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NOMENCLATURE

(Dimensions are given in M-mass, L-length, t-time, T-temperature)

C = Concentration of water vapor in air (M/LB).

C, = Heat capacity per unit mass of fluid (L2/t2T)

D = Diffusion coefficient (12/t).

E, = Rate of evaporation of water per unit area (M/L?t).

G = Mass flow per unit area from surface (M/L2t).

k = Thermal conductivity of fluid (ML/t3T)

Ly = Latent heat of vaporization of water (L2/t2)

m = Euler modulus (see Equation 13 and Fig. 1).

p = Pressure of fluid (M/Lt2).

P, = Stagnation pressure of fluid streem (M/1£°).

T = Temperature of fluid (T).

T, = Temperature of the supply fluid that passes through wall (T).
u = Component of velocity in boundary layer parallel to surface (L/t).

u; = Component of velocity outside boundary layer parallel to surface

(L/t).
v = Component of velocity in boundary layer normal to surface (L/t).
Vo = Velocity normal to surface at surface (L/t).
x = Coordinate parallel to surface (L).
y = Coordinate normal to surface (L).

p = Density of fluid (M/L3).
B = Viscosity of fluid (M/Lt).

Length along wedge (L).

ve
]
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Q@ = Angle in wedge (see Fig. 1).

n = Nondimensionalized distance normal to surface (see Equation 14).
v = Kinematic viscosity of fluid (L2/t).

¥ = Stream function for flow.

4 = Momentum boundary thickness (L) (see Equation 25).

A = Operator indicating difference.
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The use

CONVECTIVE HEAT TRANSFER FROM A POROUS SURFACE

INTRODUCTION

of porous walls in a wing leading edge to permit the outflow

of hot air and thereby prevent ice formation raises some interesting technical

problems. This p
prediction of the

aper 1s intended as a first contribution to the analytical
heat and mass transfer processes which occur in such a system.

The complete problem of predicting the performance of a porous wall
anti-icing system requires for its solution, that techniques be at hand for the

determination of

Given: (a)

Find: (a)
(b)
(c)
(a)
(e)

For the
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the following:

The airfoil shape

The porosity of the leading edge, i.e., the air-flow pressure
drop relation

The supply air temperature and pressure

The speed, altitude and angle of attack

The meteorological conditions, i.e., temperature, liquid
wvater content of the cloud, drop sizes and snow content,
if any

The air outflow for each position over the airfoil

The rate of impingement of moisture at each airfoil position

The local surface temperatures on the airfoil

The rates of evaporation of moisture

The location of the transition point from laminar to turbulent
boundary layer flow,

case considered here the following assumptions are made:

The airflow is incompressible, laminar, and two dimensional

The flow of air through the porous leading edge is always
directed outward

The fluid properties are independent of temperature

The effects of aerodynamic heating are neglected

The evaporation of the impinging water droplets is zero
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Under these assumptions the method provides a means for finding the air out=-
flow for each position over the airfoil and the local surface temperature. The
calculations are started at the stagnation point and can be carried along the
airfoil until the point of transition from laminar to turbulent flow is reached.
Beyond this point the theory is not wvalid.

METHOD OF SOLUTION

As is usual in boundary-layer theory a coordinate system is chosen
so that x represents distance along the airfoil surface from the stagnation
point and y represents distance perpendicular to the airfoil surface. This co-
ordinate system is then treated as a Cartesian orthogonal system with the jus-
tification that the thickness of the boundary layer is very much less than the
radius of curvature of the airfoil surface, so that the effects of this curva-
ture on quantities inside the boundary layer are negligible.

The problem may then be stated mathematically as finding a solution
to the following set of partial differential equations and boundary conditiomns.

the momentum equation,

3 2z
L +ve%‘§ = -2 */*zfj%* (1)

the continuity equation,

R (2)
dn 33
and the energy equation,
L
T ¢, 2T T
UeCP's—% 'f"v'ffbg’ = (3)

BJ’-

For equations (1) and (2) the following boundary conditions obtain

a('x,a) - U, (%) as y —> o (%)
u‘“’:o) =0 (5)
' (6)
’v“(1,g) —> U, l%)g 4+ constant &S j ~> 00
and
(
vix o) = ¢ e) = Vg (%) (7)
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when uj(x) is the inviscid potential flow at the edge of the boundary layer
and G(x) is the mass outflow along the airfoil surface as determined from
the porosity and pressure distribution.

The bouhdary conditions for Equation (3) are as follows

T(x, .‘,)) —> Ty as Y — o0 (8)
-Ja(% o = GG (T, -T) ©)

where Ty is air supply temperature. Equation (9) expresses the condition that
the heat conduction into the airstream at the wall is equal to the enthalpy
loss of the air flowing through the porous wall.

