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1 Introduction

An Adaptive Control Optimization(ACQO) system can automatically provide op-
timal cutting conditions, which include optimal feed, depth of cut, and cutting
speed, based on on-line measurements of process variables. An ACO system re-
quires reliable sensors which allow manufacturing systems and control computers
to be interfaced.

On-line measurement of tool wear is one of the main obstacles to the imple-
mentation of ACO systems in industry. Tool wear determines the tool life in most
cutting processes, and the prediction of tool life is essential to optimize cutting
operations. Also, excessive wear degrades the surface finish and the dimensional
accuracy of the finished parts.

Tool wear can be measured through direct measuring techniques, or estimated
through indirect measuring techniques. In direct measuring techniques, optical
devices or micro-isotope sensors are used. In indirect measuring techniques, tool
wear is estimated using other easily measurable cutting process variables which
are related to tool wear. Such variables are the cutting force signal, the spindle
motor current, the acoustic emission signal, the tool vibration signal, etc.

Indirect measuring techniques are used in most proposed on-line tool wear
measuring methods, because direct measuring techniques are inherently off-line
methods. The direct measuring techniques monitor the tool only when the tool is
disengaged from the workpiece. The indirect measuring techniques, on the other
hand, use cutting process variables which can be measured continuously during
the cutting operation.

Cutting process models are most important part in indirect tool wear measur-
ing techniques [1]. A cutting process model describes the relationship between tool
wear development and the resulting changes in the measured cutting process vari-
able. An indirect measuring method estimates tool wear based on this model and
the on-line measurement of the cutting process variable. Therefore, the accuracy
of the cutting process model determines the accuracy of tool wear estimation.

Among developed cutting process models, the model describing the relationship
between cutting force and tool wear is known to be reliable. Historically, there
has been considerable research into relationships between the cutting force and
other cutting process variables, including tool wear, using either an empirical or
mechanistic approach. Furthermore, measured cutting forces are generally very
reliable, and measuring devices (e.g., a force dynamometer) are well developed
and widely available.

This project deals with three major problems of cutting force based on-line tool
wear estimation methods, as identified in the previous research work by Danai and
Ulsoy [2]. The first problem is that cutting process models must be improved



to separate the effect of the flank wear on the cutting force from that of the
crater wear. The second problem is that on-line tool wear estimation must be
achieved under time varying cutting conditions, as would usually occur during
cutting processes that are controlled. The third problem is that advanced on-line
estimation methodologies must be developed to reduce the dependency on off-line
experimental data.

This project also deals with a multi-sensor strategy, where a computer vision
based off-line direct measuring technique is integrated with the cutting force based
on-line technique. The information from the computer vision intermittently cali-
brates the on-line estimation scheme. The vision information is collected when the
tool is disengaged from the workpiece for part changes or for any other purpose.
This strategy increases the accuracy of the tool wear estimation significantly.

The project objective is introduced in Section 2. An overview of the research
work is given in Section 3. Conclusions from the research are presented in Section
4. Published articles resulting from this project are listed in the References, and
attached in the Appendix.

2 Objective

The objective of this research is to develop a reliable and accurate on-line method
that estimates tool wear based on cutting force measurements. This method in-
corporates tool wear models and advanced estimation techniques. The resulting
method should be able to operate under the following conditions:

1. co-existence of crater and flank wear:
2. time varying cutting conditions
3. uncertainty in the model parameters

4. cutting force fluctuations

3 Approach

To achieve the aforementioned objective, four separate approaches were developed
in parallel. The first approach estimates clearance (flank) wear in the presence of
crater wear. The second approach estimates clearance wear with varying cutting
conditions. The third approach applies adaptive observer techniques to the tool
wear estimation problem. The fourth approach integrates computer vision and the
adaptive observer technique by a multi-sensor strategy.



Each of these approaches deals with a different problem in tool wear estimation
using the cutting force signal. Based on the results of these approaches, a high
level strategy can be devised regarding the implementation of an estimator that
can handle all the treated problems simultaneously as shown in Fig. 1.

3.1 Clearance wear estimation in the presence of crater
wear

To separately estimate clearance wear (flank wear plus nose-radius wear) and crater
wear, we have to know the models which relate the cutting force variations to the
development of these two types of wear. For this purpose, a model which describes
the cutting force variation due to clearance wear is proposed by extending pre-
viously developed flank wear and cutting force models. This proposed clearance
wear and cutting force model takes into account the complex cutting tool geome-
try in practical turning operations. To apply this model to tool wear estimation,
assumptions are made to simplify the four physical functions in the model. It is
argued that when clearance wear progresses as in the typical three-stage develop-
ment of flank wear (see Fig. 2), the cutting force variation due to clearance wear
is restricted to a single direction.

A model that completely describes the cutting force variation due to crater wear
is not available, because of the complex cutting mechanism involved. Therefore, a
partial crater-wear force model is proposed for tool wear estimation. This model
assumes a certain tool geometrical change due to crater wear, and based on this
assumption, the cutting force variation due to crater wear is considered to lie within
a fixed plane.

By combining these two models, we can calculate a variable that is proportional
to the clearance wear increase after the “run-in” period for constant cutting condi-
tions with clearance wear in its linear stage. This variable is a weighted sum of the
three components of the cutting force with the weighting factors determined by the
chip flow direction and the tool geometry. In this summing process, the weighting
factor of the radial component of the cutting force usually is the largest, since the
radial component is least affected by crater wear; the weighting factor of the feed
component usually is negative so that the force decrease due to crater wear can be
compensated; and the weighting factor of the normal component usually is close to
zero and, in some instances, is negligible. Clearance wear is then estimated based
on this calculated variable and the initial clearance wear obtained from previous
(off-line) measurements.

Three experiments were conducted to test the proposed wear and force models
and the estimation algorithm. The experiments showed good agreement with the
models, and the estimation results supported our proposed theory [3]. Details



of this approach are documented in the dissertation of T.R. Ko [4] and will be
described in a forthcoming paper [5].

3.2 Clearance wear estimation with varying cutting vari-
ables

To separate the direct effect of cutting variables on the cutting force from the
force variation due to tool wear, an accurate model that describes the direct effect
of the cutting variable is required. Since tool wear estimation is very sensitive
to the variations in the model parameters, it is necessary to estimate the model
parameters on line, so that the variations between different cutting conditions can
be accounted for.

When one cutting variable changes in steps and crater wear is negligible, a
simple model based on the power law formulation can be used for clearance wear
estimation. This model can be divided into three different cases corresponding
to the cutting condition which changes, i.e., cutting speed, depth of cut, and
feed. Three separate methods are proposed to estimate clearance wear for these
three cases. These methods use a recursive least-squares estimation algorithm and
signal processing techniques to estimate the model parameters on line. Based on
the estimated parameters, a variable that is proportional to the clearance wear
increase after the “run-in” period can be obtained.

Since the cutting force fluctuates during cutting, the measured force signal
contains high frequency noise. This noise affects the quality of the estimated model
parameters. The reliability of these estimated parameters becomes an important
issue, because the tool wear estimate is based on them. For all three proposed
methods, a sensitivity analysis was conducted based on the assumption that the
force noise is white and Gaussian. According to the analysis results, a quantitative
description of the reliability of the tool wear estimate can be obtained. This type
of description is important if sensor fusion is to be implemented in the future.

Simulated cutting forces with realistic noise levels were used to evaluate all
three methods. These simulations also accounted for possible wear rate modeling
errors, and gave good results. Experimental evaluation of Method II (for changes in
depth of cut) was also performed under stepwise changing depth-of-cut in turning.
The clearance wear estimates are quite good in all four experiments reported after
about the first minute of cutting. These experimental results further reinforce the
main conclusion from the simulation studies, that the proposed methods can utilize
force measurement to reliably estimate flank wear in turning under varying cutting
conditions. Details of this approach are described in [4,6,7,8]. The references [6,7,8]
are attached in the Appendix.



3.3 Off-line direct tool wear measurement using computer
vision

Among existing tool wear measurement methods, methods using optical devices are
known to be very accurate and practical. The most popular device is a microscope,
which is also the most accurate. Measuring tool wear using a microscope, however,
requires human inspection. To replace the human inspection, a computer vision
system has been developed, in which the worn surface and the amount of wear is
determined by a computer.

The replacement of human inspectors by computer vision is significant, espe-
cially in production lines where one tool cuts many parts. If a tool is inspected by
computer vision every time a part is changed, then the tool can be used until tool
wear reaches an allowable value. The wasteful discarding of useful tools due to a
conservative prediction of the tool life can be avoided, and the machine down time
for tool changing can be reduced significantly.

The purpose of this section is to experimentally demonstrate the feasibility of
measuring the flank wear using a simple commercially available computer vision
system. The flank wear is measured based on the difference between the intensity
of the reflected light from the worn tool surface and that from the background. The
difference is very significant and an appropriate selection of the intensity threshold
level allows acceptable binary images of the flank wear. These images are used by
the vision computer to calculate the amount of flank wear. To obtain good images
of the worn surface, selection of the light source and its orientation to the flank face
are very important. In the experiments, a TN2500 CID (Charge Injection Device)
camera and an Optomation II computer vision system made by the General Electric
Company are used. The camera has a 244 x 248 pixel resolution and is equipped
with a microscopic lens. Figure 3 shows the experimental setup. Carbide inserts
are used to cut steel workpiece on a CNC lathe. For the purpose of the laboratory
demonstrations, the computer vision system is set up near the lathe, however, it
can be designed as an integrated part of a machine tool without difficulty.

Experimental results show excellent agreement between the measured flank
wear using computer vision and that using a tool maker’s microscope. The flank
wear is regarded as the distance between the top of the tool edge and the bottom
of the worn surface on the clearance face. Some improvements on the computer
vision based tool wear measuring method are necessary before this method is im-
plemented in practice. Because binary images are very sensitive to the selection
of the intensity threshold level, and the condition of the light source, it is difficult
to obtain good measurements of the entire tool wear development using a prede-
termined threshold level. This problem can be solved by using gray scale images
instead of binary images. In a gray scale image, the texture and the pattern of a



worn surface clearly define the boundary of the flank wear even under changing
light conditions. This research work will be described in detail in the forthcoming

Ph.D. Thesis of J.J. Park [9], and the paper [10].

3.4 On-line tool wear estimation using force measure-
ment and a nonlinear observer

A tool wear model has previously been developed in a nonlinear state space equa-
tion form by Danai and Ulsoy [2]. The model uses various components of tool wear
(e.g., flank wear caused by abrasion, flank wear by diffusion, and crater wear) as
unmeasurable states, and a cutting force component as the measured output. In-
puts to the model are cutting speed, the depth of cut, and the feed. However,
because the model of crater wear is known to be unreliable, only flank wear dom-
inant cutting processes are considered in the project. These cutting processes are
normally found in finishing operations where high cutting speeds and low feeds are
required.

The tool wear estimation problem can be formulated as a nonlinear observer
design problem. An observer is designed to estimate the unmeasurable states
(e.g., tool wear components) by utilizing the process model and the measurement
of inputs (e.g., the cutting speed, the depth of cut, and the feed) and outputs (e.g.,
cutting force). Because the cutting process model is nonlinear, the design of an
observer for tool wear estimation requires a difficult nonlinear stability analysis,
unlike the well known linear observer design problems.

The stability analysis is carried out for the observer error dynamic system,which
describes the dynamical behavior of the error between the true tool wear compo-
nents and the estimated tool wear components. The observer error dynamic system
is shown to be stable by utilizing the Total Stability Theorem and by consider-
ing physical limitations of cutting processes, i.e., the fact that tool wear does not
increase without bound.

From the stability analysis of the designed nonlinear observer, and from sim-
ulation studies, the estimated tool wear is shown to converge to the actual tool
wear. The nonlinear observer estimates tool wear with a sufficiently fast speed,
which can be controlled by selection of the observer gain. The simulation studies
also show that the nonlinear observer is robust against measurement noise typical
of cutting force signals. The research is described in detail in [9,11]; note that [11]
1s included in the Appendix.



3.5 Combined adaptive observer and computer vision for
on-line tool wear estimation

An adaptive version of the nonlinear observer is developed, because without adap-
tation the nonlinear observer approach needs extensive off-line experiments to ob-
tain the parameters used in the tool wear model. In the adaptive observer method,
unmeasurable states (e.g., tool wear components) and unknown parameters in the
tool wear model are simultaneously estimated using the structure of the cutting
process model and the output measurement (e.g., the cutting force signal).

An adaptive observer consists of two part; a state estimation part and a model
parameter estimation part. These two parts exchange the estimated information
concurrently. The state estimation (i.e., tool wear estimation) is carried out using
the developed nonlinear observer, whose parameters are estimated by the parame-
ter estimation part. The parameter estimation can be achieved using a Recursive
Prediction Error (RPE) parameter estimation algorithm. The RPE algorithm es-
timates the model parameters in such a way that the error between the measured
cutting force and the cutting force estimated using these parameters is minimized.
However, it is not easy to accurately estimate all the parameters in the tool wear
model using this method, because many parameters must be estimated and the
model is highly nonlinear in terms of these parameters.

Supplementary information on the model parameters can improve the estima-
tion of the parameters and, thus, give an accurate estimation of tool wear. Such
information includes the cutting temperature, the diffusion rate of work and tool
material combinations, the cutting force when the tool is sharp, the rate of cutting
force changes due to the wear development etc.; or at least the range of those
parameters. Such information can be obtained by off-line experiments or from
machining data bases, but every piece of information is not necessarily available.

The computer vision system, which is described in Section 3.3, is integrated
with the adaptive observer to provide supplementary information for accurate tool
wear estimation. The computer vision allows the direct measurement of tool wear
during times when the part is changed or any other interval when the tool is disen-
gaged from the workpiece. This measurement, along with the previous computer
vision measurement and the cutting force measurement, can be used to calculate
the rate of cutting force change due to the wear development. The obtained rate
is used as a known parameter of the adaptive observer. The adaptive observer
estimates the tool wear and the other parameters on-line until the next computer
vision measurement is available. Figure 4 shows the schematic of this approach.

This strategy is most effective when several computer vision measurements are
available before the tool life ends. A conservatively predicted tool life can be
replaced by an actual tool life because the developed adaptive observer estimates



the tool wear accurately even while the tool is under a cutting operation. The
extended tool life significantly reduces machine down time which otherwise would
be required to replace tools.

Simulation studies show good estimates of the tool wear [12], while experimental
demonstrations of this strategy are still in progress. Final results of this research
work will be presented in [9], which are in preparation.

4 Concluding Remarks

In this research work, four issues associated with on-line tool wear estimation using
cutting force signals have been separately investigated. They are (1) clearance
wear estimation in the presence of crater wear, (2) clearance wear estimation with
varying cutting variables, (3) tool wear estimation using a nonlinear observer, and
(4) tool wear estimation using an adaptive observer and computer vision.

The first two approaches do not consider the wear development explicitly. In-
stead, they investigate the relationship between the cutting force variation and
clearance wear. Models were developed to describe the force wear relationship and
used to estimate tool wear. In the first approach, clearance wear was estimated in
the presence of moderate crater wear by using a weighted sum of the three compo-
nents of the cutting force. In the second approach, clearance wear was estimated
using a least-squares estimation technique, when only one cutting variable changes
in steps. These two approaches were tested in simulation as well as experimentally.
The results are very promising.

The tool wear development is considered explicitly in the third approach, where
a nonlinear observer is designed based on a dynamic tool wear model. When
the parameters of the tool wear model are known, the nonlinear observer can
provide accurate tool wear estimation, even with a bad initial guess of tool wear
and with measurement noise. Since the model parameters may be unknown or
time-varying in some cases, an adaptive observer is developed to estimate these
parameters together with tool wear in the fourth approach. Computer vision is
used to assist this adaptive observer approach by providing intermittent tool wear
measurements so that the reliability of the estimated parameters and tool wear
can be improved. The fourth approach has been tested in simulation with good
results and is currently being tested experimentally.

Several conclusions can be drawn from this research:

e The cutting force signal contains fluctuations. When it is used to estimate
tool wear, these fluctuations (noise or high frequency components irrelevant
to tool wear process) affect the estimation result. The reliability of the tool
wear estimation deteriorates depending on the intensity of these fluctuations.



In most finishing operations, the fluctuations of the cutting force are small,
and using the cutting force to estimate tool wear can work well. However,
in roughing operations, the cutting force fluctuations can be significant, and
certain signal processing schemes have to be adapted to improve the estima-
tion reliability.

e An initial clearance wear develops rapidly during the “run-in” period of a
cutting process. Since its effect on the cutting force usually couples with the
machine transient at the beginning of a cut and cannot be separated, the
initial clearance wear cannot be estimated on line based on the measured
cutting force. Therefore, to estimate clearance wear based on the cutting
force, we must obtain this initial clearance wear from off-line calibrations.

o A complete model that describes the variation in the cutting force due to
crater wear is not available due to the complex cutting mechanisms involved.
As a result, crater wear cannot be accurately estimated based on the mea-
sured cutting force.

o Tool wear estimation based solely on the cutting force has several drawbacks
as mentioned above, therefore tool wear information from other sources can
be very valuable to be incorporated into the estimation to increase reliability.
Computer vision is a very good choice for this purpose, since it provides
automatic tool wear readings accurately while the tool is disengaged from
the workpiece.

e When the models used are not derived directly from fundamental physical
laws, but from empirical relationships, they may be applicable only within
certain domains of the cutting conditions. Therefore, experiments may be
needed to define these domains, when the estimation approaches based on
the models are used in practice.

