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INTRODUCTION

The purpose of this paper is to investigate the use of the Mossbauer ef-
fect in studylng atomic motion in liquid systems. In particular, the feasi-
bility of performing an actual experiment is investigated.

The interest in studying the dynemics of atomic motion in liquids is of
both a pure and applied nature. The results are of interest to the pure sci-
entist because of the present lack of knowledge of the forces governing the
interaction between atoms in the liquid state. This is due in part both to
the lack of good experimental information because of the difficulty of perform-
ing interesting experiments to study the dynamics of atomic motion in liquids
and to the complexity of doing any theoretical study of liquids. The results
are of interest to the applied scientist because of the effects that can result
from atomic motion. To the reactor physicist using liquid fuels or moderators,
the effects of the atomic motion on the cross sections is no new problem.

In recent years, much experimental work has been carried out using neu-
tron scattering techniques to study liquids. Even though essentially pro-
viding the same information about liquids, the Mossbauer effect seems to
have several advantages over neutron scattering. First, the Mossbauer cross
section can be expressed in terms of Van Hove's self correlation functionl
whereas for neutron scattering the cross section contains both the self cor-
relation function and the pair correlation function. This makes the analysis
of experimental results much easier. The Mossbauer cross section contains

only the self correlation function due to the fact that the atom involved is



exclted to an intermediate state and hence retains its identity while under-
going motion., Second, the resolution of Mossbauer experiments is much grester
than that of neutron scattering experiments. Typically the resolution of a
Mossbauer experiment might be of the order of 10712 yhereas a thermal neutron
scattering experiment might be of the order of 1071, Third, the Mossbauer
experiments are much easler to perform than neutron scattering experiments.
The only real disadvantage to the Mossbauer technique is the fact that the
momentum transfer is fixed whereas in neutron scattering experiments the
momentum transfer is a variable,

Sections I and II of this paper are not really necessary for the de-
velopment proposed since the usual starting point for calculations of the
Mossbauer cross section is the cross section at the end of Section II. How-
ever, since the details of the derivation of this cross section are not pre-
sented in the literature, the development is instructive. In Section I, the
transition probability is obtained from the time evolution operator for
transitions through an intermediate state which does not have a well defined
energya2 In Section ITI the Mossbauer scattering cross section is obtained
for an arbitrary system of interacting particles.

The scattering cross section is extended further in Section III with
recourse to the formalism developed by Van Hovel wherein the cross section
is related to the atomic motion in the system by means of the self correla-
tion function. The result 1s then applied to a particular experimental sit-
uation in which a Mossbauer source nuclide in the solid state is moved with

respect to an identical absorber in the liquid state and the gamma ray
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transmission through the absorber is observed as a function of the relative
velocity. This so-called self-absorption cross section then is the ex-
perimentally measured cross section.

In Section IV, two models are proposed for the classical self diffusion
function. The first is the continuous diffusion model of Vineyarda3 This
model treats the atomic motion as that of continuously diffusing atoms.
The second model is the quasi-crystalline model of Singwi and Sjac;lander.LL
This model assumes liquid behavior is much like that of solids on & short
time scale where the atoms undergo oscillations in a localized region before
undergoing diffusion. The self-absorption cross section is determined for
both of these models.

Section V is devoted to consideration of a real experiment using the
Mossbauer nuclide Kr83. This particular nuclide is chosen because of the
interest in performing the experiment in a simple monatomic fluid. A nu-

merical estimate of the resonance self=-absorption is obtained and the pos-

sibility of carrying out the experiment is discussed.
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SECTION I

DEVELOPMENT OF THE TRANSITION PROBABILITY

In order to develop a cross section describing the process of interest,
it is first necessary to develop the probability for transition between the
initial and final states. This section is devoted to the development of that
transition probability.

Formally, the transition probability can be written in terms of a time
evolution operator as

2
Toin = [Upig(8)] /2 (1.1)
where under certain circumstances Tp'p can be interpreted as the probabil-
ity per unit time for small times of transition from state n to state n'.
Unvn(t) is the time evolution operator for the system and is given by
Uprglt) = (eT1E/B) (1.2)
where H, the Hamiltonian for the entire system, can be written as
H = Hy+ V (1.3)
Tha Hamiltonian is separated such that the eigenvalue problem
H, [n> = E, |n> (1.4)

can be solved. Hence the states of the system, n and n', are eigenfunctions
of Hy.

The familiar second order perturbation theory technique cannot be used
to obtain Unrn(t) since the intermediate state of the system does not have
a well defined energy due to its finite lifetime. Hence the time evolution
operstor must be obtained in a different manner.
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To begin with, a new function, G(z), the Laplace transform of U(t),

is introduced, or

a(z)

fooe' e OR-:
J o

[00]
=f -tz it/nHat
(0]

A
w 3
_ jf o t/A(z+iH) dt (1.5)
; A
o
or
1
g(z) = 1.6
( ) z+iH ( )
and
Gn'n(z) = l. (1.7)
z+iH n'n
U(t) is then the inverse Laplace transform of G(z), so it can be
written
€+ioo
+ h
u(t) = _Lf e A2 yay (1.8)
2rid
[Sles]
and
€+ioo
+
Uy in(t) = L e /A —}T— dz . (1.9)
n'n 27l z+iH/ ¢
e-ic0 n'n

Un,n(t) is the function ultimately desired to calculate the transition

probability. To obtain this, it is first necessary to obtain (1.7) so that

(1.9) may be used to calculate Upip(t). Now from (1.6) and (1.3),



6(z) = (z+iH+iV) L
so
(z+iHg+iV)(z) = 1
In matrix form
E: (z+iHo*iV)nrn"Gpn(2z) = &p'p o« (1.10)

n
It is necessary to obtain both the diagonal and off diagonal elements
of G. First, to obtain the diagonal elements of G, consider n' = n in (1.10).

Thus

Z(z+iHo+iV)n'n"Gn"n! = 1 . (1.11)

n

Splitting the sum in (1.11) into two parts, for n" = n' and n" # n',

(z+iHoHiV)p'n'CGnint + Z(z+iHo+iV)nrn"Gn"n' = 1 . (L12)
n"#n'
Now define a new function @ relating the off diagonal elements of G to the
diagonal elements of G, or
Gt = Gpryn@ppGpope (1.13)

so (1.12) becomes

(Z+iHO+iV)ntn|Gntnx + Z (Z"'iHo"'iV)n'n”Gn"n"Qn”n‘Gn'n' = 1

n"#n'

(1.14)

However, z is diagonalized in the representation as well as H,, as defined

in (1.4), so



~

— ,
é+iEnr+iannt + i %‘ Vn'n”Gn”n"Qn"n')Gn'n' = 1 . (lul5)
n"#r

N " Y,

Define a new function 1~ by

ih . .
-2-— 7]:1' = 1Vn n' + 1 z nG " nann. (1,16)

and
<%+1En' t+ = ' )Gnnr = 1
or /
Gt = el (1.17)

. i
z+1En, + E_ Tt

Next, to obtain the off diagonal elements of G, consider n' % n in

(1,10). Dividing the sum in (1.10) into two parts, for n" = n' and n" # n',

( Z+iHo+iV) n'n' Gnvn + Z ( Z+iHO+iV) n'n"Gn”n = 0

n"#n!

or
(Z+HiE 1 +iV 1) Gpop + 1 Z VoG, = O . (1.18)
n"#n'
Dividing the sum in the last term in (1.18) into two parts, for n" = n and
0" £,
(Z+iEnl+iann')G'n'n + iVnYnGnn + i Z ann”Gn"n = O
n"#n',n

Using (1.13),



(Z+1En'+ivh'n')Gh'n’Qn'nG/nn+th'nG/nn + 1 }: VprnnGpipe n"nG/nn = 0

n"#n',n

(1.19)

Using (1.15) in (1.19)

—
1-i + 1 + i =
( n 1"ttty "yt Il n' Qﬂ' Vn'n 1 Vn'n”Gn"n" "n 0
n

n?!ny 4 n"%n',n

Hence

. 1 v
= -4V - i V . .G + 1 V_, .G
Qn'n n'n n'n""n"n""n"n n'n" " n"n""n"n' n n'Qn 'n
n"#n',n n"#n!
(1.20)

and the off diagonal elements of Q are related to the diagonal elements of G.
To this point the calculation is exact, however to proceed further,
some approximations must be made. To obtain the diagonal elements of G from

(1.17), (1.16) must be used to obtain Ypr- Now

2— 7n' = iVn,n, + i V nG- n "Q'ﬂnl’l' ° (1,21)
n"#n’
Using (1.17) in (1.21),
. Ve
ih . ) n'n"*n"n'
5_ 7 = lvﬁ'n' 1

. it
Il"%l’l’ Z+1Enn + E— 71’1"

To solve this equation for y,', an iterative procedure is used. As the

first iterate, take 7n" =0 so

\ Q
ih n'n"*n"n'
— ~ lV + l e ———— " ln 22
2 7]:1‘ - n' g . Z+iEnn ( )
n''#n



Now, to obtain the off diagonal elements of Q from (1.,20), consider only
the terms with powers of V through V2 To a first approximation the diagonal

elements of G are independent of V so (1.20) becomes

. . \ 3
Q‘n'n = C 1Vn'n -t Z Vn'n”Gn”n" "n + (V)
n"#n',n

To solve this equation for Quipy 80 iterative procedure is used. As the

first iterate, take Qmyp = -iVp'n so

—
Qn'n > iVn'n - Z; Vn,nnGnnnnVnnn . (1.23)
n"#n',n

Also using the first iterate for Q n,: in (1.22)

: V. nV._.n

ih . n'n"'n"n'

> n' = g ¥ zHE . (1.24)
n"#n'

This then is the first approximation to yy: which also gives a first ap-
proximation to the diagonal elements of G in (1.17). Using the approxima-

tion to the diagonal elements of G in (1.23)

i
<
=

Quip = = IVqry - - . (1.25)

Since the off diagonal elements of G are related to the off diagonal elements

of Q by (1.13)

Gory = GurprQurpGpp

and with the use of (1.17) and (1.25)



[}
]

-iv, VnrnVpy 1
n'n = =
z+iB . + - 711’ n"#n',n Z+HiEyn + > Ynl +iE, + = y

-iv
n'n
<%+iEn: + %ﬁ 7é> <%+iEn + gﬁ ?;>

_ n n'" n 'n
nn%n n <%+1En‘ + = 7?:><E+1En" + = 7n£><g}lEn + — 7%)
(1)
= Gpip + G-n n (1.26)

(1)

Gn'n takes account of all direct processes between the initial and final
states. Gg?z accounts for transitions between the initial and final states
which pass through an intermediate state. Nuclear resonance scattering and
absorption are processes passing through an intermediate state. Hence,
only Gi?i is necessary in calculating the transition probability for these
particular processes.

