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ABSTRACT

In this thesis we have obtained the index of refraction and the attenua-
tion coefficient per unit time, as well as per unit length, for an arbitrary
medium using Maxwell's wave theory, and expressed the results in terms of the
microscopic currents due to the motion of the particles in the medium. In
Maxwell's theory, the effect of the medium is characterized by a conductivity
tensor which relates the macroscopic current to the electric field. The con-
ductivity tensor is obtained quite generally by using Kubo's linear response
theory in terms of the microscopic currents.

The index of refraction and the attenuation coefficient per unit time
associated with the decay of EM waves in time for weakly absorbing media has
been found to be the same as those obtained by using the photon transport
theory. However, the index of refraction and the attenuation coefficient per
unit length associated with the decay of EM waves in space are different
from those obtained by the transport theory even for weakly absorbing media.

We have also investigated in this thesis the contribution of the neutral
atoms to the absorption of photons in plasmas, by extending the Akcasu and
Wald's work on the absorption due to the inverse bremsstrahlung of electrons
in the field of neutral atoms to higher electron temperatures and higher
photon energies, and formulated this problem by using plane waves for electron
wave function. In this way we have obtained an expression for the absorption
coefficient per unit length due to the above absorption mechanism in terms
of the elastic and inelastic electron-atom scattering cross sections allowing
the atoms initially to be in any excited state. We have calculated the absorp-
tion coefficient explicitly for hydrogen atoms, and presented the results
graphically as a function of electron temperature and radiation frequency.
Using these curves and the conventional formula for the absorption due to the
photoionization and its inverse, we have computed the net total absorption
due to the neutral atoms numerically, and compared our results to the absorp-
tion measured by Litvak and Edwards. In estimating the distribution of the
neutral atoms, as well as the size of the plasma produced by the laser pulse
in their experiment, we have used the point explosion theory with spherical
shock wave. The agreement between the calculated and measured absorptions
has been found to be better than a factor of 10 and in fact better than a
factor of 6 in all, but one, initial gas pressures (The observed discrepancies
may be attributed mainly to the use of the radius of the peak luminous volume,
which is assumed to be shperical, as the actual shock wave radius).

In the absence of any accurate information for the plasma size, and of an
explosion theory which takes into account the finite initial volume of the
explosion caused by the laser beam, the agreement obtained is considered as a
strong evidence for the importance of neutral atoms in certain absorption

vii



experiments in plasmas over ions, because the absorption calculated by con-
sidering the electron inverse bremsstrahlung in the field of ions only is
about 100 times less than the observed values.
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CHAPTER T

INTRODUCTION

This thesis contains primarily an investigation of low-energy photon
absorption in an arbitrary medium. At low photon energies, the pair pro-
duction and annihilation processes are negligible and scattering is char-
acterized by the Thomson cross section rather than Compton cross section.

In stellar systems, the Thompson scattering may be important, but in lab-
oratory plasmas 1t is usually negligible because of its small cross section.
Thus our analysis in this thesis is restricted to the systems in which the scat-
tering is negligible, and the net photon absorption is primarily due to brems-
strahlung and inverse bremsstrahlung, ionization and recombination, and
excitation and deexcitation.

The equations of radiative transfer for dispersive and nondispersive
media are usually developed by phenomenological consideration.(l—h) A
systematic, self-contained derivation of a photon transport equation for
nondispersive media from fundamental consideration was made in 1961 by
Osborn and K].evans.(5> In their derivation, a photon distribution func-
tion in analogy with the quantum mechanical distribution function for
particles(6> was introduced. The equation they obtained can be reduced to
the conventional radiative transfer equation obtained phenomenologically
for nondispersive media.

(7)

A year later, they extended their theory to dispersive media by

(8)

making use of the concept of "dressed photon" first introduced by Mead.'



A "dressed photon" has a different frequency @ in the medium than the
free space value ck, but it has the same wave length in the medium and
infree space. With the "dressed photon" technique they derived, in the
framework of the first order perturbation theory a photon transport =squa-
tion for dispersive media. This equation differs from the radiative trans-

(3,4)

fer equation obtained phenomenologically in dispersive media by others.

(9)

In order to compare these two theories, Wald performed an experiment in
1966 in which he measured the absorption of microwave radiation in slightly
ionized helium. Although a better agreement is obtained by the photon
transport equation than the radiative transfer equation in his measurement,
conclusive evidence of the validity of the photon transport equation or
the invalidity of the radiative transfer equation cannot be inferred from
his measurement because the refractive defocussing effects are not neglibible.
Since the net photon absorption and the refractive index in dispersive
media can be easily deduced from the photon transport equation, the validity
of this equation can be tested if the net photon absorption and the refrac-
tive index can be obtained independently by an entirely different approach.
Such an approach to the calculation of the net photon absorption and the

(10)

refractive index can be achieved by using Kubo's theory for electric

conductivity and the Maxwell equations. In this approach, the absorption
coefficient and the index of refraction are expressed in terms of the mi-
croscopic current due to motion of all particles in the medium. To facil-

itate the comparison we obtain in section II-1 the net photon absorption

and the refractive index using the photon transport equation also in terms



of the microscopic current. The expected value of electric current is ob-
tained from Kubo's theory in section II-2. Using the expected value of the
current in the Maxwell equation (II-MO), a dispersion relation between the
wave vector k, the frequency w, and the electric conductivity can be ob-
tained. Two different sets of results for photon absorption and refractive
index in weakly absorbing media are obtained by considering the damping of
the electromagnetic wave in time and.in space. A comparison of the results
obtained from these two theories is presented in section II-3.

In order to display the various mechanisms contributing to the photon
absorption and also to estimate the order of magnitude of the various con-
tributions, we use a convenient and simple representation for the particle
system in Chapter III. Second quantization is used to express the various
potentials between particles, as well as the interactions between particle
and radiation, in terms of the particle and radiation creation and destruc-
tion operators. Starting from the golden rule, one can obtain, with several
approximations discussed in section II-2, a simple expression which dis-
plays the various mechanisms contributing to the photon absorption, such
as the bound-bound transition, bremsstrahlung of electrons in the fields of
the neutrals and ions, the induced dipole transitions, etc. At the end of this
chapter we give a simple and crude investigation of the variation of photon ab-
sorption with time after the formation of a plasma. This investigation is mo-
tivated by the absorption measurements, being performed now in The University
of Michigan, in which a continuous He-Ne laser beam (6328%) is incident on the

decaying plasma produced by exploding lithium wire. The validity of this



simple investigation could not be verified because the measurements have not
reached the final stage yet.

In Chapter IV, we will be concerned with the radiation absorption only
due to inverse bremsstrahlung of electrons moving in the field of neutral
atoms at high gas temperatures (~ 20 eV). The same problem at low gas tem-

(11)

peratures (~ 1 eV or less) was investigated in 1960 by Firsov and Chibisov

(12)

and recently extended by Akcasu and Wald. At low temperatures, the
electron energies are insufficient to excite an atom from its ground state
to an excited state. Assuming that all the atoms in the system are initially
and finally in the ground state, they calculated the various absorption con-
tributions due to neutral-inverse bremsstrahlung, induced dipole transition,
and exchange and interference effects by partial wave method and found that
the last three contributions for low temperature system are negligible as
compared to the first one.

An experiment measuring the absorption coefficient for the ruby
laser beam (69&5&) in a hydrogen plasma produced by a giant pulsed laser

(13)

beam was carriedout in 1966 by Litvak and Edwards. Their calculated
absorption coefficient obtained by considering photolonization and inverse
bremsstrahlung of electrons in the field of ions is two orders of magnitude
less than their measured result. Chapter IV is motivated primarily by this
large discrepancy.

The temperature of the plasma in Litvak and Edwards experiment is high

(6 ~ 20 eV). Most of the hydrogen atoms are found in excited states and

the energies of electrons are sufficient to excite the atoms from a level



to a higher level. The electron-atom scattering cross section increases when
the atom is in an excited state. As seen from Akcasu and Wald's work, this
cross section enters in the expression for radiation absorption. Since at high
temperatures, an appreciable number of hydrogen atoms are in upper levels and
the above cross section at these levels is high, one may expect the neutral
bremsstrahlung to be a dominant process contributing to the radiation absorption
in Litvak and Edwards' experiment. This is one reason for extending in Chapter
IV the calculations by Akcasu and Wald to high temperatures. The other reason
is that the total number density of hydrogen atoms in different states, deter-
mined in the case of Litvak and Edwards' experiment by the initial gas con-
ditions with the assumption of ideal gas, is ten or more times the electron (or
ion) density depending upon the initial gas pressure.

In the formulation of the problem, we use the second order perturba~
tion theory in which electron states are represented by plane waves. In
this approximation, the electron-hydrogen cross section is calculated in the
first Born approximation. Although a more accurate result is expected by
using partial waves, the use of free electron wave function makes the prob-
lem more manageable.

If all the atoms in the system are initially and finally in the ground
state, as assumed by Akcasu and Wald, with the assumption that the cross
section involved is slowly varying up to the incident energy of electrons,
we obtain the same result as obtained by Akcasu and Wald through the partial
wave method (section IV-2).

An application of the above thecretical results to hydrogen plasma is



presented in sections IV-3, IV-4, and IV-5. In order to explain the measured
absorptions in Litvak and Edwards experiment by considering the photolonization
process and the inverse bremsstrahlung of electrons in the field of neutral
atoms, we use in section IV-7 the point explosion theory in estimating the
number density of neutral atoms in the plasma produced by the laser beam. The
comparison between our calculated absorptions and the measured results are dis-

cussed in section IV-8.



CHAPTER IT

PHOTON ABSORPTION AND REFRACTIVE INDEX

In this chapter we shall present two different approaches to the cal-
culation of photon absorption and refractive index in an arbitrary particle
system. The first approach is based on photon transport theory developed

(5,7) (10)

by Osborn and Klevans, the second one, on Kubo's theory of electric
conductivity. The comparison between the results from these two theories

will be made at the end of this chapter.

1. PHOTON TRANSPORT THEORY

In 1961, Osborn and Klevans(5) used first order perturbation theory in
developing photon transport for nondispersive media, and a year later they(7)
extended the theory to dispersive media by making use of the concept of

(8)

"dressed photon" first introduced by Mead. In this section we shall use
their results for dispersive media to express the photon absorption and the
refractive index in terms of the microscopic current due to motion of allv
particles in the medium. This requires, in the first place, a description
of the hamiltonian of the particle system, the radiation field, and the
interaction between these two, as well as the introduction of the concept
of "dressed photon."

Consider a box of volume L> in the particle system under consideration.

The hamiltonian for the particles in this volume element interacting with a

radiation field can be written in the nonrelativistic theory as



eo.j
- — A(rgs)}2
. (Roy - — Alzes)) -
H=H +2]|2 + Vgl + V' =H +H (I1-1)
o] Mg o
with
H = HR + HP (11-2)
7R gPRL, PR (11-3)
where p2,
P —0J
H = L Lo+ Vo + V' (II-4)
g 3 mo,j
PR1 o3
B = - emgC (oyb(zos A (zs5) 2os) (T1-5)
2
PR2 €53 2
H = 2 . II-
o 2mgsC= = (Z5) (T1-6)

R
In the above equations, H and é(r) are, respectively, the hamiltonian

and the vector potential of the radiation field. The symbols m_.,.e

0j’ “oj’

Poj» and r_. denote the mass, charge, momentum, and position of the j-th

aJ
particle in the o-th molecule. Here, we use the term "molecule" in a gen-
eral sense to refer to any aggregate of particles bound together. The num-
ber of constituent particles in a molecule is arbitrary. It proves to be
convenient to regard even an electron as a simple molecule as defined above.
VO is the potential between the particles in the e-th molecule and V' is the
potential between the molecules in LB,

Interactions between particles in different boxes via long-range coulomb
forces constitute a small effect upon photon-particle interactions within a
box and we may expect that neglect of this effect produces negligible error.
Then the photo-particle interaction

cf the system can be approximated as the

sum of the interactliong in each box.
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The customary procedure( ) requires that the (transverse) radiation
field be periodic at the boundaries of a normalization box whose volume is
assumed here to be I?. The vector potential of the field at a point r

can then be represented by operators in the Schrédinger picture as

M) = S Tt & Hw (s, (B4 (-B)e, (k) (11-7)

and the hamiltonian of the radiation field turns to be

= T 2 e (o (k) (o () (k) (11-8)

Ak

T .
where o&(g) and o&(g) are creation and destruction operators for photons
of momentum ik and polarization A in free space. E%(E) is a unit polarization
vector. The creation and destruction operators satisfy the commutation re-

lations

[, (), & ()] = [ (), &, (£)] = o

[ (), o (k)] =5, 5, (11-9)

Since the radiation is in constant interaction with the medium, Mead
introduced the concept of "dressed photon" by associating photons in the
medium with a different frequency wk than ?he free space value Ck, keeping
the wavelengths in medium and in free space the same. In doing this, he
used a different expansion of é(z) due originally to Bohm and Pines(l5>
and showed that the creation and destruction operators a;(g) and ak(g) for

creating and destructing photons of frequency w, are different from the free

-‘-
space operators o&(g) and o&(g). They are related through the relationship



1
2, (k) = -;-(—@ ? (g 0+ (- S (1))
k k
o (k) = -;—(—;) ® (- Ea-rh (1620 )
k k
o (k) = T (et o, (k)+(ekos a (-K)]
2(&kck)§
o () = ——7  ((ckwy)a (k)+(ckoy ), (-K))
2(wyck)?

It is clear that o&(g) and ax(g) become identical when w_ = ck.

(II-10)

(II-11)

It can be

1-
verified easily that ak(g) and ak(h) satisfy the same commutation relations

t .
as 0&(5) and.o&(g) even with o # ck.

The substitution of egs. (II-11) into egs. (II-6), (II-7), and (II-8),

PR2

R T
i.e., expressing H , A(r), and H in terms of the operators ah(h) and

ak<5)’ gives

where

(II-12)

(I1-13)

(II-1k4)

(T1-15)

(II-16)

(I1-17)

(1I-18)
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2
rthe .

O - Y —3——9g- {a;(k)a:(-5)+ax(ﬁk)ax(£)} (11-19)

L M5%
, mh e, -i(k-k')‘r .
5 7R B 53 T (a, (kg (k)+a, (-k)g, (-k))
=T Tlimgy (o) 2
(o (KK (B)ey () (11-20)

5

Then the hamiltonian for the whole system (particles in I” plus radiation)

-'-
can be written, in terms of the operators ah(k) and ax(k), as H=H(')+HI with

1 R |
H,y=H O+HP and HI=HPR1+(HR1+HOPR2)+(HR2+H1PR2}+H2PR2 where
Lye CQK%D§
RI PR2 _ & oj o |y "
H H o \ . ]
© LXK\o3 3 T o > {2, (k)a, (k)+a, (K)a, (k) (1I-21)
L LD
oj k
2 o)
hine?, c2k<w
R2 PR2 4 aj " + "
H- +H =2 . et e (- ]
T T e, (s () (e
L majwk k

In obtaining the photon transport equation and refractive index, Klevans(7)
formulated the problem in the representation in which the particle state !n> and

the photon state |n> satisfy

}F|n> =E |n> Hmﬂn> =& |n>
n n
i.e., (I1-23)
H' > = > = E +E
slmn> =B [nn>, B = +E
I
With H regarded as the perturbed hamiltonian. The obtained photon transport

equation is given by
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fo(g,g,t) _
S oW (k) = L, () (B)-n (k) [n'n,nmDyy oy (TI-24)

where fk(g,g,t) is the expected number of photons with momentum hk and

polarization A in the volume L5 located at the point r. The photons are

moving with the velocity v in the direction of the unit vector Q. Vv is

different for dispersive media from the speed of light c. Tn’n',nn is the

transition probability from the initial state |nn> to the final state

|n'n' > which is given, in first order perturbation theory, by

T H 1 ~ 27[ 1 1 I
[nrn,nn ~ 25 <nrq’ (87 |nn > |25(En,n,-Enn). (1I-25)

nk(k) is the occupation number of photons withfk and A, and D is the den-

sity operator of the whole system (particles and radiation).
In addition to the photon transport equation, the refractive index of the

medium can also be obtained by letting

2. D (s

&4 Dnn nn-sno) =0 (II-26)

where Snn is the shift of the energy level E“ﬂ for the state |nn> and given

by
|<n'n' |5 ng> |2

Sm]:<nn|HI]m]> + 2 P P
o' '#nn nn n'n'

(II-27)
where P indicates the principal valuve. Spo i1s a shift of the self-energy of
the medium when no photons are present and can be obtained by letting n=o0
in eq. (II-=27).

