RSD-TR4-82

CONNECTION BETWEEN FORMULATIONS
OF ROBOT ARM DYNAMICS WITH
APPLICATIONS TO SIMULATION

AND CONTROL

J. L. Turney
T. N. Mudge
C.S. G. Lee

November 1981

Center for Robotics and Integrated Manufacturing
Robot System Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109






TABLE OF CONTENTS

1. INTRODUCTION

........................................................................................

2. NOTATION

................................................................................................

3. EQUATION SETS

......................................................................................

3.1. The Lagrange equations

..................................................................

3.2. The Recursive Lagrange

..................................................................

3.3. The Newton-Euler equations

3.4. The Gibbs-Appell set of equations

...................................................

4. CONNECTION BETWEEN THE LAGRANGE AND NEWTON-EULER

5. CONNECTION BETWEEN RECURSIVE LAGRANGE AND NEWTON-EULER

................................................................................................................

7. IMPROVEMENTS TO NEWTON-EULER

........................................................

8. COMPUTATIONAL COMPLEXITY COMPARISON

9. APPLICATION TO SIMULATION

.................................................................

10.

APPLICATION TO CONTROL

......................................................................

10.1. Determining joint velocities and accelerations

..............................

ii

18

16

16

18

19

21

27

29

31

3R

40

42

42



10.2. Load adjustment trajectory planning .................oo

11.

(6101163 T U1 (6 ) PP

12.
BIBLIOGRAPHY oot e e e e

AP P N DI Lo e

1ii

47



ABSTRACT

In the following, the mathematical connection between several formulations for
robot arm dynamics are exhibited. This provides one with a check of their con-
sistency. The computational complexity of the formulations are then compared,
followed by a study of the inherent parallelism of each formulation. Finally, a
discussion of the application of the formulations to control and simulation is

presented with an eye to an optimum approach for each of these applications.



1. INTRODUCTION

With the plethora of manipulator dynamics formulations now in publication
[Pau72, Bej74, Lew74, LWPB0, HolB0, HotB0], we felt it a necessary and useful
exercise Lo exhibit the underlying mathematical connection between those of
the most interest. We began this study with an exploration into the parallelism
of the then existent dynamics formulations for the purpose of designing special
purpose hardware to relieve the computational congestion in gross motion con-
trol [ISA paper]. In pursuing this goal we discovered inconsistencies in the
Newton-Euler formulation [Wal78], the formulation of most interest. These
inconsistencies were later removed in [LWPB0]. Nevertheless, we acheived some
insight into the optimality of a dynamics formulation by understanding the
complete connection between formulations. We present here our original study
along with comparisons with more recent formulations [H0180, HoTBQ], together

with our study of parallelism and a discussion of applications in control and

simulation.

To begin with, an "arm" is defined to be an open chain of links driven at
each joint by an actuator in a coordinated fashion to move the end-effector or

"hand" link with multiple degrees of freedom along a prescribed trajectory.

Uicker [Uic87] used Lagrange formalism to derive a compact but complex
set of equations for open link chains. Lewis [Lew74] (Note: The notation of Lewis
is used here.) and others then applied these equations to robot arm dynamics.
This compact equation set will be referred to as the "Lagrange” set in order to
reflect the physical formalism involved in deriving this set of equations. These
equations were the first to appear and although they are quite compact they
are too complex for practical applications, being of the order n3. {See Appendix

A for a computational breakdown.}



Luh, Walker and Paul [LWPBO] employ Newton's laws applied to rotating
systems and obtain a computationally less complex set of equations than the
Lagrange set, but at the sacrifice of losing the compact and well defined struc-

ture present in the Lagrange set. This equation set will be referred to as the

"Newton-Euler" set.

Intermediate in complexity between the preceeding two equation set is the
equation set of Hollerbach. Hollerbach [HolB80] derived a recursive form of the
Lagrange set which has roughly the efficiency of the Newton-Euler set but not

the compactness of the Lagrange set of Lewis. This set will be referred to as the

"recursive Lagrange."

Finally, Horowitz and Tomizuka [HoT80] use Gibbs Appell formalism to
derive a set of equations whose complexity falls between the Lagrange and
Newton-Euler set. They, however, did not propose to perform the actual com-
putations. In their case the structure of the equations was obtained in order to
parameterize the computation and allow adjustment of parameters by adaptive
control. An examination will be made of this set, in any case, and it will be
shown that it is a very close to the Newton-Euler set. This set will be referred to

as the "Gibbs-Appell" set.
In the following we:
(1) Introduce a consistent set of notation.
() Display the form of all the equations of interest in this notation.

(8) Develope the underlying connection between all the formulations men-

tioned above.

(4) Discuss computational complexity and inherent parallelism of the above

formulations.



(5) Discuss applications of an "optimal” formulation to simulation and control.

(8) Conclude with a summary of results.



1. NOTATION

The following set of notation is adopted to provide consistentency between

the formulations.

Matrices, and tensors will be represented in upper case type, while vectors

will be in boldface type.

Greek indices will sometimes be used to denote components of a vector or
matrix and the "summation convention” is employed, i.e. repeated indices are
assumed summed over all three coordinates. For example the inner product
between vectors a and b can be written in two ways, in matrix notation, a'b and
in terms of the vector using the summation convention, a,b,. The product of two
matrices A and B, C, is C = AB in matrix notation and C,s=A,,B,g in component

notation with the summation convention.

Rj‘ represents a three by three rotation matrix which maps a vector from
its representation in the i* link coordinate frame to its equivalent in the j®

coordinate frame. Some well known properties of rotation matrices represented

in this notation are:

(R)=(R})'=R{ 1.1
A superscripted t, i.e. notation ( )!, denotes a transpose.

A rotation between coordinate frames i and j can be written as a chain pro-
duct of rotations between successive frames:

R1=R]J“ RiE - RL, 1.2
In general, with the inverse defined by Eqn. 1.1, one obtains the relation
RK Ri =R} for all integer values of k. Further define R{=FE, the identity, for con-
sistency. Notice E has been used as the identity matrix rather than the more

usual "I". "I" is used later to denote the inertial tensor.



Figure 2.1

FEach link, i, of the arm will have its own coordinate frame fixed in the ith

link and referred to as the i** frame as pictured in Fig. 2.1.