To obtain the time evolution operator, use (1.9) so

e€+ico
@y o L[ e (D,
il €=l
€+im "V n
- L o+ t/E 2 }; VainnVy n
T e i n"%n' €+1Env + — 7ID<Z+iEn" + = 7n><z+1En + = 7n>

(1.27)

For the Mossbauer effect, the initial and final states of the nucleus

are ground states with essentially infinite lifetimes. Under this condition,



and assuming no contributions to y from the center of mass motion of the

nucleus, yur = yp = 0 and (1.27) becomes
e+i
U(2)(t) _ 1 ~/q * ot t/h z VninVnn
nn T 2gid T it
€=1c0 n”#n',n (?+1Eni><z+1E n o+ = 7nz)<;+1E

(1.28)
Equation (1.28) is the inverse lLaplace transform of a product of two
functions or

€+ico

(2) _ 1 + /8 z -
Un'n(t) - "2";(1' ) € fnln(z)gnvn(z)dt (l°29)
€-100 :
where
— 1 Vor 0V u
n'n"'n"n
foin(z) = - - (1.%0

. iA \
nn%ﬁ ,n (Z+1Enn + 5—— 71’1" ,\.
~ '/’

- 1

z = . 1.51
gn'n( ) (z+iEn) (z+iEy) (1.31)
Equation (1.31) can be rewritten as
1 [ 2 1
1n(z) = N - N
En.—En _z+1En, z+1En

B e O I )]

- n'n
En, En

Hence (1.29) becomes

e+l _ _
O 'E &1 f FHEE ()E Y (e

e+ico
i E}__[ /A 25, n(z)gfl il(z)dz (1.32)
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By applying the Laplace transform convolution theorem which can be written

as5

o
(1.32) becomes
. t
L0 - G retadan
n' o)
¢ 2
- f Fon(W el (bW au/h (1.33)

o}

—(1)

Taking the inverse lLaplace transform of gn,n(z),

€+1eo e(t—u)/ﬁ z

g(l)(t'u) = — —az
n'n 2wl . z+iE_,
1o n

To evaluate this, take the contour integral on the following path:

=B

Hence,

: t-u) /A z t-u) /A z
(l)(t-u.) _ i # e( )/ iz -EE e( / iz

g : ; N
n'n 2xl] - z+iEy, z+1Ep 1

This path was chosen so that the real part of (t-u)/ﬁ z is negative for t > u.

Thus for |z| large, the second term will go to zero and



(1) 1 }Q [t /a2
' B ——

gn'n(t-u) = -

Evaluating the integral by residues

r .
(l)( ) 1 . e(t-u)/’ﬁ Z
't_u = —_— i Res S — _'E
&n'n 2ri i g z+iEy o

(1)

gy plt-u) t>u . (1.34)

2
The integral for ggxg(t-u) can be carried out in a similar manner and

g;?;(t-u) _ e'iEn(J‘?‘u)/hfl t>u . (1.35)

Using (1.34) and (1.3%5) in (1.33),

- % ‘

i -iFp'(t-u) /A
n"‘E (o) el
t

NIy
- N
= ~—
<
1

;

/p fn'n(u)e—iEn(t—u)/h du

gl
O [
i -iFp' t/h t iBn' u/A du
= ([ —2—)le -/“ fhrp(u)e —
Ent - \O /h
-iE, t/A t iB, u/h d;?
- e 2 J[\ fn,n(u)e n %T—;> . (1.36)
0 i

If (1.36) is taken in the limit as t-+w, the integrals simply become the

Laplace transforms of f,:,(u) which are already known from (1,30). Phys-
ically this limit corresponds to observation of the process at large times
(large with respect to the decay time of the intermediate state) when the

process has been completed. Taking this limit
(2) i -iE, t /6= -iE, t/fi=
. - . n . .
limg , U op(t) = limg, o En e £l -1E ) -e T -1Ey)
(1.37)

10



Taking this same limit for the transition probability in (1.1) and

using (1.37)

(2) 2
T, = 1lim__ 1Un'n(t
n'n t>00 "
1 -iEpr t/he -iEn t/h= ) 2
= llm_two '—-——————'2' n!n(- En!) fn'n( -lEn) ‘
t(Ep' -En)
(1.38)
Expanding Eﬁ'n(’iEn') about -iE, in a Taylor series
foin(=1By) = fpip(-iEy) + (-1iEg HE) flp(-1Ey) + ... . (1.39)
Using (1.39) in (1.38)
. 1 - ) -iEp' t/8 -iBEn t/A
Thry = 1lim ———— | frn(-iE) (e -e )
n'n t-+00 t(En"En)Z n'n{ -1y
-_— o ' =)
bRy HE) T (1B eI A (1.40)

Taking the absolute square in (1.40)

T = lin,, —3 ([T 12|t t/fi__-ifn t//ﬁlz

(-iE,)
+00 t(Env-En)a n'n n

-+

" A -iBy t/A -iEp t/Ay, o AT : -iEn' t/H
fn'n(_lEn)(e Fr 4/ -e T )("1En'+lEn)fn'n<'lEn)e

2, - . 2
o mBy) 1L (FIE) |+ ) (1.41)

+

(E

Considering (1.41) in the limit as t+w, the third term on the right as well
as all other terms of higher order derivatives and cross terms will go to
zZzero since these terms ~ l/t. The second term ~ l/t(Enr-En) which goes to
zero for t-w except when E,, = E,. However, when E,: = E,, the termwill

n

again go to zero because of the first exponential factor. Hence the only

11



term which does not vanish in the limit as t+w is the first, so

-lEn' t/’ﬁ_e"iEn t//fl'z

T, = 1i ———————_—— [f -i 2 (1.k42
n'n Mt 500 t(En:—E nin(-1E,) [Zle ( )
Using (1.30) in (1.42)
2
) 1 L Il n"Vn"n
Tnn = Mt 7553 . h .
n n"fl_—r?"n ("1En+1En” + -2—' ')’n”('lEn))
(x) | iEn! t/8__-1En t/hlz
T _ Vn nHVan
n'n " o s ih .
n";én',n ("lEn"l'lEn" + 5— ’}'n"(-lEn))
. 1 -1 - A2
(x)llmt_m %TE——_-T? le 1(Enl En) t/ -ll R (l.)—l-i)
n'”
Letting wyry = BEpt-En/A4,
- 2
lim  —— e i(En-En) /A 1/°= lin —T——|cosw_, t-isinm , t-1]
t0 t(En"En) troo tH%0wy 1y n'n n'n
= lim -§~i~75 (2-2 coswyipt)
T thwy 1y n
f
= lim —=2—£~—2 hsin 2
t th yrp
(1.544)

The Dirac delta function can be written in the Fourler representation as

[00]
5(x) = —l—f e qx (1.L4h4.5)
27
=00
CX) .
1 ikx -1kx
= = e dk + e dk
2n
o) o]

12



% limt*me cos kx dk
o)

O
~~
el
~—
I

é— lim sin tx
X t 00

Meking use of the delta function in (1.L4L)

, 1 -i(Ep'-En) t/A .2 2, . 1
lim -1l = =1 e
T-0 (En _En) 2le | = mtm\(%'n
_ 2=n /mn

12 \\?

This can be written as a delta function in energy since

Cn\ & > = 8(E,+-Ey)d(Eyr)

or
1
6@“‘2“ = 2B5(Ep:-Ep)
Thus (1.43) becomes
2
T _ 2x VitV
n'n T g i

. . g4} .
nn}én,,n (lEn”'lEn + —2-— ’}/n"(-lEn))

where ih/2 y n(-iE;) is given by (1.24) as

(1.45)

/éln
'n'T

8(Ey1-E,)  (1.L46)

(1.k7)

ifl . \ V :xﬂuv Hlnn
_— 71’1"( —lEn) ~ 1V, o'tn! + —

2 - =1En+1iEgn

n"! ng;
i/ﬁ . . . \/n17nllVlelinu
— ¥ n( -iE) = iVow.. + 1 —
2 n a3 n'n En'E at
n"n'

FEquations (1.46) and (1.47) will serve as the starting point for cal-

culations of the cross section for nuclear resonance scattering and absorp-

tion.
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SECTION IT

CROSS SECTION FOR NUCLEAR RESONANCE SCATTERING

In this section, the results of Section I will be applied to the cal-
culation of the cross section for nuclear resonance scattering. Schemati-
cally, the initial, intermediate, and final states of the process can be

represented as follows:

EK’ = ﬁCK'

O

M R Tyt

n" l Ea"k," Eun + Ek”

Ell
TTE N

Eg = fick  Ey x = By, + K

The initial state consists of a photon of momentum‘ﬁg and a nucleus in a
state Qgk where O 1s a set of numbers characterizing the nucleus in the
ground state and k is a set of numbers characterizing the state of the cen-
ter of mass motion of the nucleus. The intermediate state consists of a
nucleus in a state a"k" where " is a set of numbers characterizing the ex-
cited state of the nucleus and k" is again the state of the center of mass
motion. In the final state there is a photon of momentum ¥K' and a nucleus
again in the ground state gywith k' the state of the center of mass motion.

On an energy scale, the three states appear as follows:

1k



T oo, i

AceK!

l
B

To proceed to any calculation, it 1s first necessary to write the
Hamiltonian for the system. For nuclear resonance scattering, the non-

relativistic Hamiltonian for the entire system can be written

p e

i

, _ .
5, B2+H s ‘5(539 S
H = [d°r + 2 > +H +H (2.1)
J J

81 m

where: fdsr E2+H?/8n is the energy of the free electromagnetic field;

(p3- ej/c é(gj))g/Qmj is the kinetic energy of the jth nucleon in the elec-
tromagnetic field; HS' describes the interaction between the nuclei in the
crystal; and H'' describes the interaction between the nucleons in each
nucleus.

The second term in (2.1) can be rewritten as follows:

e.
J 2
@j - —A(EJD P&
Z ; = Z EQT - 5—%— (QJ“é(rj)+é<£j)°E')
3 5 L T
ejg
2
+ ey 25(ry)> (2.2)

The coordinates describing the individual nucleons can be written in terms

of a center of mass coordinate and a relative coordinate, or

.th
J nucleon

center of mass




Hence

= . +
r; = py+R
and also by taking derivatives
Iy = B3 + R
S0
= 0. + :
M5 mipy *myR
which can be written
. o= +
j X3 mJB

where p; = mirs and 1y = m:0 i, Using (2.4) in the first term in (2.2)
=J dJod —=d Ji2d

. 2

g 2% oy (R
3 Emj 3 2mj

7.2 .
=22L+im3 + 15°R

Now the total mass of the nucleus M = ij and E = ME SO
J

FJ

N
e

| N

IW“

I I + L 1
J J il

>
N
mlm
=

m .

J T3

J

The center of mass coordinate is defined by

L myr s
R = 4
= M
50 2, x4y is by definition equal to zero, and
J
0.2 12 2
Nt I i N
J 2mj J 2mj 2M

Using (2.5) in (2.2)

16
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5 c L= L +E oF T (pooA(ri)+A(zy)ops)
3 gmj jemy 2M 2mjc J ==t ==t =)
e.2
+ 0 A%(rps
3 2mjc2 (“J)

Since the vector potential A is gauge invariant, we can choose A such that

y+A = 0. Hence the operators Pj and A will commute under scalar multiplica-
tion. The term quadratic in the vector potential describes two photon proc-
esses, For nuclear resonance scattering with an intermediate state, the ex-
citation and decay are just single photon processes, hence there are no non-
vanishing contributions from the term quadratic in the vector potential be-
tween the initial and intermediate and intermediate and final states. Neg-

lecting this term, (2.1) becomes

2 2 . TE'2
fd3rE+H2+P—+HS + 7 4 4 gl

H = d
83‘[ 2M J ng
%3
- Tl uz)epy
J ¢
Define:
p2 ' .
Hs = S + HS - the Hamiltonian for the system;
Tfj2 t
HN = ) et - the Hamiltonian for the nucleus;
j 21113'
24 2
B = [ a% Egig~ - the Hemiltonian for the electromagnetic field;
s
and
N . €
H = & +8 +H -2 4 Ars)ep; - (2.6)
J jc

17



To use the formalism of Section I, H must be separated into H, and
V where Hy is chosen such that Hy|n> = Ep|n> can be solved. Since HS,

Hl\I , and 504 satisfy the following eigenvalue problems

H$]k> = E|k> (2.7)
o> = Eylo> (2.8)
B |n> = ngick|ng> (2.9)
choose
B = R (2.10)

Since the Hamiltonian H, is written as the sum of three terms (2.10) which
act on coordinates independently, the eigenfuctions of Hj can be written as
the product of the eigenfunctions of (2.7), (2.8), and (2.9) and

Holokng> = (Ey+Bictnyhick) |akng>
Hence,

v = -y Alry)-py - (2.11)
gme =

To calculate the matrix elements of V, the quantum mechanical operator
corresponding to A must be used. One such representation for A can be ob-
tained by expanding in terms of plane waves normalized in a large box of
volume 13, The coefficients are chosen so that A satisfies the free space

Mexwell equations and the gauge condition V*A = 0. With this expansion

2 =1iKe
Mr) - I[P L (e (Die(Rg(-0)  (2.12)
e\ L
where a‘;o(_lg) acts as a creation operator and a,(-k) acts as en annihilation

operator or
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|1

—Iw
a8 0> = BBy g >

B8 [gpn> = By 0g >
and gk(ﬁ) and gh(ﬁf) are unit polarization vectors with polarization state
A. The polarization vectors for the two polarization states form a triplet

of orthogonal vectors with E} or

ga(r)-k = exr):k = ea()-ea(r) = O

—

With (2.12), (2.11) now becomes

_ .y &)y ledc iReTy .
! % e NZ{\iLSn © 88y (2.13)
where
T
_E,_k(fi_) = ak(ﬁ)gk(_&_) +a>\(-'ﬁ)gk(—_§) .

