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1 Introduction

1.1 Overview of the Method.

The following is from an earlier version of [GH].

"Evolving algebras were first proposed in [Gul] (and more recently discussed in [Gu3]) as an
improvement upon (a stronger version of) Turing's thesis. One may use an evolving algebra to
model any computation. In particular, one may describe an evolving algebra which models a par-
ticular computation in "lockstep"; that is, for every step taken by the modeled computation, the
evolving algebra takes one step. In addition, one may describe an evolving algebra which models
a particular computation at any desired level of abstraction. This is an improvement upon the
traditional Turing machine model, where the abstraction level is fixed at a low level and may re-
quire many Turing machine steps to simulate one step of an algorithm.

"An evolving algebra contains a description of a first-order logical signature which describes
the states of an abstract machine, along with a collection of fransition rules which describe the
temporal relationships between states. Once combined with a description of the initial state (that
is, a structure of the corresponding signature), a computation (or set of computations) is
determined. ,,

"Evolving algebras may be used to provide operational semantics for a programming language.
A programming language may be viewed as a kind of universal algorithm. It takes a program and
data as input and runs the program on the data. An evolving algebra for a programming language
describes this type of universal algorithm, thus giving an operational semantics for the program-
ming language. N

"These types of semantic specifications may be provided on several abstraction levels for the
same language. Having several such algebras is useful, for one can examine the semantics of a
particular feature of a programming language at any desired level of abstraction, with unnecessary
details omitted.

"Evolving algebras have been used to provide operational semantics for Modula-2 [Mor], Oc-
cam [GMs], Prolog [Bol, Bo2, Bo3, BR1, BR2], Prolog III [BS], Smalltalk [Bl], and C [GH]."

This technical report describes a universal machine for the COBOL programming language.
Descriptions of the language are taken from [ANSI], [IBM] and [PK]. This paper is modeled after
a preliminary version of [GH].

1.2 Required Knowledge

A basic familiarity with evolving algebras such as that provided by [Gu3] is assumed. A brief de-
scription is provided in an appendix for those who need it, This paper is somewhat less formal.

Knowledge of COBOL is not necessary for understanding (In fact, it is hoped that this paper will
help to understand the language), since we explain all relevant aspects of COBOL as we proceed.

1.2.1 The COBOL Language Standard

COBOL is an acronym for COmmon Business Oriented Language. In its long history the lan-
guage has been covered by many standards. The standard for use within this paper is documented
in [ANSI] and is commonly referred to as COBOL-85. Due to the latitude allowed to the imple-
mentor by the standards, there are many dialects, and minor details may differ between imple-
mentations of the language. ‘

This report was prepared as directed study for the Master of Science in Computer Science and Engineering.
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[ANSI] separates the standard into various modules and for some modules, specifies low and
high levels of implementation. This report will discuss the Nucleus, Sequential I-O, Relative 1-O,
Indexed I-O, Inter-Program Communication, and Sort-Merge modules and usually at level 2. It
will not cover the Source Text Manipulation, Report Writer, Communication, Debug, or Seg-
mentation modules.

1.3 Separation of Concerns

Because we are concerned with programming language semantics rather than syntax, we follow
[GH] and assume that all syntactic information regarding a given program is available to us at the
beginning of the computation through static functions of the algebra which contain that
information.

However, a substantial amount of the syntax of the language will be presented because it is
presumed that the average reader will not be as familiar with this language as with others.

In order to maintain the focus on semantics, we assume our algebra will evolve without regard
to resource bounds. Resource management may be added to an evolving algebra without undue
difficulty; see [Gu2] for further information and [Mor] for an example of resource management in
an evolving algebra.

1.4 Abstraction Levels

In our report we will present a series of evolving algebras which model fragments of the COBOL
programming language. Each algebra will be presented as a refinement of the previous algebra.
The final revised algebra will describe significant portions of the COBOL programming language.
Our algebras will focus on the following areas of the COBOL programming language:
Programs and the transfer of control between them
Control statements and the transfer of control within a program (e.g. IF, ADD)
Memory allocation and initialization
Expressions and imperative statements
Input/Output
We present the first two algebras fully. For the rest, time does not permit more than an indica-
tion of where further exposition could go.

1.4.1 Language Formalities

COBOL programs always consist of four divisions in order: IDENTIFICATION, ENVIRON-
MENT, DATA, and PROCEDURE. The semantics of each division differs and the syntax of the
DATA DIVISION is different from the others. With the exception of the IDENTIFICATION
DIVISION, divisions are divided into sections although sections are optional in the PROCE-
DURE DIVISION. Except for the DATA DIVISION, divisions and sections contain paragraphs.
There are specific section and paragraph names which may be used in the IDENTIFICATION DI-
VISION,; the order in which they may be used is fixed, and most of them are optional. The same
is true with a different set of names for the ENVIRONMENT DIVISION. 1t is also true of sec-
tion names in the DATA DIVISION.



The syntax of COBOL is usually presented through syntax diagrams rather than context-free
grammars. We will use these diagrams to illustrate each construct. We follow the conventions of
[ANSI]: reserved words are written in upper case, if the word is required it is underlined (Many
reserved words are optional); items which the programmer supplies are written in lower case; op-
tional items are enclosed in square brackets; mutually exclusive choices are enclosed in braces,
and potential repetition of a construct is shown as ellipsis (...). We make one change to this con-
vention for ease of presentation. Usually mutually exclusive constructs are shown on different
lines. For brevity we show them separated by the vertical bar ( | ), which is not part of the official
convention. An example follows:

ADD {identifier-1 | literal-1l} ... TO {identifier-2 [ROUNDED] ]}
" [ON SIZE ERROR imperative-statement-1]

[ET ON SIZE ERROR imperative-statement-2]
[END-ADD] “

Sometimes it will be necessary to use more than one syntax diagram to illustrate the full range
of variations of a construct. We follow the conventions of [ANSI] in referring to these as formats
of the construct in question.