A unit vector along the z axis of the ith frame and represented in the it"
frame will be denoted by z;,. The same unit vector may be represented with
respect to the base (0'') frame by applying a rotation, i.e. Rjz; but to simplify
notation, such vectors are starred to indicate that they have been rotated into

a base frame representation, i.e. R§z;=z’. The lower index indicates the fixed



frame to which the vector originally belongs.
Rotations operate on a vector product in the following fashion:

R(b X ¢)=Rb X Re, 2.3

where b and c are any vectors, since a vector product must itself transform as

a vector under rotation.
One often encounters expressions of the form:
Rk(z x ¢;)=Riz x Rje, R4

where z;, as before, is a unit vector in the z direction of the i*! frame, and ¢ is
also a vector in the i** frame. In order to simplify this above frequently occur-

ring expression, define a matrix:

0
0
which is the matrix representation of the above cross product, i.e.:

Qci=2 X ¢, 2.8

when ¢ is represented as a column vector with a basis in the it frame. Q is
actually a matrix often used in mechanics when dealing with angular momen-
tum. The Q* matrices have the property that Q*¢;=x; X ¢;, Q¢;=y; X ¢;, and
Q*ci=3% X c; as shown above in Eqn. 2.8. One can capture the action of a vector

cross product in a matrix operation. The Qf matrices are listed below:

00 O 0 01 -1 0
Q=0 0 -1}, Q@=|0 00}, Q=1 0 O R.7
01 0 -1 00 0 0

The Qf are just components of the Levi Cevita tensor. Using this notation the

cross product between two vectors can be written in matrix notation as:

(b x €)=[(b,Q*+b,QF+b,Q%)c]=bgQfc 2.8



Also notice another property of the Q matrices:

Q*QV=Q7Q*+Q* and cyclic, 2.9
or in component notation.

Q&%= bandpx—Saxpn - 2.10

where 6 is the Kronecker delta. This equation can be shown by explicit Q multi-

plication.

From Eqns. 2.3 and 2.8 there is a useful way of commuting rotation and Q”

operator:
RE(b;)gQ% ¢ =Rk (b; x ¢;)=Ri b, x Rf¢;=(R{ b)gQ°(RL ¢;) 2.11

Confining ourselves to arms with links connected in the fashion of Denavit
and Hartenberg [DeH55], where all relative joint rotations of the i*! link occur
about the z;_, axis, Fig. 2.1. In this case, matrices, R),, have the form:

cos¥; —cosy; sind; sing; sinY;
Rl =|sin®; cosg; cosd; —sing; costy|, 2.12
0 sing; cosg;
where ¥, is the relative joint angle between links i and i-1 (Fig. 1) and g¢; is a
fixed structural angle which allows successive coordinate frames to be set up so
that joint rotations always occur about the z axis of the previous link. For

example, in Fig. 2.1, a ¥, rotation about the z; axis aligns the x; and x; axis
while the fixed rotation of ¢ ,=~g— about the x; axis brings the z, axis into coin-

cidence with the z, axis. ( Note that the x; axis is always chosen perpendicular

to both the z,_, and the z; axes.)
It can be shown that:

R
—— ¢; =Q®R,=z_; x Rl ¢, 2.13
8,



by comparing the derivative to the matrix product, and hence from Eqn. 2.2:

RS aR{? _ -
) c; = ) RLI=R{M Q*RL ;=R (2, x R, ¢) 2.14

where j<k, and hence also:

82 R} . .
619161;,( =R QPRI QR e=Ry (zy—y X (RYZ} 2y X Ri_je)), 215

where u=min(j,k) and v=max(j k). Thus, differentiation is reduced to matrix

multiplication or a cross product.

Denavit and Hartenberg [DeH55] introduced a matrix, Tj,, which
expresses both the rotation and translation necessary to map a position vector
in the i** frame to its equivalent in a displaced i~1'® frame. The notation of

[Lew?74] is used. TL, operates on an augmented form of a vector d, in the ith

frame given by:

A

and the matrix T}, is given by:

Rl pia
Til—l=[ 0 1 2.16

The position pointed to by 4 in the displaced i—1* frame is given by:
T, d?

The submatrix, R}, is just the rotation matrix discussed above, and pi_, is the
displacement of the i*! origin from the i—1* origin viewed in the i~1*" frame. A
similar vector describing the same displacement, but viewed in the i*! frame
would be R}/™!p!,. To be consistent with the notation of [LWP8Q] define this
displacement between the i** and i—1"" frames as viewed in the i*! frame as r;

(Fig. 2.2), hence one has:
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Figure 2.2

Ri'pl_,=r; 2.17

The T}., matrices can be chained in the manner of Eqn. 2.1 to obtain:

Ti=Ti'TiE - T,
[RE] R R [REE REE] [RL B 2.18
10 1]7| 0 1 0 1} 7 {o 1

in which case it can be shown by multiplication of the R and p submatrices of T
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together with Eqns. 2.2 and

that the submatrix p{ of T} can be written:

i i i
Pjiz 2z ij~1P§—1= b) RPRE 'p-1= b Rry, . 2.19

m=j+1 m=j+1 m=j+1

where j < i. Thus, the position vector p! from the j** origin to the it! origin is

composed of a chain of vectors fixed in intermediate links. Furthermore, it can

[ o HHmm

i.e. the position pointed to by vector d; in the i** frame can be determined in

be seen that:

d;

THap=T}|, 2.20

the j** frame by rotating the d; position vector into the j*® frame (Rj‘ d;) and
adding a frame displacement, p}. For convenience define a vector from the j‘t

frame to the i*" center of mass denoted, P} .