Using (2.3) and (2.4) in (2.13)

. m.
v o= -T oLy (B Rt R (. (x v
J-mJ }\_K;LK J M

- 'Qﬁﬁc -ik-R o-ikep
Z ‘:‘jzmjc = i}\,( ) - n

L3

+
urT
P
p

™
¢

1)

[]
)—l-
[
-2
O
=
o

(2.14)

The first term in (2.14) contains only relative coordinates and represents
the effect of the internal motion of the nucleus. The second term represents
the radiative effects due to the center of mass motion of the entire nucleus.

6

It has been demonstrated by Frauenfelder- that the matrix elements of the
first term are of the order of lO5 greater than the matrix elements of the

second term. Hence, the second term can be neglected and
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Ofic -ikeR « €  -ikeps
A Jnj -

For the nuclear resonance scattering the transition probability can be

written as in (1.46), so

T L o Yook "K', 'k Vo k!, QKK
Qok'K'A',00kKN = 7 "
Ot"k”=Oéok' ,Oﬁok Ean'l'Ekn-an-Ek-’ﬁCK + 'é' '}'ankn

(x)8( E/%+Ek. HicK' -E/ O-Ek-th) (2.16)

and yymn can be written as in (1.47), or

/}__i y . - ' N Z Vankn,dnvnm ’allkn
2 arvkvr — ankn’a tkll (E +Ek+,ﬁcK_E r")
n'M=q"k" (079) n

(2.17)

To evaluate the transition probability, it is first necessary to evaluate
the function nx"k"° This function can be written as the sum of two terms;
a real term Symen which contributes a shift in energy and an imaginary term
- 1/2 T which contributes a certain energy width., It is this width term

which is of interest in the present problem. So

h _ i
E 7@"1(" = SOt"k” -2—- POL”k" . (2 o 18)

To obtain the width function, consider the evaluation of the second term in

(2.17) .
There will be one contribution from this term for states n" like the
initial or the final states since it is known that (2.15) will have non-

vanishing matrix elements for this transition. Hence
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il

Z Va”k” mV ‘n nkn
ﬂlr CX"k" (ECXO.EEKMF}ch Enm)
RH]

n' like initial state

Vo1t ~tigatigetinn 2
| Yok, o kKN
_ (2.22)
(EOC +Ek+f10K"Edn'Ekm'flCK )
QTRMKIMM

"y

The sum over K™ in (2.22) can be extended to an integral over d°k"' by noting

that if the argument is slowly varying with respect to K"', then

3 3 "r
}: 1+ LdK
(2m)
K”EAsK”‘
S1e)
Z.}, _ y f LSdSKm lVOt”k” ok K"'N"IZ
= (2x) 3 (B, +E +heK-E  -F ~ticK'")
allk'"}\"” O k k
- K" n2 2 " *
_ LB Z f 40 f max K I Ot"k",Ol"ka"N"l daK (2 23)
ENEDE ST (Fg, * By HicK-Tom ~Bjgr -beK")
a‘lk‘”}\:"
Now let EK,n='ﬁbK”' so dK"' = 1/%c dBygir - Thus (2.23) becomes

:7 _ 13 f( f K" max EKH vﬁv e n d"k'"K!"N,"I dEKm (2 214')
(23‘th) 3 %m E +Ek+ﬁCK-EQf'"-Ekm) “EKm
Ol"kf"}\,"' o o

The integral over Eypmniils of the form

*The integral over K'' is from O to K'" max. where
K" max = '%E (an+Ek+hCK-EyH-Ekuo .
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To obtain the real and imaginary parts corresponding to the shift and width

function 1t 1s necessary to consider

a £ a f( )
f (%) 4y - 1im f XL ax . (2.25)
% a-Xx €20, a-x+1e

This corresponds to keeping the small real part of z in evaluating the in-
verse Laplace transform in (1.34) rather than taking the limit at e+o. The

integral in (2.25) can be performed by taking the contour integral on the

following path

I's
r, - J/jk)Lrl

and

ate
[ PSS O NV A P (O N
.O a+le=-X X atle-z atle=-2z ‘F atle-z

_f_fg_zLdZ_f_zg_zz_dz
\ at+le-z ‘F atie=-z

I's 4
Now in the limit as e+o both the integrals over I'y and I'y will go to zero.
The integral over Ip is Jjust ni(Res f(z)/atie-z; a.+ie)7 and the integral

over I'q is the principal value of

foigldz = -@faf(z) dz
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The integral around the complete path evaluated by residues is

SO

a
Enif(a)-o—rrif(a)+6)f i—%{gdx-o
o)

H

 ha
= (;)J[‘ aii) dx + ni f£(a) . (2.26)

0o

Using (2.26), (2.24) can be written as

E 2
27 ]:,:'.3 Z f a0 pf K'inax E}{'”ﬁVankn’amkaman dEKm
(2nhc) 3 S A ( By +Bic+ic K=Fym=Bygm) ~Egrn
QUM

+

Byrimex
2 2

nl f Egnt | Vogrien e g | B(an+Ek-l'ﬁcK-Eam-Ekm-EKm) dBf (2.27)
o}

The first term in (2.27) is real and can be associated as part of the shift
function in (2.18). The second term in (2.27) is imaginary and can be iden-
tified as the width function associated with this particular process (n'" like
initial states). Hence the width function for the gamma decay process can

be written as

3 EK“'max
iy _ L . 2 2
- 'é' FO!"k" = m nl EdQK{ EKnv IVO‘nkn’anannN" |
QK [¢]
( x) 5( an+Ek+ﬁc K'Ea""Ek""EK’") dEKI "o, ( 2.28)
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The matrix elements of V can be calculated using (2.15), or

/ (oqfic -1t Ro ©j  -ikeps
"y, 1 . e T - L [y =
Vauukvv,axykyuyerwll a'k ?\ﬂ\i LSK % ij € J

() (el (8) + 2, (-0 (=) x, o)

(2.29)

Only the annihilation operator has non-vanishing matrix elements between the

states 1 , and O , and

K" K"\

é}@n}\‘m‘a}\’( 'E) E}\’( ‘E) ‘lex> = € ( K KK’I&K}\I‘H . (2°50)

Meking use of the delta functions, (2.29) reduces to

1,1 2rhe -iK".R ej -iK".p s
Vot A T = a'k"|- e — -~ Z e = -—J ' K" . ot
(0 k',Ot'k"K"N' < LSKU j mJ'C }\t ( L ) I

(2.31)

(2.31) can be written as the product of two matrix elements. The only part

of the interaction Hamiltonian which acts on the states of the center of mass

motion is e"1K™R 5o (2.31) yields
- oiic « ©)  -iKM.p
— n Y Do _wnd e
V(x"k",d"k"'K”}\,”' - Q _\l LSK”'%- mJ-C e J 'E‘N"( K) _J'EJ a
(%) (k" e‘iE""5|k'> (2.32)
With (2.3%2), (2.28) can be evaluated since
iy 1> . Fxrmax 2 «iK"R 2
- ‘é‘ FO{ = W Tl f dQK'"- dEKnEKm“|<k"Ie; — ‘—Ik"'>!
a"'kl")\}?” o
es . 2
(X) l<Ot"| - %Tg—g% 2. EQ-C; e 1’-@"@3 S)\,”'( -E") ’EJ ,Ol'> | 6(FuO+Ek+ﬁCK~Eotm-Ekm-EKm) .
jgod

(2.32.5)
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Ep-Epan is small compared to the photon energyfﬁcK, 50 neglecting the energy
of the center of mass motion, the only term which depends on k"' is the square
of the matrix element. Here the sum over kK" can be performed easily using

the closure property since

— — 1
L B 2

Z< 1K le'éﬁi"'l +K" R >
1{"!
= é"le'iﬂ” °Be+iK""B|k>

1. (2.33)

i

To this point, nothing has been said about the set of numbers describ-
ing the internal s tate of the nucleus. It is known that two good quantum
numbers are the total angular momentum of the nucleus j and the projection
of the angular momentum m. It is also known that the nuclear state is a
state of definite parity n. Hence the set of numbers & should include Jj, m

and x in addition to other quantum numbers T descriptive of the nuclear state.

Now
HN[ijn> = Eleijn>
JFBltime> = §(3+1) | rime>
M |Tim> = m|Time>
P [ijﬂ> = nIijn> .

In considering the Mo'ssbauer effect, certain generalizations can be made
concerning these quantum numbers. The effect is limited to nuclei having
low lying isomeric states (less than 200 kev) because the source must be a
gamma, emitted by the decay of an excited state to the ground state, the ex-

cited state must have sufficient abundance, the decay must be predominantly

25



by gamma emission, and most important, the effect is governed by a factor
e'fE%, the Lamb-Mossbauer factor, where f is a function of other lattice

end experimental parameters. In addition to an upper limit to the energy of
the excited state, there are limits on the lifetimes of the excited state.
Lifetimes greater than lO'5 sec produce lines too narrow to be observed with
the resolution of conventional equipment. The lower limit on lifetimes for
experimentally useful line widths is about lO'll sec, If these limits are
compared to the lifetimes as a function of gamma energy predicted for elec-

8

tric and magnetic multipole radiation,™ it is apparent that nuclei decaying

by magnetic dipole radiation would fit the requirements for Mossbauer nuclides.
The selection rules for magnetic dipole transitions are 435 < 1, Ant = Ng,

Joti # 0; and if several known Mossbauer nuclides are considered, it appears

that the radiative transitions satisfy the magnetic dipole radiation selec-

tion rules.

S EX;;E?TION EXCITED GROUND N . St
GY STATE STATE J , |
Fed7 k.4 kev 3/2- 1/2- 1 Ng 2
Kr93 9.3 kev 7/2+ 9/2+ 1 N 8
snt9 24.0 kev 3/2+ 1/2+ 1 Ny 2
w9 129.0 kev 5/2+ 3/2+ 1 Mo y

These same transitions, however, also satisfy the selection rules for elec-
tric quadrupole radiation where b5 < 2, An = Ny, and jotig # 0,1. In gen-

eral though, the magnetic dipole transition is the predominant mode of decay,
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as observed by the half lives, which are much shorter than those predicted for
electric quadrupole transitions.

