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PREFACE

This report contains three technical papers concerned with the
calibration of polarimetric radar systems. All three papers have been submitted
to scientific journals for publication. Because of the strong current interest in
this subject, we decided to print and distribute the three papers as a single unit

under this repon.
The three papers are:

(1) "Calibration of Polarimetric Radar Systems with Good Polarization
Isolation," by K. Sarabandi, F.T. Ulaby, and M.A. Tassoud;ji

(2) "A General Polarimetric Radar Calibration Technique: Theory and
Experiment. Part |- Theory," by MW. Whitt and F.T. Ulaby

(3) "A General Polarimetric Radar Calibration Technique: Theory and
Experiment. Part Il - Experiment,” by F.T. Ulaby, P.F. Polatin, M. Whitt,

and V. Liepa.






CALIBRATION OF POLARIMETRIC
RADAR SYSTEMS WITH GOOD
POLARIZATION ISOLATION

K. Sarabandi
F.T. Ulaby
M.A. Tassoudji

December, 1988

The authors are with the Radiation Laboratory, EECS Department, University of Michigan, Ann
Arbor, MI 48109.

This work was supported by NASA Grant NAGW-733 and NASA/JPL contract 957191.






List of Figures

10

11

12

Geometry of scattering of a plane wave from a particle. . . . ... ... ... .. 11
Simplified block diagram of a dual polarized radar system. . . . . . ... ... .. 12
Automatic radar cross section measurement setup. . . . . ... ... ... ... 13
Geometry of scattering of a plane from a long, thin cylinder. ... ... ... .. 14

Theoretical values for radar cross section versus tilt angle of a cylinder with
L=30.48 cm and D=1.625 mm, (—)bh, (--)vv, (---)hv.. . ... ... ... 15
Theoretical values for relative phase (to vv) of the elements of scattering matrix
versus tilt angle of a cylinder with L=30.48 cm and D=1.625 mm, (——)hh and

(- V. e 16
Geometry ofawireemesh . . . . .. ... ... ... L o o o 17
Radar cross section (hh) versus frequency of a cylinder with L=30.48 cm and
D=1.625 mm, (—)measured and (- --)theory. . . . ... ... ... ........ 18
Radar cross section (vv) versus frequency of a cylinder with L=30.48 cm and"
D=1.625 mm, (—)measured and (- --)theory. . .. ... ... ........ ... 19
Radar cross section (hv) versus frequency of a cylinder with L=30.48 cm and
D=1.625 mm, (—)measured and (- --)theory. . . . ... ... ........... 20
Relative phase Shj (td Svv) versus frequency of a cylinder with L=30.48 cm and
D=1.625 mm, (—)measured and (- - -)theory. . . ... ... R R 21
Relative phase Sh, (to Syy) versus frequency of a cyﬁnder with L=30.48 cm and

D=1.625 mm, (—)measured and (- --)theory. . . . ... ... .. ... .. ..., 22






Abstract- A practical technique is proposed for calibrating single-antenna polarimetric radar
systems using a metal sphere plus any second target with strong cross-polarized radar cross
section. This technique assumes perfect isolation between antenna ports. It is shown that all
magnitudes and phases (relative to one of the like-polarized linear polarization configurations)
of the radar transfer function can be calibrated without knowledge of the scattering matrix of
the second target. Comparison of values measured (using this calibration technique) for a tilted
cylinder at X-band with theoretical values shows agreement within +0.3 dB in magnitude and +5°
in phase. The radar overall cross-polarization isolation was 25 dB. The technique is particularly
useful for calibrating a radar under field conditions because it does not require careful alignment

of calibration targets.
1 Introduction

A polarimetric radar is a phase-coherent instrument used to measure the polarization scat-
tering matrix S of point or distributed targets. The matrix S relates the field E* scattered by
the target to the field E* of a plane wave incident upon the target [1, p.1087],

—ikr

E':e

SE', (1)

r

where r is the distance from the center of the target to the point of observation and k is the wave
number. For a plane wave incident upon the particle in the direction f:( , its electric field vector
may be written in terms of vertical and horizontal polarization components, E} and E;, , using

the coordinate system (ir.-,ﬁ;, ﬁ,) shown in Fig. 1,

E' = (Ei%; + Bk, (2)
where
Vi = cosb;cosd; X + cosl;sing;y — sinb;z (3)
h; = —sing;% + cos¢;§ (4)
ki = sinficosdix + sinb;sing;§ + sini. (5)
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In (2), a time dependence of the form e is assumed and suppressed.

The far-field wave scattered in the direction k, is a spherical wave given by

E' = BV, + Eih,, (6)

where (¥,,h,,k,) are defined by the same expressions given in (3) to (5) except for replacing the

subscript ¢ with the subscript s. For the backscattering case, §; +0, = 7, ¢; + ¢, = =, ﬁ, = —lAc,-,
v, = ¥, and h, = —h;.

In matrix form, (1) may be rewritten as

E} e=ikr | Syy  Sun E? "

r

Ep She  Sha E;.‘
where
Sve S,
S = uh (8)
Shv  Sha

is defined in terms of the scattering amplitudes Sy, with m and n denoting the polarization
(v or h) of the scattered and incident fields, respectively. The scattering amplitude S,,, is, in

general, a complex quantity comprised of a magnitude s;mpn =| Smn | and a phase angle Yy,
San = Smn€ Y™ m,n=v or h, 9)
and it is related to the radar cross section (RCS) of the target, op,p, by

Omn =47 | Spn |2 (10)

=4nsk; mn=v or h.
Interest in measuring S stems from the fact that if the elements of S are known, we can
compute the RCS of the target that would be observed by a radar with any specified combination
of transmit and receive antenna configuration, including elliptical and circular polarizations [2].

In fact, we do not need to know all four magnitudes and four phases of S in order to synthesize

the desired RCS; it is sufficient to know the four magnitudes and any tliree of the phase angles,



measured with respect to the fourth as reference. Thus, if we choose 1,, as reference, we can

write (8) in the form

i,
S = eithe Syy Syp€ T vk
sh,,e"'“w shhei‘b;‘h (11)
= e"“bvvsl
where
an = Ymn — Yy, m,n=v or h. (12)

For backscattering, the reciprocity theorem mandates that Si, = Sys, which further reduces the
number of unknown quantities from 7 to 5.

The formulation given above is equally applicable to a distributed target. If the effective area
illuminated by the radar antenna is A, the polarimetric scattering behavior of the distributed
target is characterized by the diﬁ‘erential scattering matrix S° = S/ VA.

