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Abstract

The extended spectral ray method (ESRM) is employed in deriving expressions for the
multiply diffracted fields by a pair of semi-infinite parallel material sheets/layers. One of the sheets
is chosen to satisfy a second order boundary condition simulating a thin dielectric layer and the
other is a resistive sheet. Of interest is the computation of the leading edge scattering given as the
sum of the singly and multiply diffracted fields with particular attention given to the computation of
higher order diffraction fields beyond”the*sécoﬁd. Their evaluation required a non-traditional
approach and up to fifth order diffraction fields are derived and applied in computing the scattering
by a pair of half sheets simulating a metal-backed dielectric half plane as thin as 1/20 of a
wavelength. Numerical results for other practiCaI.,s,'mju'latians‘ﬁre presented and compared with
results based on alternative computational methods, where.applicable.



II.

II1.

IV.

VL

VIL

IIX.

TABLE OF CONTENTS

INTRODUCTION

SHEET BOUNDARY CONDITIONS

SINGLY DIFFRACTED FIELDS

DOUBLY DIFFRACTED FIELD

TRIPLY DIFFRACTED FIELD

QUADRUPLY DIFFRACTED FIELD

QUINTUPLY DIFFRACTED FIELDS

NUMERICAL RESULTS

SUMMARY

REFERENCES

LIST OF FIGURES

APPENDIX A

APPENDIX B

Page #

13

15

17

19

21

22

33



L INTRODUCTION

Of interest in recent years has been the electromagnetic characterization of material
geometries. In this report we consider the problem of diffraction by a pair of parallel material half
sheets as shown in Fig. 1. Specifically, the upper half sheet satisfies a second order boundary
conditions [1,2] simulating a thin dielectric layer having arbitrary constitutive parameters. The
lower half sheet satisfies the resistive sheet boundary condition [3]. Diffraction coefficients for
each of these half sheets in isolation are already available and, therefore, a goal in this report is to
determine the interaction fields between the two half sheets.

The determination of the interaction or multiple diffracted fields is accomplished here
via the extended spectral ray method (ESRM) [4-6]. The ESRM technique has been employed,
rather successfully, in the past [5-7] for the prediction of the multiple interaction fields among
edges at a distance much less than a wavelength. Particularly, in the case of backscatter by a
resistive/dielectric strip [5], the third order ESRM solution remained accurate for strip widths down
to 1/8 of a wavelength or less. Similar observations hold for the backscatter by a thick impedance
edge [6]. In both of these cases, however, the ray paths associated with higher order mechanisms
did not traverse along shadow or reflection boundaries. As illustrated in Fig. 2, this is a particular
characteristic of the multiple diffraction mechanisms (beyond the third) associated with the subject
geometry. Because of it, their treatment within the framework of the ESRM requires a deviation
from the usual approach and is the main contribution of this report.

Of interest in this report is also the treatment of the diffraction by a thin truncated
layer backed by a resistive half sheet as shown in Fig. 3. An exact treatment of this problem leads
to a pair of coupled integral equations that cannot be decoupled. It is, therefore, of interest to
pursue a high frequency solution. Since the thin dielectric layer can be modeled by a current sheet
satisfying a second order boundary condition at the center of the layer [1, 2], the configuration in
Fig. 3 can be modeled by a pair of parallel half sheets (see Fig. 1) in close proximity. Based on
experience, the ESRM should be capable of providing a good simulation when a sufficient number

of multiply diffracted fields are included in the analysis. For this purpose, up to and including



quintuply diffracted fields are derived for the pair of half sheets shown in Fig. 1
Our primary attention throughout the report is the determination of the leading edge

scattering by the pair of (penetrable) half sheets. Specifically, the observation and scattering

directions will be restricted in the range n/2 < ¢ 3n/2. Since the half sheets are penetrable, this
restriction allows one to avoid at this time the treatment of possible contributions from modal fields
within the material.

In the following, a mathematical description of the half sheets and their diffracted
fields in isolation are first given for reference purposes. Next, the development of uniform
diffraction coefficients for the doubly, triply, quadruply and quintuply diffracted fields is
presented. Except for the doubly diffracted fields, those contributed by the higher order
mechanisms require a non-traditional treatment because they include ray paths traversing along
reflection boundaries. The last section of the report presents results which validate the uniformity

and continuity of the total field as well as the accuracy and limitations of the solution.

IL SHEET BOUNDARY CONDITIONS

Consider a pair of half-sheets, as shown in Figure 1, illuminated by the plane wave

; jk (x cosd, + y sin,
H =¢ ) (1)

The upper half plane satisfies the boundary conditions [1, 2]
L g+ <K
M
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where * imply the field values above and below the sheet, Z = 1/Y is the free space intrinsic

impedance and
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As such, (2) represents a simulation of a dielectric layer of thickness T having relative constitutive

parameters (€, j) and centered aty = 0.

The lower half sheet at y = -w satisfies the resistive sheet boundary condition [3]

+ - + -
E' +E_ =2R (H, -H)

E =E; )

X

where again the + imply the field values above and below the resistive sheet and R denotes the
resistivity of the sheet.

Of interest is the evaluation of the diffracted fields in the presence of the excitation

(1). Restricting the angles of incidence and diffraction in the range /2 < ¢, ¢, < 37/2, the total

diffracted field is then given as the the sum of the contributions by the single and multiple

diffraction mechanisms among the pair of edges Q; and Q, formed by the half sheets. For

impenetrable sheets, such as a pair of impedance or perfectly conducting half planes, a solution in
some spatial range is directly extendable to another. Unfortunately, this is not the case with the
penetrable sheets considered here and, therefore, such a restriction is necessary.

Below we begin the evaluation of the multiple diffracted fields with particular
empbhasis in the derivation of expressions applicable to diffraction mechanisms beyond the second.
Since our goal is to generate a solution that remains accurate for small sheet separation distances,
say down to 1/20 of a wavelength, expressions are derived up to and including the quintuply

diffracted fields.



II1. SINGLY DIFFRACTED FIELDS
The diffracted field by the upper half sheet in isolation is given by [7]

i at o, o\ ([ e
080 = - | [sec<T>+sec(—5——> [He@noy

T 50
H (0 +7, ¢o)] e*P %4y y20 5)
where
H (¢, ¢) =7, K, (0, n)K, (9,1, ©6)
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H, (@, ¢p) =- K, (@, 1) K, (41)
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in which K, (¢, 1) is the Wiener-Hopf split function explicitly defined in [7, 8] (note that in [7] the

first argument of K is cos o rather than o as employed here),
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Also,

[0} y>0
2n-¢ y<0 .

and (p, ¢) are the usual cylindrical coordinates of the observation point.

A non-uniform expression (p—<) for H,; is

-j m/4 . - m -jkp
H, (0, 0)~-— sec(-qi;i&)+sec(¢2¢°)J[Hz(¢’¢o)+Hz (¢,¢0)]e—
2/ 2k /;
o ikP
~D, (¢, ¢) — (10a)
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since K, (¢, N) =K, (2n - ¢, ), where D;(¢,, ¢,) is the diffraction coefficient for the singly

diffracted fields from Q;. The above is, of course, invalid near thé reflection and shadow

boundaries occuring at ¢ = & + ¢, where a uniform evaluation [9] of (5) is necessary. In so

doing, at the reflection boundary we find

H. ( o)~ ™ sec(q"%
LO=T-0,00)~ |5 —F—=
1 0’ Yo 2 2\/2—11:1(_;; 2

I° B 6,0+ HI0, 0]

(10b)

in which the first term in the brackets is equal to one-half the reflected field by the planar sheet.

Clearly, (10b) implies that at ¢ =~ ¢, = /2, the diffracted field can be decomposed into a plane

wave and a slowly varying cylindrical wave. In contrast, the sum of the two waves yields a

rapidly varying field whose treatment cannot be handled via the ESRM for the computation of the

5



multiply diffracted fields.

The diffracted field by the resistive half sheet in isolation is given by [5]

- ato o atoto,
sz(¢’¢0)=—Lan Jl:m(—_—?—)+sec<—2-——) K+((X+Y7an) K+(¢o’ﬂ1R)'
4n S0)

-jkp, cos a

- € do (11)

in which
Ng=Z72R . (12)
Note also that in the far zone p, = p + w cos¢. A non-uniform evaluation of (11) now yields

-j m/4 ¢+¢ ¢_¢ -jkp,
H, (6, 0,) ~-— [sec( ) +see (—2) [ K, (0.0 K, (0,1 p) ——

2y 2k \/p-2

(13a)

-kipy
£
VP2

where Dy(¢, ¢) is again identified as the diffraction coefficient for this mechanism. As before,

~D, 6, 6,)

when ¢ =7 - ¢, we find that
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allowing a decomposition of the diffracted field into a plane wave and a slowly varying cylindrical

wave.