Now to continue with the calculation of (2.33), it can be ncted that for
state oM like the initial state, ' is a definite state of angular momentum
J, parity =, and T characteristic of the ground state. The sum over @"'then
reduces to only a sum over m", the projection of the angular momentum and

since Fyn = By = Ewo’ (2.32.5) becomes

3 — E,
i 7/ L . Z f Kmax o
- - P = —cs N1 dQ e E ) 6 hCK"E 1"

2 k" (2TL’HC)3 t f K .O K" ( K)

m'" N

| ey -iK".p,
I T"J"m"n"l 2rfic Z J e ik BJ K" . |TJm'"J‘>| dE
\I LoK" J mJ-c nr —_

(2.34)

The matrix elements in (2.34) can be evaluated further by expanding the

- H‘ .
exponential e K EJ, or
- Hn .
o iK'"ps _ 1 . ign.gj Fooee o (2.35)
This expansion is good through the first few terms since the argument is small

where

-12
~ 1._9___—9-12 = 10_5

K"p s
10”9 cm

o~ L
__.J'%

where

r - nuclear radius

A - photon wavelength
The first term in (2.35) corresponds to an electric dipole transition which
has no non-vanishing matrix elements for the nuclei considered above since

electric dipole transitions have the selection rule Ax = Yes. The second

27



term includes both magnetic dipole and electric quadrupole transitions. Thus
the matrix elements for the magnetic dipole and electric quadrupole approxima-

tion are

e. —S KM, 3
<r"3"m" nl_ .2_7@32__(_]__ e 15 € m( K’") "7, 'TJm">

3 N
=K J mjc

<E"J"m"n"] igg: ey —— (-iK"-p . )(e aon E"D‘Ej)lijm%> . (2.36)
\l i° .

The orbital angular momentum of the jth particle in the nuclear system can

be written [, = Qj X Ej’ hence
Kx Ly = K x (g x 1)
= (E"'Ej)ﬁj - (E"'Qj)ﬂj
= Klzpgipgmy) - 2K oy
or
(Krpxy = -2 (K'gy) + 2 K™ (xip 50579 - (2.37)

The first term on the right in (2.37) corresponds to the magnetic dipole
transition, the second to the electric quadrupole transition. Tt was men-
tioned above that the magnetic dipole transition is predominant. Hence, to
a first approximation, only the magnetic dipole contribution is considered;
however, it must be kept in mind that the electric quadrupole term can pro-
vide a significant contribution and must be considered for each nuclide.

Neglecting the electric quadrupole contribution

and (2.3%6) becomes
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LSKm N

Q"J"m”ﬁ" l i 23{flc

LSKH ' .

et 1 . Mé‘%; J . .
< Jrm'x I l\J L3K" %’ -gnzz iJ (SN"< -E")X.IS'") ITJmmT[>

<T.anmannI \J[E"’ﬁc _d (GX"( Km) 5t )( le 04 ) |TJm"9
mje

1

Sl (K (kg )1TJmm>
J

e s

J
L: =
j 2mjc =J

= M, the total magnetic dipole moment of the nucleus,
hence (2.38) can be reduced to

Mt " . Irh 1
<3 J'm" " |- 1, LSK"'M (eym(-K") xK") ITJmm\>

Recall that €,, €2 and -K" form an orthogonal set of vectors so

(2.38)
The quantity 2,

(2.39)

@H

Now,

£ m( -—Igm) X E’"

IKmle ( K"') x ﬁnv

and since the unit vectors are orthogonal, the cross product of one polariza-

tion vector and K" gives the other polarization vector so

A" -1
g}\!“( __Igm) x Kn = |Km | e}\‘” Km) ( -l)
and (2.39) yields

A1
<..anan_tn| E;VHC K"( l)
LK™

M°.§xlr( _Em) lijmJT> .

(2.34) can now be evaluated and
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. 3 m
iy L . K"max 2
. E Fa”k” g <2nﬁc )3 Ll z fd.QKl" \f EK" 6 (’ﬁcK‘EK”)
) e\ 0

Mettn_n - Qnﬁc " At -1 st 2
[<4 3" L3K”'K‘( -1) M- ek"( ) [T mm | By,
Ern

i 1 1 f j“ K'"max 3

S . ao E S (BcK-Epm)
3 KH K”l Kl

2 2 (/HC) i 5

G0 g ey, () gDl amgn, (2.40)

Performing the integral over the delta function

3

i K n_n 1 . 2
- E Fgé"k" T2 B 5{ 2 fdQKnl T"J”m It ‘M"E}\tv!('l_{_m) |TJmmﬂ>J ° (2°hl)
N ’

e

Both M and ¢, (-K™) are vectors or first rank tensors whichtransform like
the coordinates of a point in space. In the spherical basis, these trans-
form like the first order sperical harmonics. These two tensors can be con-
tracted to form the scalar product in the spherical basis as
Meg, =K"= z @U“Ti’:"_fu TZIJ“ (2.42)
M==1,0,+1
where TGN" and TM are the representations of € and M in the spherical basis.

1y,=H 1,

Using (2.42) in (2.41)

. . I? M
1 Y 1 H e)\'” Man_n . > 2
- = = = = > an L (-1) T T T. Tim > [ .24
r f K ’U- ( ) " J mﬂi l,}-ll Jm l ( 5)

2 a'"k" 2 2n 1,-
mm

M
Both the angular momentum eigenfuncticns and Tl u have the same symmetry
J

properties, hence the Wigner-Eckart theorem can be used to reduce the matrix

elements9 to
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M . ) M
<4”j"m”ﬂ"|T" ITjHW%§> - [d 1 J" <<E”j"ﬂ"”T,“Tj€>> (thh)
N i,M / m™ W m 1 -

where the coefficient i1s the Clebsch-Gordan coefficient and the matrix ele-

ment is the reduced matrix element. Hence

. 3 2 M /- . 1t s 11
LB el Y (320 (2

'\‘m"' m mn \Qm U-' mn
mmN“HU' S )

Ve

iy
2 Fa”k"

! Exre S *

(%) Ja@gn (-1) Ty Ty, (2.45)

€N
The integral over Quy in (2.45) can be performed by noting that T_k” and

1,=H

EpM *
Tis_“r are proportional to first order spherical harmonics. In the cartesian
ENtt

system, with the basis vectors €z, €; and /}g’”, the representations Tl,-p. and

cym ¥
le_“, in the spherical basis are known. Now, consider a rotated coordinate
3
system characterized by its Euler angles. The spherical harmonics in the

rotated system can be related to those in the original system as

B - Lo, (2.46)

1
where Dau is the rotation matrix and is a function only of the Euler angles

€
of the rotation. Now, Tl _ (and Tl ,) can be related to the spherical

2

b

harmonics as

i 1
exticy) = - L (sin0 cosf +i simd sing) = - i= sin 0ci? =\ aud Yy

1
B A & 3

c lhn o)
leQ = €, = €086 = 3— Y1

=3 -l
(sino cosd -i sin® sind) = L osinoe ig _ |in Y: .
Jo 3

Tr oy =
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Hence

Epm ‘)4_; -H e Q 1 1
= | — (97 = =2 Y7 (Q4m)D
Tl,-u B Yy (_}\ ) \tB 5 1 ( ) a, -

and the integral over QKm becomes

+1' ey _eym
Jasgm(-1)F™ Tl?-p T1§ -

oo?

' ' ' 1 1
B (cn)HH ;—“Z Ya (@m) Y * () faRK D, - Dt -

This integral is carried out using the orthogonality of the rotation matrices

and gives9

+p, Exm T€>\‘m _

fdQKm(.-l) Tl)‘u 1,-u' * (-l)p'-'-“" %'E

8~

So (2.45) reduces to

. . 3
iy . 1K
2 1—‘a”k" 2 2n I\I o /.
lm Z o !
( ) 5 Yl (Q%‘Hl)Yl ( hm) ( l) 6““1

W
mru

hﬁ\ 3
I/n F1e ”Tl“TJﬂ I y ;31”' ;31 @” U m,,
-
/ -

() ) Y d @y,
a}\"(
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(2.46.5)

R

/
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The sum over A" and O can be performed by fixing A'" and summing over Q. A" =1

a
corresponds to Yi(n/2,7/2) and A"=2 corresponds to Y%(x/E,O). The resultant

is

04 o*
L) T () = b+ 2= (2.17.5)
}\"Va

i _ 1L¥-K nan o J ‘j" J l'j”
- 5 P7O‘”k" - 5 __g_ ’<l 1 HTIHTJ | Z n" QQ'" HID

The sum over m",u can be performed using the orthogonality of the Clebsch-

- j n l
Z mm mm m" = gj "1

iy i man_n M.
- =17T = - T
2 a"k" 2 3(2J"+l Ko g

and

Gordan coefficientslO

SO

(2.48)

This then is the width function for magnetic dipole radiation.

A second contribution to (2.18) arises from the internal conversion
process, In this process, the energy of the excited state is transmitted
directly to an atomic electron with the subsequent ejection of the electron
from its bound orbit. This then becomes‘an atomic problem which we have not
even considered in formulating the Hamiltionian for the entire system. The
details of the calculation of the width function for the internal conversion
process present a new problem and will not be considered in this paper;
hence it is only noted that there is an additional contribution to the width
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function - i/2 FICn The usual procedure for treating this process is to re-

late the internal conversion width to the width for gamma emission by a

function o, the internal conversion coefficient, or

i1 _i
EF a grocnk"

where @ is an experimentally measurable quantity.

If the lifetime of the crystal states (lattice relaxation time) is
long compared to the lifetime of the nuclear excited state, there will be
little contribution to the width function due to the crystal states. For
our purposes, the lifetime of the crystal states will be assumed infinite
so that there is no contribution to the width function., Assuming no addi-

tional contributions, the total width can be written

i iy i IC
== = == - =T
2 2 : 2
- % (1+0) T/ (2.18.5)

Returning to (2.16), the transition probability can be written

23_{ Vij' ‘I{k!K',)\')i"j”In"]'?_'"k”VT”j"Il'l"J‘E”k”;TJHlT(kK}\,

m ~ ———
“rvim'zk'K'A', TJmrkKA - . i
K »1d h mn"k" <EO+EK" -’Ek-'hCK"i“SOl”k" - ';— P>

(x) B(Ek,+th‘ -=Ek~th) . (2.49)

The cross section for nuclear resonance scattering can be written in terms
of the transition probability (2.49). In particular, the cross section of

interest in GS(K) since the only parameter which can be controlled is the
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incident photon energy.* To obtain this cross section, the transition
probability must be summed over m',k',K' and A\' and averaged over m, k and
A and divided by the incident beam intensity, or

3
E: PofkPA Tij'nk'K'k',ijnkKk
m'k'K'\N'mk\

o(K) =

by
o|t1

The probability of the angular momentum having a projection m is just
l/2j+l and the probability of the radiation having a particular polariza-
tion state A is just 1/2, so
3
ag(K) = %&j%i;ﬁ) }: Py Tij'nk'K'k',ijﬂkKh )
m'k'K'A'mk)\
The sum over K' can be extended to an integral over Ex: as done previously

in evaluating the width function, so

71> L°
B = R m)” Z Picf00y [Bir OB Togmo i o, v g
m'k ' A mk)
(2.50)
The matrix elements in the transition probability (2.49) have already been

evaluated in consideration of the width function, hence can just be written

down as

\ = i(-l)w S k'le—igl'ﬁlk"
ij‘ﬂk'K‘ K(,T"‘j”m"ﬁ”k" — Ls

(X)<jmtﬂl1\£,g>\a'(_§:) ‘T"j"m"n"> (2,51)

