The problem considered is that of a plane wave incident on a perfectly
conducting half-plane with a thin dielectric coating on its upper face. The solution is
accomplished by introducing a higher order boundary condition to simulate the effect
of the dielectric, thereby allowing the structure to be treated as an infinitesimally thin
half-plane. Two types of boundary conditions are developed, one applicable to a low
contrast dielectric and the other to a high contrast one. The problem is then solved
using a generalized version of the Maliuzhinets method in which certain additional
constants are introduced to assure the correct behavior of the field at the edge.
Although these constants play no role in the final solution, they are needed to cancel
out inadmissible singularities in the solution of the homogeneous difference equation.
The final solution is expressed in a uniform manner and some numerical results are

presented.
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1. Introduction

A structure of considerable interest in scattering theory is a thin metal-backed
dielectric layer, and it is important to develop effective techniques for computing the
scattering from plates and other targets formed in this manner. One approach is to
simulate the layer using an infinitesimally thin sheet placed at the location of the metal
backing, and it is shown that this is possible for a thin homogeneous layer. For
materials with low and high dielectric constants, the boundary conditions which must
be imposed at the upper surface of the sheet are determined. In both cases these are
generalized impedance boundary conditions involving second order field derivatives.

For a semi-infinite metal-backed layer the model is a half-plane subject to the
appropriate boundary conditions. Based on these, the solution for an H-polarized
plane wave incident in a plane perpendicular to the edge is derived. Since the
boundary conditions differ on the two sides, the Wiener-Hopf method produces
coupled integral equations which cannot be solved using presently available
techniques, and though Maliuzhinets' method is effective, the generalized nature of
the conditions requires a modification to the method that is customarily employed. The
solution is presented in Sections 3 and 4, and numerical data are included to show the
effect of the various terms in the boundary conditions. The analysis is much simpler for

E-polarization, and the results for this case are given in an Appendix.



2. Boundary Conditions

The geometry considered is shown in Figure 1, and under the assumption of an

electrically thin layer of thickness t (kt << 1), we seek a boundary condition which can
be applied at the surface y = 0 to simulate the effect of the metal-backed layer.

From a Taylor series expansion of the field in the dielectric

=Ef1-) -1 % E,(v) +ike p, ZH, ()

where we have shown only the dependence on y. In these expressions k and Z are

the propagation constant and intrinsic impedance respectively of free space, and g,

and p, are the relative permittivity and permeability of the dielectric coating. A time

factor e-iot has been assumed and suppressed. From the continuity of the tangential

field components at the air-dielectric interface we then obtain

E (0+) = E (t+) - & L E (t4) + ikt ZH,(1+)
e ox 7

r

and when the boundary condition at the perfectly conducting surface y = 0+ is

imposed, the result is

E (t+) = -ike g ZH (14) + & 2 (14) (1)
z g ox Y

r



which is an equivalent boundary condition at the upper surface of the layer. We can

transfer this to the surface y = 0+ by noting that in free space
E, (1+) =E (0+) +1 g; Ey(0+) -ikt ZH,(0+) 2)
Thus, to the leading order in t, the equivalent boundary condition applied at the

surface y = 0+ of a sheet in free space is
dE

- 9 -
B =PZH, + 50 — (y=0+) (3)
where
. . 1
p=-ikt(u-1) , q=|k1(-8--1) 4)
r
Similarly,
q aEy
Ez = -pZHx + I_k- -a—z— (y=04+) (5)
with
E,=E,=0 (6)

on the lower (y = 0-) surface of the sheet.

The boundary conditions (3) and (5) are identical to the ones derived by
Weinstein [1] and are valid for a low contrast dielectric. Apart from the modification
provided by the derivative terms, they are the conditions for an impedance surface with
normalized surface impedance p, and the derivative terms vanishif =0

corresponding to a pure magnetic material. We also remark that (3) and (5) can be



derived from the transition conditions [2] for an unbacked dielectric layer of thickness

2t by reflection about the middle.