In principle, Sy, and Sk, can be determined by measuring E} and E} with the target il-
luminated by a pure vertically polarized wave Ef = Ei¥; and, similarly, S,» and Spa can be
determined by measuring the same quantities when the target is illuminated by E' = E';,fx,
Such a procedure requires that (1) the transmit and receive antennas of the measurement system
each have excellent isolation between its v- and h-ports, and (2) the receive-transmit transfer
functions of the measurement system be known for all four polarization combinations (vv, vh,
hv, and hh). Design techniques are currently available to achieve antenna polarization isolation
on the order of 30 dB. For a radar scatterometer system intended to measure the differential
scattering matrices of distributed targets such as ground surfaces and vegetation canopies, such
a level of isolation is sufficient to insure good measurement accuracy of the magnitudes and
phases of all four scattering a.mblitudes. The error associated with measuring the like-polarized
components S,, and S is negligibly small, and for Sj,(and S,) the error also is less than
0.85 dB if | Shy | / | Sww |> 0.31, which corresponds to opy /0y > 0.1(or -10 dB). For natural
targets the like- and cross-polarized components, Sy, and S,, for example, are uncorrelated and

for opy/0yy > 0.01 the associated error would be less than 0.4 dB.



If the radar antennas do not individually have good polarization isolation between their v-
and h-ports, it is necessary to characterize each antenna by a polarization distortion matrix that
accounts for the coupling between the two ports, and to use at least two, and preferably three,
targets of known scattering matrices in order to calibrate the radar completely [3]. This case is
outside the scope of this paper and will be the subject of future papers. Instead, we will now
focus our attention on the problems associated with measuring the receiver-transmitter trans-
fer function for a radar with reasonably good overall cross-polarization isolation using suitable

external calibration targets.

2 SYSTEM TRANSFER FUNCTION

Although a radar may use a single antenna to provide both transmit and receive functions and
may also use a polarization switching network capable of exciting either v- or h-polarized waves
in the antenna, we shall use the block diagram shown in Fig. 2 to represent the general case of a
two-pole transmitter and a two-pole receiver. Assuming perfect isolation between antenna ports,
the voltage received by the v-polarized receive antenna due to illumination of a target at range

r by a v-polarized wave is given by

B =B - RIS,

- §C—|2kerTvSw

(13)

where

211/2
K = [PgGgG,-/\] , (14)

(47)2
Suy is the scattering amplitude of the target, P; is the transmitted power, and G, and G; are the
nominal gains of the transmit and receive antennas. The quantities R, and T, are field transfer
function for the receive and transmit antennas, respectively, which account for the deviation in
both amplitude and phase from the nominal condition described by G;G,. Similarly, for any

receive-transmit polarization configuration, we have

K .
Emn = ﬁe-'ZkrRanSmm mn=v or h. (15)



3 CALIBRATION

The standard calibration approach involves the use of one reference target of known scattering
matrix. Upon measuring E,,, with S, known, the quantity (K R»Ty) can be determined in
amplitude and phase, with the latter being relative to some reference distance time delay.

In principle, the procedure is simple and straightforward. The problem arises when we need
to select a reference target of known scattering matrix. The metal sphere is the easiest target to
align and its scattering matrix can be computed exactly [4, p.297]. Unfortunately, it can only
be used to calibrate the vv- and hh-channels because its S35 = 5,7 = 0. Targets that exhibit
significant cross-polarized scattering include the dihedral corner reflector, tilted cylinders, and
others, but scattering from such targets is inherently sensitive to the orientation of the target
relative to the (0,-,13,-,]2,-) coordinate system. This, and other factors such as edge scattering,
may lead to significant errors between the calculated values of the scattering amplitudes and
their actual values. The orientation problem may be reduced down to an acceptable level when
operating in an anechoic chamber under controlled laboratory conditions, but it poses a difficult
problem when it is necessary to calibrate a truck-mounted scatterometer, for example, under
field conditions.

To solve this problem, we propose to use two reference targets, namely a sphere and any
target with strong cross-polarized RCS. As will be shown below, it is not necessary to know the
RCS of the second reference target in order to calibrate the radar system.

First, let us use a metal sphere of known size, and place it at a distance ro from the radar.
The scattering amplitudes of a metal sphere are Spp = Syy = So, and Spy = Syn = 0. The

received fields for vv and hh polarizations are

ES = ge""z"”R.,T.,So (16)
0

Ed, = i—i-e-"’"oR,.T,.so (17)
0

where the subscript and superscript 0 denote quantities associated with the metal sphere. For

a test target with unknown scattering matrix S*, placed at a distance r, from the radar, the



received field is

K __,

EY = e i2kre R T, SY., (18)
v = ge“”‘"RhT,,S;,‘v, (19)
u K —$2kr, u

Ehh = r—2€ RhThShh’ (20)
u K —12kr,,

By = e %R, Th Sk, (21)

From (16) and (18), and similarly from (17) and (20), we obtain the following expressions for the

unknown like-polarized scattering amplitudes

u Ett;‘v Tu 2 ~i2k(ro—ry)
Sy = ENACS e So, (22)
u 2 .
() () s ®

All the quantities on the right-hand side of the above two expressions can be measured directly
except for So which can be computed precisely using the standard Mie expressions. Small errors
in the measurements of the ranges r, and ro will have a minor effect on the magnitude of S},,
but may cause a large error in the measurement of the phase angle of S¥, if the error A(rg — ry)
is comparable to A. However, the phase ¢}, of S¥, relative to that of S¥, is independent of
(ro —r4)-

Next, let us use any point target that exhibits strong cross-polarized scattering, and let us

measure the received field for hv and vh polarizations,

K

Ef, = e R,T, S5, (24)
[+
K .
3h = -’-‘-2-6—'2kT°RuT}.S$h (25)

[

where the subscript and the superscript c refers to the cross-polarization calibration target. The
reciprocity theorem states that in the backscattering direction, the cross-polarized scattering

amplitudes are always equal. Hence,

Shv = Sy (26)



and consequently

E¢ Rp1
— Zhy _ v 2
K= El RTy (27)

If we define the additional quantity K3 as

K, =ES E?
2 t;v hh (28)
= Kpe=i#oR,T, Ry T3 %,

and use it in combination with (19), (21), and (27), we can obtain the following expressions for

the cross-polarized scattering amplitudes of the test target:

u 2
1412 0

K, ra\2 _
3};:\/E oh (;E) e~ ik(ro=ra)g, (30)

Equations (22), (23), (29), and (30) provide expressions for the four scattering amplitudes in
terms of (1) the like-polarized received voltages for the metal sphere, EJ, and EJ,, (2) the ratio
of the cross-polarized received voltages for the second calibration target, Ky = Ef,/ES,, (3) the
like-polarized scattering amplitude of the sphere, Sy, and (4) the ranges to the sphere and the
test target, ro and r,. Note that knowledge of the scattering amplitude of the second calibration

target is not required.

4 COMPARISON WITH MEASURED DATA

To verify the validity of the proposed calibration technique summarized by equations (22),
(23), (29), and (30), we measured the scattering matrix of a tilted cylinder with an X-band
radar. The radar is an HP 8753-based dual polarized scatterometer operating in continuous
chirped mode (9-10 GHz). The antenna of the scatterometer is a square horn with an orthogonal
mode transducer (OMT). The overall cross-polarization isolation of the system is better than
25 dB. The scattering measurements were performed in a 13-m long anechoic chamber using
the setup diagrammed in Fig. 3. A similar system with an operating frequency of 35 GHz is

described in [5].



