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FOREWORD

This report is part of a study whose ultimate objective is the develop-
ment of adequate procedures for estimating the backscattering from a class
of rough surfaces at oblique angles of incidence. In order to avoid a com~
plete reliance on the physical optics approximation which is inaccurate at
angles well away from specular and does not provide a reliable estimate of the
de-polarizing effect of the surface, the approach that is adopted is to postulate
a simple and deterministic base surface which is itself 'rough'. By taking
this base to be perfectly conducting, periodic and of infinite extent, the true
surface field can be determined, as can the scattering at all angles of in-
cidence. More general surface configurations such as might be appropriate
to the sea are then treated by a modification or perturbation of the field on
the periodic base.

The first step in this process is to investigate the scattering of a plane
wave by a two-dimensional, perfectly conducting periodic surface. This is

the only topic considered in the present report.
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ABSTRACT

Numerical procedures are developed for the digital solution of the
integral equations for the currents induced in a perfectly conducting,
two dimensional periodic surface when a plane electromagnetic wave is
incident. Data are obtained for both the surface and far fields for a variety
of sinusoidal surfaces for plane waves of either polarization at oblique as well
as normal incidence, and the results are compared with the predictions of

physical optics.
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I
INTRODUCTION

The problem of the scattering of an electromagnetic wave by a periodic
surface is one which is easy to formulate but difficult to solve and it is only
recently, with the advent of the high speed computer, that reliable results
have been obtained.

Prior to this time, a variety of approximate analytical treatments had
appeared in the literature, most of them being based on the approach originated
by Lord Rayleigh (1878). Assuming the surface to be infinite in extent and
making use of the periodicity in (say) the coordinate x, Rayleigh expanded the
scattered field in discrete spectrum of outgoing plane waves, which represen-
tation was assumed to hold right down to the surface. Application of the
boundary condition leads to a single equation, valid for all x, from which to
determine the complex amplitudes of the scattered waves, infinite in number.
It is at this stage that approximations must be made, and the literature is
replete with methods all of which are similar in character. Thus, for a per-
fectly conducting sinusoidal surface, Rayleigh (1878) obtained a solution by
successive approximation based on the initial neglect of all attenuated waves;
for the same surface, Tai ( 1948) proceeded via an orthogonal mode expansion,
followed by matrix truncation, and others have pursued essentially the same
path. An analogous treatment for a periodic interface between two homogeneous
media was developed by Rayleigh (1907), and applied to a sinusoidal profile by
Pavageau (1963) and to a triangular profile by Bousquet (1963) .

At best, all such solutions are valid only for corrugations whose height
is much smaller than the free space wavelength, and in an attempt to overcome
this restriction, Meecham (1956) used a variational method to find the angular
distribution of scattered energy for a perfectly conducting grating. The scat-

tered field was represented as a linear combination of known solutions of the

1
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wave equation whose coefficients were obtained by a least squares fit to the
boundary condition at the surface, and the procedure was then applied to a
triangular (or saw tooth) profile. A somewhat different approach was taken
by Eckart (1953) and Brekhovskikh (1952) who both used variations on the
Kirchhoff approximation, and by Senior (1959) who employed physical optics.
In either case the determination of the scattered field is reduced to quadratures,
and Senior showed that for a plane wave at normal incidence on a sinusoidal
grating, the physical optics integral can be evaluated exactly to give the com-
plex amplitudes of the scattered waves. As indicated in Appendix A of this
Report, the same is true for both polarizations, and for oblique incidence

as well as normal. It should be emphasized, however, that the solution is
still approximate by virtue of the postulated surface field distribution, and the
failures of the physical optics estimate of the surface fields are examined in
Chapter III of this Report.

A method which is quite distinct from all of the above was developed by
Sivov (1964) who used conformal transformation and a consideration of the static
limit to analyze reflections from periodic surfaces with shallow and deep cor-
rugations. The procedure is similar to that recently employed by Millar (1969,
1970) to investigate the inherent limitation of Rayleigh's method. As first noted
by Lippmann (1953), it is not in general valid to assume that the expansion of
the scattered field as a discrete spectrum of outgoing waves alone holds over the
entire scattering surface, and this fact was later verified by Petit and Cadilhac
(1964) in the case of a sinusoidal grating. In any general treatment of the grating
problem it is therefore necessary to allow 'ingoing' waves in the immediate
vicinity of the surface.

Without exception, all of these analytical attempts to determine the fields

scattered by periodic surfaces are subject to approximation, either implicit or
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explicit, and it is only with the use of high speed computers that have permitted
the direct digital solution of integral equations that reliable results have been
obtained.

Most of the initial work in this area was carried out by the French inves-
tigators, such as Petit, Cadilhac and Wirgin, and was motivated by the desire
for more efficient optical diffraction. In his early papers, Petit (see, for
example, 1963) followed Rayleigh's approach in expressing the scattered field
as a discrete spectrum of outgoing waves alone, leading to a matrix equation
for the determination of the spectral amplitudes. Since the matrix was then
truncated and inverted numerically, it will be appreciated that the method is
no more than a digitization of that originated by Rayleigh. However, in later
papers (Petit, 1967), the Rayleigh assumption was circumvented by using an
integral equation formulation. Series expansions were adopted for the incident
and scattered fields and the integral equation converted to a matrix equation
which was solved numerically. Specific results were obtained for plane wave
incidence on gratings with triangular profiles, and the efficiencies computed.

A rather different approach was taken by Pavageau (1967) who derived the in-
tegral equation directly in terms of the unknown surface current. The equation
was cast in the form of a nonhomogeneous Fredholm equation of the second kind
and solved by iteration.

Methods which are very similar to that which we shall use have been em-
ployed by Neureuther and Zaki (1969) and by Green (1970). The former con-
sidered scattering by periodic structures, either dielectric or perfectly con-
ducting. The integral equation was obtained from Green's theorem and the
modified Green's function expressed in either of two ways depending on the
parameters of the surface. The first (space harmonic) representation is

analogous to that used by Petit; the second consists of an infinite series of
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Hankel functions, and was computed using a Mellin transform and an asymptotic
comparison scheme. Numerical data were obtained for sinusoidal profiles.
Green (1970) also used the space harmonic representation, but improved its
convergence by summation techniques. Data were presented for the surface
fields and diffraction efficiencies of perfectly conducting gratings with tri-
angular profiles.