1.5 Acknowledgments

Professor Yuri Gurevich directed our research. He and Jim Huggins authored [GH] which in-
spired most of the algebras of the paper. We gratefully acknowledge comments by Raghu Mani.

2 Algebra Zero: The Algebra of Programs

Our initial algebra deals with programs and the passage of control among them. In [ANSI] the
element which is executed is referred to as the run unit. We will be studying such a run unit. A
run unit may consist of one or more COBOL programs. One program is selected, by a mecha-
nism external to the language and specific to the implementation as the first program of the run
unit to execute. This program may in turn transfer control to another program, which may return
control to the original program, transfer control to another program, or terminate. We will ignore
the possibility of non-termination. The standard prohibits a CALL statement that results directly
or indirectly in the execution of the calling program. Control may be returned by a calling pro-
gram only to the program which called it.

We regard the run unit as a rooted directed acyclic graph with the programs as nodes and calls
as edges. Each call lengthens a chain through that graph and each return shortens it. The prohibi-
tion in the standard requires that each program have only one parent active in the chain.

2.1 Initial Universes and Functions.

We take from [GH] a substantial number of universes and functions. We display those of a gener-
al use before exploring an algebra in detail.

2.1.1 Run Unit Representation and Execution

We borrow from [GH] a universe fasks of elements representing tasks which the interpreters of
the various algebras must accomplish. The concept is a general one. A task may represent execu-
tion of a program, execution of a statement within a program, initialization of a variable, or evalu-
ation of an expression.

It is frequently necessary to indicate the nature of a task. We borrow the universe fags from
[GH] for this purpose.
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Following [GH], we define a dynamic zero-ary function (hereafter distinguished element) Cur-
Task: tasks (that is, a function with null domain and range asks) which indicates the current task
being executed.

We borrow from [GH] the static function TaskType: tasks = tags which indicates the action
to be performed by the task. We will describe the range of the TaskType function, and hence the
contents of Zags, as we proceed. We will often refer to the result of ZaskType as the type of a

task.
It is necessary to indicate the order in which tasks are executed. The static function NextTask:

tasks 2 tasks taken from [GH] serves this purpose. For this algebra, Next7ask is an external
function with its value determined by an oracle outside the algebra.

We represent programs by a task of type program. We will introduce tasks to represent the
COBOL constructs involved as needed.

2.2 Abbreviation: Moveto

We find it convenient to borrow some useful abbreviation from [GH]. This one, Moveto (Task),
accomplishes transfer of control to a particular task by modifying the Cur7ask distinguished ele-

ment appropriately. Its definition is:
CurTask := Task

2.3 Interprogram Communication
The format of the PROGRAM-ID paragraph is:

PROGRAM-ID. program-name [IS {COMMON | INITIAL} PROGRAM].

COMMON indicates that a program contained within another program may be accessible to
programs other than the one containing it. We will be concerned with the semantics of INITIAL
in a later algebra. The PROGRAM-ID paragraph declares program-name as the name of this pro-
gram and makes that name available so that the program may be called.

The CALL statement provides the capability to execute another program, then continue execu-
tion in the current program. The formats are:

CALL {identifier-1 | literal-1}
[USING {[BY REFERENCE] {identifier-2} ... |
BY CONTENT {identifier-2} ...} ...]
[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-CALL]

and
CALL {identifier-1 | literal-1}
[USING {[BY REFERENCE] {identifier-2} ... |

BY CONTENT {identifier-2} ...} ...]
[ON OVERFLOW imperative-statement-1]
[END-CALL]

We will discuss the role of EXCEPTION/NOT EXCEPTION or OVERFLOW in a later

algebra.
The statement to return control from a called program to a calling program is:



EXIT PROGRAM

If the statement occurs in a program which has been called, control returns to the statement in
the calling program following the CALL statement which caused control to pass to the called pro-
gram. If the program has not been called, control passes to the next statement in this program.

The statement to terminate execution is:

STOP RUN

This statement may be executed in any program in the run unit. It terminates execution of the
run unit.

Let us consider the execution of the call. First if the USING clause is present, the expressions
in the clause are evaluated. The specifics of this will be discussed in another algebra. Then con-
trol is passed to the first task of the program identified by literal-1 or by the value in identifier-1.
Execution proceeds in that program until it executes an EXIT PROGRAM statement, at which
time control is returned to the statement following the CALL; another CALL which transfers con-
trol into another program or STOP RUN.

2.4 Tasks and Functions

Tasks of type call, implement the CALL behavior. They are provided with a dynamic partial
function CalledTask: tasks - tasks which returns a task of type program. Tasks of type program
have a dynamic function EndTask: tasks > tasks which contains the task to which to return con-
trol when the program ends. Tasks of type exitprog implement the exit program behavior. In
addition to those tasks created for the EXIT PROGRAM statement, the compiler inserts an exiz-
prog task at the physical end of the program. We define the function Prog: tasks = tasks as a
complete static function for use with exifprog and anticipating that it will see further utility. It re-
turns the program task in which this task occurs. Prog of a program task returns the original
task when the program is not contained within another program. We represent STOP RUN with
a task of type stop.



2.5 Transition Rules

The transition rules are:
if TaskType(CurTask) = call then
Moveto(CalledTask(CurTask))
EndTask(CalledTask(CurTask)) := NextTask(CurTask)
endif
- if TaskType(CurTask) = program then
Moveto(NextTask(CurTask))
endif
if TaskType(CurTask) = exitprog then
if EndTask(Prog(CurTask)) = L then
Moveto(NextTask(Curlask))
else
Moveto(EndTask(Prog(Curlask)))
endif
endif
if TaskType(CurTask) = stop then
Moveto(1)
endif
2.6 Initial State
Initially, CurTask indicates the first task of type program of the run unit. The initial value of
EndTask for this task is 1
3 Algebra One: The Algebra of Control.
This algebra is concerned solely with the PROCEDURE DIVISION.

