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Abstract

We consider the problem of allocating a single server to families of jobs with random service
times and due dates. Furthermore, a setup is required when the server switches from one
Job family to another. We address the problems of minimizing expected weighted flow time,
expected maximum lateness, and total weighted tardiness with emphasis on problems for which
it 1s assumed that each family can be setup only once (the Group Technology assumption). We

derive conditions under which simple sequencing rules are optimal for each of these problems

with group technology.

Keywords: Production/scheduling, stochastic sequencing, setup time, job families, weighted flow-

time, maximum lateness, weighted tardiness

1. Introduction

We consider a system of V job families (alternately, parallel queues) and a single server attending

them. There are no arrivals: we are concerned with the scheduling of the jobs initially present in
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the system. We assume random processing times and due dates, and focus on the problems of
minimizing expected completion times, and expected maximum lateness and tardiness.

Although we consider stochastic sequencing problems, two of the formulations considered reduce
to equivalent deterministic problems. This further supports the notion that some portion of the
wealth of results on deterministic sequencing can be carried over to stochastic formulations. This
paper offers an approach as well as specific insights for use in investigating particular problem
formulations. We also note that new insights arise when stochastic formulations have solutions
that are distinctly different (either simpler or more complex) than their deterministic counterparts.
In particular, one may better appreciate the limitations and benefits of a deterministic model for
a particular application.

The primary motivation for this class of problems with job families is that in many applications,
sufficiently similar jobs can be grouped into families such that a job does not need a setup when
following another job from the same family, but a setup time is required when switching from one
family of jobs to another. The majority of the models to date have addressed these problems under
completely deterministic assumptions or with only one job class per family. Webster and Baker
[14] provide an excellent review of the deterministic literature on these problems. Duenyas and
Van Oyen [4] provide a review of the literature on stochastic problems with one job class per family
and with the objective of minimizing expected holding costs.

There is a large literature on stochastic scheduling of a single machine with random processing
times and random due dates. An excellent review of this literature is provided in Chapters 9-
11 of Pinedo [8]. and in Righter [10]. However, neither of these reviews include any work on
problems with job families. Very little work has been performed on scheduling of job families for a
stochastic model. Van Oven et al. [12] characterized the optimal solution for minimizing expected
average completion time under the assumption that all jobs in a family have i.i.d. processing time
distributions. With D denoting the job set-up time for any family, ¢, denoting the holding cost
rate per job of family n, ;! the mean service rate. and z, the number of identical jobs of that
family. the index of family n is given by 7, = copn(zop;')/(zap;! + E{D}). The optimal policy
is to serve the family with the highest index. This rule can be interpreted as the familiar cu index
multiplied by the fraction of time over which useful work is performed. These results are extended

to queues interconnected by job feedback in Van Oyen and Teneketzis [13].



Except where noted, we address the scheduling of job families under the group technology
assumption (GT). The GT assumption (see Potts and Van Wassenhove [9]) restricts the number
of setups that can be performed to one per family and thus simplifies the scheduling problem to
one of deciding in what sequence job families should be processed. As Webster and Baker [14]
point out, the GT assumption “may reflect the fact that the sétups are much longer than the job
processing times, or it may result from a desire to minimize the time spent on setup in situations
where capacity is scarce. It may also be imposed simply to make the problem more tractable.” In
fact, as we will show below, stochastic versions of the problems with due dates are significantly
difficult even with the GT assumption.

The rest of this paper is organized as follows. In the next section, we give a formulation of the
problem and the notation to be used. In Section 3, we show that minimizing expected weighted flow
time over the class of dvnamic scheduling policies reduces to an equivalent deterministic problem.
In Section 4, we specify sequencing rules for minimizing expected maximum lateness and minimizing
expected maximum tardiness. Finally, Section 5 focuses on sequencing to minimize total expected

weighted tardiness.

2. Problem Formulation

A single server is to be allocated to an arbitrary number of jobs, all initially available for
processing. Each job belongs to a job family. and the families are labeled 1.2,..., N, where N ¢ IN
(where IN denotes the naturals and Z* the nonnegative integers). Family f has Ny jobs. We will
name job s in family f to be of type (f.s) and this job will have service time P(f,s) drawn from
a distribution B(f.s) with mean p(f.s)™! € (0.2). Set-ups are required to switch production
from a job of one family to another. There is no switching penalty for changes from one sub-type
to another within the same family. The set-up time for family f is S(f). which is drawn from the
distribution E( f) independently of all else and has mean ES(f) € [0, 0).

