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ABSTRACT

When the parent population is not completely known, a general method
for finding an approximate form for the sampling distribution of a statis-
tic is to ascertain its lower moments. Frequently these statistics are
symmetric functions of the observations such as moments. Many pioneer
workers found formulae for moments of moments, but the algebraic complex-
ity of the results led Fisher (1928) to introduce the k-statistics kp as
symmetric functions of sample observations whose expected values are the
parent cumulants kp. He developed a combinatorial method to express
their cumulants and product cumulants.

Dressel (1940) introduced generalized k-statistics as sample func-
tions whose expected values are products of cumulants. Tukey and Wishart
gave some methods and results for products of generalized k-statistics,
which were used to obtain moments of moments when sampling from a finite
population. Dwyer and Tracy (1962) transformed Tukey's method to a com-
binatorial method for products of two generalized k-statistics and gave

semi-general formulae for k where {} stands for any set of

() Fpyvo. ..
subscripts and py+ppot...< L. Schaeffer and Dwyer (1963) introduced sub-
stitution products for unifying expectation and estimation theory.

The aim of this work is to generalize Fisher's combinatorial method
to write products of generalized k-statistics as linear functions of the
same and to use these to obtain formulae for moments of moments when sam-

pling from a finite population to parallel his formulae for the infinite

iv



case. With this aim, the following is done:

1. Additional rules for the combinatorial method for multiple prod-
ucts of generalized k-statistics are stated and proved, although the
rules of Dwyer and Tracy (1962) are found to generalize to the case of
multiple products.

2. Just as Fisher's combinatorial approach was based on the deter-
mination of a coefficient for certain patterns, so the combinatorial
approach for the general case is based on the use of coefficients for
patterns generalizing those of Fisher. These coefficients are determined
and tabulated for the most common patterns.

3. Semi-general formulae for products of k{} and kplpg"‘ kqlqg__....
are provided through weight L4 of the second factor and products of semi-in-
variant generalized k-statistics are extended to weights 9, 10 and selec-
ted ones of weight 12. Checks for these are indicated as well.

4. These results are then applied to obtain moments of multiple
products M(pipp...) = EN(kpl-Kpl)(kpg-Kpg)... , where Ey denotes the av-
erage over the sample values when sampling from a finite population of
size N. Formulae for M(...) or K(...) are needed, for example, in a study
of the distribution of ratio-statistics. These are tabulated for cases
not involving the sample mean kl for weights through 10 and for selected
onegs of weight 12 and also the corresponding K(...) are given where they
differ from the moments M(...). A useful check is provided by the fact

that these formulae transform to those of Fisher as N » o. TFormulae re-

lating moments involving k; to those not involving k; are also given.



5. Moment formulae can be transformed to estimation formulae rather
easlly when using generalized k-statistics. This fact is used to obtain
estimators of M(...) and K(...), not involving ki, using substitution prod-
ucts, thus extending the results of Schaeffer and Dwyer (1963).

The work thus generalizes Fisher's paper for the infinite case to

finite populations.
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INTRODUCTION

Lfter giving a short history of the background material, the aims

and objectives of this paper are described.

History

When the parent population is not completely specified, a general
method for finding an approximate form for the sampling distribution of
a statistic is to ascertain its lower moments. Frequently these statis-
tics are symmetric functions of the observations such as moments and
product moments. Thiele, Sheppard, "Student" and Tchouproff were among
the pioneers to find formulae for moments of moments, but the algebraic
complexity of the results and the amount of work required to reach them
led to a search for simpler methods. In fact, Craig (1928)while extending
Thiele's results to write semi-invariants of moments and product semi-
invariants drew attention to the need of the use of functions other
than crude moments if the algebraic formulation was to be made manage-
able. Fisher (1928) introduced the symmetric functions which provide
great simplification for infinite populations. He defined the k-statis-
tics kp as unbiased estimators of the parent cumulants‘}(p° On the basis
of the simpler forms so obtained, he developed a combinatorial method to
express cumulants and product cumulants of sampling distributions from
infinite populations. A further development of this method was given by
Fisher and Wishart (1931). Georgescu (1932) extended Craig's results
and applied Fisher's idea of a combinatory analysis to the sample moment
function. Kendall (1940 a,b,c, 1952) systematized Fisher's combinatorial

technique by giving rules for the same and their proofs.
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Dressel (1940) introduced symmetric functions whose expected values
are products of cumulants Kpl}(pz ... and Tukey (1950, 1956), denoting them

by kp _ and calling them generalized k-statistics or polykays, showed

1P ..
that these are also unbiased estimators of the corresponding finite popula-
tion parameters Kﬁlpg ...+ Wishart (1952) applied combinatorial methods

to actually express products of k-statistics as linear combinations of gene-
ralized k-statistics. He also obtained products of generalized k-statistics
by algebraic manipulation of the above, rather than by combinatorial methods.
He applied these results to find moments for finite sampling. Tukey (1956)
gave some rules and tables for the direct calculation of the products of

two generalized k-statistics. Dwyer (1962) studied the properties of poly-
kays of deviates from the mean. Dwyer and Tracy (1962) developed combina-
torial methods for products of two generalized k-statistics and gave many

semi-general formulae for k{ k where {} stands for any set of sub-

P1Pp v
scripts and p; + Pyt ... <4, Schaeffer and Dwyer (1963) gave practical
methods for computation, introduced substitution products explained on
page75 for unifying expectation and estimation theory and extended the
product formulae for generalized k-statistics not including a unit sub-

script (which are seminvariant in that they are independent of the choice

of origin) through weight 8.

Objectives

The main aim of this paper is to generalize Fisher's combinatorial
method to obtain multiple products of generalized k-statistics and thus
to generalize Fisher's (1928) moment and cumulant formulae to the case
of a finite population. With this aim in view, the following has been

done:



1. After a review of the basic materiasl, additional rules for the
combinatorial method for multiple products are stated and proved, al- /
though the rules of Dwyer and Tracy (1962)are found to generalize to the
case of multiple products.

o, Just as Fisher's combinatorial approach was based on the deter-
mination of a coefficient for certain patterns, so the combinatorial
approach for the general case is based on the use of coefficients for
patterns generalizing those of Fisher (1928, pp. 223-226), These coeffi-
cients are determined and tabulated for the most common patterns.

3. With these ccefficients known, semi-general formulae for pro-
ducts of kiﬁ and kplp2°°’ kqlqe.o’,u, are provided through weight U4
of the second factor. With the aid of these, products of seminvariant
generalized k-statistics are extended to weights 9 and 10 and selected
ones of weight 12 (following Fisher, 1928) and are presented in tabular
form. Checks for these are also indicated.

L, Formulae adapted for computation of finite moments M(plpgeun) =

)

J(k. - K )... are derived, where E_ denotes the average
1" P2 P2 N

over the sample values when sampling from a finite population of size N,

EN( kP 1

One needs formulae for M(...) or K(,ngﬁor examplej in a study of the

ky

distributions of ratio-statistics such as 273 (which is used to measure
{L

departure from normelity), where the denominator is expanded in the

-3/ - -3/2
series K, 3/ (1+ Ko K2) / .

Ko
involving the sample mean ki (pi # 1) for weights through 10 and for

These are tabulated for formulae not

selected cases of weight 12 and alsc the corresponding K(...) are given

where they differ from the moments M(...), generalizing Fisher's (1928)
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table of formulae to the finite case. Fisher's formulae can be obtained
as N — oo, which helps in checking. Formulae relating moments involving
k, to those not involving kl are also given.

5. Estimators of M(...) and K(...) for p; # 1 using substitution

products are tabulated, extending the results of Schaeffer and Dwyer (1963).



CHAPIER T

BASIC MATERIAL

After defining the terms, some description of the generalized k-
statistics is given. The algebraic method given by Tukey (1956) for
writing the product of two generalized k-statistics is briefly described
with the help of an example and its modification to a combinatorial
method by Dwyer and Tracy (1962), following Fisher (1928), is illustrated
with the same example. The steps of the combinatorial method are then

outlined.

Notation and Definitions

Let a random sample Xy, Xp, «+. , X, of size n be drawn from a finite
-8

population of size N (whose moments all exist), the sampling being done
without replacement. The finite population itself may be looked upon as
a random sample of size N from an infinite population. A sample symmetric

function is a function of xy, Xpy eoe 5 %p whose value remains unaltered

by any permutation of the xi's amongst themselves. The sample augnented

monomial symmetric functions (Kendall and Stuart, 1958, p.270) or power

product sums (Dwyer, 1938, p. 12) are denoted by

A
where p =Z{@ is the weight and the number of parts s is the order of
=)

the symmetric function. If the p_ (distinct) are repeated T, times,

{ T Ty Mg i P P P> Do Ps Ps
P p2 P ps = X, X . o0 0 X X cchA X »
1 {ja¢m i J q r t Tu

A A
p =2 hm_ being the weight and Z 77, being the order of the function.
o=) o=l
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The monomial symmetric function is denocted by

T To s ‘ 2 Ts
(pl Pe b o e PS ) = [pl P2 o * p" ]

NN

As an exanple
)

1 n mn
z.x 2 = x.2 + X.X
({1; 1) - C;} 1 45% i

can be expressed as

i~
s

LY - fe)e )

but also,

O R !
( ;% x;) = Lxg + 2 2. x.x. ,
A= -

[
-~
N
LS
‘_J
o

N

(1)" = (2)+ 2 (11).

In terms of these, power sums §,. arc just one-part functions,

s0 that

Tables have been provided by David and Kendall (1949) for expressing
power sums and augmented monomial symmetric functions in terms of cach
other through weight 12.

Symmetric means or mean power products are defined as the means of

products of powers of different xi's, Since the sum [plpp oo I}] z

n P Do ho

> oxs T oxs ... x, 1s over n(n-l)..g(n-f+ 1) terms, the symmetric
Gy Y
mean { PyPp- .- pp> (termed angle bracket by Tukey, 1950) can be defined
as

The notation (pll ceo Pg ) is later used for partition coefficients.
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{P1Py +o° P,) = [Plga‘“pp]
1¥2 P _.W‘P

Then, by a basic theorem of finite sampling theory (Dwyer, 1938, Tukey,

1950 : "inheritance on the average'),

Ey PPy +-e BY = {pyPp -+- Pply

where EN denotes the average over N(n) possible unordered sample values
when sampling without replacement and <:plp2 ‘oo I?>N is the correspon-
ding population bracket. 1In case sampling is from an infinite popula-

tion (or from a finite population with replacement),

/

(1.1) E dppy oo B = ,u»;l /&%2 /A.Pf

where w' 's denote moments about the origin. (Kendall and Stuart, 1958,

e

p. 276).

A partition coefficient (pl +o. Dg) Of p is defined (Dwyer and

Tracy, 1962),(Schaeffer and Dwyer, 1963), as the number of ways that the
distinct units of p may be collected into distinct parcels described by
the specified partition of p. For the p-part partition (pirl . p;ﬂs)}
the partition coefficient

I X '

1l s .

Y soo P = 7
! s ) (py 1" oo (pg 1) Ty ! ... T !

A A
where é;'&“l = p (weight), ;Z ™o p (order). The multinomial theorem
- 1=

can then be expressed as

[l]P = Z(Pl cos Pf) [Pl cee 1},] P
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where the summation applies to every p-part partition of p and P= 1,2,

The pth cumulant X p of the infinite population can be expressed in

terms of the moments of the same by the formula

p-1

- 2 - -1) ! ' ’
(1.2) Xy -g P (-1)  (p-1) (pl---pf),uplm }Lp‘, ,

where the second summation is over all p-part partitions of p.

k-statistics

The pth k-statistic kp is defined (Fisher, 1928) to be the sample

symmetric function such that E(kp) = Xp . 1In the case of a finite popu-

lation, EN(kp) =|<p, where K?, the K-parameter is the same function of

the finite population as kp is of the sample. 1Its uniqueness has been

shown by Kendall and Stuart (1958) and also by David and Barton (1962)

for all distributions. Then, from (1.1) and (1.2),

P p-1
(1.3) kp :FZ=| (’%..,L(—l) (p-1) ! (pl pf,) (pl pﬁ> s

as given essentially by Cornish and Fisher (1937, p.5).
The value of kp, p>1l, is independent of origin (seminvariant) as shown
by Kendall and Stuart (1958), and kp, P> n, are not defined.

The kp are homogeneous polynomials of degree p and can be written

in terms of power sums. Such expressions for k., through k6 are given

1

by Fisher (1928), for k7 and ko by Dressel (1940) and for k., and k1o by

9
Zia-ud-Din (1954), who has also given an expression for ki (1959).

.,D.



Generalized k-statistics

The generalized (multiple) k-statistics kplpzuare symmetric functions

of sample observations which have the basic property of being estimators
of products of cumulants (Dressel, 1940), i.e., E(k ) D
PyPye P Pp
E 1o f +har } - @ { - Y ig )
It is further known that LN(kp b L) o= Ky p,... » Vaere Ky o 1 the
1+2 12 1+2
same function of the finite population as kplp° ) is of the sample. Tukey
(1956) calls them polykays and defines them by a symbolic rmltiplication
(o) in which products of brackets are replaced by brackets enclosing the

product factors. Thus,

< kK ok o ...
PyPpe e Py Po

Z(“‘)E(Pr,)-ﬂ-( ’))[(t’u Js‘f; }"zlm ")-/OL) ] ()/’ rﬁ 2

*
v
H]

(1.4)

where the summation extends over all combinations of partitions Dy seer s

Py, of p, . It follows from (1.4) that
B [k ]: 2(——) D'[(Fn l’(’)( z{’g }/“b,, /[’,I»/hﬁl /MZ/’Z
plpzoog
ln5) - x K e 20 »
( by P2
Thus k is an unbiased estimatorof XK Ko e
P1Poe v Py Por
Again kp ... is uniquely defined for monomial symmetric functions by
172
the implication
(1.6) E(k ) = X_ X e
PyPpee P P

for all distributions. For suppose there is another monomial symmetric function

ko of weight p whose expected value is also Ap xp -+ for all distributions,
f)

then B ~k' ) = O. But k -k' is a monomial symmetric func-

(k =
plpg s 0 0 plpgaea o800
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tion veing the difference of two such functions and can therefore be ex-
pressed as the sum of terms ‘pri, foii xbpj etc. Thus its expectation
is a sum of terms each of which is a moment-product. The vanishing of
this series implies a polynomial identity relationship between the moments
of x which is impossible except perhaps for a particular‘subclass of popu-
lations. Hence kP1P2'°°- k' ~ vanishes identically and so kplpg"' = k‘_°
Some work of Haslmos (1946) on the uniqueness of estimates is interesting in
this connection.

It can also be noted that a generalized k-statistic kPlP2°'° is semin-

veriant when no p;y = 1. For, by Taylor's theorem, if we write z for

Xl,' .-,Xn,

Kpipp... (##0) = o, (2) = nf(z).

Taking expectations and remembering that when p; # 1, X_  is independent

Pi
of origin, we have

(1.7) O =hE f(z)

In view of the remarks above, since a polynomial identity relationship
among the moments for all distributions is impossible, f(z) = O and k is
seminvariant when py # 1, all i. If one or more p; is 1 the expectation
of the corresponding generalized k-statistic involves Kl = ﬂi as a
factor which certainly depends upon the origin.

An advantage of the generalized k-statistics derives from the fact
that we can express them in terms of augmented symmetric functions once
and for all (Wishart 1952) and hence derive non-linear functions of them

as linear functions to which the Irwin-Kendall principle (Irwin and
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Kendall, 1944, p. 138),(Kendall and Stuart, 1958, p. 301) will apply.
This principle says that if for a symmetric function f, E(f) = Zfajxj,
then EN(f) ::ZajKj , for otherwise, EN(f) could be expressed as some
other function of K's whose expectation E would be the same as that of
Z-aJKj. This would imply a polynomial relationship among the K's.

The polykays enable us to write down unbiased estimators of products
of cumulants. In fact, the operations of taking expectation and estima-

tion become trivial after the functions of the observations X; are re-

duced to linear functions of generalized k-statistics.

Combinatorial Method

Fisher (1928) tackled the problem of writing the sampling moments
and cumulants of k-statistics in terms of parent cumulants by algebraic
as well as combinatorial methods. The problem is essentially that of
finding mean values of powers and products of these k-statistics. To

any number p with partition ;f' oo ;f‘ , there is a moment

Lo I, m T
I,,(pI oo ;%‘ ) = E<k?~ coe kh: )

and a cumulant X(g“‘ o g?) ) related to these moments by the usual
identity in t's, (Kendall and Stuart, 1958, p.282)
).
U '
T i, ) ) L
20" BT ) =t {200 2T
! .
at

where py, i=1,2,..., 8 and 43 j=1,2,..., mare column and row totals
repeated Ty, Aj times respectively (Zf’;"i =21a~ = P) for the two-way
* 7

array



=] P

- - - _ , - 19
:}%
_ - ' 1
- _ 14
7 q‘m
— — - - : )tm
- - ~ %
St s %a | p
7T| T l
M Ao
where a row corresponds to every X in K? coe K1 and a column to
{ M
e _
every part in K(pl' oo p:P ) and we consider all the ways in which

the body of the array can be completed by the insertion of numbers whose
column and row totals are the respective P; > qjo To take an example from
Kendall and Stuart (1958), when seeking the coefficient of xéxi in

2
X(42), we consider such arrays as

2 2 2| 6 2 3 1|6 3 3 016
1 1 0] 2 11 0|2 1 0 1] 2
11 02 1 0 12 01 1| 2
I 210 I I 2 ]10 L~ 27110

Fisher's (1928) empirical rules were stated more formally by Kendall
(Kendall and Stuart, 1958) for writing the sampling cumulants of k-statis-
tics using a combinatorial method. A proof of these rules is also pro-
vided by Kendell (Kendall and Stuart, 1958, Chapter 13) by employing an
operator.

The algebraic coefficients (p.25) of many useful patterns of arrays
have been provided by Fisher (1928). Wishart (1952) modified the Fisher-

Kendall rules in order to obtain products of k-statistics and also used
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combinatorial methods. Then he proceeded to find products of generalized
k-statistics algebraically and has listed all such products through
weight 6. He has also given products of single subscript k's through
weight 8. Products of seminvariant generalized k-statistics{independent
of the origin, i.e. not having unit parts) up to weight 8 were given by
Schaeffer and Dwyer (1963).

Tukey (1956) gave a method for finding expressions for products of
two generalized k-statistics using a table for multiplication of brackets
(from which we have adapted Table 1) and using a rule involving the num-
ber of unit parts.

Table 1

COEFFICIENTS FOR MULTIPLICATION OF

TWO BRACKETS
Number of Number of parts in bracket whose coefficient
parts in multi- sought
plying brackets 1 2 3 L 5
1x1 1 1-2 - -
n n
lx2 - 1 1.2 -
n n
1x3 - - 1 1 - 3 -
n n
2x 2 - 1 1. L 1‘@&4-_%-, -
A2) tn (2) n (2
1 1 ) 6 6
2 x - - e 1 e =4
’ RO e/ BN
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As an example of bracket multiplication,

Le>{b> = L 2 x, 2 Z X?

n2 =1 i 3;‘ J

= 5 é ‘i xazib-ki xa+bj
n? Coegp 13 g K

- 1 +

= 3 By [a+bJ}

- 1 ?n(n~l)<ab>+n {a +b>}
n2

= (1»%:)<ab>+ 2 {a+bv)

The first row of Table 1 expresses this result. In general, one has to
obtain "all products which can be obtained by matching some (including
none) of the letters in one bracket with letters in the other and then
replacing matched letters by their sum." (Tukey, 1956, p.4b).