From Eqgn. 2.19 one obtains:

8p§ _ORS . 4, ORP
3, 0% Pf",,?;, as, ™ 2.1

Replacing the partial derivatives using Eqn. 2.14 and Eqn. 2.15 one obtains:

opd _
R&’ Q*RTIr 2.22
1 i i-1 =
=3 Ri'z, x RPr,=Ri 'z, x pi, 2.23
msj

and similarly:

82 i i .
2 RIS QR Iy
900%  mak 2.24
= i‘k RE1 2u s X (R (2vey X RE,rm))
m=

where u=min(j.k) and v=max(j k).
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The notation, a'b, will be used to denote the dot product between vectors a
and b, while the notation, ab', the outer product, is equivalent to a vector

dyadic, in particular, (ab‘)c=a(b'c). The following vector and matrix identities

are used:

(a x b)te=a'(b x ¢), 2.25
whereas the dot and cross product can be interchanged.
Tr {ab'}=b‘'a 2.26

The trace of an outer product of two vectors is the inner product of the two vec-

tors.
(ax b) x e=a x (b x e¢)-b x (a x ¢), R.27
a simple cross product relation. Another relation which appears several times

is:

S Dby x (by X )= 5 by X (B X e+ N b x (b x &), 227

j=1 k=1 =1 k=1 j=1 k=j

where u=min(j k) and v=max(j,k), and from this implies:

S by x (b x e)=3 T (by X by) X et B x (box o) 228

=1 k=1 j=1 k=1

Tr § ABC }= Tr {(ABC)Y= Tr {C'B'AY} 2.29
Also,

Tr § ABC {= Tr { CAB | 2.30

Finally, some notation for the Lagrangian formulation concerning the link
inertial tensors is introduced. Consider link q in Fig. 2.3. If one integrates the
infinitesimal mass dm times the outer product d@; over the entire link mass,

one obtains an inertial type matrix, Jg defined by:
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Figure 2.3

J=fdqdidm 2.31

or
Jdg Pdm  fdg dgdm [fd, dqldm1

o=|[ dq dgdm [ dg *dm J dq, dg dm 232

S dg, dg dm fdg dg dm  [dg %dm

The integrals above are taken about the upper end of the link. Normally
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inertias are not specified in this fashion but are taken about the center of
mass. Using the parallel axis theorem [Sym71], Jq can be rewritten in terms of

the link center of mass inertial matrix, I, and the center of mass vector, Ty,

shown in Fig. 2.3, as below:

-1

+1g +1
Gyx  “Qyy  “Yee - = = - =
5 +meT . mgFo g mgTq Tq,

Iy ~Iq +I
- = = Gxx “9yy "Yze = = =
Ig= Mg Tq Tq, e tmgTe mqTq Fq, , .33
I +1 -1
- = = = 9ax “Gyy "G =
Mg Fo Ty me¥Pq.Fq, 5 +mg¥ .

where it is assumed that a principle set of inertial axis can be found by a simple
translation from the q'* origin to the q'* center of mass. Note that if the iner-

tial in integrated about the center of mass one has a simpler inertial matrix,

Ri}l“i-lqyyﬂqm 0 0
>
Ig. =1y +1
K= 0 = e 0 , 2.34
Iq‘x+ quy'—lqzz
0 0 Tz

where K, and Jg are related by:

Kq=Jq —m, Tty 2.35
Notice that:

Ig=Kq— Tr Ky 2.38

To be consistent with [LWPBO] define an augmented matrix, J§, which has the

form.:
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J mgT
S R 2.37
Mqlg~ Mg

where mg is the q'* link mass.
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3. EQUATION SETS

The four equation sets under discussion will be introduced below.

3.1. The Lagrange equations

The first formulation for an arm chronologically was the Lagrange equa-
tion set. The torque, 7, is related to the relative joint anglular accelerations,

'éj, and velocities, '&j. through a compact 4 dependent relation. The equation

for 7 is:
n aT§ t':)T&l *Tg o T <o
b Bl 5 e g e [ ]
8T '
Z_ (28)" (?mq?;

All of the notation has already been introduced in Sec. 2, with possibly the
exception of the g term, which is just the gravitational constant 9.8 m/s. A

development of these equations may be found in [Lew?74] [TML8O].

The equations are compact but are computationally of the order, n® (See

Appendix A), where n is the number of links.

3.2. The Recursive Lagrange

Hollerbach [HolB0] has derived a iterative form of the Lagrange equations

stated below;

O R}
=Tr {5 ° Dy 3.2



where:
2ni 2ni 2
S d“Rg _,d*Rgy _ _ d
Dy=R}"' Dis1t i€yt i dt? )t*'miri('azz— T; ) +mi( T + 1y )( "‘—“‘dt!: )t
a*R} _ .,

and where:

n d?pd d®*R§

e=),(m +m Tq)=€i)

Ei a7 a2 VT
d?p} d*R _

+m; ate +my —a—ti— L,

and where the derivatives of R} and p{ are found iteratively as below:

ERE (LR AR

e - P Q9 + R ((QZ)zasj%ij ) ) R, .
and:

dR dR{™! . .

dt& =( di +RA*I Q") R},

17

3.3

3.4

3.5

3.8

(Note: There were some errors in the original formulation of D; which have

been corrected here.)

These equations are linear in n but take more computations than the fol-

lowing Newton-Euler set, chiefly because they are still formulated in terms of

matrices, instead of vectors, and transforming vectors between coordinate

frames in computationally less expensive than transforming matrices. In the

Newton-Euler case below one can take advantage of this fact.
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3.3. The Newton-Euler equations The Newton-Euler equations are less com-

pact, but are computationally linear in the number of links, n. (See Sec. 6 for a

comparison).

The Lagrangian approach allows the formulation of the solution to prob-
lems in dynamics in an "automatic" way. However, this ease of formulation is
obtained at the expense of physical insight into the problem. In particular, it
is often not possible to identify calculations that have little contribution to the
value of the solution. With the Newton-Euler formulation these two terms can

be identified and eliminated.

Now for an overview. In the Newton-Euler formulation one works from the
base to the hand determining kinematic terms of the links and passing them
up in a causal fashion. Then one works from the hand to the base determining
dynamic terms and passing them down in a causal fashion. One would assume

this technique might be the most efficient and this assumption appears to be

the case.
wo=0
=0
8,=9.8 m/ s?
9i=Ri’—l("’i-—l+';9izi~l) 3.7
o =R @y + 0y X Z O+ 0% y) 3.8
a=w; X (@; X p)+a; X r;+R{a_, 3.9
a=w; X (@; X T)+a; X Fi+a 3.10

f;=mi5i+R,-’“t,-+, 3.11
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n=lias+w; X (Liw;)+m(Fi+n) X a4+ X R, 4R Iny,, 3.12
71=(R{"'zi1)'ny, 3.18
fne1=0
Dp4+1=0

All the vectors above are represented in the coordinate frame of their lower
index. Notice the Ii's, rj's, and T;'s are represented in the it frame and
hence constant. There was some confusion caused by the notation of the paper
by Luh, Walker, and Paul [LWPB0]. In their paper Luh et al represented all vec-
tors and inertias with respect to the base, and then rotated the final inertias
and vectors into the link systems. The I's etc. looked as if they had to be

rotated into the base system before being used. That, however, is not the

case,

3.4. The Gibbs-Appell set of equations
The Gibbs-Appell set will have roughly the same computational complexity
as the Lagrange set. It is presented for completeness.

