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ABSTRACT

This is a study of the scattering of electromagnetic waves by structures
which are cylindrically or spherically symmetric, but inhomogeneous in the
radial direction. It has applications to dielectric lenses at optical and micro-
wave frequencies; to the propagation of radio waves in the ionosphere, and to
their reflection by meteor trails; to the radar scattering behavior of, and to
the radiation from, cylinders and spheres coated by layers of materials for
ablating and camouflage purposes, or by a layer of plasma.

The first two chapters are devoted to the consideration of the scattering
of a plane electromagnetic wave from a cylinder and a sphere on whose surfaces
an impedance boundary condition holds, and which are coated by one or two
layers of materials whose indexes of refraction are not large compared to unity.
The high-frequency backscattered field is asymptotically determined in terms
of geometric optics and creeping waves contributions. The results have appli-
cations to the radar scattering by space vehicles on which a highly absorbing
ferrite layer is in turn covered by a dielectric ablative layer.

When a plane wave is diffracted by a radially inhomogeneous cylinder, the
radial and circumferential field components are obtained by differentiation from
the axial components of the electric and magnetic fields, which can be expressed
as sums of solutions of certain second order differential equations. Explicit
solutions of the boundary value problem for various cylindrical structures are
given in Chapter Three, and similar studies are performed for spherical struc-
tures in Chapter Four. Also, resonance and dip conditions for the field back-
scattered from inhomogeneous cylinders and spheres are determined, in the

Rayleigh approximation.



A fundamental theorem for oblique scattering by a certain class of
cylindrical bodies is proven: a sufficient condition for the nth TE and the nth
TM modes to be uncoupled for all n and all angles of incidence is that the index
of refraction have no step discontinuities. Whenever this theorem is applicable,
the field produced by a plane wave at oblique incidence with respect to the axis
of the cylinder can be trivially derived from the field produced in the case of
normal incidence.

If the electric permittivity and/or the magnetic permeability become
infinite on the axis of the cylinder or at the center of the sphere, the appropriate
radial elgenfunctions' are chosen by means of a boundary condition of Meixner's
type. An application is made to the spherical inverse-square-power dielectric
lens, whose high-frequency backscattered field is evaluated in Chapter Five, in

terms of geometric optics, creeping wave and evanescent wave contributions.
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INTRODUCTION

I.1 General Considerations

The scattering of electromagnetic waves by structures which are
cylindrically or spherically symmetric but inhomogeneous in the radial direction
is a phenomenon which occurs in a variety of cases of practical interest. It has
applications to dielectric lenses, both at optical and microwave frequencies; to
the propagation of radio waves in the ionosphere, and to their reflection by meteor
trails; to the radar scattering behavior of, and to the radiation from, cylinders
and spheres coated by layers of materials for ablating and/or camouflage pur-
poses, or by a layer of plasma, as for a space vehicle during the re-entry phase
of its flight.

The propagation of waves in inhomogeneous media has been the subject
of a few books, such as Brekhovskikh's (1960) and Wait's (1962), and of numerous
journal articles. However, many interesting problems remain unsolved, espe-
cially at high frequencies; it is to the solution of some of these problems for
cylindrically and spherically symmetric scatterers that the present work is
devoted. After a few remarks of general interest, this introduction contains an
outline of the research performed and of the principal results achieved, and a
list of suggested topics for future research.

In the following chapters we consider the scattering of a plane electro-
magnetic wave by a cylinder or a sphere which are inhomogeneons in the radial
direction. The choice of a plane wave as the primary field is not a strong limita-
tion, because an arbitrary incident electromagnetic field can be decomposed into
the sum of plane monochromatic waves by Fourier analysis. We adopt the ration-
alized MKSA system of units, and omit the time-dependence factor e_iwt. The
following notation will be used:

w = angular frequency,

3 W eo“o = wave number in vacuo,



eo = electric permittivity (dielectric constant) in vacuo,

B, = magnetic permeability in vacuo,

Z = Y_1 = ‘/“0760 = intrinsic impedance of free space (= 1207 ohm),

€ and u = relative permittivity and permeability inside the inhomogeneous
medium (functions of the distance from the axis of the cylinder
or from the center of the sphere),
i= {-1 =imaginary unit,
E and H = electric and magnetic field vectors,
X,y, z = rectangular Cartesian coordinates,
p, P,z = circular cylindrical coordinates,
r,0,§ = spherical polar coordinates,
vectors will be underlined (e.g. E), and unit vectors will be denoted by carets
(e.g. T).

In our notation, Maxwell's equations are
(I.1)

where € and u are, in general, complex quantities, and € = 4 = 1 in vacuo.

At a surface of discontinuity in € and/or u one must apply the appropriate
boundary conditions, and a boundary condition of Mefxner type is needed wherever
€ and/or u become infinite (see Chapters Three and Four). The scattered

(total minus incident) fields in the infinite free-space region surrounding the
scattering body must satisfy Sommerfeld's radiation condition. Specifically,

for the two-dimensional case of normal incidence on a cylinder of axis z, the

scattered field components E: and H: must obey the condition
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E
lim p1/2<---g - ik> =0  uniformlyin §, (1,2)
dp 8
p—>w@ H

whereas in the spherical case the scattered fields _Igs and _Ir_Is are required to
satisfy the Silver-Miiller condition

E
lim E;x(Vx)Hkr] g =0  uniformly in £. (1.3)
r—>wo H

From the radiation conditions and from Maxwell's equations it follows that the

fields are of the form

ikp
_{(¢)3’Tk-; , as p—m (1. 4)

in the cylindrical case, and

A e1kr
E(l‘)"‘—kr ) as r—>w (1.5)

in the spherical case, where f is independent of p and g is independent of r.
This means that the radiation condition is satisfied if we choose the cylindrical
or spherical Hankel functions of the first kind as the radial eigenfunctions in the
free space surrounding the scatterer. For a given primary field and scattering
body, the scattered field is uniquely determined by the appropriate boundary and
radiation conditions,

In the spherical case, the differential scattering cross section or bistatic

radar cross section o(9,#) is defined by

[\

2 l_rf’l
E'*

0(6,8) = lim d4ar
r—-m

(1. 6)



where 13_1 is the incident electric field and _}_3_8 is the scattered field at the obser-

vation point (r,6,$). The total scattering cross section o, is defined by the

otal
ratio of the time averaged total scattered power to the time averaged incident

Poynting vector, and is related to the bistatic cross section by the equation

T 27
1

O tal — an o(6,P)sin6dedp . (1.7

6=0 Jp=0

A relation between o, . and the far field coefficient g(f) of equation (I.5) is

provided by the forward scattering theorem:

_ Arm A
O, tal = k2 Im g(ro) , (1. 8)

where g_(f‘o) = g(f'\o)"l\' with 7 a unit vector, ?o is oriented in the direction of
propagation of the incident wave, and g is normalized to the amplitude of the
corresponding incident field.

In the case of normal incidence on an infinitely long cylinder, the bistatic

cross section off)) per unit length is defined by

s 2

Y

1

o) = lim 2mp
p—>m

: (r.9)

where <//S = Ei(p,{b) and t//i = Ei if the electric field is parallel to the cylinder
axis, while ¢/S = HZ(p, @) and y = H; if the magnetic field is parallel to the axis.
The total scattering cross section per unit length is defined by the ratio of the
time averaged total scattered power per unit length of cylinder to the time
averaged incident Poynting vector.

In the case of either cylindrical or spherical symmetry, the vector scat-
tering problem can always be reduced to the determination of two scalar functions
and is therefore more cumbersome, but essentially not more difficult than the

corresponding scalar problem. Many of the mathematical difficulties encountered



in the analysis of the electromagnetic or acoustical scattering by radially in-
homogeneous structures also arise in certain quantum mechanical problems,
such as the solution of the radial Schrodinger equation for central potentials.
Thus, for example, the scattering of a plane scalar wave by a penetrable sphere
of refractive index N is equivalent to the quantum mechanical non-relativistic
scattering of a particle by a square-well potential (Rubinow, 1961); if m is the
mass of the particle, Vo the depth of the attractive well and k the wave number,

then N stands for \/1-*-2mV0/('hk)2 .

The solutions for the scattering problem under consideration, which have
been adopted by various authors for different applications, are essentially of four
types; geometrical optics method, exact solutions, stratification technique, and
asymptotic evaluation of formal solutions.

The geometrical optics method is a ray-tracing technique which leads to
resilts whose precision increases with the frequency of the radiation. It has been
widely applied to optical systems, microwave dielectric lenses, coated metal
cylinders, ionospheric radio propagation, etec. It is used not only to investigate
the geometrical properties of the optical ray paths, but it can also account for
amplitude, phase and polarization of the electromagnetic field. In all cases in
which it is inapplicable or not sufficiently accurate, one of the other methods
must be used.

The geometrical optics approximation does not account for the presence
of nonzero scattered fields in the region of geometrical shadow, and often repre-
sents an insufficiently accurate approximation in the illuminated region. A better
approximation is represented by the so-called geometrical theory of diffraction of
Keller, which is an extension of geometrical optics. For a description of this
theory, the reader is referred to a paper by Keller (1956), in which the extension
of the laws of optics is presented in two equivalent forms. In the first form, the
different situations in which diffracted rays are produced and the different kinds
of diffracted rays which occur in each case are explicitly described. The second



formulation is based on an extension of Fermat's principle. The equivalence

of the two formulations follows from considerations of the calculus of variations.
Keller's theory assigns a field value, which includes a phase, zn amplitude and,
in the electromagnetic case, a polarization to each point on a ray. The total field
at a point is postulated to be the sum of the fields of all rays which pass through
the point.

Kellex's theory has been developed for both scalar and vector fields and
for objects of various shape and type (e.g., acoustically hard and soft bodies,
perfect conductors, dielectrics, inhomogeneous media). From its similarity to
geometrical optics, Keller's method can be expected to yield good results when
the wavelength is small compared to the obstacle dimensions. However, it has
been found that in most cases the results are useful even for wavelengths as large
as the relevant dimensions of the scatterer. An important advantage of the
method is that it does not depend on separation of variables or any similar pro-
cedure, and it is therefore especially useful for shapes more complicated than
a circular cylinder or a sphere.

Exact solutions of the electromagnetic boundary value problem for spher-
ically and cylindrically symmetric structures can always be obtained by separa-
tion of variables., In general, however, the solutions are purely formal, since
the ordinary differential equations for the radial eigenfunctions have been solved
exactly only for certain radial variations of the inhomogeneities of the medium:
see, for example,the list of references by Tai (1963) for spherical structures,
and by Burman (1965, 1966) for cylindrical structures. Even in those cases in
which the radial differential equations can be solved exactly, the solution is often
of little or no practical usefulness owing to the insufficient theoretical and numer-
ical data available for the radial eigenfunctions.

The stratification technique consists of replacing the radially inhomogeneous
medium with a certain number of coaxial, or concentric, homogeneous layers, and

in solving the boundary value problem for this modified structure. Although the



infinite eigenfunction series for the electromagnetic field components are well-
known in this case |see, for example, Kerker and Matijevic (1961) for cylinders,
and Wait (1963) for spheres] , they are so complicated that no information on
their behavior can be derived by direct inspection. Thus, the stratification tech~
nique is simply a tool for obtaining numerical results by means of a computer;
the complexity and cost of the computations increase rapidly with the number of
layers and with the ratio between the diameter of the structure and the wavelength
of the incident radiation.

Finally, the asymptotic evaluation of formal solutions at high frequencies
consists of replacing the formal series solutions by contour integrals in the com-
plex plane and in applying Cauchy's residue theorem, as in the Watson transform-
ation (Watson, 1918; Laporte, 1923; Regge, 1959); the resulting line integral and
residue series can be evaluated if the appropriate asymptotic expansions for the
radial eigenfunctions are known. These asymptotic expansions can often be ob-
tained without knowing the exact eigenfunctions, by operating directly on the radial
differential equations, for example by the WBK method. However, the domain of
validity of a classical WBK solution is limited by the Stokes phenomenon and
special care must therefore be taken in using the appropriate connection formulas
@m the general discussion in Froman and Froman (19655_-] . This difficulty can
be avoided, and the Stokes phenomenon circumvented, by means of the theory of
transition points (i.e. turning points and singular points) which Langer has devel-
oped in a series of classical papers over the last thirty-five years EJ,. bibliography
on this subject is found in Cesari (1963[] .

In the high-frequency analyses of the following chapters, the radial eigen-
functions for the inhomogeneous medium will be either Bessel functions (Chapters
One and Two) or algebraic functions (Chapter Five), so that no direct application
of the WBK method or of Langer's theory will be necessary, We shall need
asymptotic expansions for Bessel functions of large order and argument; if the

order and the argument are different, Debye's expansions are in order (see



Watson, 1958; chapter 8), whereas if they are nearly equal, Langer's uniform
expansions in terms of Bessel functions of order one-third are to be used. These
latter functions are easily related to the Airy integrals, which are well tabulated
for all the practical needs of diffraction theory (Miller, 1946; Logan, 1959; Logan
and Yee, 1962).

1.2 Outline of Research

The first two chapters are devoted to the determination of the high-frequency
backscattered field from a cylinder and a sphere which are imperfectly conducting
and are coated by layers of homogeneous materials, These are particular cases
of radial inhomogeneities, in which the electromagnetic properties of the medium
vary by steps, as functions of the radius (radidlly stratified medium).

In Chapters Three and Four a systematic presentation is given of the exact
formal solutions and of low-frequency approximations for cylinders and spheres
made of layers of different materials, within each of which the permittivity and/or
permeability vary continuously with the radial distance. In Chapter Five, the
high-frequency backscattering from the inverse-square-power dielectric lens is
determined.

The main new results obtained are summarized in the following:

Exact Results

1) If the plane wave is obliquely incident on a radially inhomogeneous
cylinder, the radial and circumferential field components are obtained by differ-
entiation from the axial components of the electric and magnetic fields, which can
be expressed as sums of solutions of certain second order differential equations
(section 3.2). Explicit solutions of the boundary value problem for various cylin-
drical structures are given in sections 3.3 to 3.5, and similar studies are per-
formed for spherical structures in sections 4.3 to 4.5.

2) A fundamental theorem on the uncoupling of TE and TM modes for the
field scattered by a certain class of cylindrical bodies is proven in section 3.6.



This result has important applications to cylindrical dielectric lenses, because
the field produced by a plane wave at oblique incidence with respect to the axis
of the cylinder can be trivially derived from the field produced in the case of

normal incidence.

Low-Frequency Results :

3) Resonance and dip conditions for the field backscattered from inhomo-
geneous cylinders and spheres are determined, in the Rayleigh approximation. In
particular, the resonance condition (4.58) for an inverse-square-power lens is of
special interest because it is valid for all modes; observe that (4.58) is also the
resonance condition for all modes in the case of a homogeneous plasma cylinder.

4) The detailed results of the example of section 3.7 may have applica-
tions to graded absorbers.

High~Frequency Results:
5) The asymptotic determination of the backscattered field in terms of

geometric optics and creeping wave contributions for impedance cylinders and
spheres which are coated by layers of materials whose indexes of refraction are
not large compared to unity (Chapters One and Two) has important applications to
space vehicles on which a highly absorbing (ferrite) layer is in turn covered by a
dielectric ablative layer.