The solution of the system, Equations (1) through (9), is divided
into two parts. First the momentum and continuity equations are solved by a
method introduced by Eckertl and extended by Eckert and Livingood.2 Then the
energy equation is solved by an approximate method on a digital computer using
as input information the velocity data obtained by solving the momentum and
continuity equations. The results of this last computation give the tempera-
ture at a finite set of points inside the boundary layer and along the airfoil
surface.

SOLUTION OF MOMENTUM AND CONTINUITY EQUATIONS

Although the method used here is that of Eckert and Livingood it dif-
fers in details and is simpler because of the assumption of constant fluid
properties. For these reasons and for the sake of completeness the theory is
developed from the basic equations.

Begin by considering the case of "wedge flows", which are those
flows where the velocity of the fluid just outside the boundary layer follows
the law

u () = ¢ (10)

where m and c are constants and gSrepresents distance along the wedge from the
apex. (Note that { is not to be confused with x which is reserved for the ar-
bitrary airfoil shape.) If the wedge half-angle is @, the parsmeter m is re-
lated to this angle and the local flow conditions by

Auw
m e =X - 33 (11)
T-
w
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and is called the Euler modulus. The following figure illustrates these quan-
tities.

Fig. 1.

In wedge flows the velocity papfiles in the boundary layer do not
depend on the distance along the wedge { and normal to the surface y separ-
ately, but depend only on the local velocity ul(C) and a parameter

VT LD =

where v is kinematic viscosity.

This change of variable for the special boundary conditions imposed
by wedge flows permits the partial differential equations of momentum and con-
tinuity to be converted into total differential equations and effect a solu=
tion by numerical means. If the wedge is porous and there is an outflow at the
wedge surface, this outflow must vary in a prescribed manner along the wedge in
order to make the boundary conditions dependent only 7 and not { or y.

From the Bernoulli equation,where P, is the stagnation pressure

kN
L ,2 LR (13)
2 e e
differentiating with respect to x obtains
“ 3 _ pu W
Y oY dx (1)

Using Equation (14), Equations (1) and (2) are rewritten as follows

u 2
u(’—a—):-rare% =/u.?a—g—‘; *?“»% (15)
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+ —

23 2y =e (16)

Now define a new variable ¥ = ¥({,y) such that
w o= ‘F& (16.1)
v o= -V (16.2)

In order to have velocity profile a function of 71 alone ¥ must have the form

Vo ()2 (o5 F(m) (16.5)

I+m

Substitution of ¥ and its derivatives into the momentum equation yields

Y, ¥, - = Au, (17)
3743 ~ Yty = Ty v

where subscripts indicate partial differentiation. Note that the continuity
equation is automatically satisfied by this choice of V.

From the relationship between ¥ and f(n) it is a straightforward pro-
cedure to compute the following

U= ‘I'a = U, én(qp (18)
wy = Yy = (Bl (l3Ve 4 (19)
Uuy = Fauy = 20 (14mys w3 (20)
) ! (21)
-v= Y = _‘_;i:_ (u.#j) ﬁ(_'i._m)/z l:(an-u)'f('n)d-(m-l)wz +°zh‘)-]
- (22)
*35 3y [ 2 %, + =) Fy ]
Substituting these quantities into Equation (17) reduces the latter to
3 am (-4£7) = (23)
vpm-l-'g'{‘ql-f%“ (! "l) o
The boundary conditions are converted to the new variable as follows
aJt gso qz 20
% zo 'F.q (o) = 0
,
vey; (3) flo s 20D (CANR (L3N
u"
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It is necessary, therefore, for the outflow v(f) to have the value
= br w3\ %
(D = - u (3) () (L5)% fo) (24)

where £(0) is constant. Hence, different outflow velocities correspond to dif-
ferent values of £(0), but the outflow distribution must satisfy Equation (24).

The remaining boundary conditions are

@5 Y4 —eo N —> e
e ’eq(’[)"*’
£i1.07)"’°

Thus, once the functions f(n) are known for various values of m, the boundary-
layer flow distribution is easily calculated from Equations (18) and (21).

The momentum boundary thickness;’ is defined by

Pl g )

which in terms of 1 can be written as

(Hm)?-(g_._S)"l_JL"'_ = j: :c,,( (l-f;z) elo( = F(m, -f(o)) (26)

K4

Once the differential Equation (23) has been solved numerically, the
function F(m,f(0)) may be computed. A table of values of [2/(1 + m)]l/2
F(m,f(0)) appears on page 66 of Eckert and Livingood.2 The fundsmental postu-
late of Eckert which permits a "patching" together of wedge solutions to de-
termine the flow over an arbitrary body is now introduced. This postulate may
be stated as follows:

If at a particular point x on a laminar boundary layer the ve-
locity Jjust outside the boundary layer is ul(x), the velocity
gradient is dul/dx, the outflow is vo(x), and the momentum
thickness is*(x), and if a wedge is found which at some point
¢ (not necessarily equal to x), the following relations are

valid.
Wis) = W (), ‘% = % , V5 (3) =27 (),

and J (¢) = A(x) then the rate of growth of the momentum thick-
ness along the body and along the wedge are equal, i.e.,
adm _ 4L
d - d3
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The law for the growth of the boundary layer on a wedge is found by differen-
tiating Equation (26). This procedure leads to

-‘-:—/{ = ___..’ i —i
43 2 S
Thus, if at a given point x on an arbitrary airfoil v(x), A (x), uj(x), and

dul/dx are known, the problem is to find the proper value of m and of § to put
into this equation to find a8/at = g%/ax.

