face

This semi-annual report describes our progress during the period
from September 1988 to February 1989. There are four separate
tasks described in this report. Although, some of these tasks are
interdependent, their reports should be read independently. That
is, figure and reference numbering is consecutive only within the
description of a given task. As can be expected, the progress report
on each task is brief. The reader is expected to refer to the detailed
reports or papers referenced in the progress reports.






TABLE OF CONTENTS

Page #
PREFACE 1
TASK 1: A FINITE ELEMENT CONJUGATE GRADIENT FFT
METHOD FOR SCATTERING
L BACKGROUND 5
II. THEORY 7
2.1 Finite Element Analysis 8
2.2 Boundary Integral Formulation 10
III.  CURRENT STATUS AND FUTURE PLANS 12
REFERENCES 13
TASK 2: DEVELOPMENT OF GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS
L BACKGROUND 17
IL PROGRESS 18
III.  FUTURE GOALS 20
REFERENCES 21






TABLE OF CONTENTS - (Cont.)

Page #
TASK 3: ANALYTICAL SOLUTIONS WITH GENERALIZED IMPEDANCE
BOUNDARY CONDITIONS (GIBCS)
.  BACKGROUND 27
II.  PROGRESS SUMMARY AND FUTURE PLANS 28
REFERENCES 31
TASK 4: NUMERICAL IMPLEMENTATION OF GENERALIZED IMPEDANCE
BOUNDARY CONDITIONS
I.  BACKGROUND 36
I.  PROGRESS 37
. REPORT SUMMARY 37

REFERENCES 39



Task 1: A FINITE ELEMENT CONJUGATE
GRADIENT FFT METHOD FOR
SCATTERING

Period Covered: September 1988 - February 1989
Investigators: J.D. Collins and J.L. Volakis

Task Description:

This task calls for the development of an innovative iterative technique par-
ticularly suited for simulating large size scatterers. In constrast to traditional
techniques, the proposed approach demands an FFT algorithm one order lower
than the dimensionality of the modeled structure, in addition to having an O(V)
memory requirement. It is, therefore, expected to allow the simulation of practical
size geometries without restrictions on the geometrical and material properties of
the structure.

A goal during this year’s effort is to develop a demonstration model of the
method. In particular, a two-dimensional implementation of the approach will be
developed. A finite element mesh generator will also be developed in conjunction

with this implementation.



1 Background

There exists a continuing need and interest in the simulation of three dimen-
sional configurations. Present matrix inversion techniques have excess storage
demands and are therefore limited to small size geometries. A recent emphasis
in the use of iterative techniques is due to the aforementioned limitation. The
most popular among iterative techniques is the Conjugate Gradient (CG) method
which ensures convergence in a finite number of steps. Of particular importance,
though, in the use of iterative techniques are the advantages realized when they
are combined with the Fast Fourier Transform (FFT). Since the unknown source
distribution is found by iteration, the usual convolution integrals can be evaluated
using the standard FFT at each iteration, thus eliminating a need for generat-
ing and storing a square matrix. The storage demands in a CGFFT solution are
therefore reduced to O(N), a rather substantial reduction from the O(N?) usually
required for a solution involving a matrix inversion. Unfortunately, the storage
reduction is achieved at the expense of computational efficiency, particularly when
computations are desired for many excitations. As a result, there is a pressing
need for the development of computationally efficient algorithms.

Over the past two years [1,2], at the University of Michigan we have devel-
oped new simulation approaches particularly suited for the implementation of the
CGFFT algorithm. A major part of our study also included the generation of new
efficient FFT algorithms when employed in conjunction with the CG method, and
these have already been provided to some industrial organizations.

Nevertheless, present approaches of analysis such as those considered previously






have relied on the use of a three-dimensional FFT in the simulation of an arbitrary
geometry of the same dimensionality. Specifically, the scattering configuration
is enclosed in a rectangular box which usually determines the size of the three-
dimensional FFT. A solution is then obtained by imposing boundary conditions
associated with the scattering structure and in conjunction with the radiation
condition imposed at the surface of the box. The last is usually satisfied implicitly
by employing what is usually referred to as the boundary integral method, which
substantially complicates the analysis. An alternative to the boundary integral
approach is to increase the size of the enclosing box and employ a direct application
of the radiation condition. The last is, however, highly undesirable since it requires
the introduction of far more additional unknowns.