IV. DOUBLY DIFFRACTED FIELD
Double diffraction occurs when the plane wave after diffraction from the top (bottom)

half sheet propagates towards and diffracts from the bottom (top) half sheet as illustrated in Figure

4. The diffracted field from the top edge (Q;) toward the bottom edge (Qjy) is, of course, given by

the integral (5) with ¢ = /2 and p = w. But in accordance with the ESRM (see Figure 4b) this

integral can be interpreted as a sum of inhomogeneous plane waves emanating from Q, at an angle
3n/2 + o, where ¢ is the angle measured from the stationary ray [10]. Each of the inhomogeneous

plane waves will then be incident on the bottom edge at an angle ©t/2 + o with respect to its top

face. For far zone observations, their individual contributions are given by (13a) and, therefore,

an integral expression for the doubly diffracted field from Q; to Q, is

o-3m/2+¢, - 31:/2 o,
H, &.¢)=4, J.[SCC( °)+sec (————2 )]

S(0)
+7/2+ o+ 72 -
[S"C ( g_né_(b)* see —1;/——4))] F(a, 0,0, ¢’ """ da (14)

in which
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and
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From (14), it is clear that H,5 (¢, ¢,) can be written as a sum of four integrals

1, 3% 1. 3n

Hy 0,00 =1 (50, - B+ I (S0 - Ty o 1 (Twg, - L)+

1,3n T
+1 (—2—+ Oy - —2-+¢) a7)
where
a-a. a-
I (0, ) =4, JF(OL, ¢, 9,) sec (—5—) sec( ’) Howeose g (18a)
S0)
whose asymptotic evaluation yields
I jkw -jkp,
I (o, o) ~ ey, @) F(O, 9, ¢p) (18b)

J_J_

A uniform expression for I(c, ocj) that accounts for the case when a; and/or a; are near the saddle

point is [9, 10]

F, (kwa) F, (kwa)
. o. a.a. kp i kp i
., 0.) = sec — sec =+ —3 - 19
I, aJ) sec - sec — %_ai[ Y 2 ] (19a)
provided o, # . Alternatively, if o, = o then a suitable expression for I(c;, ocj) is
I(a, a) = sec -2—{-ka=1 [F (kwa)) - 1]+2 lq,(kwa)} (19b)



In (19a) and (19b),

2%
al=2cos 5 (20)

and

. .2
F, @) =2z ¢ Ie'” dt 1)
P

is the UTD transition function whose properties are discussed in [9].

The double diffraction coefficient Dy; (¢, ¢,) is now determined in accordance with
the relation
_Jkp L
2 CJkp e-jkw sing

H,, (4,0 ~D,, (4,0) =—=D,, (6,9 ) ~—

lo lo

together with (17)-(19). By invoking reciprocity, the doubly diffracted field traversing from Q, to

(22)

Q; (see Fig. 4c) is simply given by

SR jkp
-Jew sing, €
e =D, (¢, 0) ¢
I n 00
p p

-jkw sing),

H,12 (9,0 ~ Dy, 0,0 (23)

and this completes the analysis for the doubly diffracted fields.

V. TRIPLY DIFFRACTED FIELD

The mechanisms associated with the triply diffracted field are illustrated in Figure 5.



Let us first consider the mechanism shown in Figure 5a. In this case the plane wave incident onto

Q, generates spectral waves that are in turn incident upon Q, at an angle 7/2 + o to subsequently

undergo a double diffraction before returning to the observer. Accordingly, an integral expression

for the contribution of this mechanism is

o-3n/2 + ¢, o - 31t/2 0, e
H ., ©0,¢)=A [scc( )+sec( )]( )
121 S(J-O) M

[Hz (@+7/2,0) - H' (o + 2, ¢°)] D,,(0, 12+ 0) ¢ “** doy (24)
where Dy (¢, /2 + ) =Dy (/2 + a1, §) is the double diffraction coefficient defined in (17) -
(23). Of importance in the evaluation of (24) is, of course, the integrand value at and near the
saddle point o = 0. We, thus, require Dy, (¢, ©/2). However, expression (19) becomes

non-uniform with respect to ¢ when ¢ = nt/2 and is thus invalid, unless w is large. Rewriting

Di; (9, 7/2) as

D,, (¢, B) = D}, @, B) + D}, (4, B) 25)
with
3 3 v
D, 0. B) = [I(Tn-dh -L.B) +1( S 0,-E+ B)} F0,B,0 = (26)
Y
Dy, @, B)=[ (—+¢ )+I(31+¢,--"—+B)}F(o, B,¢)5jk—w- , @
12 2 2 ,/—V_J.
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we observe that DI12 (¢, B) is the invalid portion of D, , (¢, B) when B = 125- . To find a valid

expression for DI12 (0, 12‘—) we return to the scenario associated with the triply diffracted
field shown in Figure 5a.
The spectral plane wave emanating from Q is incident upon Q; at an angle n/2 + c.

Most of the scattering from Q, will then be near the specular direction #/2 - o, but if a0 = 0, Q will

be in the path of the specular return and the diffracted field from Q, will be given by (13b) with

p = w if evaluated at Q. That is, the diffracted field from Q, consists of a plane wave portion

equal to one-half the reflected field plus a slowly varying cylindrical wave. The plane wave
portion of sz (n/2 + o, /2 - o) is obviously that associated with Dl1 5 (0, ®/2). At Ql, the

plane wave portion of H_, (/2 + a, 7/2 - @) has the value

1 2 -k
5 Mg K, @2,M,p) e’

and makes an angle 37/2 - a with respect to the top face at Q. Thus, an appropriate far zone

expression for DI12 6, m/2)1s

I 1 2
D05+ =n KB n e

a=0

-jkw 3n
Dl (¢’ T - a)

=- ,/m ™ [sec (___31!/2 -2(x : ¢) + sec (—-——W -2(1 - ¢)

By comparison with (26), we thus observe that

11



: o, -0
I(al,-n+a)| - Jonkw e”"“sec( > ) (29)
0=
2

for o = 0, a result that will prove useful in simplifying the analysis associated with higher order

diffraction mechanisms.
Substituting (25) along with (27) and (28) into the triple diffraction integral (24) and

performing a uniform evaluation as in the double diffraction case yields

o kP
H 191 @ 0)~Dy5, 0.0) —=
/p

- 3
=<-w/21ckw ¢ "{1 0 a)+1C5 -0, 2 +0,)

+1(_—+¢ -9)+1( 32"+¢, 12’3+¢0)}+[1(37"-¢0,0)+1(37"+¢0,0)

2
3n 3n g P
1(S5--6,0) +1(>=+9, 0)}} = F;0,0,0) (30)
{ 2 2 ‘/; 3 ‘/—p-
with I(o,, ocj) as defined in (19),
e'j /4 e m
F3 (O’ ¢, ¢o) =- [Hz ( 121’ ¢o) B Hz (g-’ ¢o)] F(O’ 125.., ¢) . (31)
2rtk

and F(0, n/2, ¢) as given in (16).
The triply diffracted field whose ray scenario is shown in Figure 5b can be obtained
in a parallel manner. We find

12
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H,5, @, 0) ~D,1, 9, 9,)

ACFe0-r0) | [15-0, 041 F 0,01 500410 Fo00)]}

2
-jkw -kp .
e -jkw (sin ¢ + sin ¢_)
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P
in which
. gi™ 3n
F;0.0.9,)=- 2—'2—1(‘"111 K, ( L) K, (0, 1,8) (0.0, 7 33)
T

and Dj;,(¢, ¢) is the diffraction coefficient for this mechanism.

VL QUADRUPLY DIFFRACTED FIELDS
The two mechanisms associated with the quadruply diffracted fields are illustrated in

Figure 6 and as in the double diffraction case they are reciprocal. Let us first consider the

evaluation of Hyp19; (9, ¢). In this case the plane wave incident upon Q, generates spectral

waves which are in turn incident upon Q, at an angle /2 + o with respect to the upper face of the

lower sheet. Each of the plane waves subsequently undergoes a triple diffraction before returning

to the observer. An appropriate integral expression for this quadruply diffracted field then is

13



“ikw sin a-3m2+¢ o-3m/2-¢,
Hppp0 (0.0 =46 [ sec (——5—2) + sec ()| |-
50)

e~_] n/4
2y 21k
[H: (a+Z,0,)-H ( 0t+’21,¢0)J Dy, (0. F+) ™ ™ da (%)

and in view of (29), the triple diffraction coefficient D;5 (/2 + @, ¢) is given by

D212(12t—+(x,¢)={ [omcw “‘/“{I(-%-cp, a)+I(-12t--¢,a)+

M) (-n/2;¢+a)]}

-jkw

2
+[1(-n-a,0)+1(a,0)] [I( -9, 0)+1(- +¢ O)J}(ﬁ) F (o¢ o)

(35)

for o = Q.

