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1 Introduction

In this report the discretization and solution of the E-field integral equation
is considered for scattering by open and closed resistive boundaries. Two
specific forms of this integral equation are studied and their solutions are
compared . One form of the integral equation involves the usual unknown
surface current density and the other is in terms of the charge distribution.

Provided the charge and current expansions are chosen to satisfy the
continuity equation, it is shown that the two integral equations result in
identical systems. This is analytically verified and to do so it was necessary
to employ linear weighting functions for both integral equations. The con-
clusion of this study is that by resorting to higher order basis for expansion
and weighting, one can readily reduce the singularity of the kernel without
a need to reformulate the integral equation.

2 Derivation of the Integral Equations

Let us consider the two dimensional surface shown in figure 1. This surface
may be open and it is therefore a curved strip whose unit tangent and
normal shall be denoted by 3 and 7, respectively. The strip has a normalized
resistivity R and is illuminated by an H-polarized (TE) plane wave

Hi — 2ejko(zcos¢o+ysin¢o)

E = -
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where k, denotes the free space wavenumber and Z, is the free space intrin-
sic impedance. To derive an integral equation for the current supported by
the resistive strip, we recall the boundary condition

E, = Z,RJ, (2)



where E; = §-E is the s component of the total electric field at the surface of
the resistive strip, J, denotes the surface current density along the surface
at (z,y) and R is the normalized resistivity of the strip also at (z,y). The
total electric field is given by the sum of the incident and scattered field,
ie.

E=E+E (3)

and since E’ is caused by the strip current we have

koZ,

B'= - =2

; §Jy (o) HD (k,r)ds'

421: /c 7. (o) VVHD (kor) ds’ (4)

In this H{*)(-) is the zeroth order Hankel function of the second kind and

r=lp—pl= e -2+ -y)
is the distance between the observation and integration points. Also, by
refering to figure 2 we observe that &' is the unit tangent vector to the strip
at the integration point (z',y’).
From (4) we can now extract the s component of E* to be used in (2).

We have

E=3-E'= — koZo [ 7. - §HD (kor)}ds’
- sz— / Jo () {( V) (- V) HD (k,r)}ds'  (5)
and upon noting that §' -V = —§ - V' = —Z;, we can rewrite (5) as
E = _kZ, { / o (0) [3- 8 HD (kor)| ds'
5 [, 70 5 B ) ©)



Substituting this into (3) and then into (2) we obtain the integral equation

Y,E!(s) = RJs(s) + /J (s){(5- &) HD (kor)} ds’

i [ mmER kol @

where Y, = 1/Z, and for convenience we have replaced Jy(p') by Jy(s')in
which s’ denotes the distance along the strip. This is the standard E-field
integral equation [1,2].

By applying integration by parts we can obtain other integral equations
which are equivalent to (7) and more suitable for numerical implementation.
Noting that J,(s) vanishes at the strip ends upon applying integration by
parts to the second integral of (7) we obtain

VEis) = RI() + =2 [ Ju(){(53) HD (kor)} do'

1 dJy (s) 0
4k, Jo T ds' Os

+ 5 H (kor) ds (8)

To do the same for the first integral we first define the function

Gilkor) = [ (38" H® (kor') ds" (9)

where a is an arbitrary constant and

r = \/(.'I: —z")?2 4 (y — y)?

with the integration being with respect to the double primed variables.
Then G;(k,r) satisfies the identity

dG(k,r)

Lo = (5-8) B (ko) (10)

permitting us to rewrite (8) as



Y,Ei(s) = RJ,(s) — % /C $(s")G1(kor)ds'

1 l; _a_ ( ) ! ’
s |95 HD (k') ds (11)
in which
o(s) = L) (12)

is a quantity proportional to the electric charge on the strip. It can also be
shown (see Appendix) that

1 L-26

=1 (—f—) G(s+8)—p(s—8)d6  (13a)

where L denotes the length of the curved strip and
¢(L — s) =¢(s) (13b)

should be used in evaluating the integral. Substituting this into (11) yields
the integral equation

Y,Ei(s)= - %R(s) /C ds' (L 'L2S') [¢(s +5") — d(s = &')]

ko ! ’
= 2 [ 9()Gr(kir)ds

1 9
N 1r(2) /
+ g [ 5 HD (kor)ds (14)

Clearly, (14) is solely in terms of the charge distribution on the strip whereas
(8) is the tranditional E-field integral equation involves only the current
density. Consequently we shall refer to (8) as the (E-field) current integral
equation whereas (14) shall be referred to as the charge integral equation.