6) The inverse-square-power lens of Chapter Five is one of the very few

dielectric lenses whose behavior at high frequencies has been investigated by
rigorous asymptotic theory.

The high-frequency research of Chapters One, Two and 'Five has been
restricted to the backscattered field for various reasons; firstly, the backscattering
cross section is of primary importance in practical applications; secondly, the
most difficult part of the analysis 18 the determination of asymptotic expansions

for quantities which contain the radial eigenfunctions of the inhomogeneous media,
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and since these quantities also appear when the scattered field is evaluated in an
arbitrary direction, many asymptotic results obtained in the following can be used

in studying, for example, bistatic cross sections.

1.3 Further Areas of Research

The general formal solutions for various boundary value problems which
were given in sections 3.3 to 3.5 and 4.3 to 4.5 constitute the starting point for
all high-frequency determinations of the fields scattered from cylindrical and
spherical structures. Once the functional dependence of € and u on the radial
distance is specified, the problem is essentially reduced to finding the appropriate
asymptotic solutions of the radial differential equations, for various ranges of the
parameters involved.

A rich field for applications is, for example, that of dielectric lenses.

In addition to the lens considered in Chapter Five, many other lenses, which have
been discussed in the literature from a geometrical optics viewpoint, are worth
considering from the point of view of rigorous asymptotic theory. Among them,
we mention the Luneburg lens (N = \/2- (r/a)” , where N is the index of refrac-
tion and a the radius of the lens> and Maxwell's fish-eye @ =2/ |:1+(r/ a)2:D ;
the radial differential equations for these two lenses can be solved explicitly in

terms of confluent and generalized confluent hypergometric functions.



Chapter One
HIGH-FREQUENCY BACKSCATTERING FROM A COATED CYLINDER

1.1 Introduction

The determination of the high-frequency radar cross section of a smooth
convex conducting body covered with one or more thin absorbing layers of mater-
ials with large complex indexes of refraction (e.g. ferrites) can be greatly sim-
plified by observing that under certain general assumptions the total electric and
magnetic fields satisfy an impedance boundary condition on the outer surface of
the outer coating layer (Weston, 1963).

In certain practical applications, such a scatterer is in turn covered by
another layer of material whose index of refraction is no longer large compared
with unity. It is then of great practical importance to investigate the influence
that this outer layer has on the magnitude of the far backscattered field, and
therefore on the value of the monostatic radar cross section.

The analysis is complicated by the fact that the exact boundary conditions
(i.e. the continuity of the tangential components of the total electric and magnetic
fields) must be imposed at the outer surface of the outer layer, while an imped-
ance boundary condition may still be assumed on its inner surface, as we shall
see in the following.

In this chapter, the investigation is carried out for the case of an infinitely
long circular coated cylinder. It is supposed that the material of the outer coating
layer has a complex refractive index whose absolute value has a lower bound that
is only moderately large compared with unity (e.g. 1.5 or 2), and whose argument
is bounded away from both zero and 7 /2. An asymptotic evaluation of the far back-
scattered field is obtained in terms of the reflected field and of the creeping wave
contributions, for small wavelengths and normal incidence.

The problem of scattering of plane electromagnetic waves by concentric
infinite cylinders has been considered by many authors. The first calculated re-

sults for the case of a metal cylinder surrounded by a dielectric sleeve have been

11
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published by Adey (1956) who also gave a survey of the previous work on this
subject. This case has been reconsidered by Kodis (1959, 1961, 1963) and by
Helstrom (1963), among others. The boundary value problem for an arbitrary
number of concentric cylinders has been solved by Kerker and Matijevic (1961).
The case in which an impedance boundary condition holds on the surface
of the cylindrical core was first considered by the author (Uslenghi, 1964); more
recently, Bowman and Weston (1966) have examined the reflected portion of the
field scattered by a doubly-coated perfectly conducting cylinder.
1.2 The Infinite Series Solution
Consider an infinitely long cylinder of radius b, coated with a layer of con-

stant thickness d and surrounded by free space; the radius a of the outer surface
is then equal to (b+d). The geometry of the scatterer is illustrated in Fig. 1-1,
which also shows the two systems of Cartesian (x,y, z) and cylindrical (p, §, z)
coordinates.

Let eo, “o' and Z= Wg be respectively the permittivity, the per-
meability, and the intrinsic impedance of free space; let € and u be the relative
permittivity and permeability of the material of the layer, and suppose that on the
surface p=b of the cylinder the following impedance boundary condition holds:

Avn A
El-@l plp = nZpxH , (1.1)

where 3 is a unit vector directed radially from the axis z of the cylinder, E'l
and _1_11 are the total electric and magnetic fields, and n is the relative surface
impedance. The parameters €, u, and n are supposed constant in space and
time.

Consider the plane incident electromagnetic wave:

E1 = -ZHi = ejlkx , (1.2)
z y

where k= w‘/ eo“o = 27 [\ is the free-space wave number.

The wave number k1 of the coating is related to the index of refraction

N= \/ eu by the expression
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[ incident o}
E® wave

— ( —

FIG. 1-1: GEOMETRY FOR THE SCATTERING PROBLEM
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The incident wave is propagating in the positive x direction, perpendic-
ularly to the axis z of the cylinder, and is polarized in the (x, z) plane. The re-
sults for the other polarization (_Ei parallel to the y axis) may be easily obtained
by replacing € and € by u and M and vice versa, E by H, H by -E, and n
by n-l, throughout the phapter (Senior, 1962).

For all p > a, the scattered electric field is given by

®
n_ (1)
Ez = Z;o: hninaan (kp) cosnf ,
(1.3)

where ho= 1 and hn= 2 for n=1,2,....

The constants an are determined by imposing the boundary conditions,
i.e. the continuity of the tangential components of the total electric and magnetic
fields across the outer surface p=a, and the impedance boundary condition (1.1)
at the inner surface p =b. One finds:

J'(ka)-A J (ka)
n nn

a = - 7 R (1.4)
D 51 ) - A B (k)
n nn
where
N 0 [ acn]
1-in= ——— |
3(mcC ) u o(k.b) | 3(k.a)
-y __2 - : (1.5)
n p ok,.a) 9(fnC ) ’ '
! 1-in D 3
)
with
~ (1) (1)
c_ =3 (kaH “(kb)-J (k bH “(ka) . (1.6)

By making use of the results of Leontovich as discussed by Weston (1963),
one finds that the impedance boundary condition (1.1) at p =b is a very good
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approximation provided that the index of refraction of the absorber is very large
and has a large imaginary part, and that the radius b is large compared to the
wavelength inside the absorber.

For an absorbing layer of thickness A, relative permittivity €', and rela-
tive permeability u' backed by a metal core, the relative impedance n on its

outer surface r=>b is given by the expression:

n~ - V(u'/e')tanBA \l(e'u')] . (1.7

A rigorous derivation of (1.7) and of similar expressions for the case of
several absorbing layers may be obtained by considering the exact solution of the
corresponding boundary-value problem, and by applying to this solution a pro-
cedure similar to the one used by Weston and Hemenger (1962) for the coated
sphere (see Bowman and Weston, 1966).

No particular expression for n will be assumed in this chapter; then n
could not only represent the effect of absorbing layers, but could account for the
finite conductivity of the core, or for the roughness of its surface (Senior, 1960).

In the following, it will be assumed that |k1d| is not large compared with
unity.

1.3 Asymptotic Expansions of the Coefficients au.
Let us indicate with v the order of the Bessel and Hankel functions, and

let us suppose that ka and kb are large, and that the argument of N satisfies the
inequalities:

(}<argN<%-(p' , (1.8)
with
® >>|k1|o|"°‘/3 , &' >>|k1b|'1 . (1.9)
Moreover, let us assume:

|v-ta] > |13 |v-k;p| > o7, (1.10)
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so that the Debye asymptotic expansions for the Bessel and Hankel functions may
be used, yielding the following asymptotic expansion for the coefficients Cn of
formula (1. 6):

9 sinh(wz- ¢/1)

Cn ~ T ;?Litahh'yl;?-itanh'yz'} ! (1.11)

where
V= klacosh'yl, 1 = oz1+ iBl ,
V= klbcosh'yz, Yy =t iBZ , (1.12)
l//l = V(tanh'yl— 'Yl) !//2 = V(tanh'yz— 72) ,

and @, a, Bl and Bz are real quantities; Bl and Bz are supposed positive and
less than «.

If v/(kla) or v/ (klb) were close to -1.5i, then a modification of the ex-
pansion (1.11) would be required. This modification is avoided by imposing the
upper bound (1.8) on the argument of N.

More details leading to the derivation of (1.11) can be found in Watson
(1958) and in Weston and Hemenger (1962).

From (1.5) and (1.11) it follows that the asymptotic expansion of An under

the hypotheses (1.8) and (1.9) for large ka and kb, is given by
A ~ -Ncothosioh (1.13)
n " X L )
where
o=y, -y —iarctan(n-lg sinh+y_) (1.14)
2 "1 “ 2" )

In the particular case of a perfectly conducting cylinder (n=0) coated
with a material of very large index of refraction, it can be proven that An is

independent of n, and that the coefficients a_ are given by
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Jn(ka) - in'Jl’l(ka)

a ~ - , , (1.15)
n B
where
n = -i&tank d . (1.16)

N 1

Approximation (1.15) can be obtained through a procedure very similar to that
developed by Weston and Hemenger (1962) for the coated perfectly conducting
sphere, and therefore will not be given. It is here sufficient to recall that in
order that (1.15) and (1.16) be valid, the following additional assumptions must
be made:

n' is bounded away from the imaginary axis,

Iarg(N/u)I /4, (1.17)
kd << 2M° IN|

where M is an undetermined real number satisfying the condition

1+(ka) 2/ <M <« IN| . (1.18)

The approximation (1.15) means that the field scattered by the coated
cylinder is the same field that would be scattered by a cylinder with radius a and
relative surface impedance n'.

Instead of making the approximation (1.15), in the following we shall con-
sider the more general case in which the impedance 7n is not zero and [N l is no
longer restricted to large values.

The Debye expansions may be used for Jv(ka) and Hill)(ka), provided that

|u-ka|>|v1/3| . (1.19)

In sections 1.4 and 1.5 we shall use the relations
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v = kacosh'ya, V3= cza+ 183 ,
(1.20)
Vg = vitanhy,-7,) ,

with aq real, and BB real, positive and less than 7.
1.4 High-Frequency Backscattered Field: Reflected Field Contribution
The intensity of the scattered electric field is given by relation (1.3), which

in the case of the backscattered far field becomes:

ikp i—
"~ \’ [a +ZZ( 1) a—J : (1.21)

Treating the summation over n as a residue series, the summation is

replaced by the contour integral C of Fig. 1-2, taken in the clockwise direction

around the poles at v=1, 2, ..., giving:

w
ikp-i- ia
b.s. 2 4 v
Ez '~ 7rkpe Eo+ P dv:] . (1.22)

C

The poles of a lie in the first and in the third quadrants of the complex
v plane. Following the Watson transform technique (Watson, 1918; Laporte, 1923),
the contour integral C is replaced by the sum of the two following quantities:

1) A line integral whose contour [* consists of the path fi extending from
the fourth quadrant through the point ¥=1/2 to the second quadrant, plus the arc
Fz of a circle of large radius R with center at the origin, extending from the
second through the first to the fourth quadrant (Fig. 1-2). The sum of the asymp-
totic expressions for this line integral and for the term involving ao in relation
(1.22) gives the reflected field approximation for the far back-scattered field.

2) A residue series due to the poles of the integrand function which lie in
the first quadrant. This series represents the creeping wave contribution to the

far back scattered field, and will be considered in section 1.5.
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FIG. 1-2: CONTOURS OF INTEGRATION IN THE COMPLEX
v-PLANE
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In this section we shall derive the reflected field approximation. Following
Watson, we divide the v plane into the various regions of Fig. 1-2, numbered
from 1 to 7b and separated from one another by the coordinate axes and by the
curves SIQZSZS3 and QSSIQISZ’ whose equations are respectively:

a3ta.nha3—(7r-33) cot 83—1 =0,

and

o, tanha, +B, cot f-1=0 .

We shall now show that the integral along the arc . 2 vanishes in the limit
where R tends to infinity. Let

+
v = v'+iv" =Re” i

)

where 0<0 <7, and the first (second) sign is valid when »' >0 (1" <0). Then
the integrand function iap/ sin7v behaves like

-TRsind (23)‘2R cos 6
© ka.
in the regions 2, 3 and 6a, and like o TRSING 4 ihe second quadrant.

Since, as we shall see, the contour [ is such that the angle 6 is bounded

1
away from 7, then iaV/ sin 7y tends exponentially to zero, and therefore the line
integral along I'é vanishes, provided that R goes to infinity through such values

that no poles of the integrand ever lie on the contour !"2 (a general proof that this

can be done was given by Goodrich and Kazarinoff, 1963).

The line integral along {"1 may be asymptotically evaluated by saddle point
technique. Using the Debye asymptotic expansions derived in section 1.3, it is
found that the integrand behaves as follows:
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ia 3'2‘1’3
sry W T ey 0 st
e -e
(1.23)
e—2w3 i
N -
f(v) o iry " ey in regions 1, 4, and 6b,
e -e
where the slowly varying function f(v) is given by
sinh 7 % asinh'y3 tanho
flv) =1 . (1.24)
sinh 7 +-§- sinh'ys tanho
Therefore we have that
. -2y
B, e O (-1)
- = — fy)dv + —0 dv . (1.25)
sinwy eivru- e-inv 2sinTy
M My Q%Y

In order to evaluate the first integral of the second member of relation

(1.25), observe that with the substitution

v=ut+g , (1.26)

this is reduced to a form already investigated by Scott (1949). The main contri-
bution arises from a pass near the point u=0; the contour q runs at a suitably
chosen distance below the real axis in region 3, and close to the imaginary axis

in region 6b.
The asymptotic evaluation of the integrand for [vl << ka yields:

_2¢3 +27 € ei‘S €WZ
-1 -2 -
—_—— )y ~ L ~ 1 e 12ka e giw)dw ,
iry -imvy 2r n+1 -w
e =~e is 1+e
r -2n€e

1 (1.27)
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where:

i _?—'12 w 1 |1, 7 2p0)|(w 2
BW =l 2 "k L 2|2t 2 (1'1 2) (E'a) -
n-1 4r n-1 N

4 5
_-—i—-z——-}-o[ka) 2]+0[ 4] , (1.28)

1927 (ka) (ka)
i l+€
€=-—5 , (ka) , (1.29)
47 ka
o= & N
n=-ig tan[k1d+ arctan(in uﬂ , (1.30)

N
= cot k. d k,d
B 1 1 N2l % N2 N
p= . l:z{j1+(n“) sm2kd 1- (n ) -in7 tankd

1+in—cotk d
ool (1.31)

and 6 is an angle between zero and 7 /2. The starting point to obtain the asymp-
totic expansion of the integrand function is given by the relations (Watson, 1958):

y-12r i
(1)( ) = \’ 2l cothy e 4 [l-gl-+ % . Oz 3)+O(u2/z3£] ,
z 2
128z
T
—Yi=
2i 4 i 9 -3 2,3
\’—7”/ cothy e [1+-é-z- + ) +0(z “)+O(v /zi] ,

128z

H(2)
v

(z)

]

where v = zcoshy. The new variable of integration w is related to u by

Since £ is large, the integral at the second member of relation (1.27)

may be decomposed into a sum of integrals of the two following forms:
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we -ew2
Eo n = e 2nﬂdw s (n=0,1,2,...),
! _ o i6 1te
is (1.32)
we 2
w50
Een= o ¥ dw , (n=0,1,2,...).
’ i6 1+e
-me
The integrals Eo o Were computed by Scott (1949):
1 =« 1 o
[ S-Sy VY ——
Eo.o e 6*0(6) Eo,lfv 5 1 Ole),
2€
(1.33)
1 o
Eo,2 ~ 3t Ole) .
€
The integrals Ee o can be easily reduced to Fresnel integrals:
is
e
E - o €V w2n dw
e,n
0
= (-1) ——{ e <" w} (1.34)
12 n
4 2 -1/2
-ZE n*ﬁe] /} , (for 6 =x/4) .
alel
Substitution of the above formulas in relation (1.27) yields:
T
e-Z¢3 n-1 \zka -ﬂkaﬂli ei 4
— -L - +
elrv_e-i'trv fay ~ ntl 2 © V7ka

1

*a 2 {1 0 (‘*l}‘“o{k“’ 3/2}]
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Let us now evaluate the second integral of the second member of relation
(1.25). Since the integrand's only poles lie on the real v axis, and since the
integrand goes exponentially to zero when the absolute value of " increases
toward infinity, it is sufficient to remark that Iv" | at Q1 is very large in order
to be able to conclude that

-;—+ioo
(-1) (-i) _ 1
2sin7y ) 2sinTy dv = 2 (1.36)
= 'w
Q9,99 !
as it follows from the relation
l +ioo l +i 3 ~-ioo
2 (-1) 2 (-1) 2 (-1)
2 - dv = — dv+ — dv
1 2sinTy 1 2s8inry 2sinTy
1l . 1l 34y
2 ioo 9 i 2 ioo
= 2ri(residue of (-1) at v=1) =
2sinmy

in the preceding integrals the paths of integration are the straight lines v'=1/2
and V' = 3/2.