3.1Initial Universes and Functions.
For this algebra, we add more universes and functions from [GH].

3.1.1 Program Values

One of those is the universe results which is the universe of values which may appear as the "re-
sult" of a computation. We will specify more precisely the constituents of this universe in later
algebras.

3.1.2 Program Representation and Execution

"At various times, we will need certain internal information to describe the nature of a given
task or computational process. We accordingly will define a universe internals, whose elements
will be used to represent this information. We will specify the elements of infernals as we
proceed.

"We define a function TestValue: task => results which indicates the value of certain expres-
sion tasks. For the purposes of this algebra, we will assume that the 7estValue function is an ex-
ternal function, whose values are determined by an oracle external to the evolving algebra." This
will allow us to show how computed values are used by control statements in COBOL while de-
laying our discussion of how those values are computed. '

NextTask now becomes a static internal function linking tasks in the order in which they
(normally) would be executed. We intend to supply transition rules for those cases where
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NextTask does not indicate the next task (i.e. statement or expression) to be performed once the
specified task has been completed. We will further constrain NextTask as we proceed.

3.2 Statement Classification

A COBOL statement is recognized by its first word which is commonly referred to as the verd.
Statements are frequently called sentences and parts thereof are called clauses or phrases. In
[ANSI] and [IBM], statements are divided into four categories: imperative, conditional, delimited
scope, and compiler directing. We will not discuss compiler directing statements; some of them
are concerned with source or listing management, and the rest implement little-used features
which we will not have time to explain. Conditional statements determine the subsequent prog-
ress of the program based upon evaluation of the conditional expression. Delimited scope state-
ments are conditional statements followed by a scope terminator, usually END- concatenated with
the verb. The syntax diagram of page 4 allows the following examples:

An imperative statement.

ADD 1 TO A

A conditional statement with another imperative statement within its implicitly delimited scope:

ADD 1 TO A
ON SIZE ERROR
ADD 1 TO B.

Note that the addition of the ON SIZE ERROR changes the first statement from imperative to
conditional.
A delimited scope statement with another within its scope:

ADD 1 TO A
ON SIZE ERROR
ADD 1 TO B
END-ADD

The utility of this will become more apparent when we discuss compound statements later.

The list of imperative verbs with the clause which converts them into conditionals follows:

verb clause verb clause
ADD ON SIZE ERROR DELETE INVALID KEY
COMPUTE ON SIZE ERROR READ AT END
DIVIDE ON SIZE ERROR READ INVALID KEY
MULTIPLY ON SIZE ERROR REWRITE INVALID KEY
SUBTRACT ON SIZE ERROR START INVALID KEY
STRING ON OVERFLOW WRITE AT END-OF-PAGE
UNSTRING ON OVERFLOW WRITE INVALID KEY
CALL ON OVERFLOW RETURN AT END
CALL ON EXCEPTION




Another classification of statements is into arithmetic, data manipulation, input/output, and
procedure branching. It is this last category that will supply most of the constructs to be consid-
ered in this algebra.

3.3 IMPERATIVE STATEMENTS

In this algebra, in which we are concerned only with the flow of control, the transition rules for
imperative statements are:

if TaskType (Curlask) = imperative-statement then

Moveto(NextTask(CurIask))

endif
3.4 COMPOUND STATEMENTS
The notion of scope is similar to that of compound statements in languages of the ALGOL family
such as Pascal or C. Wherever one imperative statement may be specified, a series of imperative
or delimited scope statements may be specified. In the absence of a scope terminator, the period
(.) terminates the scope of all previous conditional statements. Note that this precludes the ap-
pearance of a period within a compound statement.

3.5 SELECTION STATEMENTS

We can treat the conditional statements described above and the IF statement in the same fashion.
We then consider the EVALUATE statement which allows the selection of more than two alter-
natives. We follow that with consideration of the conditional GO TO which transfers control
based upon the value contained.

3.5.1 Conditional Selection Statements
The syntax diagram for the IF statement is:

IF condition-1 THEN

{imperative-statement-1 | NEXT SENTENCE}
[ELSE

{imperative-statement-2 | NEXT SENTENCE} ]
[END-IF]

where condition-1 is a logical or relational expression. For the control algebra, this IF statement
and the conditional statements discussed before are similar. Both evaluate an expression, and se-
lect the next task based upon the result of that evaluation.

There is one possible surprise. For historical reasons, NEXT SENTENCE exits all enclosing
scopes, i. e. skips to the next period. This preserves the behavior of programs written to prior
standards which did not possess explicit scope delimiters. (Recall that in the absence of scope de-
limiters the scope of a conditional continues to the next period.)

We will represent an IF statement by the graph shown in Figure 1 using a diagram and the
conventions of [GH], where the ovals represent tasks, the arcs represent unary functions, and the
boxes represent subgraphs. For example, given:

IF A EQUAL 'B'
ADD 1 TO C
ELSE
ADD 1 TO D
END-IF



The guard expression is A EQUAL 'B', the lefimost stmt is ADD 1 TO C, and the rightmost
stmt is ADD 1 TO D.