For a layer of high contrast material such that [N| >> 1, where N= (fep is the

complex refractive index, alternative boundary conditions are required, and

well-established ones are [3]

E,=nZH,, E,= nZH, (7)
with
Nn=-i N tan Nkz (8)
£

r

applied at the upper surface y = t+ of the layer. As kt increases with Im. N > 0,
tan Nkt — i and the surface impedance reduces to that for a lossy half-space

occupying y <. To transfer the conditions to the surface y = 0+, we again expand the
field components in Taylor series as shown in (2). When the expansions are inserted

into (7) and the terms collected, we obtain

+ oE oH
. q%y r y
E =p'ZH,+ —*%Z3; ©)
(y=0+)
v dE +  oH
= ' 9y Ly
B e =L L7 — (10)

with



_ ik , ike o _ikm

- , = (11)
1 +iken 1 +ikm

C 14k
The conditions (9) and (10) are similar in form to (3) and (5), but we observe that the
transfer to y = 0+ has introduced terms involving Hy as well as E,.
In the particular case of a plane wave incident in the xy plane the boundary

conditions simplify. For H-polarization such that H,, E, and E, are the only non-zero

field components, the conditions can be written as

ox

2
(71%*‘"(72%"‘2) H,=0 (12)

with y; = /p', ¥, = 1/p' in the high contrast case (9), and v, = a/p, Y, = 1/p in the low
contrast case (3). For E-polarization where E,, Hy and Hy are the only non-zero

components, the boundary conditions are also of the form (12) with H; replaced by E,

andy, =-r', Y, =p'for (10) andy, =0, ¥, = 1/p for (5). ltis, therefore, sufficient to
consider the boundary condition (12), and we note that this is analogous to the one
originally proposed by Karp and Karal [4] as a means of simulating complex planar

structures.

3. Solution For H-Polarization
An H-polarized plane wave is incident on a half-plane simulating a semi-infinite

metal-backed layer and occupying the portion x < 0 of the plane y = 0. In terms of the



cylindrical polar coordinates p, ¢, z with x = p cos ¢, y = p sin ¢, the incident field is
assumed to be

i -ikpCOS (¢'¢o)
H =e . (13)

Y4

According to the development in the previous section, on the upper side (¢ = &) of the
half-plane the total (incident plus scattered) field H, satisfies the generalized

impedance condition
iky 2
(71#32—2-—-3-9—- )Hz=o, (14)
p- P N

whereas on the perfectly conducting side (¢ = -nt) the boundary condition is

oH,
—2=0 . (15)
ap

Following Maliuzhinets [5] we write

-ikpcosa

(o) = o[ 8% s+ a)da (16)
Y

where o is the double loop Sommerfeld path. To satisfy the edge condition it is
required that H, = O{(kp)¢} for small kp with € > 0, and this implies that for large |Im.a,

s(a) = O {exp(-g|/Im.a|)}. When the boundary conditions are imposed and the



differentiations performed, the derivative with respect to ¢ can be eliminated using

integration by parts, giving

I 6™*°** (sing. + sind, ) (sino: + inG,) s(0x + ) dot = 0
Y
I "*°** sinq s(a - ) dax = 0

Y

where

. 1 2 )
sin 91'2=- ?{yzi‘/yz+4y1(1 +y1)} (17)
1

with Im. (cos 84 ,) > 0. The necessary and sufficient conditions for these to be satisfied
are [6]

(sina + sinB4) (sina + sinb,) s(a + &) = (sina. - siny) (sina - sind,) s(-a + =)

+ sin a(Ag, + Aq cosa)

s(a-m=-s(-a-m) +B +B, cosa (18)
where A,, Ay, B, and B4 are arbitrary constants whose presence is required to

achieve the desired order in |Im.al.

To solve (18) let

s(a) =g(o) t () (19)



with

¥(o., 8, g- ioo) W(at, 8, 0)
g(a) = (20)

P(0: By, 5+ i) ¥(0y, 0, 0)

where ¥(a, B4, Bo) is a product of Maliuzhinets [5] half-plane functions y,_ which are

free of poles and zeros in the strip |Re.a| < 7. Since y, (£ i) = = (the resulting factor

is cancelled by the corresponding one in the denominator of (20)), and

we have
LI (+Z+0 L (a+L e)cosl(a- )
u{t(a+2 1)\;gtoc+2+ 1)\|!n(on-a-2 2)\4%a+2+ 5 2 T
9(c) = 3n 3n 1
Y0, + 5 0,) (0, + 5 +0,) w0+ 8) Y (0, + 3 +6,) cOS7- (0, )
(21)
Also
g(a - 2n) =[ g(a + 2n) (22)
with



(sina - sind, ) (sina. - sind,)

(sina + sind. ) (sina + sind,)
| being the plane wave reflection coefficient for the coated surface.