The coefficient a has the asymptotic value

._‘

(1)' ( 1)

(ka) - AH (ka)

v )
iF-1 -izka | 4 3FH1, ez}

Finally, the reflected field approximation to the far back-scattered field,
as derived from relations (1.22), (1.25), (1.35), (1.36) and (1.37) is given by:
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b.s] -1 fkp - 12ka

E ~ e X

[ z refl. ﬁ+1

s {-+ Fues ] o

The first term of the Luneberg-Kline expansion (1.38) is the geometric optics
contribution to the back scattered field.

If we let a go to infinity, we find the field that would be reflected by a
plane of surface impedance n coated with a layer of thickness d and refractive
index N, for normal incidence.

In the case of a perfectly conducting cylinder (d=0, n=0), relation (1.38)

becomes:

b.s. a ikp -12ka
[- :‘reﬂ ~ V2 (1+ 16ka+ . (1.39)

d=0, n=0

This formula checks with the result obtained by Imai (1954).
If the core is perfectly conducting and the material of the coating is an
absorbing dielectric (n=0, u=1),

+itank,d
I:b s:l n lkp 12ka ’ﬁ'-"x?ﬁilﬁ +0(1/ka] , (1.40)

1

In order to compare (1.40) with the reflected field of Kodis (1963),

[b s] r—ikp - 12ka [- ( 1/2
refl. HN N2 1 8=
Kodis
i2k. d—8
JrY @

is positive, only the lowest values of s are of import-

observe that since Imk

ance, and therefore

1
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-1/2
<1+ -9N% ~ 1+O(1/kb) , (1.42)

provides that s is not large compared to (2N)/(kd). Relation (1.40) is then
easily obtained from (1.41) and (1.42).

1.5 High-Frequency Backscattered Field: Creeping Wave Contribution

The creeping wave contribution to the back scattering far field is given by
the residue series:

ikr-i-f;r
[Eb] 4 2 «
z ™~ "ka\|7kr ©
cr.w,
X Zl:in(wv)ﬂ (ka) 2 { 1 (ca) - & H(l)(ka}jl

(1.43)
where v8 are the roots of

(1)' (1)

(ka) - A H (ka) = 0 (1.44)

which have positive imaginary parts.

Since the main contribtition arises from the roots of (1.44) which are close

to ka, we introduce the Fock asymptotic approximation (Fock, 1945):

HLI)(ka) ~ -#m-lwl(t) .
(1.45)
1, k) ~ e m )
where:
v = ka+mt, m=(ka/2)!/3 | (1.46)

and wl(t) is the Airy integral in the Fock notation, which is related to the
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functions Ai(t) and Bi(t) of Miller (1946) by the expression:

w,® = 7 [Buo+iawn]

3
where: Af(t) = _}r cos <23- +t9du ,

® 3 3
E,xpé%-+t19+sin<—§' +t\> du .
0

We can still use the Debye approximation for AV, provided that the abso-

Bi(t) =

N {

lute value of N is sufficiently large compared to unity. Specifically, we shall
assume that lN ] is 80 large that inequalities (1.10) are satisfied by the first few
roots of equation (1.44). Then the Debye approximation for Av gives:

i
-—— e
Al/ ~ Tll p1 5 (1.47)

where n = -1 —=E= tan l}dVNz-l + arctan Qn @)jl ’ (1.48)
N -1

2

GH ﬁ-——ﬁ°°t [_g__ ~cotp+ 128 QH Boot8 ):]
sin 8 pkd

2#\15
(1.49)
and B=kalN-1 . (1.50)

Approximation (1.47) is valid under the assumptions

|t] «<m® ,
(1.51)
_kd_t

2YN-1 m2

1.

Observe that as lNl increases, m approaches the value 7 given by relation (1.30).
With the approximations (1.45) and (1.47), the creeping wave contribution

becomes:
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-1k p
b.s. 2\or T4 o f L2 2 P
l:Ez -]cr. ~ e e ZEﬂvus)wl(ts)qu +m3 +
1+1 (1.52)
w'l(t) im ¢

___._WI(t) = q-plg , (1.53)

where ts are the roots of

An approximate evaluation of ts gives

-1
Py
ts ~tos 1+__———:§___2 , (1.54)
mt +mn
08 1

where tos are the roots of the equation

w! (t)
L _im (1.55)

wl(t) n
and may be obtained from the values of w'l(t) /wl(t) which were computed by Logan
and Yee (1962) when t lies in the first quadrant.
The total back scattered field is obtained by adding together the contribu-
tions (1.38) and (1.52).
If the parameter ka is not extremely large with respect to unity (for
example ka =10), then the approximations (1.45) are no longer sufficiéntly

accurate, and must be replaced by the following relations:

(1) 4 -1 _
Hv (ka) ~ - e m Evl(t) —-som dtw (t)+t w! (tj}i]

' (1.56)
B ) ~ b [Ev'l(t)+ 60; 5 {1tw'1(t)+(6-t3)wl(t}—_l




29

The right-hand sides of (1.52) and (1.53) are then replaced by more complicated
expressions; the calculations were not explicitly performed for this case.

1.6 Some Considerations for the Quasi-Optical Limit

The following considerations apply to a cylinder with a very large diameter.
Since the creeping wave contribution to the backscattered field is proportional to
(ka)-l/ 3, the dominant part of the far backscattered field arises from the leading
term in the asymptotic expansion (1.38). Therefore, the "reflection coefficient"

~

> _n-1
R sl (1.57)

which depends upon the three parameters 7, kld' and u/N (see formula (1.30)),
is the critical quantity which determines the magnitude of the backscattered field
and of the monostatic radar cross section.

If e=u, we have

- 12k1d
_ = Re , (1.58)
€=U
where
- n=1
R N+l (1.59)

is the "reflection coefficient for the uncoated cylinder, and therefore the strength
of the backscattered field varies as

In particular, if
R=0 (1.60)

the radar cross section is O(ka)-z/ 3, and therefore very small. Relation (1.60)
is satisfied for all value of kld’ provided that e =u and n=1.
If
th(kdImN) ~ 1, (1.61)

then R is given by the simple expression
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~ ~ u- N
R LFN ) (1.62)
which is independent of both n and kld‘ and equals zero when € =y,
In conclusion, we may say that the presence of the coating layer produces

a modification in the far backscattered field, whose magnitude greatly depends

upon the values of the parameters n, u/N, and k'ld. In particular, the monostatic

radar cross section can be reduced to very small values.



Chapter Two
HIGH-FREQUENCY BACKSCATTERING
FROM A DOUBLY-COATED SPHERE
2.1 Introduction

The scattering of a plane electromagnetic wave by spheres composed of
concentric layers of various materials has been previously investigated by Aden
and Kerker (1951) and by Sharfman (1954), who derived the exact Mie series for
the cases they considered. Weston and Hemenger (1962) performed an asymptotic
evaluation of the backscattered field from a perfectly conducting sphere covered
with a thin layer of material with a large complex index of refraction; they sim-
plified their analysis by showing that an impedance boundary condition may be
assumed on the outer surface of the coating layer. Recently, Bowman and

Weston (1966) have considered the reflected portion of the field back scattered
by a perfectly conducting sphere coated by one or two layers of absorbers.

In this chapter, the case of a sphere coated with two concentric layers of
different materials is considered. It is supposed that the material of the inner
layer has a refractive index whose absolute value has a lower bound which is only
moderately large compared to unity, and whose argument is bounded away from
both zero and 7/2. The refractive index of the material of the outer layer is
assumed very close to unity. An asymptotic evaluation of the far backscattered
field is obtained in terms of the geometric optics and of the creeping wave contri-
butions, for small wavelengths.

The analysis is performed by imposing the exact boundary conditions (i.e.
the continuity of the tangential components of the total electric and magnetic fields)
at the outer surfaces of both coating layers, while an impedance boundary condi-
tion is imposed on the surface of the spherical core. The procedure is similar
to that one followed in Chapter One, and therefore the details of the derivations
will not be given.

31
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2.2 The Mie Series Solution

Consider a sphere of radius p coated with two concentric layers of dif-
ferent materials and surrounded by free space. The geometry of the scatterer
is fllustrated in Fig. 2-1; the radii of the outer surfaces of the two layers are
given by b==p+d2 and a=b+dl, where d1 and d2 are the thicknesses of the
outer and inner coatings, respectively.

Let eo, “o’ Z= "o eo and k= wlleo“o be respectively the electric per-
mittivity, the magnetic permeability, the intrinsic impedance and the wave number
of free space, and let €, u, Z, = € and k. =wfeu, (J=1 or 2) be the

e p iy 7= |uley wad k= ofeg, O ’
corresponding quantities for the two coating layers, where j =1 for the outer

coating.
The incident electromagnetic field

Ei = Zl'l1 = eikz (2.1)
X y

produces the far backscattered field

[01)
ikr
b.s. _ .8, e _q\R 1 _
E —-ZH’; ~ = n§=1:( 1) (n+ 2) (an bn) , (2.2)

where r=|z| is the distance of the field point from the center of the sphere.

The coefficients an and bn are found by imposing the boundary conditions,
i.e. the continuity of the tangential components of the total electric and magnetic
fields across the surfaces r=a and r=b, and the impedance boundary condition

E-(E-$)T = nTxH (2.3)

on the surface r =p of the spherical core. In relation (2.3), n represents the
surface impedance, T the radial unit vector, and E and H the total electric and
magnetio fields at r=p. It is found that:



33

€o' Ho

x>

i
E ngident 9
® :

FIG. 2-1: GEOMETRY FOR THE SCATTERING PROBLEM.
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w' (ka) - A w (ka)

8. '
§(1)

(ka) - A :‘”(ka)
(2.4)
ll/' (ka)-B w (ka)

(1)'

L

r(M)BéWm)

P -—

0 BCn {
n Z1 8(k1a) B(k b) ~ na(k b) zp)}‘J ’
(2.5)

z1 5 rac z,
B = — f o -1 { ,
n Z B(kla) _B(klb) Z n a(kzb) n a(kzp)

with
- (2) (1) (2) (1)
C = &y k@)l b)- £ ¥k BT ik m)

n
(2.6)

(2) (1) (2) (1)
D =% "(k,b) t (kzp)-Cn (k,p) ¢ (k,b) .

The primes which appear in relation (2.4) denote derivatives with respect

to the argument ka. The functions lp and §( ), (2) are given by

w( )— J‘_ +1/(X) ’

@), , _ g1, (2)
gn (x) = 2 +1/2 (x)

(2.7

In particular, it follows from formula (2.2) that a sufficient condition to
have a zero backscattered field is that a = bn for all values of n, {.e. that

2. =2.=Z, n=12. (2.8)
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This conclusion is easily extended to the case of an arbitrary number of
concentric coating layers; a sufficient condition to have a zero backscattered
field is that the relative permittivity be equal to the relative permeability for each
layer, and that the relative surface impedance of the spherical core equals 1.
2.3 High-Frequency Backscattered Field: Geometric Optics Contribution

Setting v=n+1,, and treating the summation of formula (2. 2) as a resi-

due series, the summation is replaced by a contour integral along a path C in the
complex v plane, taken around the poles at v=1/2, 3/2,..., giving:

b.s elkr i 1 -V
B~ 128 - 2 cos(v) (o, 1/;bv- 1/2) wp . (2.9
C

Following a Watson-type transformation, the contour C is deformed to
include the poles of the integrand which lie in the first quadrant. The resulting
line integral may be asymptotically evaluated by saddle point technique, and
added to the asymptotic contribution arising from the term of formula (2.9) which
contains (ao- bo)' The resulting sum represents the Luneberg-Kline asymptotic
expansion of the reflected portion of the backscattered field; only the leading
term of this expansion, corresponding to the geometric optics backscattered field,
has been explicitly computed:

ikr
b.s. ka(§-Z\ -i2ka e
[Ex ]g . 5 (,ﬁ+z e = 1+0(1/ka-;} , (2.10)

where the impedance 7 is given by

Z
7 =-1Z_ tan{k d_+ arctan 2 tan<{ k.d_+ arctan (i—+ } (2.11)
1 11 Z1 2 2 Z2

We point out that formulas (1.30) and (2.11) have the same structure, and
can be easily generalized to the case of an arbitrary number of coating layers.
2.4 High-Frequency Backscattered Field: Creeping Wave Contribution

The creeping wave contribution to the far backscattered field is given by

the residue series:
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[b s] ol KF
E ~T — X
X kr
cr.w.
-1
3
V=Vl

-1
- Es {; cos(7v) f:_)% (ka) o ,::L-)l/z(ka) "By i/ KL_)%(R&H} 1 ‘
u:

(2.12)
where v, and v, are respectively the roots of
(1)' (1)
- =0 2.13
/(ka) / 1/(ka) (2.13)
and of
1) ¢ (ka) = 0 (2.14)

D

which have positive imaginary parts.
In order to determine these roots, we introduce the asymptotic approxi-
mations (Fock, 1945):

(1) 1/2

(2.15)

§(1)1/ (ka) ~ m‘-l/2 Wi(t) ’

where m and t are defined by (1.46), and wl(t) is the Airy integral in Fock's
notation.

