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PROGRAM OBJECTIVES: Computer Numerically Controlled (CNC)
machine tools are gaining widespread acceptance in industry.
With CNC machine tools the specification of the operating
parameters (i.e., feeds and speeds) is left to the experience
and judgement of the part programmer, who tends to select
conservative values, and consequently reduce production rates.
Adaptive control (AC) systems are aimed at providing an
additional level of control to automatically adjust operating
parameters on-line so as to maximize metal removal rates
(MRR). AC systems, however, are not widely used in practise
due to the following factors:

(1) A lack of detailed understanding of the machining
process.
(ii) Reliability problems with sensors and other

hardware associated with AC systems.

(iii) Machining time may comprise as little es 5%
of tke total production time, thus, increases
in MRR do not have a significant impact on
production rates without significant improvement
in tool changing, parts handling, etc.

(iv) Performance and stability problems associated
with AC systems due to the variable nature of the
machining process.

The objective of our program is to address the last problem
through the development of high performance, stable AC systems.
Specifically our goals are:

(1) To design a variable-gain or parameter adaptive
AC system which will adapt the AC controller to
the changing process parameters and ensure
stability and good performance over the full range
of machining operations.

(i1) To develop a laboratory system to evaluate the
variable=gain AC controller through machining
tests on an NC lathe and CNC milling machine.

PROGRAM ACHIEVEMENTS (9/81 to 8/82): During the first year
of our program, we have made progress in both the theoretical
and experimental studies required to achieve the above stated
goals.
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Theoretical Studies: We began our theoretical investigation
by reviewing the literature pertinent to AC systems for
machine tools, and through digital simulation studies of

a candidate Variable-gain AC system. These studies have
been presented in the two papers listed in the "Documents"
section and are summarized below.

Typically AC systems for machine tools are classified
into two types [1-3]:

1) Those using adaptive control for optimization (ACO)
extremize a performance index (usually an economic
function) subject to process and system constraints.

2) Those using adaptive control with constraints(ACC)
maximize machining parameters (e.g., cutting =peed
or feedrate) subject to process and system
constraints (e.g., allowable cutting force). ACC
Systems do not use a performance index.

Due to difficulties in formulating realistic performance
indices and in measuring required variables in a process
environment, ACO applications have been limited mainly to
grinding. Most of the systems used in practice for milling,
turning, and drilling are of the ACC type.

A conventional ACC system, as shown in Fig. 1 for a
CNC lathe, is a feedback control system where the feed (f)
is manipulated to maintain a required value (F_) of the
cutting force (F.). The process block in Fig. 1l(a) contains
the control loopg of the CNC controller, the cutting process,
and the force transducer, as illustrated in Fig. 1l(b). The
cutting process itself is part of the control loop, and
variations in the parameters of the cutting process affect
the performance of the AC system. Note that while this type
of system is termed "adaptive" in the manufacturing literature,
it is not an adaptive system in the sense defined in the control
literature [4-7]. An adaptive system in this latter sense,
in addition to adapting the feed to the cutting force, must
also adapt the AC controller to the changing parameters of the
cutting process. Here we refer to such systems as "parameter
adaptive systems."

Many researchers have recognized the need for parameter
adaptive control systems, in order to achieve stability and
good performance over a wide range of operating conditions
[23-29]. Mathias [29] described a commercial AC system with
" aitomatic gain control", where "the controller gain is
automatically reduced at the onset of feedrate oscillations.”
Gieseke [28] reported an AC system with a PI controller where
the P and I action gains are functions of the spindle speed.
Weck [26] has described an AC system which uses digital logic
to switch the controller gains based on the operating conditions.
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Stute [25] has deseribed two alternative schemes for controller
gain adjustment. One uses a cutting process model to estimate
the process gain and adjust the controller gain accordingly
(see Fig. 2)., The second scheme uses a digital PID algorithm
whose gains are a function of the manipulated variable
(feedrate). These parameter adaptive systems, however, all
represent preliminary attempts at a practical solution and

not a theoretically based design.

