183 0807 35 0004 0267+ SLT 0004 184 0267 20 0331 0884+ STL 0331 185 0884 65 0119 0073+ RAL T12 186 0073 35 0002 0029+ SLT 0002 187 0029 14 0028 0188+ DIV TWLV 188 0188 69 0291 0710+ LDD SQRT 189 0291 31 0006 0857+ SRD 0006 190 0857 35 0004 0317+ SLT 0004 191 0317 20 0333 0886+ STL 0333 192 0886 71 0327 0777+ PCH 0327 193 0777 69 0040 0343+ LDD ZERO 194 0343 24 0115 0118+ STD T8 Punch x, ox, y,, oy, z,: 1 card: G, 195 0118 24 0167 0120+ STD T10 196 0120 24 0119 0827+ STD T12 B7 198 0827 70 0401 0801+ B7 RCD 0401 199 0801 70 0451 0851+ RCD 0451 200 0851 70 0501 0901+ RCD 0501 Read 5 data cards 201 0901 70 0551 0951+ RCD 0551 202 0951 70 0601 1001+ RCD 0601 203 1001 60 0401 0055+ RAU 0401 204 0055 24 0127 0830+ STD 0127 ti - 0127 205 0830 11 0101 0355+ SUP 0101 At - 0427

206 0355 21 0427 0880+ STU 0427 207 0880 81 0200 0936+ RSA 0200 B8 208 0936 60 2602 0907+ B8 RAU 0602A 209 0907 19 0010 0930+ MPY Mil 210 0930 21 0934 0387+ STU T13 211 0387 60 2604 0809+ RAU 0604A 212 0809 19 0012 0782+ MPY M12 213 0782 10 0934 0339+ AUP T13 214 0339 21 0934 0437+ STU T13 215 0437 60 2606 0311+ RAU 0606A XI 216 0311 19 0014 0984+ MPY M13 X 217 0984 10 0934 0389+ AUP T13 IIG2 218 0389 11 0042 0147+ SUP XTL I 219 0147 21 2603 0056+ STU 0603A 220 0056 10 0859 0163+ AUP T14 x 221 0163 21 0859 0262+ STU T14 222 0262 50 0050 0168+ AXA 0050 223 0168 40 0936 0272+ NZA B8 224 0272 60 0859 0213+ RAU T14 225 0213 19 0016 0986+ MPY QRTR 226 0986 31 0002 0245+ SRD 0002 227 0245 20 0328 0681+ STL 0328 228 0681 81 0200 0487+ RSA 0200 229 0487 69 0040 0393+ LDD ZERO 230 0393 24 0859 0312+ STD T14 B9 231 0312 60 2602 0957+ B9 RAU 0602A 232 0957 19 0060 0980+ MPY M21 233 0980 10 2604 0909+ AUP 0604A 234 0909 21 0364 0367+ STU T15 235 0367 60 2606 0361+ RAU 0606A 236 0361 19 0114 1034+ MPY M23 237 1034 10 0364 0219+ AUP T15 238 0219 11 0072 0877+ SUP YTL YI 239 0877 21 2605 0058+ STU 0605A YII 240 0058 10 0411 0165+ AUP T16 Y G2-9 241 0165 21 0411 0414+ STU T16 YI 242 0414 50 0050 0170+ AXA 0050 243 0170 40 0312 0074+ NZA B9 244 0074 60 0411 0215+ RAU T16 245 0215 19 0016 1036+ MPY QRTR 246 1036 31 0002 0295+ SRD 0002 247 0295 20 0330 0783+ STL 0330 248 0783 81 0200 0439+ RSA 0200 249 0439 69 0040 0443+ LDD ZERO 250 0443 24 0411 0464+ STD T16 B10 251 0464 60 2602 1007+ B10 RAU 0602A 252 1007 19 0360 1030+ MPY M31 253 1030 21 1084 0537+ STU T17 254 0537 60 2604 0959+ RAU 0604A 255 0959 19 0162 0832+ MPY M32 256 0832 10 1084 0489+ AUP T17 257 0489 21 1084 0587+ STU T17 ZI 258 0587 60 2606 0461+ RAU 0606A Z 259 0461 19 0264 1134+ MPY M33 260 1134 10 1084 0539+ AUP T17 i 261 0539 11 0092 0197+ SUP ZTL IvJ 262 0197 21 2607 0760+ STU 0607A 263 0760 10 0263 0417+ AUP T18 264 0417 21 0263 0216+ STU T18