A standard procedure for solving (8) or (14) is the method of weighted
residuals. In applying this technique the integral equation is multiplied
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by a testing functions w;(s) and then integrated over the domain of the
weighting function. Doing so, (8) and (14) become,

Y;/C; Ei(s)wi(s)ds = /C.- R(3)J,(s)w;(s)ds

+ %_/c. w;(s)/CJ,r(s’) {(§ . §')H§2)(kor)} ds'ds

1 dw;(s) [ dJg(s")

4k, Jo, ds Jo  ds' H{(k,r)ds'ds  (15)

Y. [ Bolds= — 5 [ Riopwi(s) /C(L ‘L"‘S') [9(s + ) - §(s — )] ds'ds

_ % / wi(s) [ 8()G(kar)ds'ds

1 dwi(s) N 17(2) '
- o) T e ED (oryds (16)
for : = 1,2,...,N such that Zfil C; = C. That is, C; represents the 1

th segment of the discretized strip. Also, in obtaining the last integral in
(15) and (16) we employed integration by parts. Thus, in their present
form both integral equations are associated with kernels which have an
integrable logarithmic singularity. In contrast the kernel for the original
integral equation (6) has a non-integrable singularity which precludes its
implementation in any rigorous mathematical fashion. Nevertheless, it has
been implemented [1] using pulse basis expansion function with reasonably
good success.

The implementation of (15) and (16) requires that we first expand the
current/charge as

N
Jo(s) = JiLj(s) (17)

i=1

N
8(s) = 2_ 6ivs(s) (18)

j=1



where L;(s) and 1;(s) are subdomain basis functions to be chosen. That is
they are non-zero over the segment C; and vanish elsewhere on the surface
of the strip. Substituting these expansions into (15) and (16) yields

Y;/CiE:(s)w.-(s)ds = ZJ/ R(s)L;(s)w;(s)ds

J=1

N

+ %—;J/ w,(s)/ L(s'){(A §YHO (k, r)}ds'ds
N s

T ]2; /c dtzs ) c; d(/ D Ok, r)ds'ds (19)

Y;v/C.- E':(s)w,-(s)ds = E/ R(s)w,(s)/j L'L_—fz_s_,_). [¢(3 + -S') _ ¢(S _ S,)] ds'ds

_1—1

N
- 5“42]2_;45] / wi(s) / i(")G1(kor)ds'ds
1 N

4k, Z ¢; ‘/;‘ ch;‘gﬂ /q "bj(s’)ng)(ko"')dS'ds

i=1

and it remains to specify the testing and expansion basis functions for a
solution of the current/charge. Since ¢(s) is equal to the derivative of the
current J,(s), it is logical to choose 9;(s) so that

wi(s) = )

(21)
That is, if L;(s) is chosen to be the triangle function A;(s) as shown in figure
3, then in accordance with (21), ;(s) becomes the doublet function D;(s)
also shown in figure 3. With this choice of ;(s), it is seen that J; is equal
to ¢; and if w;(s) are chosen to be the same for both integral equations,
it follows that the last integral of (19) is identical to the last integral of
(20). It can also be shown that the second integral of (19) can be readily
written (via integration by parts) in a form that matches the corresponding
integral in (20). This simply proves that by using appropriate choices for
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the expansion and weighting functions, the resulting systems from (19) and
(20) are identical. Of course, in principle, one could choose the expansion
and wcighting functions for (19) and (20) to be different. However, in
view of the charge conservation requirements, the above choice for ;(s)
is the most appropriate. Expansion basis other than the triangle function
A;(s) were also considered. However, we have found that if pulse basis are
chosen for expanding the charge along with point-matching, the resulting
system is unstable. After going through various implementations of (20)
with different combinations of testing and expansion functions, it was found
that the best lowest order choice for the weighting function is A;(s) and
the same holds for the expansion functions L;(s). In accordance with (21)
this also implies that an appropriate choice for 1;(s) is the doublet function
Dj(s).

Next we consider the evaluation of the matrix elements associated with
current and charge integral equations. First we compute the matrix ele-
ments for a flat perfectly conducting strip.