)} . . e v
‘n=2i [ ,i [ Zi-1'1q Zi1+[ 2oy X Pl 2z X P 3.14
q= =1

L ] L ] . * 1
i: i 7t [ Zy-) X Ig Zyy+Zy g X Zy 5
k=1 j=1

+(zy X P2y, X (g X f"jq) ] ] Y Uy

Tr (1q)

u=min(j,k) and v=max(j,k).
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As mentioned before the Gibbs-Appell set was derived to determine the
structure of the equation for 7;. It was not intended to compete computation-

ally with the Newton-Euler set.
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4. CONNECTION BETWEEN THE LAGRANGE AND NEWTON-EULER

2 n
B el

q=i j=1

4.1

+Y g(z{z’)‘

q=i

> 8
mq Tq

The Lagrange formulation when expanded by submatrix multiplication of the

Té¢'s and Jg and can be written as below:

OR¢ opd _ GRE
qtm Ty ") )
q—i jil { 4 66'
8R§ _ opd N
+(mq 55, T, +mg —— 35, )( )}
zpé‘ 6Ré‘
F.t
+i { oo, 11" ™ ggas, T ) Gy )
4.2
8%Rg - 6"’5& pél Jd oo
pop9, TaTet Bggs, M) G ) Pk
R& -, opd
t
+(mlg20)( q+ 6,61 )
Defining a inertial tensor according to Eqn. 2.35, one can rewrite this as:

2 6R& aRg apg p& -
=58 [ ST KOG e(mg BB (2B i

9= j=1 99,

62R3 6R§
+§q-: Tr{ aop0, o gs )
ng a'pg . 4.3
t
H o, ™ s N 0%

+ Tr §(migzo (R R mey x B} |

(In dealing with the gravity term one can use Eqn. 2.23 and 2.14 to show that.:
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OR} _ op§ _ _
59, i+ ‘E‘,E‘ =(mgze 'R (7, x PL,) 4.4

(m,gzo)t

and then Eqn. 2.26 to obtain:
= Tr §{(migzo )R (R{ "2, x R pL, )Y 4.5

One can contract the time derivatives to obtain:

n  [d®R§ 8R§ . &B§
Ei Tr e Kq 53, )+ mg v ( )t]

+ Tr {(mgze ) RE(Rf 1 2,-; x RIT'pE, )Y

4.6

Now define an acceleration matrix, Ag:

d®R¢§
Ag=R] e 4.7

By Eqns. 2.14 and 2.15 another relation for Ag is:

Aq=R? >§Rer @ RE, 19+i S R§ Q2RI Q2 R, B, 9y |, 48

=1 k=1
where u=min(j.k) and v=max(j k).

And now an aside to determine the form of the Aq term in Eqn. Define a

quantity by the iterative relation:
We=RF (W + 2, 1§i), ©o=0 4.9

Upon expanding this becomes:
Wq= i R{'z_; 4.10
=1
Define a second quantity by the relation:

ag=REMN(ag 1+ 2g Vgt wgy X 24y 8y), 4.11

iterating this becomes:
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Aq= i Ry 2, ﬁj"’i RiN(@j-1 X 24-y)0
412

"'i Rj Z]..l’l’l'"ijz(Rk ‘zk_l x R] ‘zl-l)'ﬂ 19](
1=1 k=1

(aq and wg are, of course by Eqns. 3.7 and 3.8 just the angular acceleration

and velocity expressed in the i*! frame.)
Consider an arbitrary vector in the q*! frame ¢q then:
aq X cqtwg X (@q X ), 4.13

can be written as:

i} Alzl_lﬂ x cq+i))2(Rk Lgp 1By X Ri'z- ‘19) X eg

=1 =1 k=1

""i: i‘ Ré_lzj—ﬂ’j X (Rq_lzk—ltk X ).
=1 k=1

4.14

Employing Eqn 2.27 on the second term and third terms and moving a rotation

RJ out using Eqn 2.3 one obtains:

Rg[jf: R&‘lz] 1 X cq"-aj""ilki R§ 'z ¥, x (R§'2g 19, x RY, c)]l 4.8

Since a cross product can be replaced by a Qf matrix operation from Eqn. 2.8

one obtains:

=R i} Q*cq R, ’!9 +i:lki R Q* RV} @° RY, cq B B, 417

Thus from Eqns. 4.8 and 4.13 one can see that Aj can be written as:

Aq=(aq)ﬁQp+(wq)ﬂQ’(”q)xQx 4,18
One recognizes the acceleration &, represented in the q" system:

d2 =4
dt?

=R§ mqag 4,19

Note that:
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d?pd d?R n .
on = 26 p= 2 R{ A f’jq:Ré‘i Ry A i REr,+A Ty , 4.20
dt =1 dt q=i i=1 s=j+1
hence:
R§a,=R§A T +RI'a,_,, 4.21

where aq has been defined by the iterative relation:

a,=A rg+Ritag 4.22
These are just equations 3.9 and 3.10. Using Eqns. 4.7, 4.21, and 4.22, the equa-
tion for tau, Eqn. 4.8 becomes:

n .
=y, Tr [Rﬁl(ﬁ\q Kq (RS Q" (R 12y ),)"

9=t 4.23

+myag (RE Ry R 7y, X mm]

The gravity term has been absorbed into the acceleration iterative relation

Eqn. 4.22, whereas, now ag= m;g%g.