The equations obtained for computation are as follows

F(ar) s

F(m, fo), (27)
44 m g
43 7 "=z "5 (28)
[ [)
floy = N’(z) ( H-m.),’-( u I\ (29)
S &“' (30)
w43

Eliminate £ by substituting Equation (30) into Equations (27) through (29) to
obtain

A‘H ,6. ’/L
ALY o Fim, #0) ( Z1om) (31)
AA*L = I=m AM-,
dx v

)

(”M) fo = (-y%) *

A slight regrouping of terms yields

_£ L < —ff%){ F (o, J'(o))?]’“

v dx (32)
“‘l"' = ] - Jl alu.,
dx ~n u, JAx (33)
(';:": " (_y J“:) 2 (34)

To start the calculation, begin at the stagnation point. Near this
point the flow corresponds to "stagnation flow" or m = 1. Hence, in this re-
gion a graph of Uj(x) will be a straight line given by a formula U;(x) = cx and
from a plot of Ul(x) from which c may then be determined. Substituting m =1
and U] = cx into Equations (32) through (34) results in
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'
S =F (1, f@)(L)™ (35)

- Vs
F(o) = /icv (36)

These represent the starting values of the calculation and Equations (35) and
(36) are used until dul/dx begins to change from its initial value. Then from
Equation (34) a new value of £(0) is computed. This value when substituted
into Equation (32) allows a new value of m to be determined. Equation (33) is
rewritten in the form |

Aﬁ=tﬂ%éi:Ax (37)

to determine the increment in & once m has been found. Tt is clear that the
accuracy depends on the size of Ax and a convenient criterion for judging the
proper value of Ax 1s a comparison of the results obtained for one value of Ax
with those obtained with one-half that value. If the difference in the results
are small this value of Ax is probably satisfactory, otherwise it is necessary
to continue halving the value of Ax until good agreement is obtained between
two successive computations. Then the values of J and m at the point x + Ax
can be computed and starting with these values the procedure is repeated and
continued in this manner until,&'and m are known as functions of x. Finally,
once the variation in m is known Equations (18) and (21) (with § computed from
Equation (30)) are used to determine u and v as functions of x and y. This
completes the solution of the momentum and continuity equations.

SOLUTION OF ENERGY EQUATION

An approximate solution to the energy partial differential equation
is obtained by replacing it with an equivalent difference equation, which is
solved on an automatic digital computer. This procedure requires that a grid
of points be chosen at which a solution is desired which raises problems as to
the proper choice of a mesh size and a proper ratio of Ax to Ay in the grid.

A compromise must be effected between the demands of accuracy which require a
small mesh size and the desire to keep the computations at a minimum, which re-
quires that the solutions be obtained at as few points as possible. A choice
of a proper ratio of Ax to Ay is necessary to insure the convergence of the so-
lution of the difference equation, i.e., small variations in the results should
tend to decrease as the solution proceeds along the grid instead of increasing
as may happen with the choice of an improper ratio. Since the theory on
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choosing an optimum grid size is meager, it has been found necessary to use a
trial-and-error procedure on a problem whose solution is known, so that a com-
parison may be made. A useful case for comparison is that of a porous flat
plate (m = O) whose face is parallel to the direction of the free stream. A
table of values for this case is given on page 40 of Brown and Donoughe.3

The energy equation may be rewritten as follows

LI N AT
—_ 2T _ a(xy) 31
= = AL L A
r-y3 e Uixy 2y wizy) 2y (38)
with boundary condition at y = O
2T
Toa sk T Lo ()
ecl’ vix,0) 35 Yso
A grid of points is now introduced, illustrated in Fig. 2,
A X X X
v v x(j",j#l) X
x X X (i - =3x (i,3)
4 X 3 (i, 50 X
NI
a* x * % %
{—
Fig. 2.
Then rewrite Equation (38) in difference form using forward differences
AT, i ‘pl
-—.:.! - cmm— __._‘—-— ‘l"_ . - [ A
ox = T [ P Rl 2T‘_,)J+"r‘_,,)’_‘
A .
ay (40)
- b [ T T ]
u'."'n..l AZ'
Ty j is computed from the formula
- A Tiay ; (k1)
Ty = 2800 ax 4 T
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Substituting Equation (40) into Equation (41) obtains