Although an exact theoretical solution for a finite-length, conducting cylinder does not exist,
the solution based on the assumption that the current along the axis of the cylinder is constant
provides accurate results in the specular direction, if the length of the cylinder (L) is much larger
than the wavelength [6]. In order to minimize edge effects caused by scattering by the ends of
the cylinder, the diameter of the cylinder (D) must also be chosen to be much smaller than the
wavelength. Hence, we selected a cylinder with L.=30.48 cm and D=1.625 mm.

Correct positioning of the test target with respect to the antenna coordinates is very impor-
tant. First, the target must be placed at the center of the antenna beam in order to avoid phase
variations of the incident field along the axis of the target. This was accomplished using a pair
of two laser beams. Another alignment parameter that has to be carefully controlled is the angle
¢ between the incidence direction (lE.-) and the projection of the cylinder axis onto the horizontal
plane (Fig. 4). The elements of the scattering matrix are very sensitive to variations in azimuth
angle and the rate of change is proportional to the length of the cylinder. This angle was set to
90° with a fine-control stepper motor (steps of a fraction of a tenth of a degree) by maximizing
the received power. The third alignment parameter is the tilt angle  which is the angle between
the axis of the cylinder and the vertical direction (V;). Accurate setting of this angle is very
difficult. The sensitivity due to misalignment in # is shown in Fig. 5 for amplitude and in Fig.
6 for relative phase (to vv) of the elements of the scattering matrix using theoretical expressions
[6]. This angle was set to 50° using an inclinometer.

Under the mentioned conditions a signal to noise ratio of 25 dB was achieved for the test
cylinder and after background subtraction the signal to noise ratio was improved to 40 dB. To
eliminate short-range reflections from the antenna circulators, the returned signal was time-gated,
as a result of which the frequency response around the beginning and the end of the frequency
band was distorted and discarded.

A 15-cm sphere was used for éphere calibration and a 45° wire-mesh (Fig. 7) was employed as
the cross-polarization target. The distances of all the targets fr6m the scatterometer, which were

accurately measured using the time-domain feature of the HP 8753 Vector Network Analyzer,



were arranged such that ro = r. = r,. The measured amplitudes of the scattering matrix
elements of the cylinder are compared with theoretical values in Figures 8-10. The measured
values are within £0.3dB of the theoretical results. For relative phase, the measured values
(Figs. 11 and 12) are within +5° of theoretical predictions. These deviations are attributed to

alignment errors and to the imperfect polarization isolation of the antenna.
5 CONCLUSIONS

The excellent agreement between measurements and theory demonstrates that the calibration
technique proposed in this paper is an effective approach for calibrating single-antenna polari-
metric radar systems. The technique is particularly useful for field operations because it does
not require accurate alignment of calibration targets or knowledge of the radar cross section of

the depolarization target.
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Figure 1: Geometry of scattering of a plane wave from a particle.
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Figure 2: Simplified block diagram of a dual polarized radar system.
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Figure 4: Geometry of scattering of a plane from a long, thin cylinder.
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Abstract

A polarimetric calibration procedure useful for both laboratory and field mea-
surements is introduced. The procedure requires measurements of three known
targets in order to determine the distortion matrices that characterize the effect
of the measurement system on the transmitted and received waves. The scatter-
ing matrices for the known targets can be of any form, providing that a limited
set of constraints are satisfied. The approach: involves forming matrix products
from the measured scattering matrices to obtain a similarity transformation where
the transformation matrix is bthe unknown distortion matrix. The relationships
between the eigenvalues and eigenvectors of the similar matrices are then used to
solve for the distortion matrices. A special case, wherein the transmit a;nd receive
distortion matrices are the transpose of one another, is considered also. This form
can be used with some single antenna systems, and it has the advantage that only
two known targets need to be measured. Constraints on the scattering matrices
for the two known targets are given for this case also. Finally, application of the

technique to measuring the propagation characteristics of random media is briefly

discussed.






1 Introduction

A Traditional radar system transmits and receives a single polarization. Hence,
the scattering characteristics of the illuminated scene are obtained for only one
transmit and receive polarization combination. Because the radar measures only
the amplitude of the scattered wave, any information contained in the phase or
polarization of the wave is lost. However, a polarimetric radar system measures
the complete scattering matrix (amplitude and relative phase) of the illuminated
scene using an orthogonal set of polarization configurations, and this information
can be used to synthesize the scattering characteristics of the scene at any ar-
bitrary transmit and receive polarization combination [1,2]. Much of the early
research in polarimétry concentrated on point targets, and an extensive review of
this history is given by Guili [3]. Polarimetric radars and f.echniques have received
increased attention in the last few years, following the development of several po-
larimetric imaging radar systems [1,4,5]. Laboratory and truck-based polarimetric
radars have also been developed with the advent of the HP 8510 vector network
analyzer [6,7,8,11]. With an increasing number of operating polarimetric radars,
it has become important to develop effective techniques for accurate polarimetric
calibration.

Calibration of polarimetric radar systems has been considered by several in-
vestigators in recent years. A technique proposed by Barnes [9] characterizes the
errors introduced by the transmitter and receiver in terms of distortion matrices

that alter the measured scattering matrix of the target. This calibration tech-



nique requires the measurement of three known targets, some of which have zero
elements in their scattering matrices. Two algorithms are proposed by Barnes,
differing only in the type of known targets to be measured. A technique similar to
the one by Barnes was used by Freeman, et al. [10] where the known target scat-
tering matrices were realized by Polarimetric Active Radar Calibrators (PARC’s).
A technique introduced by Riegger, et al. [11] characterizes the system errors in
terms of coupling coefficients between elements of the theoretical scattering matrix
and elements of the measured scattering matrix. It is in essence the same model
as used by Barnes, except that Riegger has expanded the matrix product which
resulted in twice the number of unknowns. In its most general form, this technique
would require the measurement of four known targets to solve for sixteen unknown
coupling coefficients. However, Riegger neglects four of the coupling coeflicients
and reduces the required number of known targets to three.

The calibration techniques described above have a number of disadvantages.
The algorithms used by Barnes and Freeman depend upon the actual known tar-
gets that are measured. If a new set of targets is used, the derivation must be
repeated. In addition, if the scattering matrices of at least some of the targets
do not contain zeros, it becomes difficult (if not impossible) to solve for the ele-
ments of the distortion matrices. In many cases, the scattering matrix elements
are known to be non-zero, but one must assume they are zero for derivation of
the calibration algorithms. Relying on certain elements of the scattering matrix

to be zero places a considerable restriction on the targets that can be used. This



is seen as a major disadvantage, because one would like to examine a variety of
known targets and choose the best possible set. The technique used by Riegger,
as already mentioned, introduces more unknowns than required and is therefore
inefficient.