Consider the second term. The trace of an outer product can be changed

into an inner product by Eqn. 2.26:

n . .
Y Tr {Riq mqaq(Ry 12y x R f’iq—l)"]

q=in 424
=2 (R 'z, x RI7'pl,)'RAmya,
q=1
Now interchanging the inner and cross product one obtains:
n A _ _
(Rg'%-y)" Zi R Bl X Rimga, 4.25
q:
The equation for 7; is:
S i t
= 2 Tr {Aq Kq Q" (Rg'2,),)
= 4.28

n

+(Ry ' %1 )Y, RV B, X Rimga,

=i
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one can see that this can be rewritten:

n

7=} (R 2), [ Tr[AqKq (Q’)‘]+ ( f} RIVBY, x Rimgdg ), ) 4.27
g=1

q=1i

The tirst term in Eqn. 4.27 becomes:

(R 2i0)y 3 Tr{[ (@q)s @ +{0q)s @B (g )y ¥ Kq | (Q’)‘} 4.28

q=i
Examine the first term in terms of its components:
( Rtil—l z, )7( o q)ﬁQgchk( Kq )}\x 4.29

employing Eqn. 2.10

=( Ré—l Zj—; )7( aq)ﬁ(dxﬁd‘r)\”dx)\avﬂ)( Kq)kx

(Rtil—l Zi )7( Kq -E Tr § Kq;)'rp( “q)ﬁz ( Rti{l Zi— )t Iy aq .

K is related to I through Eqn. 2.36. The second term of Eqn. 4.28, in terms of its

components is just:

(R 21 )y (wq)a(@g )y Tr [( Q) Qf Q¥ Kq} 4.30

Consider the inside of the trace written in component form:

QZ.Q5,Q56(Kq)ya » 4.31
using 2.10 this is:

QeS8 cx 88y =095 8x{ Kq)ap - 4,32

where the symmetry of K, has been taken into account to allow (Kq),a to be
rewritten as (K )q. Contracting the Kroneker delta’s and including the terms

outside the trace, one obtains:

(RY'2-1)5{ 0 0)xQ7%a( Kq)ap( @ )p=( Ry 211 ),Q%a(Kqdagl @ g )a( @4 ) 433

This is:
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(Ri'z ) {wq X Kq 0q+0] 4.34

Since wq X (—E Tr {K;})@,=0 one can add this in and obtain an expression

with the inertia I matrix:

(Ri 'z {wq X Iqgwq] 4.35

Adding 4.35 to the previous result of Eqn. 4.29 one has:
Tr {Aq Ko (Q7 (R 21 ))) =(Ri 2z ) g agt wq X (Ig wgq)] 4.36

Thus one can see that the equation for 7;, Eqn 4.27 can be rewritten as:

n . . _ _
7= ) (Ry72 ) [ Igaqt@q X (Iqwg)+ R P, x Rimga,]

q=i
) n 4 .37
=(Ri7 %)) Ri[lqag+wg x (Ig@g)+RI™ B, x REmgag]
q=i
pl, by definition Eqn. is:
._1 _
E R18~—1 rg+ qu_l (rq+rq) 4.38
g=i

Combining this with R mga, one obtains:

n n n n
Y Pl X Rimgag=) RA(rg+Ty) x Rimgag+) RF(re x ) Rimgd,)
q=i q=i 8=i g=s+1 4.39

n n
=2i Riq[(rq"'_fq) X mqaq+2 Ris(rs X R:+lts+l)'
q.':

8=

where f,,, is defined as i Ré; mga . (Notice that this is just Eqn. 3.11). If
g=8+1
one now defines n; by the recursion (same as Eqn. 3.12 ):
n=ha+e X Leo(n+h) x atn X RiY U+ RF o, 4.40
one can see that 7; can be written as:

i =(R{ Tz )y

which is Eqn. 3.13.
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5. CONNECTION BETWEEN RECURSIVE LAGRANGE AND NEWTON-EULER

The first itemn to note is that the recursive vector e; defined in Eqn. 3.3 is

just the vector R f; defined in Eqn. 3.11.

The second substitution to be performed is to replace J; by K;+m;¥; ;'

using FEqn 2.35. Then the defining equation for D; becomes:
1+1 41 N d®Rj by 3t d*Rj
Dy =R{"! Dirs + BiRE™ i)+ Ki( D YT T I )

. . 5.1
2R6 Ly | dzRé . )t.
atz

_,d - - d*po
+my T ( T )+ my( T+ 1y )( a2 Y+m;r(

The last four terms can be combined into:
2=

(54 B~ )=+ R)(RE mia,)

so the equation for 7;, Egn. 3.2 can be written:

oR .
T1=Tr {'55%‘ [R{*! Dy + 1y RE £y + K (

d®R}
dt?

Yo+ (i + F ) (R miﬁi)t]} 52

R .
The term —a—di can be rewritten as R}(R/'z_,),Q” With this the third term
i

can be rearranged into:
Tr {R§(R{™'2;-1), Q7 K (R A)Y= Tr (R 2-1), Q" K; AY 5.3

Taking the transpose of the contents of the trace one obtains (K; is sym-

metric):
Tr {A K Q"(R 12, )} =(Ri g ' e+ 05 x (L w;)}. 5.4
using Eqn. 4.36. The second term in Eqn. 5.2 can be treated straightforwardly.

oR
After substituting in for —51%- one obtains:
i
Tr {RIRI 12y x n(RERIM £,)48= Tr (R 2 x m)(RIY 644)Y

5.8
=R 1 (R 25 X 0)=(Ri Yz )ty x R LG,
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upon exchanging a dot and cross product. In a similar fashion one can show

that the third term of Eqn. 4.23 can be written as:
(Ri7'%0)t [ (n+8) x my, ] 5.6

The terms found in Eqns. 5.4, 5.5, and 5.6 are just the terms of Eqn. 3.12 for n;.
With a little more effort one can show that the R/*!D; term gives a Ri*!n;,,

contribution.

The Recursive and Newton-Euler formulations are very close. As men-
tioned before the only reason that the Recursive-Lagrangian is computationally
more complex than the Newton-Euler is that the Recursive Lanrangian passes 3
by 3 matrices between link frames. These matrices are then combined with the
I,r, and, T fixed objects. The Newton-Euler, however, passes all quantities as

vectors between frames and saves considerable computation.
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6. CONNECTION BETWEEN GIBBS-APPELL AND NEWTON-EULER

The Gibbs-Appell set of Horowitz and Tomizuka [HoT80] is yet another for-
mulation that falls between the Lagrange and the Newton-Euler. We show in the

following that it is quite close to the Newton-Euler.