As we have recently shown when employing vector-concurrent FFT algorithms
[3], most of the computational demands in a CGFFT solution are consumed in the
implementation of the FFT. This work calls for an innovative iterative method-
ology that demands an FFT algorithm one order lower than the dimensionality
of the structure. That is, the proposed algorithm requires the use of only two-
dimensional FFTs in simulating a three-dimensional structu.re, implying a sub-
stantial improvement in computational efficiency. This is achieved by combining
the (highly successful in mechanical and structural applications) Finite Element
Method (FEM) with the usual CGFFT. Briefly, by employing the FEM procedure,
the fields at the scatterer’s location are transferred to the surface of the rectan-
gular enclosing box using finite element interpolation (a linear interpolation), a

rather simple and efficient task. As a result, all cumbersome integrations over the



irregular scattering structure are eliminated, and the only integrals which result in
the entire implementation are those called for in the application of the boundary
integral method. These are, however, only over the surface of the enclosing box
and are, as a result, easily computed with a two-dimensional FFT. The resulting
system, satisfying the scatterer’s boundary conditions and the radiation condition,
implicit in the application of the boundary integral method is a matrix involving
the fields within and on the surface of the enclosing box. Inherent to the applica-
tion of the FEM, the matrix is highly diagonal and thus easily stored, except for
that part of the matrix involving the (integration of the) surface fields. However,
since the last are computed with the FFT, the storage demand is again reduced
from O(N?) to O(N). Therefore, the storage requirement is maintained at O(N)
as in the traditional CGFFT implementation, but the algorithm now requires only
a two-dimensional FFT (rather than a three-dimensional one) for the treatment of
arbitrary three-dimensional scatterers.

During the first year of this effort, we are only considering a two-dimensional

implementation of the method.

2 Theory

Consider a perfectly conducting body illuminated by an incident field
-(-ﬁ-inc — 2¢inc — iejkpcoe(a—eo) (1)
at an angle 0, as indicated in fig. 1. ¢ may represent either E, for E—polarization

or H, for H—polarization. An e’“* time dependence has been assumed (and sup-

pressed).



To analyze the fields scattered by the given structure, two rectangular boxes
are employed to enclose the structure. The rectangular shape of the enclosures
is necessary to allow subsequent use of the FFT. Also, by allowing the outer box
(T,) to be only one cell larger than the inner (T';) the singularity associated with
the Green’s function is completely avoided. Inside the outer boundary T',, the
Finite Element Method (FEM) is employed to transfer the field from the object’s
boundary to [';. An integral equation is then formed to relate the field on I'; to

that on I'

2.1 Finite Element Analysis

Interior to I',, we are required to solve the Helmholtz equation, or equivalently,

employ the variational technique [4] by minimizing the functional

F= / /R ,{ oM kge,(r)qsqs“*} ds — /F $VS - ingdl 2

for E-polarization, and

=[]k

for H-polarization, where k2 = w?p,€,, R, is the outward normal from I';, and

- 2ur(F)¢¢“*} ds— [ ¢V -ndl  (3)

* denotes complex conjugation. Furthermore, ¢* is the solution to the adjoint
problem and is identically equal to ¢ for lossless media. The region between I';
and T, can be subdivided into M linear triangular elements having a total of N
nodes. The field within this region (to be referred to as the FE region) can then

be expressed as
M 3

(z,y) = DD Ni(z,y)4! (4)

e=11=1
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where Nf(zr,y) is the shape function of the e element, and ¢¢ is the unknown
field at node ¢ of the e!* element. A partial discretization is shown in fig. 2, and it
should be noted that I'; is allowed to be a single cell away from I'.. It can easily

be shown that the system

Ap =1 (5)

can be derived by minimizing F in either (2) or (3) and substituting (4) into

resulting expression. An expanded form of (5) can be written as

Aaa Aab 0 0 W ¢a ] ¢a T
A Aw Ay O Pb 0
= (6)
0 Ap An Ar o1 0
L 0 0 AcI Acc 1L d’c i i 0 ]

where the subscripts a,b and ¢ are associated with the nodes on contours I'y, I'y
and I',, respectively, while the nodes internal to the region between contours I';
and I', are denoted by the subscript I. As a result, ¢,, ¢p, 1 and ¢, denote
the field quantities at the respective nodes. Note that for F—polarization, the
boundary condition on the body is satisfied by setting #. = 0, which reduces
the size of the system. For H—polarization, however, the boundary condition is
satisfied naturally through the variational technique.