Two additional polarimetric calibration techniques are of interest because they
require only a single non-depolarizing target (such as a sphere or trihedral) to
correct for co-polarized channel imbalance and absolute magnitude errors. The
cross-polarization coupling (or cross-talk) errors are corrected using unknown tar-
gets. The first technique, proposed by Sarabandi, et al. [12] achieves calibration of
the cross-talk errors by measuring any arbitrary depolarizing target. anwledge of
the scattering matrix of the arbitrary target is not required. A similar technique
by van Zyl [13] uses measurements of distributed natural targets to determine the
cross-talk errors. The advantage of these techniques is their insensitivity to target
positioning, which makes them particularly useful in field calibration. The disad-
vantages, however, include (1) the radar systems are assumed to be reciprocal (i.e.,
the distortion matrix for reception is the transpose of that for transmission), (2)
the cross-talk errors are assumed to be small (i.e., cross-pol isolation is good), and
(3) in the case of the technique by van Zyl, the co-polarized and cross-polarized
scattering matrix elements from natural distributed targets are assumed to be
uncorrelated.

This paper is the first of a set of two papers where we present a general polari-

metric calibration technique that is independent of the scattering matrices of the



known targets to be measured. In this paper, we develop the theory and provide
an algorithm to be used in the calibration procedure. The second paper [14] uses
this algorithm to calibrate an actual radar system, and then compares the results
to those of currently available calibration techniques.

The algorithm is obtained by modeling the errors as distortion matrices (see
Section 2) in the same way as was done by Barnes [9). However, no assumptions
are made about the form of the distortion matrices. Instead of solving a set
of possibly nonlinear equations for the elements of the distortion matrices, an
eigenvalue approach is employed. Two types of polarimetric radar systems will be
considered: (1) dual antenna systems for which the distortion matrices for transmit
and receive are unrelated and (2) specialized single antenna systems for which the
distortion is reciprocal. The first type is considered in Section 3, and the second
type is considered in Section 4. Finally, we consider application of the technique

to measuring the propagation characteristics of random media in Section 5.

2 Distortion Model

When using an ideal polarimetric radar, the measured scattering matrix M of
a point target would be equal to its theoretical (or actual) scattering matrix P.
Because this is rarely the case, the errors introduced by the radar system must be
determined and then the process must be inverted in order to obtain an estimate of
the actual scattering matrix. In the présent work, we consider two types of errors:

additive errors due to the presence of some unknown background and multiplicative



errors which modify the polarization, amplitude, and phase of the transmitted and
received waves. The multiplicative errors occur because of unknown gain and phase
differences between the vertical and horizontal channels of the system. In order
to account for these errors, we write the measured scattering matrix M for some

point target P as
M = B + ¢*r,,t,,RPT, (1)

where the matrix B represents the effect of the background, and the distortion
matrices T and R represent the effect of the antenna system (or the multiplicative
errors) for transmit and receive; respectively. Throughout the paper, all matri-
ces will be considered in the linear (vertical and horizontal) polarization basis;

therefore the matrices of equation (1) are represented by

Myy Myp bvv buh Dvv DPuvh .
M= , B= , P= , (2)
Mpy Mpp bhy baa Phv Dhh
R = , and T= . , (3)
Thv Thh thy thn

Notice that R and T are relative matrices, meaning that the entire matrix has been
divided by the first element which is then used as a common scalar constant. The
phase factor e/* accounts for propagation to the target and back, and it depends
on the exact position of the target phase center.

With some single antenna systems, the transmit and receive distortion matrices

are simply the transpose of one another (i.e., the system is reciprocal) resulting in

5



the equation
M =B + e’*a? ATPA, (4)

where the distortion matrix A is given by

1 Qyh
A= : (5)
Ghy  Ghh
If the matrices B, T, and R (or A in the reciprocal case) can be determined,

then the actual scattering matrix P can be obtained from M through one of the

expressions
P = e-ﬂ-—lt-n-‘(M-B)T-l (6)
P = c#—(AT)(M-B)A™, ©

which are obtained by rearranging equations (1) and (4). This representation
assumes that the distortion matrices are invertible, which is generally true for
actual radar systems. The propagation phase factor e~/¢ in equations (6) and (7)
is difficult to measure, since the phase center of the target and the target position
must be known exactly. However, in most cases only the relative phase of P is
desired.

By making a single measurement with no point target present, we can directly
determine the matrix B when the background is stationary (M = B when P = 0).
Considering only a stationary background, the dual antenna and specialized single

antenna problems in (1) and (4) are thus reduced to

N = é&*r,t ,RPT (8)

6



N = e%a? ATPA, (9)

where N = M — B is now a known matrix. If T and R (or A) are known, the

actual scattering matrix P can be obtained from one of the expressions

P = e-ﬁr lt R™INT"! (10)
I
P = ¢ J*;;(AT) INA™Y, (11)

where we have simply replaced M — B with N in (6) and (7).

In the next two sections, techniques for determining the distortion matrices
for the general dual antenna problem and the specialized single antenna problem
are discussed. We will assume that the background scattering matrix has been

removed as in equations (8)-(11) above.
3 General Dual Antenna System

Consider measurements of the form in (8) on three different targets with known
scattering matrices. Using subscripts to denote the corresponding target and mea-

surement scattering matrices, we obtain three matrix equations;
N; = ¢%r,t,,RP,;T, with i=1,2,3 (12)

where N; and P; are known matrices, but R and T are unknown. Notice that a
subscript is also used on the absolute phase to account for the positioning of the
targets. The phase centers of the three targets will generally be located at different

distances from the radar.



The following derivation requires that the target scattering matrix P; be in-
vertible for at least one of the targets. Without loss of generality, we assume that
this requirement is satisfied with the first target. Premultiplying both N, and
N; by N7! and denoting the products as N7 and N7, we obtain the similarity

transformations

Nr = @-ap-1p,T (13)
Nr = ®B-9T-'P,T, (14)
where N7 = NT'N;, N7 = N;!N;, Py = P;'P,;, and Pr = P{!P,.

We now consider an important property relating the eigenvalues and eigenvec-

tors of similar matrices (15, pp. 165-166]. The eigenvalues and eigenvectors of the

matrices Nt and Pr in equation (13) satisfy the relations

PrXr = XrA} (15)

NzYr = YrAg, (16)

where A7 and Ar are the diagonal matrices composed of the eigenvalues of Py

and N7, respectively. The eigenvalue matrices are related by the expression
A = Areh=#), (17)

Notice that the propagation phase difference, ¢, — #3, between the phase centers
of any two known targets can be determined using equation (17), even though this
fact is not used in the present development. The corresponding eigenvectors of Pr

and Nt form the columns of X1 and Y7, respectively. Equations (15)-(17) state

8



that the eigenvalues of similar matrices are equal. Furthermore, the eigenvectors

of Pr and Nr are related by the expression
Yr= T-IXT. (18)

However, equation (18) does not uniquely specify T since the eigenvectors com-
prising Xr and Yr have arbitrary scale factors. Upon independently solving the
eigenvalue problems in (15) and (16) for the matrices X7 and Y7 (arbitrarily

choosing the scale factors), the matrix T is uniquely specified by

Yr T 'XrC or (19)

T XrCY5!, (20)

where C is the diagonal matrix with elements ¢; # 0 and ¢; # 0 on the diagonal.