3 Solution of the current integral equation
for the flat strip

Consider the perfectly conducting flat strip shown in figure 4. Choosing
the weighting and expansion functions as
z=(icllz  (j_1)Az <z < jAz
wj(z) = Lj(z) = Aj(z) =

(H)de=r  jAz <z < (j+1)Az

from (19) we obtain the system

[4i] {J;} = {b:} (22)

In this, [Ajj] is a square N x N matrix whereas {b;} and {J;} denote
column matrices for the excitation and unknown current density. Directly
from (19), the elements of the excitation column are

b =Y. /(M)MA( )Ei(z)d 23
i=Yo |, M +(z)ds (23)



~ Y,E.(iAz)Az

and those for the impedance matrix [A;;] can be written as

k, 1
Aij = (a:’j - paﬁj) (24)

in which
(i+1)Az

(7+1)Az
o= : @) (k, dz'd 25
a5 = [p M@ [T N@ED (ke -2 e’z (25)

(+1)Az dA,(z) [G+)Az dA (2 " g
s = /( dAi(z) M) g (1o — o' de'de (26)

i-1)az  dr J@G-1naz  dz’

To evaluate a;; we may employ the 5-point integration formula. We have

2 2
a;; = Z Qn Z amIi’;m (27)

n=-2 m=-2
where
z+—'f— Az -§-2—"'—"i Az
B = [ fom Bl =e/has'se (29
2n— I)Az‘ 2m-—1 )A
and
% n=-22
ap = % n=-11
1 n=20

The integral I/™ can be readily evaluated numerically using the mid-point
integration formula provided i1 # j orn # m. Wheni = jand n =m
the integrand has a logarithmic singularity and we must then evaluate I7}"
analytically. In this case k, |z — 2| < 2k,4Z << 1 and we can thus employ
the small argument approximation for the Hankel function,

HO(G) =1- 21 nZ (29)



Substituting this into (29) we obtain
n e 2 |vko(z — ') ,
& 8
= 62—]'2/2 /26ln dr'dzx
wJ-$J-¢
& z '
_ o2 /26{/ i Yke(2 =2 5
3

-4 2

+/f ln——-——7k0($21 — x)dm'}da:
= 6 —j= /__{ [(z_zlw]i

2e
+ [(z - m')ln———7k°(;e— z')] : }dz

s k, [
- -2 fe gt
$_

2e

7k0(1‘ - J71)

[T

. 6 Oy ° "ay
2 _ 2 YEY by — %Y
6% —3 {/o yln dy /s yln dy

§
— 62 —]é/ yln7koydy
7w Jo 2e

(30)
where for this case § = 222, To evaluate the remaining integral we let
z= 3’%3 giving

kot
) = 6 - 33<72;) / 2lnzdz



42\ ,q1 1%
_ 2 _ = 2| _ =
=9 J7r<'yko) ¢ [21nz 4]0
52_]_3 2e \* [ vko6 2ln7k06
7 \ vk, 2e 2e
ko6
= [1— j%ln (—726 )] 8 (31)

We now turn our attention to the evaluation of a{;. Upon substituting
the expressions for A;j(z) and differentiating we obtain

, /iA:r: 1 /(i+1)A:c 1 /jAa: 1 /(j+1)Az 1
%= (-1)az Az Jine Az |Ji-nas Az Jiae Az

- H? (k, |z — ') da'dz}

_ 1 /iA:l: (i+1)Az /jA:: /(j+l)Ax
— (Az)? | [J-nar  Jiar G-1az  Jiaz

- HO (k, |z — 2'|) dm'dm}

1 Az rAz
= (Bz)? @ (3 |(5 — .
(Az)? {/o | 2ER (koI - )az +2 - )
— HO (k, |6 — j = 1)Az + 2 — 2'])
— HO (k, |(i = j + 1)Az + = — 2'])| dzdz’

(33)

which can be evaluated numerically provided the integrands are not singular
there. This gives

a:] = 2H§2)(koll—]lA(B)—HgZ)(ko‘Z_J_lle)

—H? (k, i — j + 1| Az) (34)
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When the integrands are singular, which occurs for the first term when
1 = j, for the second term when ¢ = j + 1, and for the third term when
i = j — 1, we may use the result of (31). In particular, we have