Tukey (1956) also observed that when a bracket with g unit parts is
written in terms of polykays, only polykays with at least g unit parts
appear and vice versa. He used 0(18) for any set of terms each of which,
when expanded linearly in brackets or polykays, contains at least g unit
parts. Also, he used the term unit weight of an expression for the maxi-
mum number of unit parts appearing in any term of that expression. In
terms of these, the rule is that while expressing a polynomial in poly-
kays as a linear combination of the same, the unit weight on the linear
side can not exceed the unit weight on the other side. This implies that
the coefficient of every k... having more unit subscripts than the set

of original subscripts is zero.
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The multiplication of polykays is carried out in three steps:
(a) expressing each k... as a linear function of brackets,
(b) multiplying out the brackets, and
(¢) reconverting the resulting brackets to polykays.

For example, Tukey (1956) considers

kgl k2 = (k2 o kl) Ky
= [§<2> - <11>} o <1>] [<2> - <11,>J
= [<2> o 1> -<11> o <1>][<2> - <11>J
= [(21) - <111>][<2> - (ll)] , using (1.4)
(1.8) = apey - 11y L2y - 21y {11y +111) (11D
. (1.2 1 1 202 1
= (1 n) 221> + - {32) + = b 2(= n_(,g))<221>
- ;%g) 32>+ "%‘g) eaay + 0(1°), using Table 1 and
4 n
the rule of unit parts
k.8 2 1 2 n
= (1 - ~ +n(2>) % Kom o(1 )} + (_ﬁ, . —5@) §K32+ 31«:221
+o(12)§+}11. 313& + ot O(lz)j + 0(19)
1 2 1 2, 2 2
= (5. ;‘(‘5)) ksp+ & Ky ¥ (1+ ‘5*;@‘)) k,221+ 0(1)
- 1
(1.9) = '{?'551'7)3' k32+-i§' Mg+ Fe Sear

Tukey, however, believed in "sparing the use of combinatorial techni-
ques as much as we are sble" (Tukey, 1956, p.37). Dwyer and Tracy (1962)
have modified Tukey's algebraic method to a direct combinatorial method

using arrays which consists of the same three steps.
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The first step, as in Tukey's method, gives (1.8) which appears
at the top of Table 2,

The multiplication of brackets is achieved more directly. To
express L 217 < 2) for example, since
(1.10) ( :i Z£x)( ji xﬁ) = :§ x@x.—kzg x*x> +-j§ x*x x?

{1 ﬁea‘lJi#le ‘437%131{
or, [21) [ 2] = 1] + [32]+ [e21]
or, n°(n-1)<{21>¢{2> = n(n-1) <41> + n(n-1) ¢ 32>
+n(n-1)(n-2) {221 > ,

we have

(1.11) 21pd2y = }ﬁ 4>+ %{ (3R> + %g £e2> .

The coefficients in (1.11) are termed n-coefficients and one need not

actually go through all the steps from (1.10) to (1.11) in order to
obtain them in a given case. For a bracket having p parts, the n-

coefficient in the expansion of k sos 18 simply

k
pl PZOOO q|q2000

n(F) . Where r, s are the total number of parts of the parti-
(ry (s) ~°
n n
tions of the Py and the qj respectively. In the example, then, the
2
n-coefficient for (U4l )and (32> is n< ) = 1 and that for {221)
2) (1 n
(3) n{2)y()

is n n=2

SeRONE
All these results are indicated in Table 2. Both partitions of
2l, i.e. 21 and 111, are matched with both partitions of 2, i.e. 2 and
11, in all possible ways (except for permutations by rows), filling in
O's where needed. The process leads to the 12 arrays which appear in

Table 2 and in each of which the first column represents a partition



-17-

1-u (T-u)u u u
0 0 0 o] _— 0 1 0 o) B Lt - - . -
z 5= T 7 330D W
T 2l
T 1 i
T T (o]}
1 1 6
T 2 1 8
1 1 1 1 L
T T 1 1 9 JUITOTIFI0D
T P4 1 1 S TOTIBWIOJ SUB.L],
1 e 1 T v
1 ¢ 1 2 T T 1 €
1 2 1 T 4 1 1 T ]
T 1 1 1 g T g e 1 1
(T-w)u (T-w)u u (T-u)u (T-u)u  (T-u)u a u (T-u)u (T-u)u u u .uuooo-\\
(q-u) (g-u)  (¢-u)9 ¢-u-  (g-u)(e-u)- 9 (2-u)e- 2-u ¢- (c-u)e- e 1 1
(T-u)u (T-u)u u (T-u)ju (T-u)u (T-u)u a u (T-u)u (T-u)u u u
) (5-9) = = €-0) (z-9) T e-u e T za T I T 33300- U
T 9 T 1 9 2 1 < g 2 T 1 33900 *quop)|
1 1 1- 1- T 1- 1 1- 1- 1- T 1 330D BTNMIO]
T|TO
1|10 I|t0 2|2 1|10
1|ot Tjot T]|oT 1|10 T|oT TJT0 =@e|2 T|OoT TI|TIO Lerxy
1|01 T|ot T|oOT T|ot g| Tt cgltt T]ot T|oO1 T|0T 2 _ T ¢]er T _ ot
1lot gltt tlot zloz 2l 2 loz gloe ¢let ¢lte ¢lte c2loz +#lee
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of 21 and the second a partition of 2 while the marginal column represents
the resulting bracket. 1In general the arrays appear in the order of ex-
pansion of bracket products, but for convenience in subsequent steps, they
are grouped according to the number of rows. The arrays for the product
{21)< 27 are thus numbered 1, 2 and 6 in Table 2. The coefficient ob-
tained from formula (1.8) at the top of the table is termed formula co-
efficient and shown in the row directly below the arrays. To avoid exten-
sive repetition, equivalent arrays resulting from the permutations of the
second column entries have been grouped together and a compensatory com-

binatorial coefficient supplied in the row so labeled. The n-coefficient

is obtained in the manner described above or from Table 1. The product

of these three coefficients is the ;Uacoefficient or bracket coefficient

for the moment product or the bracket indicated by the marginal column.
More than one array may lead to the same moment product or bracket.

The result after the first two steps is

1 , 1 2 2(n-2) y
(lal2> k21k2 s 5 (L\-l>-+ = <32> - ‘I‘lb(l’_l‘:l) {32y - mm<311>1“ oo

These results are equivalent to those obtained by Tukey (1956) by the
direct algebraic method though, since he does not use arrays, the coeffi-
cient of a specified array can not be identified in his result (1.9).

The third step in the derivation requires the expansion of various
brackets in terms of generalized k-statistics. Tables are available
(Tukey, 1956, p.u4h), (Abdel-Aty, 1954), (David and Kendall, 1949) for
assisting in this. However, the device of introducing the parent cumu-

lants, recommended by Kendall (1952, p.1l5), and obtaining the final
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formula by estimation is used. In this example, for instance, from

(1.12) or from the }Iwcoefficient row in Table 2,

. 2(n-2

L. v 2 1 v
(l°13) E(kglkg) = 'ﬁ‘,‘*q }kl + }ﬂ/AS /A.Z - nm) /M5 }AZ - }'1‘(?1':]'_“%"/‘3 /Nz-f-ooo

Now, to transform from fU's to K's, the two components of the/ﬂ's
corresponding to the two columns of the arrays need to be distinguished.
This is achieved by using a multipartite notation. Thus the /dﬁof the
first row of array number 1 is treated as the bipartite /ézu Then the

expaension in terms of bipartite X's is

(1.14) f'\lzz = Ky +2 K, Ky +2 K:sz“L K20K02+ 2%, K+ K20)(og)<o| +)<02)’Y
+ 4 K, Ky Koy + K, Ko %o, Ko

1010

and the transform of /&;zf(m is the right side of (1.1k) multiplied by
X,- The coefficients appear in the first row of "Transformation Co-
efficient" of Table 2. Similar transformation coefficients for the/x”s
indicated by array numbers 2,3, ... , 12 appear in row numbers 2,3, ... ,
12 of the "Transformation Coefficient". Coefficients from the unipartite
expansions are available for checking.

The calculation of the X - or k-coefficient is then straightforward.

We observe, for example, that array number 4 has non-zero transformation
coefficients in rows 1, 3 and 4 (which means that array numbers 1, 3 and
4 yield array number 4 as a separate(page 22). To obtain the k-coeffi-
cient for array number L4, then, we multiply the transformation coeffi-
cient in the ith row of this column by the prcoefficient of array number

i and fomthe sum., For array number 4, the k-coefficient is thus
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(z2(0=2) vy 41 (2 )4 g,

Bln-1) ' Ty

sl
n
O

A simple way to obtain the k~coefficient of an array is then to multiply
each transformation coefficient appearing in that column in the ith row
by the p'-coefficient of array number i and form the sum over i. In
practice, the arrays and rows need not be numbered and this step can be
achieved by multiplying the transformation coefficients in a column by
the p'-coefficients of the columns indicated by the diagonal terms of
"Transformation Coefficient” and forming the sum.

We find in this example that

(1.15) E(kppkp) = IX,K+ 200, - ﬁ%mxbwﬁ KK+ =S KK,

so that, teking estimates, we have

1 1 2 2
(1.16) Koo = Kl + 5 K32 - wrmmTy K3 T Kooy toamT Keor

It can be seen that (1.16) is in good form for approximation with large
n and does show the contribution of each array.

Bstablishment of general rules applicable to the contribution of a
given array makes possible further condensation and the development of
a\true combinatorial method.

We observe that the k-coefficient of every array having a marginal
partition with two or more unit parts is zero. This agrees with Tukey's

(1956) rule that the coefficient of every k,,, having more unit sub-

scripts than the set of original subscripts is zero. This eliminates
array numbers 4, 5, 9, 10, 11 and 12,

The zero k-~coefficient of array number is very noticeable now.
Y

This case is not covered by Tukey's rule, but follows from the rule of
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proper parts,* established later for general products thet the coeffi-
cient is zero for any array having at least one row with a single non-
zero element which is a proper part of some integer subscript. The 1
in the third row of array number 7 is a proper part of the 2. Tukey's
rule follows as a corollary since any additional unit subscript must come
from & row with a single proper unit part.

For array number 8, although the combinatorial coefficient is 6,
the two arrays resulting from the matching of the unit parts of 2 in 2
with unit parts of 21 are the ones contributing ﬁ%I each tc the coeffi-
cient, while the other four arrays feature proper parts and hence do not
contribute anything. The first two then belong to one array type and the
other four to another. The distinction becomes more obvious if we think
of the elements of the arrays as composed of distinct units. For example,
let e, e

1" 2

the 1. Again, let ey, 85 be the units in the 2 of k2° Then, array number

8 with a combinatorial coefficient of 6, is actually representing the

be the two units comprising the 2 of Koy and let e3 constitute

following six arrays:

The first two belong to one array type, the contribution of each being
1
7T » Whereas the last four have coefficients zero since e; and e, are

proper parts appearing alone in a row.

¥ A proper part of a partition of an integer is any positive integral
. value less than the integer.
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The need of combinatorial coefficients is eliminated when we consider
distinct units and the transformations coefficient may be looked upon &as a

separations coefficient, indicating the number of ways an "amalgamation"

can be separated into a particular "separate" (as used by Fisher, 1928).
In Table 2, array number 4 is a separate of array number 1 and array num-
ber 1 is an amalgamation of array number L4, With the use of distinct units,
of course, each separations coefficient is either 1 or O, depending upon
whether that separate can be obtained from the given amalgamation, and
Table 2 transforms to Table 3. Array numbers 3a, 3b originate from array
number 3 of Table 2 and similarly array numbers 8a, 8b from array number
8, The vertical lines separate array types from each other. The k-coeffi=-
cients of arrays of the same array type are the same.

We can observe that array number 2 can be obtained from array number
1 by permuting the entries in the second column, and similarly array
number 3b from 3a and 8b from 8a (leaving the row e3 0 fixed)., The contri-
bution to ko ko from the first two arrays which is

. k ‘
% (\k(elq-e2)+(eu+'85); 63*’ (eg+ez), e3+-(eu+'e5))

can be expressed then, as

1k . Lk 5
o (el+-82)} e3+-(eh+ es), 0 n 2,1+2,0

where k indicates the sum of the k's with sums of subscripts
a,b+ c,d

permuted, i.e. k . Thus,

a,b+ c,d ° ka+-c, prd TFana, perc

Ky 4 o0 ® Kupt k23 (the commas may be dropped when unnecessary).

Further, for contribution from array numbers 8a and 8b, where the row

e3 O is fixed and the entries in the other two rows are permuted, we



-03%-

T-u TI-u T AHIGVQ Aanqvg u u (s3tun pogﬂpmﬁvv
T T T - T T T FUSTOTIFS0D- ¥
T
T
T
FUSTOTIFS0D
T suotyeaedag
T
T T
T T T T
-u)u -u)u u -u)u -u)u u u
(T-9) (T-v) el (T-u)u (T-u)u b - *33900-
T T g-u T - T T T !
(T-u)u (T-u)u u (T-u)u (T-u)u u u .
T T 2-u T T T T 338004
T T T T- T- T T “JIS0) BINWIOA
0O Fa O Fa Sa+¥s 0
Wv@ s Sg 23 0 €3 ¥5 €3 So €3 So4+¥s €3 0 €3 Lexxy
Sa To Ya Ta 0 Sa+ta Sa Za4Ts s 2o4To 0 Sa+la Sa+¥a Sotla
98 vg 9 q¢e o¢ 2 ] ‘ON AVHYY

SLINN LONILSIA

¢ TIEVL

A0 ESN HIIM &1Ly



-2l

use the notation keI :ezies+'e4: 5’0 to indicate the sum of the k's with

sums of permuted subscripts prior to the semi~-colons. Then,

1 1
(1.17)  kpykp = Zk - k

21+20 nln-1 )

1
21411 T Koor * wmT K115 141150
vnere koypoo = Kyt Kez s Konenn = g o Kyp;oq40150 = PR

We can now treat kR D, k2 on similar lines. We use Piqs Pips eoe to

indicate parts of P - Then,

5p pzk2 = [<oy p) - 2 (pyy Ppp)dEy Py P> =20y Ppp) <y Py Ppo>
L[> - <

= oy 2 <Y - Lo pALFA P )L Py, KA1

+2 (ppy p,,) <2, By Ppp i+
(1.18) 2 {2y P8 - <, p2><ll>+ZT(pll 1o P2 <11
+2 7<p, Py Ppp/ AL+ oo,

where the summations are over all 2-part partitions of Py Py respectively

and T‘<$il ISP p2>>, called a bracket type, symbolizes (Pll p12> similar

brackets. When we consider E(kp szg), only the first four terms appear-
ing explicitly in (1.18) contribute non-vanishing coefficients, other
bracket products having zero coefficients by the rule of proper parts.
Hence, in order to obtain a formula for kp D k2’ we need only consider
the bracket products corresponding to the four terms explicitly indicated
in (1.18).

We now need the concept of a conditional amalgamation. It is an
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amalgamation in keeping with the conditions of addition of the rows, e.g.

Pjo can not be added to pjlo The only conditional amalgamation of the

array type Pil qu
Pio Yo
pij 451
Pj 92
is P+ Pip q, , (r = rl+r2), since only parts of
Py 3 4s1
pj ERp)
the same Pis o-- CEN be added together. Hence, for two rows to be addi-

tive, the non-zero entries in a column should be parts of the same sub-

script. Thus, 2 2 is a conditional amalgamation of 1 1 while consi-
1 0 11
1 0

dering the products k3k2 or kglke, but not while dealing with klllkeJ

For a two-column array type having prows, with Z:ri z I NON~-zZero
4

entries hy,in one column and :Zsj = 8 non-zero entries s . in the other,
4 ' 2

¢ At 0
the formula coefficient is TT(ml)‘ (ri—l)l TI (-l)a (sjnl)ﬁ and the

(2.

- icie 15 , et us absor Wwo 1 > n'=-coeffici =
n-coefficient is E?E—EKS Let u bsorb these t in the n'=-coefficient =

()

Then the algebraic coefficient of the array type is obtained by adding

the nicoefficients of the array type and all its conditional amalgamations
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(Rule 1, Chapter II). Thus the algebraic coefficient of P, 1 in

Pip 1

Py 0

considering kplpgkg’ with Py 2 as the only conditional amelgamation, is

(1.19)

Py O
1 1 1
n(n-1) * n  n-1
With this setup, a condensed method for obtaining kp D k2 is presented
1+2
in Table L.
Table 4
CONDENSED METHOD F'OR THE PRODUCT k 14;2
PP
i Array No. 1-2 § 6 3 : 8a : 8b ?
; E - i
| P2 p Of ;1 | py 2 0 o p O |
| Array type p2 0] P, 0 Py 1 g Pio 1 Ppy 1 i
% %
| 0 2 - P 0 Pyl
i Alg. Coeff. 1l 1 =1 e 1 :
S l'n n(n-1) i n=1 n-1
bO ? 3
Comb.Coeff.| 1 1 1 ! (pllplE) p21p02)
k-coeff. . 1 Co1 1 Py pp) | (e wpp)
- n ‘ t n(n-1) | n-1 n-1
A general formula for k k, is then
PP, 2
1¥2
k ko = Ly + k I - (D, 4p, L)k )
P1P2 0 " P1Poreo T Tp py2A(n-1) Py patllT TEL £ F11F127 p)  py pipp 1150

1 S(pyPoslk o :
+ 1 z 21722 PQJ_PEQ,p_—L-* 11;0
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If one subscript, say Pos is 1, the last term in (1.19) vanishes
since 1 has no 2-part partitions. The formula is also applicable to the
case with Pp = O if we drop the Ps from all terms containing P, 85 a
subscript, and drop all terms containing other functions of by as sub=-
scripts. Thus,

) 1 2
(1.20) ko Ko = Ky ptm ke o7 2 (P11 ) Bppr1, poea

Semi-general Formulae

To obtain more general formulae,{} is used to represent the set
Py Poy eoe and {qli indicates the group of array types in which G4y
appears in a row with any element of %}, Similarly, }qlqgiindicates the
groups of array types in which 9y, 9, appear in different rows with ele-
ments of gjo The notation 3 iqlq2 is used Tor the array type in which
d1, 9p appear alone in additional rows with the initial array GLype.

Such an array type is termed an extended array type and 1s defined as one

which consists of an initial array type plus additional rows in which
elements are p's (but not proper parts of p's) matched with zeros, or q's
(but not proper parts of q's) matched with zeros.

The array types are some examples of

Py G710 Py 9
Pio 0 Pip Yo

P, 0 P, 0

nS

extended array types when the initial array type is pll q11°

PlE qlE
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The notation iqli q2 symbolizes the array type with q_l in a row with

some element of f }and an additional row containing qeo Double subscripts
indicate partitions. Thus qulqleﬁ do indicates an array type in which
the 2-part partitions of q, are added concurrently to two elements of §}
and the row containing 4 is added. Also, 2p11p12+ qllqlzzj is used to
indicate the array type in which the 2-part partitions of p, appear with
the 2-part partitions of 5 the other p's appearing alone. Similarly,
ipllp12+'qllq12: qgj indicates an array type like the previous one with,
in addition, s appearing in a row with some pi, i £ 1., And
)pllplgﬁ-qilqlez qej q3 ... is used to indicate the extended array types

with additional rows of q's.