265 0216 50 0050 0322+ AXA 0050 266 0322 40 0464 0076+ NZA B10 267 0076 60 0263 0467+ RAU T18 268 0467 19 0016 1086+ MPY QRTR 269 1086 31 0002 0345+ SRD 0002 270 0345 20 0332 0735+ STL 0332 271 0735 81 0200 0341+ RSA 0200 272 0341 69 0040 0493+ LDD ZERO 273 0493 24 0263 0266+ STD T18 B11 274 0266 60 0328 0833+ B11 RAU 0328 275 0833 11 2603 1057+ SUP 0603A 276 1057 24 2328 0781+ STD 0328A 277 0781 21 1136 0589+ STU T19 278 0589 19 8001 0362+ MPY 8001 279 0362 15 0265 0269+ ALO T20 280 0269 20 0265 0218+ STL T20 281 0218 60 1136 0391+ RAU T19 282 0391 35 0004 1051+ SLT 0004 283 1051 21 2329 0882+ STU 0329A 284 0882 60 0330 0785+ RAU 0330 285 0785 11 2605 1009+ SUP 0605A 286 1009 24 2330 0883+ STD 0330A 287 0883 21 0238 0441+ STU T21 XI 288 0441 19 8001 0514+ MPY 8001 a 289 0514 15 0517 0121+ ALO T22 290 0121 20 0517 0220+ STL T22 Xl II 291 0220 60 0238 0543+ RAU T21 XIV 2292 0543 35 0004 0053+ SLT 0004 293 0053 21 2331 1184+ STU 0331A (2 294 1184 60 0332 0637+ RAU 0332 x 295 0637 11 2607 0511+ SUP 0607A I 296 0511 24 2332 0835+ STD 0332A 297 0835 21 0140 0593+ STU T23 298 0593 19 8001 0316+ MPY 8001 299 0316 15 0319 0123+ ALO T24 300 0123 20 0319 0372+ STL T24 301 0372 60 0140 0395+ RAU T23 302 0395 35 0004 0655+ SLT 0004 303 0655 21 2333 1186+ STU 0333A 304 1186 50 0050 0142+ AXA 0050 305 0142 40 0266 0046+ NZA B11 306 0046 81 0200 0002+ RSA 0200 12 __ 307 0002 65 0265 0369+ 812 RAL T20 308 0369 35 0002 0075+ SLT 0002 309 0075 14 0028 0288+ DIV TWLV 310 0288 69 0491 0710+ LDD SQRT 311 0491 31 0006 1107+ SRD 0006 312 1107 35 0004 0567+ SLT 0004 313 0567 20 0329 0932+ STL 0329 314 0932 65 0517 0171+ RAL T22 315 0171 35 0002 0927+ SLT 0002 316 0927 14 0028 0338+ DIV TWLV 317 0338 69 0541 0710+ LDD SQRT rG2- 9 318 0541 31 0006 1157+ SRD 0006 319 1157 35 0004 0617+ SLT 0004 320 0617 20 0331 1234+ STL 0331 321 1234 65 0319 0173+ RAL T24 322 0173 35 0002 0079+ SLT 0002 323 0079 14 0028 0388+ DIV TWLV

324 0388 69 0591 0710+ LDD SQRT 325 0591 31 0006 1207+ SRD 0006 326 1207 35 0004 0667+ SLT 0004 327 0667 20 0333 1236+ STL 0333 328 1236 69 0040 0643+ LDD ZERO 329 0643 24 0265 0268+ STD T20 330 0268 24 0517 0270+ STD T22 331 0270 24 0319 0422+ STD T24 B13 335 0422 60 2603 1257+ 813 RAU 0603A 336 1257 11 2303 1307+ SUP 0303A 337 1307 21 2628 0831+ STU 0628A 338 0831 10 0628 0933+ AUP 0628 339 0933 21 0628 0881+ STU 0628 340 0881 60 2605 1059+ RAU 0605A 341 1059 11 2305 1109+ SUP 0305A 342 1109 21 2630 0983+ STU 0630A 343 0983 10 0630 0885+ AUP 0630 (AG) 344 0885 21 0630 1033+ STU 0630 345 1033 60 2607 0561+ RAU 0607A 346 0561 11 2307 0611+ SUP 0307A 347 0611 21 2632 0935+ STU 0632A 348 0935 10 0632 0687+ AUP 0632 349 0687 21 0632 0985+ STU 0632 350 0985 50 0050 0641+ AXA 0050 351 0641 40 0422 0445+ NZA B13 352 0445 81 0200 1101+ RSA 0200 353 1101 83 0006 1357+ RSB 0006 B14 354 1357 60 4634 0639+ B14 RAU 0634B 355 0639 19 0016 1286+ MPY QRTR 356 1286 31 0002 0495+ SRD 0002 357 0495 20 4634 0787+ STL 0634B (AG)a 358 0787 52 0002 0693+ AXB 0002 359 0693 42 1357 0247+ NZB B14 360 0247 83 0006 0353+ RSB 0006 815 361 0353 60 0628 1083+ 815 RAU 0628 362 1083 11 2628 1133+ SUP 0628A 363 1133 21 0438 0691+ STU T25 364 0691 19 8001 0564+ MPY 8001 365 0564 15 0767 0221+ ALO T26 366 0221 20 0767 0320+ STL T26 367 0320 60 0438 0743+ RAU T25 368 0743 35 0004 0653+ SLT 0004 369 0653 21 2629 0982+ STU 0629A 370 0982 60 0630 1035+ RAU 0630 371 1035 11 2630 1085+ SUP 0630A 372 1085 21 0190 0793+ STU T27 373 0793 19 8001 0366+ MPY 8001 o(AG) 374 0366 15 0419 0223+ ALO T28 375 0223 20 0419 0472+ STL T28 376 0472 60 0190 0545+ RAU T27 377 0545 35 0004 0805+ SLT 0004 378 0805 21 2631 1284+ STU 0631A 379 1284 60 0632 0837+ RAU 0632 380 0837 11 2632 0887+ SUP 0632A 381 0887 21 0192 0595+ STU T29 382 0595 19 8001 0318+ MPY 8001 383 0318 15 0271 0125+ ALO T30 384 0125 20 0271 0124+ STL T30 385 0124 60 0192 0297+ RAU T29