Az Az A .
/ / HO (k, |z - «'|) dzdz’ = [1— j;2r-ln (“‘SA’)](A@? (35)

€

4 Solution of Charge Integral Equation

For the solution of the charge integral equation we again choose the same
weighting functions defined in (23) but in view of the requirement for charge
conservation, the expansion functions are chosen to be

PSP (J-NAz<z< jAz
¥i(z) = Di(z) = { -1 JAr <z <(j+1)Az (36)
Substituting these into (20) with R = 0 we obtain the system

[4:] {91} = () (37)

where b; is again given by (24). The elements of the matrix [fi, ,-] are defined
by

A ko -~ 1.
45 (%) &
with
(i+1)Az (j+1)Az
"”_. = —_ A‘ / D / H(2) ko _ " d ”d /d
al] -/(i—l)A:c (m) (j—]_)Az ](x) 0 ( la) x I) T T T

(i+1)Ac (G4+1)az dA ('
- - /( Ad(z) /(’ ) 6 b, fo — o)) de'de

i-1)Az j-1)az  dz'

(i+1)AzA (j+1)AzA H(z) k "N da'd
S M@ [ A@HD (ke — o)) da'ds

= Q4 (39)
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and

(i+1)Az JA. (j+1)az
a;; = /; dAiz) (0 D;(z"H® (k, |z — z'|) dz'dz

a..
Y i-naz dr  Ji-1)az

i-naz  dr Jig-1)az dr’ HP (k, |z — 7'|)dz'dz

[ dhta) or dA()
(

That is, the elements of the matrix [fi,-j] are identical to those of the matrix
[A;;] associated with the current integral equation. This was, of course, to
be expected since as noted in the previous section ¢; = J;.
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5 Appendix: The strip current in terms of
charges

Mitzner [3] derived that for a closed two-dimensional surface whose circum-
ferential length is L (see figure Al), the surface current density satisfies the
relation

K,(s)=K, - % j (L —];25) [g(s+8) — g(s— 6)] dé (A1)
where
- L
K, = / K,(s)ds = average current on C (A2)
ols) = 2 (43)
and
/o * g(s)ds = K(L) - K(0) = 0 (A4)

since K,(s) = Ks(s + L), i.e. K, is a periodic function having a period L.

We like to derive an expression similar to (Al) for the current on a
curved strip. Equation (A1) is still applicable for the strip except that C is
now made-up of the top and bottom surfaces of the strip (see figure Al).
The net current on the strip is given by

Jy =K, — K, = K,(s) — K,(L—s) (A5)
and from (Al) on letting s —» L — s we get
L(L_
K (L-s) Y-S L ) [9(L - s +6)
2Jo L
—g(L—s—6)|dé (A6)

Combining (A1), (A5) and (A6) yields
Js = K,(s) — Ks(L — s)

-/ (L'Lz‘s) (9(s+6) — g(s — 6) — g(L — 5 + 6) + g(L — s — 6)] d6
(A7)
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However, since

dJ, _ d[Ks(s) = K(L =) _ dK,(s) dK,(L-s)

ds ds ds ds
_dK,(s) + dK,(L - s)
T ds d(L - s)
it follows that
dJ,
e s+ oL - 5) = 4(5) (48)

where ¢(s) is proportional to the net charge on the surface of the strip.
Using now (A8) into (A7) gives
1 (% (L-26
=3, (T
and it should be noted that
¢(s)=9(s)+9(L—s)=9g(L—s)+9g(L—L+s)=¢(L~-s) (A10)

Expression (A9) was implemented and found to hold when J, = 0 at
the ends of the strip. An example calculation of the relation between the
current and charge on a 3\ flat perfectly conducting strip is given in figure
A2. Also figure A3 shows the same quantities for a 1)\ flat strip. It is clear
from both of these figures that the charge distribution has a much larger
dynamic range than the current density. This probably implies that the
computation of the charge density is more difficult.

To test the validity of (A9) we can substitute the charge density shown
in figures A2 or A3 and attempt to recover the original current density
distribution. The results of our first attempt is shown in figure A4 and
as seen the re-calculated current, albeit close, is not precisely in agreement
with the original current density (see routine in figure A6 used to implement
(A9)). As it turned out, this is because the original current density was
not exactly zero at the ends of the strip (because the MoM code does not
sample at the strip ends) which violated the conditions for which (A9)
holds. Since the re-calculated current density does vanish at the ends of
the strip, this can then be used to validate (A9). Differentiating the current
given in figure A4 and substituting the result in (A9) it was found that the
original “modified” current density is recovered exactly as demonstrated in
figure AS5.