To further improve the on-line tool wear estimation using cutting force signals,
several subsequent research directions can be suggested. The vision system may be
extended to observe the chipflow direction during cutting. The chipflow direction
is an important piece of information when the effect of crater wear on the cutting
force is to be separated from the effect of clearance wear. The cutting force fluc-
tuations may be modeled so that more effective processing schemes can be devised
based on the model. A model describing the relationship between crater wear and
the variation of the cutting force is necessary if crater wear is to be estimated
using cutting force signal. The incorporation of other tool wear measuring or es-
timation techniques within the present approach is highly desirable. Multi-sensor



approaches combining different sources of tool wear information are expected to
produce a more reliable on-line tool wear estimate.
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ABSTRACT. The full automation of machine tools requires reliable techniques
for on-line sensing of tool wear and breakage. This paper proposes a model-based
approach for on-line tool wear estimation. The proposed approach, which is based
on cutting force measurements, is designed to operate under varying cutting
variables dictated by the workpiece configuration and surface finish requirements.
The approach, which uses parameter estimation techniques to track tool wear
during cutting, is experimentally demonstrated for a turning operation. The
estimated values of tool wear are in good agreement with the actual values of
tool wear measured intermittently during the cut.

INTRODUCTION. The full automation of machine tools
requires reliable techniques for on-line sensing of tool wear
and breakage {1,2]. The on-line sensing of tool wear, an
essential part of any realistic adaptive control optimization
(ACO) system, is particularly important in efficient schedul-
ing of machine down time for tool changing and for tool
failure detection. Unfortunately, despite years of research
in this area, a reliable on-line tool wear measurement tech-
nique does not exist (3].

The on-line tooi wear measurement problem has been in-
vestigated by numerous researchers [4]. The proposed meth-
ods can be categorized into two groups: direct and indirect.
Direct methods, as the name implies, make an assessment
of tool wear by either evaluating the worn surface by optical
methods, or measuring the material loss of the tool by ra-
diometric techniques. The main difficuity with using optical
methods is their long processing time which makes them un-
suitable for on-line tool wear measurement, and their limited
application to cases where the surface of the tool is visually
accessible during the operation [5]. The difficulty with the
application of radiometric techniques on the shop floor is
their requirements for special preparation of the tool and
potential hazards due to radioactivity {6].

Indirect methods, on the other hand, are based on utiliz-
ing signals such as force or torque, temperature, tool vibra-
tion, or acoustic emissions [7-10]. These techniques which
estimate tool wear by correlating it with the measured pro-
cess variable use different approaches to find such a cor-
relation. Some approaches rely on a detailed mechanistic
model of the cutting process (e.g., [11]), while others use
empirical relationships between the measured variable and
tool wear {e.g., [12!). The mechanistic approach has con-
tributed greatly to the basic understanding of the cutting
process, while the empirical approach has been useful for
specific tool-workpiece combinations and constant cutting
conditions. Both the mechanistic and empirical approach
have certain limitations, however, when applied to on-line
tool wear estimation.

?ro&ccd-'aas of the IS+ NAMRC. ,

463

The mechanistic approach, which relies on the mathe-
matical modeling of the physics of cutting, due to the inher-
ent complexity of the cutting process and our incomplete
understanding of it, is limited in applicability. Moreover,
since the coefficients and exponents of these models change
wita tool-workpiece combinations and cutting conditions,
extensive off-line testing is required for each case. Another
limitation in the utilization of the mechanistic approach is
the lack of appropriate sensors. For example, most models
developed by this approach emphasize the relationship be-
tween tool wear and temperature {e.g., {13]). The absence
of a practical temperature sensor limits the application of
these models.

The empirical approach, on the other hand, relies on ex-
perimentally observed relationships to detect tool failure or
estimate tool wear. The empirical methods for tool wear
estimation usually consider a “black box” approach with a
relationship between variables (e.g., force and flank wear).
Therefore, they fail to separate the effect of other variables
involved in the process (e.g., the effect of changes in the
cutting variables on force). This usually causes serious lim-
itations when the cutting variables are changed due to part
configuration.

The objective of this paper is to present an approach
which estimates tool wear in the presence of varying depth
of cut. This approach uses a mathematical model to identify
the effect of tool wear. This model, which uses the cutting
force as the measured variable, separates the effect of tool
wear from any effects caused by variations in the depth of
cut. Therefore, it continues to identify the effect of tool
wear despite the varying cutting variable (depth of cut in
this case).

The proposed approach uses on-line parameter estima-
tion techniques to estimate the model parameters. There-
fore, it does not require a data base and prior off-line testing.
The effect of tool wear is identified by estimating a param-
eter which is proportional to the tool wear.

The next sections present (i) the model proposed and
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approach used to estimate the tool wear related parameter
along with simulation results demonstrating the application
of the approach, (ii) the implementation of the proposed
approach in an actual case where the depth of cut varies in
steps and (iii) analysis and evaluation of the results.

METHODOLOGY. In order to separate the effect of tool
wear on the cutting force from any effects caused by vari-
ations in the cutting variables, the total cutting force (F)
can be separated into two components [14,15] such that

F=F + AF ' (1)

where F; is the cutting force when the tool is sharp, and
AF is a function of the flank wear W. Both Fo and AF are
functions of the cutting variables (cutting speed, feed, and
depth of cut).

The methodology used here for tool wear estimation is to
identify and subtract Fy from F so that AF, the component
affected by wear, can be obtained. The obtained AF is
always a function of the cutting conditions. If only depth of
cut varies in the process, the model considered for AF has
the form {16}

AF=CdWwW (2)

where C is a constant depending on tool and workpiece ma-
terial and d is the depth of cut. We further assume that for a
constant cutting speed and feed the wear rate is almost con-
stant during most of the cut and that it only increases during
the accelerated tool wear period where the tool reaches its
allowable wear limit very rapidly. This assumption implies
that we can write

W=Wwt (3)

where the wear rate W is a function of the cutting speed and
feed and is independent of the depth of cut. Substituting
Eq. (3) into (2) yields

AF = Xdt (4)

where
X=CW (5)
The objective here is to estimate the value of X which is pro-
portinnal to the wear rate and consequently estimate CW
which can be obtained by the intergration of X in time. The

estimation of X is based upon measuring the rate of cutting
force increase during cutting

— =X (6)

and separating X from d*.

The approach proposed here to separate X from d? is
based on the assumption that W is not a function of d.
In order to measure the rate of cutting force increase the
abrupt changes in the cutting force signal caused by step
changes in the depth of cut are removed from the cutting
force signal at each interval k. An interval is defined here
as the segment of the cut where the cutting variables are
kept constant. Only the segment AF, affected by wear at
constant cutting conditions during the interval is analyzed.
The obtained AF,, given by

AF = Xdr )

can now be used to estimate X and 8 (assuming that X is
independent of d). Note that AF; is the force increase in
interval k, and r is the time measured from the beginning
of this interval (see Fig. 1).
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Fig.l Schematic of the computation of slop S in the proposed
approach.

For estimation purposes, the cutting force is sampled at
constant sampling rate of 2 HZ. The slope, S, defined as

= é_& - Xdkﬂ (8)

is fed into the estimator at every sample point and X and
B are estimated with a least-squares parameter estimator
(the algorithm is shown in the Appendix). It should be
emphasized again that we are assuming the change in the
slope is solely caused by the different value of the depth of
cut and that wear rate is not affected by this depth of cut.

In order to use the ordinary least-squares parameter es-
timator, the estimation model must be linear in parameters
(see the Appendix). F:: = largs sigu.i-wmasise tutiv Eq. (&)
can be written as

logS = log X + 8 logd, . (9)
This format fits the linear Equation
y=2¢"0,

where ¢ is a vector of known variables, defined here as

(10)

T =1 logd: ] (11)

and 6 is a vector of unknown parameters, defined here as

(12)

The performance of the above approach was tested in
digital simulation. We assume that only the depth of cut is
changed during the cut, and that the wear rate is indepen-
dent of the depth of cut. The model used for the simulation
of the cutting force is

07 = [logX B

Fo = 500409 ,

AF = 304°%W
and
W = 0.05t + 0.002¢2

where in this case from Eq. (5)
X = 30W

Figures 2 and 3 show the estimated CW and f respec-
tively. The estimated cw , which is proportional to wear,
has been obtained by integrating X which in discrete-time
formulation has the form
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CW(t+1) = CW(t) + XT (13)

where T is the sampling period.

Tre difference between the estimated values and the
“real” ones in Figs. 2 and 3 is due to the fact that our
approach assumes a constant wear rate whereas the “real”
wear rate used in the simulation is: 0.05 + 0.004 t.
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In order to study the performance of the approach in
presence of noise, a psudo-random binary sequence was added
to the simulated signal. Since the presence of noise causes
significant problems in identifying the true AF, a digital
filter was used to reduce the noise. The selected filter, how-
ever, introduces certain amount of distortion in the data (see
Fig. 4) which affects the identification of AF. In order to
neutralize this distortion the selection of AF is delayed for
a few sampling intervals after each step change in the depth
of cut. Figures 5 and 6 show the estimated parameters of
the filtered data. Comparing Figure 2 and 5 shows that the
difference between the estimated value and the “real” one
changes only slightly, which demonstrates that the method
can be used with the presence of noise.

EXPERIMENTAL RESULTS. In order to test the per-
formance of the proposed approach in practice, turning ex-
periments were designed and performed. The approach pro-
posed by the authors assumes flank wear to be the dominant
type of tool wear. Therefore, cutting conditions were se-
lected to produce only flank wear during the cut. Table 1
shows the cutting conditions as well as the workpiece and
tool combination used. These cutting conditions were also
selected to generate rapid flank wear, so that long cuts were
avoided. Four tests were performed of which three were con-
tinued until the tool failed. During all these tests the depth
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Table 1  Cutting variables, tool and workpiece
material

. Test No. | Tool Workpiece | Feed | Cutting
: speed
‘ 1 TNWA
! 2 432E 4340 0.001 1200
: 3 TNMA ann'd in/rev | ft/min
| 4 434F :

of cut was changed in steps. Figures 7 - 10 show the varia-
tions of the depth of cut in the above tests. The length of
cut for each step in d was 0.3 inch. The tests were designed
to maintain a constant cutting speed at the different diame-
ters caused by the different depth of cuts. The actual flank
wear was also measured intermittently during the tests by
a tool-makers microscope.

The experiments were carried out on a Lodge 8 Ship-
ley 10/25 Bar Chucker CNC lathe with General Electrie
Mark Centuyry 2000T controller. The transducer used was
Type 9257A Three Component Kistler force dynamometer
with three Model 5004 Kistler Dual Mode charge amplifiers.
In order to avoid repeating the tests for signal processing
purposes the cutting force signals were recorded on an in-
strumentation tape recorder. A Model Store 7DS Racal tape
recorder was used for this purpose. The minicomputer used
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Fig.10 Normal cutting force component, F and the depth
of cut, d of the 4th test.

was DEC LSI-11/28 Plus which used a 12 bit ADV-11-C
A/D convertor. The sampling frequency used for digitiza-
tion was 2 Hz which was sufficient in keeping track of tool
wear which is inherently a slow process. Also, in order to
avoid aliasing, Khron-Hite Digitally Tunned 3820 Series fil-
ters were used as low pass filters. The attenuation frequency
was selected at 1 Hz, which was half the sampling frequency.

Figures 7 - 10 also show the normal component of the
cutting force in the above tests. Based on the above results
the following observations can be made:

¢ The magnitudes of the cutting forces were not quite
consistent with the related d's (e.g., see Fig. 7, cuts
# 4 and 5, where the cutting force is considerably
different for the same depth of cuts). It should be
emphasized that particular care was taken in the above
tests to maintain the d’s at the prespecified values, and
that the diameter of the workpiece was measured after
each cut to assure accurate results.

¢ At the points where a cut with a different depth of
cut started, the cutting force showed a transitionary
period before the steady state was reached. This tran-
sitionary period generally contained a rather sharp
jump which could be interpreted as tool failure. Since
in the proposed approach tool wear estimation is based
on the steady state cutting situation, it is necessary
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to bypass these transitionary periods when evaluating
the data. Of course, one should note that if tool fail-
ure does occur during this transitionary period, it will

be undetected, therefore, a different algorithm should
be added for detection of tool breakage.

o The cutting force signal showed a distinct indication
of tool breakage in tests # 1 - 3 (see Figs. 7 - 9).
The tools in these tests, however, broke at a differ-
ent corner from the cutting edge, which means that
the tools had not necessarily reached their wear limit.
This rather peculiar type of tool failure is perhaps due
to the unusually small feeds used in the tests.

In order to use the cutting force data for estimation pur-
poses, certain signal processing provisions had to be taken
into consideration:

¢ The cutting force signal contained a fair amount of
noise which must be eliminated for the purpose of sig-
nal processing. For this purpose a first order digital
filter was used. This digital filter which had the trans-

fer function
0.22

z-0.78

was designed to have a time constant of 2 seconds.
Figure 11 shows a porticn of the filtered data in test
# 1. The data in this figure is distorted considerably
at the steps (the transitionary period has been pro-
longed) which would cause long delays in parameter
estimation to bypass. To avoid these long delays, it
was decided to reset the digital filter at the beginning
of each step and apply it during the steady state pe-
riod. The output of this modified filter is also shown
in_Fig. 11. In order to further avoid any transients
during estimation the data feeding to the estimator
was delayed for about 2 sec after each step.

G(z2) =

¢ According to our basic assumption for tool wear es-
timation the slope of the force signal should be ei-
ther postive or zero (for cases where tool wear stays
constant). The cutting force data obtained from the
above tests showed some instances where the slope
was negative. Since according to our model a nega-
tive slope would mean an impossible reduction in tool

wear, the periods of negative slope were taken as zero
in estimation.
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The filtered cutting force data were used for tool wear
estimation. The estimation results are shown in Figs. 12
and 13. Based on these results the following observations
can be made:

1. The CW values show a continuously increasing trend.
These values are also plotted versus the measured tool
wear values in Fig. 13. According to this figure there
is an initial offset (see Fig. 13) in the estimated results.
This could be due to the lesser effect of wear on the
cutting force data at the initial stages of tool wear
development.

2. The CW values, however, do not identify tool failure,
which is distinctly clear in the cutting force signal.
The ineffectiveness of the estimator in detecting tool
breakage is due to neglecting the cutting force varia-
tions at the steps.

SUMMARY AND CONCLUSIONS. A model-based
approach has been introduced to estimate tool wear despite
varying cutting conditions. It uses the normal component
of the cutting force as the measured variable and utilizes
on-line parameter estimation to keep track of the tool wear
increase. The approach has been both tested in digital sim-
ulation and implemented on the shop floor. The experi-



mentel results show agreement between the actual values
of the tool wear (measured during the test) and the esti-
mated ones. The estimation results, however, indicate that
the early stages of tool wear cannot be identified from cut-
ting force data. These results also fail to show tool breakage
which occurs at the step changes.
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APPENDIX

Parameter Estimation Algorithm. A recursive least squares

parameter estimation algorithm has the general form (17],

P(k - 2)g(k - 1)
B+ ok -1)TP(k - 2)¢(k - 1)

b(k) = b(k-1)+ o(k) (14)

Pk —2)¢(k — 1)é(k - 1)TP(k - 2)

1
P(k-1) =3 P(k-2) - B+ élk—1)TP(k—-2)d(k - 1)

(15)
where y(k) is the value of the measured variable y at time
t = kAtfork =0,1,2, ... P(k) is the matrix of es-

timation gains, 3 provides exponential data weighting, and
(k) is the parameter estimation error . ¢(k) is the vec-
tor of measured (or known) variables, and (k) is a vector
of parameter estimates. The above alg?rithm recursively
updates the estimated parameter vector 6(k) defined as

b (k) |
(16)
for any process whose equations can be written in the form,

v(k) = o(k — 1)T 8(k) (17)

Thus, the process model must be written in a form that is
linear in the unknown parameters, which are the elements
of the vector §(k). The vector ¢(k) and the estimation error
p(k) are defined as

and

p(k) = [y(k) - ¢(k = 1)T8(k - 1)) (19)
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ABSTRACT. This paper proposes a model-based approach for on-line tool wear
estimation. The proposed approach, which is based on cutting force measurements,
is designed to operate under varying cutting variables dictated by the workpiece
configuration. The approach, which uses parameter estimation techniques to track
tool wear during cutting, is experimentally demonstrated for a turning operation.
The estimated values of tool wear are in good agreement with the actual values of
tool wear measured intermittently during the cut.

INTRODUCTION. The full automation of machine tools
requires reliable techniques for on-line sensing of tool wear
and breakage [1,2]. The on-line sensing of tool wear, an essen-
tial part of any realistic adaptive control optimization (ACO)
system, is particularly important in efficient scheduling of
machine down time for tool changing and for tool failure de-
tection. Unfortunately, despite years of research in this area,
a reliable on-line tool wear measurement technique does not
exist {3].