386 0297 35 0004 1407+ SLT 0004 387 1407 21 2633 1336+ STU 0633A 388 1336 71 2627 0977+ PCH 0627A Punch At, (AG), c(AG): 4 cards 389 0977 50 0050 1183+ AXA 0050 390 1183 40 0353 0937+ NZA B15 391 0937 81 0200 0843+ RSA 0200 B16 392 0843 65 0767 0321+ B16 RAL T26 393 0321 35 0002 1027+ SLT 0002 394 1027 14 0028 0488+ DIV TWLV 395 0488 69 0741 0710+ LDD SQRT 396 0741 31 0006 1457+ SRD 0006 397 1457 35 0004 0817+ SLT 0004 398 0817 20 0629 1032+ STL 0629 399 1032 65 0419 0273+ RAL T28 400 0273 35 0002 0679+ SLT 0002 401 0679 14 0028 0538+ DIV TWLV 402 0538 69 0791 0710+ LDD SQRT 403 0791 31 0006 1507+ SRD 0006 404 1507 35 0004 0867+ SLT 0004 o(AG)a 405 0867 20 0631 1334+ STL 0631 406 1334 65 0271 0175+ RAL T30 407 0175 35 0002 0931+ SLT 0002 408 0931 14 0028 0588+ DIV TWLV 409 0588 69 0841 0710+ LDD SQRT 410 0841 31 0006 1557+ SRD 0006 411 1557 35 0004 0917+ SLT 0004 412 0917 20 0633 1386+ STL 0633 413 1386 71 0627 1077+ PCH 0627 unch (AG) ( 1 c 14 1077 69 0040 0893+ LDD ZERO avg' v 1 card 415 0893 24 0767.0370+ STD T26 416 0370 24 0419 0522+ STD T28 417 0522 24 0271 0174+ STD T30 418 0174 24 0628 0981+ STD 0628 419 0981 24 0630 1233+ STD 0630 420 1233 24 0632 1127+ STD 0632 817 422 1127 69 2603 0356+ B17 LDD 0603A 423 0356 24 2303 0656+ STD 0303A 424 0656 69 2605 0358+ LDD 0605A 425 0358 24 2305 0658+ STD 0305A 426 0658 69 2607 0810+ LDD 0607A (G)n+ (G)n 427 0810 24 2307 0860+ STD 0307A 428 0860 50 0050 0416+ AXA 0050 429 0416 40 1127 0420+ NZA 817 430 0420 69 0401 0054+ LDD 0401 431 0054 24 0101 0354+ STD 0101 tnl t 432 0354 81 0250 0910+ RSA 0250 B18 _ 433 0910 71 2377 1177+ B18 PCH 0377A 434 1177 50 0050 1283+ AXA 0050 Punch tn+l (G), c(G): 5 cards: G219 435 1283 40 0910 0827+ NZA B18 B7 437 0040 00 ZERO 00 0000 0000 438 0016 00 0000 0025+ QRTR 00 0000 0025 439 0028 00 0000 0012+ TWLV 00 0000 0012 440 0010 99 9998 0000+ M11 99 9998 0000 441 0012 00 0113 7000+ M12 00 0113 7000 442 0014 00 2023 6000+ M13 00 2023 6000 443 0060 00 0113 9000- -M21 00 0113 9000 444 0114 00 0069 1000+ M23 00 0069 1000 445 0360 00 2023 6000- -M31 00 2023 6000 446 0162 00 0069 4000- -M32 00 0069 4000

447 0264 99 9998 0000+ M33 99 9998 0000 448 0042 00 0423 7188- XTL 00 0423 7188 449 0072 00 0014 4953- YTL 00 0014 4953 450 0092 00 0001 6418+ ZTL 00 0001 6418