Examine Eqn. 3.14. If all cross products with z_, are exchanged with dot

products evoking Eqn. 2.25 the z;_, terms may be pulled to the front:

‘Ti=(zio~1)t§n:i [ Jié [ Iq 24 +Pp1 X (zy x f’.jq)] ‘31
q= =

+35 5 Lo x [1a-5 )] 6.1
=1 k=1

FB X (7 X (my x B9) | 9,9y |

The second and fifth term are from Eqn. 4.18 just:
n LJ ¢ n — —_
L P x iAijq=2Piqxaq' 6.2

In order to combine the first, third and fourth terms, they are pulled into

a trace. The first term is:

201 t13 7y O = (20 )y (KD ya—6yp(KDan]( 2t B))p 6.3

from Eqn. 2.36:

=( 21 (K 21 B9)p(8x80m=8xa078)=( Bt )y (Kidax (21 3;)sQ% QA

=( zj.'-l '.ls'J )pQEAK;M( zi._l).’Q;;:Tri( z].—l "lg]) X K;M( zi.—l Qz)t; 6.4

With some work the third and fourth terms can be combined in a similar

manner to yield:
3 ki Trize, % (2o X K)(zh, @43, 8, 6.5
=1 k=1

Employing relation Eqn. 2.28, Eqn. 6.4 and 6.5 are combined to yield:
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. -1 .o
Tr{[jf] Z1 ) X Kq+§q_: :(Z (Zx—1 X Z{y) X Kgo
=] =1 k=1

+§J ji: 2z X (Zgy X K;)".ak"-%](zitx Q*)Y
=1 i=1

=Triaq X Kg+wg % (g x K21 Q%)Y =Tr{AqKq( 21 Q)Y 6.8

Combining 8.6 and 6.2 we have Eqn. 4.26 represented in the base frame. The
final connection between the Gibbs-Appell and the Newton-Euler follows from

the discussion in Sec. 4.
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7. IMPROVEMENTS TO NEWTON-EULER
Egns 3.7 and 3.8:
0i=Rf_l(0i—1+1§izi—1) 7.1
;=R &+ x zi—l""i'*"'a'izi—l) : 7.2

are basic to the model but one can use the consolidation operation introduced

in Eqn. 4.18 to reexpress Eqns. 3.9-3.11 as:

ai=Airj+Rj’”la,-1 7.3
&=AT+a 7.4
fj=mjai+Rii+lfi+l 7.5

And if one uses the first term from Eqn. 4.27 for 7; and hence for n; one can
write:
n;= Tr {AK( QY )YR,+[my(Fi+ ) x &+(x) x RF ', +R{*'ny,, 7.6

The first term for n looks ominous but amounts to a (AiKj)yz—(AKj)sy contribu-

tion to n, and similar contributions to ny and n,.

This form saves some computation {see next section, Sec. B, especially

Tables 8.4 and 8.5 and gives more parallelism to the computations (see Table

8.8).
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8. COMPUTATIONAL COMPLEXITY COMPARISON

In the following we compare the Lagrange, recursive Lagrange, Newton-
Euler, and modified Newton-Euler formulations to determine their relative com-
putational complexity as a function of the number of links in the arm, n. The

complexity of the three approaches is displayed in Table 8.1.

Approach multiplications additions
=
Lagrange %ln3+-1—g—5-n2+5n 239 a+58n"’—%}n
Recursive Lagrange 226n 144n
Newton—Euler 108n—-12 100n-9
Modified Newton—Euler 90n-27 BBn—24

Table 8.1. Computational Complexity of Formulations

A similar table was derived by Hollerbach [HolB0]. However, he arrives at
an n* dependence for the Lagrange formulation and a 150n dependence for the
linear Newton-Euler formulation. The discrepancy can be accounted for by the
fact that he carried out the operations "more or less as set forth” [Hol80] and

made no effort to interpret the equations more efficiently.

To see how Table B.1 was derived consider first the Lagrange approach.
Determining the kinematic contribution for the 19] coefficient is linear in the
number of links, n, but determining the coefficient of the 75111311( is of order n®
since the calculations must be done for each value of j and k. These kinematic
calculations are then reperformed for all n torque calculations. So the whole

process is of order n3. A breakdown of computations is shown in the Table 8.2.



a3

Lagrange terms multiplications additions
T} 32n(n-1) 24n(n—1)
oTs 32n(n-1) 24n(n—1)
55, |, n{n n{n
8°Th ] 32 ,

—n(n®-1) 8n(n®*-1)
[aﬁjaﬂk v 3
R DR 17 s, 17 2 RO9 16 s, BO
Lgi[ ]ﬁﬁé}l[ Lﬁjﬂkqu d g D + 5 Dot = 3 D + 3 D
oT§ 2 2

Tr i[ '_6_;!:; Bn“+8n Bn®+7n

n

Y, (z&‘)t mqgrq 2n®+2n 2n?+n

g=i
Bl 5,165 o 40 84
Total 6 nd+ —= > +5n 3 +58n%— 3

Table B.2. Breakdown of Lagrange Terms

Multiplications by Q] have been ignored since they amount to a row interchange
and a row negation. Appendix A shows in more detail how the terms are com-

puted.

Now consider the Recursive Lagrange formulation.



Recursive Lagrange terms J multiplications additions
d R} 33
TS n 24n
d°Ry 48 36
D n n
OR} 45 _7
5%, n n
d%p}
O 9n 9n
Ri*! Diyy 27n 18n
d®R}
J t
i( TE ) 27n 18n
d* pf
mi( T+ r; )( 1 » 9n 0
d®R{ _
r( i » 1Bn 6n
Ti€i1 On 0
d®pf \, _, dRg ,,
o e T ( TS ) 3n 6n
Total 226n 144n
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Table 8.3. Breakdown of Recursive Lagrange Terms

Now consider the Newton-Euler computations. Using the Newton-Euler
equation set one moves from the base of the arm to the hand in computing the

kinematics and then from the hand to the base in computing the dynamics.
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Thus to compute the torque, 7, the kinematic and dynamic calculations are
performed only once for each link. If there are K kinematic and D dynamic cal-
culations per link, the computational complexity of the Newton-Euler set for an
n link arm is (K+D)n: a linear computation scheme. Besides this linearity
another advantage of the Newton-Euler set is that terms representing insignifi-
cant torque contributions can be easily identified and, if approximations are
acceptable, deleted. Identifying insignificant terms in the Lagrangian formula-
tion is made difficult because individual contributions tend to be combined in
unintuitive ways. (It was noted earlier that the Newton-Euler formulation pro-
vided greater physical insight into the problem.) The Newton-Euler and the

modified Newton-Euler computations are broken down in Table 8.4 and 8.5.