NextTask
~~~~~~~~~~~~~~ Use
e . lagg
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& ........... SR
stmt 7 stmt
v S
4‘/‘% <
2 O
o
ﬂ?{? 0
“{.—.’.’ --------

Figure 1: Pictorial description of the IF statement.

If an ELSE clause is not present in an IF statement or only one of the two options of a condi-
tional statement is present, the corresponding task graph omits the right-hand side of Figure 1,
with the FalseTask function connecting the zest node to the next task outside of the statement.

"We define static functions TrueTask: tasks => tasks and FalseTask: tasks => tasks which indi-
cate the task to be performed if the guard of the selection statement evaluates to true (or false).
(We will use these functions in other contexts in our algebra.)

"We will represent the branching decision made in the selection statement by an element of the
tasks universe for which the TaskType function returns fest.

The transition rule for expression is almost the same as that for imperative-statement.

if TaskType (CurTask) = expression then
Moveto(NextTask(CurTask))
endif
The transition rules for fest are:
if TaskType(CurTask) = test then
if TestValue(CurTask) = TRUE then
Moveto(TrueTask(CurTask))
endif
if TestValue(CurTask) = FALSE then
Moveto(FalseTask(Curlask))
endif
endif
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3.5.2 Multiple Choice Selection Statement
The syntax diagram for EVALUATE is:

EVALUATE {identifier-1 | literal-l | expression-1 | TRUE | FALSE}
[ALSO {identifier-2 | literal-2 | expression-2 | TRUE |
FALSE}]
{(WHEN ({ANY | condition-1 | TRUE | FALSE |
[NOT] {identifier-3 | literal-3 | arithmetic-expression-1}
[{THROUGH | THRU} {identifier-4 | literal-4 |
arithmetic-expression-2}1}
[ALSO {ANY | condition-2 | TRUE | FALSE |
[NOT] {identifier-5 | literal-5 | arithmetic-expression-3)
[{THROUGH | THRU} {identifier-6 | literal-6 |
arithmetic-expression-4}]}] ...}
imperative-statement-1)
[WHEN OTHER imperative-statement-2]
[END-EVALUATE]

The expressions between the EVALUATE and the first WHEN are referred to individually as
selection subjects and collectively as the set of selection subjects. The expressions in each WHEN
phrase are referred to as selection objects and collectively as the set of selection objects for that
WHEN. The syntax requires that there be exactly as many ALSOs in each set of selection objects
as there are in the set of selection subjects and that selection objects match the class (numeric or
alphabetic) of the corresponding selection subjects. ALSO binds less strongly than any of the log-
ical operators allowing logical expressions as selection subjects. ANY is allowed for any class
and indicates that any value of the corresponding selection subject will result in a successful
match. In other words, it indicates a "don't care" (or wildcard) position in matching the set of
selection objects to the set of selection subjects.

The behavior of the EVALUATE statement is: the expression(s) in the main clause are evalu-
ated and saved in a list representing the subject set, then those of the first WHEN clause are
evaluated and saved in a list representing the object set which is compared with those of the first
list, ignoring positions marked with ANY. If they are equal (or in the case of the THROUGH
phrase, the selection subject is within the range of the corresponding selection object), the next
imperative statement is executed and control proceeds to the statement following the EVALU-
ATE. If not, the next WHEN is evaluated in a similar fashion. Notice that several WHENs may
select the same imperative statement. If none of the WHEN clauses match and a WHEN OTHER
clause is present, the imperative statement following it is executed.

Some examples may help to explain the syntax diagram:

EVALUATE A
WHEN 'C'
ADD 1 TO B
END-EVALUATE

A pictorial representation is in Figure 2.
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Figure 2: Pictorial representation of an EVALUATE with a single WHEN

Where the leftmost expression is A and the rightmost A ="'C".

This has the same effect as:
IF A EQUAL 'C'
ADD 1 TO B
END-IF

but might be used because the programmer expects the code will need to be modified later to
check additional values of A.
A example which is a little more complex is:

EVALUATE A ALSO TRUE
WHEN 'C' ALSO B LESS 99999
ADD 1 TO B
WHEN OTHER
ADD 1 TO UNCLASSIFIABLE
END-EVALUATE

(represented in Figure 3.),

| NextTask

NextTask

¢EXpressiol

Figure 3: Pictorial description of EVALUATE with WHEN and WHEN OTHERWISE

but this is just equivalent to:

12



IF A EQUAL 'C'
AND B LESS 99999
ADD 1 TO B
ELSE
ADD 1 TO UNCLASSIFIABLE
END-IF

and both have a logical defect in that they count items as unclassifiable when they are merely un-
countable. More specific code for this is:

EVALUATE A ALSO TRUE
WHEN 'C' ALSO B LESS 99999
ADD 1 TO B
WHEN 'C' ALSO ANY
ADD 1 TO OVERFLOWS
WHEN OTHER
ADD 1 TO UNCLASSIFIABLE
END-EVALUATE

which gives the graph in Figure 4. The equivalent IF statements should be obvious.

NextTask NextTask

NextTask

Figure 4. EVALUATE with two WHENs and WHEN OTHERWISE

Because EVALUATE uses no new types of tasks, we need no new transition rules.
3.5.3 Conditional GO TO
The syntax diagram for the conditional GO TO is:

GO TO {procedure-name-1} ... DEPENDING ON identifier-1

Identifier-1 must have an integer type. The result is to transfer control to the procedure name
whose position in the list corresponds to the value of identifier-1. If the value contained in
identifier-1 is less than one or greater than the number of paragraph names in the list, control goes
to the statement following the GO TO.
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To support this, we define a function SwitchTask: tasks x results => tasks which indicates the
task to be executed by the given GO TO statement and expression value. Note that control al-
ways transfers outside the statement.

The conditional GO TO is depicted in Figure 6.

NextTask

Figure 6: Pictorial description of the conditional GO TO

This introduces a new task type switch with the following rules:
if TaskType(CurTask) = switch then
Moveto(SwitchTask(CurTask, TestValue(CurTlask)))
endif

3.6 ITERATION STATEMENTS

The primary iteration statement in COBOL is PERFORM. We will here consider the "in-line"
PERFORM. The term will become clearer later when we discuss other perform formats.
We will consider several different syntax diagrams of the in-line PERFORM. The first is:

PERFORM {identifier-1 | integer—1} TIMES
imperative-statement
END-PERFORM