With the above results, we shall express the photon absorption coeffi-

cient and the refractive index of the medium in terms of the microscopic

current due to motion of all particles in I? in the following two sections.
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a. Photon Absorption Coefficient
The processes involved in obtaining the photon absorption coefficient

are single photon emission and absorption. The only contribution to these

PR2 _R PR PR
2 e Hy 2 and H, 2

o s are

PR R1
processes comes from H 1 because H , H
bilinear in photon operators. Define the current operator due to motion

of all the particles in L3 as

e .,
0j
I(r) = GZJ. e (Dg38(2-153)+0 (2245 )R435 (I1-28)
then
A(r)
AR I(r) —CE (I1-29)

where the integration takes over the volume LB. From egs. (II-23) and

the definition of Dirac ®-function

ixt
1 00 ia)
A -
8(x) 5 [oo e at, (11-30)

the substitution of egs. (II-29) and (II-25) into eq. (II-24) gives
of, (r,k,t)
dt +Q - va}\<£}.1§!t) = QX(EJE)t)

where

D . A
5t = 7R (0 [ [ (3 <alzln> - B pe1>

A o
Azt") A(r)
B+ 0> <n'|I(z)t")[n>-] <alI(x)|n" > * <q|=—|n-1>
. n
A(r;t')
m< -1 [=—[n>" <0"[I(zjt")[n> ) (I1-31)
with

Igy ~%HPt
E(E:t) = e'h J(z)e (II-32)



. . R
i}ﬁ% -1 5%
A(r,t) = e A(r)e

(I1-33)
being the Heisenberg operators. The first sum in the bracket of eq. (II-31)
comes from photon emission by letting n'=nHl in eq. (II-24). The second
term comes from photon absorption by letting n'=n-1.

Evaluating the matrix elements of A(r) and A(r,t) in Eq. (II-31) by
use of egs. (II-12) and (II-33), and suming the intermediate states |n'>
and |n">, one obtains

21D
(r,k,t) = Y ——=L21 fdjr der' [at' <n|J (z)T (r;t")|n>
YLE & nEIGNE

nn .3
L ﬁwk

Jk(zyt) = J<r1t>°£>\'(5)°

At this stage we introduce several approximations which enable us to

reducec%&g,g,t) to a simple form. The first approximation is to replace

P R
D by D m P n

P
nn,nn e D" is the density operator of the medium only and

-gu?

P -pHP 1
given by D =e P /Tre with p=7 being the reciprocal of the medium tem-

: R
perature in the units of energy. D 1is the density operator of the radia-

_pHRO

tion field and given by D =e /Tre

This approximation implies

that the particle system and the radiation field are initially statistically
independent and permits us to perform the statistical averages over the
particle and photon states separately. The second approximation is equiv-
alent to replacing the average of a function by the function of the average

in performing the statistical average of the factor containing the photon
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occupation number, i.e.,

. » |
Z Dnn Jl+nk r,k) J1+nh Jl+fx(£,k) Jl+fh(£;k)'
With these two approximations, Qx(z,gvt) reduces to
i £ ,

Q ik e -1 v

Q (1,k,t) = [&r [&r fdt'{e ke (zz )\|l+f>\.( )'\Il#rfk(zq'ks)T
-

Lafmk

-iw t' cike (per! A
‘ <l )J #K(E:E)fx(ﬁ;g):}TrDP JX(E> Jx(z;t')

We recall that integrations over r and r' are extended to the same box of
volume LB. If we further assume that fx(g,g) is slowly varying over the box
volume then we can take the product of the square roots outside the integral.

Interchanging r and r' and letting t'=-t' in the second term, one finally

obtains, by using the property TrABC=TrBCA,

0 t
¥ H(mEt) + o0vh (kt) = - (ke )T, (5,5 t) + E (ka) (II-33)
where
o -l L
O/xt(l_c,wk) = S I Jate ke (zex') TrDP[JK(_IL,'t'),JK(r)] (IT-3ka)
L ﬁgK
io ', o
E (k) = ?“ [@r [P Jatre & 1E (z-2') ¢ pP 7, (2)3, (2)¢") (11-35)
L oy e

are respectively the net absorption coefficient and the spontaneous emission
coefficient per unit time for photons of momentum ¥k and polarization N. In

P
an infinite homogeneous medium, TrD [Jk(g}t'),J (r)] can depend only on the

A

difference of the positions r-r'. 1In a large finite system, this translational

invariance will be approximately true in regions away from boundaries. One of

the integrations over the position can be performed. Then
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i t!
t

2n I k  ike(r-r') P
asmg) = 2 jade Jave © SMEEE

TrD™ [J

(zt'), o ()] (1T-3k)

A

—00 .

In view of eq. (II-33) it is obvious that the photon absorption coefficient

per unit length is given by

o (k w (I1-36)

A k) - v
In a later section we shall compare egs. (II-34) and (II-36) to the
expressions for photon absorption obtained by Kubo's theory. The superscripts

s and t over the absorption coefficients per unit length and per unit time,

respectively, are introduced here to facilitate this comparison.

b. Index of Refraction
We mentioned before that the index of refraction in dispersive media

(S, _-S )=o. From eq. (II-27),

can be obtained by letting g}nD 0 =Sho

nn,nn

T I |<n'q lH |r1q>l
r?’Dnn,nn(Snn Sn0) = %:Dnn n <nn|H [nn> -<no|H |no>>+ Z: %nﬂ 5
" L n"q n' Tw
N | I 2
¥ p J<n nj}{]no>] ] (II—B?)
. n'n'dno  FpoEyrg \
Recalling H™ and Egs. (II-5), (II-20), (II-21), and (II-22), it is readily

established that

22
Ll e cgk—w
I R1 PR2 k
<onlH |ng> = <anlH T |nn> = BBy —25d (2n, (k)+1) (11-38)
o Ak L \s] 3 w =
- I'm . k
sj k
and 55
ane 2 2
1 bligegs ¢ k-
<no|H |no> = <no IH L H, PR2 %{J‘i >, = k (I1-39)
hilsy 3 Wy
L mSka

where NS is the number of the molecules of kind S in L5 and eSj and msj
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are the charge and mass of the jth particle in a molecule of kind S.

Note that <n'nq |HI|nn> = <n'o IHIIno> = o for n'#n, and <nq lHI]nn> = 0

for ' = n#l and for = o, n' = 1, then one obtains

oI 2 DI 2 I 2
[<n'n'|H |nn>|" _ |<n'n|H [ng> | I<on'[H Jnn> |
2 —— = ) + )
n'n'dnn BanEnip! n'#n En-En: n#n  Eq-Eyt
R 2 B 2
R e O PP T FY e r10)
l’l’ %l’l EHT]'EH' T]' l’l’ %n Enn_En 1 nt
#n m#n
and
|<n'n'LHIIno>|2: 3 ]<n'q'|HI|no>‘2 . (TI-41)
n'n'#no  Eno-En'y' n#n  Eno~En'y'
n7o

co

Using the property of Dirac &-function f(E)= [ £(x)3(x-E)dx, eqs. (II-LO)

and (II-L1) become

DT 2 . PRL 2 BB
(o] > -
o s K=l fapr ol |H_|ng> | oo~ —nln’

n' n‘v#nn Enn-En 1 nv l’l: 7{1’1 —00 ! h
n#n
and
1 1 I 2 oY 1 A P 2 E __E 1 1
5 [<n'q'|H [no> | = Y faw' [<a'n ,H ' [no>| (w'- _ho-7am )
n'n'#no  Eno-Ep! n' n'#n - nw A
n#1

The substitution of eq. (II-29) and the use of eq. (II-30) gives, after a

straightforward manipulation (see Appendix A),

I 2 I 2
v J<n'n'|H [on>]" |<n'n'|H [no> |

n' n‘é;énn Em]"En' n' o T]Z?Zno Eno-En: 7'
n)x(k') 3 .35 ® e eiw't' ik (r-r')
=->§< J&r[dr [dw' [at' ——— &= ‘= =
‘L3o>k o= -y
m<n|J>\(£' )J}\(;,-t’ )—J}\(_I_’)J}\(;_,’t' ) n>. (II-L2)
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By taking the statistical average over the photon state |n:>as in the case
of absorption coefficient, using TrABC=TrBCA and substituting egs. (II-38),

(II-39), and (II-L2) into eq. (II-37), one obtains

LV eg“

S 8] + cgk%wg

ﬁw 2. 3 k

y—= fx(r k)J;J b
Ak ) w2
L %
in't'
[&r[Er fdt Pfd v = e (=" g P (5 (r)t'),J. (r)]) =o
5 2 ®' -ty N7 O

Then the refractive index for dispersive media is obtained, in terms of the

5

microscopic current due to motion of all the particles in L7, as

Lab, (k,w )
k.2 A=k
05 = (5,) = g (11-43)
where
3 ® % ehw’t' ik (r-r') gﬁ
bk(g,wk) = o, [a riédt’?:idm' o e = NETE g pP [J (r;t ),Jk(g)] -¢k (TI-L44)
N, e 2
=y -2 8 (II-45)
s 5 mSJ

and the property that TTDP[JK<£;tU;JK(E)] can depend only on r-r' for an
infinite homogeneous medium has been used. In section II-3, we shall compare
egs. (II-34), (II-36), and (TII-L43) with the results obtained from Kubo's

theory.

2. KUBO'S THEORY
(10) ) .
In 1957, Kubo developed the theory of linear response of a medium

to an external field (i.e., electromagnetic waves) acting on the medium.

He showed that the response can be described by electric conductivity tensor
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of the medium. In 1966 Dong(l6) applied the theory to fully-ionized plasmas.

In this section we shall use Kubo's theory to obtain the photon (or radiation)
absorption coefficient and the refractive index for an arbitrary, electrically
neutrai medium which may be a neutral gas, or partially or full-ionized plasma.

From Maxwell's equations, one can obtain
e
E(r,t) = 5 5 2 (%) (II-46)

by assuming that the macroscopic charge density of the medium is zero, i.e.,
VE(zr,t) = o.

Thus E(r,t) is transverse. We used the superscript e over J(r,t) in eq.

(II-L46) to denote that it is the expected value of the current operator

g(;,t). By using the gauge in which the scalar potential vanishes, the

electric field E(E:t) can be described by a vector potential é(z,t)

through the relationship

E(r,t) = - 5% Alr,t). (TT-47)

o i

Assume that the external field turns on at t=-x. Before the field is
imposed on the medium, we have
of, #°7 = o.
At time t, the interaction hamiltonian between the system and the applied

external field can be written as

- 2
(S e 2
.y —od . ) o5
W - - g 2m 5 (RojAlrgy, B)*A(rys,t) oyl * OZJ 2o 502 é%zoj,t)
= Hl(t)+H2(t) (11-18)
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where
3 é(z:t)
B (6)=- [ 3(x) = (11-19)
H2(t)=- = fdjr QA(r,t)' A(i,t> (II-50)
e 2
0j .
J, (z,t)=- OZJ g 8(3‘303 )_!}_(zoj,t) (II-51)

With J(r) defined as eq. (II-28). When the medium is acted upon by the field

A(r,t), the total current operator at the time t becomes

I(r,t) = I(x)+g, (z,t).
The expected value of J(r,t) is defined by
37(z,8) = TrlI(x)+, (z,4)I0(¢) (11-52)
where D(t) is the density operator of the perturbed system at time t and

satisfies the Liouville equation

d
2 D(t) = = [D(t), Hp+Hl(t)+H2(t)] (1I-53)

with the boundary condition D(t=-w)=Dp.

B

For a weak perturbation, we shall obtain the current response J?(E,t) to
first order in A. For this purpose we substitute
D(t) = DP+Dy (%) (II-5L4)
into eq. (II-53) where Dy(t) is the perturbation due to A and neglect the terms
[DP,H,(t)] and [Dy(t),H;(t)+Hs(t)] in the resulting equation (note that Hy is
first order and H, is second order in A). Then, Dy satisfies

Lpe) = 2 my(e), #81 + 2 108, (8 (11-55)

whose solution is readily found as

Dy (t) =% _Zdt' I:Dp,e" Hl(tf)e . (II-56)
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The substitution of egs. (II-54) and (II-56) into eq. (II-52) gives, after

2
neglecting the terms containing él(ﬁ,t),

-y P ) ,
38(x,t) = 10" (x) ¢ 2Dy, (%)

+, o

i 5 y Jl’,:’ ? ; . ‘ ) , A I‘Jts‘
= J&r _.df;dt Ty” [JV@(;E;?TJ), J (r;t")] An(rt') (II-57)

m = ’ C

where the subscripts £ and m(£,m=1,2,%) refer to the components of the vectors
and where the summation convention on the repeated indices is used. The
first term in eq. (II-57) is the expected value of the current in the unper-

turbed medium and is zero. The second term is given explicitly by

2
; (S
N (s TP St o5 ) )
TrD .iA(IJt) %Dnnﬂnq '('i.‘jmgjc 6(_1: EOJ )A.S.(EO'J?") n> .

Since the delta function is contained in the matrix element, the integration

over all the coordinates of particles will give

03 (x,%) = -a° == (11-58)

7

2 L . . R
where q is defined in eq. (II-45). Then eq. (II-57) becomes

A (b)) | A (r;t")
) s_‘ g - < . t R , . =2
JZ(;_,t) DR MG i f0r fat Ter[Jz(_x:,'r';), J (2)t)] e (11-59)

C C

In order to calculate the absorption and refractive index in the frame-
work of Kubo's theory, we substitute eq. (II-59) into eq. (II-L46) and use
eq. (IT-47) to eliminate the vector potential in favor of the electric field.
The result isg

o
N

o 1 b .3 . o . ,
VfEﬂ(g,t)w i;‘““j E (r,t) = = ) r“widt‘{q &(t=t"')8(r-r >8zm

. AP
e“ ate 7 c
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B, ';I TrD [ SEt-tt), I (x' B (z)t'): (11-60)
oY
t
VQE(r,t) -~l—_' -a—— E(r,t) = bx fd5r' fat o(r-r!t-t")E(r;t") (I1-61)
o S e e =TT T

where g(E,T) is called the conductivity tensor. We shall give the explicit
‘form of g in the transformed domain later.

Equation (II-60) which describes the electric field in the medium can
be solved if one specifieé the boundary and the initial conditions on E(E,t).
The solution can in general be constructed in terms of the solution of the*i

homogeneous equation of the following form

-(ik r-iot) (11-62)
E\E

where k and w are related to each other through the dispersive relation.

where qk(g,w) is the scalar conductivity defined by

ox(g,w) = ¢ so(k,w) ¢

where o(k,w) is the transform of o(R,T) and explicitly given by

. 2 . . .
o _ien L3 5 -ior ik (r-r') D y [T-6h
GX(E’®> " % [d'r nge e TrD [JXKE,T), QK(E )] (IT-64)

In the applications, one usually encounﬁers‘two types of prcblem:
(1) initial value problem and (2) boundary value problem. In the first case,
one specifies an initial spatial = distribution E(r,o) and solves for E(r,t)
for t>o. The initial distribution can be expressed as Superpositioﬁ of the

' ' ik+r
terms of spatial modes of the'helmholtzoperator, i.e., e"='= yhere k is real
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vector. The damping associated with each mode is obtained by solving the
dispersion relation as w(k) for a given real k.

In the second type of problem, one solves the Maxwell's equation (1I-60)
for E(r,t) when E(E:t) is spebified on the boundary as a known function of
tinme. The time dependence can be expressed as the superposition of terms of
the form eiam where w is a real number. The associated complex k is obtained
from the dispersion relation asg g(w). A sinusoidal plane wave impinging on
the side of an half infinite medium is a typical example for problems of the
second kind. The complex number g(w) in this case is the inverse relaxation
length in the medium.

