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AN APPROACH TO DISTRIBUTED EXECUTION OF
ADA! PROGRAMS ?

R. A. Volz
P. Krishnan
R. Theriault

The Robotics Research Laboratory
Electrical Engineering and Computer Science Dept.
The University of Michigan
Ann Arbor, Michigan 48109

Abstract

Intelligent control of the Space Station will require the coordinated execution of
computer programs across a substantial number of computing elements. It will be
important to develop large subsets of these programs in the form of a single program
which executes in a distributed fashion across a number of processors. In this pa-
per we describe a translation strategy for distributed execution of Ada programs in
which library packages and subprograms may be distributed. A preliminary version
of the translator is operational. Simple data objects (no records or arrays as yet),
subprograms, and static tasks may be referenced remotely.

i. INTRODUCTION

Intelligent control of the Space Station will require the coordinated execution of
computer programs across a substantial number of computing elements. It will be
important to develop large subsets of these programs in the form of a single program
which executes in a distributed fashion acorss a number of processors. The single
program approach to programming closely coordinated actions of multiple com-
puters allows the advantages of language level software engineering developments,
e.g., abstract data types, separate compilation of specifications and implementa-
tions, and extensive compile time error checking to be fully realized across machine
boundaries. In this paper we describe one approach to a translation system for
distributed execution of Ada programs. We consider loosely coupled homogeneous

1Ada is a registered trademark of the U. S. Government (Ada Joint Program Office)
2This work has been sponsored by General Dynamics, General Motors, and NASA



systems in which the program/processor binding is specified within the distributed
program (static binding).

There have been a number of proposals for distributed programming languages,
(1], [2], [3]. [4], [5], [6], |7],& [8] to name but a few. Most of these language proposals
have emphasized models for communication and synchronization and/or a unified
treatment of data abstractions and multi-processing that are amenable to correct-
ness proving. With few exceptions, e.g. 7], however, they have considered neither
the real-time aspects of the languages nor the full problem space (see [9]) involved
in distributed execution. Only a few of these languages likely to see widespread
adoption and use, though of the important principals they lay down are likely be
adopted in future language designs.

Ada, on the other hand, will see widespread use, and explicitly admits dis-
tributed execution. As yet, there have been only a few attempts at actually dis-
tributing its execution. Tedd, et. al. [10], describe an approach that is based upon
clustering resources into tightly coupled nodes (shared bus) having digital commu-
nications arnong the nodes. They then limit the language definition for inter-node
operations (e.g., no shared variables on cross node references); they are currently in
the process of implementing their approach. Cornhill has introduced the notion of a
separate partitioning language [11] that can be used to describe how a program is to
be partitioned after the program is written. [12] describes this language in greater
detail again neither of these approaches recognizes the full problem space involved
in the distributed execution of programs. Again, neither of these approaches recog-
nizes the full problem space involved in the distributed execution of programs. [9]
describes a number of difficulties which both approaches must face if they are to
remain within the current Ada definition.

[9] introduces three major dimensions to the problem of distributed program
execution: the memory access architecture, the binding time, and the degree of
homogeneity. The range of distributed execution systems that can be represented
by these dimensions is larger than any of the distributed language efforts to date,
including Ada, can address. For example, one of the major design decisions that
must be made in a distributed language is the units of the language that may
be distributed. It is likely that one will want to make the distributable units a
function of these dimensions. For example, one may want to allow shared variables
for some architectures and disallow them for others. [10] does this by disallowing
shared variables across node boundaries. Yet the Ada Reference Manual is not
clear on this point. There are also questions of to what extent the specification of
distribution should be part of the language (as opposed to being stated in a separate
configuration phase); [9] discusses these and several other issues. It is clear that the

Ada language definition is really not complete with respect distributed execution.

The work described in this paper is, thus, principally an experimental device to
help identify the basic issues and point toward their solution. We restrict considera-
tion to homogeneous loosely coupled computers with static binding specified within
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the program (one point in the problem space indentified in [9]), and follow the sug-
gestion in [9] and allow only library packages and subprograms to be distributed.
We endeavor to avoid placing any further restrictions on the language, and study
the implications of effecting distributed execution within these constraints. This
implies the need for remote access to data objects, subprograms and tasks.