The present work also employs the numerical approach, and is concerned
with the scattering of electromagnetic waves by infinite, perfectly conducting,
two dimensional periodic surfaces of arbitrary but continuous profile. Plane
wave incidence is assumed, with either E or H polarization, and both normal
and oblique incidence are considered. A representation of the Green's function
is employed that is similar to that used by Green (1970), and the convergence
improved still further by subtractingthe dc terms. This has the added advantage
of making explicit the behavior of the Green's function in a neighborhood of
its singularity. Digital programs have been written for computing the surface
and scattered fields, and the program listings are included in Appendix B.

Data are presented for a variety of sinusoidal profiles, and the results compared

with the physical optics predictions.
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II

FORMULATION OF THE INTEGRAL EQUATION
FOR NUMERICAL SOLUTION

We consider here an infinite, perfectly conducting periodic surface illuminated
by a plane electromagnetic wave. Since the surface is assumed two dimensional
in the sense of being independent of a Cartesian coordinate z, the entire problem
is two dimensional, and the most general solution can be deduced from the par-
ticular solutions appropriate to incident plane waves having either E or Hin the
z direction, i.e. parallel to the corrugations. In either case, the problem is

essentially scalar.

2.1 Formulation
It is convenient to develop first the integral equation in the somewhat simpler
case of a scattering surface of finite extent. Let S(see Fig.2-1) bethis surface,

and surround it by another closed surface S Let ¢(r) and G(r|r") be two

R
scalar functions which are continuous, together with their first and second
derivatives, on S and SR and throughout the volume V enclosed by them. Assume ,

moreover, that ¥ (r) satisfies the homogeneous wave equation
2 .2
(V +k)y(r) =0 (2.1)
inside and on the boundaries of V, whereas

(v +1%) G(|r) = - 6 (c-r") . (2.2)

Applying Green's theorem to the volume V, we obtain
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FIG.2-1: Geometry for the application of Green's theorem.
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f {G(Elz') éa—n, Y(e")-ylc') a—z—, G(gg’)‘ds'

-+
S SR f

A

G(r|r" (V2+k2)¢(£')-l//(_1;')( V2H<2)G(3 |z } av'

= Y(r) (2.3)

by virtue of the properties of the delta function. We now identify ¢ (r) with a
total field

@ =i vt

where wi(g_) is an incident plane wave originated by a source at infinity (and
therefore outside V), and y5(r) is the field scattered by the surface S . Since
¥8(r) must satisfy a radiation condition at infinity, its contribution to the in-
tegral over S_ decreases to zero as the surface S_ recedes to infinity, whereas

R R
¥1(r) contributes itself. Equation (2.3) then becomes

V= ) + f (G(_m') a—%, Y(r") -yY(r") a—%, Glrgr) | ds' (2.4)
S

and in spite of the assumptions of an incident plane wave and a surface of finite
extent, Eq.(2.4) is also valid for an arbitrary incident field and for a surface S
extending to infinity. In the latter case, however, the proof is by no means
trivial (Jones, 1952). v

The particular situation of concern to us is that in which S is doubly infinite
and divides space into two regions. It is then sufficient to integrate over only
the upper ('illuminated' ) side of the surface. We also assume that S is independent

of the coordinate z, and this allows us to distinguish two particular cases according

7
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to the polarization of the incident field. Mks units are employed and a time

jwt

factor e*  suppressed throughout.

2.1.1 E (or horizontal) Polarization

id _1131 = E; 2 , the electric vector in the scattered field will also be confined

to the z direction, and we can make the identification
tot
Y(r) = E (x) . (2.5)

Since the normal derivative of EZOt is related to the surface current density KZ

by the equation

3 _tot . . .
s B, @)= -jwpkK &), (2.6)

where pis the permeability of free space, Eq.(2.4) can be written as

i 1 9
EtZOt(_r_) = ElZ (r)-juu f {G(z |LVK (c')+ WEZOt(g') 5 G|z } das' .
S (2.7)

At the perfectly conducting surface S the boundary condition is
tot
E(x) =0 (2.8)

and hence, on allowing r to approach the surface, Eq. (2.7) gives rise to the

integral equation
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fG(g.]g_')Kz(g')dS' = w—l—“Eiz(_y_) . (2.9
S

For a two-dimensional problem the free space Green's function is

G(r|r") = H (k]r r'| ) (2. 10)
where H(()z) is the zero order Hankel function of the second kind. The final

integral equation is therefore

")) R |
fK @)Hg kiz-r'| )at' = =, @) (2.11)
S

from which KZ has to be determined.

2.1.2 H (or vertical) Polarization

ia

If _I_Il = sz , the total magnetic field is likewise in the z direction, and on

making the identification
W) =1 (2.12)
Eq.(2.4) becomes

H);Ot(_r‘_)=Hzi (_I;)+f{G(r|r') — H (r')-H (r') G(rlr')} das' .
S (2. 13)

The boundary condition at the perfectly conducting surface S is



1363-6-T

—H ) = 0 (2. 14)

and on allowing r to approach the surface, Maue (1949) has shown that (2. 13)

reduces to

5 ) < () f B o Gle ) s (2.15)
S

The quantity HZOt is the induced current density, and since this current flows

tangential to the surface in a plane perpendicular to the z direction, we can write

I_%(}‘_) =H () ¢ (2. 16)

where t is a unit vector tangential to S. Inserting finally the expression (2. 10)

for the free space Green's function, we have

(2.17)

fK“a 1Y )(klr-rl)dl"fh{ B - 5K, )
S

fKt( )H (klr—r | )cos(h, |r-r'|)der = 4]{Hl(r) - -K (r)} . (2.18)
S

This is an integral equation from which to determine Kt

2.2 Reduction of the Integral Equations for Periodic Surfaces

We now make use of the fact that the incident field is a plane wave and that

the surface y = f(x) is periodic with period d, i.e.

10
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f(x + md) = %), m=%1 %2 *3,... . (2.19)

As before, it is convenient to consider separately the cases of E and H polari-

zation.

2.2.1 E Polarization

Let us assume that

Elz (x) = e—]k(x sinf -y cosb) (2. 20)

where 0 is the angle of incidence with respect to the normal to the mean surface.
The integral equation is as shown in Eq. (2. 11), but since the integration extends
from - 0 to o, this is not appropriate for a numerical solution. However, by
invoking the periodic property of the surface, the integral can be reduced to one
over a single period alone at the expense of a more complicated form for the
kernel.

From Floquet's theorem, we have that

~-jkmd sin6

K (c+mdX)=K (e m=*1,%2, +3, ... (2.21)

Moreover,
arr = Vieferen } 2 axe

where f'(x) is the derivative of f with respect to x. This allows us to express

the integral as one along the x' axis, and since

e-r'| = Yx'-md)2+ (r-y")2 ,

11
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we obtain
d (o8] d i
o Mmoo

_ %[, e—jk(xsin@—ycos@) ’ (2. 22)
valid for 0 <x < d with y = f(x), y' = f(x").