The quantity %, in the right hand side of the system (6) is specific to the
boundary condition satisfied on I',. For I', at infinity, this would, of course, be
the radiation condition. Since this is not the case, the first row of (6) is replaced

by the boundary integral considered next.



2.2 Boundary Integral Formulation

The solution to the Helmholtz equation for the region outside of T', is given by

the integral equation expression

$(F) = ¢™(F) — A {G(F,7) [1e - VO(Ts)] — ¢(Ts) [y - VG(7,73)]} dls (7)

which satisfies the radiation condition. We evaluate this expression on the bound-
ary I', to provide us with the remaining boundary condition. The Green’s function

for this problem is
G(F, ) = — HO (k7 —7) ®)

where 7 and 7 are the usual observation and source position vectors, respectively.

Additionally,

F=7 = Vie-2)+ -y (9)

where (z,y) are the observation coordinates, and (', y’) are the source coordinates.
The integral in (7) can be written as a summation of four integrals over each

side of the contour I’} as

o(F) = ¢'"(F) — {/I‘u [G(F,Fb)%d’(?b) - G(7,Ts ] dly
- [-G(r,m%qs(n) + ()22 GLF, )| i
+ /Fbs [-—G(F, rb) qﬂ(rb) + ¢(T rb G(T 7)| dlpa

o [ermd ai 5(72) - ¢<rb>§-G(F JESED
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where I'y = I'y; + [y2 + i3 + g as implied by fig. 2. Approximating the normal

derivatives of ¢ as

—8%45(%,1/') = ‘i‘ [6(za,y") — 6(z5, )] (11)
3%¢(w', Yp) = Z}[é(af’,ya) — é(z', ys)] (12)

where A is the displacement of I', from T, (see fig. 2), and substituting into (10),

we obtain a typical expression for (10)

(2, ya1) = 6™(2,Ya1)

w2 |1 1 9
- {_L [—A'G(:L' - w”yal,yb1)¢(w,ayal) - (K + a—> G(a: ol w',yal,ybl)qﬁ(w', ybl)] d:z

b4

ver | 1 '
— / KG(.’L', b2, Ya1, ¥ )P(a2,y") +
v

b3
1

Tp2

1
+ / |: (17 yThdyYa1, Y )¢($a4’y ( or

for observation along the contour/boundary I';;. The first and third terms of (13)
are convolutions and may, therefore, be evaluated via the FFT. The remaining
terms are not in convolution form and must, therefore, be solved directly. Since
their integrals do not cross any singularities, they can be evaluated via a simple
midpoint integration.

For convenience, (10) may be written as

¢a = ¢inc - Laa¢a - La.b¢b (14)

11

G(.’E T52s Ya1, Y )¢(xb2ayl):| dy/

(2, T4, Ya1,y") $(Ta, Y )] }

)
w1 ! a / /
+ / ['—G(:L' — T, Ya1, yb3)¢( ,ya3) + (__A' + 5") G(l‘ z’ yYal, yb3)¢($ )be)} dz
)
+ —

(13)



or alternatively as

(Laa + I)¢a + Lab¢b = ¢inc (15)

Replacing the first row in (6) by (15) now yields

Laa + 1 Lab 0 0 ¢a ¢inc
Ay Ay A 0 b _ 0 (16)
0 An An Ar b1 0
0 0 AcI Acc 1L ¢c | i 0

which is amenable to a numerical solution via the CGFFT method.

3 Current Status and Future Plans

The theoretical analysis associated with this task has been completed, and a
computer code has been written. At present, most of the code has been debugged,
and it is expected that a working version will be available by the end of March. At
that time, optimizations in memory and CPU time will be pursued. Also, before
continuing with a three-dimensional implementation of the approach, generaliza-
tions to non-metallic and composite structures will be considered.