In this notation, we can write the semi-general formula

) . 1. - 1 1 ) .
(L-21) gk = kpprg kgt i Kty 2B Piz ) b b

Dwyer and Tracy (1962) have provided formulae for kij 1-;%,”?/5
i

for Jag., & L,
j J

From (1.21), to write k k, for instance, we have
“ PPy 2
1 1 1l
k_ k= k + 5k - k +==r 2 (pyg Pk : .
1
+ === 2 (Pyy Do)k . .
n-1 21 22 lepgg,pl+ll,o,

which is the same as (1.19). To get k) k, now, we can use either (1.19) or

(1.21) and obtain

’r

2 y 2
o) 53wy (Mhea Igzp) s Miee

Koot wkgot ki) -

1 1 2 6 10
= Kgp+ = Ky - 5aT) k53 + =7 k330 +-(1-+E:T) K)o
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Steps of the Combinatorial Method

The steps of the combinatorial method for products of generalized

k-statistics can now be stated.

1.

Write each generalized k-statistic of the product desired in
terms of bracket types.

List all possible arrangements of the products of bracket types
in which the bracket type components of the first factor are
placed in the first column, those of the second factor in the
second column, etc., to form the array types. In so doing
ignore any array type which has a proper part as a single non-
zero element of a row.

Compute the combinatorial coefficient for the array type by
forming the product of all partition coefficients associated
with every partition appearing in the columns of the array type.
Compute the algebraic coefficient for each array type as indi-
cated above and using the rules of Chapter II and the results
of Chapter IITI.

Multiply the algebraic coefficient by the combinatorial coeffi-
cient to obtain the k-coefficient for each array type. The
listing of the k-coefficient in the column for the k-term gives

the result in combinatorial form.

More explicitly,

6.

7.

Write the formula for the sums of the products of the k-coeffi-
cients and the k-terms.
Expand each of the k-terms to feature explicit k's if more

explicit form is desired.



CHAPTER II

GENERAL RULES FOR COMBINATORIAL METHOD

We now consider some rules which are helpful when it is desired to
express products of generalized k-statistics as a linear combination of
such statistics, (eag° for purposes cf taking expectation and estimation),
using a combinatorial method. The first four rules are generalizations

of the rules of Dwyer and Tracy (1962) which they used for double products.

Rule 1. Algebraic Coefficient Rule

The algebraic coefficient of an array type is obtained by adding the
n'-coefficients of the array type and all its conditional amalgemations.

In order to establish this rule, we need to minimize the effect of
the combinatorial coefficient. We need not be concerned with the formula
coefficient since it is fixed for each array type. We use distinct units
to eliminate the combinatorial coefficients since each of them then becomes
unity. Using bracket types (1.18) to indicate all the brackets with dis-

tinet units, we have

o e GO TR TR Ry b b

plpgﬂ o 0

(2.1)

11

Z“fi)7< \’u"' })f(’, an"'}’zfz' D
Z(f-1)
with f(f)= (-1) (1)) ,8 formula coefficient. Then

(2:2) kplp2°°°kqlq2°”k“°“e =27£(fi)1[0\3>"'T<l:n"'h@an"’()z&w>
T G Qar Gany oy Ty oo

where }(&)}(Apoao is the formula coefficient and the combinatorial co-
efficient of every array is unity. With distinct units, as in Table 3;

the separations coefficients for every conditional amalgemation is unity

-30-
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and the algebraic coefficient is simply the sum of the n'=coefficients
for the array type and its conditional amalgamations.

Releasing the condition of distinct units so many brackets in [2.2)
may be indentical, this quantity is multiplied by the combinatorial co-

efficient for the collection.

Rule 2. Pattern Rule

Array types with the same pattern have the same algebraic coefficient.
Array types are saild to have the same pattern when the various groups of
the partition parts correspond in location.

Thus, the array types Pp 23 Y = 2 and Py = L

1]
w

s 2 = 1

i3
[

Pip

1
2
no

Pyp =
= 1 s 2 = 1 2
Py q2 P2 q2 s
in the expansion of kSlkhe and the array type Pyp= 5 97 = L

Pz b 950 3

PESB CL2

[H]
[\

in the expansions of k98 have the same pattern. For this reason, array

k72

types and patterns are used in a synonymous sense.
This rule follows from Rule 1 when we notice that array types with
the same pattern have the same n'~coefficient and similar conditional

amalgamations ("similar" means having the same pattern). In the example
1

n(n-2)

conditional emelgemations result from adding the first two rows.

considered, the algebraic coefficient is in each case since the only

Rule 3. General Rule of Proper Parts

The algebraic coefficient is zero for every array type in which there
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is at least one row in which a proper part appears alone.

A proof can be given like that for the case of products of two
generalized k-statistics as shown by Dwyer and Tracy (1962). Let the
proper part appearing along in a row be 1 and let all other non-zero
entries be greater than 1. Then each of the k _ terms arising from the
array type has a unit subscript. Since the product expansion does not
have any k,  , terms with unit subscript, the k-coefficient and hence the
algebraic coefficient must be zero (since the combinatorial coefficient
can not be zero).

A more formal proof is now presented. Consider an array type with

a proper part 15

ol of p, appearing alone in a row. Let the other entries

in this column consist of the remaining r

0

< b parts p, , -¢. ; B, Of p,, ¢ zeros and t
"3“ other non-zero entries (indicated by cros-

e

ses in the figure). If we let A absorb

X
R NG AN

, the product of (-1) {P=1)! for all

n(f)
b columns except the one considered (p =
‘0 -0 }’i,r-i—l 0 OJ

number of non-zero entries in a column)
and the product of all partition coeffi-
cients of p £ B then the contribution to the algebraic coefficient
from this array is

g ml)r r! n(«+p+it+|)(

{
.r ; Y fa (s)
T )y co RQ%Q A = (-1) r!(py..- p,,) (p-r-t=1) A,

If we consider only additions of the row with the proper part, the

resulting conditional amalgamations belong to two array types:
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1) s amalgamations of the type when one of the s zero entries of this

column is replaced by the proper part p

LR
hgﬂ resulting by adding that row to one of the s
- Lae
,_é,.A rows having a zero entry in this column.
. }t Since the contribution to the coefficient of
A
--3' each such amaelgemation is (ml)r ri (p, occhﬂ)
; (n«r-=t~l)(A> A, the contribution of s such amal-
AT

gamations is
) . (»)
(-1) r! s (p, cnog&ﬂ)inwr—tml) A,

2) r amalgamations resulting from the addition of the proper part row

[ 0 to a row having a part of Py in this column.
! _év For example, if we added the proper part row
| t to the row having pil in this column, the
! Eﬁ;, amalgamation will yield a separations coeffi-
L— ? cient (p, ,p,,, ) to be multiplied by

Pir

" rwl . W s /A)
(=1)" T{r=1)} (p,+ B, B, s-ocsB, Jin-r-t) A.

The contribution of such an amalgamation to the coefficient is then
r-1 : (& . , ,
(-1) (r-1): (P,;' yeessB  ){n-r-t) A, since (B 1B i }(\Pi,'*’ 13)‘,*! 1B, ooo;'.%)

Xy

= (p, »ye003B,,). Thus the contribution of r such amalgama-

r-1
)

3)
tions is (-1 )(nwrmt)(‘A A,

3
T (Pu 2e00 Dy

And

Hence the total contribution is

(&) | )
){n~r-t-1) A [(nmr«tms) + 5 - (nwrmti] R

[ 9

.r
(-1) ri (B soco 2B v
which is zero.
This total contribution is similarly zero for each conditional

amalgamation involving additions of sets of the other r+ s+t rows among

themselves. Thus the coefficient for this array type is 2 0 = O.
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Corollary: Tukey's Rule. When expressing a polynomial in polykays as a

linear combination of the same, the unit weight on the linear side can
not exceed the unit weight on the other side.

This is so since in the linear expansion of any term of the poly-
nomial, any additional unit subscript must come from a row with a single

proper unit part.

Rule 4. Rule for Extended Array Types

The algebraic coefficient of an extended array type is the same as
that of the initial array type.

Let us consider an initial array type extended by a row containing
a single < (not a proper part). Let the column containing this entry

have s zero and r other non-zero entries. If C indicates the product of

1
nll)

particular one, the contribution of the array type and its s conditional

signs and factorials for all columns and for all columns but this

amalgamations resulting from adding the new row to the initial ones, but

not involving any amalgamations of the initial rows, is

(r+a+)) (r+4)
C. :%;3 n + sC —5 B
= Co Lo nﬁ%g[ﬁnwr—s)-+ s] 2 Co L o (n-r) = C. nG%A),
ne+) i )

which is the contribution to the algebraic coefficient for the initial
array type. Since this equality holds for every conditional amalgamation
of the initial array type and the corresponding contribution of the ex-
tended array type, the two algebraic coefficients are the same. The

argument applies when more rows of this type are added.
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Rule 5. Rule for Augmented Array Types

If the non-zero entries of some columns of an array type are such
that they are carried all the way through in all conditional amalgama-
tions and do not impose any further restrictions in the addition of rovs,
the al.gebraic coefficient of the array type is the product of the co-
efficients (nl)Pml(F—l)l of these columns (p being the number of non-

| (r)
zero entries) and the algebraic coefficient for the rest of the array

type. (An array type augmented by these columns is termed an augmented
array type when the rest of the array type is looked upon as the initial
array type).

The reason for this rule is obvious as each column of this type
contributes a factor egual to its own coefficient to the contribution
of each conditional amalgamation, and all of these conditional amalgama-
tions are just conditional amelgamations of the initial array type aug-
mented by these columns.

Let us illustrate this rule by considering an augmented array type

having one such column. The algebraic coefficient of the array type

D, q, T, is i times the coefficient of p q, o, i-e.,
O + ]’J(nwl O
5 w2 B,
P, Q. O B, 9
p.3 q‘5 O pn.?. ql3
=1 n - -1 . (The coefficient of
n(n-1) (n-1)(n-2) (n-1)(n-2
p, 4, 1is the same as that of p  q, Dby Rule 6). Each amalgama-
pl O pu_ qn.
D, 2 9
B, q

tion of the two-column array type is just augmented by the extra column
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having r, , r., and its effect is only to multiply all contributions by

-1 . Since no addition of rows in p, q, is restricted by the
n(n-1) P, 0
I/):7_ iz
B, 4y

3

presence of this column, each and every amalgamation of the two-column
array type appears in the augmented array type with this column appended.
Hence the overall effect is a multiplication of the coefficient for the

initial array type by -1

n({n-1
In contrast, the coefficient of p q r 1is 1

i} 1) ! ~r - 3

R, I, n{n-1)(n-2)

B, 4

I?z.l qB

which is not 1 times the coefficient of p a, (which is zero
n{n-1) B,

p}.l 9
B, Qs

by the rule of proper parts). The reason is that although the last column
is carreid in all amalgemations, it imposes restrictions in the addition
of the firsttwo rows. These can be added in the two-column array type,

but not when the last column is augmented.

In p q, r, , however, the first two rows of the two column

B 0 L

32 9, 8

B4

array type ] g, can not be added anyway, so the last column does

n, ©
pzz ql2-
pzs ! 13

not impose any additional restrictions in the addition of rows. Also it
is carried through in all amalgamations as such, hence the coefficient

for the array type is 1l  times the coefficient of
n(n-1)
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B q, » i.e., zero (by the rule of proper parts). All the zero coefficients
B,

pu. Qi

plb q- 13

in Table 5 are attributable to this phenomenon (pages 55-63).

This rule takes a specially simple form when these columns are com-
posed of single non-zero entries. It can then be stated as:
Rule 5a. The algebraic coefficient of an array type having r columns with

single non-zero entries is 1 times that for the array type with these

nﬁ‘
columns deleted.

For, suppose C is the coefficient of the array type with these r

columns deleted. Since no additions for conditional amalgamations depend

on these r columns, their only effect is to contribute a factor % each,

. 1 . . .
1€ e towards the contribution of each amalgamation and hence the
n

algebraic coefficient of the augmented array type is ‘£T C.
n

Rule 6. Blocks Rule

The algebraic coefficient of an array type which falls into separate
blocks is the product of the coefficients for these blocks.

An array type is said to fall into separate blocks if the cclumns
can be divided into two or more classes, each confined to different sets
of rows. Fisher (1928) was able to ignore array types consisting of
blocks (Kendall and Stuart, 1953, p.283, Rule 3) in the case of single
subscript k's as he proceeded straight to cumulants. Wishart (1952)
has given this rule for products of single subscript k's.

For a proof, we first consider the case of two blocks A and B,

having a and b rows and c and d columns respectively. Let the ¢ columns
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of A have a ++s 8, NON-Zero entries and the d columns of B have bl,oe.,

1"

by non-zero entries. At this stage, we do not consider any addition within
the blocks. Let the symbols A and B absorb the signs and factorials of
the blocks A and B respectively.

Let us suppose a 2 b (no loss of generality in doing this due to
symmetry). In a typical amalgamation, r rows of B are amalgamated with

(r)b(r)

such amalgamations. The contribution

AB n(a+b“‘r>
T.€0 7 08) ’
* &

tribution to the algebraic coefficient from this set of amalgamations,

r rows of A, there being a
r:

of each of these to the coefficient is Thus the con-

allowing no addition within the blocks, is

b @ .0 (atb-r) () b -~
AB - Z a Hb n = AB n\a) Z (b)a(r%nma)(bmﬂ
ﬂ n(C‘A) ‘H— n( a) +=() Yo '““TI(Q-A') '” X]Q’a) Y= T
= AB n(a)n(b) by Vandermonde's
ﬂn@o W'E%) Theorem

(Riordan,1958,p.9)
e g0
'ﬂ‘n@;) 'ﬂ'n(l’i')

2

i.e. the product of coefficients for the two blocks.
If we now allow addition within blocks, let the sets of conditional
amalgamations be denoted by EAP} s qu}° Then, the total algebraic co-

efficient for the array type A © 1is

O B
EE Contribution to algebraic coefficient for amalgamation AP 0
1 o B
= éi (Contribution of Block AP)(Contribution of Block Bq) 4
!

q

83

'(E%Contribution of Block Ap)( %.Contribution of Block B

(Algebraic coefficient of A)(Algebraic coefficient of B).

1]
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If now there are three blocks A, B, C, we can treat A

0O as one
0 B

block and C as the second. Repealting this, we find that the rule holds

for any number of blocks.,

Rule 7. Rule for Column~bordered Blocks

The algebraic coefficient of an array type consisting of two blocks

A and B connected by a common column C, whose

A Cp portions going with the two blocks are denoted

by CA and CB, is given by the following rule¥*:

o |cy| B

(a) When no parts of any p; occuring in C, appear in C, and vice

versa, the algebraic coefficient of the array type is the product of the

coefficients for the blocks A CA and [NCBI B{J

(b) When there is at least one p; which has parts in both C, and
CB’ the algebraic coefficient of the array type is zero.

It makes a difference in the proof whether the common column C is
solid or not. Solid means that there are no zero entries in the column.

The case of a solid column is simpler, so we consider it first.

Case 1. Common column C is solid.

(a) If we just consider the array type | A Cy 0

] % | B

without considering any conditional amalgamations, it is fairly easy to

see that the rule holds. For if no Ps is common to CA and CB’ the co-

* So far a general proof is not available, but the rule has been es
- blished for all cases needed in compiling the products of genersal
k-statistics through weight 12.

ta -
ized



efficients of the two blocks A CA and CB B

of each other. Also, if the contribution of A to the algebraic co-

are independent

efficient of A CA is denoted by A and the signs and factorials

for CA are absorbed in CA and similarly for Cp B , the alge-

-
braic coefficient of the array type A CA 0] is AB VACB n(a+b)
5 n(a+b)
CB B
= ABCACBO Also the algebraic coefficient of A CA is
o % p(2) = Ac, end similarly that for [C] B |is BCy. Evidently

Ta)

then, the rule holds when we do not consider amalgamations.
The argument is extendable when amalgesmations are allowed. For then,

if we denote sets of amalgamations by {AIﬁ s {Bq; , the total algebraic

coefficient for the array type| A CA 0 is
0 CB B
ZE Contribution for amalgamation Ap (%F G
P
o) C B
51 Ta
= fh {Contribution of | Ay q% )(Contribution of C&L By )
= ( 2.Contribution of[ A C Y(  Contribution of |C B )
P Y AP B‘l g |
= (Algebraic coefficient of| A Cy )(Algebraic coefficient of lTp B |}

~

(b) Let now a particular p have a parts in CA and b parts in UBO Let
us again suppose a 2b, without loss of generality.

Not allowing for any other addition of rows except those involving
parts of this particular p, a typical amalgamation consista of r rows of
B added to r rows of A, (r £b), there being “gﬁfliz} such amalgamations.

ri

If the ¢ columns of A have &, ...,8, NON=-zero entries respectively and the

d columns of B have bl,ooo;bd non-~zero entries, the contribution
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of this amalgamation to the algebraic coefficient is

a+b-r-1
(-1) ABCACB  (g4+p-r-1)!

TT&&OHH%)

5

where A and B absorb the signs and factorialsfor blocks A and B respec-
tively and Cp, Cy for entries in Cp, Cy which are not parts of this

particular p. Then the algebraic coefficient of the array type is

b
> ()Tt L0y (F) amcycy

(a+b-r-1)!
SIS KR
a+b-1 b - r B
- (~l) ABCACB (aml : ;z («l) T a( )?(r) a[o r]
a7 (& by N
“IgﬂTL{f v= 0 r!
atb-1 b <L
= () BA08  (a-1)r (-1)° Z (1)alT) (o) (o)
7 @ () =0 7
In*“n
fbmrJ ber D=
since & Tz (-1) (-a)< r)
E b ( -1 b
= 0, since Zi(r)a‘r)(»a)(b r) = (awa)( by Vandermonde's Theoren
¥=0 = 0,

s before, if we now allo r additions which were earlier res-
As before, if w w allow for additi hich 1

tricted, the total algebraic coefficient of the array type

A Ca 0] is Z:Contribution for amalgamation {_Api C \ 0
| by 3 —
o | c| 2| o o] % |
= z 0 = O,
il
Case 2. Common column C is not solid.
(a) Let the number of rows in A, B be a, B and let C,, C, have e,

f non-zero and g, h zero entries respectively. It may be noted that

etg = a, f+h = b. Absorbing signs and factorials in A, B, C, CB, the
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wo Ly ae

term contributed by each amalgamation is ABC)Cy multiplied by the
nrgn")ﬂn(bif)

appropriate factor in the following scheme. We are not allowing for

additions within the blocks at this stage.