If the eigenvalues of Pr are distinct, then the corresponding eigenvectors are
linearly independent. Therefore, the matrix X has rank two, which means that |
it is nonsingular and invertible [15, p. 149]. From equation (19), Yr is invertible
if and only if X7 is invertible. It is easily shown that distinct eigenvalues are

obtained when

4A(Pr) # [tr(PT)]*. (21)

The notations A(...) and tr(...) denote the determinant and the trace, respec-
tively.
In the same way, the eigenvalues and eigenvectors of the matrices Nr and Pr

in equation (14) satisfy the relations

—P-T—X-T = XTX'T (22)



NrY¥r = YrAr, (23)

where again X'T and A7 are composed of the eigenvalues, and X7 and Y7 are
the matrices whose columns are given by the corresponding eigenvectors. The

cigenvalues of Pr and Ny are related by the expression
X'T = Arellh1-¢3), (24)

From these results, we obtain another matrix equation for T;

>

T=X;C ?—1, (25)

where C is the diagonal matrix with elements & # 0 and €; # 0 on the diagonal.

Here, we have assumed that

40(Pr) # [t (Pr)] . (26)

Equating (20) and (25), we obtain

XTCYEI =XT_6 ?'1, (27)
and after rearranging, (27) becomes
CY;‘?T = x;lirﬁ. (28)

Expanding equation (28) and writing it in terms of four scalar equations, we have

aA(Xr)(y20n — y1239n) = GA(YT)(22Tn — 212%n) (29)
aA(X7)(y22012 — Y13722) = GA(YT1)(222F12 — 212F ) (30)
2AXr)(yu¥an - yn¥u) = GA(Yr)(zuZa - znZu) (31)
AXr) (¥l —yn¥ia) = GA(Yr)(2uZa — 2nZn), (32)

10



where Zmn, Ymn, Tmn, and G, are the elements of the matrices X7, Yz, X7, and
Y, respectively. Assuming that equations (29)-(32) are all nonzero, we can obtain

two expressions for c,/c¢, and two for &, /%;;

& _ (zuTa1 — znTu)(¥22T11 — ¥12721) (33)
c (22T11 = Z13%a1 ) (Y11 V21 — Y21T11)

a2 _ (zuTa — TnT12)(Y22T12 — Y12¥22) (34)
a (222T12 — Z13T20) (Yu¥a — ¥Y21Th,)

[ _ (z22T11 — T13Ta1) (Y22012 — Y12T32) (35)
5} (222T12 — T12T22) (Y2211 — N12T1)

G _ (T11Z21 — 20nF1u) (YT — ¥2¥1a) (36)
3} (zuT22 — znZu)(yu¥a — yn¥n)

If one equation is zero, then either (33) or (34) for c;/c, and either (35) or (36)
for €;/¢; will be indeterminate.» However, the remaining expressions can be used
to determine both ¢;/c; and ¢,;/3;.

Based on the constraints in (21) and (26), we know that X7!X7 is invertible
and has a non-zero determinant. Hence, if two equations are zero, then they must
be either the diagonal elements or the off diagonal elements of X7!X7. In this
situation, equations (33)-(36) are all indeterminate, and a solution for T cannot

be found. We must therefore require that

-X_T # Xra and i:r # Xrﬂ, (37)
where
a 0 0
a=]| | 8= Al (38)
0 Q3 B) 0

This constraint states that Pr and P can have no more than one common eigen-

vector.

11



The transmit distortion matrix T can now be determined from either (20) or
(25). Without loss of generality, we will show the result using (20). The first

element of T must be unity, and from (20) it is given by

1
—_— (2 -y = 1. 39
A(YT)( 1T11Y22 2 12!/21) ( )

This expression can be used to obtain ¢; and c; in terms of the ratio ¢;/c;

c -1

a = A(Yr) (zuyzz - 'c—:l‘nyn) (40)
. c =1

e = A(Yr) (;;'1'11.'/22 - 1'12!/21) . (41)

The matrix R can also be determined using a similar procedure. Postmultiply-

ing both N3 and N3 by Ny ! we obtain

Np = ei®2-#)RP R (42)

Nr = &@-4RPLR™, (43)

where NR = NgNl-l, -N-R = N3Nl-l, PR = ngl_l, and ?R = P3P1—1.
Since equations (42) and (43) are again similarity transformations, we can uniquely

specify R by the relations

R = Xz
where the eigenvector matrices Xg, YR, X, and Y g satisfy the relations
NrXp = XgAj (46)

12



PrYr = YgrAr (47)

NR—R = KRTR (48)
?n?n = ?RXR, (49)

and the eigenvalue matrices are related by the expressions

AR = Agel®=®) (50)

X;{ = A=) (51)

The matrices D and D are analagous to C and C; they are diagonal with elements

(dy #0, d3 # 0) and (d; # 0, d; # 0), respectively. Equations (44) and (45) are of

the same form as (20) and (25), therefore equations (33)-(41) can be used to find

expressions for d; and d; by replacing ¢ with d and letting Zmn, Ymn; ZTmn, and G, |
denote the elements of the matrices Xg, Y, XRg, and Yp, respectively.

Since Pr = PT and Pp = 'l_";, the constraints on Py and Pt are sufficient to
guarantee a solution for R as well as T. The proof uses the relationship between
the eigenvalues and eigenvectors of a matrix and its transpose {15, p. 164].

With the distortion ma.tricés known, the absolute magnitude can be obtained
by substituting back into one of the original measurements. Equating the elements
of the matrices on both sides of (12) and taking the magnitude, we obtain for the

mn'* element

_|(Ni)mal

(R, Tyl (52)

Irovtvn] =

The best estimate of |ry,t,,| Will be obtained by choosing the target for which the

theoretical matrix P; is most accurate.

13



Using (52), the scattering matrix P for an unknown point target can be written

in terms of the measured scattering matrix N;

1

P=¢7*
|rwtvvl

R-INT !, (53)
where ¢’ is the unknown absolute phase given by

- _1 [Im{ryty,}
¢ - ¢ +tan l (Re{rwtw}) . (54)

4 Specialized Single Antenna System

In general, single antenna radar systems, like dual antenna systems, have differ-
ent distortion matrices for transmit and receive. Even though the single antenna
affects the transmitted and received waves in a similar manner, the remaining por-
tions of the transmit and receive paths through the system affect them differently.
Therefore, equation (1) should be used to describe the measured scattering matrix
for a general single antenna system, and the technique of Section 3 should be used
in calibration.

In many cases, the antenna assembly is the major contributor to the distortion
errors, and the contributions due to the different transmit and receive paths is neg-
ligible. Usually with such systems, care has been taken to make the transmit and
receive paths practically identical, and only antenna effects need to be considered.
The measured scattering matrix can then be described with equation (4), and a
slightly different technique can be used in calibration. The major advantage of the
technique is that only two known targets need to be measured to fully calibrate the

rceasurement system. The technique is described in the following development.
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Consider measurements of the form in (9) on two different targets with known
scattering matrices. Using subscripted notation similar to that of equation (12),

the measured scattering matrix of the :** target is
N; = ¢/%a2 ATP,A with i=1,2 (55)

where P; is the known scattering matrix of the target. The unknown distortion
matrix is A. The calibration technique to be described requires a more restrictive
condition on the form of the known scattering matrices than does the general
technique of Section 3. With the present technique, both calibration targets must
have invertible scattering matrices, whereas only one was required with the general
technique.