We shall compare the Kubo theory to transport theory in these two typical

cases.

a. Damping in Time
As we mentioned above, we must solve the dispersion relation in this
case for a real k, and obtain the real and imaginary parts of w(k) for a

given k. It is convenient to substitute

Dy e .
= -65
n(k) nting (11-65)

where mo=ck, and n(g) is called the complex refractive index with ng and n

D =

1

as its real and imaginary parts. The electric field will decay in time as
-2wTt . Lo .
e where wy is the imaginary part of w(k). 2wy is the decay rate of the
electric field which is the quantity to be éompared to the photon absorption

t
coefficient per unit time ak(g,mk) obtained in photon transport theory.

The substitution of eq. (II-65) into the dispersion relation eq. (II-63)



2k

gives
2 2
L 0571 .3 en oy _ Li o (k ® )
2 2.2 2 2.2 o (n+in ) A= n +in
(ng+ny) (ng+ny) oo 1 o 1l

In order to solve the dispersion relation for the real and imaginary parts

of w(g), we shall consider a weakly absorbing medium, ni<<no. In this case the

dispersion relation can be approximated as

1 , 1 Lni R ., 1 ,
1 2 + 1 R (o, (Lo )+ 10 (ko))
0 o) ok
e
where ak = is exactly the frequency used in photon transport theory and
o)
qu(g,wk) and qkl(g,wk) are respectively the real and imaginary parts of the

scalar conductivity OK(E’¢k> given by eq. (II-6L).

Eqguating the real and imaginary partsjy one obtains the real refractive

index
2 Ly
= + — -
n_ 1 5 % (k,wk) , (11-66)
k
the imaginary part
L 2nno R(k o)
1 Wy IO 2%

and the decay rate of the electric field

2n.,w
1k R
2w, = - o = hnck (E,ak>. (11-67)

The explicit form of ok(g,w) was given in eq. (II-6L4) for complex w.

Do
When w = — = w_, we have
No k
i‘.q_g. _l 5 1 2 _ia)kT ik'(f-}‘_’) p 1
OX(E’ak) = - s, -'ﬁwk [a"r édTe e = = TrD [JK(E,T), JA(E )]

By using the integration representation of the unit step function, i.e.,
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. -isT
u(r) = 2 Jas 2 ith €0
T on -6 stie ¢
and letting 7 = -t' and @' = s+w , then
k
2 - iw't' )

. q 1 ) 1 loo £ lk'(I‘—I") 1Y [

k ==+ = == .
m}\(_,wk) o 2m>£ﬁfd r' Jdt _idm ol 1ic c TrD [J}\(;), J}\(z,t )]

The real and imaginary parts of a (k,w ) can be obtained by noting that

Ak
. 1
lim —=——— = P—— - ind(w‘w)
€0 W=-W+ie [VEI40}
as
R 1 © i t' ike(r-r
o (ko ) = —— [&r [at e k" &E (z-2") 0P (r1t"), J ()] (11-68)
A~k E’fﬂ)k - A e
iw't!
1 3,09 % e ik*(r-r') .
= = 272 Jpyp
o, (_}g,a)k) St fa'r _idt P_idw Dy e Ty [JX(E,t ), JK(E)]
2
- A (11-69)
x

b. Damping in Space
As mentioned above, the dispersion relation must be solved in this case
for a real w=w, to obtain the real and imaginary parts of E(wo). It is con-
venient to let
X = (no+inl)_}g

where ck:wo, For a weakly absorbing medium n]_<<nO the dispersion relation

2

eq. (II-63) can be approximated as

2 . b R
n,-1 + 21nlno = - {qk

. I
) (qﬁﬂb)+1%(qﬁﬂ%ﬂ.

Then, the real refractive index and the imaginary part are

ne =1+ (1I-70)
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and |

.. -=2" _R
n, o= -0 (nog,wo) . (1T-71)
0o :
The E.M. wave absorption per unit length is
LI-JIA R
o&(g,wo) = -2nlk = E;Z 0y " (n gk, ). (11-72)

This is the quantity to be compared to the photon absorption coefficient
per unit length oﬁ(g,wk) obtained in photon transport theory.
In eqs. (II-70), (II-71), and (II-72), oxR(nog,wo) and oxI(nOE,wO) have

the exact forms as egs. (II-68) and (II-69) except that the places where k

and w, occupy are respectively replaced by nog and Wy .

3. Comparison of the Results From Two Theories

The resulting expression obtained by substituting eq. (II-68) into eq. (II-
67) is identical to eq. (II-34) and,furthermore,eq. (II-66) with the substitution
of eq. (II-69) is the same as eq. (II-43) with the substitution of eq. (II-kLk).
One can conclude that the photon absorption coefficient per unit time and
the refractive index obtained from photon transport theory are the same as
that obtained from Kubo's theory through damping in time only for weakly absorbing
media. Since egs. (II-36) and (II-43) are not the same as egs. (II-72)
and (IIj70), respectively, the photon absorption coefficient per unit length
and the refractive index obtained in the former theory are different than
that obtained in the latter theory through damping in space even for a weakly
absorbing medium.,

As mentioned in section II-1, the "dressed photon” concept used in

photon transport theory is to associate photons in medium with the same
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wavelength A = %f as in free space, but a different frequency‘mk from ck.
It is obvious that the dressed photon technique is equivalent to damping
E.M. wave in time because the latter is to consider E.M. wave in medium as
a wave having the same wavelength as, but a different frequency from the
free space values. It is different from damping E.M. wave in space because
the latter is to regard E.M. wave in medium having the same frequency as,
but a different wavelength from the free space values.

From the above conclusions and reasons, it seems suggestive to for-
mulate photon transport theory by associating photons in medium with the
same frequency as, but a different wave number vector from that in free
space. Then the photon absorption coefficient per unit length and the
refractive index obtained from such formulated photon transport theory
may turn out the same results as obtained from Kubo's theory by damping
E.M. wave in space. It would not give the photon absorption coefficient
per unit time and the refractive index as obtained from Kubo's theory by
damping E.M. wave in time. However, the suggested formulation is more
desirable because most measurements have been usually done in measuring

photon absorption coefficient per unit length.



CHAPTER III

VARIOUS PHOTON ABSORPTION MECHANISMS

In chapter II, we have obtained the absorption coefficient for a photon
with momentum 4k and polarization A in dispersive media. We shall restrict
ourselves, henceforth, to a nondispersive medium. 1In order to display var-
ious mechanisms contributing to the photon absorption in a material medium
and also to estimate the order of magnitudes of the various contributions in
the lowest approximation we shall change the representation [!n>} for the
description of the particle system. In chapter II, the particle wave func-

tions |n> were chosen as the eigenfunctions of the -total hamiltonian

2

2 N
=y | L=+ vy + v
o J 2mGj
which included the interaction between various constituent molecules. In

the present chapter we shall work with a representation which diagonalizes

only part of HP. The remaining part of B will be treated as perturbation.

1. DESCRIPTION OF THE PARTICLE SYSTEM IN FIRST ORDER PERTURBATION APPROX-
IMATTION

For a particle system which consists of neutral atoms, singly-charged

ions and free electrons, the hamiltonian of the system can be written as

=7 o+ o+ B+ VP

WP - VAA + Vee + it VAe + VAl + Vle
HA i e . . .
where H , H , and H are, respectively, the hamiltonians of the neutral

28
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atoms, the singly-charged ions and the free electrons. VAA, v°° and Vii
are the potentials between the same kind of "molecules" (atoms, ions and
free electrons), and VAe, VAi, and Vie are the potentials between the dif-
ferent kind of "molecules.'

In addition to Hp, the interaction of the particles with the radiation
field can be separated as

PR Vy otV

where V,, V_, and V. are, respectively, the interactions of the atoms, the
free electrons, and the ions with the radiation field.

A convenient and simple representation which one can choose is that

the wave functions |n§>=‘a67>> satisfy separately the Schrddinger equations

HA|a>

= B la>
1°lp> = £ |p>
B
i
H|y> = >
|y E |y

1
with v=vP + £°F

B, H

molecules of the same kind, the wave function IaB »> is the product of the

considered as the perturbed hamiltonian. Since each of

, and H' can be separated as the sum of the hamiltonians for the

wave functions for the individual molecules in the system. In this rep-
resentation we must calculate the transition probabilities at least to the
second order in V if we want to investigate absorption due to free-free

transitions of charged particles. The photon transport equation then becomes
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n n
——TL—TI (nin)|<n'n'|V|nn>

1

3
S-Ef)\ mkt) + Q'YV%\ (r,k,t) =

-s

n

<n'q'|[V[n"q"><n"q"[V][nn> 2,
T il |E — [V]an | 8(E, -E_) (III-1)
nn nn nl,n n M
#nn,n' '

For the reduction of eq. (III-1), we shall use second quantization

Ad .
in which the potentials VAe, \ 1, and V'° and the interactions Vs Vo,

and V; are given by (see Appendix B)

2
hte By (K-K ' +u-u' z
ey I K(‘“;EH) a'l-z+ Y e (Eg)palam (K'a )AT(u A(Ka)A(u)
ey =1
uu' (I11-2)
. hrey (K-K'+2-1" 2 _i(K-K')- -1
SR S ———a'lz- T e HEE)B5 o> <02 Ze(H Fijo>
Ba Vx|
s AT (K AT b )A(Ka)A(ap) (11I-3)
je o bne By (4t w (a-u'):
ve= T > D'-z+ 2 e == Bilo>aT(apn)at(u )alm)alu)
VA ey )
uu' (ITI-4)
_ 5
v, = %}E——\E;: (KK K)o, &y, + [0l (K)e, (k)+ay (-k)e, (-k)IaT(K'a" ) (Ke)
Fg' (111-5)
v, =22 B (ot)e (k)+a (-k)e (-k)]-u 8 (u-u'-k)a (0 )a()
e e e e N e G (111-6)
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1 2
vy H%jf 2?: 8, (14K, & (o (e, (k)+a (-k)e, (k)] AT(2'D)A(p)
Ib
L (111-7)
where
ga'a ) <a,"§I93|a>>’ gb'b ) <b']§§igjlb:>) Wty = EX'—EX

j=
In the above equations, A(u), A(Ka), and A(4b) are, respectively, the destruction
operators for the annihilation of a free electron of the momentum #iu, an atom

of the external (center-of-mass) momentum HK and the internal state |a>

and an ion of the external momentum #i{ and the internal state |b>. AT(u'),

K

K'a’), and A+(£'b') are the creation operators which create a free electron,

A
an atom and an ion in different external and internal states. The symbol &

with subscript K denotes the Kronecker delta. p. is the position of the j-th

J
atomic electron in an atom or ion with respect to the position of its nucleus.

eéa‘a (or ed ) is the matrix element of the dipole operator with respect

=b'b
to the internal atomic (or ion) states. ’hba’a (or ﬁuﬁ'b) is the energy

difference of the internal states |a'>and |a>(or|b'>and|b>) of an atom

(or ion).

2. TRANSITION PROBABILITY FOR PHOTON EMISSION

In this section, we shall make several approximations to reduce eq.
(III-1) to a simple form. The number of photons with momentum Ak and po-
larization N emitted from L5 per unit time can be obtained by letting n'=nt+l

in eq. (III-1), i.e.
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2“ 1 1 2
ga(h)(ﬁk(h)+3 =IH1';? Dﬂﬂ)nn <n'n+l|V]nn>+ ngi” <n n+l|V£n"n;2><n"n"|V|nﬁ>
n =nn,n' 1+l nn Tn'n”
= S(En,n+l—Ehn) (111-8)

where E%(g) is the transition probability per unit time for emission of a
photon of momentum -k and polarization A. Let us consider first the direct
transition, the first term in the absolute square of eq. (III-8). Since the

potential vP between the particles contains neither the photon creation

nor destruction operator, then

<n'ntl|Vnn> = <o'n+l|Vafan>Bag 18y, + <BIML[Ve[Bn>8yyt Byt

+ <7'n+l,Vi|7n>6aavBBBx
where <B’n41]Ve]Bn:>6aav877' accounts for the direct photon emission through
the interaction of the free electrons with the radiation field. No such
transition can exist because the energy and momentum conservation laws can

not simultaneously hold (see the justification in Appendix C). Then

<n'ntl|V|nn> = <a'n+l|V,lon>8, .8 o + <y 'qrl|V|yn>

BB 'Oy QXX'SSB'

(I11-9)
The second term in the absolute square of eq. (III-8) accounts for the
indirect photon emission through the intermediate states |n"n">. It has

the non-zero contribution only for n"=n and 7" =ntl.

<n'mrl|V|n"q" ><n"n"|V|nn> 5 <n'|Vp]n":><n”n+l|HPRl|nn>

n"n"#nn,n" n+l Enn_En"n" n'#n’ RN

o <ot [E ' > <o 7P| n >
nﬂ?{n En_En”

+

(III-10)



where we have used En'

in obtaining the demoninator of the first sum.

1
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To simplify eq. (III-10),

the following three assumptions will be made throughout this chapter.

kind (i.e., neglect of VAA, yee

(i) The neglect of the potentials between the molecules of the same

)

and V7).

This assumption is justified

=0 from the energy conservation delta function

because these potentials do not affect the photon emission and absorption

much, although they play an important role in the shape of the lines (pres-

sure broadening).

n

mn_tn

n

Under this assumption, eq.

(ITII-10) becomes

<n'm+1|V[n"n"><n"n"|V[nn>

#nn,n'ntl EnnEny"
_ g [®arilvelpn><orp"|[Wap> | <a'p' [V¥lap " ><pnri|velpn>
B" E -E i on E ' '—E "
g Ta'p ap op -
‘/— i i "
" Z)<B'WHJVﬂ6"n><ﬁ"7WVlﬂ57> LB Vs ><p miywﬁ5”>} 3
B 1\ EB7_EB”')" ES")”_EB”V
.y < | vily "> <oy [V oy > N <oy [V oy > <"y v > s
7” E -E  on E ' I—E "
ar a'y ay oy
. {<o¢‘n+1|VA|oc”n><oc”B'jVAe|ocB> , So'B ‘iVAeioz”B ><oc”n+1lVA|ocn>} .
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VLA B'y' Br"
(III-11)

The first sum accounts for the photon emission due to electrons moving
in the field of neutral atoms. We shall refer to this as the bremsstrahlung
of electronsin the field of atoms. This sum consists of two parts. The
first one corresponds to the emission mechanism in which an electfon interacts
first with an atom through the coulomb potential and goes into an intermediate
state. It then interacts with the radiation field by emitting a photon.
The second part represents the emission mechanism in which an electron first
emits a photon and then intgracts with an atom. The second sum in eq.
(III-11) is the bremsstrahlung of electrons in the field of ions and the
third sum is the bremsstfahlung of ions in the field of atoms. Each of these
sums contains two parts corresponding to the same emission mechanisms as
described above.

The fourth (fifth and sixth) sum is the dipole radiation of atoms
(atoms and ions) induced by electrons (ions and electrons). The reason we
use this ﬁerminology is that the emitted radiation comes from the dipole
transition of the atoms induced by the interacting electrons.

(ii) The internal states of the ions are unchanged. This implies that
Vi=0 because ay =0 for b'=b (see eq. (III-7)). Then the third and sixth

sums in eq. (III-11) vanish and eq. (III-8) becomes

<n'l|V]nn> = <a'n+1|Vylon>8ag 18, (ITI-12)
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under this assumption.

For structureless ions, such as hydrogen ions, V; takes the form of
eq. (III-6) for Ve. 1In this case, the third and sixth sums can be neglected
as compared to the first two sums because the mass of hydrogen ion is much
larger than the electron mass. Furthermore, eq. (III-12) is also true for this
case because the free hydrogen ion, just as the free electron, can not emit
or absorb any photon through direct transition.

(iii) All the cross terms after expanding the absolute square.of eq.
(III-8) will be neglected.