The on-line tool wear measurement problem has been in-
vestigated by numerous researchers [4]. The proposed meth-
ods can be categorized into two groups: direct and indirect.
Direct methods, as the name implies, make an assessment of
tool wear by either evaluating the worn surface by optical
methods, or measuring the material loss of the tool by radio-
metric techniques. The main difficulties with using optical
methods is their long processing time which makes them un-
suitable for on-line tool wear measurement, and the presence
of chips and coolant in the machining environment [5]. The
difficulty with the application of radiometric techniques on
the shop floor is their requirements for special preparation of
the tool and potential hazards due to radioactivity [6].

Indirect methods, on the other hand. are based on uti-
lizing signals such as force or torque, temperature, tool vi-
bration, or acoustic emissions {7-10]. These techniques which
estimate tool wear by correlating it with the measured pro-
cess variable use different approaches to find such a cor-
relation. Some approaches rely on a detailed mechanistic
model of the cutting process (e.g., [11]), while others use
empirical relationships between the measured variable and
tool wear (e.g., [12]). The mechanistic approach has con-
tributed greatly to the basic understanding of the cutting
process, while the empirical approach has been useful for spe-
cific tool-workpiece combinations and constant cutting condi-
tions. Both the mechanistic and empirical approach have cer-
tain limitations, however, when applied to on-line tool wear
estimation.

The mechanistic approach, which relies on the mathemat-

ical modeling of the physics of cutting, due to the inherent
complexity of the cutting process and our incomplete under-
standing of it, is limited in applicability. Moreover, since the
coefficients and exponents of these models change with tool-
workpiece combinations and cutting conditions, extensive off-
line testing is required for each case. Another limitation in
the utilization of the mechanistic approach is the lack of ap-
propriate sensors. For example, most models developed by
this approach emphasize the relationship between tool wear
and temperature (e.g., [13]). The absence of a practical tem-
perature sensor limits the application of these models.

The empirical approach, on the other hand, relies on ex-
perimentally observed relationships to detect tool failure or
estimate tool wear. The empirical methods for tool wear esti-
mation usually consider a “black box™ approach with a rela-
tionship between variables (e.g.. force and flank wear). There-
fore, they fail to separate the effect of other variables involved
in the process (e.g., the effect of changes in the cutting vari-
ables on force). This usually causes serious limitations when
the cutting variables are changed due to part configuration.

The objective of this paper is to present an approach
which estimates tool wear in the presence of varying depth
of cut. This approach uses a mathematical model to identify
the effect of tool wear. This model, which uses the cutting
force as the measured variable, separates the effect of tool
wear from any effects caused by variations in the depth of
cut. Therefore, it continues to identify the effect of tool wear
despite the varying cutting variable (depth of cut in this case).

The proposed approach uses on-line parameter estimation
techniques to estimate the model parameters. Therefore, it
does not require a data base and prior off-line testing. The
effect of tool wear is identified by estimating a parameter
which is proportional to the tool wear.

The next sections present (i) the model proposed and ap-
proach used to estimate the tool wear related parameter. (ii)
the implementation of the proposed approach in an actual
case where the depth of cut varies in steps, and (iii) analysis
and evaluation of the results.



APPROACH. In order to separate the effect of tool wear
on the cutting force from any effects caused by variations
in the cutting variables, the total cutting force (F) can be
separated into two components [14,15] such that

F=F, + AF (1)

where F, is the cutting force when the tool is sharp, and
AF is a function of the flank wear W. Both Fy and AF are
functions of the cutting variables (cutting speed, feed. and
depth of cut).

The methodology used here for tool wear estimation is to
identify and subtract Fy from F so that AF, the component
affected by wear, can be obtained. The obtained AF is al-
ways a function of the cutting conditions. If only depth of
cut varies in the process, the model considered for AF has
the form [16]

AF =CdPW (2)

where C is a constant depending on tool and workpiece ma-
terial and d is the depth of cut. We further assume that for a
constant cutting speed and feed the wear rate is almost con-
stant during most of the cut and that it only increases during
the accelerated tool wear period where the tool reaches its
allowable wear limit very rapidly. This assumption implies
that we can write

W =W, + Wt (3)

where the wear rate W is a function of the cutting speed and
feed and is independent of the depth of cut. Substituting Eq.
{3) into (2) yields

AF =Cd°W, + Xd°t (4)

where

X=CW ()
The objective here is to estimate the value of X which is
proportional to the wear rate and consequently estimate CW
which can be obtained by the intergration of X in time. The
estimation of X is based upon measuring the rate of cutting
force increase during cutting

- - 8
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and separating X from d°.

The approach proposed here to separate X from d? is
based on the assumption that W is not a function of d. In
order to measure the rate of cutting force increase the abrupt
changes in the cutting force signal caused by step changes in
the depth of cut are removed from the cutting force signal at
each interval k. An interval is defined here as the segment of
the cut where the cutting variables are kept constant. Only
the segment AF; affected by wear at constant cutting con-
ditions during the interval is analyzed. The obtained AFj,
given by

AF, = XdPr (7)

can now be used to estimate X and § (assuming that X is
independent of d). Note that AF, is the force increase in
interval k, and T is the time measured from the beginning of
this interval (see Fig. 1).

For estimation purposes, the cutting force is sampled at
constant sampling rate of 2 HZ. The siope, S, defined as

_AF,
- T

S = X d\f (8)

‘/’1—1 AF,
| !

\

—

Time, t (min)

Fig.l  Schematic of the computation of slop S in the proposcd
approach.

is fed into the estimator at every sample point and X and 3
are estimated with a least-squares parameter estimator (the
algorithm is shown in the Appendix). It should be empha-
sized again that we are assuming the change in the slope is
solely caused by the different value of the depth of cut and
that wear rate is not affected by this depth of cut.

In order to use the ordinary least-squares parameter es-
timator, the estimation model must be linear in parameters
(see the Appendix). For a large signal-to-noise ratio Eq. (8)
can be written as

logS = log X + 3 logdy . (9)
This format B4z the linear cquation
y=¢76, (10)
where ¢ is a vector of known variables, defined here as
o7 = [ 1 logdy ] (11)
and @ is a vector of unknown parameters, defined here as
8T = [log X 4] (12)

Thus for every segment & we obtain an setimate X,. The
estimates X can now be used to estimate the wear,

— Tro Xk
W = W =0
o + C

where C and W, must be determined from off-line tests.
When the tool changing criterion is the start of the accel-
erated wear region, then we are interested only in the wear
rate which is proportional to X’: In these cases the off-line
determination of C and W is not needed.

(13)

EXPERIMENTAL RESULTS. In order to test the per-
formance of the proposed approach in practice, turning exper-
iments were designed and performed. The approach proposed
by the authors assumes flank wear to be the dominant type
of tool wear. Therefore, cutting conditions were selected to
produce only flank wear during the cut. Table 1 shows the
cutting conditions as well as the workpiece and tool combi-
nation used. These cutting conditions were also selected to
generate rapid flank wear (without crater wear), so that long
cuts were avoided. Four tests were performed of which three
were continued until the tool failed. During all these tests the
depth of cut was changed in steps of 0.64 mm (0.025 inch).
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Table 1  Cutting variables, tool and workpiece
material

Test No. | Tool | Workpiece | Feed | Cutting
speed

TNWA
431F 4340 0.001 1200
TNMA ann'd in/rev | ft/min
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Figures 2 - 5 show the variations of the depth of cut in the
above tests (Figure 2 and 3 include also experiments with
steps of 1.28mm). The length of cut for each step in d was
7.62 mm (0.3 inch). The tests were designed to maintain a
constant cutting speed at the different diameters caused by
the different depth of cuts. The actual flank wear was also
measured intermittently during the tests by a tool-makers
fmicroscope.

The experiments were carried out on a Lodge & Shipley
10/25 Bar Chucker CNC lathe with General Electric Mark
Century 2000T controller. The transducer used was Type
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Fig.4 Notmal cutting force component, F and the depth
of cut. d of the 3rd test.
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Fig.5 Normal cutting force component, F and the depth
of cut. d of the itls test.

992577 Three Component Kistler force dynamometer with three
Model 5004 Kistler Dual Mode charge amplifiers. In order
to avoid repeating the tests for signal processing purposes
the cutting force signals were recorded on an instrumenta-
tion tape recorder. A Model Store 7DS Racal tape recorder
was used for this purpose. The minicomputer used was DEC
LSI-11/23 Plus which used a 12 bit ADV-11-C A/D conver-
tor. The sampling frequency used for digitization was 2 Hz
which was sufficient in keeping track of tool wear which is
inherently a slow process. Also, in order to avoid aliasing,
Khron-Hite Digitally Tunned 3320 Series filters were used as
low pass filters. The attenuation frequency was selected at 1
Hz, which was half the sampling frequency.

Figures 2 - 5 also show the normal component of the cut-
ting force in the above tests. Based on the above results the
following observations can be made:

¢ The magnitudes of the cutting forces were not quite
consistent with the related d's (e.g., see Fig. 4, cuts #
4 and 5, where the cutting force is considerably different
for the same depth of cuts). It should be emphasized
that particular care was taken in the above tests to
maintain the d’s at the prespecified values, and that
the diameter of the workpiece was measured after each
cut to assure accurate resuits.
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e At the points where a cut with a different depth of cut
started, the cutting force showed a transitionary period
before the steady state was reached. This transitionary
period generally contained a rather sharp jump which
could be interpreted as tool failure. Since in the pro-
posed approach tool wear estimation is based on the

steady state cutting situation, it is necessary to bypass
these transitionary periods when evaluating the data.
Of course, one should note that if tool failure does oc-
cur during this transitionary period, it will be unde-
tected by this algorithm. Therefore, a different algo-
rithm, using unfiltered measurements, shevld be added
for detection of tool breakage.

e The cutting force signal showed a distinct indication
of tool breakage in tests # 1 - 3 (see Figs. 2 - 4).
The tools in these tests, however, broke at a different
corner from the cutting edge, which means that the
tools had not necessarily reached their wear limit. This
rather peculiar type of tool failure is perhaps due to the
unusually small feeds used in the tests.

In order to use the cutting force data for estimation pur-
poses, certain signal processing provisions had to be taken
into consideration:

o The cutting force signal contained a fair amount of noise
which must be eliminated for the purpose of signal pro-
cessing. For this purpose a first order digital filter was
used. This digital filter which had the transfer function

0.22

G(z) = 753

was designed to have a time constant of 2 seconds.
Fig. 6 shows a portion of the filtered data in test #
1. The data in this figure is distorted considerably at
the steps (the transitionary period has been prolonged)
which would cause long delays in parameter estimation
to bypass. To avoid these long delays, it was decided to
reset the digital filter at the beginning of each step and
apply it during the steady state period. The output of
this modified filter is also shown in Fig. 6. In order to
further avoid any transients during estimation the data
feeding to the estimator was delayed for about 2 sec
after each step.
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o According to our basic assumption for tool wear estima-
tion the slope of the force signal should be either pos-
tive or zero (for cases where tool wear stays constant).
The cutting force data obtained from the above tests
showed some instances where the slope was negative.
Since according to our model a negative slope would
mean an impossible reduction in tool wear, the periods
of negative slope were taken as zero in estimation.

The filtered cutting force data were used for tool wear
estimation. The estimation results are shown in Figure 7. To
compare the estimated wear (W) and the real flank wear (W),
direct measurements using a microscope were taken at regular
intervals. Figure 8 shows W vs. W for seven data points.
The on-line method allows only the estimation of (CW —
CW,;) and not W. Thus off-line tool wear measurements are
needed to determine the values of Wy and C, so that W can
be calculated from CW. In many cases, however, the tool
changing criterion is the start of the accelerated wear region.
In these cases we are interested only in the wear rate which
is proportional to Xx, and the determination of C and W is
not needed.



SUMMARY AND CONCLUSIONS. A model-based ap-
proach has been introduced to estimate tool wear under vary-
ing cutting conditions. It uses the normal component of the
cutting force as the measured variable and utilizes on-line
parameter estimation to keep track of the tool wear increase.
The approach has been implemented and tested in the labora-
tory. The experimental results show agreement between the
actual values of the tool wear (measured during the test) and
the estimated ones. While these initial results are promising,
further research is needed in improving the estimation algo-
rithm, and in modeling the relationship between tool wear
and cutting force.
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APPENDIX

Parameter Estimation Algorithm. A recursive least squares

parameter estimation algorithm has the general form [17],

Plk—2)¢(k - 1)

b(k) = 6(k = )+ 5o - TPk = )0k = 1)

v(k) (14)

Pk — 2)é(k - D)o(k — 1)TP(k —2)
I+ ok~ 1)TP(k—2)¢(k — 1)
(15)
where y(k) is the value of the measured variable y at time
t = kAtfor k = 0.1.2, ... P(k) is the matrix of es-
timation gains, 3 provides exponential data weighting, and
#(k) is the parameter estimation error . ¢(k) is the vector
of measured (or known) variables, and é(k) is a vector of pa-
rameter estimates. The above algorithm recursively updates
the estimated parameter vector f(k) defined as

P(k-1) = = [P(k-2) -

6(k) = [ ar(k) aalk) ... dnlk) Bo(k) bu(k) ... b (k) |
for any process whose equations can be written in the form,
y(k) = otk = T B(k) (17)

Thus, the process model must be written in a form that is
linear in the unknown parameters, which are the elements of
the vector 8(k). The vector o(k) and the estimation error
v(k) are defined as

olk-1T =] =ylk=1) —pk=2) ... —y(k—n) u(k)
u(k = 1) ... ulk —m) | (18)

and u
p(k) = [y(k) — o(k = 1)T4(k = 1)] (19)
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Model-Based Tool Wear Estimation in Metal Cutting
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ABSTRACT. Moautonng of 100l wear in metal cutimg under varying cuuing conditions is sigruicant. parucularly for processes under adapuve conuol. An
approach 10 (00l wear momitonng using force measurements and A process model is bemng mvestigated. Last year we reported the resuits of experunems with

varying depths of cut. This year we Fepon resuits for improved process modeling,

improved on-line esumation methods, and some additional expenmenta)
results. Anewlydevebpedmodelofmnosemdﬂmk

weighung of the measured force components for use in model based ol

INTRODUCTION, The estumanoa of tool wear n metal cutting operations
7as loag been regarded as a kev step towards the tmpiementation ot auar-

':ve conuot and full process awomation 1Koren 1983: Ulsov, Koren ana

side and the nose expressed as a function of s. Furthermore. if
fepresents the pressure distnbution on (he clearence wear surtace. then the
-uttng torce change due 10 the pressure on the clearance wears surtace can

nes uwy

Rasmussen 1983]. Research etforts in this area are extensive, ang have been
reviewed 0 studses such as (Tlusty and Andrews 1983; Danai and Ulsoy

mmoddsrdmgwmhcumgmnommsim.suchu

cumgfm.hvebeambyvmm Some of these
mmmmh(mmamukoy 1987a; Koren 1978: Usu.

dm‘vwmodelptopoudin(l(o-
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be written as

1 pure
F,=£'£ Ps.w) i (s) dw ds. o

where n(s) is the inward pointing unit cormal vector along the clearance
surface. Simuiarly, the friction force on the clearance wear surface can be
expressed as,

7 pen -

F;:/ / e, wypls, w) bdwds. )

o Jo
whaeu(a.w)inhefricﬁoncoe{ﬁdmontheclmmmﬂu.w
memvminlhedireumoimemngvebutyudmedbyi Sub-
ject losomemahoutbefamonhefmmna,wb.u(n.w).
M:).Wmemmmedmoﬁlnmmm
can use Eqs. 1) and (2) to obrain relationships between the clearance wear
ind the measured force components.

Table i: The cuming condstions of the three experiments.

. Exp. No. | lnsent | Depth of s (1) 1 Feed (rvrev) | Cutung speed (ft/aus) |
! i PG .006 800 ‘
2 14 0004 1200 '

! G370

0.1 !

Tbmcxpumu.usummzedmhble I. were pertormed to vaii-
date the model. Fimlshownhecumngfomecomponunvamn-e'
fa&ms.mammwmemnmh
m-u.mmnmmmmfau The resuies for all three
vIniments are summanzed in Fig. 3 The acrual wear measured is plott.
13 4 functon of ume and compared (0 ihe wear ¢stimated by the modes
Nt that F.:ptnmeujisarepmol‘ Expeniment 2. whule Expenmems | is
w4 higher feed and lower cuming speed.

The comprehensive wear model is important because it inciudes acse
muwﬂudﬂmlommlanclmm.udhap-
plmbhbwl«mogmcmg. For the case of ornthogonal curiag
smptiﬁaloprtmmodehrehm; dank wear to curtng force. The
Mfwlmmgmmhowvmmfan
cm“hamﬂdngﬂdmmﬁumao-
mate of the ciesrance wear. Further research is underway 10 extend this
mﬂnmmuwummmm.
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the various components of 100! wear are assumed (0 be the unmeasurahl «
-ates vt the process wiuch must be esumated Lrom measusred signals such ax
the torce components. This formuistion was proposed and experimentally
evaiuated as descnbed ia (Danai and Ulsy 19872, 19870, 1987¢). The
retinement of this adagtive cbeerver spproach hes beem asother focus of
our recent research efforts, and is bricly summariosd here.