The coefficients Av y and Bv Y have the asymptotic expansions:
='h ]



37

m
(2.16)
B 1 A o, t7, —= ’
v-1, 2 2 2
where
Zz 24 Y
— +
M kd 7 ’
-1
z Z
(2.17)
-1 Z,
m =0 1§t 1"1“1'2—1+ ( z g“1"1z
7, =0 & -A+nkd El+ 1 -§k.d
2 72 )72 21122 %9 2z 2112
with
A= (ka-‘kla)(ka—klb) ,
kydy
111'2 = T tan(B-l-arctanGl,z) ,
(2.18)
-1 BtanB 1+6 (B+2tanB)
E = = {k /k) } tanB +
/3+51 2(1-—31:9.118)}
+ L
61'2+tanB
and
9 1/2
B =k d, {kzlkl) -1} ,
(2.19)
5. = —Bn 5. = il
17 kydyZ, 2 kydon
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The asymptotic expansions (2.16) are valid under the following assump-

tions:
(D
(1D

with

(m

kp >>>1 ;

) <arg(k2/k) <r/2-¢',

q’»lkzpl-zls ' <I>'>|k2p l-l ;

lkzlkl is so large that the inequalities:

lv—kzb‘ >|vll/3, lv—k2p| >|u]1/3

are satisfied by the first few v 's and va's (i.e. by those values of v, and Vg

1 4

that have a small imaginary part);

(Iv)

and

(V)

(VD

(Vi

(Vi)

Restriction VI may be released provided that n # 0; in such a case expan-

for the first few ul's and vs's it is:

It/mzl<< 1,

-1/2
k. d

12 2 2
—5 {(kz/kl) - 1} t/m

the exception case in which f= 7n(n+1}), with n integer,
is excluded;

X1

ka-kla ka-klb
‘ <<1, l l X1;
m
klb
‘251’2 1- —1:; <<1 .

sions (2.16) are valid with the following values of n 9 and § s
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kydy
(n, ) = - ) (2.20)
1,2'n#0
B=n(atly)  TOHAIE
(& ,) = Mk, /k)P-1 " 1+1'(+-1->( )
51,20 R A Ul RPARETAIW I WUE
B=n(n+Y,)

(2.21)
where n is an integer.

Assumptions I and IV are satisfied for all large spheres. The first
inequality of restriction VII limits the choice of k / k to values very close to unity;
if the outer radius a is equal to ten wavelengths, then I(k k) - ll<<0 05, and the
restriction becomes more severe as the frequency increases. The second inequality
of VII establishes an upper bound on the permissible values of kd,. Assumptions
9° Finally,

inequality of restriction VIII should be satisfied for the majority of cases in which

y
II, I and V place restrictions on the allowed values of k2/ k and kd

the other seven conditions hold.

If the parameter kp is only moderately large with respect to unity, then
the expansions (2.15) must be modified by the inclusion of higher order terms; the
calculations were not performed for this case.

With the approximations (2.15) and (2. 16) the creeping wave contribution

becomes:

ikr v -2 T.

b.s. ~TLe 1 12

[ ] m kr [Z cos(wv,) {VI“IZ} {: 3°°
Cr.w. V-Vl 1 m
-1 -2

+——-(1 207)} E :cos(wv) wﬁt& {—-—-o +
-1
+ -2 (1 20 . )} (2.22)
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where t! and tB are respectively the roots of

w!(t ) T
12 1

wit) - —mol— tl s (2.23)
12

and

w!(t) T
18 _ 2

wit) - Moy -t (2.24)

(2.25)
-1
t2/m
t ~t 14 — ,
8 08 ¢ 2 2
o8~ ™ %
where t ,and t are the roots of:
ol o8
] 1]
wl(tol) wl(tos)
w it ) =-m01, Wt ) =-mo, . (2.26)
1 o 1 os

The first few roots of equations (2.26) may be derived from the values of
w'l(t)/wl(t) which were computed by Logan and Yee (1962) when t lies in the first
quadrant.

The total backscattered field is obtained by adding together the contribu-
tions (2.10) and (2. 22).



Chapter Three
SCATTERING OF OBLIQUELY INCIDENT WAVES
FROM RADIALLY INHOMOGENEOUS CYLINDERS.
EXACT SOLUTIONS AND LOW-FREQUENCY APPROXIMA TIONS
3.1 Introduction

The scattering of electromagnetic waves by structures which are cylin-
drically symmetric but inhomogeneous in the radial direction is considered in this
chapter. The scatterer is an infinitely long circular cylindrical region with radi-
ally varying permittivity e(p)eo and permeability u(p)uo, surrounded by free
space. Since an arbitrary incident electromagnetic field can be decomposed into
the sum of plane monochromatic waves by Fourier analysis, it is sufficient to
consider the case of a time-harmonic plane wave at oblique incidence with respect
to the axis z of the cylinder. The corresponding boundary value problem for a
homogeneous cylinder has been solved by Wait (1955), and some considerations
for the case wu(p) = 1 have been developed by Farone and Querfeld (1966). The
differential equations satisfied by the radial eigenfunctions in the more general
case considered here were given by Uslenghi (1966). It appears that other authors
have confined their attention to normal incidence [see lists of references in Farone
and Querfeld (1966) and in Burman (1966)] .

The components of the incident and scattered fields and of the fields inside
the cylinder are given in section 3.2 as infinite series of eigenfunctions, and some
considerations are developed for the low-frequency approximations. A few cases
of practical interest are examined in detail: the scatterer is made of a radially in-
homogeneous layer with an impenetrable cylindrical core (section 3.3), or with a
free-space core (section 3.4), or is without a core (section 3.5).

For oblique incidence there is a coupling between the TM and TE modes of
the electromagnetic field, that is even if the incident electric or magnetic field has
a zero component along the cylinder axis, the axial components of the total elec-
tric and magnetic fields are, in general, both different from zero. However, if
the index of refraction considered as a function of the distance p from the cylinder
axis has no step discontinuities on the whole interval 0 <p <o, then the TM and

TE modes are uncoupled. This result is proven in section 3. 6.
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Finally, the particular case in which the permeability and the permittivity
are, respectively, directly and inversely proportional to the distance from the
cylinder axis is examined in detail in section 3.7, The corresponding boundary
value problem is solved for an inhomogeneous shell with an imperfectly conducting
core and normal incidence; low-frequency approximations are determined, and
some considerations are developed on the high-frequency backscattered field, for

normal incidence.

3.2 The General Case

Consider a radially inhomogeneous cylindrical region of outer radius p =a
and inner radius p =b, made of a material with relative permittivity e(p) and
relative permeability u(p), and surrounded by free space; the cylindrical core
0 <p <b can be made of an imperfectly conducting material (section 3.3), or of
free space (section 3.4), or be missing altogether if b=0 (section 3.5).

Let us introduce two systems of rectangular Cartesian (x,y, z) and cylin-
drical polar (p,§,z) coordinates, where z is the axis of symmetry of the scatterer.
Let €, u, Z= vi- uo/eo and k=w\/€()1.¢_o_ be respectively the permittivity,
permeability, intrinsic impedance and wave number of free space, and consider
an incident plane wave whose direction of propagation forms the angle «,

0 <a < w, with the positive z axis (Fig. 3-1).
The radial and circumferential components of the electric and magnetic

fields E and H can be derived from the axial components through the relations:

i B BEZ n BHZ
Ep == fosa-é(—k;) + ka —é-¢—' s (3.1)
E, = i —cosaf _8_Eg_z aHz (3.2)
-7 ko op  Halko) | '

z —— ——
ko) ko P

©
3

i oH c BEZ
H =- l}osa s (3.3)
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FIG. 3-1: GEOMETRY FOR PLANE WAVE AT OBLIQUE INCIDENCE.
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g, = i|co8a °H, + Ye aEZ] (3.4)
p- 7Lk of ko) | '
where
7 = 1(p) = elp)up) - cos’ar , (3.5)

€ =€(p) and u = w(p) inside the inhomogeneous region, and € = u = 1 in free
space.
The axial components can be written in the forms

Q0
ikz cos

E =e °°"Zi“u(g) ? (3.6)

n=-Qo

o
H =ye 2°05¢ Z e e (3.7)

z - 0P
where

§p = kpsina . (3.8)

The functional dependence on z is dictated by the incident field, and the depen-
dence on § by the physical consideration that the field must be periodic with
period 27. The radial eigenfunctions Un and Vn are solutions of (Uslenghi,
1966):

2

dUn

_;5_ [ +___m:] [ ]nzo, (3.9)
p

2

dVn [1 E‘J an [7 nz}

—_ +---—,¢n + -— |V =0, (3.10)
dg_z p dE T d's'p sine gi n

These differential equations simplify for normal incidence (o = 7 /2) with € and
u arbitrary, and for arbitrary,incidence with ey = constant; in both cases:
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4, € = _Gfnpy
d.g,p!lnT dgp , (3.11)

either a =7 /2
or €u = constant

- m# =- : (3.12)

P either o = 7 /2 P
or €u = constant

The particular case of normal incidence and u=1 for all p was previously con-

sidered, among others, by Yeh and Kaprielian (1963) whose radial functions Un

and Vn are equal to the product of kp times our functions Un and Vn’ respectively.
The solution of a boundary value problem involving any number of coaxial

layers, within each of which e(p) and u(p) are differentiable, is thus essentially

reduced to the solution of (3.9) and (3.10) for each layer and to the imposition of

the appropriate boundary conditions. Consider the incident plane electromagnetic

wave

s S 3 +
E_l = (-cosa cos B x+sinB ¥ +sinacosp z)elk(X sina+zcosa) , (3.13)

. 3 3 +

_I_-Il = Y(-cosa sinB':‘c— cosf §r+ sina sinf 2) elk(x sina+z cosa) , (3.14)
where _E_l forms the angle 8 with the (x, z) plane and the angle (_;_r - B) with the
positive y axis (Fig. 3-1).

The total electric and magnetic fields in the region p >a are given by the
sums of the incident fields El and Lll and of the scattered fields _E_IS and _I_is,

whose components may be written in the form:

0
E _—>_ fEcosacosBJ'—P—sig-@J} , (3.15)
P n n ‘s'p n

n=-o

n
n=-

(00)
E; = - Z £ [599%’@35 Jn+ismBJ'u] : (3.16)
p



=Y Z l:___éncos J +icosasinBJ'] ,

n=-o

"y

=-00

®
H1 = Ysinasinf § fJ,
z nn

n=-Q

00)
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'YZ EOOSBJ' ncosasinﬁ ]

' nb
E: = Z fn|:1cosozas H(l) (1)]

n=-

o)
8 _ ncosa 8. (1) (1)
e > [ 0]

n=-o P
[0 0]
E® = sine E £ o5 ,
A n=— nnn

absH(l)]
nn

-Y Z |: 8 (1)' ncosa b:HS)

n=-qo

H, = Ysina E £ b H (” ,

n=-

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

17)

18)

.19)

20)

21)

22)

23)

24)

.25)

26)
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where

fn = fn(¢, z) = inexp(in¢+ikz cosa) , (3.27)

the argument of the Bessel functions is ‘g'p, and the prime indicates the derivative

with respect to the argument.

The total electric and magnetic fields _121 and 1_11 inside the inhomogeneous
region b <p <a are given by:
(04)
E, =222 E f isina/cosaU'-EE-(BlV , (3.28)
1p T(p) £ n n ko n
n=-o
]
sino ncos o -
= - E ——U + '
E1¢ p) L fn{: o Un 1smau(p)V11 , (3.29)
n=-
(00}
E, = sina E fu , (3.30)
1z n n
n=-Q
00
H =y>2<& E f [EE—(‘&)U +isinacosaV’:‘ s (3.31)
1p Mp) &~— "n |l ko n n
n=-q
(o4}
- sino - , _Dhcosa ] 3 39
H1¢ YT(p) _S fn Iilsmcze(p)Un _kp Vn , (3.32)
n=-
(00}
H, = Ysine fv , (3.33)
1z nn
n=-o

where the argument of Un and Vn is Ep, the prime indicates the derivative with

respect to 'g'p,

(1) (2)

2
UL ) =8 U e, USE) (3.34)
oy gD (2)
VJE) =by VE)+a, VIE) (3.35)
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and US) and V ) (j = 1 or 2) are two linearly independent solutions of (3.9) and
(3.10), respectively. The Wronskians WU of Ug) and WV of V(j) are given by:
wyto = 0 o e ) P ) = v L )
U (p)E 0
(1) (2)' (1)' (2) .\ _ ._1ip)
Wyle) =V (E v (E) vy (sp)vn (§p)— 6y(p)§p , (3.37)

where v and § are two constants whose values depend on the normalizations of
the eigenfunctions.
In the case of the cylindrical shell of section 3.4, one must also csider

the total electric and magnetic fields E_ and H_ inside the free-space region

2 =2
0<p<h:
9 nb2n
E. = _S_ f {icosaa, J' - J s (3.38)
2p n 2n n g n
n=- P
5 n°°8"’a I +ib J'] , (3.39)
n n 2n n
(o)
E, = sinc E :f a, J , (3.40)
A n 2n n
n=-00
"YZ g on ] : (3.41)
n=-0
(o4}
- E , _ncosa
H2¢ Y d fnljiaZan ————-g bsz;] s (3.42)
n=-o P
w
H., = Ysina E fb,J , (3.43)
2z n 2n n
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where the argument of Jn is §p, and the prime indicates the derivative with

respect to Sp .

i’ C1o’ bln’ dln’ and eventually a,

are determined by imposing the appropriate boundary conditions:at p =a and

The constants as, bs, a and b
n’ n n

2n’
p =b (the radiation condition is already satisfied by the choices (3.23) and (3.26)
for the scattered fields). In particular, arsz and b: can always be written in the

form:

. Ejﬁ(ga) - Man(ga)] cosp+A sinf

a =- (3.44)
n (1) (1) ’
Hn (Sa)-Man ('s'a)

s I:Jl'l(‘g'a) - Man(ga)JsinB - AncosB

n (1)' ~ (1) !
H (Ea)-Man (Ea)

b

(3.45)

where §a = kasinca, and the quantities Mn‘ An’ ﬁn’ Kn depend upon the structure
of the scatterer and upon the angle o of incidence, but not upon the polarization
angle f.

A resonance on the nth mode of the low-frequency scattered field occurs
when the dominant term in the denominator of either arS1 or b: becomes zero,
that is when either

'
e )

=(M) (3. 46)
(1) nLF ’
Hn (§a)

LF

or

H(l)'
n

(1)
Hn (Ea)

(£)
2 =(M)

ILF (3.47)
LF

Here the subscript LF is used to indicate the Rayleigh approximation, i.e. the
leading term in the low-frequency expansion. In particular,
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(1)’
H " (§)
o) a 2 -1 2
(1) ~ M ga E-I-O(galngai' g (3.48)
H (&)
o "a -
(1)
H (&)
1 a -1 2
(1) ~ -ga E+O(Eam§a)] ’ (3.49)
H1 (€)
a
(1)'
H " (§)
n a -1 2
(E )
n>1
where
M = ir —270-21n(§a/2) (3.51)

and Y= 0.5772157.. is Euler's constant.