which is expected execute the imperative statement the number of times specified in
identifier-1 or integer-1. If the contents of identifier-1 are not greater than zero, the imperative
statement is not executed.

The pictorial representation is in figure 7. This shows an expression to set up a variable not
visible to the programmer, another expression to check that variable for the termination of itera-
tion, test to select either execution of the statement or the task following the PERFORM, and
another expression to increment (or decrement, depending upon the implementation) the hidden
variable, whose NextTask is the comparison for termination. Note that all this detail is hidden by
the compiler.
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The second format is:

PERFORM [WITH TEST {BEFORE | AFTER}] UNTIL condition-1
imperative-statement
END-PERFORM

TEST BEFORE is the default, and gives the representation in figure 8. The expected behavior
is the execution of the imperative-statement while condition-1 is not TRUE.

NextTask TrueTask

EXpressio
test)

33919519:1)
4

statement

Figure 8: Pictorial Description of PERFORM UNTIL

TEST AFTER causes the statement to be executed before the condition is checked and is de-
picted in figure 9. Once again the imperative-statement is executed while condition-1 is FALSE.

NextTask TrueTask

yselaspe 5)
y

statement

The third format is:
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PERFORM [WITH TEST {BEFORE | AFTER]}]
VARYING {identifier-1 |index-name-1}
FROM {literal-1 | identifier-2 | index-name-2}
BY {literal-2 | identifier-3}
UNTIL condition-1
[AFTER {identifier-4 | index-name-3}
FROM {literal-3 | identifier-5 | index-name-4}
BY {literal-4 | identifier-6}
UNTIL condition-2]
imperative-statement
END-PERFORM

(The AFTER phrase is not allowed with the in-line PERFORM in [IBM]) The behavior is as
follows: First the variables in the VARYING and AFTER clauses are initialized to the values spe-
cified by the corresponding FROM clauses. Then, unless TEST AFTER has been specified, all
the conditions are tested. If they are all true, the imperative statement is executed and the vari-
able of the innermost loop is augmented by its associated BY value. If the condition of the outer-
most loop (condition 1 in the syntax diagram) is FALSE, control passes to the statement passing
the perform. In any other case, the variable of the innermost loop whose condition is FALSE, is
augmented, and the variables of deeper loops are reinitialized. See figure 10 for the depiction of

a 3-deep loop.
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Figure 10: Pictorial description of a 3-deep PERFORM loop

3.7 INTERNAL SUBROUTINES

For consistency, the other PERFORM formats should be called out-of-line PERFORMs, but are
usually just called PERFORMs (because these were there first). The simplest format is:

PERFORM procedure-name-1 [{THROUGH | THRU} procedure-name-2]

This implements a parameterless internal subroutine whose behavior is:

Control passes to the first statement of procedure-name-1 (which may be either a paragraph or
a section). When the last statement of procedure-name-1 (or procedure-name-2 if the
THROUGH option is used) has executed, control returns to the statement immediately after the
PERFORM rather than into the next paragraph or section.
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It is clear that the compiler should make the NextTask of the PERFORM the first statement of
procedure-name-1. What is less clear is implementing the return of control. The obvious way to
model this is to make NextTask a dynamic function and this might be consistent with some very
early implementations of COBOL. But most modern versions of the language run in some form
of reentrant environment in which program code is not modified. To preserve this behavior, we
define new functions (some of which we would need in either case): AfterTask: tasks => tasks a
static function locating the statement immediately following the PERFORM, ExitTask: tasks =>
lasks a static function giving the compiler-generated task for exiting a paragraph or section, and
ReturnTask: tasks > tasks, a dynamic function, which receives and returns the task to which the
performed routine will return; and new tasks perform and exit named for the verbs they imple-
ment. (Actually, we will see later that exit does not implement the EXIT verb.)

A pictorial representation is shown in Figure 11. We have not enclosed this diagram within a
dotted box as it represents more than one language construct.

NextTask compound
- P statement

E«ritTaSjr

NextTask

JSeL1oyV

ReturnTask

statement -

NextTask

JSELIXON

Figure 11 Pictorial representation of PERFORM and associated exit

The transition rules for a perform task are:
if TaskType(CurIask) = perform then
Moveto(NextTask(CurTask))
ReturnTask(ExitTask(CurTask)) := AfterTask(CurTask)
endif
The transition rules for an exit task are:
if TaskType(CurTask) = exit then
if ReturnTask(ReturnAddress(CurIask)) = _L then
Moveto(NextTask(CurTask))
else
Moveto(ReturnTask(ReturnAddress(CurTask)))
ReturnTask(CurTask) :=_L
endif
endif
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We must note that one method of optimization for speed rather than space, replaces the PER-
FORM with the code performed (invisibly, of course) making as many copies of the code as there
are PERFORMs.

The out-of-line PERFORM may be combined with the full set of iterative options. The result
is the same as enclosing the simple PERFORM within the iterative form (although the full range
of VARYING with AFTER is allowed only with this form in [IBM]). Because the format varies
slightly, we present only the syntax diagrams here.

PERFORM procedure-name-1 [{THROUGH | THRU]} procedure-name-2]
{identifier-1 | integer-1} TIMES

PERFORM procedure-name-1 [{THROUGH | THRU} procedure-name-2]
[WITH TEST {BEFORE | AFTER}]
UNTIL condition-1

PERFORM procedure-name-1 [{THROUGH | THRU} procedure-name-2]
[WITH TEST {BEFORE | AFTER}]
VARYING {identifier-1 |index-name-1}
FROM {literal-1 | identifier-2 | index-name-2}
BY {literal-2 | identifier-3]
UNTIL condition-1
[AFTER {identifier—-4 | index-name-3}
FROM {literal-3 | identifier-5 | index-name-4}
BY {literal-4 | identifier-6}
UNTIL condition-2]

3.7.1 The SORT and MERGE statements
The syntax diagram for the SORT statement is:

SORT file-name-1
{ON {ASCENDING | DESCENDING} KEY {data-name-1} ...}
[WITH DUPLICATES IN ORDER]
[COLLATING SEQUENCE IS alphabet-name-1]
{INPUT PROCEDURE IS procedure-name-1