To improve upon the resuits reporied ia (1987¢). we have inciuded 2
vision based tool wesr meanwement 0 suppicment the SOrcs measwement
used by the adapuve observer (ses Fig. 4). The vision meanwement Can caly
occur whea the 1001 is 00t engaged im the workpiece., and at rather infraquent
1oservais due $0 the lnrge compues times sequired for image processing. The
force measuresness based adeptive cbeerver gives a wear estimase during the
cut, but requires penodic recalibrasion due 10 the accumulation of estinston
errors. Thus. we proposs 10 combins thess two complementary approaches.

The process model descnbing the st of wear of the w00l is rather
-ompiex. and 30 we have concentraied in our recest research on the flank
" =ve nrniem aniv. Fven m thes restncied Case the model cyualions are
highly nonuneariDana and Ulsoy 1987a):

dwgi/dt = —~(vflo)wygy +(v/lo)ky cos ar(F/ [d) 3
dwpy/dt = by(9)"/2 exp{ -k /(213 + 8))} ' 4)
Faibafr(1 - kwar) - ki - kuavid+ kiydwy ®

where §/ = ksv™'1* + iyw}! and w) = wy) + w1, Uniike the studies in
{Dunai and Ulsoy 19870, 1987¢}), where we wtilined linsavined: versions of
Eas. (3)45) 10 desigm the adaptive cbeerver. we are 80w basing eur adapaive
ahserver design on the full aonlinesr equations. The monlinesr: cheerver

oanma. 10
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design requires some resuits from nonlinear swubility theory (Anderson ot
al 1986} to enswre the stability robustness of the sonimess observer. The
mﬁmm"nmw.

diegy/dt = —(v/lghibn + (v/lr cosar(F/f)+ G(F - B (&

dibgr/dt = by(v)' > exp{~&3/273 +6)} + G F - B) O
F =k fM(1 - kioar) - ky - kizeld + kyydidy ®)

where §; = Ecv"""‘*hl"?’. Wy = by +y; and (G1G2]T is the observer
gam vector.

The selection of the noalimear observer gains represest & wade off be-
effects of measwremsent moise. This is ilustrated in Figs. 5-6, where the
dank wear estimation is simaiated for two observer gams. With the lower
value of the observer gain, the estumaies couvergeace more siowly but are
less seasiuve 10 measusemant aoise.

Fulure research will be directed a1 the design of an adaptive version of

* bwict nnnlinera aheerver. and its impicmentation in 1 iahoratory cvetem
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Progress ia owr ressssch 08 model-
based oa-lime ®ol wesr entiastion i metal cutiing weing force measwre~
mens hes besn sepersed> This progress. over the past year, has bese focused-
prmarily in two areas: (i) ths deveiopment of 2 comprebensive wear model
which inciudes noes 88 well s fank wear, and (ii) the design of an adap-
tive nonlinear observer for 1ol weer estmanion which is calibeated using
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ESTIMATION OF TIME VARYING PARAMETERS IN DISCRETE TIME DYNAMIC
SYSTEMS: A TOOL WEAR ESTIMATION EXAMPLE
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Department of Mechanical Engineering and Applied Mechanics
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ABSTRACT

The recursive least squares, Kalman filter, and basis
function methods for the estimation of time varying parameters
are described and compared for a particular example problem.
A generalization of these methods for estimation of time
varving parameters is presented, based on an adaptive Kalman
filter algorithm. The adaptive Kalman filter (or adaptive
observer) utilizes a state model, with unknown coefficients, of
the time varving parameters. All the other estimation methods
presented for time varying parameters can be obtained as
special cases of the proposed method. The method proposed
shows excellent performance on the simple example probiem
considered, but can be difficult to apply.

L. INTRODUCTION

The on line estimatios of the parame’sr: of dynamic
systems is an important step in system identification, as well
as in adaptive control. Many parameter estimation methods,
mainly based on the recursive least squares parameter
estimation algorithm, have been developed and succesfully
applied[Ljung 87, Goodwin and Sin 84; Ljung and
Soderstrom 83; Goodwin and Payne 77].

While most parameter estimation methods assume that
the unkown parameters are constant, methods have also been
developed for tracking time varying parameters. Such
problems arise in many engineering fields, and are of interest
to the author in connection with machine tool adaptive
control[Ulsoy, Koren and Rasmussen 83], and tool wear
estimation in machining[Danai and Ulsoy 87a,b; Koren, Ulsoy
and Danai 87]. The main approaches to the estimation of time
varying parameters are based on the Kalman filter algorithm
(KF), modifications to the recursive least squares (RLS)
algorithm, and what we will refer to as basis function (BF)
methods{Goodwin and Payne 77; Ljung and Soderstrom 83;
Grenier 83; Hall, Oppenheim and Willsky 83; Niedzwiecki
87a,b; Davidov et al 87; Bastin and Gevers 88). These
methods are briefly summarized in Section 2, and compared
for a simple example problem in Section 4.

This paper also presents, in Section 3, a generalization
of the method for estimation of time varying parameters where
the parameters of the KF model can be unknown. Such an
approach has also been proposed by Clergeot [84]. Adaptive
KF (or adaptive observer) methods are directly applied to
solve this more general formulation. All the methods described
above, including the BF method, are shown to be special cases
of the proposed general method. Then, in Section 4, a simple
example problem is studied and used to compare the various
methods presented for the estimation of time varying

parameters. The example problem is motivated by recent
research efforts in the on-line estimation of tool wear in metal
cutting processes [Danai and Ulsoy 87a,b]. The results of the
example problem, as expected, demonstrate that if
appropriately applied the KF algorithm and the BF method
give better results than the RLS based methods. The adaptive
KF method proposed here is, in general, difficult to apply.
However, it can be convienently applied in some special cases.
Excellent results are obtained for the example problem using
the proposed adaptive method.

2. METHODS FOR ESTIMATION OF TIME
VARYING PARAMETERS

The Kalman filter algorithm is perhaps the most
gencral of the commonly used methods for estimation of time

varying parameters [Goodwin and Payne 77; Ljung 87].
Consider a linear discrete time dynamic system of the form,

6(k+1) = H(k) (k) + ['(k) u(k) + w(k) 1)
and,
y(k) = o(k-1)T (k) + v(k) Q)

where y(k) is an mxl output vector, @(k-1) is an mxn
measurement matrix, 8(k) is an nx1 parameter vector, u(k) is
an rx1 vector of known deterministic inputs, and H(k) and
I'(k) are known coefficient matrices of the appropriate

dimensions. The noise terms v(k) and w(k) can be assumed
zero mean gaussian and independent with known covariances,

E[w(w()T] = Rw(k)3kj (3)
and,
E[v)v(j)T] = Ry(k)8; @)

The Egs. (1) and (2) represent, respectively, a state model of

the time varying parameter vector 6(k), and an input output
model of a time varying dynamic system in regression form.

An estimate B(k) can be obtained using the Kalman filter (KF):

B(k+1) = HG®) 80 + T u(k) + HAOPGIQMRY(K)
+o TPRIOMT L {y(k+1) - 000 THIB(K) + k) (5)
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and,

P(k+1) = Hk)P(K)HK)T + Rw(k) -H(K)PR)Q(K)[Ry(k)
+ 00 TP 0] L o) TPOOHK) T ©)

where @(0) and P(0) must be specified, as well as H(k), u(k),

['(k), Rw(k), and Ry(k). The particular KF algorithm in Egs.
(5) and (6) uses the current measurement y(k), rather than the
previous measurement y(k-1), to estimate @(k). The method
presented in [Davidov et al 87] is a special case of the KF
algorithm given above, where the parameter variation model in
Eq.(1) is written in terms of high order difference equations
rather than in first order form. In applying the above approach
to estimation of time varying parameters, one must specify the
parameters H(k) and I'(k). Typically one chooses H(k) = I

and (I'(k)u(k)) = O because of a lack of specific prior
knowledge of how the parameters actually vary.

The recursive least squares (RLS) algorithm is
obtained as a special case of Egs. (5) and (6) when H(k) =1,
k) =0, utk) = 0, Rw(k) = 0, and Ry(k) = I. This
corresponds in Egs. (1) - (4) to constant parameters and only
measurement noise. The RLS algorithm with covariance
modification (RLS/CM) is a special case of the RLS where
Rw(k) is taken to be non zero, or P(k) is periodically reset to
P(0). This keeps the algorithm "alert" and permits tracking of
time varying parameters. The vaiue of Ry(k) is typically
selected based on the expected variation in the parameter
values, or by trial and error. The RLS algorithm with a
forgetting factor (RLS/FF) exponentially weights the data, so
that the influence of past measurements in the parameter
estimation is reduced. Again, it is a special case of the RLS

with Ry(k) = a(k), and the forgetting factor 0 < at(k) < 1 is

typically a constant in the range 0.95 to 0.99. Also for the
RLS/FF one chooses,

Rw(k) = (a(k)"! - D{P(k)
- HKPK)@(K)[Rv(k) + k) TPK)oX)]- o) TPEOHK)T).

Both these RLS based methods give fairly good results for the
estimation of time varying parameters, and their performance
is similar in practice{Ljung and Soderstrom 83].

Another approach is based on the expansion of the time
varying parameters in terms of known basis functions, with
constant unknown coefficients, and will be refered to here as
the basis function (BF) method [Grenier 83; Hall, Oppenheim
and Willsky 83; Niedzwiecki 87a]. For example, each
unknown parameter is written as,

Pi
0ik) = ¥ %ij uij(k) (7
=1

where the v;j are unkown constant coefficients and the uif'(k)
are known basis functions, such as a polynomial basis: { 1, k,
k2, k3, .., k(Pi-1)} (see e.g., [Li 87]). If, without loss of
generality, one assumes that the ujj(k) and pj =r are the same
for all i =1,2, .., n, then Eq. (7), can also be written in the

more compact form 0(k) = I' u(k). Thus, I is an nxr matrix of

unknown coefficients ¥j and u(k) is a rx1 vector of known
basis functions uj(k). Substiruting Eq.(7) into Eq.(2) gives,

y(k) = dk-1)T 8 + v(k) ®)

where,

ok-DT = [¢'1(k-Du1(k), ¢'1(k-Du2(k), ..,
¢'1(k-Dur(k), ¢'2(k-Du1(k), .., 2(k-Dur(k), ..,
¢'m(k-Du1(k), .., 'm(k-Dur(k)] )

OT =(y11.712, .., YIr, 121, .., Y2r, .., Yml, .., Ymr] (10)

and ¢'j(k) denotes the nx1 vector which is the ith column of
the mxn matrix (p(k)T, fori=1, 2, .., m. The estimation of
the new constant parameter vector © can be carried out using
the RLS method as described above. The estimates of the
original time varying parameters (k) can then be obtained
from Eq.(7) using the estimated %j, which are the elements of

. The BF method is easy to apply, but again requires some
prior knowledge about the parameter variations to aid in the
selection of appropriate basis functions u(k). Recent resuits
have shown that the BF method is not very robust for large
values of pj [Niedzwiecki 87b]. However, it can work well
when the basis functions selected capture the true nature of the
parameter variations without too many terms.

In the next section, a general method is presented for
estimation of time varying parameters based on a KF approach

as in Egs. (1)-(6), but with H(k) and I'(k) assumed to be
unknown. Adaptive KF, or adaptive observer, methods can
be directly applied to solve this more general formulation.

3. ADAPTIVE ESTIMATION METHODS

Consider again the dynamic system as represented by

Eqgs.(1) and (2), and assume that H(k) and I'(k) are constant
(or slowly time varying) but unknown. One then tries to

estimate H(k) and I'(k) as well as the unkown parameters 8(k)
of the model. Since the time varying parameters have, in Egs.
(1) and (2), been described in a state equation form, this can
be accomplished by applying adaptive state estimation
algorithms to the parameter estimation problem. There are
various adaptive state estimation algorithms that have been
formulated[Goodwin and Sin 84; Jacoby and Pandit 87] .

Here a KF algorithm for estimation of 8(k) will be combined
with a sequential prediction error method for estimation of the

elements of H and I'. This is schematically illustrated in Fig.
1, and described below.

First assume that estimates of H and I are available so
that the KF Egs. (5) and (6) can be used to obtain the

parameter estimates ’é(k) as well as the predicted output,

900 = ok-DT Bek)

= o(k-1)THK-1) 8k-1) + [ k-1) u(k-1)
+H(k-1)P(-1Dp(k- D[Ry (k-1) + 9(k-DTPG-Dep(k- DI {y(k)
- o(k-DT(H(k-1)8(k-1) + Tk-Du(k-1))} (11)

The prediction error can then be defined as,
e(k) = y(k) - §(k) (12)

The error is considered to be a result of the unkown

parameters, which are the elements of H and T, in the KF Egs.
(5) and (6). Thus, one defines the new parameter vector,



oT =(y11,v12, .., ¥Ir, 21, .., T2r, .., Yml, .. , Ymr, h11,
h12, .., hin, h21, . hmnl (13)

To determine an estimate é(k), minimize a scalar quadratic
functon of the prediction error

k
min  JIO®), k] = Y@ TR Ledi) (14)
1=1

Bx)

where R(k)‘1 is a weighting matrix. As shown in [Goodwin
and Sin 84], the recursive algorithm minimizing J is given by

B(k+1)=B(k) + MEK)DK)REK) + DK) TMI)OX)]" [yk+1)
- J(k+1)) (15)
and,
M(k+1) = M(k)
- MK)DK®)[REK) + DK) TMI)DE)]- 1) TM(K) (16)

where
D(k-1) = [d §(k)/dOlg = Bk-1)
) (p(‘k-l)’r d /é(k) /dele = Ok-1) = (p(k-l)TW(k) amn

In general, it is difficult to evaluate ®(k-1) from Eq.(17),
because of W(k), and this is discussed further below.
However, if we assume that ®(k-1) can be evaluated, then
Egs. (11) and (15) - (17), together with Egs. (5) and (6), can
be used to estimate the original unknown parameters 6(k) for

the time varying system (even when elements of H andfor "
A unANZWiL. 1YOWE Wial, a8 Hllusuaieq 1n Fig. 1, the estimated
H and T from Eqs. (15) - (17) are used in Eqs. (5) and (6),
and similarly the estimated 8(k-1) from Egs. (5) and (6) are
used in Egs. (15) - (17). Once Eq. (17) is evaluated for a
particular system, then this adaptive algorithm can be

implemented using standard library software (Goodwin and
Sin 84; Jacoby and Pandit 87].

SEQUENTIAL PREDICTION
~——r—@p-| ERROR ALGORITHM —
y(k) Egs. (15) - (17)
u(k) A
) ak
o(k)
~———L—pp| KALMAN FILTER ALGORITHM >
Egs. (5)- (6)

Figure 1. Schematic of An Adaptive Algorithm
for the Estimation of Time Varying Parameters

The evaluation of the total derivative in Eg. (17) is, in
general, quite complex [Goodwin and Sin 84; Jacoby and
Pandit 87]. However, it can be considerably simplified when
Egs. (5) and (6) are replaced by the so called "innovations
form observer'[Ljung 87; Jacoby and Pandit 87],

Bk+1) = Hk,0) 8 + T(k,0) uk) + K(®)e®) (18)

where €(k) is defined in Eq. (12), and the observer (or KF )
gain K(é) is directly parameterized in terms of the o. Thus,

the K(@) is not the optimally calculated KF gain as in Egs. (5)
and (6). In this formulation the total derivative, W(k), in Eq.
(17) can be evaluated as

W) = (HO(k-1)) - KO®K-1)ok-1T }W(k-1)
+ Fe + K@ek-1) (19)

where we have defined,

FO=[3(H(k-1,0)8(k-1)+T(k-1,0) u(k)) /28] g - Hk.1) 20)
and,

Ke = [0K/3lg - (k.1 @1

Although considerably simpler than the KF formuiation, even
Egs. (18)-(21) may be difficult to implement. However, there
are some special cases, such as H=0 or H being constant and
known, that facilitate evaluation of the above expressions.
These are illustrated by way of an example in the next section.

The proposed method is a general one which includes
all the previous methods as special cases [Clergeot 84]. The

KF method is obtained when H and I are known and do not
have to be estimated using Eqgs. (11) and (15) - (17), and the
RLS methods have already been shown to be special cases of
the KF method. The BF method is another special case of this
proposed method. When H=0 Egs. (17) and (13) become,
respectively,

k-7 = [¢'1(k-Du1(k), ¢'1(k-1u2(k), .., ¢'1(k-1)ur(k),
‘pIZ(k‘l)ul(k), -y (Plz(k'l)ur(k)' oy (P'm(k-l)ul(k)v oy
¢'m(k-1)ur(k)] (22)
OT =[y11.v12, .., 7Ir, Y21, .., Y2r, ..
and Egs. (1) and (2) become,

, Yml, .., Ymrl (23)

8(k+1) = I uk) + w(k) (24)
and,
y(k) = o(k-1)T 8(k) + v(k) 25)

Also Egs. (5) and (6) become,

8(k+1) = T u(k) (26)
and,
P(k+1) = Ry(k) 27

which is precisely the BF method outlined previously, where
the u(k) are the known basis functions, and the elements of I



are the unknown coefficients Yij in Eq. (7). As discussed
above, for a particular problem the evaluation of Eq. (17) can
be rather difficult. However, when H=0 (i.e., the BF method)
this is significantly simplified. Thus, the BF method is seen to
be a special case of the adaptive KF method which is
particularly easy to apply.