Number of rows

of B added to Number of Amalgemations Multiplying
those of A Factor
0 1 (n-emf)(gm)
1 eh + fg + gh (n—e-af)(‘g‘“hml)
> 52%h+}3ﬂeg+faﬂ52hgmhgm
2. 29
(2), (2
+§-—-—-k-li—-)~ + efgh
23
3 e(3>h(3>+f(3)g(3>_+g<3>h(3>_{_g(:ﬁ)f(E)h (ﬂmemf)(g+h=3)
3 3: 3! 2!
(3) o, (2) ,(3) (2) (3)._.(2
2! o 5
2
DB 2@y o) (o)
2: 2!
| ‘ e
i () (4 +e(u)h(u)+g(4>h(u)+e(3)gh(u.) (nme‘f>Qg 1-1t)
4! L! L 3! ;

ORI F NP N E

3! 3! 3!
e(E)g(z)h(m_kf(.z)g(&)h(a)4_e<3)fgh(3>+ |
L I 6
erg(3n(3) (3,3




mhgm

T e o y ATC C7’ Coth |
Then, the coefiicient f‘@.ﬁ\\;—})(b') [ (11‘0”1-)(&}1) + (@1‘1 g+ g";h)
{In"In?
(n-e-r)(Eth=1) J
oSy .
“ @)T] (L) ‘n,e,l

if we denote the quantity in the square brackets by An e, °

Now consider the product (nme)(g)(nnf)(h) . We have

-e (@) o0 _1 Jlerg)  (£+n)
(n-e) (n-f)" s ) ,

plerfgen) | (e+g)(f+h) n(e--yf'kg—‘rhmlL)

.k
MOMEI
(2

)

he)

(e +g)

(2) -
Ei +h) e+i+g+h 2) .. J ) by Vender-
meonde's Theoraen
(e-’ef) ({;-;—h) ,
= . . i el )
= __?.;m) (n-e-tf) +(e+ g)(f+h)i\n«>ewf}(‘g+‘1 l“’-{-

n n

(e+é>;)(2

) (2) :
’ 1) e
2§f+ ) ey (etne2) ]
(€+f) ‘gl-}.’]
= _,,ne 7) [(nwexf)(“ h) + {ef 4ch +gf +gh)(n-e-1)

{g(2>fh +h<2>eg+f(gig(2) L2502 @<z>%< :

+ ety £()eg +efg,h)§(n«» >~ ')

(e+f) . (g+h-1)
= ;@m[An,e,fo 3kn'e~f) g( 5 ‘+(e ,]Ah+(f=n.)g_,,gh}
B o) |

13

n ef ol
ORI R i (neerel) 67,
n

&e A+ (£-1)g + e;h) (n=e-f+l) Leth- “Ji
@( ‘_L<2) L - ¢ )(g'}"ﬂ)
o1 (oot 2)(2) N

(n-e=r+2 + ({ + e

‘ 1;?'1’1"1 )
(& ),



_oalet) v, )
EEONE) n,e,f T oo fn-lye-l,f-1
n
S + °=°J
2§(nneof+2)(2) n-2,e-2,f-2

We find that An,e,f = An»l,e—l,f«l = An~2,e~2,f-2 = ..., for all values
of e, f, g, h £ 3 that we require in order to derive products of semin-
variant k-statistics through weight 12. Hence,

(@) () (e#f)  er ol2)(2) }
(n-e)*™ (1) - (%7"(;7“ An;e:f ol n~e-f+1 +2£(n~e-f 2)§2§+
n n

- fne,r [n(e-l—f) 4 eeplere-1) |, el .
T 2!

—
H
PN
o
——
TN
)]
+
L]
1
ny
p "
—

11
1D>
B
[ \d
[©)]
B
Hy
Hy
~r
3
—~
@
~—r
=
—
H
~

(2.3)

i
=

n,e,f °

Thus, the required coefficient is

ABCACB (n~e)(g)(n~f) (h)
T T
= ACA n(a) BCB n(b)

'ﬁngd n(e) ﬂh@f n(f)

1n

(Coefficient of | A CA\ )(Coefficient of Méﬁ:;;%j )

Hence, as in Case 1, the total algebraic coefficient of the array

type ‘ A CA 0 is the product of the algebraic coefficients

0 Cx B




of A CA and CB B w .

(b) Let a particular p have e non-zero parts in CA and f in CBG

Let the number of zero entries in these portions be g and h respectively
and let there be k other non-zero entries in C, so that e+ f+g+h+Kk

= a+b., Let A, B absorb signs and factorials for blocks A and B and let
Cas Cp do the same for entries in C,, C, which are not parts of this

A’ 7B
particular p. Then the term contributed by each amalgamation is ABCAC
r\/‘) (\’: )
T ?

multiplied by the corresponding factor in the following scheme. Again,
additions within blocks or involving parts of other commen p in C are

not considered at first.

Number of rows
of B added to Number of Multiplying Factor
those of A Amal gamations
etf-| @Gh)
0 1 (-1) f (etf=1)!(n-e- )3
(350 (5+h)
1 ef (-1 (err-2) ! (n-e-t+1)?
| . (euH,A.,)
eh+gf+gh (-1 (ef-1) ! (n-e-£)?
etf-3 ) (oth)
2 e® £ (-1777 (e+£-3) ! (n-c-sv2?
21
et (-2 ( ’”"”)
e%rn + er% + efgh (-1) 3 (e+fm2}£(n-=e~f+l)?
s~ +h-2)
fe™ +een® f(‘)g(") g(")h@ (-vl)i (e+f-=l)1(n-=e=f)(3
2T !
@ h B
efgh
+t=57T
v (9th)
3 e® £@ (-1 (eur-b) ! (n-e-143)°

w



- L6

Number of rows
of B added to Number of Multiplying Factor
those of A Amalgamations
ok (-3 (9+h-1)
3 (con't.) | e®r¥n  Pr®g @ |(-1) Flers-3)1 (n~e—f+2)?
+ +
2! 2. 21
) etf-2 (g+h-2)
P 1 er®e® s @@ (-1 err-2) (nme-r1)?
). (@ (o
er g ST 0 gl
el +h=3)
Hp0 00 0 BB T (e ) (neear)D
3! 3! 3T YT
f gG) h(?-) e(i) gh@) e g(z)h(ﬁ)
T YT YT
ef®%h |, fegd? | e @
ZT-Y
etfd C(9+h
i e® (-1)° (e+£-5)1 (n-e-f+4) 4
g
g4 , G-
ey Oy Py (—l)’c (e+f-=l+)3{n~e~f+3}?
30 T3 3
2) -3 (o+h—2)
ey U £ (z) (b)giml”@ (- l? (e+fu3)3(nme~f+2>?
n 1+ |
e@)g(z)fb)a (z)e)(z)f(z)ﬁt) @)f(s)
2 2
O] ) o ( (3, -2 (g+-3)
eg’f’ | €'fh e’ngf (-1)" (e+f-2) ! (n-e-f+1)
3! 3! 2
® (3 & (5) (;) 2) (2)
£7P%en | erg™
2 3‘
L PP Pn® |
2 % 2
- e(l) g(l)f(f)l,gﬂ
| (‘*) (4) w)&#) (t%w) m Q) ) ) -l ) §7”’“">
é g e gh e (1§ 7 (er£-1)! (n-e-t,
? LL" L1 Y 3!
f@h %w 1 ® g(zg (2,\ 2) )] f(Z) ® (Lf) .

.3,

3 I
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Number of rows
of B added to Number of Multiplying Factor
those of A Amalgamations
4 (con't.) Vg PePen efgc)ﬁ”
: + +
6 6 2
PP PP O P
+ +
2 6
el (g+h)
Then, the coefficient = (=1)  (e+f-1)! [(n-»euf) + (eh +fg+gh)

h-1)
(n”e”f)(?“ + 00 0

e + 9
(A ere)en [(n'e'fﬂ)(% w‘*{(e‘l)h +(£-1) g+ (n-e-21 3% ]

gif-3
+ (=17 (est-3):

+oao

e (-1F% (er£-1) 1 (n-e)Pn-1)

e f()

(D)

+(~l)e+%e+f-=2)1ef(n~e)(7)(n~f) +(=1) NES

[(n-e~f+25d ")+g( e-2)at(2-2)gen] (nme-sa2)l 0. ]

3

~ef(esf=2)! +m(e+f 3)i-. J

)
(e+f-3)! (E)f()( )(3) (naf)(hwm by (2.3)
o (15 (nee)® (nogf® [ (es-1):
- (A (el

OG

11

n-f) (0), by Vandermonde's Theorem

Allowing now the additions which were earlier restricted, it can be
shown as in Case 1, that the algebraic coefficient of the array type is

Zero.
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Rule 8. Rule for Row-bordered Blocks

The algebraic coefficient of an array type which falls into t

blocks with a common row connecting each two consecutive blocks is

1
nt-1
We prove this rule by induction, starting with the first non-

times the product of the coefficients for the blocks.,

trivial case of t = 2, (trivially true for t = 1), in which case the
algebraic coefficient of the array type falling into two blocks with
a common connecting row is % times the product of the coefficients
for the blocks.

Let there be a, b rows and ¢, d columns respectively in the blocks
A and B. Again, at first, let us not allow additions within blocks.
In a typical amalgamation, r of the (b-1l) rows of B can be added to r

Q@

of the (a-1) rows of A (can assume a2b). There are (a- l) (b-1)
ro

such amalgamations. The contribution of each of these to the coeffi-

cient is AB anb“Q where A, B absorb signs and factorials for
)
U& ﬂn?

the two blocks. Then the algebraic coefficient of the array type is

b-1

AB > (a-al) (b 1) Nt
‘n‘n(a,,g'n n(bj) v=0
g © Z.. (a-1)” (52)" o
T 7% 8
= ABn@)(n~lfL0 by Vandermonde's Theorem
'ITn(A;)—n'n(bj) ‘

1 A® pd

n ﬂhW) ﬂéﬁ)

]

o
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Then, total algebraic coefficient for the array type is

%?.Contribution for amalgamation AP 0]
o
0 B
q

= % % (Contribution of AP)(Contribution of Bq)
= 1 (Stontribution of A.)( 2 Contribution of B,)

n o} b % q
= % (Algebraic coefficient of A)(Algebraic coefficient of B).

Now, let the array type consist of t+1 row-bordered blocks A, ,

A, i=z1,2, ... , t+1. Let A denote the
_ 0 portion of the array type consisting of
I A the blocks Aj, «.. , A, and let B con-
\\\ sist of the blocks Ay, At+lo Suppose
0 At the rule is true for t. EE@n the co-
b A efficient of A is ntil LB' Coefficient
b of A:

A

If, instead of At’ we now put B whose coefficient is ;ﬁCoefficient of At>
n

(Coefficient of At+l>’ we find that the coefficient of the array type is
-] d
1 (Tl coetficient of A;)(Coefficient of B)
A
n
1 £

{=)

sl

(Coefficient of Ay)(Coefficient of A, )

£+
- —%~]TCoefficient of A;.

nt i
Thus the rule is true for t+l if it is true for t. But we have seen that
it is true for t £ 2, hence it is true for all t.

Most of these rules are the result of a study of coefficients of parti-
cular array types which are listed in the next Chapter. On the other hand,

once the rules were known, they were very useful in determining coefficients

of additional particular array types.



CHAPTER III

COEFFICIENTS OF ARRAY TYPES

Fisher (1928) gave the algebraic coefficients of some commonly
occuring patterns when considering the products of single subscript k's.
They need to be generalized when we deal with products of generalized
k=statistics and each of his patterns gives rise to several array types.
These are systematically tabulated for his first twenty-four patterns

and ccefficients of several general array types are studied.

Generalization gg’Fisher's Patterns

Fisher (19282 while listing some commonly occuring patterns and
indicating their algebraic coefficients, had a simpler situation in
that all rows can be added when we consider products of single subscript
k-statistics (or their cumulants as Fisher did). When we consider pro-
ducts of generalized k-statistics, addition of rows is restricted as a
part p,;

J

the patterns can no longer be indicated by filling in x's for the entries

of some p, can only be added to another Py Or to a zero. So

as Fisher did and in fact each of his patterns leads to several patterns
distinguishing the location of parts of one p. from those of another.
Portunately, by the pattern rule, we do not have to distinguish for

numerical values of p,. so long as the location is not involved. Also

e
rows and columns of an array type can be permuted at will. We follow
the practice of indicating the subscripts going in the first column by

p's, those in the second by q's and so on. Where the number of columns

is generalized, we change to pl, pg, ps,ocg

-
w50w
P
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Fisher (1928) has recorded that in the case of two rows and r

~-l

, L e , KXo X -
columns, the algebraic coefficient of the array type wx. . % I8 - ; 5
£ o & 0 Lh A
n
where « = = ﬁii‘o We further observe that the array type
! 2 A pes) v
B, B, s e s P, B ¢ s = P
! 2 2 A +
1?2. plz, ©o e B, p;_ o o o B

(encountered, for example, in the generalized product

Kt Kz ceok,a K avisbi oo k,fFr ) has an algebraic coefficient =

b d b h Bk
.ox
(=1)° (-a) s Lr

nf»!
l 7=} o
(3.1) ~::’(l -« ), S=T (Fisher's case).
n

The distinction emerges from the fact that when s<{r, no addition of
the two rows is possible, whereas s = r makes this possible.

In the case of three rows, when there are r columns, each con-
sisting of three parts of a single p,; , the algebraic coefficient is

- 3.7 4+ 1), vhere %5 - hp, pa e
, B-1 {n-1){n-2)

L

. l {
found to be T (2 p

We get the special cases listed by Fisher by putting r = 2, 3, L, the

algebraic coefficients being

Xx ) XXX
T for xx , B _Z gn*+ lg for =xxx and
n-=1)({n=-2 p V2 e XXX
n-1)(n-2) XX (n-1)“(n-2) 2

)J; | 2 ~ ¢
n - 9n3 + 3307 - 60n + 48 o) §§§§

. . XXXK
n(n~l)3 (n~2)3

°




But now when we consider three rows and two columns, we have to list
J

all the variations such as
p“ qn PH q.” p“ q.” p" q.‘ P” q” p” q., p, Q,
B 9, B, 9, B, 9, P, 9, P, & P, 9, p, q,
pla q‘ls ) pn q‘z p) PJ. q‘z p) pls q3 ) p;. qlz ’ Pz_ q3 ) PB qz ’
the algebraic coefficients being
n , - 1l , 1 2
n(n-1)(n-2) n-1)(n-2) n(n-2) = n(n-1)(n-2) ’
1 - 1 1 respectively
n(n-1)(n-2) ’ n(n-1)(n-2) ° n(n-1)(n-2)

(Table 5.4). No additions are possible for the last four array types.

Generalizations are, of course, pcssible in both directions. For

example, the algebraic coefficient of the array type p q, , obtained

B, Q2
D, Q.
E 0%
Po.+| qoﬁ-l

by adding a row to Fisher's pattern §§ , 1s

n-a - 1
n(a+2) n(a)(n«a-l)

tional light on the coefficient of p

5,
B

2

q, listed earlier as 1

qll
q

2

(Dwyer and Tracy, 1962, p.35), which sheds addi-

n(n-2)

actually being —%%%~ . The formula holds formally when no rows are added,
n

i.e.,

Similarly, the coefficient of

a = 0, and gives the coefficient of Fisher's xx

XX

as —Tz) *

1
n-I -
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o
o~
P, q, is i%%%%j (Dwyer and Tracy, 1962, p.35), which, for a = O
ph. q“— n-
pns qB
p}_ q-l
pq,-\-] q’DH-!
. n
grves (n-1){n=-2
For p, q, 5, , we find the algebraic coefficient to be
pu, qbl, I;l
pz Qz rv.
B Gorr Taki
2 . . 2
(n-a)” - 2(n-a) , which, when a = O gives n% - 2n _ _n-2 as the
- R E
[2] [p(s-1)]  n(n-1)?
C e S XXX L
coefficient for Fisher's Lo . Similarly, for B, 9y r, Sy
plz 9 T Sez
b, 4, Ta Sy
3 Q.3 TB S3
Eo %an Lw  San

the algebraic coefficient is (n~a}3 - 3(n-2)°+3(n-a) , which, for

[n(a+g)}3

2.
E~_§E;i§ as the coefficient for Fisher's KAXX

a = 0 gives . ,
ng(nml)3 XXXX

For the

general case of r columns and a+1 rows with two rows additive, we get

A
l (l O(T“ > as th =W ° . l
\ ad ; 5 N e C . 3 V =Y - . - ) R [e] 3
[-(5¥I7} oefficient where o = T This,
n

for a = O, gives Fisher's result (3.1).
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Now generalizing in the other direction, we consider the array

type » 4, T, - - . . The algebraic coefficient is found to be
P, 9, Ta o .
B, 4, & oo

. 7-)
[2 (- L) _1J , when there are r columns.

[?K%‘l’?] n-2

Use of Table 5

The more common of Fisher's patterns (first twenty-four, Fisher,
1928, pp. 223-2L4) are now taken and elaborated into the several cases
they yield for products of generalized k-statistics. The results are

presented in Tables 5.1 = 5.24. The top left entry in each case denotes

Fisher's pattern. Taking Table 5.5 as an example, B, a, r, is
B, Y 2
]‘)]5 ql3 r‘:\

successively transformed to all its variations. The top left entry

n2(n2»6n4-10) multiplied by the multiplier 1 at the top
n=(n-1)¢ (n-2)=

of the table indicates that the coefficient of B, q, Ty is

B, Qe T
pl'b q'l'.‘) r‘3
nz(n2-6n-+10) . n%-6n+10 . The second entry in the first row

n2(n-1)2(0-2)2  (n-1)2(n-2)2

is for a pattern where the column ¢, of q's is changed to g, and so on
Q= 4y
%3 4

till the last entry in the last row represents the coefficient for

p, 9 1 (multiplied by 5 é 5 ).
4, T n“(n-1)(n-2)
o4 5

The changes in the

column of r's are indicated at the left of the rows and r, etc. are
Ty
rz.



written as r, 1, 1r, just for the convenience of presentation. The
choice of indicating changes in p and g columns by columns and those in

r columns by rows is purely arbitrary, except for some thought to the

shape of the table, Although a pattern like B, a, r, does not
B9, L
pa qz 3
appear specifically, its coefficient is the same as for p q, I,
p:z 4, T2
B 9 I

for reasons of symmetry. In bigger tables like Table 5.18, the saving
is considerable due to this as whole rows and columns for certain

variations can be ignored.

TABLE 5

PATTERN COEFFICIENTS

Table 5.1
1
n(n-1)
pu ql) q,
B, 9 q,
n -1
p P -1 ]
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Table 5.2 Table 5.3 Table 5.4
. 1 1
2 2 3
n%(n-1) n(a-1)3 n(n-1)(n-2)
Pjp 91 ™ Bl a n P11 9y i S 51 & {4 Y1 9
P12 %2 T2 o 9% T P1p 42 T1p S12 B2 T2 8 P1o %2 b %
a(n-2) 1 -1 a(0?-3m3) -1 1 P13 %3 93
- 2
PPy 1 1 1 4 q2 -1 1 -1 n -n 2
PP pllP12p2 -n  n-1 -1
2 1
-1 1 - .
4 B P PP, | o0 1 1
Py p2 p3 2 -1 1
Teble 5.5
1
2 2
n (n-l)e(n-e)
P13 %3 T3 9 9 4G Py Yy P 9y Yy Py
P12 Yo F1p 92 % L Po%e Py Y Po% P %
P13 43 Ty % 92 4G P % P12 % P a P; 9
2, 2 2
n“(n"-6n+l0) n(n-4) n{n-k) b ~(n®-ln+2) 2 -2 2
T T T n(n-k) -(nz-hn-ve) 2 -2 (n-3)(n-1) -1 1 -1
2
T Ty Ty n{n-4) 2 -(n“-kne2) -2 -1 -1 1 -1
Ty T, Ty s -2 -2 2 1 1 -1 1
Table 5.6
I S
n2(n-l)2(n-2)
Pp %™ G G % Py Py Yy, Pndy Py Y
P1p %o Tr2 %2 % 9  Pphpy PG %Y Pp % )
2
P13 %30 L Y 93 P B P 9 Ppdhe P Y P34
n2(n-3) -n(n-3) n -2 n2-3m-1 -1 -(n-1) 1 -1
r.r O 2n -2 -n 2 1 1 n-1 -1 1
172




Table 5.7
1
2% (n-1)°
P r. . A
11 % T11 % 1 et S e B )
P2 0 Tz 0 Pro 2 Py Ppp 0 P 0
0
P13 %5 4 P2 12 P30 Py 4 P39,
n2 -n -n -n 1 n -1
Ty o ¢} -n 1 1 n -1 -1 1
Table 5.8
1
2
n (n-l)2
.
O a Ty 4 0 0 g
P 0 T 0 P P 0
Pip Yy O %, v, Py 4,
n2 -n -1 1
0 - 1 1 -2
I‘l I'g n n
Table 5.9
1
nj(n-l)B(n-E)?’
P %3 M1 S 11 51 i1 % Tt T e T, TS ™afy 1%
plQ q12 rlz 512 512 Sn 1"12 512 1‘12 52 1"2 Sll I'2 52 T2 o .2 S2 r2 o
P13 %3 13 %3 %2 ®3 To %2 T Pip T fio T fie Ty %12 Tp %3 Ty %3
ne(nu—9n3+33n2 —n(n2- o
-60n + 43) 6n+12) 8  nd-6nlen L L n3-6nflon -k -y )
1l ol
941 %45 B -n(n2-6n +12)  n3-6n% 5
120-k <h -(n3-6n -2 -2 -2 2 2 -2
12n-6)
3 -l \ 2 -2 -2 2
4 LB q3 3 + 4 2 2 2 2
2 3,0
Pyq Do, B 2-Gaf+ 1 -(n3-6n° (n-1)(n®- 1 1 1 -1 - 1
11 P12 P , /
Q1 %o B -4 +12n-6) 2 S5n+7)
D1y Py Pp ! -2 2 1 1 1 1 -1 -1 1
Gy % Yo
iy P15 P -l 2 -2 -1 -1 -1 -1 1 i -1
o o I
a g %
, L - : ] -1 -1 1
Py _172 'p.j : 2 2 1 1 1 1
4 9, @
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Table 5.10

1

03(n-1)3(n-2)?