3.3 The Coated Cylinder

In order to determine the coefficients as, bs, a, ,c,,b andd ,
n” n' 1n’ 1n’ 1n in
most impose the continuity of the tangential components of the total electric and

magnetic fields across the surface p =a and the impedance boundary condition

E -(E B =nZpxH , atp=b, (3.52)

where n is the relative surface impedance. One finds the system of six linear
algebraic equations reproduced in Table I, where the abbreviations
=J ) J' = J
A& ) . ag o8 )

and similar ones for the other functions have been used; thus, for example, the

equation. corresponding to the first row is:

(1) ( (2)

-H (kasina)a +U1)(kasina)a U, (kasina)c —J(kasina)cosB
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While the matrix form of Table I is useful for numerical purposes, the
coefficients must be explicitly determined if analytical considerations are in order.

Only the coefficients of the scattered field will be given here; it is found that az
and bz are of the forms (3.44) and (3. 45) where

_ sin’o (1) sin’ (1)
Mn 'r( )K {(a)(& mR >[ (8 ) Ca) aHn (§a) E’avln@aUleD}:] +
2
1 (1) 7(a) ||ncosa 7(a) 2v67(a)
(@) o Cat | 2, 1L T sin’e T(b)(kb)an

A = 2ncos« [1_ 7(a) +_'y6'r(a) ‘J , (3.54)

(9]

3)

ﬂT(a)(ka)an sina T(b)(kb)an
with
K = H(l)'(’s' ) - “Ea; (1)(§ )3, R ) , (3.55)
ncosa 2
Rn-EF+&b——(b—) CD . (3.56)
E =C —insina—@ 3, . C (3.57)
n n 7(b) bU n’ :
- N . u(b)
F =D -in ! ine 4 2yDs - (3.58)
c. = v )uPe)-uPe pulle ) (3.59)
p_= Ve vPe ) -viig witie ) (3..60
aaU = (-é; , operating on the (I‘J,) functions only,
(V) Eb = constant (3.61)

1 aFn ncos o
= — +
e.g., 9y foR R |"n %, [kbv(b) Cn ae
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abU = <£—> , operating onthe U functions only,
(V) b £ =constant (V)
a (3.62)
ra) = Um (o) = elahda)-cosx , (3.63)
p—>a-
7b) = lim 7(p) = e(b)/.t(b)-cosza , (3.64)
p—> bt

'g‘a and ‘g‘b are given by (3.8), the prime indicates the derivative with respect to Ea,
and v and § are the normalization constants of (3.36) and (3.37). The quantities
ﬁn and Kn are obtained from M, and An respectively, by replacing €, u, n, U
and V respectively with u, €, n'l, V and U in the above equations (3.53) to (3.64).

Observe that A = an 0 for all @ if n=0, and for all n if o = 7/2
(normal incidence); thus, in general, the coupling between TM and TE modes dis-
appears only for normal incidence.

In the particular case in which e(a) = 1{a) = 1, relations (3.53) and (3.54)

become much simpler:

(1) (1)
(Mn)e(a)=l~'(a)=1 = aaU {}n [Hn (ga)Rn-Hn (Ea)aaan]} , (3.65)

-1
- _2ny6 cosa (1)' (1)
(An)e(a)=u(a)=1 7r7-(b)(kakb)2 [:Hn (€ )R H (ga)aaVRn] - (3.66)

3.4 The Cylindrical Shell

By imposing the continuity of the tangential components of the total electric
and magnetic fields across the surfaces p=a and p =b, one finds that the various
coefficients are given by the eight linear algebraic equations of Table II, whose
symbols have the same interpretation of those of Table I in the previous section.
In particular, the coefficients az and bls1 of the scattered field are given by (3. 44)
and (3.45), where:
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_ -1 ela) (1)' (1)
Mn- Gn {T(a) (§ )8 L +Hn ('g'a) [:AaLn-
< -r(a)>< (b) nsine sin 2o 3 Z}zjl}
2'7'(3.)7(b) sin kakb n’b (3.67)
2
_ 2ncosa l:< 'r(a) 7(a) ( -r(b)> sina >:]
A = - 76 J (§ ) ’
n 7r-r(a)(ka) G sin a n 7(b) nb
(3.68)
with
_ (1)’ wa) o (1)
G =H (ga)Ln- ) ° (& )a , (3.69)
L = ET(E )]2 + sza J (§ ) (5.) |e(b)a, . +u(b)d ] -
n oob] %t 7o) Tn'onn'Sh bU bV
2
[ouee)] }(cnnn) , (3.70)
_ | nsin2e 'r(gz 4 _ )
Ap = szm_(p)] |: _J sin aapUapV , (p=a or b);
T"’) (3.71)

the other quantities are given by (3.8), (3.62), (3.63) and (3.64), the prime indi-
cates the derivative with respect to the argument of the Bessel function, and v and
6 are the normalization constants of (3.36) and (3.37). The quantities i\V/In and Kn
are obtained from Mn and An respectively, by interchanging € with u and U
with V (observe that these replacements leave Aa’ Ab and Ln invariant).

Both An and Kn are zero for all o if n=0, and for all n if o = 7r/2. In

the particular case e(a) = u(a) = 1, M of (3.67) reduces to the simpler form

(1)
Mo e(a)=pta)=1 =2 aU{[ CRURL RCALI L;J} (3.72)
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If the conditions
e(a)u(a) = e(b)u(b) = 1 (3.73)

are satisfied, then An= Kn= 0 for all n and all o. It is thus seen that the
coupling between TM and TE modes disappears not only for normal incidence, but
also for oblique incidence under conditions (3.73).

3.5 The Coreless Cylinder
The boundary conditions to be imposed in this case are the continuity of

the tangential components of the electric and magnetic fields across the surface
p=a, and a condition at p =b =0 which leads to the proper choice between the solu-
tions of (3.9) and (3.10). If e(p) and (dp) are finite at p =0, then we shall require
that Un(O) and Vn(O) be finite, whereas if €(p) and/or u(p) are infinite at the ori-
gin, we ought to impose a boundary condition of the Meixner type to select the appro-
priate Un and Vn (Meixner, 1949): the total energy of the electric and magnetic
fields inside any cylinder of axis z, unit length and finite radius must be finite.

Let us indicate with U(l) and V(l) the radial eigenfunctions which have the

appropriate behavior at p =0; then

Cin= d1n= 0, (3.74)

and the coefficients az, b:, a and bln are given by the four equations of Table III,

where the symbols used have the same interpretation as in Tables I and II. In
particular, a: and bi are given by (3.44) and (3.45) where

¢ otV D)
{ o (8 U7 (5 IV (5 )+

nsin 2o 7(a) (1) (1)
+H (E )[(ka'r(a> < > (E )V a)

e(a)u(a) . 4 (1) (1)
- D) sin aUn (ga)Vn (Ea) )

7(a) (3.75)
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_ __2ncosa 7(a) | (1) (1)
An— — 5 E.— "9 jl Un (§a)Vn (Ea) ) (3.76)
r7(a)(ka) g, sin"a

with

_ (1) (1) (1) pa) 2 (1
g, = Un (Ea) liHn (§a)Vn (Sa)- +a) 51" oan

'
g v <§aﬂ SR L7
1(a) is given by (3. 63), Ea =kasina and the prime indicates the derivative with
respect to Ea. The quantities Mn and An are obtained from Mn and An respec-
tively, by interchanging € with u and U with V.

As in the previous two sections, An and Xn are both zero for all « if
n=0, and for all n if o = 7/2. Also, An= Kn= 0 for all « and all n if
e(a)u(a) = 1. If both e(a) and u(a) are equal to unity, then

(M) 9

- 9 (1)
n'e(a)=u(a)=1 o U, (Ea) . (3.78)

3.6 A General Result on Mode Coupling

As seen in the previous sections, the nth TM mode and the nth TE mode
of the scattered field are generally coupled together; this coupling also presents
itself for the fields inside the inhomogeneous region. If one could know a priori
that the coupling does not occur for the particular scatterer under consideration
(for example, if one could know a priori that An and Xn in (3.44) and (3.45) are
zero for all n and all a), then the laborious calculations arising from the imposi-
tion of the boundary conditions would be greatly simplified. In the following, we
derive sufficient conditions for the uncoupling of the TM and TE modes; the pro-
cedure followed in the proof is also useful in the practical determination of the
constant coefficients.

Let us consider a radially inhomogeneous cylindrical region of outer radius
p =a on which a plane wave is obliquely incident, as shown in Fig. 3-1. Let us
divide this region into coaxial cylindrical shells I, II, III, ... of radii

Py Pgs--.p =2 (Fig. 3-2), within each of which €(p) and w(p) are continuous and



/
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FIG. 3-2: MULTI-LAYERED CYLINDRICAL STRUCTURE.
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differentiable functions of p; also, let us suppose that the solutions Un and Vn
of (3.9) and (3.10) are known for each shell.

Thus, in region I:

Y (1)
U, (€)= UNE), Vo (E)=b VIE), O<p<p),  (3.79)

where U(l) and V( )
n,lI n,I

satisfy the boundary conditions on the axis p=0, and aln and b111 are constants;

are those solutions of (3.9) and (3.10) for region I which

in region II:

_ (1) o2
Un, H(g'p) B aln ‘}n, I Un, I[(ngcn II n, II(Ep)—J

(p1<p <p2) , (3.80)
. AV @ ;)
Vn’n(Ep)—blnE)n,n W e )ra, vn,nep],

where Ug)n and V(J)H, (j =1 or 2), are two linearly independent solutions of
4
(3.9) and (3.10) for region II, and a c b and d are constants;

n, I’ "nII' nII n, I
expressions similar to (3.80) can be written for Un and Vn in regions III, IV,

etc. The boundary conditions at p = p, are

Eo1 %0 i % o By i Ene Hy 1= By 1 for p=p,.

(3.81)

The field components are given by expressions of the types (3.28) to (3.33), and
therefore conditions (3, 81) yield:

(1) (2) ey

Y, II(Elecn, 1%, II('«§p1) n 1 ‘& 1) (3.82)
(1) ( ) v

bn,II n, II (g 1)+d Y n, H(gpl) nL,I(§p1) ’ (3.83)
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u(pl—) u(p1+)

' _ . _ Incoto 1 1
7(p,-) Vn, I(gpl) 7(p,H) Vn, 11(5,,1) ke, Lrlo,-) 7(p1+)] Un, I(gpl) ’
(3.84)
€lp.-) e€(p.+) :
1 , _ 1 , _ _Iincote 1 1
T(Pl") Un. I(gpl) T(Pl+) Un, II(gpl) kp1 'r(pl—) T(p1+)—_l Vn, I(gpl) ’
(3.85)

where the meaning of the various symbols is obvious.
The nth TM and TE modes are uncoupled if the right-hand sides afhoth (3. 84)
and (3. 85) are zero; this occurs in three cases: (i) for all o if n=0, (ii) for all

n if e =7/2, (iii) for all o and all n if -r(pl-) = -r(p1+) or:

elp,-lp,-) = e(p1+)u(pl+) . (3.86)
In all three cases, (3.84) and (3. 85) become:

! ! (p -)T(p +) ]
(1) (2) _ ] 1 (1)

! ' (p -)7(p,+) ,
(1) (2) B €0, 1 (1)
2, IIUn, H(§p1)+cn, IIUn, H(‘s'pl) = ——_—_—E(pl'*')q'(pl') Un, I(Epl). (3.88)

The constants a and ¢ are determined by solving (3. 82)rand (3.88); in

n, II n, II (1) (2)
fact, the determinant of the coefficients is the Wronskian of Un I and Un I which
is non-zero by hypothesis, and the system is certainly non-homogeneous (if both

o (1)' (1)

n, 1 and Un,I were zero at Py then Un,I

bn, I and dn, o 2re found by solving the system (3. 83), (3.87).

It is clear that the above reasoning can be repeated in imposing the boun-

would be identically zero). Similarly,

dary conditions at p =pg; the expressions inside the square brackets of (3. 80) play

the role of U:xl)l and Vcnl,)l in the previous discussion, Py is everywhere replaced
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by Pos and so on. By repeating this process, we finally find, at the surface

p =a, boundary conditions of the type discussed in section 3.5 for the coreless
cylinder. Therefore, the nth TM and TE modes of the fields inside the inhomo-
geneous regions and of the scattered field are certainly uncoupled: (i) for all o if
n=0, (ii) for all n if a=7/2, and (iii) for all @ and all n if the product €(p)fp)
has no step discontinuities. Case (iii) is obviously the most interesting one, and
can be restated as follows:

Theorem: A sufficient condition for the TM and TE modes to be uncoupled for all
n and all o is that the square e(p)u(p) of the index of refraction have no step dis-
continuities in the interval 0 <p <.

3.7 An Example
The differential equations (3.9) and (3.10) for Un and Vn can be solved

exactly for special choices of e(p) and u(p). In this section, the case in which
€ and u are, respectively, inversely and directly proportional to p is considered.

Let us set

e(p) = e(a)§ , Ho) = Wa) 2, (3. 89)

where a is the outer radius of the inhomogeneous region. It then follows from

(3.9) to (3.12) that Un and Vn are solutions of

dU 2

n2+|:1-L§]Un=o, (3.90)
d(hp) (hp)
szn 2 dVn I; n2 AJ

+ — + |1- vV =0, (3.91)
dnp)?  Be dbo) (bp)?J B
with

h=k{7 =k \le—(a,)u(a)- cosza , (3.92)

and are therefore given by



63

(1)

Un = alnxlzo(hp)+cm§(I (hp) , (3.93)
_ 1 (1)
vn— ho Ealn¢6(hp)+dln§o (hle , (3.94)
where
o=-%+ n2+i , (3.95)

_ ‘/15 (1), _ [rx (1)
wO'(X) = 2 JO'+1/2(X) 3 §0' (X) = D) H0+1/2(X) . (396)

In the following, a detailed analysis is performed for a scatterer made of
an inhomogeneous layer of outer radius a, thickness d and parameters given by
(3.89), which covers an imperfectly conducting cylindrical core of radius b=a-d.
The calculations are carried out for normal incidence (o = 7/2), in which case

the parameter h is given by

(h) =7r/2 = kl = Nk R (3.97)

where N = \/eu is the (constant) refractive index of the coating layer. The
analysis of this section can be applied, with obvious modifications, to the case in
which € is directly and u is inversely proportional to p.

Consider the incident plane electromagnetic wave

_Igi = (sinB')\'+cosB 2) eikx ,
(3.98)

I_ii = Y(-cosB§+sinB Z) eikx ,

which propagates in the direction of the positive x axis of Fig. 3-1. The axial
components of the scattered fields and of the total fields inside the coating layer

are:
o8]

s_ Y  .ns (1) inf
B ) i asH (kp)e' ™ (3.99)

z
=~
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%)

_ Z L8 (1) ¢, (3.

Q0
EIZ=Z [: (ko) +e, c (k o ]e™? (3.