*If a true scattering experiment were performed, the cross section of in-
terest would be og(X,Qx')dQxgr; however, the present interest in nuclear
resonance scattering is only as a removal process.
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and

- - (P a&K<ﬁ 4@m;>
T"j"m”n”k"’ijj‘rkKK = l - ._—-.L—g— e

(X) <|;”,j”m”ﬂ'"IM.§.}\( —K) lij1> . (2.52)

with (2.49), (2.51), and (2.52), (2.50) becomes

E
K
K) = o3 >
“s(—) 2(2j+1) (Hc) 4 Z PkfdQK'deK'E !
m'k'A"mkA
] —i_Ig"_R_ >£ ' "t -iX'R werno o _n s 2
(x) é le |k Tam' x| Mgy (-K") [T m'n">@|e =2 " |M.e,(-K) |'ern>
e Eg+Eyt-Ey -HeK+S - % r
(%) 8(Ey1+Egi-F <hck) . (2.53)

By -Ey is small compared to #icK, so by neglecting E,, and Ep in the delta

function and performing the integral over EK'

4

O'S(K) = K 2 PkfdQKl

= 2(23+1)
m'k' A mkA

Z < 1 |e'i§' .Blk><jm'ﬁ[}_4-£>\r('§') |'r”j"m":r> nle—iE-BI> T"J"m"ﬂ"m-_‘i}\( __IS) Iij>

B, +Ejn -Ey“HCKHS - % r

(x)

m"k”

(2.54)
The square of the sum in (2.54) can be written as the sum of the squares
for m"? and k" if it is assumed that the states k" are not degenerate , so

K
W¥ = s ) R ) Jeg

kk" m'k'A'mam"

( ) I@Ie-ig’ .—R-lk><imrnl_bﬁ'£}\_'(_§l) IT"j"m"T[> nie—ig'zlxnjnmnﬂn
X

2
(E+Eyn-Ey-Hickss) 2 + i_

2
M‘E)\_( -X) [ Timr)|
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The sum over final states k' can be performed since

Z ‘<k' le_i§’°5|k">|2 Z' <kn|e1§'o5lk>< 'Ie-iE"B|k'>
k! k

<k"‘elK B "lK' lel>

= 1 .
and
K4 N
US(K) = mz Py Z fdQK:

kk" m'A'm""mA

|<ij| TEIM“?‘_}\Q'(-IS') IT"J"m"JT">§IE"| "lK R]k>é"‘]"m"n" |M'§_>\( _K) IijTf>|2

2
(E +Ey n-E, ~AcK+5) = + l—[_

_x z P, (e Ry |2

2( 23+l) ( EO+Ek||-Ek-ﬁCK+S) 2+

P2
kk 1" Z—

(X) Z fdQK' l<’rjm' TE';\_/I,E}\’(_E:) |T"J"m"3'["> <T”J"m"1t" lM'_G_)\( -.I_() I ijﬁ>|2
m'\'m"mA

(2.55)

Now, expanding M-¢ in the spherical basis as done in (2.L42), the last term

in (2.55) becomes

\" 2
Z fdQ’K' I<ij,7f|M°§_ K') |._an 1" '><"J"m"3’"|M°E}\('K) IijTf>l

m'A'm" ma
—
= Z fdQK,‘Z l) Tl _u<]'1m J-(‘il‘l I,.-H H " r>
m'A'm"mA
M 2
(x) Z( l) A I<T"J"m”rc”|Tlm|'r,jmgr |” . (2.56)

Using the Wigner-Eckart theorem as done previously in (2.44) and taking
the square of the matrix elements, (2.56) reduces to
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| Gamlmille sy 121 e g )

— — VTRSY €x! */".,, . ;,, .
-1 (371 Jo 1 3
(x) 2_1 fdQK' 2_4 (-1 Tl)'u Tl;"l-l' K " "oyt

m'pm'/ \m" ' m)
m'\'m'"m)\ s N
Z Tl*ﬂ' € n /(J. 1 j”
X -1 2.
(x) (-1) 1;‘71 1,'TI m" Kmn' m"/ . (2.57)
'
€>\1 €>\y
The only terms which depend on the direction of K' are T and Tl "k
i P
This integral has been performed in (2.46.5)so
H'oent  ex ¥ L o O ax T
fdQK,(-ly I <:§_ % V(95 )Yy (Q40)(-1) B

Taking the sum over j' and the sums over \' and o as evaluated in (2.47.5),

(2.57) becomes

| Gralmylle g )2 (e gy e -
H l J H J
m" pm'/\m"pm'
m'm' pmk
( ) n+n' S N I A T E A (2.58)
1’_n l)"'n' m T] m" m n] m” 3 °

The sums over m' and yu can be performed using the orthogonality of the

Clebsch=Gordan coefficients since

Jn l " _ Z l J- j" l j j” _ l
m" m‘ m" u m' o \pm'm"/ \pm'm" 23"+l
miy

and (2. 58 reduces to
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2Jr!+l)

T]‘I"q' € € */ . T f'//": n\
(%) Z (-1) T .:31J>s“ J o (2.59)

) ' LM LT \mqm"/ \mn' 0"/
m''mAnn " SN A

The sums over m and m" can be performed by again using the orthogonality
of the Clebsch-Gordan coefficients and

JlJ" J i Z(J"jl j"jl\ 1
= " = _6 !
m'r]m q m \ m mq m" m 3 1M

n'm \

-~

Using this in (2.59)

*

nan o man n ___.____— : A N
KTJrrllTlHT Y2 |<'r 3l lTl”TJ“>l 9(23"+1) - 5’1 Ty 1,

or in terms of the spherical harmonics

Man_n Mman_n 527{2 : =N "Tl*
l< syl >l <T 3" ||T1”"'Jﬂf>|2 ) Zn Ty (2y) Y1 (9,) (2.60)

The sums over A and 7 can be performed as in (2.47.5) and (2.60) now becomes

My . 2 167
Tigl|T 'T'" 1 n> 2 <T” "J'lf" Ty |3
Cralmallr s )2 ey el ram)|® oot

Hence, (2.55) can be written as

- l6JTK4 n a1 Man_n M s | 2
O'S(E) - l8(2j+l) (2J-H+l) | TJTCHT:L“ >| l<T J S HTlH 'JK I
" -1K-R 2
0 ) 7 (erje ™ B (.6

KR (EO+Ekn-Ek-“nCK+S) 2 + —

Equation (2.61) can be written in terms of I’ rather than the reduced matrix

elements by making use of (2.48) so
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vau iy wi_ =iK-R|, )2
R a1 Zi, o W ERIE - g

Jut 5 :
2K 2+l — (E0+Ekn-Ekath+S)2 + E—

Noting that 1/K° = x5, (2.62) can be written in the more conventional forml

0s(B) = 1 ooH(K) (2.63)

where

3"+l r72
0o = 2| =—=) % —

2
) (2.64)

is the cross section at resonance for nuclear scattering of a gamma ray and

T it =1iKeR 2
W(g) - ZJPk Kk le —"']k>1 . (2.65)
I

2 e
E0+Eku-Ek-—th+S) t

Equation (2.62) is the usual starting point for calculations of the Mossbauer
effect. The development in this section is included not so much for verifi-
cation of the cross section (which is well substantiated by experiment) ,

but to investigate the assumptions made in order to obtain a better under-

standing of the limitations of the cross section.
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SECTION IIT
APPLICATION TO AN EXPERIMENTAL STUDY
OF DIFFUSIVE MOTION IN LIQUIDS

The cross section for nuclear resonance scattering formulated in Sec-
tion II is perfectly applicable to nuclel in a system in the solid, liquid,
or gas state since the state of the center of mass motion k is just the
elgenfunction of the system Hamiltonian E° which can be appropriately
chosen to describe a system in either the solid, liquid, or gas state.

There are two possible approaches at this point. First, if the Hamil-
tonian H° for the system was known, the eigenfunctions of the system k could
be obtained by solving the eigenvalue problem HS|k> = Ek{k> and the matrix
elements in (2.62) could be calculated directly.* For solids this approach
is possible since under certain conditions the system Hamiltonian is well
known. In fact, this is the usual procedure for calculation of the cross

oo . . . 11,12
section for the MOssbauer cross section in solids. ~’

In the case of
liquids, however, the Hamiltonian H® for the system is not known, hence
this approach cannot be used.

Since the force laws governing the interaction of atoms in a liquid
are not known, the second approach must be used out of necessity. The ap-
proach is mainly an attempt to push the calculation as far as possible with-

out including any explicit knowledge of the system Hamiltonian. This es-

sentially involves introduction of the space-time self correlation function

*Although the procedure is straightforward, the mathematics may not be.

)
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first treated by Van Hoveol All information concerning the space and time
dependent behavior of the system is then included in this correlation func-
tion. Hence, rather than working from the system Hamiltonian, models for
the system are considered in terms of this self correlation function. This
section is devoted to the introduction of the self correlation function
with the necessary formalism and to the calculation of the cross section
for application of the Mossbauer effect to a particular experiment to study
diffusive motion in liquids.,

To this point, no mention has been made of the shift function S in
(2.65). To a first approximation the shift can be considered a constant
since the range of K for which W(EQ ig large is quite small., For our pur-
poses the width function is of main interest, and the shift will be re-
tained only to keep in mind that the Mossbauer peak (k" = k) may not be
centered at E5 but at energy El = Eo+S.

Now, (2.63) can be rewritten as the integral over a delta function,

or

< Ekn'El?

2 . o & - dp

‘ ° ﬁ .
) = Loy ) pl(erle TR [ . (5.)

. r
o 00 (EO—‘th+ﬁp)2 + =

I

Using the Fourier representation of the delta function as in (1.L4L.5),
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]<f ) E n-E,
o (K = l—l:ig% k;' Pk|<k"|e'iI§-B_|k ] f dp[m EuhnKmp > %_
L
2 i<fljif%>%j
= i—:——-f dt<y P |<k"] 1E°B1k>|2 AN ?
kk" _J
(x) foo e-ipt =z dp (3.2)

| ' >
-0 (EO—’fch+'hp) +u

The integral over p can be performed by integrating in the complex plane

on the following paths

Path 1
Eq-ficK T
- == -
<l 7 :> + i % .
>
() - g \
. Path 2

For t<0, path 1 is used since the real part of -ipt goes to - when p-w and

fw e Pte(0)ap = C}g ot )40 ,7(; e ) dp - gg 00 a

=00

This can be evaluated by residues and
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10t o R o-ipt ‘
= - 1 )
: \ 2 | T 12 {ZEOJﬁcK 5> 12
=00 (Eo"hCK‘Fﬁp) Z— ":\ H_ + K/—ﬁz
. /B! “AcK »
i =2 ) v St
AN
_ 2ri e
H2 . T
T A
'~’ﬁCK\t
(kL
_ 2x oA o
AT

(3.3)

For t > O, path 2 needs to be used so that the real part of -ipt goes to -w

when p-w,

and

o0 -ipt -ipt
e dp 2ni e
/ s B e |
=00 (E'-’hCK‘Fﬁp) z— < + % + E‘h_g
<Kf 4mK>
_ 2n1 e
-1 L
h
CR
= en e & // = t >0
Ar
Hence, combining (3.3) and (3.4), for all t
00 int /.Ijé;fi_ - .E.._
JF e P dp 2x ek\ A P!
. 5
~o (B <ick+hp)® + -E_ Aar

Using (3%.5), (3.2) can be written

Ly

The integral can be evaluated in the same manner as for path 1,

(/Eg)-ﬁcK\

\

ﬁ/-

(3.4)
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. EKH_Ek
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Py (e [ EE )1 e <

kk"

kk“

i

Y Bl ) ol R

kk”