Under the above three assumptions, eq. (III-8) becomes

_ Bri DA DA
E (5)(£, (x)+1) = ¢ P(x) + exBl‘A?@ £ e TT() v e (k) F e (k) (TTI-13)
where
BA, \ _ on , 2
e, (k) “og'nﬁ Dom,om|<a n+1] v, |an> | (B 1oy (ITI-14)
¢ Brhey _ y2r 5 B 1 Ve|B "> <a'8" |V o>
A - o'h ofn,opn | Fop = Earp”
BB '
1 2
<a'a'mAe|a6"><ﬁ +1fVe B>
' g’ Eo{'ﬁt'EOﬁ" S(Ea'ﬁ'ﬂ““l EO@T]) (III 15)
cBriey g 21p '<B'q+l|Ve|B"n><ﬁ"7'|Vle|67>
M = yy' A yBn,7pn|B B, Egn,
BB '
C o loLi€ian " 2
+ Z"<B Y IV IB 7><5 T1+.llvelf3ﬂ>‘ ( N -7 ) (111-16)
B Eg1 =g, B'y+l "By
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are the numbers of photons of momentum hk and polarization A emitted per unit

time from LB, respectively, due to the atomic bound-bound transition (GXBA),

BrAe)

the bremsstrahlung of electrons in the field of atoms (€% and ions

(e.Brie)  the atomic dipole moment transitions induced by electrons (e DAe
’ p

A A

and ions (e DAi).
A
Since the radiation absorption due to electrons in the field of atoms
will be investigated in Chapter IV, the reduction of eqg. (III-15) to the
form used in Chapter IV is now performed in detail.

Let the initial and final states of the electrons, the atoms and the

photons in the system be

laf> = |...n(Ka), n(K'a')...>]...n(u), n(u'), n(u")...>
la''> = |...n(Ka)-1, n(K'a")+1...>|...n(u)-1, n(u')+1, n(u")...>
!q> = l...n}\(_}g) >
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l’r]+l> =

-...T]x(—k->+1005>
where n(Ka) is the occupation number of the atoms of the external momentum ¥k
and the internal state |a:a n(E) is the occupation number of the electrons

of momentum.hg and same for nx(g). One of the intermediate states of the

electrons for which the matrix elements in eq. (III-15) does not vanish is

B"> = |...n(u)-1, n(u'), n(u")+1...>

From egs. (III-2) and (III-6), eq. (III-15) becomes

BrAe )
k) = 2
N (&) ak'a' .9 2

<
]
G---
=
1=
® 1
=
=
©
+
=
IS[
=l
g—--

where

Z

Qg ralu-u') = <a'lz- Le

o 1 o .
1(u—u ) QJi
J:

a>.

N(u), N(Ka) and fk(g) are the numbers of the electrons, the atoms and the
photons in L5, respectively. In obtaining the above equation, H(E) and

n(ga) have been neglected in comparison with unity and the statistical average
over the initial particle and photon states have been performed. For non-
relativistic electrons one can replace dg(u-uik) by dx(u-u'). It means

that the recoil momentum of the electrons can be neglected. Taking the

sum over u" after this approximation is made, one obtains

6 P (k) = BB (k) (£, (5)+1) (1I1-19)
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where 5
LL K_K|+ TR ’ 11!
g Brheny .y Aex) 6 By (K-K'+u-u )Qa,a(gg ) a ) |2
= 1 _— —\
M Ka§ a' I?m?wB iu-uﬁlh
uu -
® S(Eg,a,-EKa+Eu,—Eu+-ﬁw) N(u)N(Ka) (III-20)

is the transition probability per unit time for emisgion of a photon of
momentum %k and polarization A due to the bremsstrahlung of the electrons
in the field of atoms.

Using the following properties

3
> L 2 K
Ked’X  (on)
3
By (K-K'+u-u' )== () 8(X-K'+u-u'")
—_—— —_—— 5 —— — —
L
eq. (III-20) can be written as
BrAe = BrAe -
E, (k) Cx (_IE)NANe (ITI-21)
where
BrA Bre’ 3. 1.3 3 0.3 Qi’a a) 2
rae - 1 ' . .
¢, (k) = =5 ; Ja'k JaK' [aTu JaTu' ) %g, 9 M (BN (w)
m W q
-K"+u-u' - + -FE +# -
w 5(K-K'+u-u )S(EE,a, EKa E - ) (I1I-22)

|

= —' B =':o .
g = u-u' and qk q 5%

NA and Ne are the number densities of the atoms and electrons in the system.

Pa=N(a)|NA is the ratio of the atomic density in the internal state |a>> to

the total density of the atoms in the system. It can be interpreted as the
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probability of finding the atoms in the state |a>. MA(E> and Me(E) are
the distribution frequencies of the atoms in dBK and of the electrons in dBu.
The further reduction of eq. (III-22) will be found in Chapter IV.

In the same way, the transition probabilites per unit time for photon
emission due to the other mechanisms as described in egs. (III-1k4), (IV-16),
(III-17), and (III-18) can be written down. Letting the ion density of the
system be equal to the electron density, the total transition probability
per unit time for emission of a photon of momentum Bk and polarization A

due to all the significant mechanisms under the assumptions made is

BA Brie DAe DAL
E (k) =C (W, + (¢ (k) +C (k) +C (k) NN
e A (II1-2%)
A e
where
2
BA, | _ (2me) 3 2 2 )
Ck (E) W Jak g‘Pazg’wa'ada'aA(E)MA<E>6(Ea'~E3+ﬁiv (III-2k)
2
. 6 (q)
Brie _ Bre 3 3 3 Qb‘b =’ 2
c}\ (k) = 3 fa e 2" d ud u' %Pb ——-—~—~——~qu N Mi(_g)Me(E)
m 5(4-4' gg’)a(Eﬁ,b.—EzbJrEE-ﬁE;m) (I11-25)

6
c PA(x) = 8—;“3— [OKEK @uau’ 3 Pa T2, {
a .

A £ wa,a”ﬁw
®_y_d «(a) M, (KM (w)
_ a"a a' ax a'a :} e 5(K-K'+u-u"')
® y 4 ===
a a q

w 85(E_, ,-E_+E  -E +fw) (II1I-26)
a u u
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6 Qﬁ (a)
DAi 2
c, Hx) = 8re rdxdx'ad1ads’ ¥, Pa Pp L —
fﬁ%w ab a a
i Q. (a) o, W)y |°
aly ata" ata™ a'a'= a"a a"an a'a"'=
a” a,a1r+w wan +W
M (KM, (2)8(K-K'+2-£"')8(E -E_+E -F +& -
m M (KM, (L)8(K-K'+L-2')5(E,, - +E, -E +ho) (III-27)

2 2 _ - z-1l j_g.g o)
1%, q(a) = I<b |z-jz§le o> 1°.

) is the probability of finding an ion

In egs. (III-25) and (III-27), Py= -
e

in the state |b> and M, (4) describes the distribution of the ion velocities.

%. PHOTON ABSORPTION COEFFICIENT
It has been shown 1in section III-2 that the transition probability
per unit time for emission of a photon of momentum Ak and polarization A
due to all the significant mechanisms EA(E) is given by eq. (III-23). It
is possible from E (k) to calculate the absorption coefficient for photons.
This calculation is now performed.
- If it is assumed that the medium is isotropic, then the absorption

coefficient for unpclarized photons is

o= 5 T fan (s (5)-5 ()] (T11-28)

where AN(£> igs the transition probability per unit time for absorption of
a photon of momentum %k and polarization A.

For MA(E)”Me(E> and Mi(ﬁ) being Maxwellian distributions and for the

-E,/0 , -E
internal states of the atoms (ions) populated as e a/ (e b/@) where © is
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is the temperature of the system in energy unit, then the absorption and

emission transition probability are related by the equation

E, (k). (III-29)

From egs. (III-23), (III-28) and (III-29), the absorption coefficient can

be written as

2
o= CN, + C NN+ CN (111-30)
where
Hw
e %1 BA
¢ = - an. ¢ k III-31
o  8ne % I KN (k) ( 31)
1o
e‘g 1 BrAe DAe DAT
C, = - [a + + i
17 8rnc %ﬁf 0, (¢ (k) (k) T (k) (TTI-32)
H
e@ 1 Brie
= , C k.. TT %
‘27 B % Jaa, & (&) (1II-33)

L. TIME-DEPENDENCE OF o

A plasma will vary with time and eventually die out if there are no
external devices to maintain it. The absorption coefficient o is a function
of time. The possible parameters in eq. (III-30) which may depend on time
are the neutral and electron densities, the temperature of the medium and
the probabilities Pa and Pb of finding respectively the atoms and the ions
in the states |a> and |b>. Since plasma temperatures are known to be

sensitive functions of time for most cases, C , C, and C, are time-dependent.

[eX4
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In this section, we shall investigate the time variations of the gquantity

y(t) = _Qéﬁl___ instead of ot), by assuming that the .neutral and electron
NegCp(t)

densities satisfy, respectively, the simple differential equations

d_Nii_t). - '70N5(t) (III-3L)
Qﬁgﬁﬁl - 7oN§(t) (IT1-35)

where y, is the recombination coefficient of the electrons with the ions.

The solutions of egs. (III-34) and (III-35) are

N (t) = Meo (IT1-36)
€ HyoNeot
YoNeot
N (t) =N, + Ty Nt (III-37)

where Neo and NAo are the respectively the neutral and electron densities at
the instant of the plasma formation. The substitution of egs. (III-36) and

(II1-37) into eq. (III-30) gives

1 X
V= i O Tt (111-38)

where x = yNoot, ¥(t) = alt)/NoCq(t), A = Ny |Ney and u(t) = Co(t)/Cq(t)
are dimensionless positive numbers. 1In obtaining eq. (III-38), the di-
rect bound-bound transitions of the atomic electrons, i.e., the first term
in eq. (III-30) has been neglected. The reason for neglecting this term
is that it represents the atomic line absorption, and hence is negligi-
ble when the frequency of the photons is far away from the line‘fre-

quencies. In eq. (III-38) A is the ratio of the neutral to the electron
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density, a quantity of measuring the degree of ionization of the medium at

the instant of the plasma formation. p is the ratio of the inverse brems-
strahlung due to an electron in the field of an ion to that of an electron

in the field of an atom if the contributions due to induced dipole transitions
are negligible (see eq. (III-32)). 1In the case that Cl(t) and Cg(t) are
sensitive to the time t, their ratio, u(t), may be insensitive to t because
the numerator and the denominator are both time dependent through the tem-
perature in the Maxwellian distribution of particles. We shall assume that

pu is constant, then a maximum of y in eq. (ITI-38) occurs at a value

1-A-2u
1+A

(I11-39)
provided A+2u<l because A, up and x are positive numbers. The variation

of y(t):a(t)/niocl(t) with time is shown in Figure 1 for the plasmas with

x=1/9 and p=o, 1/9, 2/9, 5/9 and %/9. If the dependence of plasma tem-
perature with time is known, the variation of the absorption coefficient

o(t) can be obtained through the calculation of C_(%t).

L
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Figure 1. Variation of o(x/7 Neo)/NeoC1 With the time after the forma-
tion of plasma.,



CHAPTER IV
RADTATION ABSORPTION IN PARTIALLY IONIZED HYDROGEN

GAS DUE TO INVERSE BREMSSTRAHLUNG OF ELECTRONS
IN NEUTRAL ATOMS

1
In 1967 Akcasu and Wald( 2

investigated the radiation absorption due to
the inverse bremsstrahlung of slow electrons in the field of neutral atoms.
Since the temperature of the system they investigated was low (©~lev or less),
they assumed that all the atoms in the system are in the ground state, the
energies of the electrons are insufficient to excite an atom from its ground
state to an excited state, and the elastic scattering cross section for
electron-atom collisions appearing in the absorption formula can be approx-
imated by its value at zero electron energy. Under these assumptions they
calculated the various absorption contributions due to inverse bremsstrahlung,
induced dipole transition, and exchange and interference effects; and found
that the last three contributions for low temperature system are negligible

as compared to the first one.

For hot plasmas, such as the one(lE) produced by a giant pulsed laser
beam which we shall discuss later, the temperature of electrons in the plasma
is about 20 eV. At such temperatures, the above assumptions made by Akcasu
and Wald cannot hold. It is the aim of this chapter to consider the problem
for higher electron energies. The atoms in the system are allowed initially
and finally to be in any excited state as well as in the ground state. The

electron energy dependence of the elastic and inelastic cross sections will

be also taken into account. However, only the absorption due to

L5
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the inverse bremsstrahlung of high energy electrons in the field of excited
and ground atoms shall be - computed. . The other contributions, such as
induced dipole transition, etc., which at high temperature might not be

small as predicted at low temperature, will not be considered in this thesis.

1. ENERGY INTENSITY OF EMITTED RADIATION

In section III-3, we have obtained in eqs. (III-21) and (III-22) the
transition probability per unit time for emission of a photon of momentum
ﬁg and polarization A due to the bremsstrahlung of the electrons in the

field of atoms as

8ne6 3 3 3 Qi'a(q) 2
E (k) = == [d'K [a"K"' [a"u' 1 N(a) 2, — q. M, (K)
A= 23 a g L A A=
m w a
m &(K-K'+u-u')8(E, -E +E ,-E +1w) (1Iv-1)

where N(a)=NAPa is the number of the atoms in the internal state |a>. 1In
eq. (IV-1) we have dropped out, for the time being, the integration NefdauMe(u)
which accounts for the effect of the Maxwellian electron distribution in order
to simplify the writing of the expressions below. We shall resume this
integration later in section (IV-k4), The superscript BrAe in eq. (III-21)
for indicating the contribution due to bremsstrahlung of the electrons in
neutral atoms is also dropped out for the same reason.

For an isotropic medium, the energy intensity per unit energy emitted
in all directions and in two polarizations is related to EK(E) by the equa-

(12)

tion
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w5
S(tw) = 5
¢ (2n)
h
where Qk
9,=9°§, , one has

Jag, %

and eq. (IV-2) becomes

6
s(iw) = —5%— [ ajaK [au' ¢° ¥ W(a) P,

1
3 m 05 aa

- +
" a(EK B\ A)

where

and

A=E -E +E -E  -%w.
a a u u

2

a

A

8n 2
3

a4,

2 E (k) (1v-2)

is the direction in which the photon is emitted. Recalling that

(@, (©)B(EE +uu')

(Iv-3)

For a medium in thermal equilibrium, the atom momenta, hk, are distrib-

uted according to the Maxwellian distribution law, i.e.,

2.2
3 1o I S .
MA(g)d K = ———-——575 e M §°K (IV-4
(2nMO)
and the integrations over d5K and dBK' in eq. (IV-3) can be carried out
6 x A _m 2.°
8 2 Vi - W
s (aw) = = fd5u' q Z,N(a)Fa,a(g) o™ Iy2 (Eu‘ mY )
ME
A q . 5 mo, . '
where x = Y and y = o Since d"u' = =5 u dEu~dQ ., the integration over
n=

dQu, can be performed and eq. (IV-5) reduces to
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1
16 3 1 2 AR . R
S(1) = = o0 — JaB_, [imex aqq” L N(a)F , (q)()7 " W2 WY
w” " min aa (TV-6)
o2
where & = —— is the fine structure constant, q ., = [u—u" and q = utu'.
fic min max

M
As a result of the large mass ratio - of an atom to an electron, the
quantity x is a large number in most cases. Therefore one can approximate

the exponential factor in eq. (IV-6),

1
2

(£)2 exp{- —

X ( A m 2 2 ( A gg>
T uye E M

by o - .