In arriving at (2.22) we have implicitly assumed that interchanging the order
of integration and summation is valid (a fact which is by no means obvious), but
even so Eq. (2.21) is not a very promising equation for numerical purposes

because of the extremely poor convergence of the infinite series constituting the

kernel. To rectify this situation, consider

P = i Hé2) (k\[(;(—x'-md)2+(y-y')21 >e'jkmdsme . (2. 23)

Using the Fourier integral representation of the Hankel function, the Poisson
summation formula (see, for example, Morse and Feshbach, 1953) applied to

(2.23) gives

2
2 i 1 "]’(Tm-ﬁ-+k sind) (x-x") - |y-y'| X_
17 x°
m

1 e , (2.24)
m=-00
where
X J K2 - EBT Lk sing)? (2. 25)
m d

and the chosen branch of the square root is that for which

ImX <0
m -

12
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in order to satisfy the radiation condition.

The expression (2.23) for P, has been used by Yen (1962) and Green (1970), and

1
is equivalent to that obtained by Neureuther and Zaki (1969) using a space har-
monic expansion. The features that should be noted are that if y¥ y' the suc-
cessive terms decrease exponentially with increasing |ml for all

kd kd
+ — si > —
m 5 sin6 5
and that in addition there is an algebraic decrease (proportional to m"l) provided
by the factor Xm in the denominator.
We can produce still a further improvement in the convergence properties
of the series by separating out the zero-frequency (k=0) terms, and this has the

added advantage of making explicit the behavior of P1 in the vicinity of the singular

point x'=x, y'=y . Putting k = 0 in (2.24), we have

2 2
- L L |m<y_y')t
2 1 d d
Py === e e (2. 25)
_ d 27
k=0 m=—c0 JImlg
and since
o —j&f (x-x")- 21 | y-y'l
, == 9—1 l1-e d d
D, s
m=1
2T . m '
-1 j=—x-x") - =— |y-y'l|
= - _‘i_ lo 1-e d d
27j &
m=-o

(see, for example, Collin, 1960), provided y' %y , it follows that

13
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Py

= (m=0 term)- 7-Jr log[{l-e
k=0

&

_27r

21

d

[1y-y] +6c-x")

|
]

[ Jy-3'1 ~jx-x")
- - (2.27)

Hence, by subtracting the zero frequency value of each term of (2.24) and then

adding (2. 27), the integral equation (2.21) takes the form

d
jkx'sin6 X
2 2d jkycos6
. 1 t 1] 1 ] ! =
f Gl(x, Y, X,y )KZ(X )e 1+{f (X )} dx YT e R
0 0<x<d, (2.28)
where

1

B
G &,y xLY") *qoeap

e-jk ly-y'| cos6

2 2 .
. —-dz[ly-y'l +(xx) --dlﬁy-y'l -jtx-x]
- -]-2-7; log 1-e 1-e
© _.2mr Sly-y'1 X _ 2 ly-y'l
Z -F—(x-x") m d
d e e
+ e +
=1 X+ .2mr
m m 4
- 2mr
—ilv=v' Jamm oy o ot
© .2m7 x-x") ily-y'l Xm d ly-y'|
d e e
+ Z © - * 2mr
m=1 Xm j ]

14

(2.29)
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with

X' - [k2— (2BT Lk sing) |
m d

X J K- (2—“17-T —ksin6)2 . (2. 30)
m d

We observe that the Green's function has now been expressed as the sum
of a term involving explicitly the amplitude and the angle of incidence, a
logarithmic function representing the true behavior of G, in a neighborhood
of its singularity, and two series which are themselves differences of two

convergent series.

2.2.2 H Polarization

The incident field in this case is taken to be

i i} e-jk(x sinf-y cos6)

H (r) (2.31)
Z

and the reduction of the integral equation (2. 17) to a form suitable for
numerical solution proceeds in much the same way as for E polarization.

Since

) 1 ) 0
oy i -f'(x") at +—|§ ’
mt J e frreen }2 { Ty

Eq. (2. 17) can be written as

d
t 1= 43 i 1
f P2Kt(x )dx*= 43{112(3)- 5 Kt(g)} (3.32)
0

15
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where
(0 0]
P2=\(1+{f'(x')} 2 a—i-, Z H(()z) (k J(x-x'-md)2+(y-y')2)e"kmdsm6
m=-Q

[0}

2j 1 o 2mT .
" ——— e - =yt

- Z Xm{f(x)( 5 ksinf) Xmsgn(y y)} X

m== 2mm
..j(——+ksin9)(x.x') ..j |y_y'| X
d m
x © €

(2.33)

in which sgn(7) is the sighum function and Xm is given in (2.25). The zero fre-
quency (k=0) limit of P, is

= 'jg'z'n'zr(X-X') _ 2 | m(y-y")
P -2 2 —f1(x")+ sgnly-y" | e d e 9
2o ¢ [m]

m=-Q0

S AT {(x-x‘)—jly-y'l}
f'(X')+jsgn(y-y')} Z e

m=1

oo . 2mm .
2 j7— { G=x")4] IY'Y'l}
+ a{_fl(xl)+j sgn(y-y") } z o d { ’

2 2
=3 {f‘ x"+j sg'n(y-y')l + 3

and since

16
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p| - ;:’1 x")+ 3 { f'(x")H sgn(y-y')} {- g (x-X')+jzl-T ly-y'l }

+§ {-f'(x')+j sgn(y-y')}cot {g (x—x')+jg ly=y'| } . (2.34)

Hence, by subtracting the zero-frequency value of each term of (2. 33) and then

adding (2. 34), the integral equation (2. 32) takes the form

Gybe v,y K e i KW |, 0<x<a, @39
0

where

Gy lx, yix', )= =j sgnly-y")-j {f'&')tane-sgn(y-y')} o~ Tksin6(x-x")-jkcos6 [y-y'l

+
2m7 -jly-y'lx
o _;cmm. .
_J,e-jksine(x-x') z . 174 Ge-x") e m
Xt

m=1 m

2mn

- —ly-y'|
f'(x)(zﬁr+ks1n9)-x " sen(y-y ')} e ¢ ‘Jf'(x')-sgn(y-y')}j]

2m7r —x1) -jly-y'| X;n
-Jksme(x-x') z [e

Xm

R
gf'(X')(- 2—;n17+ksin9) -X;nsg'n(y-y')}‘re d {jf'(x')+sgn(y-y')ﬂ

{f'(x')ﬂsgn(y-y')} cot { - 5 &=x)4 < |y-.V'|]

l\Dlu

5 { -£1(x")+] Sgn(y-y')} cot {d(x-x')+](-i|y-y | 5 (2. 36)

17
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In spite of the obvious complexity of the Green's function G,,, its form is

2

directly analogous to G, in consisting of certain explicit terms, a pair of cotangent

1

functions representing the true behavior of G,in a neighborhood of its singularity,

and two series which are themselves differenfies of two convergent series. Once
again, therefore, the singularity of the Green's function has been separated out.
We further note that the integral equations (2.28) and (2. 35) have been
derived without approximation . In consequence, the formulation so far is exact
for any two dimensional perfectly conducting periodic surface which is smooth in

the sense of having a continuous first derivative.