Ek."t
A

iK-R+i
E: Pk<%|e

kk"

The last term in

Just a number, which commutes.,

Iki><%"|e

i<EkH"El§ t
z Pk<"|e‘i§°5|k>*<k"|e’i.1§°5|k> AN

n-E
A
e

(3.6.5)

E.t
!19 . (3.7)

(3.6.5) can be taken into the matrix elements since it is

Since Exv and Ey satisfy the eigenvalue

problem Hslko‘>= Eka|ka> and it is known that £(E) |ko‘>= 2(E,0) |ka>, then
/

(3.7) becomes

)

k.k”

S
1K R+ L -iK-R-i

Pk<k|e— 1 |k”><k”|e o

b5

£
T (5.8)
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Performing the sum over k" by use of the completeness relation, (3.8) re-

duces to

i g £t
EPk<k|e e A k) . (5.9)

To simplify the operator products in (3.9), the time dependent position

coordinate B(t) is introduced. This satisfies the Heisenberg equation of

motion
dRr(t) 1
= -= = [R(t), H® .10
n = R(t), #°) (3.10)
which has as solutions
1@:—5}2 -1 Eiti.
R(t) = e T Re N (3.11)

so (3.9) becomes

e Y
Hence (3.6) has been reduced to

' HeK
ool [” iCoh >t ) g‘ﬁ [t iK-R(0) -iK-R(t)
oo(K) = E&% dt e %Pk<k|el—-o e TS |k>

=00

(3.12)

Equation (3.12) can be related to the space-time self correlation func-

tion by the following identity:
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L el et E RO RO = [T gz t)a L (5.13)
By inversion, Gg(r,t) is then given by

Ge(r,t) = —-2-%)-3- fe ik % Pk<k|ei5°3(o) o~1K-R(t) |k>d3K . (3.1L)

(

Using (3.13), the cross section (3.12) can be written as

I
i KO - 't an Cm—c— 't
o F [ Er-ut) - = |t

os(K) = w=J e Gg(r,t)d3r dt (3.15)

-00
where fw = AcK-E!.

The function GS(E,t) can be interpreted as describing the correla-
tions between positions of one and the same particle at different times.
Classically, Gs(ﬁxt) can be defined as the probability that, given an atom
at position r = O at t = O, the same atom is at position r at time t. How-
ever, for small times, when the particle has moved only a distance of the
order of the deBroglie wavelength, quantum effects are important and
Gs(r,t) is complex. Van Hove has noted that only the real part of Gs(r,t)
can be interpreted as the self diffusion function since the imaginary part
is quantum mechanical in origin.

Several prescriptions have been used to relate the cross section
os(X) to the self diffusion function. Vineyard® suggested replacing
Gg(r,t) by its classical limit (limit as ¥+0). However, as Rosenbaum™>
has shown, this approximation is not satisfactory since by setting B = 0O
in Gs(g,t), zero momentum transfer is implied., Also it is shown for an

ideal monotomic gas that the classical limit of the scattering function

by



Ss(K,w) , the Fourier transform of Gg(r,t), or

So(K,w) = foof ei(g-_x_'-a)’t)

-00

Gg(r,t)d%r dat (3.16)

does not equal the Fourier transform of the classical limit for the correla-
tion function Gs(z,t). In addition, SchofieldllL pointed out that the scatter-
ing function resulting from the above replacement does not satisfy the condi-
tion of detailed balance

e’h(l)/ kgT

SS(K:(D) SS("E:"(D) (3.17)

which must be satisfied for a system in thermal equilibrium.

Schofield has suggested that Gs(gbt + iﬁ/2kBT) should be considered
as the self diffusion function rather than Gg(r,t). By using this prescrip-
tion, the condition of detailed balance (3.17) will be satisfied. Hence
rather than considering og(K) in terms of Gg(r,t), Schofield considers it
in terms of the function Fg(r,t) = Gg(r,t + il/2kpT) which can be interpreted
as the classical self diffusion function., To introduce this function, re-

turn to (3.6) and consider the last term

n=k
-l .

Z pel(xr e E )2 ¢ /.

kk"

For a system in thermodynamic equilibrium, the probability of the center of

mass motion being a particular state k or k" is

/T e-Eku/kBT
P - e aIld Pk" = 3
K 5 =Bgr/kgT 5 e~Ex'/kpT
k' k!
Hence
-Fx/kpT
Pk = Pk" E = Pkn e(Ek -Ek) /kBT o (3.18)
o-Ex/kgT

L8



Using (3.18), the last term in (3.6) can be written

B ( Ekn—Ek) l<Ek" -E9
e R Rl )

kk"

Now also noting the fact that

. <),
%Ef ot Z e(Ekrr-Ek)/2kBTﬁ£@l< e -iK-R |>| (E

kk”

) R Eypn-E
Z JW@@Tﬁiwaﬂoﬂk1§EWM2%é- khk}

kk”

(3.6) can be written as

o0 -iot -
GOF

og(K) = — dt e
=00

= It
oK /2T
= L4

).
(x) Z \/.—n|<k”|el'K'B| )] e & : (5.19)

kk”
In the same manner as done previously, (3.19) can be written in terms of the

time dependent position coordinate since

ﬂk”’Ek\
i ———
|<kn|e-i§°5|k |2 e C A /

- <| 1K.R Ik'><k” -1k R(t) [k>
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Ool’ oh JHiw/2kpT

(0 ) B Bl E RO oy G | HEHD L (5.20)

kk”

Now, if the function Fg(r,t) is defined as

Fg(r,t) = E )3 fe -iK-r }; VG%;J§E:

kk”

(0 Gele T o Gl EE s 50

(%.20) becomes
F(r,t)dr at . (3.22)

The identity Fg(r,t) = Gg(r,t + 1#/2kgT) can easily be verified by consider-

ing the replacement t-t + if/2kpT in (3.1L4). By rewriting (3.14) with the

help of (3.7), the replacement gives a term e')ﬁw/ngT

and by substitution
of NPy from (3.18) a term € 10/2kBT 55 optained, verifying the identity.

Tt is known that the self correlation function in the case of a solid
(cubic crystal lattice) and a gas has a Gaussian form

Gg(r,t) = (o 7(“0))’5/2 e r2/2y(t)

(3.23)

where y(t) is the Gaussian width as a function of time. Van Hovel has

shown in the case of an ideal gas that

, kT t2
y(t) = - i)ﬁi+ BM (3.2k4)

and in the case of a monatomic cubic crystal that
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4? [%oth(\\ ;)K\i - cos 5;) -1 sin‘;t 2z) 4, (3.25)

where f(z) is the normalized distribution of phonon energy levels.
The function F (r,t) will also have a Gaussian shape, or
R(r,t) = (2np(t)) /2 eF/20(1) (5.26)
where p(t) is the Gaussian width as a function of time and in the ideal gas

and cubic crystal can be obtained from (3.24) and (3.25) simply by using the

t o+
7<i 2T

Schofield prescription since

Hence, for the ideal gas

2 kT
h B- .2
t) = + —t .2
o(8) = e t Ty (5.27)
and for the monatomic cubic crystal
0 1 cos Zt_W
> - ==
p(t) = ;%-u/\ £(z) tanh hi - + A dz . (3.28)
o 2 B simh —
2kgT

In the case of liquids, however, the Gaussian width function o(t) is
not known. In fact, it is not even known whether the self diffusion func-
tion Fg(r,t) is Gaussian at all times. However it is reasonable to assume
that the function is Gaussian since it is known that liquids have Gaussian
behavior for both small times where the diffusing atom acts as a free par-
ticle and at large times where the atom acts as a diffusing particle. At

small times then the behavior of a liquid is like that of the ideal gas with
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the characteristic p(t) ~ tZ behavior of the Gaussian width.* From the
form of p(t) for the ideal gas in (3.27), it is apparent that even at t = 0
there is a finite extension of the Gaussian since p(o) =/‘f12/l+MEk:BT° This is
in agreement with what would be expected from consideration of the Heisen-
berg uncertainty principle. Since a liquid behaves much like the ideal
gas at small times, it is not unreasonable to assume that the Gaussian for
the liquid would also have the same finite extension at t = O.l5 With
o(o) =/ﬁ2/thBT in Fy(r,0),

[ K Trg(r,0)a% = e K /BMkpl
With this quantum mechanical correction applied to (3.22), Fg(r,t) can be
considered as the classical self diffusion function F:(E,t)o Hence

ool Tw/2kpT -/h2K2/8Mk;BT fmf i(K-r-at) - r/2h|t|
e

c 3
os(g) T Fs(z,t)d rdt

=00

(3.29)

describes the cross section in terms of the classical self diffusion func-
tion, **

The cross section for nuclear resonance scattering (3.29) has been
pushed to the point where it is necessary to propose models to describe

the classical self diffusion function F:(E,t) for liquids. Two such models

*Vineyard5 has shown that the ideal gas, oscillator, and Debye lattice all
have this form for small times.

*"*Rosenbeulml5 derived (3.29) with considerably more rigor, which seems to
verify the simple plausibility argument of Singwi and Sjalandere This
also points up the fact that Schofield's prescriptiorn appears to be valid
only in the limit of gamma rays with small momenta and heavy atom resonant
scatterers.
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will be considered in Section IV, however, before getting to that point it
is necessary to consider the actual experimental situation in a little more
detail and the quantity of interest in a measurement,

Although it is possible to perform resonant scattering experiments,
these experiments suffer in intensity due to scattering into 4x solid angle.
Instead, transmission experiments are performed in which the change in gamma
ray intensity is observed along the axis of the incident gamma ray beam.

The cross section measured in this way will include all processes which re-
move gamma rays from the incident beam. This includes the resonant scatter-
ing cross section which due to Ln scattering is essentially a removal process
in a transmission experiment and internal conversion which is a gamma ray
resonant absorption process.* Assuming these are the only two resonant
processes, the removal cross section** can be written
o (K) = o (K + op(K) .

The internal conversion cross section can be treated in the same way as the
width function for internal conversion was treated in Section IT and GIC(E)
is related to og(X) by the same function @, or

010(_19 = 0505(2_()

and

*Only resonant processes are of interest here. Non-resonant processes such
as the photoelectric effect may be quite significant but are of interest
only for the sake of intensity and not in the chape of the resonant cross
section,

**¥The removal cross section is commonly referred to as the absorption cross

section in the literature. This seems rather inappropriate to the nuclear
engineer since the removal process also includes scattering.
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Or(_IS) = (l+O!) Us(_K_) .