In the two equations (18) replace a by a + © and o - & to obtain

(sina - sin@,) (sina - sinB,) s(a + 2m) + (sina +sind, ) (sina + sinb, ) s(a - 2r)

=-sina (A, - A, cosa) + (sina +sind,) (sina +sind,) (B, - B, cosa) .

From (19) and (22)

1 sina
Haw2n) -Ho-2m) = Gom) | (Sinessing) (sina:+sing,)

(A,-A, cosa) - (B -B, cosa)}

(23)

and if the right hand side of (23) is denoted by h(a), a particular solution of the

difference equation is

(o) =- ) how+2n+ 4mm) .
me=0

Hence, from (22),

to(a)=-h(a+21t)2|—m=-h(—m:—2—n)- ,
o 1-[

and when the expression for[ is inserted, we find

10



1

—— {(sina+sin91) (sina+sing,) (B -B, cosa) - sina (AO-A1cosoc)}
2g(a)p(c)

t(a)
(24)

where
p(a) = sin” a + sing, sine, . (25)
We note that t,(ct) has poles at the zeros of p(a), and if o, is such that sin O =
i (sinBy sin(l)2)1’2 , the four poles which lieinthe strip|Re a| <mnarea =% Ot *(m - ap).

The general expression fort (a) is

t(a) = ofa) + t, (@) (26)
where o(a) satisfies
olatn)=oc(-atn) .

It is therefore a function of sin o/2. To reproduce the incident field (13), (a) must have

a pole at a. = ¢, with residue unity and, in addition, poles which cancel those of t,(a).

With this in mind we choose

11



1o f, (sin2 % ) +sin gbfz (sin2 321) o
oto) = % p(c) s @)

O . 0
Sin =- 8N —
2 2

where f; and f, are polynomial functions still to be determined, and from (19), (26),

(24) and (27) we then have

in2 %) 4 sin &1 (sin® &
12 , f, (sin 2)+sm2f2(sm 2) 5,
M=) g, pla) )
sm2-sm?

’
2p(a)

{(sina +sind,) (sina + sin6,) (B, - B, cosa) - sina. (A - A, cosa)} _

(28)

Given the functions f; and f,, the constants A,, A4, B, and B4y must be chosen to

eliminate the poles of s(cx) at & = + &ty and £ (n - o). Beyond this, the constants play

no role in the analysis.

4. Determination of the Field
When the contour a is closed with the aid of two steepest descent paths through
o = *nx, the poles of the first term in the expression for s(a + ¢) that lie within the strip

|Re. a| < w are captured, and their residues give rise to the incident and reflected

waves. In addition, a surface wave pole may be captured, and the evaluation of these

12



residue contributions is given in Appendix A. The non-residue portion is the diffracted

field and this can be written as

HY (0, 6) = 21 ¢ {(oe) - s(a-m) Y o 29)
|
S(¢)

where S(9) is a steepest descent path through a = ¢.

Since p(a) is a function of sin2a,

L8 2
sin2+cos& f (cos &)+ cos & (cos” & 0
s(ain):g(ocin) 2 2 + 1( 2) 2 2( 2) COS?O
oS + COSG, plo)
+—{(sino-sine, ) (sina-sing) (B_+B, cosa) + sina. (A +A, oosa)} 30)

2p(o)

and the last group of terms in (30) does not contribute to s(a+r) - s(a-w). From (21)

g(a+m) =G(a, ¢) (@-x) (b-x) (—+ X)

2
g(a - ) =Gla, ¢) (@-y) (- y)(7—-+y)
where

8
Gla, ¢)={ (-g)} {8‘P(a,6 L o) ¥ (0, 0y, 5 iee) ¥ (0t, 8, 5 i)

13



-1

¥ (¢, 6, -g- ec) €OS 1— (o - @) cos %(4’0 - n)}

and

a=cos—(e1-12‘-) , b=cos%(92-%)
(32)
x=cosl(a-£) y=sinl(a-ﬂ)
2 2"’ 2 2

We note that G(x., ¢,) is symmetric in o and ¢, and O{exp (-3/4{Im.q| )} for large |Im.c|.