[0 0]
. n (1) inf
H, = 0o Z b,y kpi+d, ¢ Do) el . (3.
1" n=-
The coefficients are given by:
] J'(ka) M J (ka)
a_ = -cosf : , (3.
n “’ (ka) - M H‘ (ka)
o e b) - 1n J,(I:;) V't )
8, = Tia cosB e -+ G
[(1)'(ka)-M H(l)(ka)j] [e -~ ——“—J
n n n nmm&&m
N ]
P 1/ (k‘_b)—inm l// (k b)
®in = " 7ka °°°F ) 0 =
1 1
[ (ka) - M, H (ka)][ - u(b) 3k b;I
. 7' (ka) - ﬁan( ka)
b_ = -sinp = — s (3.
n Hill) (ka) - MnHill)(ka)
C(l)'(k b) - ———g—b—@ Cil)(k b)
- 24N sinf 1
1n il 00 ’
(1) (1) n 1-inkbe(b)
(1 (ca) - 5§ 1] ()| [a(klb) 2 ](3

100)

101)

102)

103)

104)

.105)

106)

.107)
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1 ’ k)b
In T . R
[(1) (ka) - 31 H(l)(ka_]{ T 1-1112kll:e(b) 9:]
1 (3.108)
where
~ L)
=N _29 N
Yo = Ua) a(k ) {‘“ 8, b ok b)ﬂ' (3.109)
90
o= N _9 [ %% _1- irLkbe(b)
with
- (1) (1)
0 = y (ka) “(kb)-y (kb)§ “(ka), (3.111)

and n is the relative surface impedance at p =b.
In the preceding formulas, the prime indicates the derivative with respect to the
argument of the primed function. Observe that a: and bz are unchanged whereas
n
a s C s bln and dln must be multiplied by (~-1)" when n is replaced by (-n).
These exact results can be rewritten in a form which is especially useful

for low-frequency approximations; thus we have that:

20+1

= cos 7o Fl 2 ’ (3.112)

£=0

ik a
1
3(k a) 2cos TG Z F < 2 > ’ (3.113)

0.4) . 24
8Gn ir S F3 <1k1a (3.114)
8(k1b) ~ 2¢cos 70 1—0' Ji 2 ’ .
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2 © 21-1
o0 ik.a
n _ T 4 1
a(k a)a(k b) ~ ~ 4cos 7o ZFz( 2 > ’ (3.115)
1 1 £=0
where
1
F) = ZO [y /2™ - /] (3.116)
m:

»:dm
i
1

B
L

[(21— 2m-0o) /"l(b/a)oh,-1 -(20-2m+o+1) Fz(b/a)—c_] , (3.117)

{
F) = I;E2m+o+l)f‘(b/a) - (2m- o)r'(b/a)ol:' (3.118)

J4
ZE2m+o+l)(21 2m - o)l"(b/a) -(2m-o)(2¢- 2m+o+1)P(b/a)—o 1:[

m=0
(3.119)
with
-1
r, = (/2™ [m!(l—m)'. Mo+m+ )Mo+t m+-;-)] , (3.120)
-1
r, = Y [m'.(l-—m)l/"(-o+m+-§)l"(o+l-m+-g-)jl , (3.121)

and /" is the Gamma-function. In particular, it follows that

ik a\2!
—-w 2 i ( >
1 " u(b)ka Fy

n paks o kaNet (3.122)
Z[l u(b)ka IC >

M
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L Eirapr 2](“ ]

M = @ (3.123)

i;l:l" +(in€(b)ka b>F1:l -

With the aid of the preceding formulas, the low-frequency field components

can be evaluated to any desired order in powers of ka. Here we limit our con-
siderations to the scattered fields in the Rayleigh region, i.e. to the dominant
terms in the coefficients als1 and bls1 of (3.103) and (3.106) when ka << 1; since

als1 =2a° and bz = bfn, we may take n >0. For the E-modes (5=0) we have that

i 8 O T ] o120

2 in+u(b)kd
nu(a)A +B

- (kaf2)”® ——2—2 {1+ oft (ka]}

(n') nia )A B
(n>1), (3.125)

s .
a ~17
n

where d = a-b,

= [ibika - 1n 2 (o+ 1):] (b/2)™" - [blka+in 2 o] (b/a)°,  (3.126)

B = ol:u(b)ka- in (o+ 1{] (b/a)”"! +<o+1)[u<b)ka+tn% o]<b/a)'° ,
(3.127)

f (ka) = (ka)zlnka , forn=1 ,
n (3.128)

=(ka)2 , for n>1

If n, {a), {b) and kd are such that the coefficient of ka in the dominant term
of (3.124) is not large compared to unity, then az is O(ka), hence smaller than

in the case of a perfectly conducting uncoated cylinder (n = kd = 0) for which az
is O (Inka)-l:].
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For the H-modes (8 = 7/2) and ka << 1, we have that

R la |
b5 nir k2 _acla) 2 [1+0(kaznka)] , (3.129)
o 2 a

'l;—indb)kd

8 8

5 n 9n ne(a)x +B { }
b™ ~ir (ka/2) P 1+0|f (ka) , (n>1), (3.130)
a (n!)2 ne(a)A:-B: [n :I

where fn(ka) is given by (3.128), and

~-g-1

£ = [0+ ine(b)kb | (b/a)°+ [o+1 - ine(bib] (b/a) (3.131)

’ﬁz = ~(o+1) [0+ ine(blkb ] (b/a)” +o[o+ 1 - ine(b)kb] (b/a) 1 . (3.192)

If n, €(a), a/b and kd are such that the coefficient of ka in the dominant term
of (3.129) is of the order of unity, then hi is O(ka), hence larger than in the
case of a perfectly conducting uncoated cylinder (n=kd=0) for which bz is
otkar?].

As seen from the formulas (3.99) to (3.111), the infinite series solutions
are so complicated that no information on their behavior can be derived by direct
inspection; they are, therefore, simply a tool for numerical computations, whose
complexity and cost increase rapidly with ka. Approximate expressions for the
field components can be easily derived for long wavelengths, as we have just done,
but high-frequency asymptotic expansions are much more difficult to obtain.

We limit our considerations to the backscattered field, under the hypothesis
that the inhomogeneous coating layer is of moderate thickness, and that its material
has a complex refractive index whose absolute value has a lower bound which is

only moderately large compared to unity and whose argument is bounded away from
both zero and 7/2, Since e(b) = e(a)(1+d/b) and w(b) = w(a)(1-d/b), one would
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expect the leading terms in both the geometric optics and the creeping wave
asymptotic expansions to be the same which would occur in the case of a homo-
geneous layer of relative permittivity e€(a) and relative permeability w(a); this
deduction has been confirmed by a rigorous analysis.

Starting from the exact infinite series representing the backscattered field
for E-polarization (8=0), and using the procedure and some of the results of Chap-
ters One and Two, it can be proven that the dominant terms in the geometric optics
and creeping wave contributions to the high-frequency backscattered field are the
same which occur in the case of a homogeneous coating layer. Namely, the high-
frequency backscattered field is given by the sum of the field of (1.52) and of the
first term of the field of (1.38), where u = u(a) ~ u(b). The precise conditions
under which this result is valid are given in Chapter One.

The corresponding result for the other polarization (8 = 7/2) is trivally
obtained by replacing € with u, u with € and n with n-l. However, no such
simple correspondence exists between the higher-order terms of the expansions
for the two polarizations; furthermore, these higher-order terms cannot be in-
ferred from the results valid for a homogeneous layer and, if needed, must be
separately derived.

Tyras (1967) has recently considered the high-frequency radiation from a
thin longitudinal slot in a metal cylinder coated with a layer of material having
ulp) =1 and e(p) = (p/ a)a, where « is any real number. For this case, the
differential equations for the radial eigenfunctions can be solved exactly in terms

of Bessel functions; for positive a, the coating layer is taken to represent an

inhomogeneous cold plasma,



Chapter Four
SCATTERING FROM RADIALLY INHOMOGENEOUS SPHERES.
EXACT SOLUTIONS AND LOW-FREQUENCY APPROXIMATIONS
4.1 Introduction

In this chapter, the scattering of a plane electromagnetic wave by a sphere
made of an inhomogeneous material is considered; exact solutions and low-frequency
approximations are derived.

The general case in which the electric permittivity and the magnetic per-
meability are functions not only of the radial distance from the center of the sphere
but also of the angular coordinates has been considered by Gutman (1965), who
employed the Hansen-Stratton vector wave-function method in a modified form due
to Kisun'ko. Gutman's general result is, however, of a formal nature, since it
depends upon the solution of an infinite set of first-order linear ordinary differen-
tial equations. Explicit results can be obtained when the permittivity and the per-
meability are functions only of the radial distance; this is also the most interesting
case in practice, and to this case our considerations will be limited.

The first general treatment of electromagnetic scattering from a radially
stratified sphere is perhaps due to Marcuvitz (1951). Tai (1958a) extended the
method of Hansen and Stratton to dielectric lenses and performed detailed calcu-
lations for the spherical Luneburg lens. Arnush (1964) gave an alternative for-
mulation in terms of phase-shift analysis and examined the case when the dielectric
constant vanishes on a spherical surface, as it happens in the scattering from a
dense bounded collisionless plasma; he also gave a comprehensive list of biblio-
graphical references. The Rayleigh-Gans approximation for the scattering by a
radially inhomogeneous sphere with a refractive index close to unity was considered
by Farone (1965), who also gave references to earlier works on this subject.

In section 4.2, the results of Tai are extended to the case in which also the
permeability varies radially, and general conditions are established for the pres-
ence of resonances and dips in the low-frequency backscattering cross section.
Certain assumptions, such as differentiability, are implicitly made on the functions
representing the radial variations of permittivity and permeability.

70
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In section 4.3, the fields produced by a plane wave incident on an imper-
fectly conducting sphere coated by a radially inhomogeneous layer are determined
exactly by imposing the boundary conditions, i.e. the continuity of the tangential
components of the total electric and magnetic fields across the outer surface of
the coating layer, and an impedance boundary condition on the surface of the core.
Low-frequency approximations, resonance and dip conditions for the backscatter-
ing cross section are obtained. The particular case of a relative permittivity
equal to the relative permeability and inversely proportional to the distance from
the center of the scatterer is considered in detail, as an example.

The analysis developed in section 4.3 for a coated sphere is repeated in
sections 4.4 and 4.5 for an inhomogeneous spherical shell and a coreless inhomo-
geneous sphere, respectively. In both cases, a particular application is made to
a dielectric material with relative permeability equal to unity and permittivity
inversely proportional to the square of the radial distance. Special attention is
devoted to the boundary condition at the center of a coreless sphere whose per-
mittivity and/or permeability become infinite at the center.

4.2 The General Case

Consider a radially inhomogeneous spherical region of outer radius r=a
and inner radius r=>b, made of a material with relative permittivity € =e(r) and
relative permeability u=u(r), and surrounded by free space; the spherical core
0 <r £b can be made of an imperfectly conducting material (section 4.3), or of
free space (section 4.4), or be missing altogether if b=0 (section 4.5).

Let € B Z =Y-1 = m and k=w{;£ be respectively the permit-
tivity, permeability, intrinsic impedance and wave number of free space. Let us
introduce two systems of rectangular Cartesian (x,y, z) and spherical polar (r, 9, f})
coordinates with origin at the center of the scatterer, and consider the incident

plane electromagnetic wave

i ikz

E =% ’ _}_Ii=?rYelkz

(4.1)

which propagates in the direction 8 =0 of the positive z axis; here 2 and 9 are

unit vectors parallel to the positive x and y axes.
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The total electric and magnetic fields in the region r >a are given by

the sums of the incident fields (4.1) and of the scattered fields _l*;' and _!!', which
may be written in the form:

@©
1 A -3 (kr) B
E- k,;f(n)[wn(kr)gm- o VoL, - Wi (k) rxm n] . (4.2

I
]
zs|.4

il n)['l/ (kr)m_ +3- ylz(kr)l +1W'(kr)rx_onj. (4.3)

°
E = j : n)[n§ (kr)m --—!'(kr)l o~ b !'(kr)rxmn].“ 4)
n=1

EI'—

n"a—xi b:(kr) +£§(kr)! a8 ke) ](45)
H kr £ m rxp o |.(4.

where

2n+1 n - [XIX tx (1)
= B, e Fiw, gwe

(4.6)
Pl(cos 8) dPl(oos 6)
=72 ___sag B oos (4.7
Egn + siné cos a9 sin ’ )
1 COoS A
'£gn= n(n+1) Pn(cosﬁ) oin fr , (4.8)

£ 8 and 3 are unit vectors oriented in the positive r, 6 and § directions, the
prime indicates the derivative with respeot to the argument kr, and the definition
of Stratton (1941) is used for Plll(coa o).

The total electric and magnetic fields _1_5_1 and _gl inside the inhomogeneous
region b <r <a are given by:
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o)
iT (kr)
_ 1 E n i,
— " kr ) f(n) S(kr)mon” kre -{en eTn(kr)rxmen] ! (4.9)
©
is (kr)
=X E Lo
__ = 1f(n) T(kr)men+ kru ion+“Sn(kr)rx_m_on] , (4.10)
where
(1) (2)
Sn(x) =a1nSn (xH-clnSn (x) , (4.11)
T () =b, TVm+d, T , (4.12)
n n Iln 'n

(3)

and S (x) and Tg)(x) (=1 or 2) are, respectively, two linear independent solu-

tions of the equations (see,also, for example, Wait, 1963):

S"_.—d_"_n..&Sl.f. €u- M S =0 s (4.13)
n dx n x2 n
dfne n{n+1)
' - — =
T'n x Tn [eu xz ]Tn o , (4.14)

where the primes indicate derivatives with respect to the argument x =kr. The

(5) ()

Wronskians Ws of S and W of T are given by:
W) = 88 ()-8 s Pir) = aute)
(4.15)
W(r) = T kr )T(z) (er)- 1 e T PNk = Betr)

where a and B are two constants whose values depend on the normalizations of

the eigenfunctions.
In the case of the spherical shell of section 4.4, one must also consider

the total electric and magnetic fields _E_2 and 21_2 inside the free-space region
0&r<b:
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. Z"": (k) .
- = —k-r- q f(n) [aann(kr)Eon-inn kr -I-en-lenwn(kr)rxgen]’

. (4.16)

©
Z wn(kr) R
f(n) [bZn wn(kr)_x_n__en+ lagn o L on” 1320 wn(kr) rx -@-on] :

n=1

Elw.

(4.17)

8 .8
The constants an, bn‘ aln’ bln‘ cln’ dln’ and eventually aZn and b2n‘
are determined by imposing the appropriate boundary conditions at r=a and
r=b (the radiation condition is already satisfied by the choices (4. 4) and (4.5) for
the scattered fields). In particular, az and b: can always be written in the

form:

as _ ‘”ﬁ“"" ann(ka) bs _ wl'l(ka) - ann(ka) (4.18)
n  ¢(ka)-M ¢ (ka) ’ n  ¢'(ka)- M ¢ (ka) ° '
n nn n nn

where the quantities Mn and ﬁn depend upon the structure of the scatterer.
In the far field (r — oo):

(0] 1 1
6 n ey mrl [ ek Rt S
=~ kr 1 n(n+1) n 8inf n dé

o dPll1 5 Pn(cos 8) a
En—&'é' +b ——— :lsm;b , (4.19)

and, in particular, the backscattered fleld (6 = ) is:

_F;b"‘ ~ X-1) 2— Z( )" (n+—)(a -b ) . (4.20)

n=1

Therefore, in the low-frequency limit the nth mode of the backscattering cross

section will present a dip whenever

(Mn)LF = (Mn)LF ; (4.21)
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here and in the following, the subscript LF is used to indicate the Rayleigh
approximation. A resonance on the nth mode of the low-frequency backscattered
field occurs when the dominant term in the denominator of either a: or b: be-
comes zero, that is when either

(Mn)LF = -n/ka , (4.22)
or

(M)

1= -n/ka . (4.23)

Since the total scattering cross section is

@
=_T E 8,8
Oyotal = k2 Re {n=1 (2n+ 1)(an+bn} , (4.24)

it follows that (4.22) and (4.23) are also the resonance conditions for O otal’
The differential equations (4.13) and (4.14) can be solved exactly for

special choices of the functions €(r) and w(r); some solutions are listed in the

following:

(I) Luneburg lens: u(r) =1, e(r) = 2-(r/a)2; the functions Sn and Tn are given

by products of powers of kr, exponentials, and, respectively, confluent and gen-

eralized confluent hypergeometric functions {for details see Tai (1958aﬂ.