Forming the products N = N;!N; and N = (N3;N;!)7, we obtain the two

similarity transformations

N = - A-1pA (56)
N = /®-%)A-1PA, (57)

where P = P;'P, and P = (P;P;')T. This method can be applied to the
specialized single antenna system only because the transmit and receive distortion
matrices are related by a transpose. In a manner similar to that in Section 3, we

can uniquely specify A by the relations

A = XGY! (58)

A

I
>
Ql
w4
)
g



where the matrices G and G are diagonal with elements (g, # 0, g, # 0) and

(3, # 0, G, # 0), respectively. The eigenvector matrices X, Y, X, and Y satisfy

the expressions

w 2 v
M o< M
I
>4
>
>
>

2
=
I

YA, (63)
where the eigenvalue matrices A/, A, A, and A are related by

A" = A% (64)

e 4

A = Rlh-#), (65)
Equating (58) and (59) and then rearranging, we obtain
GY 'Y =X"XG. (66)

Equation (66) is of the same form as (28), so g; and g, are given by equations (40)
and (41) with g replacing c. Here, the elements Tmn, Ymn, Tmn, and 7,,, denote
the elements of the matrices X, Y, X, and Y, respectively. As in Section 3, we

require the following constraints:

4A(P) # [tr(P)P (67)
1AF) # [=(P)’ (68)
X#Xa and X#X8, (69)
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where a and 3 are of the form in equation (38).

By substituting equation (58) into (55) and equating the elements on both

sides, we obtain for the mn** element

‘(Ni)mnl
I(ATP;A)mn|

lag.| =

(70)

As in the general technique, the best estimate of |a2,| will be obtained by using
the known target for which the theoretical matrix P; is most accurate.

We now have the effect of the distortion matrices determined to within an
unknown phase factor. The scattering matrix for some unknown point target can

be written as

1

|al,|

where ¢’ is the unknown absolute phase given by

02
¢' = ¢+ tan™! (%ﬁﬁ-) . (72)

P=¢*—(AT)"INA™}, (71)

5 Application to Measuring the Propagation
Characteristics of Random Media

Experimental investigations into the nature of propagation in random media
have traditionally used two measurement configurations. The first type involves
the use of a transmitter on one side of the random medium (considered as a layer)
and a receiver on the other side. Measurements are made at a number of spatial
locations through the layer to determine the statistics associated with the attenua-

tion. In cases where only the extinction in the forward direction is desired, angular
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resolution is obtained by making the antenna beamwidths small. This technique
is cumbersome to use, particularly at oblique incidence to the random layer, due
to the difficulty associated with proper pointing of the small beamwidth antennas.
A second technique uses a transmitter and receiver placed at the same location
(radar mode) on one side of the random layer and a point target on the other side.
Because the received signal contains contributions from both the point target at-
tenuated by the medium and the random layer itself, the precision associated with
the measurement of the two-way attenuation depends upon the amplitude ratio
of the two contributions 16, pp. 768-770). Thus, the technique requires a point
target with a large scattering cross section to obtain precise a.ttenua.tion. measure-
ments. Furthermore, with this technique only the amplitude of the attenuation is
measured; the propagation phase is usually ignored.

Recently, a polarimetric technique for measuring the propagation character-
istics of random media was proposed and then demonstrated by measuring the
characteristics of a forest canopy [17],[18]. The technique uses the same configura-
tion as the second technique above, with the transmitter and receiver on one side
of the random layer and a point target (trihedral) on the other side. The difference
is that polarimetric measurements are made of the canopy scattering matrix with
and without the presence of the trihedral underneath the canopy. The measure-
ment without the trihedral yields the scattering matrix of the canopy alone, and

the scattering matrix of the canopy/target combination is modeled as [17],[18]
S =T+ %% LTPL, (73)
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with
S = scattering matrix of the canopy/target cqmbina.tion
L = one-way relative propagation (loss) matrix of the canopy
P = scattering matrix of the point target alone
T = scattering matrix of the canopy (trees) alone.

The major restriction with the technique as described in [18] is that it assumes L
to be a diagonal matrix. For the canopy and frequency (L-band) considered, this
was a reasonable assumption to make. However, a more general technique without
the restriction on the form of L would be applicable to a wider range of problems.

The calibration technique described in this paper can be used to extend the
method above to cases where L is an arbitrary matrix. We notice that equation -
(73) is in the same form as (4) representing the specialized single antenna system.
In essence, the propagation through the random medium is treated as a transfor-
mation analagous to that produced by the antenna for the single antenna system.
By measuring the canopy alone and two additional known targets underneath the
canopy, the method described in Section 4 can be used to determine the two-way
extinction and the relative propagation (or loss) matrix L of the canopy.

The technique can be further extended by considering the propagation through
the canopy as non-reciprocal. Denoting the loss matrices in the upward and down-

ward directions through the canopy as U and D, respectively, the scattering matrix
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of the canopy/target combination becomes
S = T + ¢’®uy,d,, UPD. (74)

Since equation (74) is of the same form as (1), the method of Section 3 can be
used to determine the two-way extinction and the relative loss matrices U and D.

The appﬁcation of the techniques discussed in this paper to measuring the
propagation characteristics of random media (specifically vegetation) will be the

subject of future investigation by the authors.
6 Conclusions

A general polarimetric calibration technique has been developed, requiring the
measurement of at most three known targets. The only constraints on the form of

the scattering matrices for the known targets are given below.
(1) At least one scattering matrix must be invertible (assume it is P;).
(2) Both PIIPQ and P;'P; must have distinct eigenvalues.
(3) P;'P; and P;!'P3; must have no more than one common eigenvector.

The errors introduced by the transmitter and receiver are modeled by distortion
watrices that alter the measured scattering matrix of the illuminated target. A set
of eigenvalue problems are then solved on matrix products involving the measured
and theoretical scattering matrices to determine the distortion matrices. Calibra-

tion of the absolute magnitude is achieved by inserting the measured distortion
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matrices back into one measurement and solving for the magnitude. The two dis-
tinct advantages of the technique are that (1) almost any targets can be used and
(2) no assumptions are made about the magnitude of the distortion.

A similar development has also been given for the reciprocal case, where the
distortion matrix for receive is the transpose of that for transmit. Only two known
targets are required to solve for the distortion matrix, assuming that the following

constraints are satisfied.
(1) Both scattering matrices P; and P; must be invertible.

(2) Both P;'P, and (P;P;!)T must have distinct eigenvalues.

(3) P7'P, and (P,P;!)T must have no more than one common eigenvector.