From (30) and (31) we now obtain

o, ; sin %— +COS -g—
(o) - s{o-m) = G(aup,) cos = | @x) (b-x) (—=+x) { +
2 COSO+COSO

2 2 . ¢o
& Q& o - . cos&
f,(cos 2) + COS 5 f,(cos =) 1 {sm 5" 0085

- (a-y) (b-
p(cr) } el (ﬁ el C0S0:4C0S0,

+

2 2
p(o)

f, (cos2 521) - oS ﬁfz(cosz & }]
and after much tedious simplification, the coefficient of G(x, ¢,) / (cosa + cos¢,) is
found to be

1 a+b () 1 a+b

J2 (-2-+ ab - ,/_5-) cos %cos ?°+%('§' ‘fé-") sina. sing,

14



+L1+ab'a_+tl Q sing_+¢ % n +—1—oosaoosﬁcos¢— %
,/-2- ,/5 coszs|¢°+05251a ﬁ 5 2sm2 sm2 |

All of the terms in the above coefficient are of an allowed order in |Im.a| except the last

one, but since

¢ 9
in&-gin=|=- in — in & +sin &
cosa. (snn 5 - sin 2) (cosa sin - + €0S ¢, sin 2) +sing (cosoc+cos¢o) :

we can write

%

S0+ - 80 1) = e {z(—+ ab-a+b)cosﬂcos
0O+ -S0L-T)= -
J2 cosa+coso, 2 277272

1 a+b a+b %
A5 T JE sina sing_ + T+ab- E cos %sin¢°+cos 35"1“

0 Glod) o,
-cos %cos f(oosa sin ?23+ cos¢, sin -%)} + o coS — Q( ) (33)

where

q(o) = (a-x) (b-x) (L +X) {f1 (cos2 %) + COS -%f (cos ) }

2

- (a-y) (b-y) (71-_5 +y) { f, (cos2 %) - €OS -g-fz (cos2 -g-) } +sin %cos —%p(a) .

The function g(o) must be zero to satisfy the order conditions, and this requires

04 (04 Q& (— i (—=
f(cos 2)+coszf2(cos 2) { b+x)J_ +X) +(a+y) (b+y) ( /—

15



implying

f (sin” %) + sin L1, (sin” L) = 4 { (@+x) ©+0) (= -X) + (@4y) (o+y) (5= -y) } -

2 2 2

Thus,

a+b
(sin —)_4,/_( b—J-é_—)

s Y =42 (F+ab-22-5in" %)

J2

and the right hand sides are functions of sin2 -g- as required. The resulting expression

1
for s(ou+m) - s(o-m) is symmetric in o and ¢, and O{exp('z |Im.a| )} for large |Im.al.

1

Hence, for small kp, H: = O{(kp)4 } in accordance with the desired edge behavior, and

the above choice of f; and f5 is the only one that achieves this.

From (29) and (33) the diffracted field can be written as

4 2 2

(p ) = [ ghecostod) (Ot,¢o)(sac o+, a-%) o 35)
S(¢)

where

H(o.0,) -TG(OL%) { sin ﬁsm %—(sm-‘zh sin %—)+ ab(1 +sin §+sm %—)

16



1 a+b 0, 0,
+ 5'7;‘ 1+2sin-g—sin?+sin %+ sinz) | (36)
and for kp >> 1 a uniform asymptotic representation of the total field, including optical

and surface wave contributions, is given in Appendix A. We note thatife, = pu, = 1 and

T=00rifg,=1+io,u. =1andt=0,

¢
H(0..0,) = cot £ cot ?°

and (35) then reduces to the known expression for the diffracted field of a perfectly

conducting half-plane.

5. Numerical Results

Using the uniform expression (A.2) for the diffracted field, scattering patterns were
computed for a number of dielectric coatings. The patterns correspond to the low and
high contrast boundary conditions, and are compared to those obtained with the
standard impedance boundary condition (7).

Figures 2(a) - (c) show the total H, field patterns for a plane wave incident on a

perfectly conducting half-plane whose upper surface is coated with a dielectric layer of

thickness t = A/20 (kt = 0.314). The field is incident at the angle ¢, = 150 degrees and
the curves correspond to coatings havinge, =2, u.=1; €=5+i0.5, u,=1.5+i0.1;

ande, =7.4+i1.1, u =1.4 +i0.67, the last being a commercially available radar

17



absorber. In all cases the pole at & + 6,, whose location is a primary function of the

thickness, is far from the path S(¢), but the pole at = + 6,4 has a strong effect on the
diffracted and total fields. The latter pole is associated with the propagation factor of

the TE, mode in the layer, and for a boundary condition to produce the correct

reflected field it is necessary that -ikcos6, equal the attenuation factor of the TE,

surface wave mode.