(II) Some considerations for the case (4r) = 1, e(r) = €(oo)(r+r1)/(r+ r2) with
e(m), r, and r, constants, have been developed by Tai (1963).

(II) Maxwell fish-eye: ir) =1, €(r) = 4E+(r/a)2:]~2; Sn and Tn are given by
products of powers of kr and hypergeometric functions (Tai, 1958b).

(IV) r)=1, e(r) = (r/a.)m with m # -2; this case has been investigated by
Nomura and Takaku (see e.g. Tai, 1958a); Sn and Tn are products of powers of

kr and Bessel functions of rather complicated order and argument.
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(V) er) = e@r/® | ur) = wakr/a) 2T, (4.25)
where €(a), u(a) and o are constants; then
- atp
S =(kr) ", T =(kr) O, (4.26)
n n
with
B =\ o +nn+1) - elamalia? ; (4.2)
n

if Bn =0 for a particular n, then a second independent solution is given by the
product of (4.26) times In(kr).

(vD e(r) = ela)(r/a)® €l = N , (4.28)
when e(a), o and N are constants; then
_ ~a[2
Sn = (Nkr) E‘lnw'yn(Nerclng'Yn(Nkri] , (4.29)
- af2
Tn (Nkr) Elnwﬁn(Nkr)+dln§5n(Nkr£l , (4.30)
with
=_1 12 aa
v =-3+ [ pPeeGon (4.31)
__ 1 12 a a
5 =-2+ ‘[(n+2) +2 &) (4.32)

4.3 The Coated Sphere

! aln' cln’ bln and dln'

one must impose the continuity of the tangential components of the total electric

In order to determine the coefficients az, bz

and magnetic fields across the surface r =a and the impedance boundary condition

E

E,-(E, 7)1 = nZTxH atr=b, (4.33)

-1

where 7 is the relative surface impedance.
It is found that a: and bz are given by (4.18) where
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ot o [ am % 430
n a) Hka) n wub) a(kb) |’ )
-1 80
o1 _90 & _Inp _ o
Mo = @) oka) [Cn (b) a(kb):| ‘ (4.35)
with
c =s st )(ka)S( Nkb) - s( )(kb)S( Yka) | (4.36)
6’n T )(ka)T( ) kb) - T( }kb) (2)( ka) . (4.37)

The other coefficients are:

S(2)(kb) s (2)'(kb)
a8, = i [ (4.38)
[n u(b) a(kb)] 3 - M, € (ka:]
(1) (1)
(kb) - (kb)
c, =-1 /"( b) (4.39)

iIn
l: 5 a(mj[‘ (ka) - M C(ka:]

and bln and dln are obtained from a and Cin respectively, by repljcing n,

M, Sn’ Cn and Mn in (4.38) and (4. 39) respectively with rfl, €, Tn’ Cn and

M .
n
In particular, it follows from the previous formulas that a sufficient con-

dition to have a zero backscattered field is that
e(r) = u(r) , n=7%1 . (4. 40)

This result could have been predicted on the basis of two theorems by Weston
(1963) or of a theorem by Wagner and Lynch (1963), or by approximating the
inhomogeneous coating with an arbitrarily large number of concentric homogene-

ous layers and applying a result by Uslenghi (1965).
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As an application, let us consider the particular case
a
e(r) = ur) = N; , (4.41)

which is obtained from (4.25) by setting €(a) = ({a) = N and a@ = 0. Then

= AT | o l
M = [ ot |irtp - arctan(n N) , (4.42)
where

T = \/uz-—(Nka)2 , 2 - nn+1) , p=afb, (4.43)

and ﬁn is given by (4.42) with n replaced by n_l. In the low-frequency approxi-

mation

n Nka 1

-1, 2v -1
M o~ L .‘1“’1”1“_1)92 HU-tpN ) 1+0ENka)2]} , (4.44)
(1+iwN V-1 -twN ")

and it then follows from (4.21) that dips in the backscattered field occur when
n= '-’-'1, as one should have expected, since in this case the backscattered field
is exactly zero. It also follows from (4.22) and (4.23) that a resonance for az

occurs if

(a+£) %= (a- %)

n=22. ) (4.45)

v, 2v v

— + - —
(n+T)p "+(a-3)
whereas a resonance for brsl occurs when (4.45) is satisfied with n replaced by
n'l. If, in particular, the core is a perfect conductor (n = 0), the backscattering

cross section will present a resonance when either

v 2V+1
N=-- .E._.._ , (4.46)
n 2v
p -1
or
v 21/__l
N=-= ‘12——- . (4.47)
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Resonances and dips in the low-frequency backscattered field have been
previously investigated by Murphy (1965) for the case of a perfectly conducting
spherical core coated by a homogeneous dielectric (plasma) layer.

4.4 The Spherical Shell

By imposing the continuity of the tangential components of the total elec-
tric and magnetic fields across the surfaces r=a and r=b, one finds that the
coefficients which appear in (4.4), (4.5), (4.9), (4.10), (4.16) and (4.17) are:

_ 4, (2) _1_ (2)

a, = An El/n(kb)sn (kb)-wn(kb) 2AD) Sn (kb)] , (4.48)
=_1 |, (1) _1

¢, =" A E/(kb)s (kb) -y (kb) == 25 5 (kb] (4.49)
= ——lw&(b) (4.50)

%91 -u(b)An ' '

where the Wronskian Ws(b) is given by the first of (4.15) in which r=b, and

BC
A = E'(m M!(kaZ]IZ(kh)C 4 () =2 Mb) |- (4.51)
d, and b_. are

8 8
The coefficients a and bu are given by (4.18), and bln’ In on

obtained from aln’ cln and 8'2n respectively, by replacing u, Sn’ (in, lfn and
Ws(b) in (4.48), (4.49), (4.50) and (4.51) respectively with ¢, Tn’ Cn’ Mn and
WT(b). The quantities Cn and En are still given by (4.36) and (4.37), whereas

now

1 9 BC
= X '5(-— [w' (kb)C w (kb)—= (b) a(kb (4.52)

and f\v{n is obtained from (4.52) by replacing u with € and Cn with ('Jvn. From
the above formulas it is seen that the backscattering cross section is exactly
zero if e(r) = u(r); this result also follows as a particular case from the first
theorem in Weston (1963).
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As an application, let us consider the case

ur) =1, €(r) = ¢s(a)(a/r)2 (4.53)

which follows from (4.25) when we set u(a) =1 and o = -1/2. It is found that

(Mn)LF = (4.54)

(n+1)e(a) Elpn+3 +(n+ l)p-n+2:l+ n(n+ 1)(pn+1 -0 M

~ 1
(M ) = . R
nLF - eladka Lo L [(:n +1)p" +np-n]
(4.55)
where p = a/b.

From (4.22) and (4.54) it is seen that no resonances occur for az ; thus
it follows from (4.23) and (4.55) that the resonances in the backscattering cross

section occur when €(a) is a root of the equation:
+3 -n+ -2 + +1,, 2 -
[ea)]?nta s 106" 72 B eta) [me 170 ™ P ntnr o™ P4 87y 12 "]t

-1

o™ o™ =05 (4.56)

if the roots of (4.56) are real, then they are both negative. In agreement with
(4.21), (4.54) and (4.55), the dips in the backscattered field occur when e(a) is

a root of the equation:

E(a.)jz(n’r D™ -0 ™) v e(a) [+ 1" - o)+ n(p " - pm‘S)] +

- +
+n(p n-pn 1) =0 ; (4.57)

if the roots of (4.57) are real, then they have opposite signs.
Conditions (4.56) and (4.57) simplify in the case b =0 (dielectric lens);
+
by retaining only the dominant terms proportional to pn 3, it is found that

resonances occur when

e(a) = -1, (4.58)
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and dips occur when

ela) = ;}}T . (4.59)

The resonance condition (4.58) is of special interest because it is independent of
n; we observe that (4.58) is also the resonance condition for all modes n # 0 in
the case of a homogeneous plasma cylinder (see, for example, Murphy, 1965).

4.5 The Coreless Sphere

The boundary conditions to be imposed in this case are the continuity of
the tangential components of the electric and magnetic fields across the surface
r =a, and a condition at r=b=0 which leads to the proper choice between the
solutions of (4.13) and (4.14), and which will be discussed later. The coefficients
in (4.4), (4.5), (4.9) and (4.10) are given by (4.18) and by:

i

a, = (4.60)
In (1) . ’
S]:1 (ka) E{n(ka)-Mnfn(kaﬂ
b= 5 i — , (4.61)
1V0ka) Br'i(ka)-Mngn(kaﬂ
cln = dln =0, (4.62)
where:
-1 _9_ (1) ~ 1 9 (1)
M, = wa) d(ka) b S (ka) , M, e(a) 9(ka) an (ka) .
(4.63)

If e(r) and ((r) are finite at r =0, then we may require that the field
components be finite at r =0 in order to select the appropriate solutions Sfll)
of (4.13) and T;”

at the origin, it appears that the only sensible restriction which can be imposed

of (4.14). However, if €(r) and/or Mr) present a singularity



82

on the solutions of (4.13) and (4.14) is a boundary condition of the Meixner type
(Meixner, 1949): the total energy of the electric and magnetic fields inside any
finite volume surrounding the origin r =0 must be finite. If we assume for sim-
plicity that € and u are real, then sufficient conditions for the energy to be finite
are:

r

0
F(r)dr = finite , (4.64)

where r, is any r such that T >6>0 with 6§ arbitrarily small, and F(r) is any
of the following eight quantities (the asterisk denotes the complex conjugate, and

n and m are positive integers):

) A
F(r) = €SS ; uT T ; S T™; TS, ;= ;
nm nm nm nm 2 2
r W re
lggt, Lopipr | (4.65)
4 DI € NIm

Let us consider the particular case in which € and u are given by (4.53).
The solutions of (4.13) and (4.14) which satisfy (4.64) - (4. 65) are:

1 1
-+ﬁn T(1) - 2+3

SL 1) - (kr)2 ’ n

= (kr) , (4.66)

where Bn = \/ (n+-‘,1):)2— e(;a)(ka)z has a positive real part; the other solutions

S:lz) and T?), corresponding to a negative real part of Bn, do not obey (4.64) -

(4.65). Actually, in order to satisfy (4.64) - (4.65) for all n when

€(a) ;9/(4k2a2), it is necessary to suppose that €(a) has a small imaginary
part, as always happens in practice. If e(a) were a real quantity, then for all
n such that

n(kam -

oo e

»
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the sufficient conditions (4.64) - (4. 65) would not be satisfied. In connection
with this last remark, we observe that the trajectory of an optical ray which
enters the dielectric lens (4.53) E(a) >a is a logarithmic spiral around the
center r=0, as is easily seen by the generalized Snell's law (Chapter Five); thus,
from a geometric optics viewpoint all the electromagnetic energy entering the lens
is accumulated toward the center and if the material were non-dissipative, the
energy contained in any volume surrounding the center would be infinite.

Finally, one can easily verify that substitution of (4.66) into (4.63) yields
the same resonance and dip conditions that were found in section 4.4 as a limiting
case of the spherical shell, namely, resonances in the backscattered field occur

for all modes if €(a) = -1, whereas a dip occurs for the nth mode if €(a) = n/(n+1).



Chapter Five

HIGH-FREQUENCY BACKSCATTERING
FROM A CERTAIN DIELECTRIC LENS

5.1 Introduction
In the following we consider the spherical dielectric lens of radius r =a,
relative magnetic permeability equal to unity, and relative electric permittivity

given by
2
e(r) = e(a)a/r)", (Re e(a) 21, Ime(a) 2,0) . (5.1)

In the geometrical optics approximation, the problem is reduced to the consider-
ation of ray paths in a plane passing through the center of the lens. With reference
to the symbols of Fig. 5-1, the optical ray path is given by the equation
r
a8 - -rcoty , (5.2)
and the angle ¢ is related to the angle o of incidence by the generalized Snell

law

N(r)rsiny = N(a)a sina (5.3)

1

with

N(r) = \/e(r) , sina sing . (5.4)

Integration of (5.2) yields
r=aexp{3 /—6—(2'5)— -1 (5.5)
sin «
and in particular, for €(d) = 1;

e—B cota

r=a , (0gag 1/2) ; (5.6)

the optical ray describes a logarithmic spiral around the center r=0.

84
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FIG. 5-1: GEOMETRY FOR OPTICAL RAY PATH.



86

Since none of the rays entering the lens ever leaves it, the geometrical
optics scattered field for r > a is obtained by applying the Fresnel reflection
coefficient at the rim r=a; if, in particular, e(a) =1, the geometrical optics
scattered field is zero everywhere and a rigorous asymptotic analysis is needed
to obtain even the leading term of the scattered field. Such analysis is performed
in the following for the far backscattered field. The transformation of the infinite
series solution into a contour integral and the choice of branch-cuts are given in
section 5.2, whereas sections 5.3, 5.4 and 5.5 are respectively devoted to the
determination of the reflected field, creeping waves and evanescent wave contri-
butions to the backscattered field. A brief analysis of these results is included
in section 5.6.

A lens which approximately obeys the functional relation (5.1) may be con-
structed by means of many concentric homogeneous layers of different materials;
in particular, the lens may have a perfectly conducting core with a radius very

small compared to a.

5.2 Infinite Series Solution and Contour Integral Representations

The incident plane electromagnetic wave

El - ;\(elkz ’ Ei - 9Yelkz ’ <Y = ‘/go/u()), (5.7)

which propagates in the direction of the positive z-axis, produces the far back-
scattered field

\ (o)
ikr

b.s. A € n 1 8 .8
EVT e X)) ;(-1) Ql+-§> (an—bn) , (5.8)

where a.ls1 and brs1 are given by (4, 18) with
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1 1
Bn+§ ™~ n_ 5
Mn = Mn = “oka (5.9)
1 2 2
B,n = /(n+§) - e(a)(ka)” , (ReBn> 0). (5.10)

Formulas (5.9) and (5.10) were obtained by setting @ = -1/2 in (4. 25) to (4.27)
and by eliminating one of the radial eigenfunctions by means of a Meixner-type
boundary condition about the center of the lens, as discussed in the last section
of the previous chapter.