The most advanced work to date on parameter adaptive con-
trol systems for machine tools has been renorted by Masory
and Koren [23,24]. They have developed a variable-gain AC
system for turning based on cutting force measurement and
manipulation of the feedrate. Fig. 2 shows the structure of
their variable-gain system. By comparing this structure to
that shown in Fig. 1 for a conventional AC system, we note
that a parameter estimation block [30,31] and a controller
adaptation block have been added. The parameter estimation
block provides estimates of the cutting process parameters
which vary with depth-of-cut and spindle speed. The controller
adaptation block uses the estimated parameter values to adjust
the controller gain such that a desired constant value of
the open-loop gain is maintained [23,24]. Masory and Koren
have theoretically and experimentallly (using a 70HP CNC/AC
lathe) verified the feasibility of a veriable-gain AC system
for turning.

Our current project is aimed at extending the work of
Masory and Koren by conducting further studies to:

1) Determine the best strategies and structure for
parameter adaptive control.

2) Develop practical methods for the selection of
adaptation parameters and sampling periods.

3) Evaluate selected designs (from #1 above) through
actual machining tests.

To date we have concentrated on the first task which
requires the investigation of controller algorithms, para-
meter estimation algorithms, and controller adaption
algorithms for a variable-gain system such as shown in Fig. 2
Other structures for parameter adaptive control, such as the
Adaptive Model Following Control (AMFC) system shown in
Fig. 3, will be investigated in the near future [6,7,32].

Digital simulation studies for the structure shown in
Fig. 2 have shown excellent qualitative agreement with the
experimental results in [23,24]. Thus, these studies can
be expected to provide useful information for evaluation and
design. The simulation is based on the following equations
for the turning process [23,24],
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TFC + FC = Kpf (1)

where F_is the product of the actual cutting force and the
sensor gain and the A/D converter gain; f is the feed; K_ is
the process gain and depends on the depth-of-cut, the sp?ndle
speed, properties of the tool and workpiece, and the feed
itself; and t is the process time constant. The feed is
related to the digital command signal (u) from the computer,

. . 5

f + Zgwnf + oW f = K u (2)
where £ is the damping ratio, and w, is the natural frequency
of the CNC servo-loop dynamics. Kg is the servo-loop and

D/A converter gain. The adaptive controller uses an integral
policy,

t t
u = K, J (FR—Fc)dt = K, J E dt (3)
o) o)
The process estimation is also based on an integral policy,
t
K, = Cy fo (Fc—uKm)dt (4)

where Km is the model gain corresponding to K_ in Eq. (1).
Finally, an integral policy is used for the Bontroller gain
adaptation,

t ‘
Kc = c2 JO (K-KcKm)dt (5)

where K is the desired value of the system open-loop gain
which is selected based on stability and performance
considerations. Although the simplest strategies have been
employed, equations (1)-(5) lead to a sixth-order system of
nonlinear equations, the analysis of which is not trivial.
The effect of sampling is then accounted for to derive the
corresponding difference equations on which the simulation
results presented below are based. It should be noted that
the cutting process model in Eq. (1) is intended for control
system analysis and design, and does not attempt to describe
the fundamental physical processes of a machining operation.

Using simple integral policies for the controller,
parameter estimation, and controller gain adaptation necess-
itates the selection of two parameters: c, for the parameter
estimation and cp for the controller gain adaptation (see
Egs. (4) and (5)). The effects of these parameters on
system performance is illustrated in Fig. 5-12. Fig. 4 shows
the stepwisegchange in depth-of-cut (a) that was used in all
the simulation results presented in Figs. 5-12. The sampling
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period used was At = 0.1 second in all cases. Fig. 5 shows
the cutting force response for the conventional AC System in
Fig. 1 (i.e., c; = co = 0). The system is seen to be unstable
at large depths-of-cut. This instability is remedied by
using the variable-gain approach. Fig. 6 shows the cutting
force response with c¢; = 0.001 and c2 = 0.5. The system

is now stable, and Figs. 7 and 8 show how the controller

gain (Ks) and estimated process gain (Kp) are varied to
achieve this improved performance. Another simulation with

a larger cj and smaller c, is also presented in Figs. 9-1l.
Fig. 9 shows the cutting %orce response with c; = 0.015 and
Cy = 0.1. The cutting force response is again stable and,

as shown in Fig. 10, the controller gain (Kc) is adapted to
the changing depth-of-cut in the process. Fig. 11, however,
shows that the estimation of the model gain (Kp) is beginning
to exhibit instability at low depths-of-cut.