In the expected weighted flowtime problem. the weight associated with a job of type (f,s) is
c(f.s) €(0,2c) per unit time it spends in the system. In the cases of maximum expected lateness
and expected maximum lateness. we assume that the due date of a type (f,s) job is a random
variable, d( f, s), independent of all else with mean Ed(f,s). We assume that the realization of the

(random) due date does not occur until its completion (as in Pinedo [7] and Forst [5]). Finally,



in the case of minimization of total weighted tardiness, there is in addition a tardiness penalty of
B(f) per unit of time tardy for any job of family f.

To define fully dynamic scheduling problems, we restrict attention to non-preemptive, non-
idling, and non-anticipative policies. A policy specifies, at each job completion epoch. that the
server either remain working in the present family on a particﬁlar éubtype, or set-up another job
family for service. At time zero, we assume that any family must be set up.

The special case of a GT problem makes the additional restriction that a set up of family f

must be followed by the consecutive service of all jobs of family f.

3. Minimizing Expected Weighted Flow Time

In this section, we focus on minimizing expected weighted flow time, where flow times for jobs
are weighted by their holding costs. That is, the weight for a job of type (f,s) is ¢(f,s). We begin
by showing that even the fully dynamic scheduling problem reduces to a deterministic problem.
Although it is common to identify an optimal policy for a deterministic problem and then to show
that it remains optimal in the stochastic version, the approach we take here does not require
knowledge of an optimal policy to show that there exists a list policy (i.e., a static or open-loop
policy) that is optimal. We begin by viewing the problem as a discrete-time stochastic control
problem. using our assumption that set-ups and services cannot be interrupted. The key features
that allow the system to be decomposed are (1) the linearity of the objective function. and (2)
the fact that any non-randomized Markov policy dictates a deterministic sequence of states to be
visited (although dwell times in each state are stochastic). We proceed with the details.

For simplicity of exposition, suppose Ny = N for f=1,...,N. Let the state space be
S E{(rsen)izpae{0.1}.fe{l... . Nysef{l....,N,ne{l.....N}}. (3.1

At time t, z is an N x NV array in which Tys equals 1 if a job of type (f,s) is available at ¢
and equals 0 otherwise. The last component of the state, n, indicates that queue n is set up at .
We designate the control actions admissible when the system is in state (z,n) by the pair (f,s),
where (f.s = 0) indicates the set-up of family f and (f = n,s) indicates that job (n,s) will be
served next provided z, = 1. Let A (z,n) denote the above set of available actions in state (z,n).

We have positive costs, finite state and action spaces, and no discounting. By Proposition 11 of



Chapter 5 of Bertsekas [2] (or see Ross [11]) the following optimality equation is a necessary and

sufficient for a stationary, nonrandomized policy to be optimal:

V(z,n) = " )min E{ZZ e(t,7)zi;[P(f,8)1{s # 0} + S(f)1{s =0} +
s zn 1=1 =1
V(:I) - ef,sﬂ{xf,s =1,s# 0}7f)}v (3.2)

where e s is a unit vector with element f,s equal to 1. By stationary, we mean that the actions
depend only on the state, rather than time. Nonrandomized means that for each state, one and
only one action can be taken. For this problem, each action leads deterministically to the next
state at the next decision epoch. By these properties, there exists an optimal policy under which
the sequence of states visited is deterministic. Thus, it suffices to consider only open loop, or list

policies. Moreover, the optimality equation (3.2) can be rewritten as

N N
Viz.n) = . gﬂn ZZ (L ))zylu(fos) ' 1{s # 0} + ES(f)1{s = 0}] +
S Vi= 1j5=1
Viz - ef,s]l{:rf,s =1s#0},f). (3.3)

Thus. we observe that the solution of this stochastic scheduling problem is identical to the deter-
ministic scheduling problem with constant service times p(f,s)™! and set-up times ES(f).

The optimal policy for the deterministic scheduling problem with constant service times u( f,s)™?
and setup times E'S(f) has been characterized by Theorem 7.5 of Ham, Hitomi and Yoshida [6]

under the GT assumption. Therefore. their result directly carries over to the stochastic case.

Theorem 1: For the problem of minimizing expected weighted flowtime under the GT assumption,
an optimal schedule will sequence families in nondecreasmg order of (ES(f)+ u(f)™1)/c(f) where
= ul(f.s) ~and o(f) = Y sc(f.s). Furthermore, jobs types within each family are

sequenced in nondecreasing order of u( f.s)~/c(f.s).