Hence,
oof H/2kgT - A2K2/8MkgT [ . i(Ker-wt) - T/28[t] c 3
on(R) = e B B Jet="= F(r,t)d"r dt

(3.30)

where ol = o,(1+0) and using (2.64) and (2.48.5)

1 A
__— 23"+1 I
o) = 2 <23+1) " (3.31)

e . . . .
The usual Mossbauer experiment is carried out using as a source of

gamma rays the decay of a nuclide identical to that of the absorber. This
transition is one from an intermediate state to a ground state like that
treated previously in consideration of the resonant scattering cross section
in Section II. The gamma rays emitted in this transition will have an energy
spectrum similar in form to the energy dependence of the resonant cross sec-
tion. The cross section obtained from a transmission measurement will then
be the overlap of the incident spectrum and the resonant absorption cross
section. This cross section is usually referred to as the self-absorption

cross section and for a thin absorber can be written as

g = f a (E)W (E)AE . (3.32)
(o]
where
' . . 2.2 «© . S _ .
0 (D) - gi% JHi/2kgT - A K /8MKBTf [ GMErr-ut) - r/28 [t Pl ) a% at
- (3.33)
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and Wé(E) is the normalized probability for the emission of a gamma ray of
energy E. Wo(E) can be obtained in much the same manner as the cross section
was derived in Section II, hence the details will not be included. The es-
sential difference is the fact that the emission is a direct process between

1
the intermediate and final states, thus involves use of G,:, rather than

ie)

’+ The result of the calculation is & form for we(E) like that of (2.65)
n'n

with the roles of k and k" reversed, or

. 2

N k -lK._R_ k"

W(E) = C Z Py |'<le | ?I = (3.34)
k" (ES+E-Epn-E) t

16

where the normalization constant C can be shown to have the value F/2n.
The emission probability (3.34) can also be written in terms of the self
correlation function Gs(E:t) using the procedure from the first part of this

section., The result is

Wo(E) = Te:T-LfEf jef(Ermat) - T2 [t o (e ar . (3.39)

In the Mossbauer experiment of interest, the source will be in the solid
state, hence (3.35) can be evaluated further using Gg(r,t) from (3.23) and

y(t) from (3.25) for the monatomic cubic crystal. So

Il

We(E) .E_J-T_(ﬁf f ei(K'E‘UfC) = F/EK Itl [23'[’)'('b) ]"5/2 e—r2/27(t) a3r 4t

_ 5% " o-lot - r/2n [t f[2n7(t)]'5/2 KT e-r2/27(t) 3 at

=00

(3.36)
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Performing the integral over d%r in (3, 36)

2 [ a2 +1
[[2ny(t) ]_5/2 eig'£ e /27(%) ®r = [20(t)] 3/2 :rf Pe /27(t)f eiKru dp dr
1

o

= [21\'7(17)4-5/2 %f r e—r2/27(t) sin Kr dr

2 ® © 2
= [2ny(t) ]“3/2 %ﬂ \:— sin Krey(t) e /2r(%) +f 7(t) e f2A(®) K cos Kr d%

[+ o}

3/ VO \;_E [25(%) e-K2/2-7(t)

= [2my(t)]

S YR (3.37)

and so (3.36) becomes

[} ] 2
W5 - Elnﬁf Q- - T/24 [t K /22%(t) o (5,38

Equation (3.38) can be rewritten in the form

Wo(E) = é_%rh_[e-f/e«y(m) f o-lwt - r/of |t| at

=00

v L) [T et - /e o {ef/e o) - K/ oAt) _ %d;J

(3.39)
where y(w) is y(t) evaluated at t = », Expanding the term in the curly

brackets in (3.39),

K 2
2 5 ) (=) -(2)]
K2/2 00) 7‘t) = 1 +_2I_{__ [7(”)'7("5)] +<2) 7 VA N

21

1)
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[/ ) - €2 o 3, 2(2_> O G
n=1

with (3.40), (3.39) can be written

r/eh |t o,

-
i [v0)
1 -2W| [ it
W.(E = —— g ‘ e
o(E) = J

I
|
(-

K2 n
Z(E_. fw -iot - T/28 |t

[y(e) -p(£) 17 at|  (3.h41)

where 2W = K2/2 y(w) is the familiar Debye-Waller factor. The first in-

tegral in (3.41) can be performed and

0 (0]
f T A v L1 2f it - T/28 ||

=00 .O

____g___ [- 1]

I

Taking the real part of the integral in (3.41),
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1 -2W| hr
W.(E) = ——e
e 2
enh l_( E-Eé)g + =

1

Zé)

n=1

,/ ot - /2R ]y iy Par| . (3.3)

The first term in (3.43) represents recoilless emission of gamma rays and
is a line with natural width I'. The remaining terms correspond to phonon
exchange in the crystal. For our purposes, the phonon part can be neglected

and only the Mossbauer pip (zero phonon line) considered, so

r -2w 1
We(E) = E‘T}' (S > (Boll-ll-)

(E-Ey) =

oW can be evaluated using (3.25), or

G _ ﬁ2K2 zt| f(z)
2W = - () llmt+m Y .O h<;k§£> <:? - cos ii) i 31n .
_ K fgz)

S ot (k Q dz . (3.45)

Equation (3.45) cannot be evaluated further without knowledge of f(z), the

distribution of phonon energy levels in the crystal. 1In the Debye approxima-
tion, the crystal is assumed to have a phonon distribution f(z) ~ z® extend-
ing to an upper limit characteristic of the particular solid. The normalized

distribution is given as

58

dz



3
527 /(kgp) z < kpop

H
—
N
~—
il

(3.46)

where 6p is the characteristic Debye temperature. Using (3..46)
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in the Debye approximation. The integral has been tabulated by Zenerl! for
different values of GD/T°
Using the result (3.44), the self-absorption cross section (3.32) can

be written

o - P_e‘gwf o,(E) dE — (3.48)

where 2W is assumed to be constant over the range of E for which ¢, is sig-

nificant, or

14

oW (fo)" . 6 £+/?_>2f@D/Ty_§i (3.49)
2Mc®  kglp| b &@D A oJ-1 | .

In a Mossbauer experiment, the source is moved with a velocity v with
respect to the absorber. This provides a Doppler shift in energy of the
emitted gamma ray equal to S = v/c E, where ¢ is the velocity of light. The
argument of We(E) should then be E+S, This then gives the self-absorption
cross section as a function of the source wvelocity, the quantity obtained from

L1}
the measurements in a Mossbauer experiment. So

g'(s) = L e NET/“ 0,.(E) Az (3.50)

LX)

is the cross section which can be measured in a Mossbauer experiment in
which the source is in the golid state and moved with a velocity v with re-
spect to the absorber which is in the liquid state. The factor 2W is given

by (3.49) under the assumptions and approximations previously mentioned and
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cp(E) is given by (3.33) where F(r,t) is the classical self diffusion func-

tion for which models can be proposed to describe the behavior of liquids.
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SECTION IV

MODELS FOR DIFFUSIVE MOTION IN LIQUIDS

The approach to be followed in dealing with liquids is one of proposing
particular models for the correlation function to obtain ¢,(E). The cross
section ¢'(8) obtained for this model of on(E) can then be either confirmed
or disproved by direct experimental investigation. In this section two mod-

els will be proposed and the cross section ¢'(S) will be obtained for each,

A. CONTINUOUS DIFFUSION MODEL

The first model to be considered in describing atomic motion in liquids
is the continuous diffusion model which was first treated by Vineyard5 in
investigating the analagous topic, slow neutron scattering in liquids.

From Section III, the removal cross section is written in terms of the

clascical self diffusion function as

t

ol Heny/ T o 2, M ® 3 o mpivE - T/> ~ o
E% JHi/2kpT - K 1<2/8M§Bj?f [ lEzmen) - 1/2H (e, 0)a% at

(L,1)

=02

X C . ) . . .
Since Fs(r,t) is teken to describe a diffusing atom (one that suffers
random alterations of velocity in brief collisions occurring at random times),

the function obeys the classical diffusion equation, or
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C
ov® F(r,t) = —af%t(-& (4.2)

where D is the self diffusion coefficient. Solving (L4.2) for a point source

at the origin at t = 0 gives

F(r,t) = (bap|t]) /2 & /40 [t (4.3)

or in the notation of (3.26), a width function
o(t) = eplt| .

Using (4.3) in (L4.1), the cross section can be evaluated further, or

o (D) - %;_F e/ 2kgT —’ﬁ2K2/8MkBTfm [ B z-at) - T/28 8] ) oy -5/2 T/ (] gay gt
(4.4)
Performing the integral over d°r as in (3.37)
osl’ 2 * : - : -
o(8) - _Olrﬁ /2K T - A K2/8MI<BTf ot - 1/2%6 |t - ©D[t]
B (k.5)

In the region of the resonance hw = E-Ey << 2kgT, so the first exponential
is approximately equal to 1. The second exponential is analagous to the

Debye-Waller factor for a solid, so let

_AK
Mg = 8MipT (4.6)

and
oL -ewafm it - r/26 6] - KDlt| o
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Performing the integral over t as in (3.42),

' \
o'l o Lo KZD |
o -2Wy \2n
O‘I.(E) = L_I-’?l— S T
\\gﬁ 4
ool -oW (7+20K D)
op(E) = I € & Ca— =5 (4.7)
(E-E)) + i (r+21K D)
Now, using (3.50), the cross section ¢'(S) can be written
2 00
5i(8) = ool oW -2l f (r+26K°D) 4E
"~ 8x : he 1 2 2 I} °
o L(E-EO) + 7 ( T+2HK°D) ] BE+S—E(')) +

The broadening of the line in the cross section (4.7) is given by
he = 2HK®D
which over the range of E for which Ur(E) is significant is approximately

constant and equal to

2ESD
e ¥ =75 (4.8)
S0
0.11-12 _ 00 4
o' (8) = g e M ¢72Me (F+2hK2D)f - 2E - RE—
T o [(E—Ec',) + i- (r+2%K D) ][(E+S-Eb) + {._J

(4.9)
The integral over E can be done by integrating in the complex plane on the

following path
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i
By + 5 (T+20K°D)

and

.[ £(E)AE = % £(E)aE fv £(E)AE .

The second integral goes to zero since f(E) goes to zero for E far from the

poles and the first integral can be evaluated by residues, so

foo f(E)dE

o

oni [Res f(E); B + % (r+28K°D) + Res f(E); E-S + % 1::|

1
i( [‘+2ﬁK2D)[S + % (2r+2’f1K2D)] [S + % (ehKZDﬂ

2ni

N 1 ) (4.10)

ir{? - % (2F+2ﬁK2Dﬂ[:S + % (EﬁK?Dﬂ_j

Expanding the two terms in (4.10) in partial fractions, two of the four

terms obtained will cancel leaving

f f(E)dE = 2 L — S
o I(I+26K°D) |S + % (er+28k®p) S - % (2I+28K7D)
hye( T+RK D) 1

P( F+2hK2]5) : 32+( F""hKED) 2 (Ll'o ll)

With (4.11), (4.9) can be written
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ool oW -oW,  (r+nKD)
- € € 5 5 2
2 S=+( I'+hK=D)

g'(8) = (L.12)

Now consider the validity of this representation of the atomic motions
in liquids. This form for the classical self diffusion function has a width
which goes as p(t) ~ t; however, this representation is not valid at small
times where it is known that p(t) ~ £ as discussed in Section III.

Hence, a second, more plausible description of the diffusing atom
which would correct this poor representation at small times would be a
Gaussian like (3.26) with a width function p(t) which accounts for both

limits, or

k T
o(t) = —i— 2 t << Ty
(4.13)
= 2Dt + (! t >> T

where the small time limit is that of the ideal gas (3.27) and the large
time limit is that of the diffusing atom where C' is a constant. The char-
acteristic time T is the Debye period which is related to the Debye tempera-
ture associated with a liquid (in analogy to a solid) by Tp = Enﬁ/kB@Do The
difficulty in this approach is the fact that there is no knowledge of the
behavior at intermediate times.

Another approach to the problem is to consider Fg(g,t) with a Gaussian
shape as in (3.26) with a width function obtained from the solution to the
classical Langevin equation for Brownian motion, or

o(t) = 2DT. f-tT—l— -1+ e't/TI> (ho1k)

r
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where Tr is the characteristic time and can be related to the diffusion co-

efficient by

Equation (4.14) has the correct form for both small and large times; however,
it is still not known whether (L.1L) has the correct behavior at intermediate
times. In fact, it is rather doubtful since the Langevin equation does not
necessarily hold when there are strong correlation effects as in liquids.
Singwi and S,jb‘la.ndc-:‘rlL have shown that the results obtained using the solu-
tion to lLangevin's equation differ from the results obtained using the solu-
tion to the classical diffusion equation (4.2) by only a small correction,

with the leading terms identical.