During this period, a mesh generator was also developed and interfaced with

the main code.

A detailed report relating to this task will be written after completion of the

code.

12



References

[1] T.J. Peters, “Computation of Scattering by Planar and Non-planar Plates
using the Conjugate Gradient FFT Method”, Ph.D. Thesis, The University
of Michigan, Ann Arbor, MI, 1988.

[2] K. Barkeshli and J.L. Volakis, “Improving the Convergence of the Conjugate
Gradient FFT Method Using Subdomain Basis Functions”, accepted to IEEE

Trans. on Antennas and Propagat.

[3] K. Barkeshli and J.L. Volakis, “ A Vector-Concurrent Application of a Conju-
gate Gradient FFT Algorithm to EM Radiation and Scattering”, 3rd biennial

IEEE conference on electromagnetic field computation, Dec. 1988.

[4] M.V.K. Chari and P.P. Silvester, Eds., Finite Elements in Electrical and Mag-
netic Field Problems, London, New York: Wiley, 1980.

13






Figure 1. Cross section of a perfectly conducting cylinder.
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e et

Figure 2. Cylinder enclosed in a rectangular box
and partial discretization.
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Task 2: DEVELOPMENT OF GENERALIZED
IMPEDANCE BOUNDARY CONDITIONS

Period Covered: September 1988 - February 1989
Investigators: J.L. Volakis, T.B.A. Senior and J.-M. Jin

Task Description:

The purpose of this task is to develop improved boundary conditions allow-
ing an accurate simulation of thick coatings and layers. Boundary conditions are
proposed which involve involve higher order derivatives leadipg to a non-local char-
acterization of the coating. They promise solutions to new diffraction problems
and more eflicient numerical simulation by eliminating a need to sample within

the dielectric.

16






1 Background

The use of non-metallic materials, possibly in the form of a non-uniform or mul-
tilayer coating applied to a metallic substrate, has made necessary the development
of methods for simulating material effects in scattering. This is important in the
analytical treatment of canonical geometries and also for the efficient generation
of numerical solutions.

A possible approach is to employ approximate boundary conditions [1], and the
impedance (or Leontovich) boundary condition [2] has been widely used for this
purpose. But this condition allows only one degree of freedom through the single
surface impedance assumed, and there are limits to the surface properties that can
be simulated in this manner. The inclusion of higher order derivatives of the field
components on the surface increases the flexibility , and leads to a hierarchy of
boundary conditions as discussed in this paper. The first order version is equivalent
to the standard impedance condition. An example of the second order version was
developed by Weinstein [3] and in [4],[5] to simulate thin dielectric layers with and
without a metal backing.

Under this task we explore the suitability of higher order or generalized impedance
boundary conditions (GIBCs) originally proposed by Karp and Karal [8] to study
surface waves supported by dielectric coatings. General methodologies are devel-
oped for generating the conditions and their accuracy is examined as a function of

the order of the condition.
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2 Progress

All work intended under this task has essentially been completed and the report
“Derivation and Application of a Class of Generalized Impedance Boundary Con-
ditions - II” was recently submitted to NASA (University of Michigan Radiation
Laboratory technical report 025921-T-1). A paper based on this report has also
been submitted for publication. Below is a summary contained in this report.

For the sake of simplicity consider a surface at y = 0 where the region y < 0
is occupied by a laterally homogeneous material, but possibly inhomogeneous in
depth. To replace the presence of this surface a boundary condition is proposed

at y = 0 having the form

M apm am

2 gty = O

M’ a:n am

L o = M)

where a,, and a], are constants specific to the properties of the modeled surface.
A major portion of the report is devoted to the development of approaches leading
to the derivation of these constants for given configurations.of interest. Some of

these are:

(i) The reflection coefficients implied by (1) are

R(4) = - fn'I:%S—l)"‘amsinmé

Zm=0 (1% sin™ ¢
PR > AT

Y=o @h.sin™ ¢

corresponding to the E, and H, components, respectively. Thus, if an ana-

(2)

lytical expression of the reflection coefficient is available, it can be expanded
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as in (2), leading to the identification of the constants.