The last term,my/QM,in the argument of this delta function accounts for the
recoil energy of the atom. Thus eq. (IV-6) iﬁcludes the effect of finite
atom mass. However, for the sake of simplicity, the atoms in the medium will
be assumed to be infinitely heavy for the remainder of this chapter. Then
eq. (IV-6) becomes

L2 s Jam [ e da ¢ Lu()F,, (0)5(8 -E, 4B -5 w) (IV-7)
2. DIFFERENTIAL CROSS SECTION

In this section, we shall express the energy intensity of emitted
radiation in terms of the differential cross section for electron-atom
collision. During collision, the electron momentum changes from #iu to'ﬁg’
while the atom simultanecusly undergoes a transition between the initial and

final states |a> and |a'> for which the atom internal energies are Ea and

E

1 » respectively. The differential cross section in the laboratory system

(17,18)
as

of coordinates for such a process can be defined
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%aa’ (Eu’Eu"q) dgu'dEu'
(1v-8)
L Eu'
= ——AN—F -E +E - do ,dE
. 2VE, g1 WB(E -E +E -E ,)dg ,dE_,
o —_—
where dQ , is the element of the solid angle in the direction of u' and
%2
ao = —— 1s the first Bohr radius of hydrogen atom. The macroscopic differ-
me
ential cross section for the scattering process can be defined as
L (ELE ,a) =Na)o, (B B ,aq) (17-9)

Since the various atomic transitions accompanying scattering processes
remain unseparated experimentally, the macroscopic differential cross section
is obtained by summing the ceontributicnsg of transitions to all admissible

final s%ates of the scattering atom as

y By |

E ,E = ——N— N F ' -E . +F -E . L IV-10

Zg( u’ u"q) q 2 Eu g' (2) a'a(q>6(Ea a' u u') k 10)
0

Then the total macroscopic differential cross section of an electron scattered

by the atoms in all possible initial states is

/E |
2 (Eu,Eu,q) = —-5—- 2, N(a)F (q)B(Ea—EaﬁEu—Eu?), (Iv-11)

E PR a'a
u
ao

In terms of the differential cross section, eq. (IV-7) becomes

S(tw) = 2 s (tw) (IV-12a)

where |
2 / E
v ) h o
saa,(m) -2t [dE  N——— fqmaX dq_q Z ,(Eu,Eu, i ,q ) (IV-12b)

1
3 omw ° u Eu +ﬁ® in
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O?a e f J fqmah L (BB +w,q). (Tv-12¢)

om ‘5 u'

or

If all the atoms in the medium are initially and finally in the ground

state as assumed by Akcasu and Wald, egs. (IV-7) and (IV-8) become in this

case

lo el w Imax
S A =
i) O? m (; u fqmindqq F(q)&(Eu—Eu,Jhw) (IV-13)
L
o(q) = — F(q) (IV-1L)
a
o

where F(q) denotes the matrix element evaluated with respect to the ground
state of the atom and NA ig the number density of the atoms in the system.
Equation (IV-14) is just the microscopic differential cross section of an
electron elastically scattered by an atom in the ground state. In terms
of the velocity, v=hu|m, of the electron, the integral microscopic cross

section can be written asg

2my
8n .1 A o2 .4
olv) = = [ Flg)du = 8n(-—) qF(q)dq. (Iv-15)
a2 -1 a my o)
O
Combining egs. (IV-13) and (IV-15) gives
16 2 m 5 1 @ Vmax_ 3 v do .
S(fw) = o; dk avv v) + ——
S(Eu—Eu,-ﬁm) (IV-16)
v+v ! v-v' :
where Vopax = - and Vyin = i”j;—i. Eq. (IV-16) indicates that the intensity
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of the bremsstrahlung is not determined by the value of elastic scattering
cross section at the incident electron energy, as might be expected in-
tuitively, but it depends on the variation of the cross section in the

velocity region (v ). If o(v) is slowly varying up to the incident

e =V
min max

energy of electrons, one can approximately evaluate the integral over dv

in eq. (IV-6) for a low temperature system

N =

E W
S(hw) = NA#%%?G(O)C&;?)B/Q(Q—'%E)(l-'%i)

o (TV-17)

where o(o) is the cross section of the electron elastically scattered by the
atom in the limit v-o. Equation (IV-17) is identical to that obtained by

(12)

Akcasu and Wald by the partial wave method. This identity shows that the
method of this chapter by using plane wave for the electron wave function
will yield in the above approximation the same result as obtained by partial
wave method if one uses the experimentally measured scattering cross-section
of ground state atoms in both methods.

Although eq. (IV-16) is obtained by assuming that all the atoms in the
medium are initially and finally in the ground state, it is also applicable
to the atoms being initially and finally in the same excited state. 1In
this case, o(v) in eq. (IV-16) is the cross section of an electron elas-
tically scattered by the atoms in the excited state and NA is replaced by
N(a), the number density of the atoms in the excited state ]a>>.

For inelastic scatterings of electron-atom collision, the energy in-

tensity emitted through such processes can also be obtained from egs.

(IV-12) by knowing the differential inelastic scattering cross sections.
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It is obvious that the energy intensity calculated from egs. (IV-12)
and (IV-16) will be more accurate if the experimentally determined cross
sections are available. Unfortunately, the cross sections are not all
experimentally measured. We shall calculate, for the sake of consistency,
all the relevant cross sections in Born approximation even though some of
them have been experimentally determined. In order to get various cross
sections in Born approximation, one has to calculate Fa'a(Q) for various
atomic states. Fa.a(q) is also contained in eq. (IV-7), the expression
for the energy intensity of emitted radiation. However, once Fa,a(q) is
calculated, one can obtain the intensity of the emitted radiation directly
using eq. (IV-7) rather than first evaluating the cross section and then
using egs. (IV-12) and (IV-16).

As we shall apply the theory developed above to the hydrogen case in the
next section, it is suitable here to show some of the electron-hydrogen
cross sections calculated in Born approximation and partial wave method.
The elastic cross sections calculated in Born approximation when the hydrogen
atoms are initially and finally in the ground state |lOO>> as well as in the
states |200>, |2lO>’, |211> , and [21,-l>> of the first excited energy

level are given by

%100 1 Ul
5| 1"

naog 3U (]_+U2)5
%200 1 [5081- 210b6+lh70b5+M150bu+65h5b5+695lb2+M277b+208i}
o ° 520 (l+b)7

O
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5 5

+1h7 Obh+2625b
>7

a 2 35U2

%10 2 [1157 ] 70b6+u90b +3087b “+2289b +1157]

(1+b

%11 %1-1 2 lObu+5Ob5+lOOb2+95b+57

- - 37 -
> > > 5

8 na 5U )

o o (1+b

where b=LJU2 and U2=u2a02 with:h2u2/2m being the incident energy of the

electron. These cross sections are plotted in Figure 2 together with o

19,20
which is calculated by partial wave method( 9, 20) and agrees well with

100

experimentally measured results(gl). 0100 Was calculated before by Mott
and Massey(l7), but for the states in excited levels no elastic cross sections
for electron-hydrogen collision have been calculated in either Born approx-
imation or partial wave method. Therefore, we had to calculate oppp, o010
and Op11 using the Born approximation explicitly for the purpose of compar-
ison with 0100+ For inelastic cross sections when the hydrogen atoms are
initially in the ground or in an excited state, most calculations in the 1it-
erature have been performed on Born approximation.(l9’ 22-27)
Figure 2 shows that the elastic scattering cross section for the hydrogen
atom in the ground state calculated in Born approximation is less than Gioo
which agrees well with the measured values., The discrepancy becomes large when
the incident energy of electron decreases. Furthermore, the elastic cross sec~-
tion for the atom in a higher level is much larger than that for the atom in
a lower level because the size of the atom is bigger. This may cause a larger

radiation absorption when atoms are mostly in excited states as in the case of

a hot plasma.
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100

l | I I l |
0 2 4 » 6 .8 1O 1.2 1.4
U“(ATOMIC UNIT)

Figure 2., Elastic cross sections for hydrogen atom in the states llOO>,
|200>, |210>, |211>, |21-1>.
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3. % W(a) F , (q) FOR HYDROGEN ATOM
a'a a'a

As mentioned above, Fa'a(q) of an atom or the scattering cross
section of electron-atom collision plays an important role in the energy
intensity emitted due to electrons moving in the field of atoms. Since
we shall compare the radiation absorption coefficient, which is related
to the emitted energy intensity (see later), to the measured values
in a hydrogen plasme, we need to calculate azh N(a) Fa,a(q) for the
hydrogen atom. Let a wave function of a hydrogen atom be labeled by [nmn>
where n,{, and m are, respectively, the principal, orbital angular momentum,
and magnetic quantum numbers. Since the wave function of a hydrogen atom
in the energy level E, has n2 degeneracies for a spinless orbital electron,

one can write

N iq-
Y Na)F , (q) = T (n) l<a'2'm'|1-e7% T ngm> | (IV-18)
aa' a ' a nim 2 ll-
n'llmn q

where N(n) is the number density of the hydrogen atoms in the energy E,.
In writing eq. (IV-18), we have assumed that the states of the hydrogen
atoms with the same n but different possible values of £ and m are equally pop-

ulated. Expanding the absolute square in eq. (IV-18), one can write

1 N .
2 owaE, (@) = 2 2 M onng) ¢ 3 elana (1v29)
aa g B n n'#n
where
G(n,n,q) = nZoRe ¥ <n£m{ei9:£|n£m>> + Z.|<n£'m'|eig.£|nlm>>|2 (IV-20)

m Im
'glml
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ig-r -2

G(n,nlq) = 2 |<n'snm'|e EL=—|n£m>l . (Iv-21)

Im
£'m'

Although the elastic cross section for hydrogen abtom in the ground

state and some of the inelastic cross sections when the atom undergoes

1 -
(17, 22-27) there are no explicit

certain transitions have been calculated,
expressions for G(n,n,q) and G(n,n}q) available in the literature except
for G(1,1,q), G(1,2,4), G(1,3,a), and G(1,4,9). In order to get G(n,n,q)
and G(n,n}q) explicitly, for other values of n and n' we shall use the
method introduced by McCoyd, Milford, and Wahl(25) which we present below
for completeness.

By introducing the normalize=d hydrogen atom wave function |nfm> =

N nl(r) YZnKQ) and expanding

1
iqer w 2.7,
e L= = ¥ [hn(2pr1)151P5 (ar)Y_(0),
_ D PO
p=0
one can write
. z.i.l'
1V ptomt 1g-r
<n'l = = > = -
n'f'm'|e |nim Y ' yﬁyszzgm? Rp,nf,n’l'(q) (1Tv-22)
p=|1-1"]
h
where 1
y = iPlun(2pv1)1° [T ()Y, (2)Y,, ,()an
Pyim,2'm' ) po =""im=""Q'm' "=
. pt2om! - i pALN /Ll
= + +1)(24"+1 -
i (2p+1) N (20+1) (24 )<?m_9<ooo> (1V-2%)
31323

with — being the Wigner "3j" symbol, and
12



o7

= [N (r)N - a
Rp,ne,n'z'<q) {Dnz(r) n,,l,(r) Jp(qr)r r
0 '
B -x, 24+1 PYRESE
p,nl,n‘z(y) nt,n' s 4? e Jp(yx) rl+£(cx) n'+£‘(c x) (IV-24)

m
In eq. (IV-24), j (yx) are spherical Bessel functions, L , are the associated
b

Laguerre polynomials and

!
2 \I,_2 1" 2™ 4+p'+3
e = ) ) () MM g
nf,n'f na_ ' n'a_ n+n nf n'f
X
2 n-4-1). |2
Moo= - ( )5(~ ), (1v-25)
nl na,’ 2n(n+1)!

B =f+1'+2, ¢c' = 2n/(n+n'), c = 2n'/(ntn') y = qaonn‘/(n+n')

From egs. (IV-22) and (IV-23), one can perform the summations over m

and m' in eq. (IV-21) by using the orthogonality property of the 3j symbol,(28>
+. + L. . . . . . 1
%1 %? /3132J5> <f13235 I A
s o+ \mm momm '/ 2 +1 3" mom'
m=-3 my==dp \TRls/ Nl /) SdsTh dady sl
then eq. (IV-21) becomes
G(n,nlq) = X |<n‘£'m'|elg:£¢n£m>>[2
2'm' _ (IV-26)
, 2 pLLi2
= R +1)(24+1)(24'+1
”Z,pl o,ng,n g (W7 (er) (201} (20 1) ()
: . (29)
When the Laguerre functions are expressed as polynomials
20+1 n-f-1 2
L S+1 {((nt£)!} s
+ = -1 IV-27
vl (p) Z‘ (-1) (n-£-1-8)!(22+148) '8! ° (Tv-27)
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the radial integral in eg. (IV-24) reduces to sums of integrals which in-

(30)

tegrate directly in terms of hypergeometric function

1.
(S)THp+s '+1 . 2
fxB'e—xj (yx)ax = an)ﬂ\p P b v<%+6.+l ptl-Bl 2pts 2
P L p2) (14,2 Hptp'l) 27 2 72 P Ine)
o 1+y<)

The hypergeometric function F{a}bjcﬂz) is the analytic solution of the

(30,31)

hypergeocmetric differential equation
7(z-1)F" + [(a+b+1)z-c] F'+abF = o.

About the singularity z=o, 1t takes the form

ab - ala+1l)b(b+l) 2 N

c 2le(e+l) (1V-29)

Fla,b,c,z) = 1 +

where ]z|<ln Then F{aﬁb,cfz) will be a polynomial when a or b is a negative

+1
21 (cx)

integer. For the terms having the odd pcwer of x in the product of Ln+£

210'+1 . L ptl-B’ . .
and L§!+[V (c'x), one can prove that b = E—E—E“ is a negative integer and

b<-1. Therefcre the radial integral of eq. (IV-28) will be a polynomial for

these terms. If a or b is not a negative integer, F(ayb,c?z) should be

expressed about the singularity at z=1 instead of zZ=o

/. _plehic-a-b)
Flestres2) = fmaitomn)

F(a,b,l+a+b-c,1-2)

(IV-30)

c)Natb-c) c-a-b _,
+ FKa)Tﬁb> (1-2) F(c-a,c-b,l+c-a-b,1-z)
then F(a,b,c¢,z) is a polynomial in (1-2z) because c-a is a negative integer

. _ 21+1
or zerc for the terms having the even power of x in the product of Li+£ (cx)
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20'+1

and L (c'x). The first term in eq. (IV-30) vanishes because[T(c-a )+

n'+g'

when c-a approaches a negative integer or zero.

With the tabulated values of the "3j" symbols and the above described

calculation of the radial integral, one can, in principle, find G(n,n,q)

and G(n,n;q) for any values of n and n'. It is obvious that the calculations

for large values of n and n' are tedious. We shall calculate G(n,n,q) and

G(n,n}q) only for n,n'=1,2,3 below.

From egs. (IV-20), (IV-22), (IV-23%), and (IV-26) and from the tabulated

(32)

the "33" symbols, one can obtain (see Appendix D)

2
G(l,l,Q) = {l"RO,lO,lO,(q)}

2 2
G(1,2,q) = RO,lO,EO(q) + 5Rl,lO,21<q>

2 2 2
G(1,3,q) = 30,10,50(Q) + 3R1,lo,51(Q) + 5R2,1o,52(Q>

2 )
6(2,2,a) = 4-2Ry o6 oo(a) + Ry 20 0o (4)-6Rg o1 21, (a)

2 2 2
3Ro o1,01(a) * 6By oy o1(Q) + €RY o o1(a)

+

o 2 > 2
6(2,3,a) = By 20 30(0) + 3Ry 50 51(a) + 5By 50 5p(a) + 3R] 5 50(a)

+

2 2 2 2
5Ro,21,31(a) + 6Rs o1 31(a) + 6RY o1 35(a) + 9R3 51 35(a)

2 2
G(B,ByQ) = 9‘230350,30(a> + RO,5O,50(Q> “630,31,51<Q> + 5RQ,51}51(Q)
2 2 20 2 -
+ 632’51’51<Q) -lORO’52,52(q) + 5Ro,52’52<q) + R2,52,52(q)

(IV-31a )

(IV-31b)

(IV-31c)

(IV-314d)

(IV-31le)



60

2

90 _2

2
+ Z R

2
~ Ri,30,50(0) * EBY 30 31(a) * 10Ky 50 55(a) + 12R

+ 18R (Iv-31f)

2
5,51’52(Q)-

where Rp " n'l'(q) are determined by egs. (IV-2L4) thru (IV-30). From
) )

straightforward but tedious manipulations, one obtains R (q) for

p,nl,n'L’

n and n'=1,2,3 with the following results:

1
Rp,10,10(0) = - > o
g ao 2
(1 + L )
1
et
R q) = 2
0,10,20
= (9+hq°a’)’
L 1 %
2 2 o)
R (a) =2 3
‘1,10,21 (9+uq2a§)5
2
o2 2
37 (43 7)
Ry 10.30(a) = N
7 (h+e7)
2 1 5
o )
R1,10,51(‘1) _ 52, e(mg .
(b+e™)
2 2
] . 52 52 é2
2,10,32 -
»10,5 51/2 (h+§2)h
2q ao-5q2a§+l
Ro,00,20(a)
sV y (l+q2a2)u
1 o2
: > qao(q ao-l)
R q) = 3 —————
1,20,21
y=Vy (l+ 2 Q)M (IV-BE)



: qzai—l
R q)
0,21,21
o2
(@) 29 ao
R a
2,01,21
o (1+9%a2)"
@]
153
R (q) = 2235‘ 2 757“-19u72+115
0,20,30\4) = 7 7 >.5
5 (1+y7)
3
b o 250 215y t-08)%s)
1,20,31' %
72023 50 (149°)°
2
152 2, 2
. > y -0
. (q) 3" y (y-2)
2 20,32 1% 2.5
= ()
5
13
Lok 2
. (q) = 2237 205y =78 45)
1,21,30* 7 6 2
’ 5 (149°)°
10,2 2, 2
, ) (%5
Ry 21,3119) = 63 : '572 2)
Y 5 (1+97)
112 2,2
Ry o1 31(0) = 2 @3 L gqé)
T 5 (1+y7)
10,2 >
5 (q) = 227 2037°-5)
1,21,%2
& L (1n®)
5 2
21532 3
R (3) =
B A 5
5,21,5 515/2 (1+ 2>,

(1v-32)
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R 1o xo(a) - 9¢°-18t0r7ot 28¢5
2052 3(1+62)°
1
6 L 2
R oo () - 2° £(9¢8 366 +29¢°-6)
,30,5 3 (l+§2)6
5
!
s 50 50(a) - 2® £2(38 -126%45)
Y 35 (1e2)°
. (o) - 106003 00?3
0,%31,31 -7
22 3(14%)°
R 21 1 (a) - 2 235 -5t%0)
, _
,31,5 3 (l+§2)6
L
N2
. (o) - . 2 £GE10t%3)
1,31
s31,52 3 (1+52)6
L
. (o) - 250 £
5,31,32 3 (1+g2)6
I
o 5o,50la) = 2122
R0,30,3012) =
’ 5(1+6%)°
2 2
Ry 5p 55(a) = - P 3¢5-7)
J 2 - ¢ 6
0 (1?)