2.3 Numerical Procedures

Methods for the numerical solution of integral equations have been extensively
discussed in the literature (see, for example, Harrington, 1968). The general
procedure consists of reducing the equation to a finite set of algebraic equations,
i.e. to a matrix equation, and can be illustrated by considering

d
f G, x")K&"dx' = Fx) , 0<x<d. (2.37)
0

We assume that the unknown function K(x') can be expanded in terms of linearly

independent base functions ¢n(x') such that
N
n N 1
K6 &2 D af ) (2.39
n=1
where the a are the associated constants. Substitution of (2.38) into (2.37)

gives

N d
z anf G(x,x')¢n(x')dx' = F(x) (2.39)
0

n=1

18
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and the solution of the integral equation has now been reduced to the determination
of the constants, a n=1,2,... N.

There are several possible ways of finding the a . e.g least squares fit,
Galerkin's method, and the collocation method, and it is the last of these that
we shall employ.

The collocation method converts (2.39) into a system of N linear equations
by forcing the two sides of (2. 39) to be equal at N sampling points in the interval
(0, d). This is simply a point matching procedure and results in the matrix

equation
d
1 1] | < < =
i anf G(xm,x )¢n(x )dx F(xm) , O_Xm_d, m=1,2,...N. (2.40)
0

There now remains the problem of choosing the base functions ¢n(x') , and here
again there are several possible choices, e. g. rectangular, quadratic and
sinusoidal. By appropriate choice, we can economize in the number of sampling
points required for an 'accurate' approximation to the solution K(x), and
experience has shown that a rectangular function is not in general a good choice,
whereas sinusoidal interpolation often works rather well.

The particular form of sinusoidal interpolation that we have adopted is
predicated on the use of sampling points which are uniformly distributed in
0<x'< d. The range of integration is therefore broken up into N increments
of length A=d/N (see Fig. 202). Furthermore, let x' be the midpoint of the
n'th cell, i.e. x;l = (n- é ) A, and let Ax;1 denote the interval X;q-_AZ- <x! EXI'1+% .
We assume that

An+anin k(x'-xn)+Cncos k(x'-xn) , ifx'€ Axr'l
K" = (2.41)

0 otherwise

19
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n'th cdl\’\
L > x!

FIG. 2-2; Dlustration of the interpolation procedure.

20
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and specify the constants An’ Bn and Cn by continuing the form appropriate *:
x'GAxr'1 out to the centers of the adjacent cells and imposing continuity. Defining

Kn = K(xn) and Kni 1= K(xni ] ), we have

K =A+ C,

n n n
K =A +B sink A+C cosk A,
n+l n n n

K =A -B sinkA+C coskA,
n-1 n n n

from which we obtain

-K +2K cosk A-K
n n-

A - n+1 1
n 2(cos k A-1)
K -K
n+ n-1
- 2.42
Bn 2sin k A ’ (2.42)
-2K +
c - Kn+1 2Kn Kn-l

n 2(cos kA-1)

Substitution of (2.41) and (2.42) into (2.40) now gives

N cos k A-cos k(x'-xn)
1
z Gr(xm’X ) Kn cos kA-1

n=1 Axn
-sin kA +cos kA-1)sink (X'-xn)+sin k Acos k(x'-xn)
+Kn+1 2sin kA(cosk A-1)
-sink A-(cosk A-1)sink (x'—xn)+sink Acosk (x'—xn)
1]
+ Kn-l 2 sink A(cos k A= 1) dx
=F&x ), (2.43)
m

1
wherexm = (m—i)A, m=1,2,... N . We note in passing that whenn = 1 or N

21



1363-6-T

the periodicity of the problem must be used to determine the constants K_.1 or
KN +1 required in (2.43)

The above procedure is immediately applicable to the integral equations
for E and H polarizations on inserting the appropriate values for the Green's
function and the forcing function, but a brief comment is desirable concerning
the treatment of the singular cell . The Green's functions of concern to us are
singular when x = x' , the singularity being logarithmic for E polarization, and a
first order pole for H polarization, and it is therefore necessary to modify the

numerical scheme when xm = xn . In line with the usual practice, we divide the

singular cell into three portions:

with 0< e <A. The first and third segments are handled by the standard
numerical technique, whereas the central portion is treated analytically by means

of a limiting process (Andreasen, 1964).
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III

APPLICATION OF THE NUMERICAL TECHNIQUE
AND PRESENTATION OF DATA

3.1 Discussion

Although the only data that we shall present are for sinusoidally cor-
rugated surfaces, it is well to remember that the formulation given in Chapter
IT is quite general and appropriate to any perfectly conducting,two-dimensional
periodic surface. It is not even necessary that the surface have continuous first
derivative, and providing care is taken of any singularities at sharp edges, the
procedure is applicable to surfaces whose first derivative is only piecewise
continuous as in the case of a saw-tooth profile. The particular numerical
scheme that has been adopted is especially suitable for surfaces having
27ra/ d>> 1, where a is the peak deviation of the surface from its mean, and
d is the period. In the infinite series representation of the Green's function
(see Eqgs. (2.29) and (2.36) ), the first few terms (for which r%)} + sin 9'5_ 1)
are oscillatory, but for larger m the terms decrease exponentially at a rate
which is ultimately determined by the quantity 27a/d. Whereas the earlier terms
correspond to propagating modes in the scattered field, the later ones correspond
to evanescent modes, and it is only necessary to include a few of the latter in
order to achieve adequate accuracy. It is therefore apparent that for surfaces of
relatively small period ( d £ A) the infinite series can be approximated by the
first few terms alone.