(ii) If the reflection coefficients are not availiable but the geometry of the profile
is known, a Taylor series expansion can be employed to transfer the fields to
the surface of the profile leading again to the identification of the constants.

This procedure is essentially equivalent to (z).

(iii) The reflection coeflicients (2) can be seen to be associated with poles. Given
the surface wave poles of the structure, the constants may be chosen to recover

the poles.

(iv) In the case where the profile’s inner cross section is not known or not con-
forming to analysis, measured or numerical data of the reflection coefficients

can be used to determine the constants by curve fitting.

In addition to the determination of the constants, of importance is the location
of their application and an approach was introduced for transferring the location
where they are enforced. Finally, to generalize (1) for application to curved sur-
faces, they must be written in terms of tangential derivatives. In doing so, a duality
condition must be satisfied as discussed in the report.

As an illustration of the application of the GIBCs (1), the constants were
determined for two specific geometries shown in figures 1 and 2. These correspond
to a uniform and a three-layer metal backed coating, respectively. A fourth order
condition was derived for the uniform coating and its accuracy was examined by
comparing its implied reflection coeflicient with the exact. As shown in figure 3,

the maximum layer thickness that can be modeled with the fourth order condition
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is at least 0.25 free space wavelengths with a maximum of 2 degrees error in phase.

In case of lossy coatings, the simulation of thicker coatings is possible.

3 Future Goals

The above applications illustrated that the generalized boundary conditions
provide an acceptable simulation of multilayered and/or inhomogeneous coatings.
Of primary interest in the immediate future is to employ these conditions in ob-
taining analytical and numerical solutions to problems of interest. Analytically,
it is important to determine diffpaction coefficients that can be incorporated into
general purpose GTD codes and we have already begun to do this [9],[10]. In fact,
Task 3 is devoted to this subject. Unfortunately, Weiner-Hopf analyses with the
GIBCs bring new difficulties because of the inherent nonuniqueness of the gener-
ated solutions. As a result, a major part of Task 3 has been devoted to resolving
this issue.

In the case of numerical applications, the GIBCs offer advantages of simplic-
ity and efficiency (because they eliminate a need to sample within the structure)
without compromising accuracy. Task 4 addresses this application which also has
not been without difficulties. As noted later, the GIBCs must be supplemented
with additional conditions at abrupt material terminations. Also, care must be

exercised in a numerical treatment of the higher order derivatives.
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Figure 1

Fig. 1. Geometry of a metal-backed dielectric layer.
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Fig. 3. Maximum allowed thickness vs w/—; for a metal-backed dielectric layer modelled

using the 4th order boundary conditions at y = t+, with a 2-degree phase (and/or 2 percent

amplitude) error. Curves shown are for € =2 and € = 7 with ¢ = 45 degrees:
(a) H-polarization, (b) E-polarization.
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[ask 3: ANALYTICAL SOLUTIONS WITH
GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS (GIBCs)

Period Covered: September 1988 - February 1989
Investigators: M. A. Ricoy and J. L. Volakis

Task Description:

This task involves the use of higher order boundary conditions (see Task 2)
to generate new solutions in diffraction theory. In particular, diffraction coeffi-
cients will be developed for dielectric/magnetic layers and metal-dielectric junc-
tions which are often encountered on airborne vehicles as terminations of coatings
and conformal antennas. Solutions for both polarizations will be developed for

fairly thick junctions and versatile computer codes will be written and tested.
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1 Background

In modeling the scattering properties of an arbitrary body, one generally fo-
cuses on the presence of abrupt discontinuities. A particular class of discontinuity
whose occurence among man-made structures is commonplace is the junction of
dissimilar materials. In general, the characterization of these junctions in an exact
manner (e.g. [1],[2]) is a difficult problem. Usually the results obtained are not
in closed form and are thus extremely cumbersome to apply. On the other hand,
considerable success has been realized through the modeling of simple junctions
with the impedance boundary condition [3],[4],[5],[6], which is in fact a GIBC of
first order. The obtained solutions offer the advantage of being extremely simple
and easy to implement relative to their exact counterparts. However, their validity
is restricted to the case where the material is either very thin electrically or else
opaque. This suggests the possibility of using higher order boundary conditions to
model simple junctions in the hope of relaxing these restrictions, while maintaining
a relative simplicity over exact methods.