4. EXAMPLE

In this section we present simulation results for a
simple example problem to illustrate and compare the various
estimation methods discussed in the previous sections. This
example problem is motivated by research on the on-line
estimation of tool wear in metal cutting operations [Danai and
Ulsoy 87a,b]. If the cutting conditions are appropriately
selected such that only one type of wear mechanism (i.e.,
flank wear or crater wear but not both) dominates, then a linear
first order model has been experimentally shown to provide
good estimation results [Danai and Ulsoy 87b]. However, the
parameters of such models depend on cutting conditions, and
must be treated as time varying.

Consider the linear single input single output first order
discrete time system described by,

y(k) = a(k) y(k-1) + b(k) z(k-1) + v(k) (28)

where y(k) is the system output, z(k) is the system input, and
v(k) is zero mean gaussian measurement noise. In the tool
wear estimation problem y(k) represents a measured force
component which is proportional to the tool wear, and z(k)
represents the feed. The parameters a(k) and b(k) are, in
general, time varying and perturbed by zero mean independent
gaussian noise signals wi(k) and w2(k) respectively. For
estimation purposes the knowa input signal z(k) is also
assumed to be zero mean and gacseizn. The simuladon results
presented below were all obtained using the International
Mathematical and Statistical Library subroutines GGNML to
generate the noise signals and FTKALM to implement the KF
and/or RLS algorithms as needed [Anonymous 79]. The
standard values of the simulation parameters given in Table 1
were used in all the cases presented below. Although
numerous simulation studies were performed, due to space
limitations, only selected typical results are presented here.

For the results shown in Figs. 2-8, the parameters of
Eg. (28) were simulated as follows:

atk) =-0.8 + wi(k) 29)
and,
bk) = 2.0 + 0.001k + wa(k) (30)

The estimation results for RLS are shown in Fig. 2, and (k)
at k=100 converges to approximately 2.5 rather than the true
value of 3.0. The resuits for RLS/CM are also shown in Fig.

2, and tracking of b(k) is seen to better than for the RLS case.
For the RLS/CM algorithm

2
{5

was used. Although not shown here, results with the RLS/FF

method were also obtained and found to be similar to the
RLS/CM results.

The KF algorithm in Egs. (5) - (6), applied to the
example problem with Ry(k) = 6y2, and

10 6120 0
H(k):[OlO, Rw®)={ 0 0 0
011 0 0692

o2

ek-1)= [-y(k-1) 0 z(k-1)]

gives the results shown in Fig. 4. These clearly provide
improved tracking of the time varying parameter b(k) over the
RLS methods. However, the linear nature of the variation in
the parameter b(k) must be known so that the appropnate H(k)
given above can be selected, and the number of parameters
being estimated is now n=3. The estimated parameters are

calculated from A(k) = 81 (k) and (k) = B3(k).

The use of the BF method with uj(k) =1 and ua(k) =k
gives the resuits shown in Fig. 5 when used in conjunction
with a standard RLS algorithm. Again, the results are
excellent, however three parameters must be estimated and the

original time varying parameters calculated from 2(k) = 81(k)
and B(k) = 82(k) + §3()k. Note that this BF result is exactly

the same as for the adaptive KF when H=0 is used in
modeling the parameter vanations.
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Figure 5. Parameter Estimation Using BF

Figure 6 shows the result when we apply the KF
algorithm with a known 2x2 H = I and a known 2x1 T'u(k) =

(0 0.01]T. We designate this as a KF with a known input
(KF w/input). Again the results are excellent, but we need to
be able to model the parameter time variations exactly. We
must even specify the value (i.c., 0.01) of the slope of the
parameter variation as given in Eq. (30). This is essentially
repeated in Fig. 7, except we use an innovations form
observer with fixed gains rather than a KF algorithm which
gives the optimal time varying gains. This case has been
designated as OB, and is essentially a prelude to implementing
an adaptive observer. The gains used in this particular
simulation were KT = [-0.035 0.1] and determined by trial
and error. It is difficult to determine these gains using standard
observer design methods because the observer error dynamics
is governed by the time varying matrix [H - Ko(k-1)]. This
observer, using the same gains, is then implemented in an
adaptive version as shown in Fig. 8 and designated as AOB.
This adaptive version of the observer uses a known H=1and

aTuk)=(0 y]T where the v is unknown and must also be

estimated. The RLS algorithm is used as in Egs. (15) - (16)
with M(0) = 1.5x10-3 and R(k) = 1. A more general version

of the AOB, where the elements of H as well as y are
estimated, would be very difficult to apply and was not
attempted here. The difficulty arises from the fact that the time
varying matrix [H - Ko(k-1)] makes it difficult to obtain an
observer gain K which is explicitly parameterized in terms of
©. Thus, it becomes difficult to obtain the total derivative
W(k) required in Eq. (17). This appears to be an important
topic for further research.
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Figure 6. Parameter Estimation Using KF w/input
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Figure 7. Parameter Estimation Using OB

_ Finally, consider Eq. (28) with the "jump" type time
varying parameters defined by:

ak) =- 0.8 + wi(k),
and

bk) =2.0 + w2(k); if 0<k <20; 41< k <60; and 81< k <100.
=3.0 + w2(k); if 21<k <40; and 61< k <80

Results were presented for this problem in {Ljung and
Soderstrom 83] for the RLS, RLS/CM, and RLS/FF methods.
Results are presented here for both the KF and BF (i.c.,
adaptive KF with H=0) methods in Figs. 9-10. In the results
presented an N term Fourier Series expansion of the peiodic
function b(k) has been assumed:



b(k) = b( + b1 sin (k/20) + b2 sin (3nk/20) + ..
+ bp sin ((2N-1)nk/20)

where, bg = 2.396, and bj = (2/x)(1/(2i-1)) fori=1,2, .., N.
With N = 1 the KF method can be applied with,

1 0 0 0
0 cos(nk/20) sin(nk/20) 0

Hk) = i
0-sin(nk/20) cos(rk/20) 0
0 0 0 1
61200 0
Rw@=| 0 00 o
0 00022
and,

ok-1) = [ -y(k-1) z(k-1) 0 z(k-1) ]

The period (i.e., 40 samples) must be known and n = 4
parameters are needed. Similarly, the period must also be
known in the BF method, but only n = 3 parameters are
required if we use the basis functions: uj(k) = 1 and u2(k) =

sin (1k/20). For both methods, although not shown here, the
results improve as N increases. However in the KF the

number of parameters is n = 2 + 2N, whereas in the BF
method n=2 + N.

5. SUMMARY AND CONCLUSIONS

Several methods for the estimation of time varying
parameters have been reviewed and compared. The recursive
least squares (RLS) are known to be special cases of the
Kalman filter (KF) algorithm as applied to parameter
estimation. The basis function (BF) methods use a series
expansion of the time varying parameters in terms of known
basis functions with undetermined parameters. Both the KF
and BF methods give excellent results, but require some prior
knowledge of the functional form of the expected parameter
variations. An adaptive version of the KF algorithm can, in
theory, eliminate this problem. In practice the adptive KF
algorithm can be very difficult to implement. However, there
are some special cases where the adaptive KF algorithm can be
convienently applied. These include the KF, BF, and RLS
based methods described previously. Thus, the adaptive KF
method is a generalization of all these other methods for the
estimation of time varying parameters.

A simple example problem, motivated by tool wear
estimation in metal cutting, has been considered and used to
compare the various methods. As expected the KF method
gives excellent results when compared to the RLS method and
its variants. The BF method is a special case of the adaptive
KF method, and gives results very similar to KF. The BF
method is especially attractive when a few basis functions can
be selected to accurately capture the true parameter variations.
Another, somewhat more general, adaptive KF method also
gave good results for this example. However, it was more
difficuit to determine appropriate algorithm gains.

The adaptive KF method provides a very general
framework for estimation of time varying parameters, and
allows the user to tailor the algorithm to the problem at hand
based on available prior information. Further research is
needed to develop design techniques that can be convienently
applied to the problem of determining the adptive KF method
gains.
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Abstract

On-line tool wear monitoring in metal cutting operations is
essential for on-line process optimization. In this paper, tool
wear is 2stimated on-line by utilizing a nonlinear observer with
feedlLauwn ur \,uw;ub fvile wLasulCicins. Dased O a previously
developed cutting process model for the turning, the nonlinear
observer is designed such that the tool wear is estimated within
an acceptable error in the presence of poor initial tool wear
estimates. The stability analysis for the tool wear estimation
error dynamic system is carried out using the physical limitation
on the actual tool wear and the Total Stability Theorem. The
simulation results show that the proposed nonlinear observer
estimates the tool wear acceptably well, not only in the presence
of poor initial estimates but also in the presence of measurement
noise.

However, the presented method has drawbacks resulting from
modeling errors and difficulties in obtaining model parameters.
An adaptive version of the presented nonlinear observer, period-
ically calibrated by off-line direct tool wear measurements using
computer vision, is considered to be a promising strategy for
practical implementation.

1 Introduction

The trend in manufacturing is toward production in small
batch sizes, especially in the aerospace industry, the ship-building
industry, and the tool and die making industry (Miller,1985).
In such industries, traditional craftsmanship plays a very im-
portant role in producing good quality parts. However, in re-
cent years, the shortage of skilled machinists in those industries
has been reported to be very severe (Wright and Bourne,1988).
To overcome this problem, manufacturing systems must be au-
tomated and machine tools made more intelligent. Computer
controlled machines (e.g., robots, computer numerically con-
trolled machine tools, etc.), computer-integrated manufacturing
systems, and unmanned manufacturing systems are all evidence

!Graduate Research Assistant
Z Associate Professor and Member of ASME

of this trend (Koren,1983 and Groover,1980). In such systems.
machines are required to have flexible control schemes which
can adapt to process changes. Traditionally, such adaptations
have been carried out through skilled machinists’ knowledge and
experiences. :

For the metal cutting process. adaptive control, which can
automatically adjust process variables such as the feed rate and
the cutting speed according to changes in the cutting process.
is intended to ensure desired cutting conditions based on in-
process measurements (Centner and Idelson,1964, Hinds,1977,
Watanabe,1986, Koren and Ulsoy,1989). Such a system has been
termed adaptive control with optimization (ACO). The major
problem with the use of ACO systems is the need for on-line
measurement of cutting process variables, which are necessary
in tuning the controiler. But reliable on-line semsors are not
available for some of these variables. such as the tool wear which
determines tool life (Ulsoy et al..1983, Jetly,1984).

An overview of developed tool wear sensors was presented
by Cook (1980), and practical implementation issues for several
tool wear sensors were discussed by Tlusty and Andrews (1983).
Among the developed tool wear sensors, optical sensors measur-
ing the tool wear directly by the use of vision systems (Danesh-
mend and Pak,1983, Giusti et al.,1987), dimensional sensors
measuring the distance between the tool holder and the work
surface (Suzuki and Weinmann.1985) or measuring the change
of the workpiece diameter (El Gomayel and Bregger,1986), and
micro-isotope sensors detecting the absence of radioactive parti-
cles (Cook and Subramanian,1978) are typical examples of direct
tool wear sensing methods. Optical sensors and micro-isotope
sensors are fairly accurate., however. they are not practical as
on-line sensors. The cutting operation must be stopped and the
tool disengaged from the workpiece to take pictures of the tool
wear or to measure the radioactivityv. The dimensional sensor
is generally sensitive to thermal expansion and deflection of the
cutting tool, the tool holder. or the workpiece, and also sensitive
to vibrations of the workpiece and the tool.

To measure the tool wear on-line, indirect sensing methods
have been developed. In these methods. a relationship is estab-



lished between tool wear and other cutting variables which are
easier to measure during the cutting operation. From measured
variables, information on the tool wear is obtained by utiliz-
ing such a relationship. Some of the easily measurable vari-
ables are the cutting force (Koren et al.,1986, Danai and Ul-
soy,1987a, Lan and Naerheim,1986), the vibration signal (Pan-
dit and Kashou.1982, Jiang et al,1987), the acoustic emission
(Moriwaki, 1983, Kanatey-Asibu Jr and Dornfeld,1981, Inasak
and Yonetsu,1981, Lan and Dornfeld,1984), and the spindle mo-
tor current (Takata et al.,1985). There are also indirect muiti-
sensor strategies which combine cutting force with the vibration
signal (Rao,1986), the acoustic emission with the cutting force
(Emel. 1987, Moriwaki,1984), or the cutting force with a vision
system (Daneshmend and Pak,1983). The reliability of these
indirect methods depend on how accurately the relationship be-
tween the tool wear and measured variables describes the physi-
cal phenomena. and also depend on how robust the relationship
is to changes in other cutting variables such as different tool-
work combinations, time varying cutting conditions(i.e., time
varving feed, cutting speed, depth of cut, etc.).

At present, indirect methods suffer from inaccuracy in such
relationships, because of difficulties in modeling phenomena such
as friction, strain-hardening, unhomogeneity in workpiece mate-
rials, etc. For cutting force measuring methods, force measuring
devices such as the force dynamometer are widely used, and
known to be very reliable. And, there has been extensive re-
search to determine relationships between the cutting force and
other cutting variables, including tool wear, using both mecha-
nistic and empirical approaches (Micheletti et al.,1968, De Fil-
ippi and Ippolito,1969, Nagasaka and Hashimoto,1982). There-
fore, it may be possible to develop an acceptable mathematical
model, which includes explicit relationships between the cutting
force, cutting conditions and tool wear.

Based on various results in the literature, Koren and Lenz
(1972) and Koren (1978) developed a flank wear model using
concepts from control theory. They considered many of the im-
portant variables involved in the cutting process, i.e., the cut-
ting force. the flank wear, the cutting temperature, the feed, the
depth of cut, and the cutting speed. Danai and Ulsoy (1987b)
combined their flank wear model with the crater wear model
developed by Usui et al. (1978). Moreover, they formulated the
model in a nonlinear state equation form using the tool wear
(i.e., flank wear caused by diffusion, flank wear caused by abra-
sion, and crater wear) as states, the cutting force as the output,
and the cutting conditions (the feed, the depth of cut and the
cutting speed) as inputs. This is significant in that various math-
ematical and computational tools from the control and system
identification areas can be applied. However, it should be noted
-that the cutting process is not fully understood and that the
crater wear models are known to be less accurate than those of
the flank wear.

Based on a linearized version of the developed cutting pro-
cess model, Danai and Ulsoy (1987a) presented an on-line tool
wear estimation scheme using an adaptive state observer. In this
method, the tool wear and parameters of the linearized model
are simultaneously estimated by measuring the output from the
cutting process, i.e., the cutting force signal, and the input to
the process, i.e., the feed. Parameters are estimated using the
output error parameter estimation method, and the tool wear
is obtained using these estimated parameters. However, several
off-line direct measurements of the tool wear are also necessary

during the cut to obtain the tool wear within an acceptable
error. The need for off-line measurements originated from the
linearization of the original nonlinear model, and from the trans-
formation of the linearized model into observer canonical form.
Such procedures, on the other hand, allow for the straighfor-
ward design of the estimation algorithms. This method gives
good results when the flank wear is dominant, but not when
both types of wear are significant. The main reasons for this
are considered to be the inaccuracies in the wear models, the
linearization of the model. and the poor conditioning associated
with the transformation to observer canonical form.

This study is motivated by the need to overcome the off-
line measurement requirement in the adaptive state observer
method. If an adaptive nonlinear observer for the original non-
linear model is achieved, the problems originating from lineariza-
tion and transformation to observer canonical form are avoided.
Then off-line measurements are not essential. However, they
can be used as a supplementary measurement which makes the
on-line estimation more accurate. In this paper, as the first step
for achieving the adaptive nonlinear observer, a design of the
non-adaptive-norlinear observer for the cutting process model
and its convergence characteristics are extensively investigated.
Although crater wear is often important, to avoid the problems
caused by the inaccuracy in the crater wear model, we consider
in this study flank wear dominant cutting processes only. Gen-
eralization to processes with both significant flank and crater
wear remains a topic for future research.

To design a nonlinear observer, consider a general nonlinear
nth-order state equation,

= f(t,z)

where it is assumed that above system yields a unique solu-
tion z(t) starting from any initial state z(0). Measurements
described by an output equation of the form

y = h(t,z)
are to be used as the input to a dynamic state observer,
z=g(t,2,y)

The observer error dynamic system can be obtained by defining
the state estimation error e = z — & such that

€= f(tvx) - g(t,i, y)

Then, an observer must satisfy the following two basic require-
ments.

Condition A : If for a certain tg, e(to) = 0, then e(t) = 0 for all
t Z to.

Condition B : e(t) should converge sufficiently fast to 0 for
t — oo, irrespective of the initial condition e(t).