The unknown function in the integral equation is the current induced in the
surface, and this is the quantity that is computed initially. Knowing the surface
field it is, of course, a trivial matter to determine the scattered field, and the
means of obtaining this in the form that is most convenient for our purposes is
described in Section 3. 2.
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As noted earlier, all of the numerical results given in this report are for

sinusoidal surfaces whose profile is taken to be

y=acos2-£-x—. (3.1)

Several different combinations of d/A, a/ A and incidence angle are considered,
and the distributions of surface and scattered fields computed . Comparisons

with the predictions of physical optics are also given.

3.2 The Scattered Field

When a plane wave is incident on a periodic surface, the scattered field
can be represented as an angular spectrum of plane waves, which spectrum is
discrete by virtue of the periodic nature of the boundary condition at the sur-
face. Each of the infinity of waves making up the spectrum has associated with
it a diffraction angle which may be real or complex and is determined by the
grating law. Whereas the amplitude of the wave is a function of the profile size
and shape, and the directions of incidence and diffraction, the diffraction angle
depends only on the value of d/X and the direction of incidence.

A finite number of the diffracted waves represent propagating modes and
these are the important ones far from the boundary. The remaining modes are
evanescent and though these do not serve to carry energy away from the surface,
they do play a vital role in affecting the amplitudes of the propagating modes.

The number of modes that propagate can be determined from the expressions
for X':j(l given in Eq. (2.30): if X—j:n is real, the corresponding mode propagates
without attenuation, whereas if X¥ is pure imaginary, the mode is evanescent.
To find the (complex) amplitudes I:f the diffracted waves we proceed as follows.

Let y = f(x) be the profile of the surface and, for convenience, assume the

incident plane wave to be E polarized. We then have
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i_ e-jk(x sinf-y cosb)
VA

E

(see Eq.(2.20) ), and by invoking the periodicity of the surface, the scattered

field can be written as
[00) .
-j(B_x+X_y)
Es = Z A e m m (3.2)
z m
m=-0
for y > max. f(x), where

2m7
= +k si
Bm 3 k sin 6,

X =Jk2-ﬁfn .

m

and

The field arising from the currents induced in the surface is given by

d
5 = le’ 1! 2 ! 1!
E &y 5| P, 1+{f(x)} K (') dx (3.3)
0

where P, is as shown in (2.24). In particular, this is valid for y > max.f(x),

and hence, by combining (2.22), (2.24), (3.2) and (3.3) we have

B x#x_y) M {8 E-x"+x_(y-y"
i Ame] XY :f%_el{m XY~y }F——"ﬂﬁ{f'(x,)}sz(x‘)dx,
0

- m
m=-00

from which we obtain

d
jB_x4X_y" 5
Am=;’d§‘( f e ™ M \]1+{f'(x')} K (dx! . (3. 4)

m

If the incident wave is H polarized, the procedure is directly analogous.

For the incident magnetic field shown in (2.31), we write
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[0 o) -iB_ x+X y)
Z m
m=-0
with
d s t 1 ]
1 ](Bmx +me)
t - - Y] 1 1
Am dem e {Xm Bmf (x )} Kt(x )ax!' . (3.6)
0

Having determined the current distributions Kz(x') and Kt(x'), it is therefore
a trivial matter to compute the amplitudes of all the diffracted modes, both
propagating and evanescent, and the amplitudes of the propagating waves for
several different values of d/A, a/\ and 6 are given in Tables III-1 through
I11-4.

A widely used technique for estimating the field which is scattered by an
object is the physical optics method in which the surface field is approximated by
its geometrical optics value. Although the estimates are deficient as regards
the polarization characteristics of the scattering, the method often provides an
adequate approximation of the scattering if all dimensions (including radii of
curvature) of the scattering surface are large compared with the wavelength,
and because of its great convenience, the method is commonly employed in
rough surface scattering analyses even when all radii are not large. A matter
that is then of some debate is whether shadowing should be taken into account,
and, if so, how. According to the physical optics method the current induced

in the surface is

K=20,H (3.7)
in the illuminated region, and

K=0 (3. 8)

in the geometrical shadow, where 1 is the outward normal to the surface.
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In many instances, however, some of the failures in the resulting estimates of
the scattering can be traced to the discontinuity in the surface field created at
the shadow boundaries, and improved estimates can be had by using (3.7) over
the entire surface, shadowed as well as lit.

In the present case of a periodic surface, the amplitudes of the diffracted
modes predicted by either version of the method can easily be obtained by in-
serting the postulated expressions for the current into Egs. (3.4) and (3.6). A
computer program has been written to carry out the calculation, and the ap-
propriate results are included in Tables III-1 through IlI-4. It will be noted
that the results produced by either version of the method show very little
agreement with the exact data. In general, the physical optics values, with
or without shadowing included, tend to be too small, and we further note that
if shadowing is excluded (or is not present), the physical optics esimates are
the same for both polarizations (see Appendix A).

It must be admitted, however, that for all of the surfaces considered,
the minimum radii of curvature are too small to provide reasonable hope for the
physical optics method to be accurate. With a sinusoidal surface, the minimum
radius of curvature, Pmin » OcCCUrs at the peaks and troughs, and the radius in-
creases to become infinite where the surface crosses its mean. For the four
different surfaces embraced by Tables III-1 through III-4, the values of kpmin

are as follows:

d=0.2x, a=0.1x, kp . =0.064,
min
= 1.0, =0.25, = 2. 30,
=0.42, =0.20, =0.127 ,
=0.2 A, =0.03 A, =0.212

To judge from this listing, one might expect the physical optics method to be
most successful for the second surface (Table III-2), but in practice it works

best for the fourth surface, which has a much smaller radius, but a small
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enough value of a/A to be nearly plane.

Before leaving this discussion of physical optics, we note that if shadowing
is ignored or, because of the incidence angle (6< tan~! 5%1 ), is not present, a
simple analytical expression for the amplitudes of the diffracted modes can be
obtained by an extension of the treatment in Senior (1959). An outline of the
procedure is given in Appendix A, and the results obtained from these formulas

are in agreement with the computed values in the last line of each of Tables

III-1 through II-4.

3.3 The Current Induced on a Sinusoidal Surface

We here examine the nature of the surface field distribution for five different
sinusoidal surfaces, considering first the results for E polarization and then those
for H polarization. In each case, the modulus and phase (in degrees) of a nor-
malized current are plotted as functions of x/ A over a single period of the surface
running from peak to peak. The horizontal scale is therefore the horizontal dis-
tance in wavelengths and not the distance along the actual surface.