P13 %1 11 Sy 51 11 11 T2 Bl F]108% iy Ta 8y Ty 5
P1p %o 12 512 2 12 T2 11 2 Tipfp  Tp Sy Ty % Ty B
r. 0 0
Pl3 ql3 13 r2 rl2 z‘l2 r3 r2 o} Ty 0 12 0 r3 o}
5
n“(n-3)(n“~ -2n(n-k) n(n2—5n+8) -n(n-4%) -n(n-k4) i Bh n(n-4) n(n-k4) L
L‘n+6)
2 i L 2
4y Y4p % n(n“-5n+3) - (n-3)(n"- -2 -2 2 2 2 2 -2
2n+2)
a1 % 9 ~n(n-4) n(n-4) -2 (n-3)(n2- -2 2 2 - (n-3)(n?- 2 -2
2n+2) 2n+ 2)
9 9 93 -k L 2 2 2 -2 -2 -2 -2 2
Pyy Ppp Pp ~(n°- 50280 2 nd-5nfadn 1 1 -1 -1 -1 -1 1
97 Y9z % -2 -3
Py Py Prp n“-ln+2 -(nz-lm 1 -(n-3) 1 -1 -1 n-3 -1 1
B % Yo +2)
Table 5.11
—r
03 (n-1)3(n-2)
Pyy %11 Tiy 83y 43 91 94 Prp %y Pa%hy Pua%y Pe Sy Pn% P %
b 5
P12 %2 12 f12 %o % 9  PpYpy Pph P % P % P P %
P13 430 O QL LIS a3 Py 9 Py %p Pp%hp PpYp Py 93 Py o9
nz(ne-lmq- 5) -n(nz-lm -n 2 n3—‘m2+ 5n 1 n-1 1 -1 1
+5) -1
T, 0 -on 2 n -2 -1 -1 -(n-1) -1 1 -1
r 15 0 2n -2 -n 2 1 1 n-1 1 -1 1
51 Sp )
Table 5.12 Table 5.13
1 1
23(0-1)3(n-2) 23 (n-1)3
Pjp 43 T %1 33 %Gy % Py %1 Py Y1 Py 9 Py [P O T Sy ° py P PO 7o
Pp %0 s U 9 9 Pip Yy Pp 9 Py B Py | Pp 90 Sig 9 Pp Py PpoYy PoYy
P13 3 Typ 0 L Gp I3 Py G Py Yy Pp 93Pyl | PygdpTyp O L Py Py Py Pid
2,2 2 2
n“(n"-5n n(n-3) n(n-3) 2 -(n"-3n+l) 1 -1 1 m“(n- 2n n -1 -n 1
+7) 3)
81 55 0 n(n-4) 2 -n(n-3) -2 -1 -1 1 -1 r 0 r, 2n ;gx -n 1 n -1
ry 0 1, n+2 -2 -2 2 1 1 -1 1 s 55, 0 en -(n -1 1 1 -1
) 8, 0 +1)
r 0 T, Liml) 2 1 -1 -1 1
sy s O
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Table 5.1k
1
n3(n-l)3
Py 43 Ty S 4 P11 Py P2 P iR Pk Ry Y
P1p O Tip 812 0 P12 Py P13 Py P10 P 0 P30 p0
{ 0
P13 430 L P2 P12 P12 3 Ppdy  Pp%y P P3%
2
n (n-2) -n(n-2) -n(n-2) n°-onad 0 -1 n(n-2) -1 0 1
r, 1p 0 n -1 -1 ~(n%-2ns2) O 1 1 1 0 -1
v r, 0 -n 1 1 n®ene2 0 -1 -1 -1 0 1
51 S5 0
Table 5.15 Table 5.16
1 1
3 2
n”(n-1)~ na(n—l)3
0y 7oy it @ 0 0 q P11 %) T Sn 4 19
pllO Tip S1p ¢} P 1= 0 o 0 T15 S5 0 0 ©
P1o%p O 0 9 B P2l Ppp 0 0 4 Pr %
2 2 \
n“(n~-2) -n(n-2) -n(n-2) n-n-1 n“(n-1) -n(n-1) n(n-1)
r) ¥y O n -1 -1 -(n-2) r T, 0 -n(n-1) n-1 ~(n~1)
ry rp 0 -n 1 1 n-2 r 1,0 n(n-1) -(n-1) n-1
8) Sp 9] 5y s2 0
Table 5.17
1
n{n-1)(n-2) (n-~3)
P13 913 83 % ! %1 % i 93 % %
P12 Q2 90 43 Gz 91 10 %L 9% 94 k2
P13 93 43 4p 9oy 95 a9 a5 % 9 9
Py Yy % 95 ) %0 43 B 45 42 b,
n2(n-»l) -n(n+l) -n(n+l) -n(n-1) -n(n-1) 2n 2n 2n 2n 6
P3Py 0P 3P5 ~-n(n+l) (n—l)2 n+l n-1 n-1 -(n-1) -2 ~(n~-1) -2 2
P11Py 5P Pop -n(n-1) n-1 n-1 n2-3n+l 1 -(n-2) -1 -1 -(n-2) 1
P11 PpPs 2n -(n-1) -2 -(n-2) -1 n-2 1 1 1 -1
PPDoP) -6 2 2 1 1 -1 -1 -1 -1 1
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Table 5.18

1

ne(n—l)e(n-E

)E(n-3)

2

P19 11 ™ 1 11 o 11 T2 n
Pra%oh2 12 f12 T2 12 o rp r3 T,
P13%3713 13 o1 1o Yo T3 12 il "3
Piud Ty T2 22 22 *3 12 rs L, T,
1
22(n*1203510%  n(n3-100% 250 n(n3-100° n(n3-1002 bn(n-6) bn(n-6) kn(n-6) In(n-6) 36
Thn-13) +12) +29n-12)  +29n-12)
01959 3% n(n3-10024250412) -(n"-10n34305 2(n2-6ns3) -2(n-6n -2(a°-6n 12 -2(n’-bn 12 12
-2hn+li2) +3) +3) +3)
0110, 001 Gpg| (n3-20n%290-12) 2(n6me3) ataomd -6 -2(n-6n 6 6 2(nPbneb) -6
: 4152-8hn +6)
66
019,995 | 4n(n-6) -2(02-6n43)  -2(n’-6nt6) 6 2(n®-6n+6) -6 -6 -6 6
@ 9 939, 36 -12 -6 -6 6 6 6 6 -6
L 2
Dy Py Py 3P -(n -lOn3+3ln - nu-10n3+3lm2- -(n-1){(n- -(n2-6m-7) n2—6n4-5 b nPénay -k L
qllql2ql3q2 2hn+k2) Lon+17 5)
2 2 2
P13PyoPy 3P | 2(n"-6n+3) -(n-1)(n-5) -(n%-6n+7) 2 n =67 -2 -2 2 5
U1% 2% %o
P19Pp 5Py 3Pp —2(n2- 6n+3) - 6n+5 nZ. 6n+7 -2 - (n2~ 6n+7) 2 2 2 -2
U1 2% 93
Py3P12Py 3P -12 b 2 2 -2 -2 -2 -2 2
qQ 9 9374
P Py Py Py nh-10n3+1+ln2- - (n2- 6n+7) nh-lOni 1 n2-6n+8 -1 -1 02648 1
EREE SR Bt 35n2-18n
+19
130 oP21 P20 -6 2 1 1 -1 - 2 a1 N
91 91% 2%0
-2(nP-6046 2 2 2
Py1P15Pp1 Pon 2(n"-6n+6) n -6n+7 n“-6n+8 -1 -(n“-6n+d) 1 1 1 -1
41%2% 93
P11P12P2 Pop 6 -2 -1 -1 1 1 1 _ 1
91% %0%
Py1P) 0P Poo -6 2 1 1 -1 -1 -1 -1 1
G % 939
2 2 2 2
Py PyaPp Py | 2(n -6n46) -(07-60+7)  -(n®-6m+8) 1 n"-6n+8 -1 -1 -1 1
941%29% 93
P1P1oPp P3 -6 2 1 1 -1 -1 -1 -1 1
1% 9293
P11P1oPp Py -6 2 1 1 -1 -1 -1 -1 1
9 93 4397
P11P1oPp P3 6 -2 -1 -1 1 1 1 1 -1
9 A 93 U
Py Pp Py Py -6 2 1 1 -1 -1 -1 -1 1

Q% %Y
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Table 5.19

1

2%(n-1)%(n-2)%(n-3)

P % n 1
Pro Q2 Ti2 T2 T2
P13 %13 Ti3 T2 3
Py 9y © 0 0
1':x2(n3-8n2 +17042) 2(n3+lln2-128n+21+0) 36
L
9,983 -n(n*-8n3+22n2-230430) -2n(n-5) 12
2 2
~5n- - ~5n42 -l
19,9 94 n(n"~5n-2) n(n®-5n4+2) n
Q.4 n(ne-sz) -n(n2-5nf14) -2n
11%291 %0
2
5042 2 -2
919 % 0% n(n"-5n42) n n
ol 2 6
;9,9 9 2n(n-5) 2(n-5n43)
L -2 2n
9 939, & ?
- 6 -6
G %93y 12
PP, DD 08032001 3ne2 025042 12
PRBLAE A o2
11929 3%
PP, P..D
1171201372 - I 12
3% 5%°% (n®-5n-2) n-5n
P))Py P P >
11P12P13P2 2
919291 %0 -(n"-5n42) n -5n4b 2
P11P12P13P2 2 A
" - -(n°- -2
479 % 93 n“-5n+2 (n®-5n+k)
P13P10P)3P2
- 2
4% 9, b 2
P..P. PP
11712721 P20 3B 3622 Lok "
919295 %5 (n°-6n9n-2) n”-6n%10n n
P11P12P2 Pon s a1 ]
9% h2%0
p..D. PP 2 5
qiai595 95 n -nak ~(nP-5n45) 1
Py Py, P, P
11212001 P20 B N a
9% 93 95 2
1Py Py P,
11P12P21 P02
94 % 93 9, 2 -1 1
P4 P P
11P10P 2
919 2% qg - (nB-5med) n°-5n45 1
PyqPyoPs P
11P12P2 P3
-1 1
9% 93 939 2
P),P P, P
117125 P3 . N
91% 93 Y42 2 1
Py3P1oPo P
9 9% 93 qi -2 1 -1
Py Py Dy P
) Pp P3Py s 1 N

L9,
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T

able 5.20

1

2°(n-1)%(n-2)(n-3)

Py 41 T P11 Pa P oo Pyt Pory Py n Py Ty
Pip Yo Typ P12 Py P12 Fp Tp Pp T2 PuTp P T2 P2 Ty
0
P13 %30 | P13 P12 P21 P30 B30 Ry Py © P30
Py G V| », P13 Pop A T Py O p, 0
2
n (ne_lm—l) -n(ne-hn-l) n(n+1) -(n-h)(ng-Zn 6 un? -ln -n(n+l) -2n -6
+3)
2
qllquql}q’a -n(ne-hn‘l) n"-hn el -(n+1) n2-lhnl -2 «kn n¥l n+l 2 2
q..q. q —n(nz-hn-l) n2-ln-1 -(n+1) ~’>(n2-im¢2) -2 <ln L n+l 2 2
11%2% %3
971% Yo% -2n n-1 2 1 1 2n -(n-1) -2 -1 -1
B 9% Blml) - (1) -@-1)f (a1) -2 -n(n#l)  wel (n-1) n-1 2
Q.9 -(n-k)(n2-2n+3) 22 lnel ~(n-1) n3-5n2+6n-l -1 -2n 2 n-1 n-2 1
11%0%: %2
|
|
-1 (n- ~(n- - . - - -
ETELIPC B G (n-1) (n-1) 1 1 -n(np-1) n-1 -1 1 1
48, 9 | 20(nd) ~(nP-lne1) 2 e S -2 -2 Ky -1
% 33 9y %p - 2 n-1 n-2 1 en -2 -(n-1) -(n-2) -1
9 B %Y, 6 -2 -2 -1 -1 -6 2 2 1 1
Table 5.21
1
2
n (n-l)g(n—2)2
Pr1911711 11 o9ty W W W W an
P1a%0M12 T2 oGty T2 BT QT G Tp f2
LELEY ° 0 %0 420 920 @V oy P
plho r13 T, r3 ¢} Ty 0 T, 0 Ty 0 r3 [} r3 0 r3
234 n36nH16n -8 n(n-k) 20 ? u 2n b
-2
420 3002 ”, (n2. ~ _
P3P 0Py 3P n“(n-4) n _‘l‘;g +2n  2n (n“-tn+2) n n 2 n 2
P,,P, P. P n2 -n n 1 n n -1 n-l 1
1172 Y1271 4
pllp12p2lp22 o] o] 0 0 0 ] 0 0 o)
p.p. v v | 0 -n n 1 -1 -1 1 -(n-1) 1
11721712 24
P P, Py Dy b -2 2 1 1 1 -1 -1 1
Table 5.22
2
2 2 2
n (n-1) (n-2)
P11 %11 71 rn rll ro Ty
P12 9 ¢ 0 0 0 0
P3® Ty 12 ) 1 T2
° %3713 2 1, o r3
03(2-3) ~(n3-2n- i) wn(n3) o a(a-1)
9,9° 4 -(n3-2n2-14mh) n(n-3n+l) n(n-3) -n -n(n-3)
2
438 0 gp| -n(n-3) n(n-3) n(n-3) -n -n(n-})
% 9,0 9p o -n -n -n(n-1) n
% 9 0 a, n(n-4) -n(n-3) ~(n-4) n n-b
P11P1oPp O >
ayapY 3 | nln-3n41) -(nP-3041) -(n2-3041) -(n-1)(n-3) nP-3041
P1yPyoPp O
-2 qllO Q0 -n 1 1 1 -1
Py P3Py 20
9,99 % -n 1 1 n-1 -1
Pp P11Py o0 2
9 919 2 -n n-1 n-1 (n-1) -(n-1)
Py P, Py O
) Pp Pg
4 a4 07 ag n-b -(0-3) -(n-3) n-3 1
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Table 5.23
1
ne(n-l) (n-2)
P9y T P11 Py Pp Pu1 P P 1 P2 P Py Py
P20 Tp P1p Py P P12 Poy Pip P2 b3 P b3 Py
0
P13 %9 P13 o Ppp Poy P1p Py Pip Pp B3 Py s
D 0 P P D P
10 93 Py 13 P13 22 22 P3 P3 3 12 o i
n —n2 -n2 6] —n2 ¢} 2n n 0 o} n -2
4110 929 n® n(n-2) n 0 n 0 -n -(n-1) © 0 -1 1
qllO % Yo -n2 n n ¢} n 0 -n -1 ¢} 0 -1 1
2
9 0 939, -n n n 0 n(n-1) 0 -n -1 0 0 ~(n-1) 1
9 0 QW q3 2n -n -2 0 -n 0 n 1 0 0 1 -1
2 2
Ty T, 0 O -n' n n o} n 0 -2 -n o} o] -n 2
91° %%
rT, 0770 n -(n-1) -n 0 -1 0 1 n-1 0 o} 1 -1
470 9, 4p
r'r, 020 n -1 -n 0 ] 0 1 10 0 1 1
0q4 ¢
gi r2011 ot? n -1 -n 0 -(n-1) 0 1 1 0 0 n-1 -1
q; © q
ri rzge 03 -2 1 2 o 1 0 -1 -1 0 0 -1 1
Table 5.2k
1
2
2% (n-1)(n-2)
[} 97777 0 [} 9] [3) rl 0 ry 0 Ty 0 Ty 0 ry
?,% T, Py Py Py Py 2 PiiTy  PyTe B PyTy
0 0 0 0
P19 20 Pip P2 P Pz © 1o Py Py Py
0 0 0 0
Pl3ql30 Py Py Pin P3 0 P, Py Py Py
2
3 -n? -(n+n-2) n® 2n -n? n 2(n-1) 2n-3 -2
2
- - - - -(n- -(n- -1 1
910 9,9 |8 n(n-1) 2(n-1) n n n (n-1) (n-1)
0 -n? n n(n-1) n -n n -1 -(n-1) 1 -1
4:° b %2
2 2
9,0 919, ,|-0 n n n -2 2n-3 -1 -1 n“-3n4l -{n-3)
9 0apqg |20 -n ~2(n-1) -2 2 -2 1 1 -(n-3) n-3




CHAPTER IV

PRODUCTS OF GENERALIZED k-STATISTICS

With the use of machinery developed so far, two types of formulae
for the products of generalized k-statistics are worked out. First, for-
mulae for multiplying k§} , where {} is any set of subscripts, by products
of k...'s up to weight 4 are obtained. Next, these and at times direct
combinatorial method are used to write specific formulae for weights 9,
10 and 12 not including unit subscripts. Checks are indicated for both

types of formulae.