Rather than write a complete Ada translator, we adopt a pretranslator approach
in which we translate a distributed Ada program ( - in our system a distributed
Ada program is a normal Ada program with SITE pragmas indicating where units
are to be placed) into a set of normal Ada programs. We then use existing Ada
compilers to translate each of the programs in the set. This approach has the dual
goals of being a simpler experimental mechanism and utilizing existing work where
possible. It also has a few limitations, which will be pointed out in the remainder
of the paper.

The next section presents an overview of the approach. Section 3 then discusses
the critical problems and the details of the approach taken. Section 4 analyzes the
project performance of the method and section 5 summarizes the current status of
the work and discusses directions that must be explored in the future.

2. OVERVIEW OF THE PROBLEM AND APPROACH

The Problem

We presume that the computers upon which a program is to be distributed are
interconnected by a communication network, as shown in figure 1. Since we are
allowing distribution of library packages and subprograms, our translation system
must provide a means of accomplishing the following remote operations:

o Access to procedures and functions declared in remote library units,

o Reading and writing of data objects declared in remote library packages (and
hence stored remotely), i.e., remotely shared data is allowed in our model,

e Making [timed/conditional] entry calls on tasks declared in remote library
packages,

e Declaring/allocating (local) variables whose types are declared in remote li-
brary packages,

¢ Elaborating tasks whose types are declared in remote library packages,

e Managing task termination for tasks elaborated across machine boundaries.

The approach



The first issue that must be considered is the representation of the distribution.
In our system, we write a single program and place a pragma called SITE before
each library unit to specify the location on which that library unit is to reside. For
example, consider a mobile space robot system consisting of several mobile vehicles
(each with a robot mounted on it) and an overall system controller. If it were desired
to have one vehicle controlled by computer number 2 and the overall control using
it (as well as several other similar systems) placed on computer 1, a sample of the
relevant code would look as follows:

pragma SITE (2);

package VEHICLE is
procedure MOVE(..);

end VEHICLE;

pragma SITE(1);
with VEHICLE;
procedure CONTROL is

begin

VEHICLEMOVE(..);

end CONTROL;

Figure 2 illustrates the overall operation of our system. A pre-translator trans-
lates our single Ada program with SITE pragmas into a set of independent Ada pro-
grams which include library modules of our design to effect communication among
processes. The translation system would replace all calls (within CONTROL) to
the procedure VEHICLE.MOVE(..) with the appropriate remote procedure call.
Similarly any references in CONTROL to data objects or task entries defined in
package VEHICLE would be translated into appropriate remote references. Each
of the individual programs can thus be compiled by an existing Ada compiler. This
approach simplifies the translation process considerably since our pre-translator is
much less complex than a full Ada compiler.

The remote operations and interprocess communication are managed by a set of
agentscreated for units that can be remotely referenced and an underlying process to
process mailbox system: During the pass through the pre-translator, all references
to remote objects are replaced with appropriate references to agents. Each program
unit (for example, suppose it is unit A) which might be referenced from another,
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remote, unit (call it B) has three categories of agents associated with it. There
is a local agent on the site holding A, a remote agent on the site holding B (and
every other site referencing A), and a pointer agent placed on the same site as
the local agent. A is essentially unchanged by the pre-translator, and both the
local and remote agents can be generated from only the specification of A. All
references within B to code or data objects in A are translated into appropriate
calls to the remote agent of A (which resides on the same site as B), which in turn
uses the message system to pass the service request to the local agent of A. The
local agent performs the necessary functions, returning any objects requested. The
pointer agent serves to propagate object accesses involving access variables pointing
to other sites, and is only required if such access variables are used.

The relevant entities and flow of data for the example above are shown in Figure
3. CONTROL.T is the translation of CONTROL with the references to objects in
VEHICLE replaced with calls into VEHICLE REM_AGENT.

3. TRANSLATION STRATEGY

In order to solve the problems raised in the previous section the following issues
must be resolved:

o development of a general remote object accessing methodology,

¢ translation of source code references to remote objects,

¢ management of other remote service functions, e.g., creating objects, and
e generation of the agents.