The technique is applicable to both laboratory and ﬁéld measurements, with
the known targets being chosen according to the application. For example, in a lab-
oratory environment the emphasis should be placed on accuracy of the theoretical
scattering matrices of the calibration targets. The sensitivity to positioning of the
targets is only a secondary consideration, since one would conceivably have very
fine control of target orientation. In field calibration, one should choose targets
that are generally insensitive to positioning, since this aspect is the most difficult
to control. The errors in the theoretical scattering matrices for these calibration
targets can be determined with laboratory measurements using a different set of
very accurate calibration targets. Hence, the actual scattering matrices can be

determined.
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Further research is being conducted to determine the best possible calibration
targets to use with the techniques described in this paper. The results of this re-
search and the implementation of the techniques will be considered in an additional

paper to follow.
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Abstract

The accuracy achievable with the generalized calibration technique (GCT) introduced in the
preceding paper is examined experimentally using an x-band radar system. The technique also
is compared to the constrained calibration technique (CCT) and the isolated-antenna calibration
technique (IACT). Measurements of the scattering matrices of test targets with known scattering
properties reveal that the GCT, which is the most accurate of the three techniques, provides
accuracies on the order of 0.3 dB in magnitude and 3° in phase and an effective polarization

isolation of 50 dB.






1 INTRODUCTION

In the first (1] of this two-paper series, we introduced a generalized technique for calibrat-
ing a polarimetric radar system by measuring the distortion matrices of the transmit and
receive antennas. We shall henceforth refer to it as the GCT, or generalized calibration
technique. A similar calibration technique that also relies on measuring the distortion
matrices of the antennas was proposed by Barnes [2] in 1986, except that it imposes
some specific requirements on the forms of the scattering matrices of the targets used for
calibration. Because of these constraints, we shall refer to this technique as the CCT,
or constrained calibration technique. In this paper, we shall examine the calibration ac-
curacy of these two techniques through experimental measurements conducted over the
frequency range from 9-10 GHz. In addition, we shal also examine the calibration accu-
racy of a third technique that was proposed recently by Sarabandi et al. [3]. This third
technique has the advantage that it is much simpler to apply than the other two techniques
and it is insensitive to target orientation errors, but it is based on the major assumption
that the radar antennas have perfect polarization isolation between their individual h- and
v-ports. We shall refer to this technique as the IACT, or the isolated-antenna calibration

technique.

The three calibration techniques will be evaluated using the same radar system
and the same test targets. In each case, the radar will will be calibrated and then used
to measure the scattering matrix of a test target over the 9-10 GHz frequency range.
The measured elements of the scattering matrix will then be compared to theoretically

computed values.

2 MEASUREMENT SYSTEM

The scattering measurements reported in this paper were conducted in a 13-m long ane-

choic chamber using the setup diagrammed in Fig. 1. The radar uses an automatic vector



network analyzer (HP 8753) with a built-in frequency synthesizer. The HP 8753 unit is
operated in a stepped-frequency chirp mode in 401 steps over the range from 1 to 2 GHz.
The scatterometer unit shown in Fig. 1 includes an 8-GHz Gunn oscillator which mixes
with the 1-2 GHz stepped- frequency signal to produce a 9-10 GHz stepped-frequency
signal for transmission through the antenna. Upon reception of the backscattered signal,
the signal frequency is down converted back to the 1-2 GHz (by mixing it with a sample
signal from the 8-GHz Gunn oscillator) prior to returning the signal to the HP 8753 unit

for processing.-

Figure 2 is a block diagram of the scatterometer unit and the dual-polarized horn
antenna. The orthomode transducer allows transmission and reception through a vertically
polarized port and a horizontally polarized port, and the circulators and switches allow
selection of any desired combination of transmit and receive polarization ports. The
antenna is a pyramidal horn with a square aperture measuring 40.6 on each side, and
its gain is 27.6 dB at 9.5 GHz. The overall system cross-polarization isolation is about
25 dB, which was determined by measuring the cross- polarized signals (hv and vh)
backscattered from a metal sphere and comparing them to the levels of the like-polarized
signals (vv and hh). By “overall system” we include cross-coupling between polarization

channels due to not only the antennas, but the RF circuitry as well.

3 CALIBRATION TECHNIQUES

Even though we are using a single antenna for both transmission and reception, we should
model the calibration problem in terms of the generalized schematic representation shown
in Fig.3. Part (a) represents the condition when the polarization switch of the transmit
antennas is energized to transmit a vertically polarized wave of amplitude E,. Because the
antenna is non-ideal, the transmitted field E, consists of a vertically polarized component
(t,wEo) and a horizontally polarized component (t4,/t,,) Eo,



Et =ty EO

1
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where t,, is a relative distortion element and represents the coupling between the v- and
h-ports. The receive antenna is represented by two receivers, one measuring the *“presum-
ably” vertically polarized received signal E’ and the other measuring the “presumably”
cross polarized received signal E*. Each of these signals consists of two components,
one of which éccounts for the distortion properties of the receive antenna. For a point

target with scattering matrix P, the received electric field E, is given by

E? K . 1 rw P, P, 1
E, = L= ﬁe”’ Twu tov " ()
E" Thy Thh Phy Pan | | th
where
2 12
g

P, = E? /27 is the ransmitted power, G, and G, and the nominal gains of the transmit
and receive antennas, ¢ is a phase factor that accounts for propagation to the target and

back to the antenna, and r is the range to the point target.

Part (b) of Fig. 3 represents the condition when the polarization switch of the
transmit antenna is energized to transmit horizontal polarization. This condition is given

by the same expression (2) upon replacing the transmitted vector with

tvh

Et = tquO ) (4)
tha

and the two equations can be combined into the compact form



E;

o (5)

Sh

= %e”’ Twtw RPT [ %
r

with (s,,s,) = (1,0) when the polarization switch of the transmit antenna is energized
to transmit vertical polarization and (s,,ss) = (0,1) when it is energized to transmit

horizontal polarization.

If the radar is assumed to have distortionless antennas, which implies that ¢,; =
ri; =0fori # jand t;; = r;; = 1 for i = j, then the set of four measurements it makes
will define a “measured” scattering matrix of the target, N. With R =T =1, the identity
matrix, (5) becomes

(6)

MPERIE
E* r 3k

In the above expression, the phase reference is at the radar antenna. Upon equating (5)

and (6), we obtain the result

N=e*r,t, RPT | )]

which is the same as (8) of the previous paper [1]. Thus, N is a directly measured
quantity and the purpose of the calibration procedure is to determine the true scattering
matrix of the target, P.

3.1 Isolated Antenna Calibration Technique (IACT)

The IACT assumes that the coupling between polarization ports is sufficiently small to
justify setting t,; = r;; = 0 for i # j, but allows ¢, to be different from t,, and r;, to
be different from r,,. In this case, (7) reduces to four simple equations
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According to the procedure given in Sarabandi et al. [3], the four complex quantities
Twuy Thh, tuw, and ty, can be determined by conducting measurements against two targets,
namely a conducting sphere and any other target that produces a cross-polarized signal.
Moreover, it is not necessary to know the actual cross-section of the second target. The
obvious advantage of this technique is that it is immune to orientation errors of the two
calibration targets. Its disadvantagé is that it does not account for cross-coupling between

polarization ports.