Semi-general Product Formulae

A generalization of Fisher's combinatorial technigque as developed
by Dwyer and Tracy (1962) into a combinatorial method for products of two
generalized k-statistics (outlined in Chapter I) is used to obtain semi-
general formulae for products of more than two generalized k-statistics.
The rules obtained in Chapter II are very helpful in determining algebraic
coefficients of most array types and, by virtue of the rule of proper
parts, quite a few array types need not be considered. Also, for a number
of patterns, algebraic coefficients as listed in Table 5 (Chapter III) are
already at hand. Products involving k, have been further checked by the
use of the rule of multiplication by k, (Wishart, 1952), expressed by

Dwyer and Tracy (1962) as

~ 1
(k.1) Kyy By o= kg o+ 3Ky

H

Formulae for multiplication of ki by products of k...'s up to weight

)

4 are presented in Table 6. The case of weight 1 simply entails one for-

=6l



@65m

mila, i.e., (4.1). For weight 2, Table 6.1 gives formulae for k

2
i kl and k{j o

Tracy (1962) whereas the last one has been used as a check. It is a

Py %o

k The first two have already appeared in Dwyer and

special case of the formula

’ z 1 4 ! 9 ,
(4.2) by K= 2 Z (e or ) Ky

where the second summation is over all partitions (r/ ,oao,rr}) of
r' = r-I, not involving unit parts and I is an integer. Formula (k.2)

is a generalization of

r < [T 0o o I‘,B ,
(L.3) kl’k’ = %(I)Z (r,"5 /:r ) kp—l,’.',“w“‘z'

in Dwyer (1962). Also, in Tables 6.2, 6.3 where the multiplier of Ky

has weight 3, 4 respectively, the formulae for double products like k kB;
kyy ko1, Kyy koo have appeared in Dwyer and Tracy (1962) and are included
here for completenessTo read any formule from Table 6, the coefficients
appearing in the appropriate row are multiplied by the k-term at the head
of the columns and the sum formed. An illustration is presented to clari-

fy some further sbbreviation used at the head of final columns. The for-

mula for k. k, in Table 6.3 reads

U
k”kq = k”# - "“'6“‘"’"‘ kfnuj +~];§'“1 k iy T “br 8 i : g
n(l") n(}) { n(n‘l) i3j n(l’l“l) 32—2}

l

T3 Zhh,q?> li(za, <R“>1 } bafertin]

anlﬂnm 2) z Pay *1 kZPAFAg—nz} anlﬁcn ET" 2! By p““)kfk’-eal’i{"””}

L

3
tr 2 B Rt 2 G By
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p2 <Iiypzzpis>k r tn

ﬂ’u}’u pesritity (n-1 >(1)

Z(Eu 42 j}, F"-}Zﬁ‘w‘“}

n(n+l)
+(% e>21%%%p9krh¢nm+mﬁ

Checks

" bbby b

It may be observed that checks are available. For example, for

weight 3, it is known (Wishart, 1952) that

1 )
k\ = E?k3 + % k2| + k“, and also
3 2 1
k™ = k7 k= = k,k, + k”ki

Hence, it can be checked that

=y
~
88

g
w
=
+

Shw
ey
~
+
-

1y 2l £ Ky

SR TLIL IR SR

M
e
8

and

Formulae for polykays of deviates (Dwyer, 1962) are also helpful in

checking. To take the same example, we should have

) 2
kﬂ k5 + 3n kz}dz' +n kH d

where d... represents the corresponding k...

since d, = O and

1 , -
Z ) (rl““?rf )d‘f,-.f = 0,
nf !

o
P

0,

of deviates., This is g0
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where the summation is over all p-part partitions (r, }aoo,rr) of r,
and p= 1,2,...,r,

As the weight of the multiplier of kf} increases, more and more
cross~checks become available, in view of the increasing number of lower
weight formulae.

Also the zero coefficients for certain array types for particular

products can be obviously expected by some rules of Chapter II.

TABLE 6

Semi~general Product Formulae

Table 6.1
Weight 2
ke
$111 t1e $1) 1 1113 2} +113"
k” Ky 1 -1 1 1
n(n-1) n n-1
k” kol L 2 1 =1
n n(n-1) nin-1)
k., k 2 1 1 2 1
3 - = = =5 =
n n n n®
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Particular Product Formulae

The semi-general formulee are next applied to write particular ones
by substituting for{} . Products of seminvariant k-statistics of weights
9 and 10 and powers of these for weight 12 (following Fisher, 1928) are
presented in Tebles 7.1, 7.2 and 7.3 respectively. The products computed
are listed in the first columns of Tables 7.1l and 7.2 and to read a formula
for some preoduct desired, the coefficientsappearing in the corresponding
row are multiplied by the k-terms at the heads of the columns and the sums
formed. In Table 7.3, rows and columns have been interchanged for con-
venience of presentation. Here each product is allotted a column and one
reads a formula down the column, multiplying the coefficients by the k-
terms in the first column, and forming the sum, Formulae for weight € 6
and for products of single subscript k's for weights 7 and 8 are given by
Wishart (1952) while Schaeffer and Dwyer (1963) give formulaefor products

of seminvariant generalized k-statistics for weights 7 and 8.

Checks

Again several checks are available. For example, since

n+ 1
k
4 n-1 =2z °?

z 1
(b.4) K, = Ik

we should have, multiplying both sides of (L4.4) by (n-1) k)k, and trans-

posing,
. : 3 T . 2 A
(4.5)  (n+1) k,k,,k, = (n=1)(k,k, - % k, k)

Formula (4.5) checks expansions of khk22k2’ khk23’ kugka simultaneously.
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There are further checks possible for products of single subscript

seminvariant k's as illustrated for k; k) . In view of (1.1L),

P(32) = x (3" 2% (3%2)x(2)}+2 x (32°)x(3)+ x (3 )x(27)+2K*(32) + 1 (3 ) ¥ (2)

14

(3 (28) + b x (32)x(3)%(2)+%(3) ®H(2)

2, o8
}_EK’O_*_ 2n +35 ¢ y 4+ oo + 98n-160

nZ(n-1) ?°* n*(n-1)

)(7.K3+ooo

with the help of formulae given by Fisher (1928)* for cumulants and pro-

duct cumulants. Hence, taking estimates,

2 2 2

k, k = 1 2n-+ 35 2n + 98n-160 cos
3 =k k k..t

e o + nzzn_l> s2 T l’lz(l’lwl)z 13

as in Table 7.2,

* Some errors have been corrected by Kendall and Stuart (1958).
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CHAPTER V

MOMENT FORMULAE AND THEIR ESTIMATORS

The advantage of formulae expressing products of generalized k-
statistics as linear functions of the same shows up in problems involving
expectations and estimation. We use M(rs...) = B (krmKr)(kchS)ano

4 o

to denote the moment M(k k....) and K(rs...) for the corresponding K-
parameter¥* of a finite population of size N.

We first study these finite moment formulae where none of r, s,
is 1. Then we find expressions for finite moment formulae involving 1l's
(i.e. the sample mean kl)a We also give expressions for the estimators
ﬁ, ﬁ of these moment functions. The fact that these formulae approach
the infinite formulae of Fisher (1928) as N—e is used in checking.

One device used is that of substitution products introduced by
Schaeffer and Dwyer (1963). [Kstooa]n denotes the expansion of K K....
with N replaced by n and similarly [krksaooJN denotes the expansion of
kpkgoo. with n replaced by N, the expansions being feasible by Table 7.

kk .... In estimation,

ovviously, [KKg...Jy = KX oo and [k ]| = kK

complex substitution products like Uki]nks N appesr.

Finite Moment Formulae

Although we need the linear expansions of products of k...’ s for
writing moment formulae, the best computational form need not necessarily
be linear in K... . Schaeffer and Dwyer (1963) in fact point out that
"the completed expansion in terms of K... does not yield a formula which

is most desirable for computation since it demands the use of the expan-

ded form for some products when the actual values of the factors of the

* K(...) = M(...) up to triple products. For more factors, K{...) are
given in terms of M(...) on page 7T7for selected values through weight 12.

M’ZSE
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products are known." For a simple illustration, we consider the variance
u(2%) of k.
2 2
M(27) = Ey(kp- Kp)
2 2
= EN(kE) =
- 1 n-+l 1 N+1
= By (g + 7 k) - (5 K+ T Koo
1 1 n+l N+l -
= <-r‘l- = T\f) + (—rI::I = le) K22} uSlng EN<k.eoo) = KGon
(5.1) - E-bk + (A - «—) Kop-
n N n-1

The expression (5.1) was given by Tukey (1950) and is in good form for
estimation; being linear in K... , but the variance of ko can be better

computed as

2 2 1 n+l 2
(5.2) M2 = (K], - K = TRt DKy - K,
since Kg is better calculated as Kée Ké than as % K4-+ N+l Kég

We give similar formulae for M(rs...) for weights through 10 and
for special cases of weight 12 in Table 8, generalizing Fisher's (1928)
table of formulae for the infinite case. The second column headed "Est”
for Estimator and the row starting with O can be ignored for the present.
Use is made of these while dealing with estimators later.* The terms
are grouped by the number of factors in the K-products. These formulae

can be written directly, like (5.2)(Table 8.1), when the expansions for

% To obtain the expansion for a particular M(...), we multiply each co-
. efficient in that column by the corresponding entry in the "Exp."
(expectation) column and formthe sum.
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products of k-statistics (Table 7) are known. For a strict generaliza-
tion of Fisher's (1928) table, we should write the finite X(...) formulae
rather than the M(...) formulae. These are, however, equivalent up to

triple products. For products having more than three factors, we use

k(2% = u@Y - 31523,

K(323) - M<3e3> - 3 u(22)M(30),

k(3%2%): u(372%) - w3 M(") - 2(3e),

k(423) = m(ke3) - 3M(22)M(k2),

k(3 - ui3h - 363,

K(2°) = M(27) - 10M(23)1(2°), and

k(2% = w(2%) - 1sm(2tm(®) - 10v3(23) + 30M3(2?).

Columns at the end of Tables 8.5 to 8.8 give expansions for K(...).
It is useful to note some general results for the finite moment for-

mulae. Schaeffer and Dwyer (1963) give the variance-covariance formulae as

(5.3) (r?)

[, -

(5.8)  M(rs) = [KK) - KX,

and also give expressions for M(r3), M(rh), M(rzs), M(rzsg) in terms of

substitution products. In direct generalization of (5.3), we can write

M(r%) = By(k, - K,)®
= EN[Z l) (q) s a]
(5.5) EDWEIN0 (7] &+ (-1)° “a1) K
A= 0
This result can be used to write M(22), M(23), cee M(26), M(33), M(3h),

ML) and M(6°).



TARLE 8.1 --- WEIGHT L

Exp. Est. M(22)
K, 0 1
n
K 0 nd
n-1
0 T k
2 2
K, (x, ] -1
TARLE 8.3 --- WEIGHT 6
Bep. | met. ()| M(33) | wm(2d)
LS Y 1 1 1
n n ne
X 0 n+7 3(n+3
ke n-1 | n-1 n{n-1
X 0 6 n+3 L(n-2)
33 1 | ol Mo-1)°
0 6n n+l)(n+3)
foe2 (n-1)(n-2) n-1
0 | 1 KLko I3 i3
KK [fako) | -1 -g
2 2
& | .2 2
K2y ko) =3o)
.
3 3
K7 | [k7) 2
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TAELE 8

Finite Moment Formulae

TABLE 8.2 --- WEIGHT 5

Exp. Est. M(32)
0
K5 %
K 0
£ s
0 1 k=Ko
KK [k3k2] -1
TABLE 8.4 --- WEIGHT 7
EXp. Est. M(52) M(L3) M(322)
Koo 1 1 1
n n n
K, 0 ntd 12 2(n+7)
> n-1 n-1 n{n-1
Kl+ 0 _20 n+29 n2+ 22n-35
3 n-1 n-1 n{n-1
X 0 3n | (o#5)(n+7)
322 (n-1)(n-2 (n-17
0 T KoK, KyKs K ko
e | byl | 2
1
KKy [kuk3] -1 -3
K, K [k32k2] -rzx_(xlus)
K| [k, .k _ n+l
Kop 3 [ 22 3] -
2 2
K3K2 [k3k2 ] 2
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Exp. Est. M(72) M(63) M(54) M(529) M(432) M(3%) M(22) k(32)
R = = *
0 L (o+11) n
Ko Sl = 7o Yy | SR
42 +62 20(3n-5) 2+ 70w -394 30 +250-35) 24 60n 3 -
] Kes 0 n o 'nL?T g,(:,)a = :(S-IJ‘ ”:(u—n)* m:;%:_‘)—ios '”_:é:%'-T)‘LQE
| Kgy 0 a0 log. n+IA 2 +98n-B | nipl105n-16%3 27(4n-1). 3(n233 589 +63)| 3(F433r- B0t 63)
! K 0 " " n=l o e mon ) o)
_qon 206w (r+ptl) | 12{n*412n-25 Sl - S +Thortq) 3a+n+9)
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0 180 120 | 6Gtr2Tn-70)  n'ealy +1307%8T0 +120 4 (270 -T0) 4(+2In-T0)
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Ku 3 [ksz 5} | - _% ~ 3gn+s2 _ 4{n-).12 _ i;-("-;)
{ N~ n-{ n{n-1) n(n-{
KsuKz [fﬂuz‘k,] | _._36n ~3(n+5)n+T) |- 3(n+5Xn+T)
! (n-1)(n=2) (n=i)*
Ky Ksy [’f‘sz&uj l o ’ 3%:;; )
| ¢
K3Kzza [&a*xn] —= 18 - Mitil- _ (n:l—;():*32
(n-Dp-2) (n-t) (n-D*
p 2
Ks Ky [As *x] 2 S 6
n kel
Keksky | [Rutst 2 3 ‘
3 n el
k [«] 2
2 ES
K Ko [(u»{,_] 3(n+s5, 6(n+5)
K,, KK dy ko -l ol
227372 { 227372, 3(n+D) &0t
-, _ n-i n-|
3 3
KJ K’- E{a ‘z.} —3 -6




-81-~

= =y Ty TIT
\n,?crmv.wx 01— .m%..v.wh:lﬂ 742«& NE
vy (-4 (%) =) (2= 1) (I-w) (e-W)(T-9) (-9 S S
CANEFD (ST [GoETe e+ (e+ i+ is— [(Raoka T ﬁ 4 L P I |
(-+) (T-) o(u)
EFGEES g Hnﬂ n.:#”_ fyy Ty
5. ¢
(e () [ uﬁ " ﬂu
KT O — (COEE - - ey .y § _Hj *.N A
L-wa Q1-w) i-wu L T-u) (rw 7-4) (1) -4) (u)
[Coanua (o= KaSIGe T ol (e (ot~ HOIF B+ FTe= = m.dsl. 7_ ai Ty Ty
-u)e <G-) (-9 i L9049 e,
THICoT= [Gncod 20 G o Sy [ 3] | Ty
P ) (-« u)
[GOICOR Sl I e e Goi= [ry] | ey
(-9« 1wy =919 (- 20 (T-%) () 7). () L)
WIS | ore LA =t o= (ST | (FLFIE R Clgaar aor e £ e —%gy = MJQJL Ty TPy
(-w)gd (=wu (1~ 4 )4 -
= T - T S ["#%8] | vy
Lr9« Li—ula -y . (12 £y ©
(e~ wTev 07 — (EE-wTTv )T = (O T - T & bR
[ (1I-4)u (9 (-«a [ [ .
e =9 - =5 Tevares - 9E Frea] | ™™
ru <(1-vu §(1-%) L -1« L u [ [ e W,
eI Tae — R T E ~ (R y ST +FE)e- [(IF- "I T+, € - RS9~ TCHT o8 ~ Gl 7‘ ki o R
Faja t-u
lﬁa\nﬂﬂnwﬂn - s Fu ﬁn.ﬁhﬂg ey Sy
(- u -4, [ [
ez N|\ll>+5 7= T - = — ﬁndwh#.._ QﬂQ
L()u (9w (-4 (w4 HFaa MGLL] [l 1—u s s
TR wE wa.: (i G=—yesr U5y - T T+ — % - & - e m **°y) %y
(P4 (i (1) -
T - e - Tl - ¥l | ™™
(1-9 (9« (-« () (G (1-9)u (it l-u -y 2.
[T r9 a7+ 99T — Cs+9oT — (b9 — ZoT+)T — r- == [k — «3& TN
« “ - (] e
“ u
% T - = - - - - - [fy] | "
& © « w
= - = - - - +- = [44] by
L “ “ o R “ [
- - = - - - T- o - =[] |
ot 3 iy Py 2 oy S ¥y o Ty 'y 2 oy | Sy | wny ! 0
L (- () ) (1) (T-50-9 LT L) [ LS ) ) —
(LAICs+E(e+ X+ [T TAYS + A Y TLFNEFa S =9Iz KR ArTd [Gomay 0 ¥
9
(- ) (T () Lr-yu (<) (T-)li-¢) LT 0-<) () (T tY) | (£ L0-9) G )(z--4)| (402149 Teee
(AU E+A(T-9 04 [CTEDT] TRE =TI —THe+ q0e ¥, 2| TLFNS+9) (z-9ok [CLZPF ZECTECION=FFBLT Y OsF S | (JOT-Csl + I 9% [(T- «\4 ﬂ.n: | CLFT9ap T9q8( | (4] 0301 0 X
(FDw G-y (2-9) {1-9) e Hﬂ»ﬂw:[zvnlﬁnl (T (1m0 LT (19 (s~ (-9 (e (v AT 2
TFNEHFIE+E01 |LDAUSTHIRAE | —(h S+ X 3IF T SroyEESol (24 2l -UST+ P8I %ﬁtﬂﬂ?‘w =ELb-3TF ) Gl 0 TR
(I« (2= (-9 u - g (1-dye (T-9) (1-) o (T-1) (1) (G () L) (T-9 G- (z-w-+) c54,
TR == AT #9177 | “STIEF oo e 325y (L T 5o T (e ok |(CO- 495 + )T RO+ Ty R~ et )27 “o%g Jﬂaﬂ.ﬂ woly 0 b
(- u (1-u (W=D u wu Ll (T4} {144 (=) (1-+0) (-u) @-9a-9 G- -w) 2,
Rﬂﬁ.n..n?mﬁ?vém ?o_un:af:ac.z mﬁ?:ﬂ?ﬁ«jmiﬁr (GHFES T+ NG| (191~ “I9+ o 2r = G I N T 2 nm+.£m+,: Ok lm.mm.lo,:va« “Qgcsg TwoCy 0 b
Lreyu (I-wyu (z-)gl-4) w e(I-Qu (i-«)u (2-OL-e) (T-w) (k) -1y (e-w) -y L(-w) (@909 @-W
XTIy m:+:w?.:m?d Qdisgﬁ.wnmwim.m?_v::? L) (Z-41Q9¢ U ﬂmN L-clhT [(0Zn+ 2990 -JHLTFEEC+ Ty Ném.xqm.wunmmw TOR+F9gh WIS TF TEroRy [1X] woes 0 Iy
(1-) (1-w)« (z-) Lra)u (- =(-wyu (T-9)z(-9)u (T-w)o (1) T ) (i-uy (T-9 -Y) ) (e-WG-w) @W0-w 1)
e.wranr.vo_ m:u:xw?vn QLTSI+ ot ot Nﬂfﬂdml.mt&ﬂﬂ IO WE=nyar TH=E+307 |for<e+de mﬂdﬂnﬂnﬂ w00z —uggr 0 o]
- c-%) ¢ (- S Gt el eli-) c(1-u)gn 1-yu (- L(-«)e I G - [ [ ss.
=TT Th+“qT —Sgat TCENFES - M 9sF T (Creai=9) 93| (56T~ Sp)2l | {ZT+reT ST [T R L) mrm:. 3314 [7ARETIE e L“s)o7 HTl+w Sa1 oL g A
I (<3t (1) 4 P G Rl () (] _ (e 2{(1-wyu (-«u (- 1-u I [

T AT | GERL ey OSer sl aai T [CREE o L (XA SseeEL, ~Fosr EE Ve T T il e DYl e T a0z 750 30 0 e
() LG -y L) g G ) <(1-uu (-4 1w N el [ [ (- u .
TEw08 Tis—wszly (RSt (z-908 (Ll (ov~“ht 4T Gl-“ss+ 97 h~%eng C R 5 2 I O F] L 96 e 35 0 A