The particular current normalization chosen is such that for E polarization
WH

the quantity plotted is T

KZ , the physical optics value of which is

2z (cos 6 - f'(x) sin@)e_jk(x sin6-f(x) cos 6) ,
yi+{fx)] 2

whereas for H polarization the quantity plotted is simply Kt whose physical optics
approximation is

-jk{x sin6 -f(x) cos 0)
2e

In each of the following figures, the exact computed values are shown as circled
points, and are joined by a broken line only to guide the eye; the physical optics

approximation is shown as a solid line.
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3.3.1 E Polarization

For a surface having d = 0.2X and a = 0. 1A, the results for the three
incidence angles 6 = 0 (normal incidence), 30° and 60° are given in Figs. 3-1
through 3-3, respectively. We observe that for this relatively small period
most of the current is concentrated in the vicinity of the surface peaks, with the
current being almost zero in the troughs. There is, indeed, almost an exponen-
tial decrease in the current modulus away from the peaks, and the main effect of
increasing the incidence angle is to scale the curves, leaving the general shape
unchanged. The phase is somewhat more sensitive to 8, and whereas the curve
is almost flat for 6 = 0, the structure increases noticeably with 6 .

Since kpmin = 0.064 for this surface, it is not surprising to find that the
physical optics approximation bears no resemblance to the exact data. This is
particularly true of the modulus; the exact curve is a great deal more simple
than in the physical optics one. The physical optics phase is also poor for 6 = 0,
but agrees better for the larger 6, at least in an average sense.

The effect of decreasing the amplitude of the surface while keeping the
period constant is illustrated in Figs. 3-4 and 3-5 for the case of normal in-
cidence. It is observed that as the height decreases, so does the current con-
centration near the peaks, but even for a as small as 0.01x (Fig. 3-5) there
is still amost a 2 : 1 variation between the peak and trough values. The phase,
on the other hand, is much more nearly constant, and is more akin to that for a
flat surface than a sinusoidal one.

Results for d = 0.4 and a = 0.2X with 8 = 0 and 60° are shown in Figs. 3-6
and 3-7. By comparing Fig. 3-6 with 3-1 it is seen that doubling both d and
a has little effect on the modulus of the current, but has a marked effect on the
phase. This is true also of the curves for oblique incidence (cf. Figs. 3-7 and

3-3).
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All of the surfaces so far considered have had rather small values of
d/) and a/), and have not been such that one could expect physical optics to
provide a reasonable approximation. For a surface with a much larger period,
d=1.9Awith a = 0,25 A, at normal incidence, the appropriate curves are shown
in Fig. 3-8. Physical optics now constitutes a more accurate approximation,
and though there are still noticeable discrepancies, qualitatively as well as
quantitatively , the physical optics curves do approximate the exact data in a
mean sense. The exact current modulus still has a maximum at the surface peaks,
but the minimum now occurs where the surface slope changes sign, i.e. where
the surface crosses the x axis. The phase remains fairly constant over the lower
part of the concave portion of the surface, but changes rapidly from positive to
negative and vice versa where the modulus has its minimum.

Since the particular case considered in Fig. 3-8 has also been treated by
Neureuther and Zaki (1969) using their numerical program, it is appropriate to
compare the data. This is done in Fig. 3-9. The agreement is very good in

spite of the rather different numerical procedures involved in the two methods.

3.3.2 H Polarization

For each of the situations considered above, we have also computed the
surface fields when the incident wave is H polarized, and we now present these
data in the same sequence as we did for E polarization.

The results for incidence at 6 = 0, 30° and 60° on a surface havingd = 0.2 X
and a = 0.1 X are shown in Figs. 3-10 through 3-12. Eight sampling points
were used in the computations. We observe that the curves for the modulus
are roughly sinusoidal in form and are relatively insensitive to changes in 6,
with at most a slight reduction in amplitude as 6 increases. In contrast to the
behavior for E polarization, however, the maximum now occurs in the surface
trough, with a minimum at the peak. There is again no agreement between the

exact data and physical optics.

39



1363-6-T

‘JOBXd ‘==0--150=-QPUBGZ'0O=-8 6

-sordo eoysigd ¢ —
‘1 = P Y3Im uoryeziaBiod J 10} pP[oy 90¥jIns PIYIPON :8-¢ ‘DA

8 =

SNMPOJA JUSIIND POZI[BWION

]
=
3

o

(se9a39p) aseyd



1363-6-T

00 = 6 PUB XGZ'0 = & ‘Y61 = P U3m uorjezrre[od { 10} P[9Y 9081INS PayIPOIN *6-¢ "DId

(6961) PBZ puE J9YMdIN3N o X
Jotuag pue SuoL e o

Z-"
llolollllollbul.l.lll.t..nvll
9SBYd
.H [
\
\
/
\/x \ 0
[ T T X
0061 0S6
%l./
\\ b
/ \\
//
“\
O e
*
\\0\
X

SNNPOIN

08-—

Q g
< o 1
A l l

SN[NPOIN JUSLIND PIZI[BULION

o
T

(sesa3ap) aseyq

41



1363-6-T

SNINPOI JUSIIND) PIZI[BWION

x/x

40

‘goypydo eoysAyd ¢ ——
308X9 ‘--0--:,0= 9 PUB Y] 0 = B ‘XZ°0 = P YIm uonyBZ1IEjod H 10] ploy 90elIns pIpypoN ‘01 -¢ "DIA

o

_
_
o
|
|
|
_
1
?
|
!

20
-2¢-

o

(se9u189p) eseyd

40—

42



1363-6-T

’,—O“—"‘—"-Os\

.1
x/x

Shadow

snNpo jusIIn) pozI[BWION

‘gorydo 1eo1sfyd
{J0BX9 ‘=-0-- lo0g = § PUB Y] 0 = B ‘\(Z 0 = P Y} uonjezrrejod H 10J P8y dd€Ins payyIpoN 11-¢ "OId

o

A .

20

o
v

(seoa3sp) osBYd

1
=
¥

43



1363-6-T

J0BX® ‘~~0-- ! ng - g PUB [0 = B ‘YZ°0 = P Y}IM uoppBzlae[od H 10j P[oY 90BINS POYIPOW :Z2T-¢ 'DIJ

,’—.o————v-
S

—0<

Shadow

o

SN[NPOIN JudIIN) POZI[BWION

*gopydo 1eorsdAyd ‘——

—
lllTl’

20

<©

|
(=] o
<H

| ]

-20

(s90a3ap) eseyd

44



1363-6-T

The effect of changing the surface amplitude while keeping the period
constant is illustrated in Figs. 3-13 and 3-14 for the case of normal incidence.
As the surface height decreases, the numerical results approach the physical
optics values, a fact which is not surprising since physical optics is most ef-
fective for a planar surface. As in the case of E polarization, the phase curve
is relatively flat even for a = 0.03X, and does not show the variation displayed
by the physical optics plane.