(IV-32)
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E3 2.6
>

Rh,52,32(q) el

where & = %qao and y = %qao. The substitution of egs. (IV-32) into egs. (IV-31)

gives, by a straightforward manipulation,

1 2
6(1,1,0) = (1- =553 ] (1v-33)
)
@]
I
215q2a§
G(1,2,q) = N (Iv-3L)
(9+hg7a )
6(1,5,0) - XL L2 B (1v-35)
(b+x)
10 2
6(2,2,0) = xE + —F— - 21, x=aas (10-36)
(1+x)°  (1x)"  (1+x)
13,4
1160 1728 622
6(2,350) = 2%11 a2 2B By - 20l (17-37)
5 (1+x)7  (+x)"  (1+x)
8
6(5,3,) = x5 + —2— 4+ 2 e D B
()" (+x)”  (1+x)  (L+x)
260 140 140 22
+ + - 8} , X = %q a_ (1v-38)

(1+)° ()T (1)

Equations (IV-3k4) and (IV-35) are identical with the results obtained by

2e2) (17)

R. McCarroll( using a method introduced by Mott and Massey.
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L. RADIATION ABSORPTION IN PARTTALLY IONIZED HYDROGEN PLASMA

With expressions of G(n,n}q) obtained in the last section, the energy

intensity emitted for the atom undergoing the transition from the level

3 1 Ey

En to E,+ and for Maxwellian electron distribution 2n(n@)- 2 NeEu2 e Crcan be

obtained from eq. (IV-7)

30 hgno? ® - L dmax dg N(n)
Spn' (fw) = 572 Ne JaBye O Jamy: [ = G(n,n}q)
BJE(ﬂ@m) ° ° Umin ¢ n

w 8(E -E_ +E -E  -Hw).
n n u

u

(1Iv-39)

Since the radiation emission coefficient per unit length for an isotropic

medium and unpolarized radiation is given by

B(t) = g Jan, T, (), (17-L0)
one obtains from eq. (IV-2)
ﬂ2C2
Ennl(m) = w5 Snny(m>
3 u
2 2 - —
_ 22 Halc o; . . a) e IQmax dg N(n) 6(n,n}q)
5J7§(n9m)5/%b5 o ¥ o % agpip ¢ n2
® S(En-En,+Eu—Eug-ﬁm) (IV-41)

for the particular emission process E tE B, 1 +E, o+,

ITts inverse process,

i.e., B+ B +T-B +E,, is the one for radiation absorption, and the absorp-

tion per unit length can be obtained by interchanging (u,u') and (n,n')



An'n(m)

Byt
32 Hox e ol [3E e 0 I fqmax dg N(n") 6(nn,q)
3«/_2 (7em) 5/ an o ¥ o % dpin 4 n'2
® S(En,-En+ Eu,-Eu+hw). (IV-k2)

Then the absorption coefficient, i.e., the net absorption per unit length,

is (by noting that G(n,n;q)=G(n’,n,q))

it

An'n(m) - Enn' (;ﬁb)
22 5 2
53_{1 C Q; N de de ‘ fqmax 91_% G(n,n',q)
N2 (JT@m)B/E 2 Y pin
By 5 Bu'-Ey
N(n) ~ o . n” N(n') 0 /
“;5‘ e {n'g N(n) © -1} B(En-En,+Eu-Eu'~ﬁ@), (IV-13)

For thermal equilibrium, the number densities of hydrogen atoms are populated

as ) En'-Ep
N 1 1 -
(n)_n__ © (TV-Lk)
N(n) 2
n
then
o By
. 0 © T g @ dmax dq N(n)
w) = - e Y
ann.( ) NeCo(e 1) ﬁgEue ﬁ?Eu, fq_ ” ¢(n,n}q)
max n
m 5(E -E_ +E -E +-Hb) (IV-15)
where
00_52 ’fl]‘(c O; (IV—)J6)

IENE (1rG)m)5/2cb5
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Substituting eqs. (IV-3%) through (IV-38) into eq. (IV-L5), one finally

obtains oy, (hw) as

o
&)
a () = C -1 :
nn( ) O(e 1, gnn(hw,@) N(n)Ne (IV-17)
for n = n', and as
w
(ho) = € (e -1)m g (m,0
Q = -1n , )
- e g hv,0) N(n)Ne (Iv-L8)
for n%n'. Here the upper sign of g, is to be taken when n<n', and the lower

sign when n>n'. The definitions of gpy, gﬁnv and gpy,' are given below with

the convention that gpn' = 8n'n N(n')/N(n).

1 1+d, 6d?+9d_+l 6df+9d++1 -'%f X

gy, (10,0) = 2 Jax(in 7= + 3 - e (TV-Lk7a)
T 6(1+dl) 6(1+dy )"
( ) 1 f” 1+b, 6b%+2ub§+u6b?+uub_+15

g (Aw,0) = ~ Jdx{24n +
22 by 1+b_ 5(l+b_)5

6bb+2ub5+u6b2+uub +1 - L X

| DbyreRbHuob b LD e (TV-k7Db)
3(1+0, )’

1 = 1+S, 5us§+5553§#102lsf+1u5os§+1056sf#6n5s_+177

8y5 (T0,0) = 75 Jdx (94 To== + -
1 - 6(1+8_)
6 5 l 3 2 o
548 +33351+10218 4+ 145087+ 10568 +6L58, +177 0
- - le (IV-L47c)
6(1+s,)
+
S
giQ(hw,@) . QlofigeiE ﬁ§x{ - T - = e ° (TV-18a)
(9+Me£2b_) (9+u€12b+)
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+ + €130
. 81 o [3epy St B Sk | - o x
%5@w@)='§”ﬂ515f®‘ " 5" T+ 5( €
1 (el3S_+lt) (€ES++’+)
8, (e28)5178(c 5 8.)
+
g+ e, 0) = 3 * o 375 €25 7 6256- 599
23 11 25 25 + 6
5 | (l+6255-)
‘ et
+ 2 03
] 375(e256+)-l78( 236+)+599 e- —5 *
6
1
( ve 3 By)
2ma2hw
o) 2 1 9
b, =~ Nx+x-1)7, a4, =3 b8, =10,
A
E -E
Bi T o5 bi’ U | Hw <1, nn' 1
B
- )
f ,=e for hw < E ,-E
nn n n
E -E
n n
B 0
= e for hw>E -E
n n
For-ﬁmen,-En, gnn,ehm,@) will be evaluated by
E-Ey
L2968 2 3, h.c1
glgﬁﬁw,Q) () e i [6 -2¢ +c -clHe e El(C)}
5 EB_El
- 3 T e o 3 L koeo
gl5Qﬁw,@) = e {12 6c +hc 502-c2+c2e (6+02)El(c2)}

(IV-48Db)

(IV-48c)

(IV-k74d)

(IV-484)

(Iv-48¢)

(Tv-48g)
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E_-E
- @)_2831"3@ Ly 611, , 1285 2 1291 3
B 000 = 1 € a7 075 5T 50 %57 T30
M6 L M8 5, b ocples, U6 M8 ¢ _
G c5 = c5 + c5 e 2( 5 3 c5+ 5 05)El(c3)} (IV-48h)
where
2 2 2
ood -
c, = 28 5 2 %= - 5 2 %< 2" o’ El(x) = [TV (Iv-L8k)
52ma09 9ma09 288maOQ 3y

The above expressions of g;n, and g are obtained from eq. (IV-45) con-
sidering the cases n<n' and n>n' separately. The property that G(n,n}q)=G(n}n,q)
and the population law for thermal equilibrium, i.e., eq. (IV-44), have been
used in obtaining eq. (IV-48). The values of El(x) are available in tab-

(33,

+
ulated form. n,(ﬁw,@) and gnn‘(ﬁw,g) are dimensionless numbers which
n
we have calculated numerically. Figures 3 through 11 show the results of the
is

+ +
computations for Aw,0) and hw,0) as functions of#iw and T.
&n s €ant P n

about 10 times less at high temperature and much less at low temperature than

€’

5. VALUES OF gnn(hw,g) FOR n>3,

As seen in sections IV-3 and IV-4, the value of gnnﬁﬁw,@) is obtained
through the calculation of G(n,n,q) which is tedious for n>%. Here we
shall use interpolation, instead of the direction calculation through the
method in section IV-3, to get the values of gnn@kgg) for n>3% by knowing

that the absorption coefficient due to inverse bremsstrahlung of an electron



€9

in the field of a neutral atom becomes the absorption coefficient due to
inverse bremsstrahlung of an electron in the field of an ion when n goes to

infinity, i.e.,

O%n(ﬁw’@) OPIGﬁw,Q)

lim = (Iv-19)
N N(n) N NN
. i . BI . .
where N_ is the number density of ions and o (Aw,0) is the absorption

I

coefficient due to inverse bremsstrahlung of electrons in the field of ions.

(13)

BT

o (fw,0) has been given for hydrogen atom as

8 2 5 E5/2

C
= —— = (aa) 8. N.N
5(57[)1/2 A o @1/2V5 ff Te

ozBI(ﬁw,@) (1IV-50)

where v is the frequency of the radiation, E is the ionization potential of

(34,35)

a hydrogen atom and 8ep is the free-free Gaunt factor depending on
temperature and the absorbed radiation frequency. With the value of gff,
one can find the upper bound of g, when n-e through egs. (IV-L47), (IV-L9),
and (IV-50). Since we shall compare our calculated absorption coefficients
with the measured results which were achieved for the ruby laser frequency

under six different temperatures, the upper bounds are obtained for these

and g

1
diti d plotted — in Fi 12 togeth ith
conditions and plotted as — in Figure ogether with g ., &,,, <3

n

obtained from Figures 3 through 5. Then the values of & for n>3 can be
obtained by interpolation on the smooth curve which is connected through the

values of gll’ g g33 and the upperbound.

op?

us
Since & is about ten times less than &0 when n=1 and is getting

much less than gnn when n and n' both increase, the contributions to the
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Figure 12. g, (%o, T) vs. l/rfd for ruby laser frequency.
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+
absorption due to g_n, for n#n' can be neglected as compared to the contribu-
n
tions due to g . With this neglect, the absorption coefficient due to the
nn

sum of the contributions in different states is

of fw,0)

It

2o (tw,o)
n nn

ho
=c (® -1 W ”Z g n(mjg):w(n)o (Iv-51)

With the values of gnn(ﬁw,@) determined above, one can obtain from eq.
(IV-51) the radiation absorption coefficient due to inverse bremsstrahlung
of electrons in the field of hydrogen atoms i1f the electron density Ne,
the neutral densities in the different energy levels N(n) and the temperature

of the hydrogen plasma are given.

6. EXPERIMENTAL CONDITIONS AND THE MEASURED ABSORPTION RESULTS

In 1966 Litvak and Edwards<l§) measured the absorption coefficient of
the ruby laser frequency (X=6945E) for different initial gas pressures in
a hydrogen plasma produced by a giant pulsed laser besm. The output of the
laser beam for producing the plasma is é - 5 MW peak power with a pulse
width of about 18-%6 nsec. A 25-cm focal length lens was used to focus
the laser output near the center of a brass cubic cell which contains hy-
drogen gas. The initial gas pressures before the iight went in were 1h.7,
555, 55, 115, 215, and 1015 psi. Although the initial gas temperature was
not mentioned in Litvek and Edwards work, we assume that it was room tem-

perature.
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The measurements of the absorption coefficients for the different
initial gas pressures were performed at the peak luminosity which occurred
near the end of the laser pulse. The electron density and the plasma tem-
perature for each initial pressure corresponding to the absorption measure-
ments were also measured. Table I shows their measured results of plasma
temperature T, electron density Ne and absorption (aL)ObS for different
initial gas pressure pl, L is the plasma absorption thickness which Litvak
and Edwards assumed to be varied from about lem for 1L.7 psi to lmm for
1015 psi.

Tn order to explain the measured absorption results, Litvak and Edwards

also calculated the absorption coefficient av from the expression

E
2 5/2 2o e
8 e 3 2 2K e 9 .
0 =—————=—(n ) —=N(g_ . += L&g )(1-e ) (1v-52)
v 5(531)1/2 A o' o, ¢ ff © u mn 3

which accounts for photoionization and inverse bremsstrahlung of electrons

(34)

in the field of ions. Eq. (IV-52) is obtained from the absorption
coefficient of a hydrogen atom in the energy level Erl due to photoionization

and its inverse

PT _ 6ha 2 B3 Em o
o = /2 ma_ () 5 (1-e 7 (n) (Tv-53)

through the use of Saha equation

2
R
N(n) = (grgé_>5/2 n? exp%)\@ (1V-5L)

m
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(3k,35)

where &en is the Gaunt factor for free-bound transitions. The cal-
culated av shown in Table I is two orders of magnitude less than the mea-
sured result under the assumption that the plasma thickness varies from
about lem for 14.7 psi to lmm for 1015 psi. This large descrepancy in-
dicates that the measured absorption can not be explained by the photo-
ionization and the inverse bremsstrahlung of electrons in the field of
ions through the use of Saha equation.

In the following sections we propose to explain the absorption which
is measured in this experiment by considering the photoionization process
and the inverse bremsstrahlung of electrons in the field of neutral atoms,
In this explanation we shall not use the Saha equation to predict the num-
ber of neutral atoms in the plasma, but rather we shall determine it from

an investigation of the explosion caused by the laser pulse.