Performing a uniform evaluation of (34) yields

H,5191(0, 0, =['V onkw & ™ { I( '32£ 0, 0) + I( 32—“+ 0. 0)} { I(- 12;' o, O) + I(- 121+ 0, 0)>

+j2nkw{1-§-¢,37“-¢0)+1(-§-¢, #0,)+1(-E+6,50-0) +1(- +¢——+¢)}

+[-‘/ﬁej""‘{g( -0) +1( +¢)}+1(00){1( ¢o,0)+1(37“+¢0’0)>}
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Q.
I, (o) = sec —2‘- ka (kwa) (37)
and
/4
e e m '
F, (00,0, =- [HZ(§,¢O)-HZ(-’2‘—,¢O) F,(0,0.5) . (38)
X/ 2nk

where F'3 (0, ¢, ¢,) is defined in (33). Also, by invoking reciprocity,

kp . . -jkp

e’ -jkwsing, € .jkw sing

Te =H, 5151 (0, 9) =Dy5, (0, 9) € ’
p .

/o

H, 9, ©@,0) = Dy 4.0
(39

where D;2;2(0, ¢y) = Dy12,(,, ¢) is the diffraction coefficient associated with the quadruply

diffracted field.

VIL QUINTUPLY DIFFRACTED FIELDS

The mechanisms associated with fifth order diffraction are illustrated in Figure 7.

Proceeding as before, the quintuply diffracted field H,;915; (0, ¢,,) can be expressed as

15



H i @004 | [se (0 e (22200 |

S(0)

-j1t/4
2/ 2k
[HZ (a+Z.¢)-H (a+Z, ¢o)] Dy (0. % +0) ™ o “0)

in which Dy51; (0, T/2 + &) is defined in (36)-(38), but must be modified in view of (29). We

have

Dy, (0. 2+0) = {Jznkw ”‘/“ 1( 37“-(;,, 0) +1( 37“+ 0,0)|[ 1m0, 0) + 1, 0)]
+j2nkw {- x/21tkw ¢’ [sec (M) (ﬂ;q)—-a—) + I(a —- ¢) + I(a ¢)>
" { J 2nkw & ™ [I,( 325 0) +1{ -3-2’£+¢)} +1(0,0) [I( 325 ¢,0) + 1(32’1+ 0, 0)}}

3

F (0, +a 9) @1

[1(n-a, 0)+1(c, 0)] }(ejfwlv

for o = 0. Performing now a uniform evaluation of (40), as before, we obtain

a0 {ﬁk_ S ECROWENT)
{J__e"“[(”«»)u( £10) 1100 10.2-) 110 +¢>}}

+ e {-Jznkw S {1(37"-(»,37"-¢°)+1(3T"-¢,.32£+¢0)+1(32_“+¢,37"-¢0)

3n )

+I(_32£+¢’T

[I(O —-¢)+1(o

ECERSICE ““D
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+{_ﬁ,@gn/4[(3" ¢)+1( +¢)}+1(00)[I(-—-¢0)+I( ¢,0)}>

.{-@g’""‘[ ¢)+1( +¢)}+I(00){I(0 —--¢)+1(0 )D}

4
Jkwl ok 4k
F5(0’¢’ ¢°) (Eﬁ) %P' 12121 (q) ¢ ) ‘/J;p (42)

in which

Fs (0,0, 0, =-

[(’tq,) Hy (£ )JF(O 0) 43)

2%/ 2nk

where F4(0, ¢, ¢) is defined in (38). The evaluation of the diffraction coefficient Dj1212 (9, &)
can be deduced from D515, (9, ¢,) by interchanging ¢ and ¢ in (42) and by replacing

Fs (0, 9, &) with

-j /4
, c
F5 (09 q)’ q)o)-' m anK ( an)K (¢0’ an)F (O ¢ ) (44)

IIX. NUMERICAL RESULTS

To test the validity of the derived diffraction coefficients it is instructive to first
consider the special case when both half planes are perfectly conducting. The derived diffracted
fields are then valid everywhere (unless shadowed) and this should, therefore, allow verification of

the continuity of the scattered field which is equal to the sum of the diffracted fields. Every

17



diffraction mechanism has a shadow boundary either at ¢ = /2 or ¢ = 3%/2; however, the total

field should remain continuous because of appropriate sign reversals in the unshadowed diffracted

fields. For example, given that 1t/2 < ¢, < 3n/2, H,, is shadowed in the region 0 < ¢ < /2 and

thus discontinuous at ¢ = /2. However, at ¢ = nt/2 the terms of H,,, associated with a transition

function whose argument vanishes at this boundary, experience a reversal of their sign so that the
sum H,, + H,;, remains continuous at ¢ = nt/2. Similarly H,5; + H,;41, Hyp12 + H; 912 and

H,5121 + H;1012; are continuous at ¢ = /2.

Shown in Fig. 8 are backscatter and bistatic patterns for two parallel perfectly

conducting half planes separated by a distance w = 1.55 A. It is seen that the high frequency
solution is in good agreement with the exact [11] pattern. We also observe that the primary role of

the multiply diffracted fields beyond the second order is to maintain continuity of the scattered field

at the shadow boundaries ¢ = n/2 and ¢ = 3n/2. As noted earlier, of interest in this study was to

examine whether the derived high frequency solution remained valid when w was much less than a

wavelength. The pattern in Fig. 9 corresponds to the case when w = 0.05 A and it is clear that the
derived high frequency solution is still in good agreement with the exact.

For the general case when the half planes satisfy the boundary conditions (2) and (4),
there is no available exact solution, neither is it possible to generate numerical data of acceptable
accuracy. However, when R=0 and w is small, the pair of half sheets represent a metal backed
dielectric half plane which is traditionally modelled as an impedance half plane [12]. Also, recently
[13], an improved solution was obtained using a second order boundary condition to simulate the
coated surface of the half plane. Data based on these formulations can then be employed in
examining the validity of the presented high frequency solution. Figure 10 presents backscatter

patterns for a coated half plane as computed by this high frequency solution and those based on the

18



standard [12] and second order [13] impedance boundary conditions. It is again observed that the
high frequency solution derived here is in general agreement with that predicted by using a second
order boundary condition to simulate the coating. This was, of course, to be expected because like
the second order boundary condition given in (2), the formulation in [13] also allows a simulation
of the normal polarization currents within the dielectric. In contrast, the standard impedance
boundary condition (a first order condition) lacks such a capability and does not provide an
accurate simulation near edge-on incidences. It should be noted, though, that since the solution
given in [13] is also approximate, its small disagreement with that predicted by the two sheet
simulation is not necessarily indicative of the accuracy of that solution.

Echowidth patterns corresponding to the case when R#0 are shown in Fig. 11. One

characteristic of these backscatter patterns is their independence on the value of R at edge-on
incidence. This is particularly true for H polarization, where the resistive half plane is much less

observable in that region. As a result, the entire scattering contribution is primarily caused by the

dielectric half-plane itself.

IX. SUMMARY

In this report, the extended spectral ray method (ESRM) was employed to derive the
multiply diffracted fields for a pair of semi-infinite parallel sheets (material layers). The top sheet
was chosen to satisfy a second order boundary condition simulating a thin dielectric layer and the
lower one was a resistive sheet. Of interest was the computation of the leading edge scattering
given by the sum of the singly and multiply diffracted fields. Particular attention was given on the
computation of the higher order fields beyond the second since their derivation required a deviation
from the traditional ESRM. This was because the diffracted fields beyond the second order were
associated with ray paths traversing along reflection boundaries. The resulting spectral

representation of these fields then consisted of highly oscillatory components which were
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essentially decomposed into a pair of slowly varying ones before evaluation of the spectral
integrals.

Up to fifth order diffracted fields were derived and employed in scattering
computations demonstrating their validity. For a pair of perfectly conducting half planes, the
generated echowidth patterns were shown to agree with exact data for separation distances as small
as one tenth of a wavelength. Comparisons were also provided with other solutions simulating a
metal-backed dielectric half plane with favorable agreements.