Figures 3-15 and 3-16 show the results for d = 0.4 and a = 0. 2X with
6 = 0 and 60°, respectively. By comparing Fig. 3-15 with 3-10 it is seen that
doubling both d and a has a somewhat larger effect on the current modulus
curve than was the case for E polarization. In particular, there is a notable
change of shape, with the minimum no longer occurring at the surface peak.
Similar changes occur for 6 = 60° (cf. Figs. 3-16 and 3-10). Once again, there
is no agreement between the exact data and physical optics, either in modulus
or phase.

The current distribution for a surface with larger period (d = 1.9 A and
a = 0.25)) at normal incidence is presented in Fig. 3-17. The modulus has a
marked oscillation, quite distinct from that found for E polarization, with three
maxima per period. One of these is at the surface trough, and the current is
again a minimum at the surface peak. The agreement with physical optics is
poorer than for E polarization, with neither modulus nor phase being approxi-
mated to any real extent. The exact data are, however, in agreement with
those obtained by Neureuther and Zaki (1960) for this case, as evident from

Fig. 3-18.

3.4 Energy Conservation

In solving problems of electromagnetic scattering from perfectly con-

ducting surfaces, a common procedure for checking the accuracy of the solution
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is to determine the degree to which the law of conservation of energy is fulfilled.
This is essentially the check employed by Petit and Cadilhac (1964), Neureuther
and Zaki (1969) and Green (1970), as well as by many others. However, as pointed
out by Amitay and Galindo (1969), energy conservation does not provide a mea~
sure of accuracy of a solution found by the Ritz or other related methods; and
hence, in order to use energy conservation to check other than computational
round-off errors, care must be exercised in choosing the method of solving the
integral equation numerically.

The method that has been adopted in this Report is a point matching and
sinusoidal interpolation scheme , and since the solution does not automatically
satisfy energy conservation, we are able to use this as a check. The relation

that must be fulfilled is

N2
Dola_|” Re () =k cos 6 (3.9)
m=o

where N is the number of propagating modes. The extent to which this is
satisfied by the numerical results that we have obtained is shown in Table IIT-5.
For comparison purposes, the percentage errors implied by the physical optics
method, with and without shadowing, are also included. Whereas all of the

exact data satisfies the energy conservation law to within (about) one percent or
better, the only case where the physical optics solutions does so is when d = 0.2x

and a = 0.01A. Such a surface is very close to being planar.

3.5 Convergence Check

In solving an integral equation numerically it is always desirable to carry
out a convergence test,
a) to determine the number of sampling points necessary to achieve the

required accuracy, and

52



1363-6-T

[
86 'LG- 3Z0G¥ 0 86 LS—- 20c¥ ‘0 92°0- %.66°0 |86°L5- 202 0 86°L5- 202F°0 ¥0'0 9666°0 |0 G2 06°T
| 0G 86— €800°0 8L°8G- 1902°0 ¥8°0 g¥0S'0 JLP'9L- LPIT'0 8L'8G- 190¢°0 9€°1 890S°0 {09 <C°0%°0
| 0L ‘66— 0£00°0 0L 66- 08000 LL'I- €286 0 JoL'66- 0€00°0 0L'66- 0€00°0 9L°0- 9L66°0 |O ¢°0v°0
| 66°9 - 80€6°0 26°0 - 80860 €1 O- 19660 le6' 9 - 80560 ¢6°9 - 8066°0 gv' 0 2¥00°'T |0 €0°0 ¢°0
.m;.o = 1266°0 6L°0 - 1¢66°0 02 0- 08660 |6L°0 - 12660 6L°0 - 1g66°0 0I'0- 0666°0 |O 1000 2°0
Z¥°0L- 6LPT'0 PE£'8T- €80Y°0 0S°'1 GL0S 0 J¥¥ €¢ 2L19°0 2€°8I- %80%'0 92°0 €T0G°0 |09 1°0¢°0
00°86- 8020°0 O Lb- ¥9S% 0 &F I- 2pS8 0 JS¥ I¥- GLOG 0 0SG LP— €96%°0 8T 'I- %998°0 |0€ 1°0 €0
| ZL°8G- QcGlv 0 <L 8G- 8¢Lb 0 ¢S I- 8786 0 JoL 85— 8ZI¥ 0 2L'85- 82I¥'0 0L°0- 0L66°0 {0 T°0 ¢°0
T01id ASiound d0iid ASioud J0did ABaoud | dodad Asaeud JoXIHd AJaeuy Joxxyd — ASIsuy (0)6 X X
J0 30 30 30 30 j0 ® P
%o s L Lo e Lo
MOpEUS /M MOpBYS O/m [BoTIoWNN MmOpeYys /m MOpBYS O/m [eotaswmN
so13dQ 1801sAYyd so1dO ?3@3@
HAVM H HAVM H

A8xoud JO UOIBAISSUOD G-I ATAV.L

53



1363-6-T

b) to test whether or not the numerical solution approaches a stable

value as the number of sampling points is increased.

Although it has not been proved mathematically that the accuracy can be improved
by increasing the number of samples, it would appear reasonable to believe so
on a physical basis.

Figures 3-19 and 3-20 show the results of a convergence test applied to
the case d=0.2A, a=0. 1A and 6=0 for E and H polarizations respectively. It
can be seen that the solution does appear stable, and that surprisingly good
results are obtained even with as few as 4 sampling points.

Two other aspects of the computer program that should be mentioned are
the computational time consumed and the number of terms included in the sum-
mation of the infinite series for the modified Green's functions. For E polarization,
a typical figure for the computational time on an IBM 360 machine using 12
sampling points is about 60 seconds. This time includes the computation of the
amplitudes of the diffracted modes, the energy conservation check and the cal-
culation of the physical optics results. A typical figure for H polarization using
8 sampling points is 28 seconds. The time increases roughly as the square of
the number of points, and most of it is eaten up in the computation of the matrix
elements.

Except for the large period surface (d=1.9A, a=0.25)), where the number
of terms retained in the Green's function series was 6, only the first three terms

were required. Tests that were performed indicated that three was sufficient.
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FIG. 3-19: Modified surface field for E polarization with d = 0.2x, a = 0. 1A and
9 = 0° computed using 4, 10 and 12 sampling points.
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CONCLUSIONS

We have here considered the problem of a plane electromagnetic wave
incident on a perfectly conducting, two dimensional periodic surface, and have
developed numerical procedures for the direct digital solution of the integral
equations for the surface fields. By using special summation techniques fol-
lowed by the subtraction of the dc term to improve the convergence of the
series for the modified Green's function, a relatively efficient procedure has
been arrived at, and this has been programmed for a computer,

Data have been obtained for the surface fields on several different sinusoidal
surfaces when illuminated by E and H polarized plane waves at oblique as well as
normal incidence. It is found that the polarization has a marked effect on the
field. Since most of the surfaces considered had relatively small values of
d/X and a/A, there is little agreement with the physical optics estimate of the
surface field. However, this is also true for the one surface of much larger
period that was examined.