[ {THROUGH | THRU} procedure-name-2] |
USING {file-name-2} ...}
{OUTPUT PROCEDURE IS procedure-name-3
[ {THROUGH | THRU} procedure-name-4] |
GIVING {file—-name-3) ...}

We will defer discussion of the USING and GIVING clauses until later. A SORT with INPUT
PROCEDURE and OUTPUT PROCEDURE begins with the transfer of control to the first state-
ment of procedure-name-1 which must be the name of a section, not a paragraph. The entire sec-
tion is executed (and the section procedure-name-2, if the THROUGH phrase is used), then
control passes to an external function which sorts records in order by the specified keys. Control

then proceeds into the first statement of procedure-name-3, through all the statements of that
section (and that of procedure-name-4, when present) and finally to the statement immediately af-
ter the SORT statement.

We will use the mechanisms already described for the PERFORM to model the behavior of en-
tering and exiting the INPUT and OUTPUT procedures. The SORT statement appears as a per-
form, follow by a new task sort, followed by another perform. The new task invokes a new
external function DoSort: internals = internals, which does the ordering. We will not expand
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further on this function. Typically sorting is done by a package external to the compiler, some-
times supplied by a different software manufacturer than the compiler.
A pictorial representation is shown in Figure 12
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Figure 12: Pictorial representation of the SORT statement

The syntax diagram for the MERGE statement is:

MERGE file—-name-1
{ON {ASCENDING | DESCENDING} KEY {data-name-1} ...}
[COLLATING SEQUENCE IS alphabet-name-1]
USING file-name-2 {file-name-3} .
{OUTPUT PROCEDURE IS procedure-name-1
[ {THROUGH | THRU} procedure-name-2] |
GIVING {file—-name-4}

Once again, we defer discussion of the GIVING clause. The semantics of the MERGE with
an OUTPUT PROCEDURE is that an external function merges the input files upon the specified
keys, then control is transferred to the first statement of procedure-name-1; afier the last state-
ment of procedure-name-1 (or procedure-name-2 for the THROUGH phrase) is executed, control
returns to the statement following the MERGE. Once again, the PERFORM mechanism suffices
to model this behavior.

For completeness, we define a task merge which invokes an external function DoMerge: inter-
nals => internals. Most sort packages provide access to the same merge function used internally,
so as with the SORT, we will not consider DoMerge further.

The USING and GIVING clauses can be regarded as performing procedures created by the
compiler to read the files and release the records into the SORT, or to return the records from the
SORT/MERGE and write them to the file. We will see what could be in these procedures when
we discuss Sequential I/O.

3.8 NULL STATEMENTS

COBOL has two null statements. CONTINUE serves those situations where an imperative
statement is needed, but nothing should be done. An example of a reason for its use is in a
WHEN clause to exempt a specialized condition from the processing implied by a following
WHEN, for example:
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EVALUATE TRUE
WHEN A EQUAL 'C' AND B EQUAL 99999
CONTINUE
WHEN A EQUAL 'C'
ADD 1 TO B
END-EVALUATE

Anotbher is in the popular practice of restating a condition involving a negation (NOT) as the
condition without the NOT followed by CONTINUE ELSE and the statement to be executed.
The practitioners of this feel the resulting code is clearer.

The other null statement is EXIT. The syntax requires that the statement inhabit a paragraph
by itself. If that paragraph is the end of a PERFORM range and was entered by the PERFORM,
control is returned to the statement following the PERFORM. But the compiler inserts an exit at
the end of any paragraph which is at the end of a PERFORM range, without consideration of
what statements are in the paragraph. The default action of an EXIT in the absence of PER-
FORM is to go to the next paragraph, which is just what is expected of a null statement.

3.8.1 Task Types and Transition Rules

We represent the continue statement by a task of type continue with the following transition rule:
if TaskType(CurTask) = continue then
Moveto(NextTask(Curlask))
endif )
As noted above the EXIT statement needs no task to represent it.
3.9 UNCONDITIONAL TRANSFER OF CONTROL

There are two cases where control is transferred unconditionally. The GO statement explicitly
transfers control to a paragraph or section. The NEXT SENTENCE clause transfers control to
the next statement following the period terminating this sentence.

3.9.1 The GO statement
The format of the unconditional GO statement is:

GO TO [procedure-name-1]

when procedure-name-1 is supplied, this effects an unconditional transfer of control to the first
statement of the paragraph or section named by procedure-name-1. When procedure-name-1 is
omitted, the statement must be the only one in its paragraph, and the target of an ALTER state-
ment. If the GO statement is the only one in its paragraph, it may be ALTERed, whether
procedure-name-1 is specified or not. Nonetheless, the compiler is able to determine through
static analysis of the program whether a paragraph containing a GO is ALTERed or not, so we
will consider two cases. An unALTERed GO will always transfer control to procedure-name-1,
so the NextTask function is all we need. We represent this unconditional transfer of control with
the jump task taken from [GH] which has the following transition rule:
if TaskType(CurTask) = jump then
Moveto(NextTask(CurTask))
endif
To support the altered GO TO we define two new task types, go and alfer. Once again, it
would be possible to accomplish our goal by making NextTask dynamic, and once again we will
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reject that approach as being incompatible with a reentrant environment. Thus we need the fol-
lowing functions: GoTask: task > task, a dynamic function which receives and returns the task
to which the GO will go, GoTarget: tasks => tasks, a static function returning the task to which
alter will direct the GO, and GoSubject tasks => tasks, a static function giving alter the task con-
taining the go task.

The syntax diagram for the ALTER statement is:

ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2} ...

It will be convenient and loses no generality to regard repetition of the TO clause as separate