In closing, it should be noted that the given solution can be easily modified for the
case when the resistive half plane is replaced by a thin dielectric layer similar to the other. Once

this is accomplished, a solution for E polarization can be obtained by invoking duality.
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APPENDIX A

DERIVATION OF BOUNDARY CONDITIONS FOR A DIELECTRIC LAYER ON
A RESISTIVE SHEET

Consider a dielectric/ferrite layer residing on a resistive sheet as shown in Figure 1A. Below
our goal is to derive boundary conditions to effectively replace the composite effect of the
dielectric/ferrite layer on the resistive sheet. Two approaches are considered in accomplishing this.
One involves (approach A) transferring the effect of the dielectric/ferrite layer to the location of the
resistive sheet. Another, shifts the resistive sheet condition to the center of the layer. In the
following we derive the appropriate boundary conditions for H,-incidence

(E, = Hy =Hy =0) followed by a similar analysis for E,-incidence (H, = E, = E = 0).

H-polarization - Approach A
Referring to Figure 1A, at y = 0 the boundary conditions due to the presence of the resistive

sheet are

2RZ [H, (0%) - H, (0)] = E, (0*) + E, (0°) = 2E, (0)
Ex (0%) =E, (0") (1)

Resistive Sheet

Fig. 1A. Geometry of a dielectric/ferrite layer on a resistive sheet for Approach A.

where R denotes the normalized sheet resistivity, Z is the free space intrinsic impedance and
H, (0F) refers to the field value at y = 0% (that is, above or below the resistive sheet). To account

for the presence of the dielectric/ferrite layer we may now expand E, (0*+) and H,, (0*) using the

first two terms of a Taylor Series expansion giving

33



. . . 9E _(28)
E (0)=E (28)-28 ———

dy
. JE_ (28" .
=E_(28)- BEHP L 28kuZH_(28") (2a)
€ Ox
. .o 9H,(28) :
H (0)=H,(28)-28 ——Zg—— =H, (28)+i 2821‘8 E, (28 (2b)
y

in which € and p are the relative permittivity and permeability of the dielectric/ferrite layer,
respectively, k denotes the free space wave number and an e-i® convention has been assumed and

suppressed.

Substituting (2) in (1) we obtain

R7 HZ (25+) + i26ke

E_(28")-H, (0)|=E_(0)

] . 25 OE (28" .
E (0)=E (28")- — ——"3—-——+i28kuZHz 28h (3)
£ X

We may again transfer the fields back to y = 0+ through another application of a Taylor Series
expansion to find

1 . 2

+ - +

H, -H =27E, BC—Z'EX
JE'
E:-E;=+—%T x4 ZZ H, @
ikn, 9 m,
with

. 2ie 2i 2i

ne=________ T\;:—————— , ’ne=-———— (5)
2K5 (e-1) 2k8 (u-1) 2k5 (e-1)

and we have set H. = H_ (0) . Similarly E] =E_(0%) .
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The boundary conditions (4) are applied at y = 0 and represent an approximate replacement of
the configuration in Figure 1A. However, they can be shown to be most accurate for small R. In

addition, their derivation implies that 8 is small with respect to the wavelength within the

dielectric/ferrite layer. Obviously, they represent co-planar electric and magnetic sheet currents,
but unlike previously encountered ones, these are now coupled, except when R = 0. In this case
the electric currents vanish and (4) reduce to those given earlier.

E-polarization - Approach A
Referring again to Figure 1A, the boundary condition with E,-incidence at y = 0 due to the

presence of the resistive sheet are

RZ[H,0)-H, )] =E,©)

E,(0")=E,(0) ©6)

As before, to account for the presence of the dielectric/ferrite layer we expand H, (0*) and E, (0%)

using the first two terms of the Taylor Series expansion to obtain

. 280H (28" g
Rrz|H,@)- 220 B, o5y B ©0)|-E, ©0) )
T ox Z

E, (0)=E, (28") - i28kZp H_(28")

Transferring now the fields from y = 28* back to y = 0+, we finally obtain

E oH
H -H =- R%+_2 y . 2 E, ®)
o 9x  nZ
E-E=--2H
Z * X
M

with
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2iy

= ©)
2kd (u-1)

m

Similarly to the H-polarization case, (8) is best for small R and results to coupled integral equations
for the determination of the electric and magnetic currents defined as

H -H =-1
E, -E,=-M, (10)

H-polarization - Approach B
Under this approach the resistive sheet boundary condition is transferred to the center of the

layer to be combined with the equivalent sheets of the dielectric/ferrite layer. It is, therefore,
convenient to reposition the coordinate system to have its origin at the center of the dielectric/ferrite
layer as shown in Figure 2A.

N

o)

il
- —p

Resistive Sheet
Fig. 2A. Geometry of a dielectric/ferrite layer on a resistive sheet for Approach B.

Referring to this new coordinate system, let us now assume that the field at y = 0 is ET and

attempt to bring in the effect of the material in the regions y > 0 and y < 0 by employing the usual
two term Taylor Series expansion. We obtain

m . _OE®) _ |9E®
E, =E (8)-8 ———=E (§) - §| —
X ay X ax

- ikp, ZH,(3) (11)

and by invoking the boundary conditions relating the fields at y = 8* and y = 8" we have
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<+,

m +« o1 9E®) "
E =E@®)-8 — —— -iku ZH (8" (12)
£ ox

Transferring now the fields at y = 28* back to y = 0+ we obtain

+

1 JE
El=E -8 (=-1)—L -ik@w1)ZH (13)
€ ox

where, as usual, we have set H: = HZ (O+) and E: = Ex (0+) .
A similar expansion of the fields in the region y < 0 yields
E (-8 1 0E (-8)

3
E'=E (-8") +8——"—)=E (-8) +8| — —X— -ikp ZH (-5) (14)
o dy X e Ox

where consistent with the previous notation E, (-8*) denotes the field's value at y = - just inside
the dielectric and, of course, above the resistive sheet. Similarly, E, (-8) denotes the field's value

outside the dielectric's surface at y = -3 and above the resistive sheet. To account for the presence
of the resistive sheet we now recall the resistive sheet boundary conditions
ZR[HZ(@ )-H, (-3 )] = Ex(-8') + Ex(-8_) =2 Ex(-S')
Ex(-8') = Ex(-S—) (15)

where E, (-6) implies the field's value on the lower side of the resistive sheet. Thus, on the

assumption that R # 0 we have

- _ E(®)
H,(-8) =H(8) + 2=

E(-8)=E(-3) (16)

and the first of these also implies
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5 5 Z 0 Ey(-8=)
E(-8)=E(- )+ikR - (17)

Since

y ko ox

Substituting (16) - (17) into (14) we now obtain

E" = E (:8) + 8| - OE,(5) - TECS) iz (5 -z 2
=E(-3)+9|— - -87) -ikp 18
X x( ) € ox ikeR axz Z | R (18)
and by transferring the fields back to y = 0-, (18) becomes
1 9E IE; E|
B =Bt — L+ —ZH + % gz = (19)
ikn, 9x m_ ikeR 9x

valid to 0(3). Equations (13) and (19) now represent two expressions for E': each involving

components of the fields above or below y =0. Eliminating Er: yields the boundary condition
2

8z 9 E ikudz _.

E (20)

X

BN-E = @ (B +E)+ 2 +H)+
X X * y y * z z . 2 R
ikne ox n. ikeER gx

Following a similar procedure we may now expand H, in the y — 0 region of the layer to

obtain
oH' E' E
H’Zn=H:-.1 Y. X=H .2 1)
ikn dz nZ n.Z

where H:1 is the field's value at y = 0. Also,

H =H(-8)- ik-zg E (-8) (22)
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and again we may invoke the resistive sheet conditions (15) giving

E(-6) iked
R Z

H =H/(-5)+ E(-8) (23)

Transferring the fields in (23) back to y = 0- and retaining terms to 0(8) yields

IH0) E@©) SIE0) ks
+ "R -

Hm= - _ -
, =H(0)-3 ™ R - 7 E0)
- E, . |oE 1
=H‘+lk_8E'+__"_§_ —Y . kZH _&E‘
2" Z xR R 2| TZ Tx
or
E E dE
H =H +—> +-—"-g- x (24)
Zn, dy

Equations (21) and (24) may now be combined to eliminate len giving

) :A
H -H =— (B +E) + = | E, -5 —* (25)
Zn R dy

[

The above boundary condition along with (20) form a complete set for the simulation of a layer
backed by a resistive sheet. As noted earlier they are valid for R # 0 and we also observe that for

