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SUMMARY

Calculations have been made for one case on the growth of
droplets and the amount of supersaturation occurring in an icing wind
tunnel. The results show that condensation on the droplets is negli-
gible but that a large degree of supersaturation is present at the
test section of the tunnel.
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CALCULATIONS ON DROP SIZE GROWTH AND SUPERSATURATION

OF AIR IN AN ICING WIND TUNNEL

STATEMENT OF THE PHYSICAL PROBLEM

In the operation .of an icing wind tunnel it is often desirable to
suck saturated air laden with water drops through the test section. In passing
through the wind tunnel the air is expanded and cooled, and the resulting ther-
modynamic state of the air at the test section is often of interest. In par-
ticular, it 1s important to know whether the air is supersaturated and also
whether the water drops have grown to a size different from those present at
the inlet to the wind tunnel.

In the calculations which are presented in this report, only one case
has been considered. This case was computed by hand and illustrates the possi-
bility of supersaturation in wind tunnels at rather modest velocities. The
system analyzed consists of the University of Michigan icing wind tunnel and a
cloud of 5-micron-radius water drops with a concentration of 1 gram/cubic meter
at the inlet and an initial temperature of 32°F, The air is considered as ac=-
celerated to a velocity of 478 feet/second (Mach number = 0.45).

During the condensation process certain conservative idealizations
were made which permit the calculations to be accomplished with less labor; in
each case these assumptions tend to enhance condensation on the water drops.
The importent simplifications consist in setting both the surface tension and
the heat of condensation equal to zero. In each case, therefore, the water
drops are treated as though they had lower vapor pressure than is expected to
occur in the actual situation.

SYSTEM UNDER ANALYSIS

For the physical problem described above the following mathematical
system is analyzed. It is desired to determine certain variables as functions
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of the distance x (in feet) from the tunnel inlet. These variables are:

A cross-sectional area of tunnel £t2

B pressure of air -l'bs/ft2
T temperature of air °F

U velocity of air ' ft/sec
Puv, s density of saturated water vapor 1bs/ft
Pyy density of water vapor actually present Ibs/ft3

W, welght of water vapor passing a given point in 1 sec lbs/Sec
r radius of water drops ft
D  diffusivity of water vapor ft2/sec

The tunnel under consideration is of square cross section, so that A
is determined from its profile as given in reference 1. Since the air flow is
assumed to be isentropic, B, T, and U are determined from standard tables (ref=-
‘erence 2) and when T is known pyy g @nd D may be found (reference 3), This
leaves p , Wﬁv’ and r as the unknown variables, with relations between these
quantities determined from consideration of continuity of flow and the laws of
condensation.

FQUATIONS

The continuity of flow gives at once

W = AUp, (1)

and from the laws of condensation we have

(Pwv_- Pwv,s)D By dx
Plig B U

rdr =

B, dx
AWyy = =barn (pyy - pwv,s)D 3;';; ’ (3)
where Plig is the density of liquid water (62.4 lbs/ft5), n is the number of
drops passing a given point per second, which for the conditions described a-
bove is 2.35 x 1010 drops/sec, and B, is 1 atmosphere (2116 1bs/ft2). Hence
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there is a system of one algebralc and two first-order differential equations
to solve for the three unknown functions.

METHOD OF SOLUTTION

. By dx N
If Equation 2 is solved for (pwv = Pwy,s)D — — and theresult sub-
‘stituted into Equation 3, we have B U

Ay = ~bmr? pyyq ar
which is immediately integrable to glve
L4
Wiy = ~3 nnrd Plig + C2 (%)

where Co represents the total weight of water in both liquid and vapor forms
passing any point of the tunnel in 1 second. This constant is readily computed
from the initial conditions. Solving Equation 1 for pyy and substituting for

W as given by Equation 4 results in

1 L
Py = o (Co —~3 nyr3 Dliq) . (5)

This quantity mey now be substituted into Equation 2 to give

I
(C2 =3 or? p11q = AU pyv,s)D By
P11q AU B

dx , (6)
which can be rewritten as

L
_ _ (Co -3 nr Plig - AU QWV’S)D Bo
= f(r,x) = __ 5 > . (7)
r Pliq AU- B

In Equation 7 all the variables in the right-hand expression are known functions
of x or r and hence this equation is solvable numerically by the Runge-Kutta
method (reference 4). These calculations have been made using formulas for sec-
ond~order accuracy and increments in x graduated in accordance with the curva-
ture of the tunnel profile, This method gives an accuracy comparable to the
data obtained from the tables and the use of a third- or higher-order accuracy
procedure would not result in any improvement in overall accuracy. Once the
function r is known, Wyv and pwy are computed from Equations 4 and 5 respective-
1y to complete the solution of the problem.
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RESULTS

The computations show that the radius of the drops increases monotoni-
‘cally to 5.156 microns at the test section of the tunnel., Hence the drops will
always be within a few per cent of their original size at any point in the tun-
‘nel, and of the water originally present in vapor form only a relatively small
amount condenses on the drops. To analyze the degree of supersaturation pres-
ent the quantity (pyy - pwv,s)/(pwv,s) was computed. This quantity also in-
creases monotonically as a function of x and reaches a value of 1,118 at the
test section. This implies that at this point the weight of water vapor pres-
ent is over twice that required for saturation., Approximate calculations show
that changing the initial liquid water content within the values which can be
obtained experimentally gives results only slightly different from those ob-
tained for this case, Hence for a ‘tunnel of this type operating approximately
under the conditions described here, it may be stated that the radius of the
drops changes by at most a few per cent and a large degree of supersaturation
exists over most of the tunnel length. Figure 1 illustrates the idealized sys-
‘“tem treated here and gives the pertinent results of the analysis.
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