There have been various attempts to construct such observers
for nonlinear systems. However, unlike the linear case, no gen-
eral design rule is established. Kou et al. (1975) presented a
nonlinear observer for a class of nonlinear systems. in which the
Lyapunov direct method was applied to obtain conditions under
which the obsérver error dvnamic system satisfies Conditions A
and B. Recently, there has been considerable research in find-
ing conditions to transform a nonlinear system to a linear form



by coordinate transformations: sometimes with output injection.
Bestle and Zeitz (1983) and Krener and Isidori (1983) considered
a class of nonlinear systems, where a nonlinear coordinate trans-
formation can be used to obtain a linear system plus a nonlinear
term depending only on the original system input and output.
The transformation makes the nonlinearity become a function of
the measurable variables only. Then, a nonlinear observer is de-
signed such that the nonlinearity in the observer error dynamic
system is perfectly cancelled. Therefore, the resulting error dy-
namic system becomes linear, and Conditions A and B can be
satisfied using linear control techniques such as pole assignment.
Levine and Marino (1986) used a transformation of the nonlinear
system into a higher order linear system, and a standard linear
observer is designed for the transformed higher order linear sys-
tem. These methods are attractive because well developed linear
observer design techniques can be applied after the transforma-
tion. However, the drawback is to find such a transformation.
Most literature on these methods present conditions for exis-
tence of transformations. But, for complex nonlinear models
such as the cutting process model considered below, it is not
necessarily easy to find these transformations.

Nonlinear observer design methods are intended to find glob-
ally stable nonlinear observers in the sense that the observer er-
ror dynamic system satisfies Conditions A and B for any e(ty).
A locally stable observer is, however, adequate for some appli-
cations, i.e., Conditions A and B are satisfied for |le]| < r, 0 <
r < oo, and it is less difficult to design such an observer. For
the metal cutting process, the amount of tool wear is actually
limited during cutting. Therefore, in this paper, we concentrate
on designing a nonlinear observer which is locally stable within
such physical limits on the amount of tool wear.

In Section 2 of this paper, the cutting process model de-
veloped by Danai and Ulsoy (1987b) is briefly introduced, and
the corresponding nonlinear observer is proposed. The stabil-
ity analysis of the resulting observer error dynamic system is
carried out in Section 3. In Section 4, the performance of the
nonlinear observer is illustrated using simulation studies. The
simulations are designed to include the noise characteristics in
typical cutting force signals. Finally, results of the analysis and
simulation studies are summarized and discussed in Section 3,
which also indicates directions for future research.

2 Nonlinear Observer for the Cut-
ting Process

A detailed description of the cutting process model used in
this paper is presented in Danai and Ulsoy (1987b). We consider
‘here flank wear dominated cutting processes only, and neglect
crater wear.

In the model, the flank wear is separated into two component:
one caused by abrasion(wy,) and the other by diffusion(wy,).
These two components are used as state variables. The inputs
to the process are the feed f, the cutting speed v, and the depth
of cut d. The output, F', is selected to be a component of the
cutting force. The resulting model has the form

. v
wnpn = —Twn +

2chosa,.f- (1)
lo

o 7d

. . —K
Wyey = Az v exp (-5%:35;) (?.)

and
F = [K¢{f"(1 = Ksa,) — K¢ — K7v]d + Ksdwy (3)

where a, is the effective rake angle, [, is a constant. wy is the sum
of the two wear components, and 6 is the tool-work temperature
on the flank side of the tool. The tool-work temperature §; is
calculated using the following relationship

8 = Kov™ f™ + Kyow}* (4)

The model has been evaluated in Danai and Ulsoy (1987b) using
the parameter values given in Table 1 and found to agree with
results reported in the literature.

lo Qe K1 K'g Ks 1\’4 K5 Ks
500 | 0.1745 | 5.2E-5| 20 | 8000 | 1960 | 0.57 | 86

K, Kg K, Ko ny 2 n3 Ny

0.1 500 72 2500 ( 0.76 | 0.4 | 0.6 | 1.45

Table 1: Parameter values used in the model evaluation

Based on the model evaluation results, let us assume that
the cutting process model (1)-(4) describes the actual cutting
process exactly. Then, the problem is to design a nonlinear
observer which estimates the tool wear within an acceptable
error despite poor initial estimates. To solve this problem. the
following observer is proposed:

. F , -
Uy = —% 2 +%chosa'f_d+G‘(F_F) (5)
. —Kj ;
=K —— | + Go(F - F 6
b 2\/;exp(273+0f) (F-F)  (6)

and
F=[K ™1 - Ksa,) — Ke — Kzv)d + Kedid, (1)

where GGy and G, are observer gains, wy is the sum of the two
estimated wear components, and the estimated tool-work tem-
perature on the flank side of the tool. 9; is calculated using the
following relationship,

8, = Kou 2 f™ + Kyou}* (3)

In the next section, the conditions, under which the proposed
observer satisfies the Conditions A and B presented in Section
1, are investigated.

3 Stability Analysis of the Nonlinear
Observer

From the cutting process model given in (1)-(4) and the pro-

posed observer given in (5)-(8), the observer error dynamic sys-

tem can be formulated as follows. First. the state variables of
the error dynamic system are defined as

Cl(t) = wp — U}ﬂ
Cg(t) = Wyp — lf],g
and the error state vector is defined as

T
IE(C] 62)

The error between the measured and the estimated cutting force
s



F—F = Ksd(ws—1y)
= I[gd(er + ¢2) (9)

Subtract (5) from (1), and (6) from (2). Then the error dynamic
system is formulated such that

€y = U‘)!l -_ li)!]

= -TZ(U’!I —wp) = Gy(F - F)

= ~({ + Giksd)es = Gy Kades (10)
0
and,
é'z = lb/g - li)n
=K ~Ks .
= K _—fs )\ _ = 3| _ B
(2v/v [exp (273 T 0}) exp (273 n 0!)] Gy(F - F)
= —-Gngdel - Gg]{sdeg + g(t,x) (11)
where,

gitz) = Ko {exp( ~ K )

273+ Kou 2 f73 1 Kyow*(2)

.y g
— exp < o 2 (12)
273 + I\QU"If"S + Km(w,(t) — €y — 62)"4

Note that g(¢,0) = 0 for any wy(t) > 0. Finally, the observer
error dynamic system is obtained by rewriting (10)-(12) as fol-
lows

oAz b flta) (13)
where,
—2 _ G Ksd —G1Ksd
— lo
A= ( LGiKsd  ~GyKsd ) (14)
and T
ftx)=(0 g(t,3)) (15)

Note from (13)-(15) that £ = 0 is an equilibrium point, and
consequently Condition A given in Section 1 is satisfied by the
observer proposed in (5)-(8). To satisfy Condition B, the error
dynamic system (13) must be stable. Moreover. its convergence
rate must be sufficiently fast. The following theorem, presented
in Anderson et al. (1986), gives sufficient conditions for the sta-
bility of the system (13).

Theorem ( Total Stability Theorem )
Consider the ordinary differential equation

= A(t)z + hi(t, ) + ha(t, z) (16)
z(to) = zo € R

where A(t), hi(t, z) and hy(t, z), for each fixed z in the ball |z} <
r, are locally integrable functions of ¢, and V {z,| < r,V |zo| < r,
and V t > tq:

(A1) hy(t,0) =0

(A2)  |hi(t,21) = ha(t, 22)| < Bylzy — 22
(A3) |ha(t,z1)| < Bar

(A4)  [ha(t,z1) = ha(t,z2)| < Balz1 — 1o
If the unperturbed system

i = Alt)z (17)

is exponentially stable. i.e.. if for some constant a > 0 and A > |
the state transition matrix F(t,,t;) of (17) satisfies

|F(ty, )] S Ke®7 W ¢, > 8, > ¢ (18)

and if -
lzo| < 7 and (B + 52)K/a < 1 (19)

then there is a unique solution z(t) of (16) such that V t > t,

KB,

| < Keta=B1K)(t-to) Bk tiat’ 2N
(0] < Ke s+

(1 - e—(a-ﬁnK)(i-fo)) <r

(20y
See Anderson et al. (1986) for the proof of this theorem.

From (13)-(15), it is observed that the observer error dy-
namic system has the same structure as the system (16) except
that the error dynamic system does not have the nonlinear term
corresponding to ha(t,z) in the Total Stability Theorem (i.e..
ha(t,z) = 0 and 3, = 0). It is also observed that A and f(t,z)
are integrable if the tool wear, wy, and the estimated tool wear.
Wy, are larger than zero. This is true for wy, because the ac-
tual amount of the tool wear never becomes less than zero. For
Wy, some techniques to be used in designing the observer can
ensure that 1, remains larger than zero. These techniques will
be discussed later in this section. Therefore, the observer er-
ror dynamic system can be expected to be stable if it satisfies
conditions given in the Total Stability Theorem.

For the error dynamic equation in (13)-(15), the first condi-
tion (Al) is obviously satisfied because y(i,3) = G. Tu vbrain
the bound §; of the nonlinearity f(t,z), apply the mean-value
theorem to the nonlinearity (15). Then, one can obtain the fol-
lowing equation.

flt,z2) = f(t,z1) = B(")(z2 — 71) (21)

where z, and z, are error vectors, z* is a point in the segment
between r; and z,, and 3(z*) is a matrix such that

3(z%) = < gg_(()x.) gg_?x.) ) (22)

dey 3ez

Take the Euclidian norm on both sides of (21) and use the cor-
responding induced matrix norm;

- =0T .

13(z")]i = [Amazd(z7) 3(z7)])'V?

where 5(::')T is the complex conjugate transpose of B(x‘T), and
/\muﬁ(r‘)rﬂ(z:‘) is the maximum eigenvalue of J3(z*) 3(z")
(Vidyasagar,1978). Then, from the property of the norm. the
following relationship is obtained.

f(t,z2) = ft.z)] < 1B(z)ile2 — 2] (23)

Here. using equations w} = wy —€1” — e”, 0} = Rqu™ ™ +
[\'loﬁ)}"‘ and (12), (22), |3(z")|; can be calculated such as

1/2
— K, -Ks b
“\[. = {2 /T e - - na Ko
18(2") [-szw‘tp(zm - 0}) (273 " 9}) (nako f)}

(24)
If the maximum value of @/ is assumed to be bounded by @ ¢maxz.,
the maximum value of {3(z*}|; exists in the range 0 < w? <




W tmqz and can be calculated from (24). Then (23) can be rewrit-
ten as follows

[f(t,z2) = f(t, 21)| £ Brlz2 — 7] (25)

where 31 = |3(2")]i,n, i the range 0 < W} < Wfmaz. Therefore,
condition (A2) of the Total Stability Theorem is also satisfied.

The linear part of the observer error dynamic system (13)
has two adjustable gains, i.e., G; and G,. And its poles can be
located at any place in the left half s-plane by selecting appro-
priate gain values. As a result, the characteristic equation of the
linear part can be written without loss of generality as

82 4 2wy +wa? =0

where ( is the damping ratio and w, is the natural frequency.
The above characteristic equation corresponds to observer gains

l
G1 = (2wn — 2wn? — =)/ Ksd (26)
v 10
— b 1 2
G‘l - v ,sdwn (27)

The state transition matrix for the second order time invariant
linear system is known to be bounded in such a way that

[F(tg,ty)] < e~€onlta=t) g > 1 > ¢4

Thus, K and a in (18) of the Total Stability Theorem is obtained
as K = | and @ = (w,. Using these results and the second
relationship in (19), the condition which w, and ¢ of the linear
part £ = Az must satisfy is obiwiued as

Cwn > .Bl (28)

By selecting a pair of ¢ and w,, which satisfies the above condi-
tion, one can design a nonlinear observer that has observer gains
calculated from (26) and (27).

In addition, the initial condition of the observer error dy-
namic system must satisfy a certain requirement which corre-
sponds to assumptions we made on the range of wy and 1wy,
ie., 0 <wy, 0 < Wy € Wymaz. Otherwise, the stability of the
observer error dynamic system is not assured. And, from the
bound given in (20), one can notice that the convergence rate of
the observer error dynamic system, (w, — (;, can be designed to
be sufficiently fast by choosing a sufficiently large (w,. There-
fore, the resulting nonlinear observer also satisfies Condition B
given in Section 1.

The design procedure of the nonlinear observer for the cut-
ting process (1)- (4), which has been explained so far, can be
summarized as:

~Step 1: Select a bound Wyma- for the estimated tool wear such
that 0 < wy(t) £ Wemar, for all t > 0.
Step 2: Find 8; = |8(2*)}imaer from (24).
Step 3: Select an appropriate pair ( (, w,) for the linear part
of the observer error dynamic system. Selection is based on the
condition {28) and the requirement that the convergence rate
must be sufficiently fast.
Step 4: Calculate the observer gain G, and G, from (26) and
(27).
Step 5: Select a suitable initial condition w(0) which satisfies
the bound obtained in Step 1.

Remark: The stability analysis of the error dynamic system

is based on the assumption that 0 < wy and 0 < Wy < Wimgsr-
The assumption on the range of wy is exact because the amount
of the actual tool wear is never less than zero. It is difficult to
know the range of Wy a priori. however, one reasonable choice of
Wy is that Wmaz is the same as the maximum allowable amount
of tool wear corresponding to the tool life. By trial-and-error.
select { and w, of the linear part of the system £ = Az in such
a way that W, remains within the range 0 < Wy < Wgmq,. From
extensive simulation studies. it was observed that such a selec-
tion for { and w, did not require many trials.

4 Simulation Results

It is known that the measured cutting force signal is generally
corrupted by process and measurement noise. However. it is also
known that the frequency range of the process noise, which is
mainly caused by the vibration of the workpiece, is much higher
than that of the signal used for tool wear estimation (Danai
and Ulsoy,1987a). Thus, it is reasonable to assume that the
process noise can be filtered from the signal. The measurement
noise contained in the force signal is modeled here as a normally
distributed zero mean white sequence whose standard deviation
is o, where ¢ is estimated to be 1% of the nominal cutting force.
In the simulations, the measurement noise is generated using a
pseudo-random number generator giving the same distribution
and standard deviation as specified in the noise model. The
measurement noise modeled in this way is very similar to the
noise observed in many actual cutting force signals as illustrated
by the experimental data in Fig. 1 (Ulsoy and DeVries,1989).
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Fig.1 Experimentally obtained cutting force components in turn-
ing: (a) normal, and (b) radial.



The cutting conditions used in the simulations are selected
to be

v = 200m/min, f = 0.25mm/rev, d = 3.0mm. and ¢ = 20N
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time - min

Fig.2 Simulated cutting force signal
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Fig.3 (a) Simulated flank wear progress (b) Simulated two tvpes
of flank wear progress

And, the model parameter values given in Table 1 are used. For
the purpose of simulation, the initial wear on the tool is selected
as wp(0) = wyo(0) = 0.0lmm and the maximum allowable wear
is selected as Wymqr = 0.3mm. Given these conditions, the sim-
ulated cufting force signal and the flank wear versus time are
shown in Fig. 2 and Fig. 3

To estimate the tool wear. a nonlinear observer is designed
by following steps 1 through 4 given in Section 3. The estimated
tool wear wy is assumed to be bounded: 0 < w; £ 0.3. Using
this bound, ; = 50.8 is calculated from (24). The condition,
which allows the observer error dynamic system to be stable.
is obtained from (28) such that the natural frequency and the
damping ratio of the linear part of the observer error dynamic
system satisfies

Cwn > 50.8 (29)

Based on the above condition, ( and w, are selected to be 0.707
and 80 rad/min respectively. The resulting observer gains, cal-
culated from (26) and (27), are G; = —10.59 and G, = 6.67.
The simulation is carried out with initial conditions of w;;(0) =
wep(0) = 0. and the result is shown in Fig. 4. From which.
one can see that the estimated tool wear follows the actual tool
wear progress within a reasonable amount of error. However.
the estimated tool wear states are corrupted by a considerable
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Fig.4 (a) Estimated flank wear (b) Estimated two tvpes of flank
wear



amount of noise which originates from the measurement noise
in the cutting force signal. After the estimated tool wear and
the states are filtered through a low-pass filter, e.g., a 6th order
low-pass Butterworth filter with 0.033 Hz cut-off frequency, it is
observed that the noise is significantly reduced (see Fig. 3).

To see the response of the observer to the measurement noise,
a slower dvnamics is chosen in the linear part of the observer
error dynamic system, such that ( = 0.707,w, = 5rad/min are
chosen instead of ¢ = 0.707,w, = 80rad/min. One can see that
this choice violates the condition (29). However, because this
condition is a sufficient condition, the violation of the condition
does not mean that the error dynamic system will necessarily be-
come unstable. The result of the simulation is shown in Fig. 6.
The estimated tool wear follows the actual tool wear within an
acceptable error, and the effect of the measurement noise is sig-
nificantly reduced. From these results, we can see that the noise
rejection ability of the nonlinear observer depends on the choice
of ¢ and w,. But, notice that the choice of ¢ and w, in Fig. 6
does not guarantee the stability of the error dynamic system,
since it violates the condition in (29).

Remark: Based on many simulation studies, the sufficient con-
dition for stability in (28) appears to be very conservative. Se-
lection of ¢ and w, according to (28) is intended to ensure the
stability of the observer error dynamic system, even with ex-
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Fig.5 (a) Estimated flank wear (b) Estimated two types of flank
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Fig.6 (a) Estimated flank wear (b) Estimated two types of flank
wear using a slower dynamics

tremely poor initial estimates. However, in practice, the initial
estimates of the tool wear are close to the real tool wear. In
such cases, certain ¢ and wn, which violate the condition (28).
can allow acceptable tool wear estimates as shown in Fig. 6.
The conservativeness of the sufficient condition for the stability

of nonlinear systems is reported in the literature (Craig,1988).