R — o they reduce to the known boundary conditions for the isolated dielectric/ferrite layer [1, 2].
Clearly, (20) and (25) represent a co-planar pair of magnetic and electric current sheets.
Unfortunately, they result into coupled integral equations for the solution of the sheet currents. So

far, our attempts to decouple them have not been fruitful precluding us from obtaining an exact
solution of the relevant half plane problems. An alternative, though, is to consider a simulation of
the geometry using a pair of parallel sheets (see fig. 3) whose solutions in isolation are known.
Referring to Fig. 1A, the obvious choice is a resistive sheet at y=0, and another sheet (supporting

electric and magnetic currents) placed at y=1/2 to simulate the dielectric layer. The boundary
condition associated with the last has been derived in [1]. A high frequency solution of the
diffraction by a pair of such sheets is now possible and in view of previous experience, it is
expected that the inclusion of a sufficient number of higher order diffraction effects should allow
an accurate characterization of their scattering.
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APPENDIX B

COMPUTER PROGRAM LISTING



OO Jdo U WN

C
C
C
C
C
C
C
C

DIELRHP: Program for computing the scattered field by a

a pair of half planes, one simulating a resistive
half sheet and the other a thin semi-infinite dilectric
layer.
Includes up to fifth order diffraction terms
Compile with HZlM,HZIR,DOUBZl,TRIPl,TRIP2,QUAD,QUINT1,SEC
FFUN,FI,FIP,FIl,KPLUSM,PSIPI,HEE,CSQRC,BTANZ,FFCT,GENPLO

NSO NP NONONONON®]

COMPLEX ER,UR,CJ4,CJ,DENOM1,DENOM2, RES, RSTAR, RSTARE, RSTARM
COMPLEX ETAE,ETAMS,ETAES,ETAS,ETAl, TEMPC, ETAM1,ETAM2, ETAR
COMPLEX KPLUSC,CON1,CON2,KPLUSM, TEMP1, TEMP2,RU,RL
COMPLEX HZ1,HZ2,HZ21,HZ12,HZ2121,H2212,H2412,H2421,H251,HZ52
COMPLEX TH1,TH1S,TH2S, HEE, THO, THN, THR, AA, BB, CC,RR, TT, RR1, TT1
COMPLEX DOUB, TRIP,DUBM, TRIPMG,PHASI, PHASS,DUBE, TRIPE
COMPLEX TT1I,TT1S,TTI,TTS
DIMENSION ANG(361),HE(361),HM(361),HZ(361)
DIMENSION HZF (361),HZS(361),HZT(361)
COMMON /BLK1/ETAl,ETAR,ETAS,ETAES, ETAMS, ETAM1, ETAM2, CON1, CON2
COMMON /BLK2/CJ,CJ4,PI,PI2
COMMON /REFL/RU,RL,TT,TT1,PHASS,PHASI
COMMON /THETAM/TH1,THR,TH1S, TH2S
COMMON /THETAS/THO, THN
PI=3.141592
PI2=PI/2.
CJ=(0.,1.)
CJ4=CEXP (-CJ*PI/4.)
PRINT *, 'NUMBER OF PLOTS,IPRINT,#0OF RAYS:'
READ (5, *) NPLOT, IPRINT,M, M2
DO 2000 IPLOT=1,NPLOT
PRINT *, 'LAYER REL. PERMITT.,PERMEAB. AND THICKNESS (WL)'
READ (5, *) ER,UR, THICK
PRINT *,'IS THIS SIMULATING A THIN DIEL.H.P. ON A RES SHEET?'
READ (5, *) ISIM
IF(ISIM.NE.1l) THEN
PRINT *, 'SEPARATION BETWEEN THE DIEL. AND RES. H.P.s:'
READ (5, *) D
ELSE
D=THICK/2.
ENDIF
PRINT *, 'NORM. RESISTIVITY OF THE RES. HALF PLANE:'
READ (5, *) RES
ETAR=1./(2.*RES)
PRINT *,'ETAR:',ETAR

C ENSURE RIGHT BRANCH FOR LATER SQUARE ROOTS

ER=ER-CJ*1.E-6
UR=UR-CJ*1.E-6
DENOM1=(ER-1) *2 . *PI*THICK
DENOM2=(UR-1.) *2 . *PI*THICK

C COMPUTE ETA/IMPEDANCE PARAMETERS FOR USE IN DIFFR. COEFFICIENTS

RES=-CJ/DENOM1

RSTAR=-CJ/DENOM2
RSTARE=-CJ*ER/DENOM1

IF (CABS(ER) .GT.1000.) THEN
RSTARE=-CJ*ER/ (2.*PI* (ER-1.)*.001)

ENDIF

RSTARM=-CJ*UR/DENOM2
ETAE=2.*RES

ETAMS=2.*RSTAR
ETAES=2.*RSTARE
ETAS=ETAES*ETAMS/ (ETAES+ETAMS)
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92
93
94
95
96
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98
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100
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104
105
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ETAl=1./ETAE
PRINT *, 'ETAES,PHAS:',ETAES,BTAN2 (AIMAG(ETAES) ,REAL (ETAES))
TEMPC=ETAS*ETAES
PRINT *, 'ETES*ETAES,PHAS:', TEMPC,BTAN2 (AIMAG (TEMPC), REAL(TEMPC) )
CON1=ETAS*CSQRT (1.+(4./TEMPC))
PRINT *,'OLD TEMPC:',CON1
TEMPC=ETAS*CSQRC(1.+(4./TEMPC))
PRINT *, *NEW TEMPC:', TEMPC
ETAM1=,5* (ETAS+TEMPC)
ETAM2=,5* (ETAS-TEMPC)
TEMPC=KPLUSM((.5,0.) ,ETAM2,0,1.)-/SIN(.25)
PRINT *, 'ETAES,ETAMS,ETAS:, ',ETAES, ETAMS, ETAS
PRINT *,'ETAE,ETAM1,ETAM2:',ETAE,ETAM],ETAM2,~-1./ETAM1
PRINT *, '"INITIAL INCIDENCE AND SCATTERING ANGLES (DEG):'
READ (5,*) PHI,PHS
PHI=PHI*PI/180.
PHS=PHS*PI/180.
PRINT *, 'INCREMENTS IN INCIDENT AND SCATTERING ANGLES, # OF PTS:'
READ (5,*) DPHI,DPHS,NPTS
DPHI=DPHI*PI/180.
DPHS=DPHS*PI1/180.
TH1=PI2-HEE(ETA1l,0,1.)
THR=PI2-HEE(ETAR,0,1.)
TH1S=PI2-HEE (ETAM1,0,1.)
TH2S=PI2-HEE (ETAM2,0,1.)
THO=PI2-HEE (ETAMS,0,1.)
THO=TH1
THN=THO
PRINT *,'THO,TH1S,TH2S:',THO,TH1S,TH2S
PRINT *, 'CSIN(TH2S),1/ETAM2:',CSIN(TH2S),1./ETAM2
DO 1000 I=1,NPTS
CPHI=COS (PHI)
CPHS=COS (PHS)
SPHS=SIN (PHS)
SPHI=SIN (PHI)
CPHI2=COS (PHI/2.)
CPHS2=COS (PHS/2.)
SPHI2=SIN(PHI/2.)
SPHS2=SIN(PHS/2.)
Compute reflection and transmission coefficients
Incident ray refl & transm coef.
AA=(1./ETAMS)+ (CPHI*CPHI/ETAES)
BB=SPHI
CC=SPHI/ETAE
RR=- (AA/ (AA+BB) ) + (CC/ (CC+1.))
TTI=RR-((CC-1.)/(CC+1.))
CC=SPHI*ETAR
RR1=CC/ (CC+1.)
TT1I=1.-RR1
Scattered ray refl. & transm. coeff.
AA=(1./ETAMS) +(CPHS*CPHS/ETAES)
BB=SPHS
CC=SPHS/ETAE
RR=-~ (AA/ (AA+BB) ) +(CC/ (CC+1.))
TTS=RR~-((CC-1.)/(CC+1.))
CC=SPHS*ETAR
RR1=CC/ (CC+1.)
TT1S=1.-RR1l
NORMAL INCIDENCE REFL & TRANSM COEFFICIENTS
RU=(1./(1.+ETAE))-(1./(1.+ETAMS))



121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

RL=ETAR/ (1.+ETAR)