- O~ (- (g (1-wu (1=t (L [(on vy .w_.l...uc [ f-u t-u 1-u
i.ﬂ (:1:,»: “sEveg CL+Y)g QU o)¢ Se+ug T3 TeFT ITHT GEXO -2 [74 T I 0 By
“ “ s« i “ =t . =N S ot
s - 4 - - - = = e J 1 7 1 - 0 3
(2% (F) (28 (5w (zH) W ()W (shlw (@)W (zes)W | ZIW (ss) W [CDL] COw | (7)W ¥3 43

Q) LHPIEM — [.g 31QVL




-804

kil ki (Y] ]
i« =
— - - I
o o AR
u “
oy 9= o €- ﬁn«« t& Mv‘ J
“
{F<y il ﬂ - H“* Mww H¥ ~—.¥
. ﬂ“w © (-9 (-9 (T-4)0-9 _”J W& e .ﬂx
E+FD0Z u Cerg(i+J01 oy T« nﬁi Ty Ty
e e < e
Ty [5+9] 57
m..ﬂ..u 9 0 Nw_mjﬂ ﬁad..#nn& Ty Py T
RGO -w (-t L j-u =
@903 5 9T [GDr N = Fﬂi v_ sty
[ ~u [ i
R G - G B | oo
G- o —u I~ w3 1-w (-u
e wEy R TEoT e T (™ | o™
« “
= T 7 (5] o
. w “
oF v T z (o) ]
e ¥ z T‘n«.«i 2y 5y
5 5 ® < ¥ z [y] | o
(O (& (ZE (sZIW (@W [&Z3] GEnNwW (ZHW (zESN (2K (SO W GUW | 9K 3 43

(CIN0)) £-g FTEVL




_85_

(= 1yw

- (1-yu
lﬁﬂuh‘.ﬂﬂwﬂ_’ A!Wdﬂan\hdgﬂﬂl Mnu‘\nqﬂu m.v. muv_
(o] (-
ﬁﬂwﬂ. . 72 Mﬁd‘ J“_ Ty 3y
(- qu PLid
TeFR0y — . (53 W#S& 5Ty
(1) & #
- (Se+9sH = 909 ~ ﬁd« u& NM .J
(FWu U-9u
For = 301 Hn._\ﬁ.& oy .nhv.
O-uyu
TeaoRy - [rety] | ey
Hﬂiw‘r& Ty By
(-« (1-wyeu
Us9og — TDoe - ?2& Ty Ty
9, 3
« 1= H nuu unu
*, +.
- [ A
% % o] | o
« o
5 % o] | o
D
¥ ¥ > o 4 T 0
G $(-4) (F- g (- L&) (T-4) (1) (G071 (- WXT-x-) wrzTIvC
TRy (IR EFD T HE BL- L) GoT (G LAl R IS TL 0 A
o) (T W) g(rue LT 8- (T (- ?éa\&?éx._mw U
B LATXEH(T- )08 (QOTIF“FIEEF LI FITF_9J55g GoFI(LA(G+9 (T-9)108 (0oTHFUDET- TR +FCY +,9) D€ 29+ “ LIk =59H~ B0 * QLT ¥ 0 b
Q=W P Gl -we (T-Wg (- [ ) Chr=s)e- (T4 were
QXL+ Y(SHI(E+4)s) OGS F IO HIF LT 4TE ﬁ.ﬂ.«%ﬂﬂ ETHUIOE - HFH A HTC N7 0 N
ey S 1 (oo I sl (T-1) (1-) - -t )T- (1= (s-T-)-4) eece
LRI F BT 5 o= R FC TR L (< Je T+ 2 ShF g Sh ¥ 37 AT ST B] TR - S | (G Re b eaE SRS RT | (TR00e 0 b}
SO~ (T-1Oe(1-1) s(H=)ae () (1-w) (£~ WLT- D (1-w) (ST zees
LT FLL 0T+ (b0 (OOHTT T TLHLTFTOION OO F (15 ¥ s | (UFTBL T ITHDNCHIOHNT | (00w ee—WTLHLT+ ORI~ F00EF 2 I5F 7345 AT+ FIHTFRCFANTE | (a9 U0UQhS ] p]
s (T (- S(F9m (T (=) [N ) W) (S o(z-wy)-w —
Cotrt "I HFOA N LA VST T (O0L +4TLS —x T+ J)CHT Oy niﬂmaﬁw.w Q g
DSl (T () (GOl 1-9) (E-XT-uX1-) zzes.
b+ LAu)(T-D0g4, Q95 +14008 ~ MLo} + w)Teh (095 +U 905~ KEor+ 42y TCH 00T MG~ (AU 00ITT 0 A
(- Ou 2(@w)e(-w) (=) lT-) (1-w) (ST (-4) Tz
CGRlo (o OOLFTHELTHoT+ 1 )rE @sar I a- @ty eT TFN") 4% 0
(T4 (- (- w) 1=y LT G- (G
(R TH 0L TTIH F 78T, el LT (CEaa T e e T LR R VA = Ystaz el 0 iy
AT-9(1-w) = LW (-w)a L9 L0-%) (r-w)(i-w) cxs
DTSR HT T ILI-E bbt ST)IT (TN ge i F-ILI—TVEF, TPTE YGEZa 3 e e 2o w0 0T 0 ]
(z-9 iz u (0L (r-)<1-4) (e-u)(ra) 75
i L 33) ThTHTT-FLe) 9 o) CFSHY0#T T0sh 4 ]
Lr-)gll-u) o (Fuee (T-w)e(1-wyu (T-W)5(1-4) C-w)(Fw)
BTN ORI I HLLL =~ IRTF IS ¥8)5 | (Roiu0s T eNT-008 (oA F T HELL = SELOTF IS0y | e ee- 98 A 0Ty 0 oy
(T-W i) v (- (1w (T-95(1-) (-9 (-9 Thy.
(O0LFUTEL= AT+ 4G ~FT6T +EHS TEE-wRTHE )% W00TL 0 b
(T9g(i-u) « (z-w) 1-%) (e-W)(-u) 6L
OFNF Wbl — Hes+H)gof +XT-D 03 TH=“L 22T wO0IE [ |
(- (I (-4, (r-uy(ry) zz8
TOL=“I)LT [T T2 0 b
Gv)pue (1)1 (-3, (491 () 1-u 99,
‘wﬁrﬁm_\komm +nﬂ§ru.‘:z~+n..mﬂ aﬁnﬂ.&ﬂfﬂ%ﬁ?«&ﬂ want.mum_..« ..+m.orr1:=_a«+.«:mvﬂ Nﬁf:ﬂ%& — 05T+ HJC NI\IJlloNE\h k3] TIH+& [ p |
W9, u g(1=)z4 (1= )M e(F9) (—wu v sl
[CEUEN GOy KGOS TIN5 OrFvweT- Sy ol TEmeh Q9L 0 %
RO (e NG o e
(GRar iR o] TG Tt e S5y 0 oy
() u (9% MG IS Gt -ulu o b
(x-<)091 O~ UTEHT (9ol (oz-“7s+ T =) R 0 A
() (F9ee (1-) T A u 0
v £S5 [CoT] S ) 9¢ 0 b
“ ('Y h-b I “ m
~ - - 5 h_l - 0 ™
(&3] GEM [al™ GEW (@] (W 33 REF]

Zl LAdEM — 3.2 379YL




~8l;-

R4
GO (- [™%] e
e [GOEE - ] i
<
foall
o « L [#3] | o
zr °.
w %] | sy
.
o7 < & 2,
o 5 [%y] 2 b
oe
Trr. TTT.
PG 74 a2
Amva.I: HwYQr T m«mﬂu«:& ,:M .N«:x
) .
TR [oreeey] | ==y
- (=) (1-) Cop TTX, TETey
L2, e - YA
%ﬁmﬂ:ﬁ - TR AL Wﬁ <e ”_ 2ty T
wu () [ rey] P
(e (g+)u9c 7 mﬁ«ﬁm& Ty Teey
[ d
I G L B,
GO (T AHT e R ?\ﬁx& Ty Ty
- LA+ (T-Togr ﬂm.:X.nw:K_vtvl ﬁ“u‘\««;ﬁg j AN«.«N
[T
- (@0 (-9 ﬁﬂa«« u Ty Thy
waTe T M«i\«s‘i Ty Ty
((mw)e
[CRIGRIGEE -
G2 vfey:“_w 9% RO B MJ\:@JL Ty Ty
(L+u)(s+HEHRS — (a0 —”mm& :z
N Te.é - N T
-9 o5 LBF9e LT L (FW) Gt £y ey
© ()< (i-%) - (OTIFU05E = STl F e+, 5§ Mn« & A
(oTH+ S 05T ~ 7RI+ M e+, 079 ® (T-uw)(1-w) T««ma«\u_ y Teey
(e Uredh T
(cFW) (T-DoHT — (et B «dmzfmﬂ,& - qﬂa?«“__ 5 Tihy
oL =SLE T Eer [CSAZCET e tiy Ty
(i P N ﬁ y Jw >}
e+ XT-JohT ~ (8+9D+HsS R 7‘20& Ty Eehy
o - LTI+ DowT
(OL+¥PL~ 0T+ dawT [l m_‘« T “_ - NN.J_
20-1)eu _ e
RIS . z
(5+4) L=y Muf& A‘J
cht _”a««i& N«M ti
W) ﬁa«\? g Ty Ty
ey TRETHFOU+I0E (e (s ﬁm«\nﬂni oy ISy
)y _ - _
(L—4) T (L=sasre WJ%G& TlyFoy
(1-)u
A T- - T
% (1-9) _.x«% nnd.u 5 ﬂnhv_
e — AT
jﬁ.ﬂw,ﬂ e AFHT-999% H:J, :: TTey vy
ﬂnﬂ..rn,ﬂwwcd - e Wn*mv& T Ty
amm.mw.utwg - NI mi\ﬂnvi ]
X0 — THE(E+9905 - i oy s
o e (v
HFEE) R ETFHEIg] — - y €S
e i (4] A
T=%og% ~ (g ﬁaa..:ufr B Mn«%h.& O oy
- L«4)80)
(L~ ¥%) 807 W cs, w Ty S5y
KO- W,
(-uygw CE R Yo i €y 9.
L+uT-49)(T-4)9p T BEEENEHe (= °y] 6y 9y
()4 _(=u
(= [ 3 3
(oW [ AW
& G (ow

(LNop) 82 ITgVL




-85=-

07y~ - .
‘ (%] >
i [
' T
?frsim :..w,m_ _H o & By
i A [Fm] | o
L(-4)
TS0 - Ty T T
M Wm.lrvhd L1-9) M..uv* A w@ “v_ .M A
nntmw_?”god_ - DT ~ MU\ :.ﬂ& Mv. Ty
RN (-wyu
.qu||\ﬂ.: e — R - [eree] A
-uya
A._..ny.”» ) Fh _Ha««.:wi%“_ Mi g dav‘
_(mwe uwu
€ +9)09¢ Anm.ﬂcwqu\ - H.«&xutd\g MM Ty
- - (o] | o
on - <, :d\ av._ tv_
. - [ree] | D0
= _ ot T
oz ﬁmdu& ™%y
A mﬁ_ltu
Ts+wIE+0+4Jog fSoIGRICE] _.,U\sﬂ& ™ TreTy
(=)
(i+X)0¢ T T
n_blxv _.v nt n«x
(CRADXCED A Ty rrreny | vy ey Ty
[Ciy o) (T-90~ TM Ma .w xn et
c(Fw L % _.\u# JL o
w - ONNM T
T+ mwﬂ.wéﬁ (o ﬁ«% aﬂnn & Ty Y oy
Tora)(E 0Ty EEaonT (o] | ™y
DOl 2y, by, TTH T, by TET
m+ub..5$u ﬁ >y & AN
.a_t‘v JoL [ | o
L(-Wu
aﬂmngv M«J‘AJ.«J\._ dx Nﬂx er.
(Fww 1-Hu
Te+(e+a08] GRS ﬁ«uz.& N Ty
[hed [
(g S G+ [ 5y
e S FTs (=) | ™y
f-u f~
o “gor Ge [&™) 2
e ) P | ey
f-u) i
h.‘t.ﬁmuwmm.?m_én [3¥™] e
vmﬂﬂnuhoﬁ ﬁwv*mm*.u ”Mnhx
G490t Tnda«%wu& TN
G S Gl Gaw e oW | w3 | A

A.A.Gzouv

g-2 37avL




~36-

(5:6)  kghq =2 pln) 2(p--3)(a9)

b BB Ga,

f(1.1)! <P
where we assume p=q and f(n) is Fisher's (1928) function 2%(1 l)- llgg))
= i n

associated with a two-column pattern having prows ( AZ(OP) being the

leading ith advancing difference of the series Of, lf, 2F,°,.) end. the se-

cond surmation is over all pairs of fP-part partitions of p and g, we have
U

(5.7) M(pq) = (Zo e(n) (3 "’p/’)<q."'qr) Kp, LoDt q..Qp KKy

A special case is

(5.9) M(p2) = Kpp + %; Koo +ar 2 (Pap2) Ko, 1, p+ 1 - ke

In generalization of (5.7),

¢

A
ey ep)s By MG - x)

A=
:Z 1
= Ey 07 T %, T K
ICP 13"61 A 17"&';_1 (‘/
i -
(5.9) = 2 (-1) K, [ Kp_{
Ier hel ° bl Cdn 7
where I is a subset of P = g By vev s puj and I is the cardinality of I.

We can also write

(5.10)  M(p, ... ) = 2 (-1)" Ky oo Kp [Kp LKy (e )KP(M.,KP}
1, ! .

1 A 4_£\

where the sum is over all subsets I ={hQr"7h§3f P :i h)u.,FuSand
, L

p; £ P, ,...,k%‘for the product in the square brackets.
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As an example,

(5.11) Mg », 2, [Kp Kp, KP] i [Kp Sl T sz Kp, Kpjn )

\ 2 3N
KP[KPK] +2K K K .
'P?-n Pl'pz.%

At times, however, semi-general formulae of Table 6 can be used to

write a more general moment formula. For example, from (5.11),
2
M(p22) = [KK2] - K, [ x ] - 2K, przl + QKPK
1 1 - 2 2
Kp22 t 5 KP+2,2 +3 Kph n(n-1) Kp+l,3 * oI Z(plpe) b b, 2

1 1 2
+ =2 5 (pyp,) - 2(pp) K,
1 20012 i1 pa1etarET) SRR fpa3ipan

2
(1) :f(plpg) KR+1,3+3
L L
“n(n-1)2 Zf(plpe) K31'2’91+2.+ (n'ljg 2 (P1P2>((Rﬂ-l%,(9+l) ) ¢+DH (R0 b

+(nTu1‘y2 2 (P1P2)<(Pz+l)u (pz+l)z) Kp+1,(p+1)+1,(p+1)H

1 _ n+l - K, - 4
= KKy - =5 KKy - 2Kplpp - = Kp+2 2 = =7 2(ppp) K+ 1,041 K

(5.12) 5
+2KK5

vhere ((pﬁ—l)', (pr+121) denotes the partition coefficient of (Q-Ll), etc.

This formula can be used to write M(23), M(322),,..,M(622)9
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Formulae involving the Mean

Some general results are now presented for determining expressions

for product moments involving the sample mean k,. For Fisher's (1928)

infinite case, a very simple rule was found, which gave for example

X@*?a Kurs

5. The relationship is not so simple for the finite case.
Xt

Formulae of the type M(plr), M(pql®), M(p22lr) are sufficient for writing

all the finite formulae through weight 8. These are now obtained.

Dwyer (1962) has shown, using deviates from the mean, that

M(1F) = E (k¥), assuming Ky = O
N L 1
(f.’,.-)*ff)
= EN Z-———;q;—k ﬂ,,”fr}, where the summation is over all p-part
Y)‘ >
partitions ry, «..,%, (p=1, ...ov) of r
(5.13) = 2 (r, ooey Tr )a(ﬂ_,...o(rt_, Kooyt >

where the summation is over all non-unitary partitions Tyyevesl of r

T
(i.e. partitions not involving unit parts) and
*5_2 ¥y 1Tl 1\ R
A= (-1) () (=) (=) +(-2)  (r-1).
-l o Jd n N N
i=0
Barton and David (1961) have also shown that
r I‘: Tv *
(5.14)  M(") = 2 —— . - A A K o
(p’:) '°°(p,6') 7r|o o0 7r/so P' [ I>|°°°AA
T,
where the summation is over all partitions h e h?% of r excluding those

with unit parts and

1) :
‘ r-i-1
Arzz x* (,-%) rp (A=
=)

Sl

>

1
=)

¥ Their result erroneously contains a (7v-1)! in the numerator.
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as defined by Abdel-Aty (1954). It may be noted that A. =« __; in Dwyer's
(1962) notation.
2
Wishart's (1952) formulae for M(pl ), M(pl3), M(plu) have also been

generalized by Dwyer (1962) for M(pl®). He shows, using (L4.3), that

M(p1") = D) - K B (k)
& ey I
= Z (I) A 2 (rl" R r’C" )O(I""l”ed'l"""l KP"'I)I"!“”I:J/
I=| ‘ “
(5.15) - Z(r “eoTo pe e X r -1 [ K, Ig‘ - }%r, “,rr} ,

where the second summation in the first term is over all non-unitary parti-
tions r/,.. .,,rt,' of r' = r-I and the summation in the second term 1is over
all non-unitary partitions Ty yeee Iy of r. Although (5.15) appears formida-

ble, it is easy to apply for small r. For example,
M(lh)w * + 6ad + b o - & [ K), - K ]
PL) = & Kpp) ¥ 0" Kppp 2 2 Kpi1,3 = 73 [ KKy - Ky
- 3% [ K., - K }
KP 22 P22

which agrees with Wishart (1952, p.9).

Also, with the help of (5.6), we find

M(pal®) = m%,zz( )o( An)(p, Lo B, (q‘.,vqf,)(r oo, )t ‘”d*':"‘kl’f"i’,?“l-' ATl
(I) o ";' N -~ K1+I
(I)a( (rl o..r'é' )O(r,’.q'" df_'a-l KF"'I wr,',..yé,

(5.16) KpK 2 re T A Ko

where the summations Z, are over the non-unitary partitions of r', the

mkf Al

third summation in the first term is over pairs of /owpart partitions of
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p and q and q + I means that the p. are added to the q,
¢ ¢ F l J

P oeeP+ Q-

in all possible ways and the units of I are then added in all pcssible ways.

As a special case of (5.16), we obtain

7’
(5.17)  M(pql) =°‘[§-Zo Pa)E )6 A ) g g0
- KK - Kqu+1]

where the first summation is over pairs of p-part partitions of p and q.

For q = 2,
M(p21) = a[ OV + ALK, o +£(2) Z(plpz)K'I)lp2+11+l -prK3—K2Kp+l;)
_ 1 2 K Ko ]
(5.18) = A Koot K3t T3 T Z<P1P2)Kplp2+2l Kpk3Kpaks J

We note that (5.18) checks with Wishart's (1952) result when the latter
is appropriately expanded.