5 Summary, Conclusions and Future
Work

In this paper, a nonlinear observer for the cutting process is
presented such that the states(i.e., two types of the flank wear)
are estimated using the output(i.e., the cutting force signal) and
inputs(i.e., the feed, the depth of cut, and the cutting speed).
The basic assumption in designing the nonlinear observer is that
the model structure and model parameter values are exactly
same as those of the actual cutting process. Under this assump-
tion, the stability condition of the observer error dynamic system
is obtained by utilizing the physical limitation of the actual tool
wear progress and the Total Stability Theorem. The nonlinear
observer is designed in such a way that the obtained stability
condition is satisfied by a suitable selection of the observer Eaiﬂ.
Simulation studies show that the presented nonlinear observer



estimates the tool wear acceptably well even in the presence of
poor initial estimates and measurement noise.

The implementation of the presented method using a micro-
processor requires a discrete time version of the nonlinear ob-
server. Because the development of tool wear is a relatively slow
process, it can be well approximated using a simple backward
difference approximation to the time derivative, given a high
enough sampling frequency. Therefore, the presented method
can be implemented on a computer system without difficulty.

The perfect modeling assumption we have used here is, of
course, impractical. The model probably has errors in the model
structure and errors in the model parameters. We can conjecture
that the error between the estimated tool wear and the actual
tool wear remains bounded, the size of the bound depending
on the modeling errors. The conjecture is based on the Total
Stability Theorem given in Section 3, where modeling errors
cause the nonlinear function k2(t, z) to be non-zero. If the bound
of the error in tool wear estimation is small enough to be ignored
in practice, the nonlinear observer presented in this paper can
be used.

In addition to the problem caused by modeling errors, iden-
tification of the parameters of the model (1)-(4) is not a trivial
problem in practice. It generally requires a large number of
experiments for each combination of tool and workpiece. More-
over, parameters may be time varying due to changes in cut-
ting conditions. An adaptive version of the nonlinear observer
presented here is considered to be a possible solution for this
problem. In the adaptive nonlinear observer, the tool wear and
model parameters are to be simultaneously estimated by using
the cutting force sigua: auu Lipui siguais (le., the ifeed, the
cutting speed, the depth of cut). However, in the adaptive
nonlinear observer, some problems (such as the local minima
problem which frequently occurs in nonlinear parameter adap-
tation) may deteriorate the accuracy of the tool wear estima-
tion. To avoid this, off-line direct tool wear measurements using
computer vision will be combined with the adaptive nonlinear
observer. These studies will be reported in future articles.
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\BSTRACT A general model-based methodology for on-line esti-
aation of tool wear rate based on cutting force measurements is intro-
uced. The proposed methodology is designed to operate under vary-
ag cutting conditions dictated by the workpiece geometry or adaptive
ontrol strategies. This methodology, which uses parameter estima-
ion techniques to track tool wear during cutting, is demonstrated in
imulations and cutting experiments. The experiments, conducted for
arnine enerations with a varying depth of cut, show good agreement
etween estimated wear values and the actual values of tool wear mea-
ured intermittently during the cut.

Introduction

The full automation of machine tools requires reliable techniques
)r on-line sensing of tool wear and breakage {1.2]. Since tool wear has
direct influence on the part dimensions, on-line tool wear information
indispensable in precision machining {3]. The on-line sensing of tool
ear is an essential part of any realistic adaptive control optimization
ACO) system (4], and is important in adaptive scheduling of machine
>wn-time for tool changing. Unfortunately, despite vears of research
. this area. a reliable on-line tool wear measurement technique does
ot exist [4.5].

The on-line tool wear measurement problem has been investigated
; numerous researchers {6]. The proposed methods can be categorized
to two groups: direct and indirect wear sensing. Direct methods. as
. name implies, make an assessment of tool wear by either evaluat-
g the worn surface by optical methods [7], or measuring the material
ss of the tool by radiometric techniques [8]. Since the surface of the
ol is visually inaccessible during the operation, optical methods can
+ used only during workpiece loading, which limits their application.
pecially for parts with long machining times. The difficulty with the
plication of radiometric techniques on the shop floor is their require-
ents for special preparation of the tool and the potential hazards due

radioactivity [9].

Indirect methods, on the other hand, are based on measuring vari-

les which are related to wear such as force, torque, temperature, tool
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on-line tool wear estimation.

The physical model approach. which relies on mathematical mod-
eling of the physics of cutting, is limited in applicability because of the
inherent complexity of the cutting process. Moreover, since parameters
in these models change with tool-workpiece combinations, off-line test-
ing is required for each case. Another limitation in the utilization of
the physical modeling approach is the lack of appropriate sensors. For
example, most m~7cls developid L. thlL Lppivess viuphasize the rela-
tionship between tool wear and temperature (e.g., [18]). The absence of
a reliable practical tool-edge temperature sensor limits the application
of these models.

The empirical approach, on the other hand, relies on experimentally
observed relationships to detect tool failure or estimate tool wear. The
empirical methods for tool wear estimation usually consider a “black
box” with a relationship between the measurement and tool wear (e.g.,
acoustic emission and flank wear). Therefore, they cannot accomodate
the full range of cutting variables involved in the process. This causes
serious limitations when the cutting variables are changed due to part
geometry or control strategjes.

Most of the above model-based approaches have been developed
for fixed cutting conditions. In practical applications, however, the
cutting conditions are not fixed. The depth of cut changes because
of the part geometry, and the feed might change according to control
strategies. Since the measured variable is affected by both tool wear
and the changing cutting conditions. the detection of tool wear by
indirect measurements becomes more challenging. The problem is to
separate the direct effect of the wear on the measurement from the
other effects. So far. this problem has not been thoroughly addressed
in the literature.

The objective of this paper is to present methods that estimate in
real time the rate of tool wear by using cutting force measurements.
The methods use a mathematical model to separate the effect of tool
wear on the measured variable from the effects caused by variations
in the cutting variables, and therefore they may operate even in the
vibration, or acoustic emission [10-15]. These techniques estimate tool
wear by correlating it with the measured process variable. Some ap-
proaches rely on a detailed physical model of the cutting process (e.g..
[16]), while others use empirical relationships between the measured
variable and tool wear (e.g., [15,17]). Both the physical and empirical
model approaches have certain limitations. however, when applied to



presence of varying cutting variables. Op-line parameter estimation
techniques are used to estimate the model parameters. Therefore. they
require neither a data-base nor prior off-line testing. The effect of tool
wear is identified by estimating a parameter which is proportional to
the tool wear.

The following sections present (i) the proposed model and the ap-
proaches used to estimate the rate of tool-wear, (ii) simulation results,
(iil) the implementation of the proposed approach in cases where the

depth of cut varies in steps, and (iv) analysis and evaluation of the
results.

2 Approach

Experiments have shown that when the flank wear is the dominant

wear, the total cutting force (F) can be separated into two components
[19,20] such that

F=F) + OF (1)

where Fj is the cutting force when the tool is sharp and AF” is a force
proportional to the total flank wear (Wr) :

AF = Ky(v, f,d) Wr(v, f,d,t)

Both Fj and AF' are functions of the controllable cutting variables :
the cutting speed (v), the feed (f), and the depth of cut (d). If only
one of the cutting variables varies in the process. the model considered
for AF’ is assumed to have the form

AF = C ¥ Wr(b",1) (2)

where C, 3. and v are empirical constants, and b is the manipulated
cutting variable (i.e., b might be v, f, or d).
A relatively large wear Wy is developed rapidly in the first few

seconds of the cut [21]. The total flank wear width after this short
period mav be written 2c

Wr(b7,t) = Wo + Wb, t) (3)

Substituting Eq. (3) into (2) yields

AF = AFy + AF @
where
AFy, = CY¥P W,
and
AF = CHPWH,1) (5)
Using these definitions we may rewrite Eq. (1) as
F = Fy + AF (6)
where
Fo = F§ + AF (7)

Fo is the initial measured cutting force. Note that in practice separate
measurements of Fjj and AFy are impossible. Equations (5) and (6)
2xpress the fundamental relationships needed for wear estimation.

After the initial transient. it is assumed for constant cutting condi-
:ions that the flank wear rate remains constant during most of the cut,
ind that it only increases during the final accelerated tool wear pe-
‘jod, where the tool reaches its allowable wear limit. This assumption
mplies that we can write

Wb, t) = W)t (8)
and Eq. (5) may be rewritten as
AF = CY¥W(O")t (9)

The objective of this paper is to introduce methods to estimate flank

wear from force measurements. even under varying cutting conditions.
Depending on the cutting variable manipulated during the cut. one of
three possible cases exists for Eq. (5):

case # 1 I~0 v #0,
case # 2 3#0 y~0, and
case # 3 3#£0 ¥ #0.

In the first case. the change of the cutting force is due to the change
of flank wear. and the wear rate changes with b. A typical example is
when b = v: changes in the cutting speed strongly affect the wear rate.
but their direct effect on AF is small {22]. In case # 2. the change of
b has a direct effect on AF, while the wear rate is almost unaffected
by b. A practical case is when b = d; the effect of the depth of cut
on flank wear is very small [23], but it is almost proportional to AF
[19,24]. The case where both exponents in Eq. (5) are nonzero (case
# 3) is the most complicated one, since the effect of the variations in
b are felt both directly, through 7. and indirectly, through an affected
wear rate. In practice. b = f fits this case [25].

For the first two cases. the proposed methods are based on estimat-
ing a variable X defined by

X = CW(©) (10)

This estimation is done by measuring the rate of the cutting force
increase during cutting, given by combining Egs. (6) and (9) as
AF F - K

— = — = X("M) ¥ (11)

and subsequently separating X from b°.

The real-time estimation of lank wear becomes even more challeng-
ing when the variable b is changed during the cut. A step change from
be—1 to bi at time t; will cause an abrupt change in the cutting force
from Fy_, to Fi, as shown in Fig. 1. As will be shown later. in the
first two cases Fi(bx,tk), or in short Fi, might be considered as a ref-
erence point for the segment machined with by, and the corresponding
AFi(bg, ), or in short AFy, is used in the estimation processes. In
these cases. for b = b, Eq. (11) becomes

F(be,t) = Filb, te) _ AF(1y)

Tk Tk

= X(b))b} (12)

where
Te =t — tg

Equation (12), however. cannot be used in the third case. In this
case AF(bg,t), rather than AFy(bi,7x), must be used for the estima-
tion, and therefore the model parameters of Fp(bx) must be estimated
as well; this will be explained below (Section 3.3).

)

Cutting Force

x Data Point

! i
ti t
Time

Fig.1  Schematic of the cutting force. F', when the cutting
condition changes in steps



For the three cases above, three corresponding estimation methods
will be introduced, which are designed to allow the identification and
separation of Fy and AF from F and the subsequent estimation of the
value of CW (see Eq. 5).

o Method I This method is suitable for case # 1, where the rate
of the cutting force increase (F — Fi)/7, represents X (Eq. 12
with 8 = 0). X can be estimated by the identification of F;
and its subsequent subtraction from the total cutting force F.
The variable CW is then estimated by integrating X (see Eq.
10). With this method, the sudden changes in the cutting force
caused by step changes in b are related to changes in Fy but not
in the flank wear.

e Method II: This method is developed for case # 2, in which (F -
F.)/7y is a direct function of b and a constant wear rate W (y =
0). In this method. F; is identified and subtracted from F as
in Method I. Since in case # 2 the rate of the cutting force is
affected directly by b, any change in the cutting force rate after
a step change in b is solely due to the new b. This enables the
simultaneous estimation of both § and X, and the subsequent
estimation of CW.

o Method III: This method is suitable for case # 3, in which (F -
F)/x is affected directly by b as well as by W which is a function
of b. The two effects must be separated for estimation, and mea-
suring the incremental changes in the cutting force AF; is not
sufficient in this case. The separation of CW from ° is based
on Eq. (5), for which AF should be known. To estimate AF, an
additional model equation for Fy is needed. The parameters of
this model are estimated at the beginning of the cut where W is
very small (i.e., AF = 0 in Eq. 6). The model of Fy is then used
with other cutting conditions at the later stages of the cut. The
estimated Fp is subtracted from the total F to obtain AF (see
Fig. 1). The obtained AF can be sub~cgucntly used (o estimate
3, and then CW may be identified.

Methods 1 and II do not rely on a mathematical model of Fp for
estimation, and therefore random variations in Fy (or errors in the
estimated Fp) will not affect the estimation of the wear rate. Method
111, however, is sensitive to errors in the estimation of Fy. Therefore,
applying the first two approaches is preferred wherever possible.

3 Analysis

This section provides a detailed description of the above methods
and studies their performance in simulation. The model used in the
simulations is

F = Fj+ OAF' + notse (13)
where the initial cutting force is
F{ = Kyb° (14)
ind the additional force is
AF =CHW¥wW (15)

vhere & is the cutting variable, and Kj, C, a, and 8 are constants.
"he simulated noise is a white Gaussian noise of 5% (peak-to-peak) of
he total cutting force signal F. This particular noise distribution has
een chosen based upon observations of actual cutting forces. as seen
or example in Fig. 2.

.1 Method I

In this method, the abrupt changes in the cutting force caused by
udden changes in b are removed from the total cutting force at each
iterval k. and the resultant signal AF; is analysed. An interval k is
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Fig.2 A cutting force record of turning 4340 stecl by a
carbide insert (Fy,, the normal component; F;. the
feed component; and Fy, the radial component)

defined here as a segment of a cut in which the cutting variable b is
kept constant. In this interval, AF} is given by substituting 3 = 0 into
Eq. (12) which yields

AF, = Xe1i (16)

Note that AF; is the force increase in interval k, and 7 is the time mea-
sured from the beginning of this interval. Equation (16) might be used
to estimate X with a two-variable least-square estimation algorithm as
explained below. The method requires sampling the measured cutting
force at a constant rate (on our experimental system the sampling rate
is 2 Hz).

The force increase AF} is calculated at every sampling period ¢ by

O Fii = Fi(be) = Fe(by) an)

where F;(bs) is the measured force at the i th period, and Fi(b;) is the
initial cutting force of interval k (at t4) and is a constant reference for
the interval k. This constant, however, must also be estimated since its
direct measurement at ¢t = t; is unreliable because of noise and possible
overshoot. (We observed in our experiments that at t, the force signal
usually has an overshoot or undershoot.) Errors in the measurement of
Fi(bi) at the beginning of the interval cause severe errors in AF; and.
in turn, in the estimated X. For these reasons we must simultaneously
estimate both X and Fj(bx). Combining Egs. (16) and (17) yields the
estimation model

Fi(bk) = X 7k + Fi(by) (18)
This is a linear model of the form
y=0'0
where ¢ is a vector of known variables
¢7 = [ 1] (19)
and 6 is a vector of the unknown estimated parameters
07 = [Xi Fi(br)] (20)

The recursive least-square estimator described in Appendix A is used
to estimate X, and Fi(b:) at each sampling period. Note that 7 is
the time measured from the beginning of the interval. At r, = 0 the
estimation gain matrix P in Eq. (55) is reset and the estimation of X'x
and F starts. A numerical value proportional to the estimated wear
may be calculated at each sampling period by the equation

—

k-1
CW(t) =Y CW; + Xini (21)
=1

where



with 7/ being the total time elapsed during interval j. Note that X §
indicates the rate of tool wear (see Eq. 10), and the actual tool wear
can only be estimated when C is known.

The performance of Method I was tested in digital simulation. The
simulation model is given in Egs. (14) and (15), which in this case
(3=0) are

Fy = 300057%! + noise (22)
and
AF" = 1200 W + noise (23)
The wear model for the simulation is
W = 0.04 + (0.03t + 0.00051t%)(b/bo)’ (24)
where the forces are in Newtons. W is in mm, and by = 150 and

6 = 3. (These numbers as well as the coefficients in Egs. (22) through
(24) are obtained from cutting steel with carbide tools with b being
the cutting speed in m/min.) Notice that the parabolic component in
the wear model simulates the accelerated wear at a large t, but the
estimation method does not accomodate this term. This results in
an estimation error, but it corresponds to practical situations where
the wear increase is not precisely linear. Equation (24) is valid for
constant cutting conditions. Here. however, we assume variations in
the parameter b. and therefore it has to be modified to

W=+ Y TW, =004+ 3 T(003+ 0.00IiT)(Z—')" (25)
(]

=1 =1

where T is the sampling period (in our experiments and simulations
T = 0.5 second). Note that from Eq. (23), C = 1200. Equation (25)
was simulated for a varying b; as shown in Fig. 3a. The resultant force
which is used for the estimation includes 5% peak-to-peak Gaussian
noise. and is shown at the top of Fig. 3b. The noise intensity in the
simulation appears higher than that encountered in practice. Figure
3b also shows the “true” wear and the estimated wear that is obtained
by applying 2 10-second low-pass filter on the result of Eq. (21), and
by assuming known C and Wy (C = 1200 and W, = 0.04). The error
between the “true” and the estimated wear is below 0.05 mm during the
antire cutting cycle, which is a good result for practical applications.