For a partial characterization of the solution to the fully dynamic scheduling problem, see also

Webster and Baker.

4. Minimizing Maximum Expected Lateness and Expected Maximum Lateness

In this section, we focus on determining optimal list policies that minimize both the maximum

expected lateness and the expected maximum lateness when processing times as well as due dates



are stochastic. If we let Fy(i) denote the (random) flowtime of the i** job served under g, and
let dg(¢) denote the (random) due date of the i*h job served under policy g, minimizing maximum
expected lateness corresponds to minimizing J(g) = max; E[Fy(i) — dg4(i)] and minimizing expected
maximum lateness corresponds to minimizing J(g) = Emax;[Fy(i) — dg(7)].

It is well known that under stochastic processing times, when due dates are deterministic, and
setup times are zero, the Earliest Due Date (EDD) rule is optimal under either of the two objectives
(e.g., see Chapter 9 of Pinedo (1995)). However, in problems with family setup times under the |

GT assumption, the two objectives result in different optimal policies even when the due dates are

deterministic. Consider the following simple example with two families:

Example 1: Family 1 has only one job, and family 2 has two jobs. The processing time of the
job in family 1 is 20 with probability 0.5. and 10 with probability 0.5 and its due date is 29. The
processing time of job 1 in family 2 is 25 with probability 0.5 and 15 with probability 0.5 and its
due date is 5. Similarly, the processing time of job 2 in family 2 is 30 with probability 0.5 and 20
with probability 0.5 and its due date is 30. Setup times are zero. Under both objectives, under
the optimal policy, once family 2 is set up. job 1 in family 2 is processed before job 2 in family 2.
However. under group technology. it is optimal to process family 1 first, and family 2 second when
the objective is to minimize the maximum expected lateness and family 2 first and family 1 second

when the objective is to minimize the expected maximum lateness. O

We first focus on the objective of minimizing mazimum ezpected lateness. Define the list policy
g as a string (list)
9=919293 - Gk(g)s (4.1)

where k(g) denotes the sum of the number of jobs initially in the system plus set-ups, and where
g: designates the job type vector ( f(i).s(i)) served on the ith stage. We take (f(i),0) to represent
a set-up of family f(7) and we avoid applying a due date to stage [ at which a set-up occurs by

defining £ 2 {le{l,....k(g):s(l)# 0}. We can now express the cost of policy g as

J(9) na;

l
max E{Y"(P{f(k). s(k))L{s(k) # 0} + S(f(k))L{s(k) = 0}) - d( f(1). s(1))}
k=1

leL

{
max{)_[n™(f(k), s(k))L{s(k) # 0} + ES(f(k))1{s(k) = 0}] - Ed(f(1),s(]))}. (4.2)
k=1



Since a policy is optimal if it minimizes J(g) as defined in (4.2), we observe once again that the
solution of this stochastic scheduling problem is identical to the deterministic scheduling problem
with constant service times p~1(f, s), setup times ES¢ and due dates Ed(f,s). This simplifies the
problem considerably as the optimal policy for the deterministic problem has been characterized
(see Potts and Van Wassenhove [9] for family-dependent due dates). We cite the result of Webster

and Baker [14] in the following.

Theorem 2: For the problem of minimizing mazimum ezpected lateness, the optimal list policy
under group technology, GT, will serve job j within each family i in nondecreasing order of Ed(i, j).
Reorder jobs in each family in nondecreasing order of their ezpected due dates. For family i, define
the variable q(i,7) = ZkN;]‘H pHi,5), and d'(1,7) = Ed(i,5) + q(i,5) and let d'(i) = min; d'(3, ).

The optimal policy will process families in nondecreasing order of d'(1).

We note that the result of Theorem 2 is interesting because the optimal sequence does not
depend on E(S;) oron t. Since EL; ; = t+ E5(i)—d'(i,j) with ¢(z,0) denoting the total processing
time for family i. we see that it suffices to minimize d’(i, j) to identify the family with the maximum
expected lateness. Since this minimization is unaffected by the starting time, ¢, we conclude that
Theorem 2 remains valid under the GT assumption even when we allow dynamic scheduling policies.

We next focus our attention on finding optimal list policies that minimize erpected mazimum
lateness. We begin our analysis without the GT assumption. Thus, we view a list policy as a series
of runs. each beginning with a set-up of a family. say 7, and containing only jobs of that family.