7. DESCRIPTION OF AN INTENSE POINT EXPLOSION

Tt was shown by Litvak and Edwards from the consideration of the mea-
sured pressure and energy variations with time that the giant laser pulse
produces an intense point explosion with a spherical shock wave., The prob-
lem for an intense point explosion has been investigated by Sedov@<56>
After the energy Eoisabsorbedjmﬁxjthegas with initial pressure Py and
mass density pl for initiating the explosion, a shock wave forms and ex-
pands in the course of time. Sedov defined Pos Py Tg and r, as the total

mass density, the pressure, the temperature and the radius of a point be-

hind the shock wave at the time t after the explosion. Furthermore,
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1
o L
2 = 20 (=) ° (1V-55)
b1
and
1
0]
© = (Y (1V-56)
P

were defined and Litvak and Edwards called them as the characteristic time
and shock radius at which the counter pressure of the undisturbed gas nearly
stops the expansion of a spherical explosion. By solving the equations of

motion, continuity and energy, one can determine the density, pressure and

T
temperature distributions (Ji,-ll, and —) as functions of ;L, as well as
P2” Po 2 ¥
P2 P2
the pressure and the density behind the shock front (5— and E—) as func-
1 1
T
tions of £ = —%. The symbols p,p,T, and r are respectively the density,
T

the pressure, the temperature and the radius of a point between the shock
front and the explosion center.which depend on time implicitly through

rg(t). Reference (36) contains the graphical representations of the above

distributions for the adisbatic index y=1l.L4. For our later use and for a
Jl, jl, and
Po" Po

T
T in Figures 13-15. From Fig. 13, one can see that during the early times
2 .

after explosion, most particles are concentrated behind the shock wave and

quantitative understanding of their variations, we reproduce

a negligible amount of particles occupies the central region of the explo-
sion,

In addition, Sedov also obtained the following equations
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Figure 13. Density distribution in
a point explosion behind spherical
shock wave.

Figure 14. Pressure distribution in
a point explosion behind spherical
shock wave.

Figure 15. Temperature distribution
in a point explosion behind spherical
shock wave.



for spherical shock wave where q is

speed in the undisturbed gas to the shock wave velocity.

P2 _ o1
Dl y=-1+2q
Po _ 2y-(y-1)g
p, (rl)a
25 £3
Q=T
1
O
r o= (9@_)5 t2/5
2 pl

which depends on y and the shock wave geometry.

the square of the ratio of the sound

Q 1s a quantity

For the plasma in Litvak

and Edwards experiment y=5/5, and for a spherical shock wave one can find

o from reference (36) as o=2.

equations

where T=t/to.

By taking E° to be the energy absorbed from the laser, Litvak and

Then one obtains from the above mentioned

_ 240-250

lOOOJZ5

(IV-57)

(1Iv-58)

(IV-59)

Edwards obtained the characteristic shock radius r® from eq. (IV-56) which
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is given in Table I. The initial mass density pq and gas pressure py of
the plasma are known, We calculated the characteristic time t© shown in
Table I from eq. (IV-55) which checks with the Litvak and Edwards result.

In addition, Litvak and Edwards determined spectroscopically the peak
luminous volume. The absorption was measured at the time when the peak
luminous volume occurred. Although the luminous volume has been observed
to have a nongphierical shape due to the rapid axial motion occurring during
the laser absorption, for a quantitative discussion, we shall assume that it
has spherical shape and coincides with the shock volume at the instant when
the peak luminosity cccurred (we shall justify this assumption presently).
Then the radius Tg of the peak luminous volume can be found from its volume.
The values of rg for each initial pressure are given in Table I together

tp
with the corresponding values of [ = ;3 . Under the spherical assumption
of the peak luminous volume, r, turns to be 0.062cm, much less than lcm
which is assumed by lLitvak and Edwards as the absorption length in the
plasma. We shall calculate the total absorption using the value of ry
as obtained above in section 1V-8,

In order to justify the above assumption, we now calculate the time
t at which the peak luminosity occurs (i.e¢5 the time at which the absorp-
tion measurement is taken) from eq. (IV-57) and the value of [ corresponding
to the peak luminosity wvolume in Table I. The results are also given in
Table I. We observe that t varies between 17-31 nsec., As we mentioned

before, the widtk cf the laser pulse varried in the experiment between

18-%6 nsec, The early part of the pulse produces the plasma, and according
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to Litvak and Edwards, the peak luminosity occurs near the end of the pulse.
Hence, the values of t calculated above agree reasonably well with the
experimental conditions.

Since [ is small for the time at which the peak luminosity occurs,
the total mass density 05 behind the shock wave, i.e., at LY is obtained
from eq. (IV-58) to be about four times the initial density Py, as also
pointed out by Litvak and Edwards. The pressures p2 behind the shock wave
at the time the peak luminosity occurs, and at the time t=0.lusec are
obtained from eq. (IV-59) and shown in Fig. 16. For comparison, the pressure
measured at t=0.lusec is also shown in the same figure. The measured pres-
sure at t=0.lusec. is six times the pressure predicted by the explosion
theory at the same instant for the initial pressures;&;lh.? and 35psi.
At higher initial pressures, it decreases and reaches about the same pres-
sure as predicted for p;=1015 psi. If one extrapolates the measured pres-
sures up to the time at which the peak luminosity occurs, a descrepancy is
observed between the extrapolated value and the presssure predicted by the
point explosion theory for the same instant. Here also, this descrepancy
is large for low initial gas pressures and small for high initial pressures.
This may indicate that the point explosion assumption is better justified
at high initial gas pressures than at low initial pressures. ©Since the
focal volume of the laser beam is elongated in the direction of the beam,
and since the energy absorption decreases away from the source due to the
attenuation of initial laser beam producing the shock, an egg-shaped shock

front is perhaps a more accurate description than the spherical shock front
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1000
—e~ t = 0.1 usec, predicted by point explosion.
—%=—t = 0.1 psec, measured by Litvak and Edwards.
I —a— for the time at which the peak luminosity occurs,
predicted by point explosion.
100 p~
-
Do =
D1 i
-
10
r—
1 o aad | 1 Lt 11 tll 1 | | I I I B I
0.3 1 10 100

p; (atmospheres)

Figure 16. Relative pressure p2/pl behind shock front vs. py-
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as we assumed above., Furthermore, the initial volume of explosion which can
be taken as the focal volume (lo-scmj) of the laser beam is not negligible as
compared to the shock volume (8 x lO—3cm73) even at 0.1 psec. This may also be
a contributing factor to the discrepancy in the measured and calculated pres-
sures.

The point explosion assumption, as pointed above, predicts the lo-
cation of the shock front reasonably well. Since we need the result of the
point explosion theory only to estimate ﬁhe neutral density distribution
within the shock volume and the shock size in our absorption calculations,
and since the pressure behind the shock front does not enter our absorption
formulas, the above discrepancy in the estimation of pressures igs not
critical for our purpose.
8. ABSORPTION CALCUIATION BASED ON NEUTRAL DISTRIBUTION INSIDE A SHOCK

WAVE

In this section, we shall calculate the absorption due to the photo-
ionization process and the inverse bremsstrahlung of electrons in the field
of neutral atoms by using the particle distribution inside a shock wave,
i.e., Fig. 13. 1In doing this, one has to determine first the population
of the excited levels of the hydrogen atoms as a function of position in
the plasma. We assume local thermal equilibrium among the neutral atoms,
i.e., eq. (IV-bL4) so that the relative populations of the excited levels
is not an explicit function of position (it may depend on position through

temperature). Then the local absorption coefficient due to the inverse

bremsstrahlung of electrons in the field of neutrals can be written
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BN X N(n)
o (r) = n§1 A (,0) N _(r) N(1,r) = (IV-60)
2 -Eyl0 _ .
where N(n)/N(1) = n"e and An(w,@) is a function of temperature and

radiation frequency. An(w,@) increases with n, approaching finite value

Aw(w,@) as n-. Since E, »E as n-w, the above summation diverges unless it

’
is truncated at some n=n*. The physical reason for truncating the summation
at some n=n¥* can be explained as follows: Because of the interaction of

an atom with the nearby particles in a plasma, the ionization potential
will be lowered when the atom is inside a plasma. An excited atom in a
level above n* must be treated as an ion and a free electron even though

the level may be below the ionization potential of an unperturbed atom.
Several theories for the determination of n¥* and the lowering of the
ionization potential AE have been proposed in literature. Drawin and

(37)

Felenbok have reviewed these theories and showed that they all yield

similar results, i.e.,

2 ep

n¥ ~ (S+1) = (IV-61)
a
O
0E ~ (8+1) = (Iv-62)
)
where o, is the Debye radius(58’59) given by

D

oD { - ]1/2 (17-63)
)

2 2
lize (Ne+§21Ni
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Tn egs, (IV-61) and (IV-62), S8 is the ionization stage of the particle
under consideration and S=0 for neutral atoms. The quantities N.l and Zi
in eq. (IV-63) are respectively the density and charge of neighboring ions and

Ne. We have calculated and tabulated in

for hydrogen plasma, ziﬁl and Ni
Table'I.the values of n* for egch initial gas pressure using the measured
electron density and temperature in the experiment by Litvak and Edwards,
After having determined n* in eq. (IV-6U), we now consider the posi-
tion dependence of the number density in eq. (IV-60). According to the
intense point explosion theory, the relative mass density distfibution
follows the.curves in Fig. 13 for the éarly times after explosion. One
observes that the particles occupy vitually a very narrow spherical shell
of a thickness of the ordér of 0.2 ro. We shall refer to this region as
the shell region in below. The central region contains &efy few particles.
However, the temperature increases very rapidly in this region towérds
the center and the pressure is constant with a value of approximately p2/5.
We shall refer to this region'as the central hot core. Let the relative
number density of the atom at the point r between the shock wave and the
explosion center be ®(r)=N(r>/N2Iand the relative electron density et the
n* v
point r be cpe(r)zNe(r)/Ne whe?e N(r) = nle(n,r) and N, apd No are respec-
tively the total neutral density.behind the shock front and the average
electron dengity inside the shoék volume. From the conservation of the
particles

T
e o
Lt gdrr. [N2®(r)+Ne<Pe(r)J = v N
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, where Nl is the total number density of hydrogen atoms before the explosion
(i.e., before the incidence of the laser beam) and v, is the radius of the

shock wave. After changing the variable, we have

2 1
faxx“g(x) = 5= - 55 ooy, (x) (1V-61)
© 2 2
and
L o
3laxx"p (x) = 1 (IV=65)
0
where
r
x= 2.
2
The laser beam was focused within a volume of 10—5 cm5 which is smaller

5 3

thaﬁ the peak luminous volume of 107 cm at the time of the absorption
measurement. The radius of the laser beam focal volume is about 5 times
less than fhe radius of the peak luminous volﬁme. No geometry correction

is needed in determining the optical path.r ﬁence the ébsorption due to

the inverse bremsstrahlung of electrons in the field of neutral at@mé can
‘be expressed, by introducing the relative number‘densities into eq. (IV-60),

as

: n¥ 1 ' :
(o)™ = =, Joselesom T ¢ o, (rloto). (1v-66)

Equation (IV-66) cannot be easily calculated without any assumption
about ®.(x), ®(x) and the temperature distribution. The problem will be

complicated when the temperature distribution (see Fig. 15) in the shock
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wave as a function of position is considered. The plasma temperature and
the electron density are measured through the line broadening of Ha which
depends upon the electron and neutral densities. ©Since most of the hydrogen
atoms are confined in the shell region behind the shock front, the electron
density and the plasma temperature measured through the line broadening is
more likely to indicate the average temperature and electron density in
the shell region. Furthermore, the degree of ionization is not uniform
in the shock volume. Due to the very high temperatures, the hydrogen gas
can be expected to be fully ionized in the hot core. However, the degree
of ionization is more likely to decrease towards the shock front because
the temperature there is of the order of lOu °K and thus not sufficient for
ionization. One may conclude from this argument that the electron density
will also be a decreasing function of the radius. However, the rapid in-
crease in the particle density towards the shock front may result in a
uniform electron density distribution in spite of the decrease in the de-
gree of ionization. Hence we shall assume that the temperature and the
electron density are uniform in the shell region with the measured values.
The contribution to the absorption in the hot core where we expect
almost full ionization is negligibly small as compared to the measured
absorption. The mechanisms responsible for photon absorption in this
region are the inverse bremsstrahlung of electrons in the field of ions and the
photoionization. In fact, since the gas is almost fully ionized, the relative
contribution of the photoionization process is small as compared to the in-

verse bremsstrahlung of electrons in the field of ions. Litvak and Edwards calcu-
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lated the absorption in this region using the measured electron density and
temperature, and assuming the Saha equation in estimating the neutral density.
Even if one assumes a plasma thickness of lecm, their result accounted only one
percent of the measured absorption. But according to explosion theory the
size of the hot core is of the order of 0.12cm. so that the absorption is
less than 0.1% of the measured value.

We thus calculate that the main absorption takes place in the shell
region where the gas is partially ionized. Under these assumptions, eq.

(IV-66) becomes

BN mF N(n) 1 |
(oL) —nglAn(w,Q)NeNg - rg_ffxcp(x)? (TV-67)

where we include the hot core also for convenience even if its comtribubion
is small. The neutral density distribution ¢(x) is shown in Fig. 13 and
has an appreciable value only for x close to 1. It is sufficient for our

purpose; but not necessary, to approximate

1 : e
fiqxx)dx - [ otoxax - =

Then egs. (IV-67) reduces, in view of eg. (IV-51), to

D *
Is Y N -N
B 1 2 -E,/0
(oL) N_2 cotw | e 9-7) o N ) g 2ne o/ (1Iv-68)
3 7 nn
n=1
whefe
n* 2 -E,/0
z 212 n/

is the truncated partition function of hydrogen atom with the calculated
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TABLE I

MEASURED AND CALCUIATED ABSORPTIONS FOR RUBY

TASER FREQUENCY IN THE HYDROGEN PLASMA

(oL )obs.

BN+PI
T, .

1.7
2.2x10

h.5x1018

0.52
0.062
0.12
17

1k

M.9xlol9

998
0.012
0.72
0.015
0.0k7

0.062

35
5,0x10”

107

b.3
0,46
0.062
0.13
18

12
1.2x10°°
598
0.011
0.80
0.087

0.20

0.29

55
2.4x10
5xlOl8
4.3

0.46
0.062
0.1%

18

1h
2.0x10°°
1062
0.020
1.94
0.062

0.18

0.24

115

]_.5xlO5

107
4.0
0.43
0.062
0.1h
21

11

b, 1x10°0
362
0.15
3,0
0.47

1.13

1.60

215

l.h,xlO5

8.5xlol8

3.2
0.3k
0.062
0.18
31

11
7.7x1020
557
0.12
2,6l
0.75

2.26

3,01

1015
9.Ox]_OLL

10"

1.7
0.18
0.0k42
0.2%
27

10
5.7){102l
1.0
0.6
L.12
L.9
14.9

19.8
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values given in Table I.
In a similar way, one can obtain the absorption due to the photoioni-

zation and its inverse from eq. (IV-53) as

PI_128 2 B 5,0 7 ) r NNe n{?%fn -En/0

(aL) ~ = 55/2 na >, Wy n5 e . (IV-69)

Taking r2 as the radius of the peak luminous volume which is assumed to

)BN

PI
be spherical, we have calculated the absorptions (ol and (aL) ~ from

egs. (IV-68) and (IV-69). The results are given in Table I together with

BN+
their sum (oL) PI.

9. DISCUSSIONS

. BN+PT
From Table I, one can see that the calculated absorptions (alL)

due to the photoionization and the inverse bremsstrahlung of electrons in

the field of neutron atoms are not always in good agreement with the measured

result (aL)o It increases from the value of ten times less for Pl=lh.7 psi

bs
to the value of five times larger for pl=lOl5 psi than the measured absorp-
tion. According to the description given by Litvak and Edwards, the shape

of the luminous volume was not exactly spherical. Although their description
was not explicit enough for their experiment, they referred to other similar
experiments in which the cigar-shaped or egg-shaped luminous regions were
observed in the direction of the laser beam. Furthermore, the discrepancy
between the measured pressure and that predicted by the intense point ex-

plosion theory with a spherical shock wave is larger at low initial gas

pressure than at high pressure. This may suggest that the shape of the shock
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volume at low initial gas pressure deviates more from sphericaL at high
initial pressure. If we intepret r2 as the major radius of the luminous
volume, then we may predict a larger absorption than we calculated by using
a spherical luminous volume. In fact, this may be the reason why Litvak
and Edwards assumed the abgorption thickness of lem for pl=lh.7 psi. If
this assumed absorption thickness is correct, r, would be O0.5cm, instead

of O.O620m, and the calculated absorption with r2=0.5cm will be almost the
same as the measured value at pl=lh.7 psi, provided that the neutral density
distribution along the major axis has a similar distribution to that in the
spherical case shown in Fig. 13. At any rate, our interpretation predicts
the absorption better than a factor 10, in fact in most cases even better
than a factor of 6. Furthermore, our calculation explains the increase of
the absorption with the initial pressure, independently of the possible
dependence on the pressure of the apparent plasma sigze.