Knowing the surface field, the amplitudes of the diffracted waves in the
discrete angular spectrum representation of the scattered field can be computed,
and this has been done using the exact surface fields as well as the physical optics
estimates with shadowing either included or ignored. Here again the physical
optics predictions are deficient, and whereas the results derived from the
numerical program satisfy the conservation of energy law, the physical optics
values do not.

In the continuation of this study, the numerical program will be applied to
a wider variety of periodic surfaces in order to build up an understanding of the
surface field behavior, including its dependence on profile size and shape, and

the direction and polarization of the incident field. It is our hope that this will
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enable us to develop synthesis procedures for the efficient computation of the fields
scattered by periodic surfaces of large amplitude and period, leading ultimately

to better prediction techniques for rough surfaces in general.
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APPENDIX A: PHYSICAL OPTICS APPROXIMATION

Although the main purpose of this report is the development of a numerical
technique for the determination of exact values for the surface and, hence,
scattered fields, we have found it desirable to compare the results obtained
with those provided by the physical optics approximation. This approximation is
a physically-based one which postulates an explicit form for the surface field
arrived at by assuming each element of the surface to bear that current which it
would were it part of the local tangent plane. The calculation of the scattered
field is then reduced to quadratures.

In many instances, however, and a periodic sheet is one, an analytical
evaluation of the physical optics integral is a difficult procedure, particularly
in such cases where part of the surface is shadowed, and some of the shortcomings
of physical optics estimates in general certainly arise from sloppiness in the
evaluation of the integral. In still other cases, the physical optics result proves
to be more accurate if shadowing is ignored* (see, for example, Adachi, 1965)
and it is of interest to observe that for a sinusoidal sheet it is then possible to
produce an exact evaluation of the integral. Needless to say, however, the
resulting scattered field is still subject to the unknown errors inherent in the
use of the physical optics approximation, and to the neglect (if present) of all
shadowing effects.

The procedure is directly analogous to that given by Senior (1959) for the
particular case of an H polarized plane wave at normal incidence on a sinusoidal

sheet and consists of three steps:

" This modified method is sometimes called 'extended physical optics' .
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(i) writing down the physical optics integral for the scattered field without

any shadowing included;

(ii) asymptotically evaluating this expression appropriate to an observation

point at large distances from the sheet; and

(iii) matching this expression to a discrete angular spectrum of waves to
obtain their amplitudes. Since these amplitudes are independent of the field
point, we have, in effect, produced an exact evaluation of the integral valid
certainly in the half space above the sheet.

Let us take the equation of the perfectly conducting sheet to be

y = a cos Kz (A.1)

where a is the amplitude of the corrugations and 27/K = d is the period. If

the incident field is E-polarized, we write

E12%8—]k(xsm@-ycos@) (A.2)
(cf. Eq. 2.20), implying
i A A o
_}_Il=-Y(cosex+sin6y)e]k(xsme y cos 6) (A.3)

where Y is the intrinsic admittance of free space .

By virtue of the periodicity of the sheet and, hence, of the problem as a
whole, the scattered field can be expressed as a discrete spectrum of waves
which waves are certainly outgoing as regards y > a. Thus, we have

[os) -jk(x sin6m+ y cos Gm)

A
5.2 A e (A.4)

E:

where
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ksind =mK+ksing,
m

k cos Gm ={k2 -(mK+k siné))2 , (A.5)

and that branch of the square root is chosen having imaginary part non-positive.
Application of the physical optics approximation, followed by steps (i) through

(iii) above now gives

k
A =" cos0 -2X2 sinols @) (A.6)
m / 2 2 “m m-m
k™= (mK+ksin6)
where
_ 2 2
/.tm =a {( cos 0 +Jk -(mK-+ksin 6) ) . (A.7)

In particular,
A =-J (2akcos0),
o )

and asa > 0,
A =1, A —>0, m¥FO0,
(0] m

in agreement with the known solution for a flat sheet.

If the incident field is H-polarized, we take

, Siklx sind -

Elzé\ej(xsme ycosG), (A.8)
implying

— ikl sin B -

13__1=—S—{(00893‘<+sin9§‘r)eJ b sin 6 ycose)’ (A.9)

and expand the scattered magnetic field as
00! -jkx sin & +y cos 6 )
A
B =z A' e o m (A. 10)
= m
m=-00
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where Gm is as before. On evaluation of the physical optics integral, we

now obtain

A;n :Am . (A.11)

The equivalence of the results for the two polarizations is consistent with the
known fact that the physical optics approximation for a perfect conductor is
inherently polarization insensitive.

Results computed from Eqgs. (A.6) and (A. 11) agree with those given
in the appropriate columns of Tables III-1 through III-4 and obtained from a

numerical evaluation of the integrals in Egs. (3. 4) and (3.6) .
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APPENDIX B: COMPUTER PROGRAMS

Two separate computer programs have been written, one for E polarization

and the other for H polarization. Each program consists of the following parts.

1.

a)

b)

c)

d)

e)

a)

Main Program

The functions which this performs are
reading in the input data consisting of the amplitude and period of the surface
(measured in wavelengths), the angle of incidence, the number of sampling

points and the number of terms employed in the series summation;

calling the subroutine which computes the matrix coefficients, including

the analytical treatment of the singular term;
computing the physical optics current;

calling the subroutine which inverts the matrix and hence obtains the induced

surface field; and

printing out the appropriate numerical results.

Subroutines

Subroutine CAVE
This determines the appropriate constants in the sinusoidal interpolation
formula and calls the integration subroutine CSIMEQ to integrate the kernel

function over the sampling cell.
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b)

c)

d)

e)

f)

1363-6-T

Subroutine FUN

The constants in the sinusoidal interpolation formula are here computed.

Subroutine SUBC

This computes the kernel function of the integral equation.

Subroutine CIMPS

The numerical integration is performed using the Newton-Cotes method.

Subroutine CSIMEQ

This performs the matrix inversion using a Gauss reduction method.

Subroutine ENERGY
The amplitudes and phases of the diffracted waves are computed and the

scattered energy found.
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