Many of the arithmetic operations tabulated in Table B.4 can be performed
concurrently. Table B.6 presents the number of steps required to perform the

modified Newton-Euler equations if this concurrency is accounted for.



N-E terms multiplications additions
w; 9n n B
a; O9n 9n
A 6n 9n
a 18n 15n
a On 9n
£ 12(n—-1) 8(n-1)
Lio; 9n 6n
w; X (Liw;) 15n 9n
m(r+T;) X & 6n 3n
r; X RI* 'y, 6n 3n
Rl 0y 9n 6n
add n 0 16n
Total 108n-12 100n-9

Table 8.4. Breakdown of Newton-Euler Terms
(Note: It is assumed that an A; is computed rather
than all the cross product terms.)

36



N-E terms multiplications additions
@; 9n ™
a; 9n 9n
A4 6n 9n

8 18(n-1) 15(n-1)
m;a, 12n 9n

£, 9(n-1) 8(n-1)

Tr {AK( Q7)Y én 3n
m(r+T;) X 3 6n 3n
r; X RIYY,, 6n 3n
R0y, 9n 6n
add n 0 15n

Total 90n—-27 B88n—24

Table 8.5. Breakdown of modified Newton-Euler Terms

37
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N-E terms multiplications additions
W 9 7
. 9 9
Ay 6 9
(AP 9 7
oz 9 9
@iz Rivz . Airr . B, 18n 16n
myay , Tr {AK Q7 , myTi—y X 85
f.n,, xRV, 9n 12n
Ri 1Dy
Total _7n+42 R7n+41

Table 8.8. Simultaneous steps in N-E computation.

As mentioned before some applications require that the torque be in the

following form:
T=M(o)§§ +C(1§,ﬂ)+G(ﬂ)+Tload B.1

This form results naturally from the Lagrangian formulations, however, it can
be obtained with less effort from the Newton-Euler equation set using the fol-
lowing technique. If the application requires the form given in Eqn. 8.1, one can
obtain the M(®¥); matrix element by "strobing” the iterative set of equations
above with an input @ unit vector with all inputs except 191 set to zero and with
gravity and the load f, and n; set to zero. This is the technique we use to obtain

the M matrix in our simulation program. If one also requires the Cj’k elements,
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they can be obtained by zeroing all '@'S and ¥'s except 1§j and 1-31( which are set to
1. Gravity and the load are again set to zero. The number of calculations
involved will be 36n(n+1) multiplications and 26n(n+1) additions for the M
matrix and 54n3+27n%+9n multiplications and additions for the C' matrices.
(Symmetry of the M and C' matrices has been taken into account) The later
shows that the Lagrangian could be useful if the C's were needed (See Table
B.2) However, in the following section, Sec. 9, on simulation one only needs the

M matrix and a lumped C and G contribution. We never use the explicit C

matrices.
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9. APPLICATION TO SIMULATION

The improved Newton-Euler together with the strobing technique proposed
at the end of section 8 can be used to perform efficient simulations. An impor-

tant use for simulation is in the evaluation of arm control strategies and allow

improvements to the arm model.

In simulating the arm one is given an input torque vector 7(t) and initial
values of the relative angular velocity vector, 'ﬂ(O) and relative angular posi-
tion vector, ¥(0), and are required to determine the resulting 'ﬂ(t) 'tlﬂ(t), and

¥ (t). Solving Eqn. 8.1 for 3 (t), one has an expression of the form:
B =M(B) [T ~T100a—C(B 8 )—G(8)]=£(8,8) 9.1

It 8 is represented by ¥, one has a system of 2n equations (where again n is the

number of links):

y=1(8,8) 9.2

4=y 9.3
Now that one has the equations in this form one can perform a standard
Runge-Kutta four point integration. Assume that y represents the augmented
2n vector (y,8)! and further assume that h represents the augmented 2n vec-

tor (f,7)'. The equations become simply:
y=h(y) 9.4

The new values of y are, of course, just the new values of ® and 8. The step size
¢ canr be determined once one knows the maximum possible change in 8 or 1’
which can in turn be found from the maximum arm velocity. & should be taken

small enough so that changes in angle and angular velocity are not excessive.

Evaluating h at its various input values is not simple. One must obtain the

C and G contributions and subtract them from 7. Then one must determine
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the M matrix, invert it, and then solve for 8. The Lagrange equations yield an
explicit form for the M, C and G matrices, but as was shown in the previous sec-

tion, Sec. B, they are of order n®. Instead the following approach works better.

First one obtains the combined C+G contribution by zeroing the the 0
input vector and inputing the B and ¥ vectors. This contribution is subtracted
from 7. Next one inputs zero gravity and also zeroes out the '6 contributions,
but retains the ¥ values. The Newton-Euler equations are then strobed for vari-
ous components of M by setting all but one component of ® to zero. This pro-
cess takes 36n(n+1) multiplications and 26n(n+1) additions as mention in the
previous section, Sec. 8. Inverting M can be done by Gaussian elimination with

no pivoting necessary since M is a positive definite matrix. [HoTBO0] d can be

found using:
0 =M YT —T102a—C—G) 9.5

The resultant @ and ¥ are determined from the input T using Runge Kutta four

point integration discussed above.

With real time simulation, one can compare measured arm torques with
the simulation predicted torques allowing one to adjust inertias vectors, fric-

tion and other parameters in the model to fit the real arm motion.



42

10. APPLICATION TO CONTROL

In order to discuss real-time control of the arm one must consider an
integrated model for the arm’'s motion. By this is meant, given the desired
hand trajectory of the arm one should be able to perform all steps necessary to
determine the torques needed to move the hand along that trajectory. Also one

should take into account friction at the joints as well as vibration in the arm.

10.1. Determining joint velocities and accelerations

Consider the trajectory problem. In order to apply the equations of
motion Eqns. 7.1, 7.2, 7.3, 7.5, and 7.6. one need know the joint angular veloci-

ties and accelerations 131- 's and ﬂj's.