Higher order boundary conditions were first introduced by Kane and Karp [7],
who subsequently employed a second order GIBC to compute the diffraction of a
radiowave propagating over a half-space with a discontinuity in dielectric constant
[8]. Jones [9] later considered surface wave diffraction by a semi-infinite slab on a
ground plane using an infinite order GIBC. More recent work has centered upon
the material half-plane [10],[11],{12],(13],[14] and the coated wedge [15],[16]. Unfor-
tunately, these investigations have revealed two major shortcommings of employing

GIBCs in conjunction with function-theoretic techniques:
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o the obtained solution is not necessarily reciprocal with respect to angle of

incidence and observation, and
¢ the obtained solution may not be unique.

In [13],[14], and [16], the authors were cognizant of the first item above and were
able to obtain solutions that satisfied reciprocity. Nevertheless, imposing this

condition did not make their solutions unique.

2 Progress Summary and Future Plans

The goal of the work associated with this task is to generate new analytical so-
lutions via the use of GIBCs. The fulfillment of this go;a.l involves several subtasks,
firstly, the derivation of diffraction coeflicients for material-metallic junctions and
possibly material-material junctions, with major consideration given to the res-
olution of the uniqueness problem described above. The second subtask is the
development of computer codes based on the obtained analytical solutions and the
demonstration of their versatility/validity through the computation of numerical
results. The final subtask is the generation of a detailed report and journal papers.

In accomplishing the abbve objectives, we chose to study material junctions on
a ground plane. First, infinite order GIBCs were developed for a material layer on
a ground plane through examination of the exact reflection coefficient. Finite order
approximations to these were then obtained for the case of a low contrast mate-
rial (accuracy increases as layer thickness decreases) and a high contrast material
(accuracy increases as the index of refraction increases).

Subsequently, these GIBCs were employed to treat the problem of a material
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insert in a perfectly conducting ground plane (figure 1). The problem was formu-
lated with a dual integral equation approach [17] in conjunction with the gener-
alized scattering matrix technique [18]. A convenient by-product of this method
is the solution of the diffraction from a grounded material slab with a truncated
upper plate (figure 2). Since little extra work is required, simultaneous solutions
were obtained for the the exact case as well as the GIBC case to illustrate the
accuracy of the GIBC solution. We note that for this situation, both the exact
and GIBC solutions were unique.

Another discontinuity of interest is that shown in figure 3. By formulating the
problem in terms of the dual integral equation approach as before, an analytical
solution was obtained. But, unlike the solution for the material-metallic junction,
the one associated with the material-material junction was non-unique. Currently,
we are comparing the resulting spectra with those obtained for the material insert
and truncated upper plate solutions. It appears that when one side of the material-
material junction solution is perfectly conducting, the resulting expression for the
diffracted field incorporates the solutions associated with the material-metallic
junction and of the truncated upper plate (figure 2). This is extremely significant
in establishing a fundamental cause of non-uniqueness stemming from a lack of
sufficient conditions to characterize the junction below the surface.

The computer codes associated with the above analytical solutions are currently
under development and the final report is being written. It is expected that these
remaining tasks will be completed in approximately a month and a half.

Future work will focus on employing the diffraction coefficients developed here-
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in to characterize microstrip structures which contain a multiplicity of scattering
centers. Hence, a major effort will be placed on developing multiple scattering
methodologies which are numerically efficient. Subsequently, these results will be
extended to the case of skew incidence. Finally, a three-dimensional implementa-

tion will be considered through the use of the equivalent current concept [19].

30



References

[1]

[2]

3]

[5]

C. M. Angulo, “Diffraction of surface waves by a semi-infinite dielectric slab,”
IRE Transactions on Antennas and Propagation, Vol. AP-5, pp. 100-109, Jan-
uary 1957.

K. Aoki and K. Uchida, "Scattering of a plane electromagnetic wave by two
semi-infinite dielectric slabs,” The Transactions of the IECE of Japan, Vol.

62-B, No. 12, pp. 1132-1139, 1979.