Another factor which may be contributing tc the above discrepancy is
the assumption of a uniform temperature and electron density distribution
in the shell region behind the shock front. However, the error due to
this assumption is not expected to be significant, because we have found
only a decrease by a factor of 2/5 agssuming a linear electron
density distribution in the shell region and taking the electron density
to be zero at the shock front,

The calculated absorption due to the photoionization and its inverse
is about three times the absorption due to the inverse bremsstrahlung of

electrons in the field of neutral atoms for n* = 10, It depends on n¥,
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For small n¥*, its contribution is dominant and for large n* it is negligible
as compared to the inverse bremsstrahlung of electrons in the field of neutral
atoms. Furthermore, photoionization can occur only for the levels above and
equal to n such that E-EES hn and the absorption due to this process varies
as l/n5. For low energy photons, such as the carbon dioxidelaser (A=10.6x10
cm, fw=0.11Tev), its contribution will be negligibly small as compared the
absorption due to the inverse bremsstrahlung of electrons in the field of
neutral atoms.

The absorption per electron and per neutral atom in any level n due to
the inverse bremsstrahlung of electrons in the neutral atoms is smaller than
the absorption per electron and per ion due to the inverse bremsstrahlung
of electrons in the ions as indicated in Fig. 12. They are of the same
order of magnitude for almost all n and becoming equal when n-eo. The rel-
ative importance of these two mechanisms depends on the ratio of the neutral
to ion densities NA/Ni, If NA/Ni is a large number, the inverse bremss-
trahlung of electrons in the field of neutral atoms is important, otherwise

it 1s small,



CHAPTER V

CONCLUDING REMARKS

In the first part of this thesis we have compared the photon transport
theory in dispersive media to the Maxwell's wave theory by considering the
index of refraction and the photon absorption per unit time as well as per
unit length. In the photon transport theory the effect of the medium is
taken into account by assigning a different frequency to photons of a given
wave number in the medium, than their frequencyin vacuum. It is implied in

this theory that the wave number is the same in the medium and in vacuum.

In Maxwell's theory, the effect of the medium is characterized'by‘a
functional which relates the macroscopic current to the electric field.
When linearized, this functional is completely defined by the conductivity
tensor in the transformed (g,s) domain. The conductivity tensor is obtained
quite generally by usingKubo's linear response theory in terms of the micro-
scopic currents. Thus, we can calculate the index of refraction and the
damping coefficient both in time and space in the framework of the Maxwell's
theory first in terms of conductivity and then in terms of the microscopic
currents with Kubo's theory. In other words, we can express the above
observable macroscopic quantities, in terms of microscopic quantities through
the Maxwell's equations which describe the electromagnetic phenomena in
arbitrary media macroscopically.

It is at this stage one can compare the photon transport theory to the
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Maxwell's wave theory, because in the former the index of refraction and
the damping coefficient both in time and space are expressed in terms of the
microscopic currents.

Following the above procedure, we have found that both theories yield
the same results for the index of refraction and the damping coefficient per
unit time only in the weakly absorbing media. When the medium is strongly
absorbing, the results look quite different although we have not estimated
the difference numerically in specific problems.

As to the damping in space, the expressions obtained from the two theories
for the index of refraction and the damping coefficient per unit length are
similar only if the medium is both weakly absorbing and slightly dispersive.
More explicitly, the damping coefficient per unit length is obtained in a weakly
absorbing medium (i.e., ny << no) as %EZ ﬁR(n k,wo) and b GR(K, gg)respec-

o™
o A n,c A o

tively in the Maxwell's theory and the transport theory. Clearly if no%l,
the results are identical.

We feel that a better correspondence between the transport and wave
approaches in regard to the damping in space can be established if the photons
are dressed such that the frequency is required to be the same but the wave
number is allowed to be different in the medium. More research in this
direction seems to be called for.

The radiation absorption due to inverse bremsstrahlung of electrons in
the field of neutral atoms is formulated by using free electron wave functions.
In this approximation, the calculations involving atom-electron cross sections

turn out to be identical to the use of the first Born approximation. The
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elastic cross section for hydrogen atoms in the ground state calculated in
Born approximation is less than the cross section calculated from the partical
wave method. This discrepancy is large at specially low electron energies.
Since the elastic cross section predicted by the partial wave method is in
good agreement with the experiment, a more accurate formulism of the absorp-
tion problem can be achieved by using the partial wave method rather than
plane waves. However, since the elastic and inelastic collisions of electrons
with the atoms in excited states are also involved in the problem? the use

of the partial wave method would make the problem much too complicated.
Undoubtedly, the use of free electron wave functions in the problem will intro-
duce some error, perhaps predicting smaller values for the absorption. How-
ever, at this stage, one is satisfied with an order of magnitude agreement
between the measured and calculated absorptions due to the uncertainties of
the experimental condition. This justifies the approach we have taken in
this work.

In the formulation of the radiation absorption, the second quantization
is used to express the potential between atom and electron as well as the
interaction between particle and radiation in terms of the particle and
radiation creation and destruction operators. In this process we considered
only the binary collisions. In addition, we assumed the atoms in the medium
to be infinite heavy. These assumptions are adequate for our stated purpose
in this thesis.

The neutral density determined through the Saha equation (which holds

when all the particles are in local thermal equilibrium) and using the
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measured electron density and temperature in Litvak and Edwards experiment is
about three orders of magnitude less than the initial particle density. The
absorption calculated by Litvak and Edwards.in considering only the photo-
jonization and the inverse bremsstrahlung of electrons in the field of ions
through the use of Saha equation is negligible as compared to the measured
result.

According to intense point explosion theory, most particles are concen-
trated in the shell region behind the shock front and a negligible amount
of particles occupies the central hot core. Local thermal equilibrium
among the neutral atoms, instead of Saha equation, is assumed in this shell
region. The absorptions calculated by considering the photolonization and
the inverse bremsstrahlung of electrons in the field of neutral atoms in
this shell region are not in very good agreement with the measured results.
However, the agreement is always better than a factor of 10 and in fact
better than a factor of 6 in all but one case. The discrepancies between
the calculated and measured results may be attributed mainly to the use
of the radius of the peak luminous volume, which is assumed to be spherical,
as the actual shock radius.

In this thesis we have calculated the absorption coefficient per unit
atom and electron due to the inverse bremsstrahlung of electrons in the
field of neutron atoms as a function of the electron temperature and radia-
tion frequency, and presented the results graphically. With these curves
and the conventional formula for photoionization, one can now estimate the

total absorption due to the photoionization and the inverse bremsstrahlung
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of electrons in the field of neutrals if the neutral density in the plasma
is known.

The interpretation of the Litvak and Edwards absorption measurements in
this thesis by considering only the above absorption mechanisms due to the
neutral atoms and using the point explosion theory with certain plausible
arguments to guess the electron density and temperature distributions is mainly
suggestive. In the absence of any accurate information for the plasma size and
of an explosion theory which takes into account the finite initial volume of
the explosion, the agreement obtained in this work between the measured and
calculated absorptions is considered as a strong evidence for the importance
of neutral atoms in the interpretation of the absorption experiments in plasmas.
Iﬁ fact, the absorption due to the neutrals may even be the dominant heating
mechanism which causes the explosion.

More experimental work designed primarily for the verification of the

importance of the neutral atoms is needed.



APPENDIX A

DERIVATION OF EQUATION (II-L2)

In Chapter II, we already obtained the following expressions
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The substitution of eq. (II-29) into the above expressions gives after using

egs. (II-2%) and (II-30),
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Equation (A-L) and the first sum in the bracket of eq. (A-3) comes, respectively
from letting n'=lXK in eq. (A-2) and n'=n+l in eq. (A-1). The second sum in
the bracket of eq. (A-3) comes from letting n'=n-1 in eq. (A-1). BEvaluatinhg
the matrix elements of A(r) and A(r,t) by egs. (II-12) and (II-33) and assuming

that the radiation field does not change appreciably over L5, then

I I 2
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where J}\(_r_,t) = g(;,t)g}\(g). Let w”m'ﬂbk in the first term and <b”=—a>'+a>k

in the second term of eq. (A-5), then
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Interchanging (r,r') and letting t'=-t' in the second term of eq. (A-6), and

summing the intermediate states |n'> and |n">, one finally obtains eq. (II-L2)
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APPENDIX B

SECOND QUANTIZATION

. . . Ae _ie _Ai
In this appendix, we shall express the potentials V ~, V. °, V = and the

interactions VA’ Ve’ and Vi in terms of the particle creation and destruction
. . . VAe
operators by second quantization. In section ITI-1, represents the sum

of the potentials between an electron and an atom, i.e.,

ZVAe

om
where
Ae e2 % 62
"Ry _m| 5=1 IBG+ng-Im|

is the potential between the og-th atom and the m-th free electron with
Iy and Ry being the positions of the free electron and the nucleus. Puj is

the position of the j-th atomic electron with respect to R;. In second

Ae
quantization, V = can be written as

where A(E) is the destruction operator of destructing a free electron of

momentum/ﬁg and A(ga) is that of destructing an atom of the external momentum
. T T, )

AK and the internal state |a>. A (u') and A (K'a') are, respectively, the

creation operators of creating a free electron of momentum Au' and an atom
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of external momentum AK' and the internal state |a'>.

The wave function of a free electron is given by

L dur
L5/2

h1> =

and the wave function of describing the external and internal states of an

atom is given by

1 iK-R |
5/2 e fa>

a> =
L

(B-2)

(B-3)

where we have assumed that the center-of-mass coordinates of the atom coin-

cide with its nucleus coordinates. Substituting eqs. (B-2) and (B-3) into

eq. (B-1), one obtaing
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where the subscript K of By denotes the Kronecker delta.
In the same way, one can obtain
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(11I-2)

(I11-3)
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T , : T,
where A (4b) and A(4R) rave the same meanings as A {K'a') and A(Ka).

In section.IIlel,VA iz the interacticn of the atoms with radiation
e J o 7, e
O i LT
Vo= -2 p .A(r ) v - L p *A(r )+ — p.-A(r )
A (X]mgjc =0, T O, O mgc 0= 70 gj=1me TI T —0J

where A(r) is given b (1I~7). m ard m, p and ,and r and r ,=r tp |
A(r g y )oom P By 801 Roso roand L 52 %P
are, respectively, the masses, the moments, ana the positions of the nucleus
and the j-th atomic electron in the o-th atom. Neglecting the first sum

as compared to the second one because m >"m, Vp can be writfen, in second
s IR :

quantization, as

7
1 pow 1 i T‘ ;
Vv o=y <Ka'|l— VYp.Alr )|Ka-A (K'a")AKa).
A = me . Ej = = =
Ka J=1
:}g 1 a 1

Assuming that the center-of-mass coordinabes of an at~m coincide its nucleus

cdordinates, the substitutin -7 egs. (II-7) and (B-3) gives
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A ~ik-p.
Using dipole moment approximation e * 93%15 one obtains, after substituting

i int
== H

int .
where H. = is the hamiltonian of the internal motion of an atom,

® A (K'a')A(Ka) (II1-5)

Wheretﬁma,a = an-Ea is the energy difference between the internal states

Z
fa'> and !at> and ed , = <a'| zleg.|a2> is the dipole moment transition of
a'a =1
the atom from the state la> to the state |a'>,

In the same way, the interaction of the free electron with the radiation

field

)E

The interaction between the ions and the radiation is given, in second

quantization, as




where'ﬁm%,b =F
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APPENDIX C

NO PHOTONS EMITTED OR ABSORBED THROUGH THE
INTERACTION OF FREELY-MOVING ELECTRONS WITH
A RADIATION FIELD

In appendix B, we have obtained that the interaction of freely-moving

electrons with a radiation field is given by

Assume that the photons can be emitted through the interaction, the number
of photons with momentum %k and polarization N emitted per unit time from L

will be, from section ITII-2,

2n 2
k) = Zy ' > E, -E_ ).
i sazrnﬁ N R s 2

Let the initial and final states of the electrons and photons be

Bn> = [...n(u), n(u')...> | .on (K)..0>
Bynr1> = [..n(a)-1, n(u') + Lo..> | (&) + 10>,
then
2.2
o (1) = 8 A2l (e )Pee (0)41) W) b (un' o) B(E_,-E )
w' oo 3 o U
m WL
(Qﬂeg)ghg 2
E 2 3 (g, )" (£ ()*+1) W(u) 6<E3—§'E§m>
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Since the energy conserved delta function is contained in the above expression,

nx(g) is not zero if

I
I
I

Cos@ = +

<lo
N =

£ (c-1)

where © is the angle between k and u and v is the speed of the incident electron.
Since %E? 1 and k and u are positive, (C-1) cannot hold. Therefore no photons
will be emitted through the interaction of freely-moving electrons with a ra-
diation field. In the similar way, one can obtain that no photons will be

absorbed through the interaction of freely-moving electrons with a radiation

field.



APPENDIX D

DERIVATION OF EQS. (IV-3la) THROUGH (IV-31f)

For derivation of egs. (IV-31a) through (IV-31f), the values of the

following 3j symbols taken from the literature(Bg)are needed.

. .\ 2

J1 Jp 33
Ji1 do 3 My My

mlmgm
1 0 1 o 0 © * 1/3
2 0 2 0 0 0 1/5
o 1 1 0 o0 0 2/15
2 2 2 0 0 0 * 0/35
3 1 2 o 0 0 * 3/35
L 2 2 o o0 o0 2/35
0 1 1 0 1 -1 1/3
2 1 1 0 1 -1 1/30
0o 2 2 0 1 -1 * 1/5
0o 2 2 0 2 -2 1/5
2 2 2 0 1 -1 1/70
o 2 2 0 2 -2 2/35
L o2 2 0 1 -1 8/315
L p 2 0 2 -2 1/630

AN

when one needs the values of [°1 92 93} other than its square, the negative

m) Mmo m
square root of the number should be taken if it is preceded with the star
symbol *., Since the sum of'jl j2 and 35 for each row in the above table is
even, each of the 3j symbols in the above is invariant in a permutation of
any two columns,

For convenience, we rewrite here egs. (IV-20), (IV-22), (IV-23), and

(IV-26)
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2 ig-
G(n,n,q) = n -2R, Z<n£m| LLlnm> + 7 l<nt'm' |2 E|nm> |2
€ Im Al -
X (IV-20)
1 1 1 1 iq'r 2
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where p takes the integers between 1/-1'l and [+{' such that p+i{+{' = even,
otherwise <p“>vanishes .
000
For n'=n=1, it is easily to obtain that
6(1,1,0) = (1-R (2))° (1V-31a)
T 0,10,10
For n'#n, one obtains from eq. (IV-26) that
pol' 2
1 R +1 £'+1
G(1,2,q) = EZP 0,10, oy (a)(2pt1)(2 ><ooo>
2 2
R + V-31b
0,10,00'8) * By 10 o1 () (Tv-31b)
2 . poll 2
G(1,3,a) = LR .o, (a)(eprl)(20'+1)
£'p p,10,51 000
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2 2 2
= RO,lO,BO(q) + 5Rl,1o,51(q> + 532,10,52(q>

= pol
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pll
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For n'=n=2,3, one obtains from egs. (IV-20) and (IV-26) that

(IV-31c)

(IV-31le)

G(2,2,q) = b-2Re{<200|e™2'E|200> + <210]e™2 | 210> + 2 <21l]e™2 211> )
2 o1\
+ 2 |R +1)(24+1)(20'+1
51, g o () e e ><
6(3,3,a) = 9-2Re{<300|e 2 E|300> + <310[e" 2 E[310> + <320]e ™ E[320>

+

000

+ VIR (0)]2(2p+1) (2a+1) (221+1) ( PHH ]
z%ﬁ 0,340,304 AepTLi2TL2
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The terms in the brackets of the above two equations are computed through

the use of eqs. (IV-22) and (IV-23). Then
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