We first characterize the ordering of jobs within a run and then the ordering of runs.

Theorem 3: For the problem of minimizing expected mazimum lateness, if the due dates of jobs
within the same family and run are stochastically ordered. an optimal policy will schedule these jobs

within a family in stochastically nondecreasing order of their due dates.

Proof: Consider a sequence ¢ = A.(i.k). B.(i.j).C. where A, B and C are partial sequences of
jobs with (i, k) and (¢,7) in the same run. where d(i,j) < d(i,k). Without loss of generality,
assume that d(¢, ;) is also stochastically less than or equal to the due dates of all the jobs in B.
(Otherwise, there exists at least one job in B that should be ahead of (7, 7), and the same interchange

argument could be applied to that job first). Now, consider a sequence o' = 4,(1,7), B, (4,k),C,

-~



where ¢’ is obtained from o by interchanging jobs (z, k) and (3, 7). Since all jobs in B must be from
family i, the interchange results in no additional setups. Let P4, Pg and Pc be random variables
denoting the sum of processing times and setup times in partial sequences A, B and C. We define
L; ; as the lateness of job (i, 7). Clearly, the lateness of all jobs in A and C are the same under both
schedules. Also note that L;x >s Lip >s¢ Lix (where job (zb) is the b** job, for arbitrary b, in B
with due date d(¢,b)). Thus, it suffices to compare the lateness of jobs (¢,7),(¢,k) and (7,b) under
g’ with the lateness of job (7,7) under g. We also let P, be the (random) sum of the processing

times of the first b jobs in partial sequence B.

Li,] = PA + P(L~])_ d(l,])
L= Pat Plig)+ Pa+ P k)~ d(ish)
i6 = Pat P(i.j)+ P —d(i.b)

Lij = P+ Pli.k)+ Pg+ P(i,j) - d(i,])

We see that L;‘j <st Li ;. Since all processing times and set-up times are mutually independent,
Li, <4 L;; follows from the fact that d(i, ;) <y d(i.k). Similarly, L:-,b <st L; ; follows from the
fact that Pg > Py and d(i, ) <4 d(i.b). Therefore, we have that max; ; Lg,j <t max; j L; ;, which
implies that E[maz,;L; ;] < E[maz;;L,;]. O

The previous theorem together with the GT assumption indicates that if stochastic order be-
tween the due dates of jobs within a family exists, there is an optimal sequence in which the jobs
in a family are scheduled in stochastically nondecreasing order of their due dates. The problem
is simplified because there is only one run per family. Note that within a family, the sequence is
equivalent to earliest expected due date (EEDD). In the following, we will assume the stochastic
ordering of due dates for jobs within each family. as such an ordering will exist in many situations
(e.g.. when due dates are deterministic or exponentially distributed).

Suppose that family :, with its jobs numbered in stochastically nondecreasing order of d(, ;)

begins its setup at time t. Then the lateness of job (i.j)is
J
Lij=t+Si+ Y Pli,k)-d(i.j) (4.3)
k=1

Define d”(i.7) = d(i,7) + ¢'(i.7) where ¢'(i.]) = Zi\’;ﬁ_l P(i,k), and define the random variable



d"(¢) = min; d"(4, j). Then, we can rewrite (4.3) as
N;
Li=t+5+)Y Pik)-d"(i,j) (4.9)
k=1

Therefore, we have max; L;; =t + S; + 22/;1 P(i,k) — min; d"(¢,j) and by the definition of d"(:),

we have
N,

max Li; = t+ S; + Y P(i, k) — d"(d) (4.5)
J k=1

We can now state our result for the optimal list policy for minimizing expected maximum lateness.

Theorem 4: Under the GT assumption, if a stochastic ordering of d"(i) exists for families of jobs,

an optimal list policy will sequence job families in stochastically nondecreasing order of d"(3).

Proof: The argument is an interchange argument exactly the same as in the proof of Theorem 3,
with a run taken as a composite job. We omit it. T

We note that a stochastic ordering of d”(¢) for job families may not exist. Thus. Theorems 3
and 4 provide a sufficient condition for an optimal policy and not a necessary one. They can also
be used to provide a partial ordering between job families. We demonstrate the use of Theorems 3
and 4 on Example 1 from the previous section. Since the due dates are deterministic, a stochastic
ordering bet_ween them trivially exists and by Theorem 3, we can conclude that when processing
family 2. it is optimal to process job 1 first and job 2 second. Computing the d” values for thé:
families. we obtain the result that d”(1) = 29. and that d"(2) equals 25 with probability 0.5 and
30 with probability 0.5. There is no stoéhastic ordering between these relationships, so Theorems
3 and 4 do not specify an optimal solution. However, we can conclude that if the due date of the
job in family 1 is greater than or equal to 30 (all else being equal), then an optimal schedule will
process family 2 ahead of family 1. Similarly. if the due date of job 1 in family 2 is 9 or above

(everything else being equal), an optimal schedule will process family 2 first and family 1 second.