If one looks at the equations of motion one can see that one can relate the
hand's angular and linear acceleration to the 1'91 's and 191 's by:

xXn

=18 +N( 10.1
o |FLP +N(B)

where # and ¥ are six vectors, L is a six by six matrix which exhibits the
linear dependence of aj and ay, (the angular and linear hand accelerations) on
‘li and N is a nonlinear contribution from 'd terms. To solve for 13 , one could

"strobe” the equations as in Sec. 8.

First ¥ is set to zero. One can find the nonlinear contributions of the last
computed 8 's and that of gravity to the angular and linear hand acceleration.
One can then "strobe" out the matrix L, one element at a time by zeroing all
nonlinear contributions and by zeroing all but one d element. One can then

solve for 1? through:

3 =L“‘[[ah -N(8)] 10.2
ay

One can then use a Runge Kutta scheme to integrate 44 to obtain the new 3
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and 4. Once one has 9, 19 , and 3 , one can apply the equations of motion to

determine the needed torques.

10.2. Load adjustment trajectory planning

One would like, if possible, to plan the arm trajectory "on the fly", allowing
one to eliminate an initial delay time for trajectory computation, and also
allowing one to adjust for unforeseen shifts in the load (i.e. sloshing mode in a

liquid being carried).

The difficulty in planning any trajectory is determining hand linear and
angular accelerations which do not overload the arm's actuators. The following

method is proposed.

First block out a crude trajectory solving the Eqns. 10.1 and 9.5 for

[ap,8,]' in terms of the available 7i's at widely separated points on the

desired path.

& h mex
8p mex

]—N(’l'?)zLM—l(T '—Tloﬂd“C’G) 10.3

This allows one a global view of what maximum linear and angular acceleration
will be attainable on the actual trajectory. During actual arm movement one
can use, Eqn. 10.3 to determine what acceleration the hand is actually capable

in response to loading.



44

11. CONCLUSION

A thorough investigation of the Lagrange, Recursive Lagrange, Gibbs-
Appell, and Newton-Euler arm formulations was performed. They were all
shown to be consistent with minor corrections. The insight gained in this study
enabled us to formulate a more efficient Newton-Euler equation set suitable for
real-time control applications or high speed simulation studies. Additionally,
the technique of strobing, outlined in Sec. B allows one to identify the inertial
and coriolis-centrifugal matrices used in an explicit representation of the

torques without recourse to the Lagrangian formulation,
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APPENDIX

The following is a possible strategy for computing the Lagrange equations in

order n® operations.

First build up all the transformations Tf. Product pairs are of the form:

TeTZ TETS T4TY - TEZTR, n-1 T multiplications

Triples can be built up as:

T¢TET] TETSTE - TRETRATR, n-2 T multiplications
n-1

Thus to compute all the T¥'s takes ), (n—m) matrix multiplications or 32n(n-1)
m=1

multiplications and 24n(n-1) additions.

oT}
One can compute the 5—-1-3-(1 in the following way.
i

QS Té takes one Q multiplication

Qf Té takes one Q multiplication

Td Q) T2 takes one Q and one T multiplication
Q4 TS takes one Q multiplication

Té¢ Q) T takes one T multiplication

T¢ Q) TS takes one Q and one T multiplication

One can see the pattern. Each link takes n-1 T multiplications. (Q multiplica-

tions are not counted since they consist of a row negation followed by a row

n
interchange.) The total number of calculations is ), (m-1) T multiplications or
m=1

82n(n-1) multiplications and 24n(n-1) additions.



8T¢ ) i 8Ty
The 85,90, terms can be computed using the Tj and —5;’;; fragments as the

examples below:

Q¢ QF 1¢ takes one Q multiplication

QP QF T takes one Q multiplication

Qd T¢ Qi T? takes one Q multiplication

Té¢ Qf Qi T takes one Q and one T multiplication

Qf QF T8 takes one Q multiplication

QS Td QF T3 takes one Q multiplication

Qd TE Q2 T3 takes one Q multiplication

T Q! Q T? TS takes one T multiplication

Ta Qi T? Q2 TS takes one T and one Q multiplication
T Qf Q5 T3 takes one T and two Q multiplications

For each link i it takes Eg—lz T multiplications. If this is summed over all the

links, one has %gn(nz—l) multiplications and 16n(n®—1) additions.

8T
To produce i g

5. ¥, takes 16 q multiplications and 16(q-1) additions.
j=1 i

D ® 2 a
L q{g—1) T . 0°T _ 0°Ty
To produce pairs 99y takes 5 multiplications. Since 5,09, =3 500,

in order to produce f} i 1"‘31( takes an additional _ng__l multiplica-

b o aqs 619
tions and 16(q+1)(q—1) additions. To combine these two terms takes an addi-

tional 16 additions. To multiply by J4 takes 64 multiplication and 48 additions.
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To produce the kinetic term:

oTs aTg
ii aa, é | 09,00y Fo0, P10 a

v

takes B-éq(q+ 1)+64 multiplications and 16q(q+1)+32 additions.

To produce the above terms for all values of q takes:

2[8 q(q+1)+64]——n(n+1)(n+2)+64n multiplications
2

qg=1

D 16 .

Y [18q(q+1)+32]=32n+ —é—n( n®-1) additions
q=1

Now pick a value for i. To produce:

Tr{ q?,?] 3

for g=i to n takes 16(n-i+1) multiplications and 15(n-i+1) additions since one is

only interested in the diagonal terms. Besides this there is a cost for summing

the terms:

)| )

q=i
of n-i additions. Summing contributions for all i's results in:
n
) 16(n—i+1)=Bn(n+1) multiplications
i=1
and
n
Y, 15(n—i+1)+n—i=Bn*+7n additions
i=1
In the gravity terms:

(zg)tqz—i a,a mqgrq

aTd
only one component of 55, — MqgTq need be considered since the (z§)' projects

out only one component. Computing the needed component requires 4(n-i+1)

multiplications and 3(n-i+1) additions. Summing this for all i yields 2n?*+2n mul-
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2
tiplications and —g-n2+ gn additions. Add to this % —% additions to sum up the
results.

Summing all contributions gives us a total of:
%l—n‘°’+ 1—2-53 n®+5n total additions
-4-539-n3+ 58n°— %l-}- n total multiplications

These are the results reported in Tables 8.1 and 8.2.
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