Also, by putting r = 2 in (5.16),

1 *
2 2 S 2 .
M(pad®) = & igoﬁ(n)(p,n-»p,,><(1.mqf>Kga,QIM.,,qfﬂwzgd(%n)(p,o“g)(qf a,)
2 2 .
. - o -
(5.19) Kpuo.pr G0, 02 K, {4 Kyyp +4 K, j K, {4 Koo +¢Kp2j+°¢K,quK2,

where the first summations in the first two terms are over pairs of fmpart

partitions of p and q. For q = 2 in (5.19),
M(p21%) = £{K - KKy +K K K, +2 +
B ph™ Kpth p+2,2  pr2 2 Kor1,3 + 3 Kpebt
+=2 Z(pyp,) K +'~l'&w2(pp)K
n-1 1727 Tpypo+3l  n-l 1527 Ppg 2,@&-2}

2 1 2
(5:20) oKy = Kpiop = Kyop + Ky + 5 Kpp oty 2(e1ma)Ko ) 1 of

* Includes KP"P*T”V*”Since {142 :i{}ﬂ}+l= faj+{n} .
) P 1]
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It is useful to have on record as a special case of (5.16), in order

to obtain moment formulae through weight 8,

1 1
(pﬂ.)_zg}ﬁ>x l“’a’)ﬁq° vqﬁkﬁhlf '+$KHHL4”*%

+ ‘rTl_T 2(hh) Kﬁ.pl+||+1,+,_’.«~:,__', } - Kgo%— (9410%‘,("’5"'*{/)*,;,” O(¥9'K2+I)“"'*r//
- K, g(;;) J%(ﬂ'...fg,)dﬂil —

- KP+I)ﬁC.f’

(5.21) + KP K, %(‘ﬂm’ﬁ—) Xyt ‘*11:_, Kflv.-‘l‘l- ‘

Thus,

r : Y1
M(2217) = %hzul”/(l)o( CANN VI g -1 { KoorT,g'o..x! + LK g o +

I ,
Kn-o'-u+:[,.(,'.‘.-r,é,} -2 Kz %.(_:Dd hg};{/(ﬁ'{..,‘d‘.[,)a(ﬁ/_’ vl K

,
T—[/-’ _2+I,'f';' s

n=|

2
(5.22) +K, %—(“f; 'rZ)O(T,—I A KY,.:-’TT :

This gives

2
M(2217) = feKbrE + 2K33+ Kg + —= l* K,, + L K33}+a[‘1<222 + I Ky,
(5.23) 2 - < K, +o K 3
+2 K222j 2Kp yt L Koo + & K3

which checks with Wishart's (1952, p.9) result.
Most moment formulae through weight 8 can be written with the help

of general results obtained above. For example, for weight 7, (5.22) gives

L 12

1
=o<3§2K52+6Ku3 nK7+ —= K+

3 K43j +3y {2}{3224» Kep

M(2 1

4 1 2 : 3,
oI K322}+41{K322 t oKt T K322j -2k é K5 + 34Kz

3 2
(5.0 +0<2K32j + XKD KK
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Another formula needed for writing all M(...) through weight 8 is

M(p221") = 2 (11) °(I Z,-/G’/"' ”fz/’)o(*f.'—l ' 7* ,;{ Kl’zz-rl ', K}»z 24Ly. 3! +"'
‘Z(I)‘* z (* ) L ) K#f-‘—K +

n+l K
nur N 4+7 n—1 22471

I ’
-2 %(1)0& me{}(f.w Té-f)“,;i;

(5.25) ;’— (H’ ) K’;f_,_—l—tl-ﬁ—l }

This gives

1
M(p221) = [ Kou1,2,0 Koz * 5 Kpu3 0 + 2 Kp+2 3t 3 Kp+l Lt g Kps

szkklﬁ-I + %Lkﬁ-rzﬁt

2
) n(n- A(o-1) fp2,3 T Al )Kp+1,n + ;:1‘2(1’11’2) 3 Kpso,pa1,2 T
+ + Chy + ; K .+ 2K +L1x
o1, pv2,2 ™ Kpu1,pa1, 30+ 57 Koun,2,2 + 5T Koot 70es,2 1 5 ¥oeey3
1 e < +2 +2>
= X, ,
2 KP+5+ninw15 Z (p )’ o )2 (p+2)4+2,(p+22.+1_+
K + =2 3 (pypp) { K, -+ +
(pr2)+1, (pre)s2] ¥ nl £ 'PaP2 #2,041,2 T Kpi1,paz,2
2 | 2
Kp,+l,pk+l,3} + H(EIi)Z(Plpz) i Kpelyped + Kpus, p+2f (A1)

i
Z(Plpz) ? %*2,P2+3 +%*l)}a+)+} = n(n~l)22<plp2) 5K2+332+2+

L .
KR+2’I?Z"'3} + (5’1’722 (plp2) ((I}+l)l) (Pﬁl)z) ;}%pl‘+])‘+2,(g+]2~+l)%¢l+

L

; K , ) ‘)
K(p,+l),+l,(p,+l)1+2,g+l+ (plfl)‘+l,,(pﬁll-tl,p;Ej‘*'(“ﬁ:T)g (212
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Q%ﬂ) (ps1) ) i Kor2, (s1)+1, (0r2)#2 ¥ Bpa, (gaa)ve, (g )it
l o
a1, (1), (p+l)+2} = KK - 222) KK - 2oy o - 2KKps

2 L
- Kot T K 2 (9y2p) é*ﬁaﬁ;g—kl i Kpﬁl»%*?j]'
(5.26)

Hence,

14 L8 16
(3221) = 42+ 2+ 8 ) (g 2l pp) + (B 2 (g + k) +

2(n+l)

1 2L 1
(%t T AR (s M) + 52 K - GRs+ Ik

(5.27) - <2+ ><Ku2+ K33)Kp - £ K@’%}

Recursive Approach to Formulae involving the Mean using Substitution Products

As observed by Irwin and Kendall (194k),
M(rl) = o Kpy -

In terms of substitution products, however,

(5.28) M(rl) = [KrKl:ln - KX
Proceeding further, we find

(5.29)  M(rl®) a [erﬂn ~2K; [ KrKl} - K, [Kl:) + 2K, K

and in general,

4 5-
M(r1®) = By (kr"Kr)<,Z° (1" (O KE‘
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t t s-t ot % £ S-t
(E)Kl[KrKl ; “tZ(‘l) (D% [ 5 ,L
=0

s s
(5.30) +(-1)"s KX .
Also, from (5.11),

>
L

1t

&t
o

)M pql) = [KPKqu}Kp[K l -Kq[K J [KK | + 2K Ky

And, in general,

(5.31

Meal®) = By (o) (g k) (2 (05 1" %)
Al
s-t
'to [KKK ] to(l ()KKl[K
A-l A-2
t,s t if  s-t
-t;zd(-l) ) KK [KpKl :L+tzo( -1 KPKqu [Kl l
1 S
(5.32) 4+ (1) (s41) KKK -
From (5.9),

= 2 (-1) T Kp, [ Il x ] K M(p;Dye -2, -

(5.33)  M(pp,-
172 " 1cP Pyt B

Hence a recursion formula is

(5.34)  M(p,p,- Pl),,Z(l T[ [K HK ] -K; M(pypye.-p,) -
1¥2° . 1 . *l
This can be successively applied to get expression (5.28) to (5.32).

As an example,we consider

M(32) = EN(k3—K3)(k2-eK2)
[KsKel, - Kg [ Kz],, - K [K3 L* KK*

1 n+s - +
K5+ . K32 K3K2 K2K3 K3K2

1

% For recursion, we use M(32) in this extended form, obtained in deriva-
- tion, and not as [K3K2]n~ K3K2 .
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Hence,
M(321) = 1 $ K, ! n+5 SK K
5 g—-ﬁ-l-KSl] + E—-:i)-ﬂ f l’lke 33 +K321} - K3§ 3+K2]_j
-Kg % + K3l} + KKKy = K M(32)
. K Ky o KKK,
;ﬁ *+ 2(o-1 ’+2+'r?(r71') 33*"’"" 31w n
K, K
B i K3Kp K
= - KKg - KlK32 + 2K3KoKy
and
M(3211) = 3 1 K n+5 §Kso Kius g
n+5 2K3 nt5 K
R % nlL +K331}+ n-1 { = }
K
_Kaex, K K K, (K
—rrg;l—" +K3l} mK’3? 3L +-—§?~+K llj - -ﬁg g 5+Kh]_j

Estimators of Moments

Once the moment formulae are expressed as linear functions of the K...,
their estimators can be readily obtained by replacing XK... by k..., since

k... 1s an unbiased estimator of K... . For example, from (51\

N2 1_1 2 2
(5°35) M(2 ) = (ﬁ - -N) k)_‘_"‘ ( T ﬁ:]-j) k22°



-96-

Symbolically, since

2

(5.2) (2% = (1B -(k8)y = (2], - i - {fﬁ_+ n+1 Kée} e

n n-1
we have

(5»36) /1}1(22) = [ngn -’[kng = kg -—[ng: kg - )E_)'_t + Eij.: kgg}

N N N-1

The transformation from (5.2) to (5.36) can be described as changing
the sign of the expression for M(22) and replacing K's by k's and n by
N to get fﬁ(Eg)° By a similar operation on the variance-covariance

formulae (5.3), (5.4), we get

i

(5.3 uP) - K - [68]y

(5.38)  M(rs)

Krs '[krks} N

The use of substitution products allows us to combine the compu-
tation and estimation properties in the same expression. Thus, either
of (5.2), (5.36) can be used to represent both formulae if we note the
transformation described above. To take a few more examples, we can

write from (5.5),

(5.39) ﬁ(ra) = 3?("1)8 (Z) U%ra~s] krs} N.+(ml)aﬂl(a"l> [kra]Ne

h 7 :
- "'l k. cook k. eook_ 00 o ooak.
(5.41) ZZ( ) [‘ Pi,y Py P ) Pil( )Kpihg pu]n]N
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in the earlier notation. It should be noted that though the N could be
dropped in (5.9), (5.10), since [KrKs°°“J y = KpKgeeo , we can not drop it
n (5.40), (5.41). Thus, whereas the finite moment formulae can be written
compactly in terms of simple substitution products [K", KQQQOQJ N which
are really products K, ,6 K ... giving the results of Table 3, the compact
form of the estimation formulae is more complicated as it involves complex
substitution products like[[krks°°ﬂjnkpéJN which, of course, can be trans-
formed into simple substitution products by using formulae for krks
Estimators of moments and cumulants not involving the sample mean are
given in Table 8. (Results for ﬁ(OQO) for weight < 8 have been given by
Schaeffer and Dwyer (1963) ). We pass over the first column and the begin-
ning rows which have a zero under the "estimator'column. The formulae for
the estimators of moment functions when we read ﬁ(ooo), %(oaa) for M(...),
K{...) at the head of the columns are available in terms of substitution
products [kcoakauo,oa]Na The suffix N has been dropped in Table 8. The
relationship between the expectation and estimation formulae is illustra-

ted by the following example. For M(522), we have

2 2(n49 ho
M(522) = [K5K2]n 7 KKy - 1= l Keoo = o7 Kiyso

n+l

oI KQQKF + QKrKe

1
(5°l"2> -7 KILK5

2

(in Table 8.6, the expansion of K5Ké is written using Table T.1).

Now for the estimator,

f(s522) - k5k§ 2 [k7k2] - 2&?19) [k52k2]N - —-—a[hu3h2]

(5.43) - 3 [k“k5]N - [k22k5:’N+ . [ks ngN
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Here, the first term k5kg need not be expanded and appears with a multiplier
1 in the "estimator" column. Thus the expectation formulae, with the use of
substitution products, give estimation formulae. For weight 4 8, Schaeffer
and Dwyer (1963) have used this fact in constructing a computer program

which can be used either for expectation or estimation.

Estimators of Mement Functions involving the Mean

For estimators of moments and cumulants involving the mean k., a

l}

similar tranformation of substitution products is made. For example, from

(5.13),
(5.54) M) = 3 (ryeem)et .. KL

X r_;l TpeeeTyp

from (5.29),
NI ' ) 1 o]
k K] - 2[kl[krkl] nJ _ [kr [li n]N«g-a [hrml .

2 K. - k )
= r+2 k - r+l,l S }
n [ = ¥ r+151] 2[ N.,,lw -fﬂu-l]%w + irl,l]

]

=
1=
—_
2]
-

~
8

]
<
Fsv—-d
[
=
'

1
(5.15) -1

and from (5.32),

£ - A=l . . - i
& s tes t [ ) S»wtj SRRt t 's-ﬂL]
1 (pql”) "’20 (-1)°(;) {k.l Kk ) PRGN k k) [qul A

= N
ol N t=0

S S ’ s-t) | <, . ) ‘ 5%
. Z(-al)t(t_’)[qulL [k.pkl t]njN':pzo(‘l)t(t)[kpqu‘lt[kl JJN

t=0

(5.16) $(-1)7 7 (s41) [kpquls] :



=59

Infinite Populations

For the infinite case, we denote the moments by /v,() and their
estimators by /') (...) and similarly for cumulants use X(...). From the

variance-covariance formulae (5.3),(5.4), we get

(s pe?) o [ o x?
(5.48) M(rs) {xr Xs] - X Xg

i

where [Kr)ﬂs]nz JQ_i}mN ﬁ(rKSL (Schaeffer and Dwyer, 1963).

Taking estimates and noting that lim [k ks] = k,..; we obtain the
N—)cv r N rs

formulae for estimators,
~ne 2
(5°h’9> /\'\(I’ ) = kI‘ rr
(5.50) Alrs) = krks - k
v rs

as given by Glasser (1962) and Schaeffer and Dwyer (1963).
The M(...) and K(...) formulae of Table 8 give Fisher's (1928)

formulae as N->ee, For example, from Table 8.6,

M(522) = K(522) = 1 2(n 11) 20(3n-4) 1% 98n- 139
(5%2) ( ne fot n%n-l ke ¥ tary %63+ —3m -1 K5+

n+9) (n+11) ho m-ll) .2 & K
in-li" “(n-1F znw J 333 e

1 2(nt9) . ko . bl
- -ﬁ KSK).{. = —*l-;l—:f—-—-’ K52K2 -H:I KL:.BKE e K Kq?

2
(5.51) 2 KgKp

Hence, since lim K.o = X, X,
N-»eco

p(522) = A(522) = _352 X g +§2(n+ll) . g} A Ko + 20{ 3n-4) X ¥ +

n(n-1) n n{n-1)* v
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2 . . . -
n%98n-139 . 1) %eX (049) (n+11) _ 2(n+9) _ n+l } 2
{ n(n-1)* n} 5&-& (n-1)* n-1 n1+?)%é+

4o(n#11) _ 40y, x 120 3
ﬁ (o-17 n»l} l‘3x‘2+(n-151 "3

=L X X %, 4 20(3n-4) 20(5n-17) :
ne 9-*—nfn 7y 7 2 +.‘TE 1= 675 + n(n -1)* >(5X4-k

120 ¥ % 480 X 120 3

X
(5.52) e 57 +-f5217§ L 3“2-+ [0 3 ’

which is formula (18) given by Fisher (1928, pp. 210-211) and provides
a useful check,

A
Also from the formula for M(522) in Table 8.6, we can obtain an esti-

mator of w(522), using 11m [krkc JF k. Thus from (5.43), we have
N-yeo E 8
2 2(n49) 4o
N(522) = _ &2y _2nt) o o1 n+.
ploBR) = gk - D kgp - ST Kgpp oY Kigp ¢ g Kob 7 5 ooty 500
1 2L 20( 3n-14) 20{5n=7)
= k \on=1{]
n2 k9 n( “’l) 72 nin l)z 6 ﬂ‘;n:l 3 kt;)_l +
(5.53) AR Ko, K Lan +
(1R ("‘"‘“5‘ 432 T""y K333 »

using the expansion of k5kg from Table T7.1l. The relationship between
(5.52) and (5.53) is inmediately visible, since E(k., ) =X K
Expressions forlﬁ( ). &(e..) can similarly be obtained from all

)
formilae above for M(...), M(...). Thus, from (5.10), (5.41),

h ,< ,
(5.5k4) My --ep) = (-1) Xy, X [x., S I PR | S G
i1 Pig|l B Piy Pip Py
(5"55) ,\(R °°°p ) = ("’l)h [k oec}k (ovc)k fucnl{ (pc 06 oc s
F * ’ Ll Pj, Pilf Py i P, e

where [ cocK  oPs oDy ] is the expansion of %& 25K ] with
o Po i1 Tind g P1 Pyuln
subscript piloowpi added to each term, extending the notation of

h
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Schaeffer and Dwyer (1963). Thus, from (5.55),

fulrst) =k x k- [:krks. t]n - [ksktn r}n - [krktc an
+[kru st]n+[ksart]n+[kto rs]n - koot
(5.56) T kkk - [krksa t:)n - [kskto r] LT {krkto sjg 2k,
and so
(332) = k§k2 ; [k§ : 2]n -2 [k_3k2 : 3] 2Ky
- - %(%Ikﬁ}i’%f G+ 53 Kagr minng 222): 2}
i 21(% ks + %;t% ksg)m 3} + 2 k33
= kgkg - é %k62+ ;;%[ kipp + ‘E"% K33p % Tﬁé%y(g:g) keeze}
(5.57) -2 %%%3* = k332} T2k

Thus the finite moment formulae and thelr estimators are directly
applicable to infinite populations, though a number of terms need

collection to provide the infinite formulae.



SUMMARY

The aim of the work was to generalize [isher's combinatorial tech-
nique to write products of generalized k~statistics and to use these to
obtain moments of moments when sampling from a finite population.

The basic material was first reviewed, studying the sample symmetric
functions and, in particular, the generalized k-statistics were defined
in terms of partition coefficients and symmetric means. It was seen how
their property of being unbilased estimators of products of parent cumu-
lants for all distributionsimplies uniqueness and their seminvariance,
when no subscript is unity, was established. Fisher's (1923) combinato-
rial approach to write products of single subscript k's and to obtain
their cumulants was described. Tukey's (1956) algebraic method for pro-
ducts of two generalized k-statistics and its modification to a combina-
torial method by Dwyer and Tracy (1962) were discussed with the use of an
example. The steps needed to write semi-general formulae for products

k., k... with the use of array types and distinct units were mentioned.

i)
The rules of Dwyer and Tracy (1962) for products of two generalized
k~statistics were shown to hold for multiple products. Four additional
rules were stated and proved which are useful in determining the coeffi-
cients of array types involved in the use of combinatorial method. These
coefficients were obtained for some general patterns and tabulated for
many commonly occuring patterns, generalizing those given by Fisher (1923),
who had a simpler situation in that all rows could be added for any
pattern when dealing with single subscript k's.
A generalization of the combinatorial method was next used to write

semi-general formulae for multiplication of k{ by products of k...'s up

}
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to weight 4. The rule of proper parts was very helpful in reducing the
number of array types to be considered as only those contributing non-
vanishing coefficients had to be retained. These formulae were then
applied to write products of seminvariant generalized k-statistics of
weights 9 and 10 and selected ones of weight 12. References for product
formulae of lesser weight were given. Checks for formulae of both types
were indicated.

Lastly, the product formulae were used in writing moment functions
in terms of K..., adapted for computation. Formulae not involving the
mean ky for M(...) and K(...), where it differed from M(...), were given
for finite sampling through weight 10 and for special cases of weight 12
in tabular form. Methods for obtaining moment formulae involving kl from
those not involving it were given and illustrated. Ways to express esti-
mators of all these moments in terms of substitution products (Schaeffer
and Dwyer, 1963) were given and estimators of all moment functions tabu-
lated through weight 12 were also incorporated in the tables. Use in
checking was made of the fact that as N—>o , the finite K(...) formulae

give Fisher's (1928) cumulant formulae for the infinite case.
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