5. Minimizing Expected Total Weighted Tardiness

We now turn to the objective of obtaining a list policy that minimizes the total expected
weighted job tardiness. We restrict attention to the following class of problems. We require all job

processing times in the same family. f. to be drawn from the same distribution (B(f,s) = B(f,1)



for all s) and to all share the same random due date d( f) (so d(f,s) = d(f) for all s), the realization
of which is obtained only after processing the last job of family f. Let A; denote the cumulative
distribution function (c.d.f.) governing the due date of family f.

Group technology is applied. Since the processing times of jobs in the same family are indepen-
dent and identically distributed random variables and group téchnolbgy is applied, the job sequence
within a family does not affect the result. Therefore, the objective is equivalent to obtaining a family
sequence that minimizes the total weighted job tardiness in expectation.

Let the random variable T'(g) denote the total weighted tardiness of sequence g. Our main

result rests on the following definition.

Definition 1: Job family processing time distributions are said to be compatible with the family
due dates. set-up times, tardiness penalties, and numbers of jobs if, for families labeled such that
P(1.1) <st P(2.1) < ... <o P(N,1),and for all f < N, we have d(f) <s d(f+1), S(f) <
S(F+1). B(f)> Bf+1), and Nj > Ny,

We now present a theorem which indicates conditions under which processing the jobs in in-
creasing stochastic order of their processing times is optimal. This result can be viewed as an

extension of those found in Forst [5]) and Chang and Yao [3]).

Theorem 5: Provided job family processing time distributions are compatible with the family due
dates, set-up times, tardiness penalties, and numbers of jobs, E{T(g)} is minimized by sequencing

the families in increasing stochastic order of their job processing times.

Proof: The argument is an interchange argument. Suppose the hypothesis of the theorem is
satisfied, but policy ¢ sequences families in the order 1,2....,7—1,7,i,4,... for some ¢, j such that
J > t. We show that sequence ¢’ 2 1.2, 1= 1.0 ,€, ..., which simply interchanges families :
and j. is at least as good as g. To contrast the two sequences g,g’, we have only to contrast the
expected total weighted tardiness of families i.j. Let F(f,s) (F'(f,s)) denote the flowtime of
job (f.s) and Ty (T}) be the total weighted tardiness of family f under sequence g (¢’). Sequence
g is better than ¢’ if and only if E{T(g)} - E{T(g")} > 0. We have

10



E{T(9)} - E{T(¢")}

= E{T + T3} - E{T! + T}

= E{Zﬁ (max(F(j,s) ,d(3)) = d(j)) - (max(F'(j,s) .d(j)) - d(3))] +
Zﬂ(i)[(max(F(i,s) () = d(i)) - (max(F'(i,5) . d(i)) - d(3))) 5.0

= Z{ﬁ ) E{max(F(j,s) ,d(7))} - E{max(F"(5,s) ,d(j))}] +

(2)[E{max( (1,8 + N; = N;),d(i))} — E{max(F'(i,s),d(:))}]} +
N;

Z B(i)[E{max(F(i,s — N;),d(2))} — E{max(F'(s,s),d(:))}] , (5.2)
s=N,;+1
where the last line follows from N; > N;. We proceed to prove that the two sums of (5.2) are both

nonnegative quantities. First, we show that the second summation of (5.2) is nonnegative because

F(i,s = Nj) >4 F'(i,s) for N; 4+ 1< s < N,. To see this, note that

F(i,s = Nj) = F'(i,s)

N, s—=N,
= Fi-1Ni)+5()+ Y PGk +SG)+ . P(ik)
k=1 k=1
—[F(i = 1.Ni.y) + S(i) + Y_ P(i.k)]
k=1
= +ZP(], (t,k+s-N;)]. (5.3)

Since the terms of (5.3) are independent and the processing times of family j are stochastically
larger than those of family i, it follows that max(F(i,s — N;),d(1)) >s max(F'(i,s),d(i)) (see
example 8.2a of Ross) and thus the second summation of (5.2) is nonnegative.