A. F. Kay, "Scattering of a surface wave by a discontinuity in reactance,” IRE
Transactions on Antennas and Propagation, Vol. AP-7, pp. 22-31, January
1959.

R. Tiberio and G. Pelosi, "High frequency scattering from the edges of
impedance discontinuities on a flat plane,” IEEE Transactions on Antennas

and Propagation, Vol. AP-31, No. 4, pp. 590-596, July 1983.

P. H. Pathak and R. G. Rojas, ”A UTD analysis of the em diffraction by
an impedance discontinuity in a planar surface,” Journal of Wave-Material

Interaction, Vol. 1, pp. 16-37, January, 1986.

R. G. Rojas, ”Weiner-Hopf Analysis of the em diffraction by an impedance dis-
continuity in a planar surface and by an impedance half-plane,” IEEE Trans-
actions on Antennas and Propagation, Vol. AP-36, No. 1, pp. 71-83, January
1988.

31



[7] J. Kane and S. N. Karp, ”An accurate boundary condition to replace tran-

(8]

[10]

[11]

[12]

[13]

sition condition at dielectric-dielectric interfaces,” Institute of Mathematical
Sciences Division of E.M. Research, New York University, New York, N. Y.,
Research Report EM-153, May 1960.

J. Kane and S. N. Karp, "Radio propagation past a pair of dielectric inter-
faces,” Institute of Mathematical Sciences Division of E.M. Research, New

York University, New York, N. Y., Research Report EM-154, May 1960.

W. R. Jones, ”A new approach to the diffraction of a surface wave by a
semi-infinite grounded dielectric slab,” IEEE transactions on Antennas and

Propagation, Vol. AP-12, pp. 767-777, November, 1964.

I. Anderson, ”"Plane wave diffraction by a thin dielectric half-plane,” IEEE
Transactions on Antennas and Propagation, Vol. AP-27, No. 5, pp. 584-589,

September 1979.

R. G. Rojas, ”A uniform GTD analysis of the em diffraction by a thin di-
electric/ferrite half-plane and related configurations,” Ph.D. Dissertation, The

Ohio State University, Department of Electrical Engineering, Columbus, Ohio,
1985.

A. Chakrabarti, ”Diffraction by a dielectric half-plane,” IEEE Transactions

on Antennas and Propagation, Vol. AP-34, No. 6, pp. 830-833, June 1986.

J. L. Volakis and T. B. A. Senior, ”Diffraction by a thin dielectric half-plane,”

IEEE Transactions on Antennas and Propagation, Vol. AP-35, No. 12, De-

32



[14]

[15]

[16]

[17]

[18]

[19]

cember 1987.

J. L. Volakis, "High frequency scattering by a thin material half-plane and
strip,” Radio Science, Vol. 23, No. 3, pp. 450-462, May-June 1988.

J. M. L. Bernard, ”Diffraction by metallic wedge covered with a dielectric

material,” Journal of Wave Motion, Vol. 9, pp. 543-561, 1987.

J. L. Volakis and T. B. A. Senior, ” Diffraction by a coated wedge using second
and third order generalized boundary conditions,” Radiation Laboratory Re-
port 388967-8-T, The University of Michigan, Ann Arbor, Michigan, Septem-
ber 1988.

P. C. Clemmow, ” A method for the exact solution of a class of two-dimensional

diffraction problems,” Proc. Roy. Soc. A, Vol. 205, pp. 286-308, 1951.

J. R. Pace and R. Mittra, ” Generalized scattering matrix analysis of waveguide
discontinuity problems,” Proc. Symp. Quasi-Optics, Vol. 14, Brooklyn, N.Y .,
Polytechnic Inst. of Brooklyn Press, pp. 177-197, 1964.

R. G. Kouyoumjian, ” The general theory of diffraction and its applications,” in

Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed.,

New York, Springer-Verlag, 1975.