B. QUASI-CRYSTALLINE MODEL

The second model to be considered in describing atomic motions in
liquids is the quasi-crystalline model. This model was first treated by
Singwi and Sj'élanderLL in an investigation of neutron scattering in water.

In their model it is assumed that an atom performs an oscillatory motion
about an equilibrium position for a mean time T, before moving by a con-
tinuous diffusion process for a mean time T; to a new equilibrium position,
then repeating the process.

The grounds for describing liquids in this manner is partly founded on
results of x-ray spectroscopy and neutron scattering measurements wherein a

certain degree of order, much like that in a crystalline solid, seems to
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exist in the liquid state for small times.

The quasi-crystalline model is derived by Singwi and Sjolander for a
classical system and based on a probabilistic interpretation of the process,
where:

The probability of finding a particle at position r at time t when it is
performing an oscillatory motion about an equilibrium position, starting from
the origin at t = 0 is given by a Gaussian form as in (3.23) with a width
function y(t) given by (3.25), the width function for a solid. Thus, it is
assumed that the motion of the atom during the time 75 is like that which
occurs in a solid;

The probability that a particle starting from a state of oscillatory
motion at t = O remains in the same state at a later time t is given by
e»t/To;

The probability of finding a particle at position r at time t when
performing a diffusive motion between two equilibrium positions starting at
the origin at t = O is given by (4.3), the solution to the classical dif-
fusion equation with a diffusion coefficient defined by D; = £2/6Tl where
4% is the mean square displacement in time T,, so £ is of the order of the
interatomic spacing. Singwi and Sjolander indicate this form is quite sat-
isfactory even with the poor representation at small times;

The probability that a particle starting from a state of diffusive mo-
tion at t = O remains in the same state at a later time t 1s given by e"t/Tl°

It is assumed in the derivation that there is no correlation between

one Jjump and the next. For the case of interest in this paper, the more
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general result is taken in the limit as T,+0, implying the jumps are instan-

taneous.

The results obtained by Singwi and Sjﬁlanderl5 for the removal cross

section gp(E) for the quasi-crystalline model is

oW .
G'T I+ Eﬁ (l-e a/ 1+K°D1y |

' . (4.15)

[¢] -2W, o)

0. (E) = —e @

r n 2 1< oh [ . -2Wy/ e
E-E') + =D + = 11-e"“"a/14x2
( O) T — L e 1+K DTS]\)

~ 0] . //

where the diffusion coefficient is given by

2 ,2
D = R6:z (4.16)
(o]

with R® being the mean square radius of the fully developed thermal cloud
of the oscillatory motion and e-QWa is the Debye-Waller factor for the
quasi-crystalline liquid with 2Wg, analagous to that for the solid in (3.49)
and Op being the Debye temperature for the quasi-crystalline liquid. Equa-

tion (3.49) can also be written as

Wy = - R (L.17)

2

X 2
6
defining R°.

Using (4.15), the cross section ¢'(S) cen be calculated from (3.50)

in the same manner as for the continuous diffusion model. The result is

AN Y
o'T L+ ;—(L-e a/l+K2DTo)
(0] e'2w "2Wa . ~

. | :
, 2
2 5%+ [r + /-13_1-—- <1—e'2w3/ l+K2DTO>]

(4.18)

Hence the broadening of the cross section ¢'(S) for the quasi-crystalline
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model is given by

re = i‘— 1-e"Ha/ l+K2DT9 . (4.19)
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SECTION V

EXPERIMENTAL STUDY OF LIQUID KRYPTON

The purpose of this paper was to examine the possibility of performing
a MBssbauer experiment to study atomic motions in liquids. Although the
models discussed in Section IV are not the most sophisticated, they should
serve to give a rough idea whether an experiment is feasible. This section
is devoted to consideration of a particular Mossbauer nuclide, Kr85, and
the possibility of using it to study the dynamics of liquids. In partic-
ular, a numerical estimate of the maximum resonance self-absorption cross
section is obtained using the results for the continuous diffusion model.

Kr85 was selected from the possible Mossbauer nuclides for this partic-
ular experiment for two reasons. First, the information obtained from an
experiment would be of greatest interest for a simple monatomic fluid. For
a monatomic fluid, the forces involved would be interatomic rather than in-
termolecular, Second, the nuclide must have certain characteristics to
glve a large Mossbauer effect., For the effect to be large, the Debye-Waller

M st not be too small. From (3.49) it is apparent that this im-

factor e~
plies a nuclide with a low lying energy level E,, a large mass M, and high
Debye temperature oy, Kr83 seems to fit these criteria quite well.

Now, consider the characteristics of the Kr85 gamma decay of interest,

The decay scheme is as follows:
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The half life of the 9.3 kev level has been measured as Tl/2 = 1.47 +
NOID's Zl.O"'7 seconds and the internal conversion coefficient has been measured
as & = 11 + 2u18

Some earlier Mossbauer work has been done using krypton in the solid
sta.teol9 In particular, krypton was used in clathrate compounds and the
Debye temperature was determined to be 6p ~ 75°K. The melting point of
krypton is 116.56°K and the boiling point is 120.26°K, so the ambient tem-
perature of the liquid must be about 120°K. The solid could be held at
1iquid nitrogen temperature (~ 75°K) and the Debye-Waller factor is still
fairly large.

Now the cross section ¢'(S) can be calculated from the data given since

ool -oW _-2W, (I+AK-D)
—_— e

(g) = .1
o' (S) > € SZH{ T+RK-D) © (5.1)

where

”+l
oy = 2mC 2j+1 (5.2)
EWN,E—O—:-O—é__ .]—_-l-(.@.;)gv/’\@D/Tydy (5 3)
2Me”  kpop| b \8p/ ¥ el -1
and
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2

Eo

Wy = §ME5E§E 3 (504)

Equation (5.2) can be calculated if it is noted that X = 1/K so

so 2mC = 2nti?c2/E 2 and recalled that T = r’(1+0). Hence

- 23" +1
0 2ﬁE 2j+1

_ (6.624 x 10~ 7erg-sec) (3 x 10t cg/sec) /’8 1
o 27(9.3 x 100ev (1.6 x lO"lEerg/e\a2 \\lQ/

Q
I

o' = 1.89 x 1078 en® . (5.5)

The factor e-QW can be calculated using (5.3) which can be rewritten as

2 /T
= gMc , k13913 [ (@D> ( )f N ZY?{]

The function E:/\ Lac + E is tabulated by Zener. For this particular ex-
x .

eb-1
°p
periment, x = el ~ 1 and the function equals 1.028, so
(9.3 x lo5eﬁ2 - 6{75) (1.6 x lO’leerg/ev)
oW = — e s [1.028]
2(8% x 931.15 x 100ev)(1.38 x 10-16erg/°K) (75)
eW = 535
or
- (5.6)
The Debye-Waller factor for the liquid absorber can be calculated using
(5.4) and
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EO

Wy = —8—
& 8Mc kpT

(9.3 x 105e®2(1.6 x 10'12erg/ey)
8(83 x 931.15 x 10%v)(1.38 x 10 Cerg/°K) (120°K)

2W,,

2W, = .0135
or

o-2Wg

¥ 9865 . (5.7)
The linewidth I' is related to the lifetime of the excited state by the

Heisenberg uncertainty relation T-I' = i where the mean life T is related to

the half life Ty/p by T = T /5/.693 so

r . 69348
2n Tl/2
ro= .693(6,624 x 10™2Terg-sec)
2x( 1,47 x 107 Tsec) (1.6 x 10™1Perg/ev
I = 3.105 x 10" %v . (5.8)

The broadening in the cross section (5.1) due to the diffusive motion

of the atoms in the absorber is given as

2rESD

2
Le = HBK D
Ac2

. (5.9)

This broadening can be determined with knowledge of the diffusion coef-
ficient D. The self-diffusion coefficient for liquid krypton has been meas-

ured by Naghizadeh and Rice0

and for the temperature and pressure of 1 atm
of interest here, D ~ 1.5 x 1075 cm?/sec, Hence the broadening (5.9) is

equal to
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2n(9.3 x lOBevf(l,6 X lOnlgergkv)(l,S X lO-SCmZ/sec)
(6.624 x 10'27erg—sec)(3 X lOlOcm/sec)

A€ 2,19 x 10 %ev . (5.10)

Using the results (5.5), (5.6), (5.7), (5.8) and (5.10), the cross sec-
tion ¢'(S) can be calculated from (5.1). Since the broadening is much greater
than the natural linewidth, I' can be neglected in both the numerator and de-

nominator so

ol -2W _-2Wy “HK°D

o'(8) = =3 ¢ ZaEeD
-18 -9 -3
oi(s) = (189 x 107 )(3.105 x 107) g0y ( gass) 2(2,19 x_10 _é .
2 s7+(2.19 x 1077)
-30
o'(s) = —2212 %10 . (5.11)

s®+(2.19 x 107)%

The maximum cross section occurs for S = 0, hence the maximum value of the

cross section from (5.11) is

_50
0,(0) - 5»72 x 10 =
(2.19 x 107°)
d'(o) = L776 b. (5.12)

From this calculation it appears that an experiment is not feasible
for two reasons. First, the cross section is very small compared to the nom
resonant cross section for gamma ray removal (predominately by the photo-
electric process at this low energy) which is about 6000 barns at 9.3 kev.

Second, the broadening of the line (5.10) is much beyond the capabilities
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of the conventional Mossbauer apparatus. In order to provide a Doppler
shift equivalent to the width of the broadened line would require a velocity
v o~ lO5 cm/sec whereas to provide a shift equivalent to the natural linewidth

requires only a velocity v ~ 1 cm/sec.
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SECTION VI

CONCLUS ION

It is apparent from Section V that an experiment to study atomic motion
in liquid krypton is not possible. The difficulty with krypton is the fact
that it behaves too much like a gas in the liquid state as is evidenced by
the large diffusion coefficient. This causes an excessive broadening and
subsequent decrease in the intensity.

A useful criterion then in investigating possibilities for studies of
liquids using the MOssbauer effect is the ratio of the natural linewidth to
the broadening term. To be useful for Mossbauer work, this ratio must be of
the order of 1., Unfortunately, from a rather brief study of the possible
Mossbauer nuclides, none seemed to fulfill this condition along with the
conditions mentioned on page Tl.

Another approach to the problem is to use the Mossbauer nuclide as a
tracer element in studying the motion in the liquid in which it is dissolved,
This technique has been used by two groups of experimenters, both studying
the effect of the Mossbauer nuclide Fe?! in glycerol., In particular, they
have studied the line broadening as a function of the temperature of the
viscous fluid. Unfortunately the forces involved between molecules for this
situation are very complicated and attempts to gain meaningful knowledge
about the force laws for liquids would be nearly impossible. This is quite

evident from the results reported by the two groups of experimenters. Craig
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2l

and Sutin® using iron chloride dissolved in glycerol observe that the

broadening seems to agree with the prediction of Vineyard's continuous

22 using iron sulfate dissolved in

diffusion model whereas Bunbury, et al,
glycerol conclude that the broadening seems to indicate that a considerable
part of the diffusion is by Jjumps.

Although it appears that the most informative experiment, which was
investigated in this paper, is not possible using the Mossbauer effect,
there is still a possibility of using the Mossbauer nuclide as a tracer to
study the dynamics of liquids. At the present time, very little work has

been done along this line and that which has been done is inconclusive, so

there is room for additional experimentsation.
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