instances of the ALTER statement.
The transition rules for alter are:
if TaskType(Curlask) = alter then
Moveto(NextTask)
GoTask(GoSubject(CurTask)) := GoTarget(CurTask)
endif
The transition rules for go are:
if TaskType(CurTask) = go then
Moveto(Golask(CurIask))
endif

3.9.2 The NEXT SENTENCE clause

The NEXT SENTENCE within the scope of an IF or the WHEN clause of the SEARCH verb
will transfer unconditionally to the next statement following a period. We can represent these
transfers of control using the jump task, although often the function which leads to this task can
return the NextTask of the jump allowing it to be eliminated.

3.10 PARAGRAPH AND SECTION LABELS

Paragraph and section labels provide the targets for GO TO, the out-of-line PERFORM, and AL-
TER statements. The compiler may place exit tasks at the end of paragraphs as necessary. The
compiler recognizes a paragraph by a non-reserved word starting in Area A, preceded and fol-
lowed by a period. A section is recognized by a non-reserved word in Area A, preceded by a pe-
riod, followed by the keyword SECTION, optionally followed by a number (used by the
Segmentation Module, one of the parts of the language we do not discuss, partly because virtual
memory systems have made it unnecessary), and terminated by a period. (There is a style of struc-
tured programming in which these are the only periods used within the procedure division.)

We have already discussed all the task types related to these statement labels.

3.11 INITIAL STATE

Initially, CurTask indicates the first statement of the PROCEDURE DIVISION (following END
DECLARATIVES, one of the topics which we did not discuss, if it is present). In addition, each
Returnlask and GoTask has an initial value of L.

3.12 SEARCH, a composite control structure.
The syntax diagram for (the serial option of) SEARCH is:
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SEARCH identifier-1 [VARYING {index—-name-1 | identifier-2}]
[AT END imperative-statement-1]

WHEN condition-1 {imperative-statement-2 | NEXT SENTENCE}
[WHEN condition-2 {imperative-statement-3 | NEXT SENTENCE} ]
[END-SEARCH]

The SEARCH provides a method of locating an entry in an table (tables are array structures
which will be discussed in later algebras) which matches one of several conditions. The syntax re-
quires that identifier-1 be the name of a table which has one or more names (called the index(es)
of the table) assigned to select an entry of the table. Note that the VARYING phrase is optional.
If index-name-1 is one of the indexes of the table, it is used in the search. Ifit is not, the first in-
dex of the table is used in the search and index-name-1 or identifier-1 is incremented at the same
time as the search index. The search first checks to insure that the index is within the range of the
entries of the table. If so, it checks each of the conditions in turn until one is found which is
TRUE. If none are found, search points the index to the next entry in the table, and resumes its
checks. SEARCH combines multiple selection with iteration.

We present a pictorial representation of a SEARCH with two WHEN clauses in Figure 13:
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Figure 13: Serial SEARCH with two WHEN clauses

4 The Algebra of Memory Allocation and Initialization.
This algebra is concerned primarily with the DATA DIVISION.
4.1 Declarations

Following [GH], we represent declarations as elements of the fasks universe, linked by the Next-
Task function.
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The semantics of declarations differ with the section in which they occur. Declarations in the
FILE SECTION provide the location of an identifier relative to the current record of the file, the
size and the usage, a term which will receive further explanation. Those of the WORKING
STORAGE SECTION, provide location, size, usage and possibly initial value for an identifier.
Working storage for a program may be static or dynamic, although it is far more common to uti-
lize static storage. In the LINKAGE section, declarations describe items passed to this program
by another program (or in many cases, the Operating System).

One classification of data items is elementary vs. group. The distinction is simple. A group
item contains other elementary items. An elementary item cannot contain another item.

4.2 Syntax Diagrams
The formats for data descriptions are:

level-number [data-name-1 | FILLER]
[REDEFINES data-name-2]
[IS EXTERNAL]J
[IS GLOBAL]
[{PICTURE | PIC} IS character-string]
[[USAGE IS] {BINARY | COMPUTATIONAL | COMP | DISPLAY | INDEX |
PACKED-DECIMALY} ]
[[SIGN IS] {LEADING | TRAILING} [SEPARATE CHARACTER]]
[OCCURS integer-2 TIMES

[ {ASCENDING | DESCENDING} KEY IS {data-name-3} ... ]
[INDEXED BY {index—-name-1} ...] |

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4
[ {ASCENDING | DESCENDING} KEY IS {data-name-3} ... ]
[INDEXED BY {index-name-1} ...]]

[ (SYNCHRONIZED | SYNC} [LEFT | RIGHT]]
[{JUSTIFIED | JUST} RIGHT]

[BLANK WHEN ZERO]

[VALUE IS literal-1].

66 data-name-1 RENAMES data-name-2 [{THROUGH | THRU} data-name-3].

and
88 condition-name-1 {VALUE IS | VALUES ARE}
{literal-1 [{THROUGH | THRU} literal-2]}

Level numbers 01 through 50 are used to indicate hierarchical structuring. A group item con-
tains all the items declared following it with higher level numbers until the end of the section or a
level number of the same or lower value is encountered. 01 level numbers designate records. 77
level numbers indicate an independent item. 66 level numbers allow an alternate name for the area
containing an item or from the start of one item through the end of a second without reference to
the original hierarchical structure. (This construct is rarely used. The syntax rules require these
to be placed at the end the record in which the fields to which it refers are defined. Other con-
structs exist which can produce the same effect and are placed near the items affected, so they
better document the structure.) 88 level numbers do not define any data area. Instead, they allow
the programmer to declare a Name for a comparison of the field prior to the 88 level to a value,
comparison of the prior field to a range of values, or a list of such comparisons. The result will be
an expression in one of our later algebras.
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4.3 Representations

We represent each data item with a task of type decl. These tasks have several partial func-
tions associated with them. The partial function Size: task > integer returns the number of char-