The infinite series (5.8) may be considered as a residue series in a
complex plane v, and may be replaced by a contour integral C taken in the

clockwise direction around the poles v = n+-;-,= %, %, -2-, ..., giving

b.s eikr

f A —— .i_ _ - __1_ 14 ( _ >
EX kr [2 (ao bo) 2 COS TV av_ 1/2 bV— 1/z d£| ’ (5.11)
C

where, on the basis of relations (2.7), (4.18), (5.9) and (5.10),

21 %EJ’ETIE)_JJ' E'E(l'af)]kac

3,y 7Py 1y = 2 T ) () 1 Tre@N A1)
14 vV €\a
2 2 g7(ka) E-Iv (ka)—CHv (kaE| lE{V (ka) - (@) @- ka >Hv (ka):|

(5.12)

with

= |w/ka-cla) ; (5.13)

here the prime indicates the derivative with respect to the argument ka.
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In the complex v-plane, the quantity (av y -bv 1/) has two branch-points
) ~l2
at v="F ka\fe(a) . Let us set

v=y+ivt, e(a) = e'+ie" (5.14)

with »', v", €' and €" real, and let us choose the branch-cuts along the hyperbola

"
A A % (ka)2 (5.15)

from v = 2 ka\/ztt) tov= fioo, as shown in Fig. 5-2. Along the cuts ReC = 0,
and elsewhere in the v-plane Re C > 0; on the remaining parts of the hyperbola
(broken lines in Fig. 5-2) Im C =0; between the two branches of the hyperbola
(hatched domain in Fig. 5-2) ImC <0, whereas in the remaining portions of the
first and third quadrants ImC > 0. The quantity C has a jump discontinuity in
crossing a cut; with reference to the two points (+) just above and (-) just below

the cut in the first quadrant of Fig. 5-2:

2
"= _ g,
C; =i(ImC), = Yile+ v____ué___ , (5.16)
- - (ka)

where v' and v* are linked by (5.15).

The choice of branch-cuts illustrated in Fig. 5-2 satisfies three require-
ments: (i) since ReC >0 on the real positive v-axis, Re Bn >0 in agreement with
(5.10); (ii) in the Watson-type transformation introduced in the following, the line
integral along the circular arc I 9 tends to zero as the radius R of the circle
tends to infinity (section 5.3); (iii) the branch-cut integral gives a contribution
to the backscattered field which is finite and susceptible of a physical interpreta-
tion (section 5.5).

By deforming the path of integration, the contour integral C of (5.11) is

replaced by the sum of an integral whose contour [° 1 extends from the fourth
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quadrant through the origin v = 0 to the second quadrant, an integral along the
arc r‘2 of a circle of large radius R with center at the origin, an integral along
the contour T 3 around the branch cut in the first quadrant, and a sum of residues

due to the poles of the integrand which lie in the first quadrant:

+ + + 27i E (residues in first quadrant) .

C I »»Fz M3

1 (5.17)

The deformed path of integration is shown in Fig. 5-3. The following sections
are devoted to the asymptotic evaluation as ka —» of the quantities appearing

in (5.11) and (5. 17), and to the physical interpretation of the results obtained.

5.3 Reflected Field Contribution

The reflected field approximation to the far backscattered field is obtained
by adding together the asymptotic expressions for the line integral along the con-
tour f‘l and for the term containing (ao—bo) in relation (5.11). Firstly, however,

we shall show that the line integral along the circular arc I"2 vanishes as the

radius R of the circle tends to infinity.

The Debye expansions may be used for Hfjl)(ka) and its derivative provided

that inequality (1.19) is satisfied; this is certainly true along the contour Pz, and

also along I~ 1 if Fl remains at a sufficient distance from v = ka (see Fig. 5-3).
The various regions of validity for the Debye expansions were described in sec-
tions 1.3 and 1.4 and illustrated in Fig. 1-2; a detailed derivation of the expansions

is given by Watson (1958, chapter 8). We simply recall the relations:

v = ka coshy , ¥ = vitanhy-%) (5.18)

where

r

5 <arg(-isinh?) <-’2-’ . (5.19)
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Fz /—branch—cut

I ~

FIG. 5-3: CONTOURS OF INTEGRATION IN THE COMPLEX v-PLANE.
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With the choice of branch-cuts of the previous section

~ t

Clyl=sco -E’: , (*if v 20), (5.20)

and therefore from (5.12):

t 12v 2 [- e(a)]

(V_llz-b,,_l/z)l ho [ (ka)_ n ‘”(m] [

(5.21)

where the first (second) sign is valid if v'>0 (v' <0). Let

+
v=Re~ 18

with 0 <60 <7 and the first (second) sign valid when "' >0 (1" <0), Then along
the arc I, the integrand function E/(a y-b ) cosm ﬂ behaves like

2 v=-Yp V-1,
-2R|cos 9|

R2 e-7rR 8in@ (23)

and therefore the integral along r‘2

The contour of integration !"'1 extends through the Debye regions 3, 1, 4
and 6b of Fig. 1-2, If I | Tuns at a sufficient distance from v = ka, so that

goes to zero as R tends to infinity.

along the contour

)

and at a sufficient distance from v = i1.51ka (point S

- 1' >>(2ka)-2/3 ,

1 of Fig. 1-2), so that
lu] >>ka along the portion of the contour lying in 6b, then the integrand becomes:
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v
CO8 TV (av_ 1/2"bu- 1/2) ~ ) 1TV STy ’ (5.22)

where

a(tvqa]* ol e

f(v) = irvsinhy (5.23)
sinhy- :l[inh'y < )< 1+e(a)J

is a slowly varying function.

The main contribution to the integral along {"1 arises from a saddle-point
at the origin v = 0. The integral function (5.22) can be asymptotically evaluated
for |v| <<ka with the aid of the relations

=2y v2 iv4 1/6
e '~ ~ exp {lﬂ'l)—i;‘a -i2ka} - 3 +0 AR L (5.24)
12(ka) (ka)
sinhy ~ 1{ - -— I{y— +O[<ka> 1} (5.25)
i v i
C ~ -1 E(a) + zm (E) G(a] +O [:(kaﬁi] (5.26)

The integral along f‘l becomes:

ooll—-

+
2n&e ow2
v

—b Ydv ~ —5 -
1 _1
cosm/ ay- /, A 27r2 yve

1 -2r e
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where
1o

w = i27v, o=- ‘i? , £ = (ka)2 , (5.28)
471 ka

6
-2 w
glw) = 1+— [: ] +0 |(ka) +0["“—] ,
1- e(a) [ ] ] "(5.29)

(ka)

and 6 is an angle between zero and /2.

Since £ is very large, the integral on the right-hand side of (5.27) may
be decomposed into a sum of integrals ED n defined by (1.32) and computed by
Scott (1949). Specifically, in our notation:

E, o ~ 27%ka 1+—131-(—+0[ka) 2]}
B |~ -8nlka)’ 1+o[m>‘§J} :
E g ™ -1647°(ka)’ 1+olzka)'3‘_]} ,

8, 4 -4
Eo,3 ~ 7687 (ka) {1+0Eka) ]} .

Substitution of these formulas in relation (5.27) gives:

(5.30)

v \le(a) 1 -i2%ka [ 4 [1
cosTV (av_%-bv_l/z)dy ™ \[ Je@+1 © {;+ka 2"

1 -2
+ l-e(a)] +0[(ka) J} . (5.31)

In order to evaluate (ao- bo) asymptotically as ka—> o, we use the
relations

N
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(1) 2 ika (1) 2 olka
H, jolka) "‘\)nka e Hjolka) =[5 e 1+2ka>

(5.32)

~ea), ~ -1\/2(?{- 5 +0)|(ka)” } (5.33)
[5a- —— ol

in (5.12) and find

~ Ve(a)-1 -i2ka
S TR L e - A | Y

The reflected field contribution to the far backscattered field is obtained
by combining the asymptotic expansions (5.31) and (5.34) according to relation

(5.11):

]~ GG gty 148 rofow )

(5.35)

In particular, in the limit le(a)‘ —> ® one finds:

[ b. s:] _ieiﬂr-Za) 4}__2_1'1{; +0Eka)'2:|} ) (5.36)
[e(a)l—

which is the well known expression for the field reflected by a perfectly conducting
sphere, in the backscattering direction.

If e(a) =1, expression (5.35) becomes

[Ez.s] ~ gizr_ eik(r—2a)[1+0(1/ka')] ‘ (5.37)
refl.

e(a)=1
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5.4 Creeping Waves Contribution

The creeping waves contribution to the far backscattered field is given

by the residue series:
ikr :
b.s. e v (1) 8 (1)
[}Ex —_] ~ T ke {Z COSTV |:§v- 1/2(ka) v {:u— 1/2(ka) B
cr.w. v=v,
(1) v (1) 9 J (1)
- MV-‘ 1/2\§ 1/ (ka}] COS TV [ 1/2(ka) Y %V— l/z(ka) -
1

-1
~ (1) , (5.38)
0,y el |

where v, and 7, are respectively the roots of

L Ji

(1)'

v-1£(ka) c+—-—1-— 50

(1) 2ka .

§’ 1/(ka)

and of

§(1)' (ka)

(1) e(a)[ Zka__l (5.40)
v-Y, (ka)

which have positive imaginary parts, and C is given by (5.13).
If we define m and t by (1.46), and introduce the Fock asymptotic

approximations (2,15), then the creeping waves contribution becomes:



917

t
14—

2
[;::.S.]cr. W ';r_n Z{coswv [wl(tl):’ I:m kaCz(Iifl -

N

t
1+

-1 ~r
-—1— vl ’ 2m2
..<C(t[)+ 2ka>1 pipyyp ,,',\;1 [1 ] [ 2 kae(a)C(t)
-1
1 < oy 1
_ c(t )_--)2] } , (5.41)
[da)]z 2" 2ka

where
t t2
C =C(t) = l-e(a)+-—2' +— (5.42)
4
m 4m
tl‘ and Atrl are respectively the roots of
w'(t,)
12 1
= -—— -mC(t,) (5.43)
wl(tz) 4mZ 1
and of
wi(t)) {
14 1 1 ~n
" = -mC(t ] ’ (5- 44)
wl(tl) e(a) 4m2 Ji

and wl(t) is the Airy function in Fock's notation.

The first few roots of equations (5.43) and (5. 44) may be derived from the
values of w'l(t)/wl(t) which were computed by Logan and Yee (1962) when t lies
in the first quadrant.

In particular, if m is large compared to unity and €(a) is bounded away
from unity, or more.specifically



98

—|t—£ <1, l—‘—zl- < |eta)-1| , (5. 45)
4m m

then t 4 and ’?:'1 are approximately given by the roots of

'(t,) .
1L . -im fe(a) -1 + ————— ¢ (5.46)

wl(tl) 2m Ve(a)-l L

w

and
w' ()
-~ t’) ~ --61(% c@)-1 + 1 T (5.47)
14 2me(a)Ve(a)-1

5.5 Evanescent Wave Contribution

We suppose that no poles of the quantity (5.12) lie on the branch-cut; then
the integral along the contour [ 3 of Fig. 5-3 becomes:

+ioo
v _ 14 - -
cos TV (av- Y. Py- 1/2)dv B cos TV EaV' s Py- 1/2)"'
ry kal|e(a)

~(a, y-b, 1/2)_] v, (5.48)

where X is taken along the cut in the first quadrant of Fig. 5-2, and
(a4, -b ;) aregivenby(5.12) in which C has the values C, given by (5.16).
v-Y v-1't t
The calculation of the integral along the cut is complicated by the fact that
different asymptotic expansions for the cylinder functions which appear in the
integrand must be used in the Debye region 1 and in the regions 2 and 6a. Also,
if €" is small enough, the cut crosses the region lv— ka| < |v1/ 3] in which Langer's

uniform expansions must be employed. This latter inconvenience is avoided if

e >2(ka)'2/ S (5.49)
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In the following, an asymptotic estimate of the integral (5, 48) is derived in the

practically interesting case in which
e ~1, 2(ka)'2/3 <e€"<1 . (5.50)

"
The contour of integration is replaced by the horizontal straight line y'' = % ka

from the branch-point to the imaginary v-axis, plus the portion of the imaginary

"
—62— ka to infinity (broken lines in Fig. 5-4). The integral thus ob-

tained is slightly in excess of the true value.(5.48):

v-axis from

+ioo B C S 1 +io

<\ + + + ; (5.51)
ka Vc(a) A B o} S1

the points A = ka\/e(a) , B, C and S1
Upper bounds for the integrals in (5.51) are obtained with the aid of the

are shown in Fig. 5-4.

following relations:

_lr 1"
1 g € ka
W L2e , on ABC,
= .c-;s—hl(_rw') , on the imaginary v-axis; (5.52)

1
l(av-l/z_bv-1/2)+'(ay_1/2'b,,_1/2)_l ~ ok O AB,

_ 5~3/2
V'
"—<2_1—<ka>J , on BC,
B v 2—3/2 -ry"
~ 2|1+ <-E—a> e , on the

imaginary v-axis , (5.53)
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FIG. 5-4: CONTOUR OF INTEGRATION TO ESTIMATE
THE BRANCH-CUT CONTRIBUTION.
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where use has been made of the appropriate Debye expansions in regions 1, 2
and 6a. One then finds:

O(ka) , (5.54)

-zc"ka
\ ‘N e 2 0\‘(ka)2] , (5.55)

(% 2mkax
SR\ rax

C S "f2 l+e

2,3/2

(1+x xdx <

@ 9 3/2
- " - " "
<4(ka)?eTE R\ o 27rkay|:1+ <y+'€§'>:l <y+-€é- dy <

0

(0]

-me'ka e-41rkaz

<128(ka)’ e (1+2) % dx A

0

~-r1e"'ka
e

~t

O(ka) ; (5.56)

the last integral has been evaluated by observing that since

5
= 34,

n=1
one has by Watson's lemma (Erdélyi, 1956, section 2.2):

(0} 5

oAz tan ~ Z({:D r)arka) ™ = o[(a)!] .
0 n=1



102

On account of relations (5.11), (5.17), (5.51), (5.54), (5.55) and (5.56),
the branch-cut contribution to the far backscattered field when e(a) satisfies
(5.50) becomes:

I:Eb' S'] ~ e—lki o 2 E"kao [ka)z:l (5.57)

X
ev. w.

since €" is kept fixed as ka —> o, this contribution decreases exponentially as
ka increases and can therefore be physically interpreted as due to an evanescent

wave (see, for example, Felsen, 1964).

5.6 Discussion of Results

The total high-frequency far backscattered field is obtained by adding to-

gether the reflected field contribution (5.35), the creeping waves contribution
(5.41) and the evanescent wave contribution, which is given by (5.57) when e(a)
satisfies (5.50).

The far field coefficient, that is the coefficient of eikr/(kr), has the

following orders of magnitude:

1) reflected field: O(ka), if e(a) #1 ,
1), if e(a) =1 ;

2) creeping waves: O[k ) -1/ 3:‘

- e"ka
3) evanescent wave: O \Eka)ze 2 :l , if e"ka>>1 ;

therefore the dominant contribution to the backscattered field is due to reflection.

The reflected field backscattering cross section O efl is given by:
(o)
refl Ve(a) -1 [:
_refl. 1+0(1/ka)] , if ela) #1,
1ra2 \] e\za; #+1
~ (4xa) 2 [1+0l1/ka)] if e(a) =1, (5.58)

where 7ra2 is the cross section of a perfectly conducting sphere of radius a.
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It should be pointed out that in the analysis of the previous two sections
it was assumed that no pole lies at the branch-point ka\le(a) or very near it.
This hypothesis may not be satisfied for certain choices of €(a), and the analysis

should then be modified accordingly (see, for example, Vander Waerden, 1950).
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