PRINT *, 'CPHI,CPHS,SPHI2,SPHS2:',CPHI,CPHS,SPHI2, SPHS2
IF (CABS (ER) .GT.1000.) THEN

TT1=1-RL

TT=1.-RU

C TT1=(0.,0.)
C TT=(0.,0.)
C ENDIF
C
C

aQQ

PRINT *,'RU,RL,TT,TT1',RU,RL,CABS (TTS),CABS (TTI)
CALC FIRST ORDER DIFFRACTION
CALL HZ1M(HZ1,PHI,PHS)
PHASI=CEXP (-CJ*2.*PI*D*SPHI)
PHASS=CEXP (-CJ*2.*PI*D*SPHS)
CALL HZ1R(HZ2,PHI,PHS)
HZ2=HZ2*CEXP (-CJ*2.*PI*D* (SPHI+SPHS))
C PRINT *,'HZ2 SEC EDGE:',HZ2
C DOUBLE AND QUADRUPLE DIFFRACTION
SGNS=1.
SGNI=1.
CALL DOUB21(HZ21,PHS,PHI,D,M, SGNS, SGNI)
CALL QUAD(HZ421,PHS,PHI,D,1,SGNS, SGNI)
HZ21=HZ21*CEXP (-CJ*2.*PI*D*SPHS)
HZ421=HZ421*PHASS
C CALC DOUBLE DIFFRACTION FROM RESISTIVE TO MATERIAL H-P
SGNS=1.
SGNI=1.
CALL DOUBZ21(HZ12,PHI,PHS,D,M, SGNI, SGNS)
HZ12=HZ12*CEXP (-CJ*2 . *PI*D*SPHI)
CALL QUAD(HZ412,PHI,PHS,D,2,SGNI,SGNS)
HZ412=HZ412*PHASI
SGNI=1.
SGNS=1.
CALL TRIP1(HZ121,PHS,PHI,D,1,SGNS,SGNI)
CALL QUINTI1(HZ51,PHS,PHI,D,1, SGNS, SGNI)
SGNS=1.
SGNI=1.
CALL TRIPZ2(HZ212,PHI,PHS,D,M,SGNI, SGNS)
CALL QUINT1(HZ52,PHI,PHS,D, 2,SGNI, SGNS)
HZ212=HZ212*PHASI*PHASS
HZ52=HZ52*PHASI*PHASS
11 ANG(I)=PHS*180./PI
PHI=PHI+DPHI
PHS=PHS+DPHS
TEMPC=HZ1+HZ2+HZ21+HZ12
IF (M2.EQ.5) TEMPC=TEMPC+HZ51+HZ52+HZ421+HZ412+HZ2121+H2212
IF (IPRINT.EQ.1) THEN
PRINT *, (PHI-dphi), (PHS-DPHS)*180/PI,HZ1,HZ2
PRINT *,HZ2+HZ12,HZ21+HZ121,HZ212+HZ2412
PRINT *,HZ421+HZ51,Hz52

C PRINT *,'HZ421,HZ51:',HZ421,HZ51
PRINT *,HZ21,HZ12,H2121,H72212,H2421,HZ412
ENDIF

TEMPC=2 . *PI*TEMPC*TEMPC
HZ (I)=10*ALOG10 (CABS (TEMPC) )
PHASE=ATANZ (AIMAG (TEMPC) ,REAL (TEMPC) ) *180./PI
PRINT *,'ANG,HZ: ', ANG(I),HZ(I),TEMPC
WRITE (2,100) ANG(I),HZ(I),PHASE
C100 FORMAT (F10.5,'*',F10.5,'*',2F10.5, '*',F10.5)
100 FORMAT (2F8.3,F8.2)
1000 CONTINUE
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IEND=0
IF (IPLOT.EQ.NPLOT) IEND=1
CALL GENPLO (ANG,HZ,NPTS, IPLOT-1, IEND)

2000 CONTINUE
CALL EXIT
END

C * Kk kkkhkkkkkkkkkkik
SUBROUTINE HZ1M(HZ1,PHI,PHS)

COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS,ETAM1, ETAM2, CON1, CON2
COMMON /BLK2/CJ,CJ4,PI,PIC

COMPLEX KPLUS1,KPLUS2,KPLUS3,KPLUS4,KPLUSS5,KPLUS6
COMPLEX KPLUSM,KPLUSP,CON1,CON2

COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAM1, ETAM2
COMPLEX CJ,CJ4,HZE,HZR,HZM1,HZM2,HZ1, TU, TL,RU, RL
COMMON /REFL/RU,RL,TU,TL

KPLUS1=KPLUSM(CMPLX (PHS,0.),ETA1,0,1.)
KPLUS2=KPLUSM (CMPLX (PHI,0.),ETAl1,0,1.)
KPLUS3=KPLUSM(CMPLX (PHS,0.) ,ETAM1,0,1.)
KPLUS4=KPLUSM(CMPLX (PHI,0.),ETAM1,0,1.)
KPLUS5=KPLUSM (CMPLX (PHS,0.) ,ETAM2,0,1.)
KPLUS6=KPLUSM(CMPLX (PHI,0.) ,ETAM2,0,1.)
TEMP1=1./COS ( (PHI+PHS)/2.)
TEMP2=1./COS ( (PHI-PHS)/2.)

TEMP=TEMP1+TEMP 2

SPHI=SIN (PHI)

SPHS=SIN (PHS)

CPHI=COS (PHI)

CPHS=COS (PHS)
HZE=-CJ4*KPLUS1*KPLUS2*TEMP*ETAl/ (4. *PI)
KPLUSP=KPLUS3*KPLUS4*KPLUS5*KPLUS6

HZM2=-CJ4 *ETAS*KPLUSP *TEMP *CPHI*CPHS/ (4. *PI*ETAES*SPHI*SPHS)
HZM1=CJ4*ETAS*KPLUSP*TEMP/ (4 . *PI*SPHI*SPHS*ETAMS)
HZ1=HZE+HZM1+HZM2

RETURN

END

C khkhkkkhkhkkkkkkkkxxkx
SUBROUTINE HZ1R(HZ1,PHI,PHS)

COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS, ETAM1, ETAM2, CON1, CON2
COMMON /BLK2/CJ,CJ4,PI,PI2

COMMON /REFL/RU,RL,TU,TL

COMPLEX KPLUSM,KPLUSP,KPLUS7,KPLUS8,CON1,CON2
COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS, ETAM1,ETAM2
COMPLEX CJ,CJ4,HZR,HZ1,RU,TU,RL,TL
KPLUS7=KPLUSM (CMPLX (PHS,0.) ,ETAR,0,1.)
KPLUS8=KPLUSM (CMPLX (PHI,0.) ,ETAR,0,1.)
TEMP1=1./COS ( (PHI+PHS) /2.)
TEMP2=1./COS ( (PHI-PHS) /2.)

TEMP=TEMP 1+TEMP 2

SPHI=SIN (PHI)

SPHS=SIN (PHS)
HZR=-CJ4*KPLUS7*KPLUS8*TEMP*ETAR/ (4.*PI)
HZ1=HZR

RETURN

END

C AEkKkEkAkAkhkhkhkkhkhkrkhkrxhkhkkhkkkkdkdxhkx
SUBROUTINE DOUB21 (HZ21,PHS,PHI,W,M,S1,S2)

C DOUBLE DIFFRACTION FROM MATERIAL TO RESISTIVE HALF PLANE
COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS,ETAM1, ETAM2, COM1, COM2
COMMON /BLK2/CJ,CJ4,PI,PI2 '
COMMON /REFL/RU,RL,TU, TL,PHASS,PHASI



243 COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAMl,ETAM2,COM1,COM2

244 COMPLEX CJ,CJ4,HZE,HZR,HZMl,HZM2,HZZl,RU,RL,RM,RMl,RMZ,RMM
245 COMPLEX DEL,FFUN,FI,tt,TU,TL,PHASS,PHASI
246 c DEL=CJ4*CJ4/ (16*PI*PI)

247 DEL=(1.,0.)

248 RM=.25*CEXP(—CJ*4.*PI*W)

249 RMM=(1.,0.)

250 C GO TO 200

251 C M=10

252 DO 100 N=4,M,2

253 N1=N-2

254 RM1=CEXP(—CJ*Nl*Z.*PI*W)/(2.**N1)

255 N2=(N-2+.0001) /2.

256 RM2=(1.,0.)

257 DO 10 I=1,N2

258 10 RM2=RM2 *RU*RL
259 100 RMM=RM1 *RM2+RMM
260 200 CONTINUE

261 C PRINT *, "RMM IN HZ12:', RMM, RM*RU*RL, N1, N2

262 C RMM=(1.,0.)

263 DEL=DEL*CEXP (~CJ*2. *PI*W) /SQRT (W)

264 ALl1=1.5*PI-PHI

265 AL2=1,5*PI+PHI

266 AL3=-PI2-PHS

267 AL4=-PI2+PHS

268 C TEMP=(1./COS(.5*AL1) ) +(1./COS (.5*AL2))

269 c TEMPC=(1./COS (.5*AL3) ) +(1./COS (.5*AL4) )