acters used for the data. This function is dynamic as the size of certain fields may vary during
execution.

Another function address: task => internals returns the location in memory where the value is
stored. We are leaving the details of this algebra for a later paper, but will mention some of the
issues involved with this dynamic function. An address may change as the size of preceding fields
is changed. The address of a task representing a field in the FILE SECTION will be undefined
until the file is opened and may change with each READ or WRITE on the file. The address of a
task representing a field in the LINKAGE SECTION is calculated upon program entry from the
addresses passed from the calling program. The address of a task related to a field in the
WORKING-STORAGE SECTION may be calculated on each entry to the program if the INI-
TIAL phrase was included within the PROGRAM-ID paragraph. This phrase also controls
whether the initial value of a field in the WORKING-STORAGE SECTION is reset upon each
entry or not, and whether files must be opened.

Yet another function usage: task => internals is required to describe further details of how the
data will be represented in memory.

5 The Algebra of Expressions

Following the example of [GH], we replace each occurrence of a task of type expression and
many of those of type imperative-statement with a collection of tasks reflecting the structure of
the expression. We now make 7estValue an internal, dynamic function.

We will also follow the usual practice of describing an expression by a parse tree, although this
is more consistent with the use of context-free grammars than the syntax diagrams of [ANSI].

5.1 Basic functions for computations.

We borrow from [GH] the following functions:

A static partial function Parent: tasks => tasks to locate the closest enclosing expression for a
given expression. For expressions not contained in other expressions, Parent returns the fest task
which uses the result of the expression. The static partial function WhichChild: tasks = {left,
right, only, test}, a subset of internals, indicates the relationship between a task and its parent.
Dynamic partial functions LeftValue, RightValue: tasks => results indicate the results of evaluat-
ing the left and right operands of binary operators as does OnlyValue: tasks => results for a unary
operator. ConstValue: tasks - results indicates the values of program constants.
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5.2 The ReportValue macro
We assign the result of evaluating an expression to the appropriate storage function of the parent
expression with the ReportValue(value) macro abbreviation from [GH]. Its definition is:
if WhichChild(CurTask) = left then
LeftValue(Parent(CurTask)) := value
elesif WhichChild(CurTask) = right then
RightValue(Parent(CurTask)) := value
elseif WhichChild(CurTask) = only then
OnlyTask(Parent(CurTask)) := value
elseif WhichChild(CurTask) = test then
TestValue(Parent(CurTask)) := value
endif

6 Input/Output

One of the distinguishing features of COBOL is the richness of its input/output commands. The
standard contains three modules, each for a different model. The Sequential I-O module provides
access to records each of which has a defined successor, except the last in the file. The Random
I-O module provides for direct access to records by specification of an integer which is the rela-
tive number of the record within the file. The Indexed I-O module provides for access to records
based upon specific data within the record itself. An indexed file has a primary key field in which
the values for individual records must be unique and may have alternate key fields in which dupli-
cate values may be allowed. Records in such a file may be accessed either directly or sequentially

in order of the key
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9 Appendix: Evolving Algebras.

A static algebra consists of a set called the superuniverse of the algebra, the signature, a collec-
tion of function names, each with a fixed arity, and basic functions, interpretations of the function
names in the signature. A function name of arity n is interpreted at a n-ary operation on the su-
peruniverse. A function name of arity zero is called a distinguished element. A static algebra is
regarded as a state of an evolving algebra. The superuniverse does not change as the algebra
evolves, the basic functions may.

But some functions may not be defined for the whole superuniverse. The superuniverse con-
tains the element undef which is the value returned when the function is undefined. It is frequent-
ly useful to collect elements of the superuniverse into groups. The superuniverse contains
elements #rue and false which allow us to deal with relations. A wniverse U is a basic function
which identifies a set {x : U(x)}. When we speak of a function from one universe to another, we
mean that the function returns a value in the set defined by the second universe for each value in
the first universe and is undefined otherwise. The notation used is self-explanatory; f: U 2> V, f:
U, xU,2> V,andf: V.

A function is dynamic if its interpretation may be changed as the algebra evolves. Otherwise
functions are static. An external function has its values determined by something (usually called
an oracle) outside the algebra.

A program of an algebra is a set of transition rules of the form:

if t, then f{t,,....t ) =t endif

where t, f{t,,...,t ), and t,, are terms containing no free variables (i.e. are closed terms). This
means: Evaluate all the t,, if t, evaluates to true, change the value of fat (t,,...,t) to t,,, otherwise
do nothing. Rules are actually defined in a more liberal way. Let b,,...,b, be terms and let
Cp-..,C,., be sets of rules for some natural number k. Then

if b, then C,
elseif b, then C,

elseif b, then C,
else C
endif

and
if b, then C;
elseif b, then C,

elseif b, then C,
endif
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are both rules.

Nesting of the transition rules is allowed and occurs frequently. The more liberal rules can be
transformed into the stricter form when necessary. We use the more liberal forms and textual ab-
breviations (called macros) for brevity and clarity.

The algebra evolves through the updates of dynamic functions in the transition rules. The up-
dates are applied in parallel and if several updates contradict each other one is chosen
nondeterministically.
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