3.2 Method 11

The second estimation method is used when 8 # 0 and v = 0 in

1gs. (5) or (12). In this case, the relationship defining AF; has the
orm

AF = XbPr, (26)

}v comparing Eqs. (16) with (26), one might observe that the estima-
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tion problem is more complex here, since the two parameters .\’ and
5 must be estimated simultaneously. It should be re-emphasized that
in this case we assume that the wear rate, and consequently X. are
independent of 5. For estimation purposes. the cutting force Fi(by) is
sampled at constant sampling rate, and a slope, S, defined by

= Xb* (27)
Tk

is estimated. Each segment has a different slope. In principle S may be
calculated from A F; at each sampling period, and then X and 3 can be
estimated by the algorithm presented in Appendix A. However. direct
calculation of S from Eq. (27) causes enormous errors, which forces us
to introduce a iwo-siep esiumaiion weiiiud. First, S is estimated by
the method introduced in Method I, using the model

Fi(bi) = S + Fu(be) (28)

instead of the model given previously in Eq. (18). The estimated Sis
subsequently fed, at every sampling point, into a second estimator. by
which X and 8 are calculated. This second estimator is based on the
least-squares parameter estimation algorithm given in Appendix A.
In order to use this ordinary least-squares estimator, the estimation
model must be linear in its parameters, but the model in Eq. (27) is
nonlinear. This requires modification in the model representation. For
S=Sanda large signal-to-noise ratio, Eq. (27) may be written as

log§ = logX + 3 logb (29)
This form of Eq. (29) corresponds to the linear equation
y=9'86 (30)
where ¢ is a vector of known variables, defined here as
o7 = {1 logb | (31)
and @ is a vector of unknown constant parameters, defined here as
07 = [logX 3] (32)
In the second step of the estimation algorithm, log X and § are de-
termined using the estimated S obtained at the first step. The wear
rate is proportional to X, as given by Eq. (10). The estimated wear is
subsequently calculated by the accumulation process given in Eq. (21).
The performance of the above method was tested in a simulation.

The model used for the simulation of the cutting force is given in Egs.
(14) and (15), with @ = 0.96 and 3 = 0.95, namely

F = Fj + OF' + noise



with a noise of 5% of the total cutting force F
F) = 750609 (33)
A F' = 5008%%5 W (34)

and the wear model in the simulation is
W = 0.04 + 0.03t + 0.0005¢t* (35)

namely. the wear is almost a linear function for small ¢, but also includes
a parabolic function of t. The latier simulates the wear acceleration
period just before the tool fails. The wear. however. is independent of
the cutting variable b. a model that fits the case in which b is the depth
of cut.

The estimation process of Method II was tried in a simulation with
a varying b. The changes in b are shown in Fig. 4a. and the correspond-
ing cutting force is shown in Fig. 4b. In the estimation process. the
force signal is filtered to assure the large signal-to-noise ratio needed to
perform the transformation from Eq. (27) to Eq. (29). A low-pass filter
with time constant of 2 seconds is used for this purpose. The values
of log X' and 3 are then estimated, and X is subsequently calculated.
The variable CW is estimated by the accumulation process given in
Eq. (21).

The estimation of CW by the accumulation process does not start
until the estimation of 3 becomes reliable. Figure 4c shows the esti-
mated variable 3 which is verv sensitive to noise. Reliabilitv of 3is
determined by an algorithm that checks the changes in the diagonal
component that corresponds to J in the gain matrix P in Eq. (55).
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In this case. the accumulation starts automatically at the beginning of
the 5th step (after 1.6 minutes). By assuming known C (500) and WY
(0.04). the estimated wear " mayv be drawn. Figure 4d shows the val-
ues of W~ and W as estimated by Method II. The differences between
the estimated values and the “real” ones are because of the noise sen-
sitivity of the estimation due to taking logarithms in Eq. (29) and due
to the fact that Method II assumes a constant wear rate, whereas the
“real” wear-rate used in the simulation is W = 500(0.03 + 0.001t). The
estimation results are good, and the error is less than 0.04 mm. Since
we simulate realistic conditions, we believe that practical experiments
will provide similar results.

3.3 Method III

This method handles the most comprehensive case in which AF in
Eq. (5) is affected by the manipulated cutting variable both directly
and indirectly (through W). In order to separate these effects, a model
of the initial force Fo must be estimated in the earlier stages of the cut
(where the effect of W on the cutting force is small) and used later to
estimate the variable CW.

The model of the initial measured force is given by Eq. (7) and has
the form

Fo(b) = K5b° + CH¥ W, (36)

where W is an initial wear developed during the first seconds of the
cut. Since in practice the term containing W5 is small and a = 8 (e.g..
for b being the depth of cut a ~ § = 1), we obtain
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Fo(b) = Ko b° (30

where
Ko = Ky + CWy (38)
Ko and a are the model parameters that should be estimated. In order

to use a linear least-squares parameter estimation algorithm, the above
model is written in the form

log Fo = logho + alogh (39)

The linear least-squares estimation algorithm requires a rich input,
namely enough variation on b. For a two-parameter estimation prob-
lem, we have to operate the process with at least three values of b.
The problem is that during these initial stages the tool wears, which
means that the value of Wy in Eq. (38) varies. Consequently Ky in Eq.
(39) is not constant, and the conventional estimator does not work.
To compensate for the tool wear we have developed a special four-step
algorithm to estimate the initial-force-model parameters. This estima-
tion algorithm is explained below.

For small wear (K} >> CW in Eq. 38) the force model has the
form

F = Kob° (40)

where Ko = K{ + CW. The estimation algorithm is based on the fact
that a step change in b (from b, to b¢) immediately affects the cutting
force. but the wear at this instant remains constant (namely Ao does
not change). This means that the force before the step change is

Fia= Kobi'il

and immediately after the step is
F = Kob*
where F|_, and Fj are shown in Fig. 1. Dividing these two equations
yields
o = log(Fy_y/Fk)

“ 7 Tog(bk-1/bk)
At each step change of the cutting condition, a value of ay is obtained.
However, as we stated in the discussion of Method I and II, an esti-
mation based on one measured point (i.e., F{_; or F}) is unreliable.
Therefore we use a linear least-squares estimation algorithm to esti-

mate at each segment the initial force ﬁ and the slope S from the
:quation

(41)

Fi=Fi+ 5 (42)
Chese estimated values are utilized to calculate the end-of-segment
‘alue —

F = Fi + Simy. (43)
vhere ; is the total time elapsed during the segment k. This is the first
tep of the algorithm. In the second step, the values of Fe (calculated
rom Eq. 42) and f,:l (calculated from Eg. 43 for segment k — 1) are
ised to calculate o in Eq. (41).

Obviously 7/ is not long, since we try to keep the estimation period
f the initial force model as short as possible. The estimation error in
3gs. (42) and (43) is approximately inversely-proportional to 7/, the to-
al observation time of a segment (26]. We have found that the inclusion
{ the observation time in the estimation of a improves substantially
he reliability of the model. This time inclusion is done as follows.
‘irst, since according to Eq. (41), ax depends on the measurements at
egments k — 1 and k. weighting factors my defined by

1 ! TkTko)
e S T “

re calculated. Subsequently, these m, are used to estimate a by

a= ijaj/ ij (45)
=2

=2

Finally Ao in Eq. (37) is calculated by

Ko=F/8 (46)
with Ij\estimated by Eq. (42) for the initial cutting period. (Note that
Fy = Fo(b1).)

To conclude, the estimation algorithm of the initial force model has
four steps:

1. Using a least-squares estimation for ﬁ and F} at each of the
initial segments.

2. Using these values to estimate a; by Eq. (41) at the end of each
segment.

3. Using a weighting average to obtain & by Eq. (45).
4. Using Eq. (46) to obtain Ky.

Once the parameters Ay and a of the force model Fp in Eq. (37) are
identified, the model can be used for different b’s during cutting. The
model of Fy with the appropriate b is subtracted from the measured F
to compute the variable AF during the later stages of the cut for any
cutting conditions (see Eq. 10). The obtained AF is subsequently used
to estimate the flank wear through Eq. (5).

To obtain reliable results, however, the use of AF is not straightfor-
ward, and the estimation process requires another multi-step algorithm
as explained below. Let us assume that the cutting condition changes
from b,_; to by at time ;. Based on Egs. (5) and (6). the force equation
before the change is

Fi_y = Folbiey) + CO_ W (47)
and after the change in b is
Fi = Fo(be) + CH{w (48)

Namely, the change in the cutting force (Fx — F}_,) is attributed to
two mechanisms : a change in the basic force Fp and a change caused
by the varving contact zone at the tool’s flank. Note that W remains
constant at tx. Using the above two relationships one can estimate 3
at each step change :

- log{(Fi_, — Fo(bk-1))/(Fx — Fo(bk))]
log(bk-1/bx)

The estimation of CW is based on another four-step algorithm.
similar to the one used to estimate the initial force model.

Bk

(49)

1. F’,:l and Fj are estimated by the same procedure used in the
estimation of a in Egs. (42) and (43).

2. At each step, [ is calculated by Eq. (49), and the force change
is calculated by

A F(by) = Fx + Spmi — Fo(by) (50)

3. Weighting factors m) are assigned to each estimated 3x. Thev
are calculated by

Fy 1 ro1 1

—+ ——) (31
Fes oo T Pl R O

m} = 1/(

where the terms Fi/(Fi — Fo(bi)) and F{_,/(F]_, — Fo(bk_1))
are needed for normalization. Subsequently, 3 is estimated by
the following averaging process

k k
B=Y mig;/3 m (52)

i=n 1=n

4. The estimated 3 and the estimated change at the step AF( bi)
by Eq. (50) are used to estimate CW from the equation :



CW = = (53)

As mentioned earlier. this method is sensitive to any random vari-
ations in F;_, and Fi, estimation errors, or modeling errors of Fp (see
Appendix B for a semsitivity analysis). However, as demonstrated by
the simulation result below, our algorithm is very robust and gives good
results despite this high sensitivity. It should be emphasized again that
the changes in b should be made in steps, and the method does not work
for cases where a cutting condition is changed gradually (e.g., the depth
of cut in cutting a cone on a lathe).

The performance of Method III was tested in simulation. The model
used for the simulation is defined by Egs. (14), (15), and (24) with
o = 064, 8 = 06, 6§ = 1.5, Ky = 4400, C = 2800 and b = 0.25.
This model fits perturbations on the feed, given in mm/rev. and force
given in Newtons. Figure 5a shows the changes in b in the simulation.
The simulated force signal which contains 5% noise is shown in Fig.
5b. To decrease the effect of the noise on the estimation of F;_, and
Fi. the force signal passes through a low-pass filter. The two four-step
estimation algorithms are then applied. The resulting estimated wear
(filtered with a 10-second low-pass filter) is plotted in Fig. 5b together
with the “true” wear. The tool wear estimation does not start until the
estimation of 8 becomes reliable. The reliability of 3 is tested by an
algorithm that checks the magnitude of 3~ m]. The estimated 3 for the
simulated case is shown in Fig. 5c. and tool wear estimation starts only
after 3.9 minutes. As seen in Fig. 5b, the estimated tool wear follows
the “true” wear closely with a maximum error of 0.06 mm, which is
acceptable for many applications in which the tool wear is needed.
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Table 1: Cutting variables, tool and workpiece material

Test | Tool | Workpiece | Feed Cutting
No. Speed
1 TNWA 0.0254 366
2 431F 4340 mm/rev | m/min
3 TNMA ann’d (0.001 (1200
4 433E in/rev) { ft/min)
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-0.5—
- J | 1 I | ! |
W4 % % 10 17 u
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The estinated variable 8 verse the true g in
Method 1II

4 Experiments

Fig.5¢

In order to test the performance of the estimator in practice. turning
experiments were designed and performed. Only Method II was tested,
which requires changes in the depth of cut.

The methods proposed assume flank wear to be the dominant type
of tool wear. Therelore, cutiing conditions were selected to produce
mainly flank wear during the cut. Table 1 shows the cutting conditions
as well as the workpiece and tool combination used. These cutting
conditions were also selected to generate rapid flank wear (without
crater wear). so that long cuts were avoided. Four tests were performed.
of which three were continued until the tool failed. During these tests
the depth of cut was changed in steps of 0.64 mm (0.025 inch) or 1.28
mm. Figures 6 and 7 show the variations of the depth of cut in two of
the above tests and the normal component of the cutting force. The
length of cut along the bar for each cutting segment was 7.62 mm (0.3
inch). The tests were designed to maintain a constant cutting speed
at the different diameters caused by the different depth of cuts. The
actual flank wear was also measured intermittently during the tests
using a tool makers microscope.

The experiments were carried out on a Lodge & Shipley 10/25 Bar
Chucker CNC lathe with General Electric Mark Century 2000T con-
troller. The transducer used was Type 92574 Three Component Kistler
force dynamometer with three Model 5004 Kistler Dual Mode charge
amplifiers. In order to avoid repeating the tests for signal processing
purposes, the cutting force signals were recorded on an instrumenta-
tion tape recorder. A Model Store 7DS Racaltape recorder was used for
this purpose. The minicomputer used was DEC LSI-11/28 Plus which
used a 12 bit ADV-11-C A/D converter. The sampling frequency used
for digitization was 2 Hz which was sufficient in keeping track of tool
wear that is inherently a slow process. Also, in order to avoid aliasing.
Khron-Hite Digitally Tunned 3520 Series filters were used as low pass
filters. The attenuation frequency was selected at 1 Hz. which was half
the sampling frequency.

The sampled cutting force signal contained a fair amount of noise
which had to be filtered. For this purpose a first order software filter
with a time constant of 2 seconds.

0.22

(z) = z2-0.78




was applied. More elaborate filter designs may give better results [27].

According to our basic assumption for tool wear estimation. the
slope of the force signal should be either positive or zero (for cases
where tool wear stayvs constant). The cutting force data obtained from
the above tests showed some instances where the slope was negative.
Since according to our model a negative slope would mean an impossible
reduction in tool wear. the periods of negative slope were taken as zero
in the estimation.

The filtered cutting force data were used for tool wear estimation.
The estimation results are shown in Figure 8. To compare the esti-
mated wear (W) and the real flank wear (W), direct measurements

using a microscope were taken at regular intervals. Figure 9 shows,

W vs. W for seven data points. The on-line method allows only the
estimation of (C’VV — CWy) and not . Thus off-line tool wear mea-
surements are needed to determine the values of Wy and C. so that W
can be calculated from CW. In many cases. however, the tool changing
criterion is the start of the accelerated wear region. In these cases we
are interested only in the wear rate which is proportional to Xj, and
the determination of C and W} is not needed.

5 Discussion

Though the force signals. with which the proposed methods were
tested. were generated by simulations, these signals are very similar to
those obtained in real production. They contain noise of realistic inten-
sity. and a realistic wear model that contains a parabolic component
that simulates the acceleration in wear rate. Therefore, the simulation
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studies provide a realistic assessment of the methods proposed.

Note that the wear estimates are based on the assumption of avaii-
ability of the values of the initial tool wear Wp. and of the parameter
C which relates the cutting force and tool wear. These two values may
not be readily obtainable. The initial tool wear for each new tool ap-
pears to be scattered around a certain value {28] and to be independent
of the initial cutting conditions. Due to this uncertainty in the initial
wear value, the tool wear estimation might have an additional error.
However, if the initial wear varies within the range of 0.04 + 0.02 mm.
the accuracy of the tool wear estimation will not be greatly affected.
Also note that if only the wear rate is needed, then the value of W is
not required at all. The parameter C is related to the material proper-
ties of the tool and workpiece (29], and may be considered a constant if
these properties remain unchanged. Usually, the value of C is obtained
from off-line experiments.

An alternative method to obtain the values of W and C might be to
use a few direct measurements of tool wear (e.g.. with a vision svstem)
for calibration. These measurements may be taken during loading of
the workpieces. In principle, only two such measurements are needed to
calibrate the estimated wear curve, but in practice more measurements
are required.

The last point to be considered is that. in Methods II and III.
tool wear can be estimated only after some initial observation period.
Thus no wear estimation is available at the beginning of the cut. This
does not create a problem. however. since the tool wear information is
needed only at the later stages of the cutting process. when the 100l
wear approaches some allowable limits at which on-line dimensional
compensation should start, or when the tool should be replaced.
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6 Conclusions

Three methods were proposed to estimate flank wear for varying
cutting conditions in turning. These methods may be applied when
one cutting condition varies in steps. and utilize simple and practical
models for which only a few parameters need to be estimated. Recursive
least-squares methods are used for the estimation of these parameters.
Simulated cutting forces with realistic noise levels are used to evalu-
ate all the methods. These simulations also account for possible wear
rate modeling errors. and give good results. These methods, therefore.
are considered to be applicable in real cutting processes. When im-
plemented, they can provide on-line flank wear information between
isolated off-line measurements and reduce the uncertainty of wear pre-
diction based on off-line models. Experimental evaluation of Method
11 was also performed. under stepwise changing depth-of-cut in turn-
ing. The flank wear estimates are quite good in all four experiments
reported after about the first minute of cutting. These experimental re-
sults further reinforce the main conclusion from the simulation studies,
that the proposed methods can utilize force measurement to reliably
estimate flank wear in turning under varying cutting conditions. The
cutting variables must vary one at a time in a stepwise constant manner
and the effect of crater wear must be negligible.
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