270 HZ21=S1*FI(ALl,AL3,W)+FI (AL1,AL4, W)

271 HZZl=HZ21+Sl*SZ*FI(ALZ,AL3,W)+82*FI(AL2,AL4,W)

272 HZ21=HZ21*DEL*FFUN (PHS, PHI, 0)

273 HZ21=HZ21*RMM

274 RETURN

275 END

276 C 7\'************************

277 SUBROUTINE TRIP1(HZ121,PHS,PHI,W,M, S1,S2)

278 C TRIPLE DIFFRACTION FROM MATERIAL TO RESISTIVE HALF PLANE
279 COMMON /BLKl/ETAl,ETAR,ETAS,ETAES,ETAMS,ETAMI,ETAMZ,COMl,COM2
280 COMMON /BLK2/CJ,CJ4,PI,PI2

281 COMMON /REFL/RU,RL, TU, TL

282 COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAMl,ETAM2,COMl,COM2
283 COMPLEX CJ,CJ4,HZE,HZR,HZM1,HZM2,H2121,RU,RL,RMM,RMl,RM2,RM
284 COMPLEX DEL,FFUN,FI,FIP,TI,T2,TT,FFCT,TT1,DEL1,TU,TL
285 DATA RT2/1.414213562/

286 DEL=CEXP (-2, *PI*CJ*W) /SORT (W)

287 DEL1=(4.*16*PI*PI*PI)/ (CJ4*CJI4*CJ4)

288 IF(M.EQ.1) THEN

289 H2121=—FFUN(PHS,PHS,1)*FFUN(PHI,PHI,1)*FFUN(PIZ,PI2,2)
290 ELSE

291 HZl21=—FFUN(PHS,PHS,2)*FFUN(PHI,PHI,Z)*FFUN(PI2,PI2,1)
292 ENDIF

293 HZ121=DEL*DEL*HZ121

294 ALl=1.5*PI-PHI

295 AL2=1,5*PI+PHI

296 AL3=-1.5*PI+PHS

297 AL4=-1,5*PI-PHS

298 TT=FI(AL1,AL3,W)+S1*FI(AL1,AL4,W)

299 TT=TT+Sl*FI(AL2,AL3,W)+Sl*SZ*FI(AL2,AL4,W)

300 TT1=-2.*PI*SQRT (W) *CI*CJI4*TT

301 TT=(FI(0.,ALl,W)+S2*FI(0.,AL2,W))

302 TT=TT*(FI(0.,AL3,W)+Sl*FI(O.,AL4,W))
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TT=(0.,0.)

IF(M.NE.1)PRINT *, 'ALS,TT1,TT:',ALl,AL2,AL3,AL4, TT1, TT
HZ121=HZ121* (TT1+TT)

RETURN

END

C *kkhkkhkkkkkhkhkhkkhkkhkkhkhkkhkkkhkkkkkk

SUBROUTINE TRIP2(HZ212,PHS,PHI,W,M,S1,S2)

C TRIPLE DIFFRACTION FROM MATERIAL TO RESISTIVE HALF PLANE

10
100

COMMON /BLK1/ETAl,ETAR,ETAS,ETAES, ETAMS, ETAM1, ETAM2, COM1, COM2
COMMON /BLK2/CJ,CJ4,PI,PI2

COMMON /REFL/RU,RL

COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAM1, ETAM2, COM1, COM2
COMPLEX CJ,CJ4,HZE, HZR,HZM1,6HZM2,HZ212,RU, RL, RMM, RM1, RM2, RM
COMPLEX DEL,FFUN,FI,FIP,T1,T2,TT,FFCT,TT1,DELL

DATA RT2/1.414213562/

DEL=CEXP (-2.*PI*CJ*W) /SQRT (W)
HZ212=FFUN (PHS,PHS, 2) *FFUN (PHI, PHI, 2)

HZ212=DEL*HZ212

TT1=HZ212*DEL*FFUN(1.5*PI,1.5*PI, 1)
RM=,5*RU*CEXP (-2 . *PI*CJ*W)

RMM=(0.,0.)

RM1=(0.,0.)

M=11
DO 100 N=3,M,2

N1=N-3

RM1=CEXP (-CJ*N1*2,*PI*W) / (2.**N1)

N2=(N-3+.0001) /2.

RM2=(1.,0.)

DO 10 I=1,N2

RM2=RM2*RU*RL

RMM=RM1 *RM2 *RM+RMM

PRINT *, 'RMM:"',RMM, . 5*RL*CEXP (-2 .*PI*CJ*W)
ALl=-,5*PI+PHI
AL2=-,5*PI-PHI
AL3=-,5*PI+PHS
AL4=-,5*PI-PHS

TT=FI(AL1l,AL3,W)+S1*FI(ALl,AL4,W)

TT=TT+S2*FI (AL2,AL3,W)+S1*S2*FI (AL2,AL4, W)

PRINT *,'FIS IN 121:',TT,HZ212, (CJ4/(4.*PI))*(CJ4/ (4.*PI))
HZ212=HZ212*TT*RMM

TT=FI(0.,ALl,W)+S2*FI(0.,AL2,W)

TT=TT* (FIP(0.,AL3,W)*SEC(AL3/2.)+S1*FIP(0.,AL4,W)*SEC(AL4/2.))
PRINT *,'AL,TT:',ALl1,AL2,AL3,AL4,TT

TT=TT1*TT

HZ2212=HZ212-TT

RETURN

END

C ** khkkkkhkhkhkhkhkkkkkkhhkhkhkkkkkx

SUBROUTINE QUAD(HZ4,PHS,PHI,W,M,S1,S2)

C QUADRUPLE DIFFRACTION FROM RESISTIVE/MATERIAL HALF PLANE

COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS, ETAM1, ETAM2, COM1, COM2
COMMON /BLK2/CJ,CJ4,PI,PI2

COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAM1, ETAM2, COM1, COM2
COMPLEX CJ,CJ4,HZE,HZR,HZ4,KPLUS7,KPLUS8, KPLUSM

COMPLEX DEL,FFUN,FI,FIl,FIP,T1,T2,TT,FFCT,TT1,DEL1,IA

DATA RT2/1.414213562/

DEL=CEXP (-6 .*PI*CJ*W) / (W*SQRT (W) )
KPLUS7=KPLUSM (CMPLX (PI12,0.) ,ETAR,0,1.)
HZR=CJ4*ETAR*KPLUS7*KPLUS7/ (4.*PI)

HZ4=FFUN (PHS,1.5*PI,0) *FFUN (PHS, PHI, 1)
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HZ4=HZ4*HZR
HZ4=DEL*HZ4
DEL1=HZ4
AL4=-PI2-PHS
AL3=PHS-PI2
ALll=1.5*PI-PHI
AL12=1,5*PI+PHI
IF (M.EQ.1) THEN
IF (PHS.GT.PI2)AL=-PI+.01
IF (PHS.LT.PI2)AL=-PI~-.01
ELSE
IF(PHI.GT.PI2)AL=-PI-.01
IF(PHI.LT.PI2)AL=-PI+.01
ENDIF
IA=FI(AL3,0.,W)+S1*FI(AL4,0.,W)
T2=-2,*PI*SQRT (W) *CJ*CJ4

T1=T2*IA
TT (AL11,0.,W)+S2*FI(AL12,0.,W)
Tl *T1*TT

TT=FI(AL3,AL11,W)+S2*FI (AL3,AL12,W)
TT=TT+S1*FI(AL4,ALll,W)+S1*S2*FI (AL4,AL12,W)
T2=T2*T2*TT

HZ4=DEL1* (T1+T2)
TT=FI(AL3,0.,W)+S1*FI(AL4,0.,W)
T1=FI1(0.,0.,W)*(FI(0.,AL1l,W)+S2*FI(0.,AL12,W))

c PRINT *,'QUAD:',TT, Tl
T1=T1+FI(AL,0.,W)*(FI1(AL1l,W)+S2*FI1(AL12,W))
C PRINT *,'QUAD:',AL,ALl11,AL12,AL3,AL4,T1
HZ4=HZ4+DEL1* (TT*T1)
RETURN
END

C **kkkkhkhkkkhkkhkhkkhkkhkkhkkkhkkkkk

SUBROUTINE QUINT1 (HZ51,PHS,PHI,W,M,S1,S2)

C QUINTAPLE DIFFRACTION FROM RESISTIVE/MATERIAL HALF PLANE
COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS, ETAM1, ETAM2, COM1, COM2
COMMON /BLK2/CJ,CJ4,PI,PI2
COMPLEX ETAl,ETAS,ETAR,ETAES,ETAMS,ETAMI1, ETAM2, COM1, COM2
COMPLEX CJ,CJ4,HZE,HZR,HZ51,KPLUS7,KPLUS8, KPLUSM
COMPLEX DEL,FFUN,FI,FI1,FIP,T1,T2,TT,FFCT,TT1,DEL], IA,IB,IC,ID
DATA RT2/1.414213562/

DEL=CEXP (-2 .*PI*CJ*W)/ (SQRT (W) )

C KPLUS7=KPLUSM (CMPLX (PI12,0.),ETAR,0,1.)