) (6(s +8) — o(s — 8)] o (49)
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Figure 1. Geometry of the 2D curved surface (strip).

Figure 2. Illustration of the observation and integration point parameters.
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Figure 3. Expansion functions. (a) Linear expansion functions
for the current (b) corresponding expansion functions
for the charge.
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Geometry of a closed surface. (a) Original geometry of
circumference L (b) Currents on a closed surface collapsed
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CURRENT AND CHARGE FOR A 3 WAVE. STRIP

ANGLE OF INCIDENCE = 45 DEG OFF GRAZING
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Figure A2. Current and charge densities on a 3A flat strip.

Routine to compute charge (CHARG) from current (PHI)

DO 66 I=1,M
IF(I.EQ.1) THEN

CHARG(I)=(4.*PHI(I+1)-3.*PHI(I)-PHI(I+2))/(2.*DSQQ)
ELSE IF(I.EQ.M) THEN

CHARG(I)=(3.*PHI(I)-4.*PHI(I-1)+PHI(I-2))/(2.*DSQQ)
ELSE IF((I.NE.1l).AND. (I.NE.M)) THEN

CHARG (I)=(PHI (I+1)-PHI(I-1))/(2.*DSQQ)
ENDIF

66 CONTINUE
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current

Solid lines : Current Density (original from MoM code)

Dashed  : Recalculated using (A9)
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Figure A4.  Recalculation of J5 from ¢ using the formula (A9). As seen, Jg is not
precisely zero at the ends.
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Figure A5.  Recalculation of J from ¢ using equation (A9). In this case the original Jg
is given by the dashed curve in figure A4.



Routine which Implements Equation (A9)

s I " 5[ esve) o5

(o)

/2 =M * DSQQ
PHI=J
CHARG = ¢

C REcover current density
DO 68 J=1,M
PHJ(J)=(0.,0.)
DO 67 I=1,M
RII=I-1.+.5
RJJ=J-1.+.5
RI1=RII+RJJ
RI2=RJJ-RII
I1=I+J-1
12=1-J —o— |
IF(I1.LT.0) I1=2*M+I1 i i+1  i+2
IF (I2.LT.0)I2=2*M+I2
IF(I1.GT.M)I1=2*M-I1 (
IF (I2.GT.M)I2=2*M-I2 P10 = O+ 0,
IF (I1.EQ.0) THEN
CHP=CHARG (1) -0.25%* (4. *CHARG (2) -3.*CHARG (1) ~CHARG (3) )
ELSE IF(I1.EQ.M) THEN
CHP=CHARG (M) +0.25%* (3. *CHARG (M) -4 . *CHARG (M-1) +CHARG (M-2) ):
ELSE
CHP= (CHARG (I1)+CHARG (I1+1))/2.
ENDIF
IF(I2.EQ.0) THEN
CHM=CHARG (1) -0.25* (4. *CHARG (2) -3.*CHARG (1) -CHARG (3) )
ELSE IF(I2.EQ.M) THEN
CHM=CHARG (M) +0.25%* (3. *CHARG (M) -4 . *CHARG (M-1) +CHARG (M-2) )
ELSE
CHM= (CHARG (I2) +CHARG (I2+1)) /2.
ENDIF
PHJ(J)=((2.*M-2.*RII)* (CHP-CHM)/ (2.*M))+PHJ(J)
67 CONTINUE
PHJ (J) =-.5*DSQQ*PHJ (J)
PHIA=CABS (PHI (J))
PHASI=dig*atan3 (aimag (PHI (J)),real (PHI(J)))
PHJA=CABS (charg(J))
PHASJ=dig*atan3 (aimag(charg(J)),real (charg(J)))
WRITE (8,950) PHJ(J)
WRITE (9,952) (J-0.5)*DSQQ, TAB,PHIA, TAB, PHASI, TAB,PHJA, TAB
&,PHASJ
68 CONTINUE

)2

Figure A6.  Routine to recover the current from charge.
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