T'« T.- 3 - . N ]
"J - C, [ L ',J'“ JT‘_"J +-rt"l‘j+£;

Wiary ) (k2)

v,
-C, [—u’_{ (T-‘_,’ 31 -—"'-":..))] + _r“'_":)

L"o:)
where Cy and Cp are constants given by

ga A% (15)
0 ¢ by

and

¢, = %—; (4 )

Note that Equation (42) shows that the temperature at any point (i,j) in the
ith column depends only on three values in the (i-1)St column, namely at
(i-1, j=1), (i-1, j), and (i-1, j+1). Hence, this equation may be used to
compute all points, except those on the airfoil surface (j = O), provided an
initial set of values is given.

For the boundary points Equation (39) can be rewritten in difference

form &
T: _ ' 1., =T (45)
t,o = '??} ';;; -Jz%r_.‘:° + o

This equation may be solved for Ti,o R

T C3 T, + 4,0 Ty (46)

,0
G o+ V6

where C3 is a constant given by

I}

(s = ¢ ¢ By (%7)
Equation (46) shows that the temperature at a boundary point depends on the
temperature only at the point immediately above that boundary point in the same
column. Hence, the procedure is to compute the temperature at the interior
points of a given column using Equation (42) and then Equation (46) to compute
the temperature at the boundary before moving on to the next column.

The choice of the initial values to start the computation is somewhat
arbitrary. One restriction is placed on these values by the condition that at
the edge of the boundary lsyer the temperature is equal to T and has this val-
ue for all points above the boundary layer. Another restriction is given by
the physical requirement that the temperature in the boundary layer lie
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between Ty and T, since aerodynamic heating is neglected. A possible choice
of starting values would be to give the point at the surface the value Tg and
change the values in a linear fashion until T is reached at the edge of the
boundary layer. If the mesh has been properly chosen the inaccuracies intro-
duced in the initial values will disappear as the computation is carried along.
Note that in any column it is necessary only to carry the computations out to a
value of j which is equal to the value of J in the preceding column at which
the temperature first equalled T . All points above this automatically have
the value T, as can be seen by examination of Equation (42). Hence, the num-
ber of points at which a computation is required increases by one each time
the value of 1 increases by one.

In programming this problem for a digital computer it is necessary
to devise a method of computing uj.j, and vij_j,j. One possibility is to store
the values of f(n) and f (n) for & set of values of 1 corresponding to points
inside the boundary layer, compute 1 for the point in question, and then use
an interpolation procedure to find these functions at this point. Equations
(18) and (21) (with t replaced by x) then give the values of u and v. The tem-
perature may be computed directly from the appropriate expressions to complete
the solution of the problem.

Extension 3£ Problem

In order to extend the problem to cover the effects of evaporation
of the impinging water droplets, it is necessary to add another partisl dif-
ferential equation to the basic set, Equations (1) through (3). This is the
diffusion equation, which for the assumptions made here may be written in the
form

2¢

uu-ffva&-D 33 (48)
where C is concentration of water vapor, and with the boundary conditions
Ct't,s) — Cw o5 Yy—>e (49)
ot

-0 (5§)ye =Ew (50)

C(x,0) = & function of T(x,0), i.e., the vapor pressure

of water at the surface is taken from tables of
the saturation pressure, (51)

where Ew is the rate of evaporation of water per unit area.

In addition the boundary condition in Equation (9) must be modified
to include the effects of evaporation as follows
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‘k(%-g)gm = 6 C (Ty -1 + DL, ('a?g')a“ (52)

where the last term represents the energy absorbed by the vaporizing water,

If it is assumed that the effect of the evaporation on the boundary-
layer velocity distribution is negligible, then the momentum and continuity
equations may again be solved separately from the energy and diffusion equa~
tions by the method described above. It would then be necessary to devise an
approximate procedure to solve the energy and diffusion equations together,
since they are connected through Equations (51) and (52). Through the use of
a difference equation technique it should be possible to develop such a proce-
dure for use on a digital computer, although this has not yet been attempted.

CONCLUDING REMARKS

The methods described in this report have been used to set up the
problem of finding the temperature distribution above a porous flat plate for
solution by the MIDAC, an automatic digital computer located at the Willow Run
Research Laboratory of the University of Michigan. Funds were not available
to make the computation, but preliminary results indicate that it will be pos-
sible to make a comparison with the known solution for this case in order to
check the feasibility of the procedure. If the techniques are successful the
extension to an arbitrary airfoil is a straightforward process as the only
change in the computer code will be in the methods used for computing u and v.
Thus, the basic logic and most of the detailed steps in the machine program
can be used directly in the more complicated case.
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