To conclude that the first summation of (5.2) is nonnegative, it is helpful to observe that for

1<s <N,

F(i,s 4+ Ni = Nj) 25 F'(j.s) 25t F(j,8) 25t F'(1,5) (5.4)
To see this, note that
F(i,s+ N, = N;) - F'(5,s)

11



N, ‘s+N,—NJ
= Fi-1,Ni_1)+SG)+ Y PR +SEH+ Y. Pik)
k=1 k=1
N;
~[F(i-1,Ni2)+ S(6) + Y P(i.k) + S(j +§:P$
k=1
NJ Nx
= ) PGR- X Plik), (5.5)
k=s+1 k=s+N;-N;+1

and the first inequality of of (5.4) follows from the mutual independence of the processing times
and from the fact that the processing times the processing times of family j are stochastically larger

than those of family ¢, and that N; > N,. Similarly, the rest of of (5.4) follows from
N,
S(#)+ Y P(i,k)
k=1
= S(i)+ Y _[P(j, k) = P(i, k)]
k=1

Next, observe that because max(F(j,s),d(j)) is a nonnegative random variable, its expectation

Fl(j’s) - F(]73)

Il

F(j,s) - F'(i.s)

can be expressed as [ 1 — P(max(F(j,s),d(j)) < t)dt = [;°1— A;(t)P(F(j,s) < t)dt. Thus, it
suffices to show that for 1 < s < N}, the following is nonnegative:
B()[E{max(F(i.s + N; = N;),d(:))} = E{max(F'(i,s),d(i))}] -

BUNE{max(F'(j.s) .d(j))} - E{max(F(j,s) ,d(j))}]

3(i) /Omu — AUtIP(F(ics+ Vi = Nj) €)= (1= Aft)P(F'(i,5) < 1))dt

80)) / °o<1 - AJOPLF(os) £ 1)) = (1= A(0P(F(j,5) < 1)dd

/ 3(3) (F(i.s) < t) = P(F(i.s + N; = N;) < t))dt -

()P(F(5.s) <t)= P(F'(j.s) < t))dt . (5.6)

The above is nonnegative because 3(i) > 3(j). Ai(t) > Aj(¢) (by hypothesis) and because (5.4)
gives

P(F'(i.s)<t)= P(F(i.s+.N, = N,) < t)> P(F(j,s) < t) = P(F'(j,s) < 1) . (5.7)

Thus (5.2) is nonnegative and the result follows. O
We conclude this section by noting that violating even a single one of the conditions in Definition
1 results in the conclusion of Theorem 5 not to be valid. Consider the following example in which

the conditions of Definition 1 are violated because ny > n;. Let family 1 have 1 job while family

12



2 has 2 jobs and set §; = B = 1. The setup times are 4 for family 1, and 5 for family 2. The
processing times are 20 for family 1 and 21 for family 2. The due date is 8 for family 1 and either
10 (with probability 0.6) or 12 (with probability 0.4) for family 2. It is easy to see in this example
that §5 > §1, P(2,1) > P(1,1), By > B2 and dy > d;. It is easy to check that even though this is
the only violation, it is sufficient to make it optimal to process family 2 first. Beginning with family
1, the total lateness is 117 with probability .6 and with probability .4 this laténess is reduced by
4 giving an average of 115.4; however, an average cost of 114.4 is obtained by starting with family
2. Numerical examples which show that violating any one of the other conditions invalidates the

conclusion of Theorem 5 can be similarly obtained.

6. Conclusions

In this paper, we have explored a variety of stochastic sequencing problems. We examined
the problem of minimizing expected weighted flow time, for which an optimal GT sequence can
be explicitly characterized. When the GT assumption is removed, the optimal policy is complex
even in the deterministic case. Although a complete characterization of an optimal policy is not
presently known. we were able to formulate the dynamic scheduling problem as a Markov decision
process and to prove that there exists an open-loop or list policy that is optimal within the class
of dvnamic control policies.

For the problem of minimizing maximum expected lateness, we showed that the stochastic
sequencing problem can be solved by analyzing its deterministic counterpart. This is not the
case in general for the objective of minimizing expected maximum lateness, for which we defined
sufficient conditions under which a relatively simple policy is optimal.

Finally. for the objective of minimizing expected total weighted tardiness, we identified a strong
sufficient condition under which the shortest expected processing time sequence is optimal with

group technology. In addition, we provided an example demonstrating that the result no longer

holds under relaxed assumptions.
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