C HZR=CJ4*ETAR*KPLUS7*KPLUS7/ (4.*PI)

Q1=1.

Q2=1.

Pl=1.

P2=1.

IF (M.EQ.1) THEN
HZ51=FFUN(PI2,1.5*PI,0) *FFUN (PI2,PHS, 1) *FFUN(PI2,PI2,2)
HZ51=-HZ51*FFUN(PI2,PHI, 1)

Q1=S1
Q2=82

ELSE
HZ51=FFUN(1.5*PI, .5*PI,0) *FFUN(PI2,PHS, 2) *FFUN(PI2,PI2,1)
HZ51=-HZ51*FFUN(PI2,PHI, 2)

P1=S1
P2=S2

ENDIF

DEL1=CJ4/ (4.*PI)

HZ51=DEL*DEL*DEL*DEL*HZ51
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ALl=1.5*PI-PHT
AL2=1.5*PI+PHI
AL3=1.5*PI-PHS
AL4=1.5*PI+PHS
IF(M.EQ.1l) THEN
IF(PHS.GT.PI2)AL=-PI+.01
IF(PHS.LT.PI2)AL=-PI-.01
ELSE
IF(PHI.GT.PI2)AL=-PI-.01
IF(PHI.LT.PI2)AL=-PI+.01
ENDIF
IA=P1*FI(0.,AL3,W)+Q1*FI(0.,AL4,W)
T2=-2.*PI*SQRT (W) *CJ*CJ4
IB=FI(AL,0.,W)*(P2*FI1 (ALl,W)+Q2*FI1 (AL2,W))
IB=IB+FI(0.,0.,W)*(P2*FI(0.,ALl,W)+Q2*FI(0.,AL2,W))
T1=T2*IA*IB
o PRINT *,'T1:1',T1,IA,IB,FI(0.,0.,W)
IA=T2* (P2*P1*FI (ALl,AL3,W)+P2*Q1*FI(ALl,AL4,W)+
&Q2*P1*FI (AL2,AL3,W)+Q2*Q1*FI (AL2,AL4,W))
IB=(P2*FI(0.,ALl,W)+Q2*FI(0.,AL2,W))
IB=IB*(P1*FI(0.,AL3,W)+Q1*FI(0.,AL4,W))
T1=T1+T2*T2* (IA+IB)

C PRINT *,'T1:3:',T1,IA,IB
C HZ51=HZ51*T1
cC PRINT *,'HZ51:',6HZ51

IA=FI(AL,0.,W)*(P1*FI1(AL3,W)+Q1*FI1 (AL4,W))
IB=FI(0.,0.,W)*(P1*FI(AL3,0,W)+Q1*FI (AL4,0.,W))
IC=FI(AL,0.,W)*(Q1l*FI1(ALl,W)+Q2*FI1(AL2,W))
ID=FI(0.,0.,W)*(Q1*FI(AL1,0.,W)+Q2*FI(AL2,0.,W))
T1=T1+ (IA+IB) * (IC+ID)

o PRINT *,'T1:4:',T1,IA,IB,IC,ID
HZ51=HZ51*T1
RETURN
END

C %k K Kk Kk Kk Kk kK kK kK ke k ok kk ok ok k ok okk
REAL FUNCTION SEC (X)
SEC=1./COS(X)
RETURN
END

C AAkAkKAARIA AKX A A AR ARk Ak kkh*k
COMPLEX FUNCTION FFUN (PHS,PHI, IC)
COMPLEX ETA1l,ETAS,ETAR,ETAES,ETAMS,ETAM1,ETAM2,COM1, COM2
COMPLEX KPLUSM,KPLUS1,KPLUS2,KPLUS7,KPLUS8, KPLUSP
COMPLEX KPLUS3,KPLUS4,KPLUSS,KPLUS6
COMPLEX CJ,CJ4,HZE,HZR,HZM1, HZM2, HZM
COMMON /BLK1/ETAl,ETAR,ETAS,ETAES,ETAMS,ETAM]1,ETAM2, COM1, COM2
COMMON /BLK2/CJ,CJ4,PI,PI2
DATA RT2/1.414213562/
IF(IC.EQ.2)GO TO 110
KPLUS1=KPLUSM (CMPLX (PI2,0.) ,ETA1,0,1.)
KPLUS2=KPLUSM (CMPLX (PHI,0.) ,ETA1,0,1.)
KPLUS3=KPLUSM(CMPLX (PI2,0.),ETAM1,0,1.
KPLUS4=KPLUSM (CMPLX (PHI,0.),ETAM1,0,1.
KPLUS5=KPLUSM (CMPLX (PI2,0.) ,ETAM2,0,1.
KPLUS6=KPLUSM(CMPLX (PHI,0.),ETAM2,0,1.
SPHS=SIN (PI2)
SPHI=SIN (PHI)
HZE=CJ4*ETA1*KPLUS1*KPLUS2/ (4.*PI)
KPLUSP=KPLUS3*KPLUS4*KPLUS5*KPLUS6
HZM2=CJ4*ETAS*KPLUSP*COS (PHI) *COS (PI2)/ (4.*PI*ETAES*SPHI*SPHS)

)
)
)
)



483 HZM1=-CJ4*ETAS*KPLUSP/ (4. *PI*SPHI*SPHS*ETAMS)
484 HZM=HZM1+HZM?2

485 C PRINT *,'IC:',IC

486 HZR=(1.,0.)

487 IF(IC.EQ.Q0) THEN

488 KPLUS7=KPLUSM (CMPLX (PHS,0.) ,ETAR,0,1.)
489 KPLUS8=KPLUSM (CMPLX(PI2,0.),ETAR,0,1.)
490 HZR=CJ4*ETAR*KPLUS7*KPLUS8/ (4.*PI)
491 ENDIF

492 FFUN= (HZE-HZM) *HZR

493 GO TO 100

494 110  KPLUS7=KPLUSM(CMPLX (PHS,0.),ETAR,0,1.)
495 KPLUS8=KPLUSM (CMPLX (PI2,0.),ETAR,0,1.)
496 FFUN=CJ4*ETAR*KPLUS7*KPLUS8/ (4.*PI)
497 100 RETURN

498 END

499 C khkkhkhkhkhkkhkkhkkkhkkhkhkkkhkhkhkkdhkhkkhkhkkkxkx

500 COMPLEX FUNCTION FI (AL1l,AL2,W)

501 COMPLEX FIP

502 TEMP=1./ (COS(.5*AL1) *COS (.5*AL2))
503 FI=TEMP*FIP (AL1,AL2,W)

504 C fi=temp

505 RETURN

506 END

507 C KA KKK AKkAkkAkhkhkhkkhkhkhkhkkhkhkkhhkhkhkkxkk

508 COMPLEX FUNCTION FI1 (AL1l,W)

509 COMPLEX FFCT

510 DATA RT2,PI/1.414213562,3.141592654/
511 TEMP=1./COS (.5*AL1)

512 Al=RT2/TEMP

513 Al=A1*Al

514 FI1=TEMP*FFCT (2.*PI*W*Al)

515 RETURN

516 END

517 C AAKEAAKKKAEAAKAAKR AR KAAR AKXk hAkhkkkhkxk

518 COMPLEX FUNCTION FIP (AL1,AL2,W)

519 COMPLEX FFCT, fipl

520 DATA RT2,PI/1.414213562,3.141592654/
521 Al1=RT2*COS(0.5*AL1)

522 A22=RT2*COS (0.5*AL2)

523 Al=A11*A11

524 A2=A22*A22

525 IF (A1.EQ.A2) THEN

526 TEMP=2.*PT*W*Al

527 FIP1=FFCT(2.*PI*W*Al)

528 FIP=-(0.,1.) *TEMP* (FIP1-1.)

529 FIP=FIP+.5*FIP1

530 C PRINT *,'FIP:', FIP

531 RETURN

532 ENDIF

541 END

542