The three curves in each figure were computed using the low contrast, high
contrast and standard impedance boundary conditions, and since the curves differ, it is
necessary to determine which provides the most accurate picture of the field for a

coated half-plane. We do this by examining the reflected field recovered by each

solution. As expected, in the case ¢, =2, y =1, the solution based on the low contrast

boundary conditions accurately reproduces the reflection coefficient of the

metal-backed layer and is therefore best. At the other extreme, wheneg, =7.4 +i1.1,

1, = 1.4 +1i0.67, the solution obtained using the high contrast boundary conditions is

accurate to within 6 percent in amplitude and 6 degrees in phase, whereas the low
contrast solution is in error by 35 percent in amplitude. The high contrast solution is
therefore better, and because of the large refraction index, the solution based on the

standard impedance boundary conditions is almost as good. The intermediate case is

the coating having €, =5 +i0.5, u, = 1.5 +i0.1 in Figure 2(b). Compared with the exact
reflected wave, the low contrast solution is high in amplitude by 4.5 percent and low in

18



phase by 8 degrees, and the high contrast solution is low in amplitude by 2 percent
and high in phase by 7 degrees. The two solutions are comparable in accuracy, and
the differences between the curves can be attributed to the opposite signs of the

errors.

The backscatter echowidth patterns for the three half-planes computed using the
three boundary conditions are shown in Figures 3(a) - (c), and the above comments
are also applicable here.

With boundary conditions such as those presented, a matter of concern is the
accuracy as a function of the thickness and material properties of the layer, and the
above comparisons merely illustrate the type of accuracy achievable with the
boundary conditions described. Nevertheless, the comparisons suggest that some

combination of the low and high contrast conditions could prove accurate for all values

of &, and ., and this will be addressed in a future paper.
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Appendix A Uniform Evaluation of the Diffraction Integral

To perform a uniform evaluation of the diffraction integral (35) it is necessary to

t
=in+¢,anda =0, =

take into account the geometrical optics poles at o = of >

1

t
tn-¢,, as well as the surface wave pole ata=a, = n+6,, ora=a

5 = n+92. This

last is associated with the function \yn(a + 32_1r 8, ,) appearing in (21), and its presence

is apparent when the identity

w(a+%’—r--e )= sm—(oc n-0 )cosec—(a 2n -6, )w( ’Z‘-en) (A1)

is employed in (31).

A straightforward method that assures a uniform evaluation of the integral is the
additive procedure discussed in [7]. The method regularizes the integrand by the
addition and subtraction of secants. Each secant has an appropriate singularity and a

multiplying constant chosen to produce the desired residue. The integrand can then

be split into two parts, the first of which is a slowly varying function of a and the second

a sum of secants. The latter integral can be evaluated exactly [8], leading to a uniform

result. Following this procedure, we obtain

ikp

e _
w vp =

{ [sec—(¢+¢o)+sec—(¢-¢o)] i%‘_[1 - ka (2kpcn)]}

(A.2)
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with

-]

. 2 .2
Fo (@) =+2ize” j e du=t2izF (tz) (A.3)
1z

where the upper sign is employed if - %n-< argz< %and the lower sign otherwise. The

constants D, are the residues of the respective poles:

o co8 4-45) _ikp s (04,)

D,=H{tn+0,0¢)e

ikp cos (9+6, )
D,=-Htn-¢,0)e (¢,<0)
where
(sin@, - sing, ) (sind, - sind_ )
H(R - 9 8 ) = et |
(sin6, +sing, ) (sind, + sing )
H(-n-¢o’¢o)=1 ;
1 -ikp cos (¢-6, ) 1 1
Ds="§H+(n+91’¢o)e 1 [003905(91 +¢°)+cosec—2-(61 "bo)] ’
1 -ikp cos (¢-6,,) 1 1
D,=-7H, (+6,0,)e 2 [cosec§(92+¢°)+cose°'2'(92"%)] :