3.2 Constrained Calibration Technique (CCT)

The CCT accounts for cross-coupling between polarization ports by attempting to measure
all the elements of the distortion matrices, R and T, as well as the factor r,, t,,. To
determine R and T, the procedure calls for measuring N for each of three point targets

characterized by the matrices [2]

10 00
P.=Fh y P2=F , P3=PFo
00 01

11
] . )
11

A candidate target that would exhibit this behavior is an infinitesimally thin, conducting,
circular, cylinder oriented vertically (P, ), horizontally (P;), and at 45° (P3). In practice,
if a cylinder is made very thin in order to approach the condition that it does not scatter an
incident wave unless its electric field is parallel to the axis of the cylinder, the radar cross
section of the cylinder becomes very small, which leads to inadequate signal to noise

ratio, thereby reducing the accuracy of the measurement. Thus, a primary limitation of

2



the technique is that the constraints it places on the form of the scattering matrices of the
calibration targets are very difficult to achieve in practice.

3.3 Generalized Calibration Technique (GCT)

The GCT introduced in the previous paper (1] also uses three calibration targets, but it
does not require their matrices to have particular forms (except for being different). Both
the CCT and GCT require that the matrices of the calibration targets be known, which
means that their geometries should be such that we can compute their scattering matrices
using exact (or fairly exact) theoretical expressions. Since at least one of the calibration
target matrices should have non-zero cross-polarization elements, that calibration target
cannot be an orientation-independent target (such as a sphere). Consequently, the CCT
and GCT are inherently sensitive to errors associated with orientation of the calibration
targets, in contrast with the IACT which is immune to orientation errors because it uses
a sphere (of known radar cross section) and a second target whose radar crbss section

does not need to be known because it is not used in the calibration procedure.

A summary of the salient features of the three calibration techniques is provided
in Table 1.

4 EXPERIMENTAL MEASUREMENTS

The radar system described in Section 2 was calibrated according to each of the three
calibration techniques and then it was used to measure the scattering matrices of a 20-
cm diameter conducting sphere and a 27-cm long vertical cylinder. Table 2 provides a
summary of the calibration and test targets used.

The results for the conducting sphere are given in Fig. 4. Parts (a) and (b)
show spectral plots of the like-Polarized scattering amplitudes, P,, and Phy; each figure
contains a plot of the scattering amplitude computed using the standard Mie solution and
three plots based on the radar measurements. We observe that the GCT and IACT results

8



are within 0.1 dB of one another and within 0.3 dB of theory. The CCT results are higher
than theory by about 3 dB for P,, and lower by about 1 dB for P,,. These large errors
associated with the CCT are a result of assuming that the cylinders used for calibration
satisfy the matrices given by (9) which state that P, = 0 for a vertical cylinder and
P,, = 0 for a horizontal cylinder. The cylinders used were all 30 cm in length and 0.234
cm in diameter. According to theoretical calculations for a vertically oriented cylinder
with these dimensions [4], P, is about 30 dB lower than P,, in the 9-10 GHz range.
Thus, the results of Figs. 4(a) and 4(b) suggest that the difference between P,, and
P, should be much greater than 30 dB in order to reduce the error down to the levels

attainable with the two other techniques.

Part (c) of Fig. 4 presents the “measured” spectrum of the cross-polarized scat-
tering amplitude P,,. According to theory, a conducting sphere does not depolarize;
i.e., P,, should be zero (or -co on a dB scale). Hence, for a given calibration tech-
nique, the measured value of P, relative to the value of P,, (or P,,,.), represents

the effective polarization isolation provided by that technique. From the data in Figs.

4(a) and 4(c), the effective polarization isolation is found to be best for the GCT (~
50 dB) and worst for the IACT (~ 20 dB). The CCT provides an effective isolation of
~ 30dB.AccordingtoF'1g.4(d),themeasuredphaseofPy relative to that of P,,, namely
(énn — @), is within 2° of theoretical for the GCT and IACT, but is off by more than
30¢ for the CCT.

Our second icst target was a vertical cylinder, 27.1 cm long and 0179 cm in
diameter. The results for P,, and P,, (Figs. 5(a) and (b)) lead to the same conclusions
stated earlier in connection with Figs. 4(a) and (b) for the sphere, namely that the GCT
and IACT provide superior calibration accuracy than the CCT. Figure 5(c) presents the
results for (ppn — #.,). We observe that the phase difference measured by the GCT and
IACT are within about 3° of theoretical expectations, whereas the CCT is off by more
than 30°.



5 CONCLUSIONS

According to the results of the experiments conducted to evaluate the calibration accu-
racies of the three calibration techniques examined in this paper, we offer the following

conclusions:

1. Overall, the generalized calibration technique (GCT) provides the best accuracy
and the constrained calibration technique (CCT) is the least accurate. The GCT
can provide accuracies on the order of 0.3 dB in magnitude and 3° in phase and an

effective polarization isolation of 50 dB.

2. Except when measuring targets whose cross-polarized scattering amplitudes (P,
and P,,) are much smaller than their like-polarized scattering amplitudes, the
isolated-antenna calibration technique (IACT) provides results essentially identical
with those observed for the GCT.

10
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Table 1: Salient features of the three techniques discussed in this paper for polarimetric
calibration of a two-antenna polarimetric radar system.

Feature

GCT CcCTt IACT
Minimum Number 3 3 2
of Calibration Targets
Types of Calibration Any 3 different 3 targets with conducting sphere,
Targets targets with known | specific scattering matrices | plus any depolarizing
scattering matrices (see Section 3.2) target
Accounts for Antenna yes yes no
Polarization Distortion
Sensitive to Orientation yes yes no
Error of Calibration '
Target
Table 2: Calibration and test targets used.
Targets GCT CCT IACT
Cal Target 1 15-cm diameter vertical cylinder, 1=30cm, | 15-cm diameter metal
metal sphere d=0.234cm sphere d=0.79cm
Cal Target 2 45° cylinder, 1=27.1cm, 45° vertical cylinder 45° cylinder, 1=27.1cm,
d=0.79cm 1=30cm, d=0.234cm d=0.79cm
Cal Target 3 | borizontal cylinder, 1=27.1cm, | horizontal cylinder, 1-30cm, NONE
d=0.79cm d=0.234cm
Test Target 1 20-cm diameter metal 20-cm diameter metal 20-cm diameter metal
sphere sphere sphere
Test Target 2 vertical cylinder, vertical cylinder, vertical cylinder
1=27.1cm, d=0.79cm 1=27.1cm, d=0.79cm 1=27.1cm, d=0.79%cm




Figure 1.  Automatic radar cross section measurement setup.
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Figure 4. Plots of the theoretical and measured spectra for the 8-inch
metal sphere.
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Figure 5. Plots of the theoretical and measured spectra for the

metal vertical cylinder.
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