33






(g, W) perfectly conducting

DMIIMXY

Figure #1. Material slab recessed in a perfectly conducting ground plane.
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Figure #2. Grounded material slab with truncated upper plate.
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Figure #3. Material discontinuity in a grounded material slab.
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Task 4: NUMERICAL IMPLEMENTATION OF
GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS

Period Covered: September 1988 - February 1989
Investigators: K. Barkeshli and J. L Volakis

Task Description: This task deals with the development of numerical solutions

based on the generalized impedance boundary conditions (GIBCs). The purpose
of this task is to demonstrate the efficiency and simplicity associated with GIBC

solutions as well as examine their limitations.
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1 Background

Traditionally, the standard impedance condition (SIBC) [1] has been employed
to simulate thin material layers on perfectly conducting objects. As is well known,
however, the SIBC provides limited accuracy and is particularly applicable to
lossy and/or high contrast dielectrics. This is primarily because it cannot model
the polarization current components that are normal to the dielectric layer. As
a result, the SIBC has been found to be best suited for near normal incidence,
unless the coating’s material properties are such that it limits penetration within
the material.

The SIBC is a first order condition in that its definition involves a single normal
derivative of the component of the field normal to the modeled surface. Recently
[2], however, a class of boundary conditions were proposed whose major character-
istic is the inclusion of higher order derivatives (along the direction of the surface
normal) of the normal field components. These were originally introduced by Karp
and Karal [3] and Weinstein [4] to simulate surface wave effects, but have been
found to be rather general in nature. In fact, they can be employed to simulate
any material profile with a suitable choice of the (constant) derivative coefficients.
Appropriately, they are referred to as generalized impedance boundary conditions
(GIBCs) and can be written either in terms of tangential or normal derivatives
provided a duality condition is satisfied [2]. Unlike the SIBC they offer several
degrees of freedom and allow an accurate prediction of the surface reflected fields
at oblique incidences. This was demonstrated in [2] for the infinite planar surface

formed by a uniform dielectric layer on a ground plane. It was found that the
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maximum coating or layer thickness that can be simulated accurately with a given
GIBC was analogous to the highest derivative included in the condition.

Task 3 dealt with analytical solutions using the GIBCs. Under this task, we ex-
amine numerical solutions based on the GIBCs. It is found that integral equations
based on the GIBCs are amenable to a conjugate gradient FFT solution having an

O(N) memory requirement.

2 Progress

A detailed report describing our progress during this period was written and
submitted to the sponsor. The report is entitled “TE Scattering by a Two-
dimensional Groove in a Ground Plane” (University of Michigan Radiation Labo-

ratory report 025921-2-T). A summary of the report follows.

3 Report Summary

An application of a third order generalized boundary condition (GIBC) to scat-
tering by a two-dimensional dielectrically filled cavity was considered (see figures
1 and 2). In the process of examining the accuracy of the GIBC, an exact solution
was developed and a solution based on the standard impedance boundary con-
dition (SIBC) was examined. An analytical comparison of the integral equation
based on the SIBC with the exact revealed the well known limitations of the SIBC
formulation (see figure 3). It was concluded that the SIBC integral equation will,
at most, generate an average of the actual current distribution provided the groove

is very shallow.
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The GIBC integral equation was found easier to implement. Furthermore, un-
like the exact integral equation, it was amenable to a conjugate gradient FFT so-
lution and is, thus, attractive for three dimensional implementations. It was found
to predict the correct current behavior reasonably well away from the terminations
of the groove, particularly for lossy dielectric fillings (see figure 4). However, the
inadequacy of the GIBC formulation near the groove terminations proved problem-
atic. The GIBC conditions needed supplementation in these regions and several
approaches were examined to correct this deficiency. Our inital hope was that the
addition of filamentary currents at the edges would provide the required correction
as was already done in the case of an isolated thin dielectric layer. This approach,
however, was not found suitable for the subject geometry. Instead, the incorrect
currents near the groove terminations were replaced with those computed via the
exact integral equations. Specifically, the currents computed via the GIBC for-
mulation away from the groove termination were employed in the exact integral
equation to generate a small 4x4 or a 6x6 matrix for the currents in the vicinity
of the terminations. This was referred to as a hybrid exact-GIBC approach and
was found to provide a reasonably good simulation (see figure 6) of the lossy di-
electric fillings at all angles of incidence and observation. In case of lossless and
low contrast dielectrics, the simulation was adequate for groove depths up to 3/20

of a wavelength.
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Fig. 1. Geometry of the rectangular groove in a ground plane
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