22



In the above H, (a, ¢,) differs from the expression (30) for H(a, ¢,) in having G(a, o)

replaced by
g (o+m)
G (o, 0)= 3
b-X) (—=
(a-x) ( X)(J-2-+X)
where

3n 1
I i _—. L — (o -
\yn(a 5 6) \yn(a to+ 6) \yn(a 3 (-)j) \yx(oc ot 91) cos 7 (o - m)
g,(0) = 2J2

W0y B 0) v (0, + E40)y (0, + 3 6) ¥ (6, + K+ ) cos (6, -

with §, = 6., ej =6, forD, and 6,=6, ej =0, for D,. The quantities c_in (A.2) are

c1=cosE(a1i-¢in)=oos-2-(¢-¢o)
cz=cos—;-(oc2 ¢+n)=-cos (¢+¢ )
o -cos1—(oz3 -0tm)= +cos (¢ 6,)

1 - 1
C4=COSE((X4-¢i1t)=+0055(¢-92)

23



where the upper (lower) sign corresponds to positive (negative) angles of incidence. |t

should be noted that a uniform evaluation of the surface wave contribution must be

performed only when ¢ > 0 and provided Re. (r + 842 - ¢) <0, in which case the

surface wave pole is in the vicinity of the saddle point.

To obtain the total field H,, the residues must be added to the diffracted field (A.2)

whenever the corresponding poles are captured in the closure of the contour .
Alternatively, (A.2) represents the total field when the lower signs are used in the

computation of the transition function (A.3).
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Appendix B Solution for E-Polarization

If the incident field is E-polarized with

£ g s -,)

4
the boundary condition on the upper side (¢ = x) of the half-plane is again (12) with H,

replaced by E,, and on the lower side (¢ = -n) the condition is E, = 0. Superficially at

least, the problem appears almost identical to that for H-polarization, but in fact the

analysis is much simpler.

If s(ax) is the spectral function for E, (see (16) ), the first of the equations (18) is

unaffected, but the second is replaced by

s(o. - ) = s(-a - m) + sina (B + B, cosa) .
We again write

s(a) = g(o) t (o)

where now
¥(a, 6, -g ies) (0, 6,, -g- joo)
g(a) = . - ’
¥(0,, 8., g ie<) (9, 6, -g- o)
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1
and this is O{exp (5 |im.a )} for large |Im.c|. The function g(a) satisfies (22) with [

reversed in sign, and the difference equation for t(c) is

: A _-A cosa
o + 2m) - t(o - 21) = - Sina o1 -(80-81 cosoc)} _

g(a - 2) | (sina +sind,) (sina +sind,)

A particular solution constructed in the same manner as before is

1 1
29(a) sin@, +sind,

t (@) = {(sin + sin@. ) (sina +sing,) (B, - B, cosa) - (A_ - A, cosa)}

and since this is free of poles in the strip |Re.a| <&, it is sufficient to take Ay = A1 =B, =

B4 = 0, implying to(c) = 0. It follows that f; and f, must also be zero, and hence

in&. sin—
sin - sin

When the contour is closed an expression for the total field is obtained in the form

(29), and because

g(a +m) = G(o, ¢.) (a-x) (b-x)
g(a - ) = G(a, ¢ ) (a-y) (b-y)

with
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8
Gle, 9) = {w g)} {#¥(0, 0., L. icc) W(0,, 0;, &- i) ¥(a, 0, £- i) ¥(0,, 6, &- o)}

we have

cos ?° 0
s(o+m) - s(o-m) = Gl ) —————— {(a-x) (b-x)| sin = + cos &)
COSQ+COS, 2 2

- (a-y) (b-y) (sin % - cos %)}

G(a’q)o ) 1 . . o q>(')
= ———— 5 sina sing, + 2ab cos -cos -
COSO+COSY, -2 2 2

a-b ¢
- —(oos L sing, + cos fsina)} :

2\ %2

1
This is symmetric in o and ¢, and O{exp ( 3 |im.of )} for large |Im.a|, implying
1
E,=0 {(kp)2 } for small kp in accordance with the required edge behavior. Thus, in spite
of the generalized boundary condition imposed on the upper side of the half-plane,

Maliuzhinets' method is applicable in its standard form.
With only minor modifications, the analysis in Appendix A is also applicable for
this polarization, and, in particular, the diffracted field is again given by (A.2) provided

H(e, ¢,) is replaced by

H(e, ¢) = G(o:, ¢,) {sin %sin %3-+ ab - ‘a/-__; (sin %+ sin %)} .
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