The effects of the parameters c] and c; on system
performance is illustrated in Fig. 12, where the absolute
force error criterion is plotted versus c, for several values
of c;. Small values of c; and c, lead to poor performance
and instability. This is to be expected since the variable-
gain nature of the system is lost and the system behavior
approaches that shown in Fig. 5. Poor performance and
instability also results with large c; and c; values. There
is, however, a region of cj and cy values for which good
performance is obtained. The designer of the AC system must
select the ¢, and c» values within this region in order to
ensure stabi}ity ané satisfactory performance of the entire
AC/CNC system. It is clear that practical methods for the
selection of adaptation parameters and sampling period must
be established if parameter adaptive AC/CNC systems are to
find widespread,industrial acceptance.

Experimental Studies: During the past year, we have assembled
the equipment necessary to undertake the proposed experimental
studies. A PDP-11/23 laboratory computer system, complete with
analog-to-digital converters, digital-to-analog converters,
programmable clock, and digital (parallel) input-output ports,
has been purchased. The computer system is equipped with the
usual peripherals (CRT, disk drives, and printer), and has

the following software systems available: (i) RT-11 operating
system with MACRO assembler and FORTRAN, and (ii) UCSD
P-system operating system with UCSD Pascal and FORTRAN '77.
This computer system will be used to implement the variable-
gain AC controller on both a LeBlond NC Lathe and a Bridgeport
CNC milling machine, which are available in our departmental
laboratories.

The interfacing of the computer system to the machine
tools requires cutting force and/or power sensors which provide
the feedback to the computer from the cutting process. The
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computer manipulates the feedrate on the machine tools through
the feedrate override circuits. The experimental systems are
illustrated schematically in Fig. 13. Note that both cutting
force and power signals are available as feedback signals on
the NC Lathe system, and their relative usefulness for AC will
also be investigated. Due to the feedrate override electronics
on the NC lathe, the feedrate cannot be continously adjusted.
It can be adjusted in discrete steps of 15% of the full
programmed feedrate from 0% to 150%. Also note that a power
monitor is not used on the CNC mill, since the mill feed
drives are stepping motors. The feedrate on the CNC mill can
be continously adjusted in the range 0% to 150% of the full
programmed feedrate.

While the required computer-machine tool interfaces, as
described above, are essentially complete, they have not been
tested. 1In the coming months we will be testing the system,
developing the required software modules, and designing the
required machining tests. The machining tests will be designed
to evaluate,

(1) "The comparative performance of conventional versus
variable-gain AC systems.
(ii) The performance of variable-gain AC systems for widely
varying tool-workpiece properties.
(iii) The relative advantages of cutting force sensors
versus power monitors as the feedback element in a
variable-gain AC system for turning.

We expect to begin our machining tests on the CNC mill during
the summer of 1983, and to conduct machining tests on the NC
lathe during the Fall of 1983,
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OBJECTIVES FOR THE NEXT YEAR (9/82 to 8/83)

The program objectives for the next year are:

1)

2)

3)

To continue analytical and simulation studies of
candidate controller designs. Specifically we will
investigate an Adaptive Model Following Controller
(AMFC) design, stability requirements, methods for
selecting adaptation parameters, and methods for
selecting the sampling frequency.

To develop the required software on the PDP-11/23
system. Specifically we will develop programs to

test the interfaces that have been completed, to
implement the AC on the milling machine, and to

compare different AC strategies. Required modifications
to implement the AC on the lathe will be started in
August 1983.

To conduct a series of machining tests on the CNC
milling machine. These tests will involve conventional
AC controllers as well as candidate parameter adaptive

AC controllers. Several different tool and material
combinations will be tested. These tests will provide
the results recuired for comparison between conventional
and parameter adaptive AC strategies.
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