The solution to these problems, while leading to reasonably efficient code, involves
a rather complex set of multiple pass operations and the generation and use of a
number of auxiliary files of intermediate information. Thus, a set of utilities also are
needed to allow the user to perform these operations in a straightforward manner.

By far the most complex of these issues is the development of a general remote
object accessing method. This is complicated by the need to address arbitrarily
nested record and array components and the fact that component pointers may
point to logically nested records or arrays on other processors. We thus concentrate
our discussion on matters relating to object access. The solution to most of the
other issues follows the resolution of this problem in a reasonably straightforward
manner.

The structure of the agents is critical to solving this problem, and is generally in
three parts: 1) elements to access code objects, 2) elements to manage the address
chain leading through qualified names of records and arrays, and 3) elements to
manage other services. The interprocessor mail system and message structure is
closely integrated with the agent structure.
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We begin this section with a discussion of the overall agent structure and its use
for accessing code objects, and then discuss related important issues of access via
fully qualified names, the postal message structure, and the translation process.

Agent Structure

As mentioned in the previous section, three kinds of agents are generated when-
ever a library unit specification is encountered by the pretranslator: a local agent, a
remote agent, and a pointer agent. Each agent is generated as a separate package,
and assigned a unique name that is derived from the source package name. The
agents can be generated simply from the package or subprogram specifications.

The terms local and remote agent are used with respect to the processor holding
the library unit which they represent. That is, the local agent resides on the same
node as the unit it represents, while the remote agent resides at each other node
referencing the unit. Thus, a remote action of some kind begins with the referencing
unit making a call (after it is processed by the pre-translator) to the remote agent
of the unit being accessed. For example, if the cell controller CONTROL makes a
call to VEHICLE.MOVE(..), the translated procedure CONTROL.T makes a call
to the remote agent VEHICLE_REM_AGENT. We thus consider remote agents first.

Remote Agents

Remote agents are merely collections of procedures and functions that effect
remote calls. In the case of subprogram and task entry calls, they present an inter-
face to the calling package identical to that of the original source package. In our
previous example, the package VEHICLE_REM_AGENT will contain a procedure
MOVE(..) that will receive the call intended for package VEHICLE. These proce-
dures and functions format an appropriate message record (described below), and
dispatch it to the appropriate site via the postal service. When a return value is
received from the local agent (on the other processor) via the postal service, this
value will be returned to the calling unit. From the perspective of the calling unit,
the facts that the action is remote and that there are (at least) two agents in be-
tween it and the called unit are transparent, except for the longer time required.
Thus, no translation of subprogram or (simple) task calls is required in the calling
unit, unless they use arguments residing remotely.

In the case of remote data object references, a transparent interface is not pos-
sible. Instead, a set of procedures to get and put the values of remote objects of
various types is generated. Again, these procedures are generated from the speci-
fication of the library package being referenced. In this case, the referencing unit
(CONTROL in our previous example) must be translated to replace the object ref-
erence with a call to the appropriate get or put routine. Since the get and put
routines can be overloaded (with respect to the specific argument types used) the
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translation is straightforward. The specific arguments used and the detailed actions
of the get and put routines are closely intertwined with the management of fully
qualified names, and will be discussed later.

Two other points are worth mentioning. Since the structure of the remote agent
was chosen to minimize the impact on the referencing unit, the translation required
by the pretranslator is a minimum. Also, since sending and receiving messages
from another processor is time consuming (relative to normal instruction processing
times), the point after the transmission of a message is treated as a sychronization
point so that other tasks may obtain the services of the cpu while the reply to the
message is in progress.

Local Agents

The local agents are the most complicated of the three agent types. Their task
is to service requests from remote sites needing to access data objects, subprograms,
or task entries. A local agent consists of N+2 tasks where N is the total number of
functions, procedures, and task entries, contained in the source specification of the
unit the agent is helping to represent. One of these tasks is associated with each of
the aforementioned subprograms and task entries.

One of the remaining two tasks is designated as the local agent main task. This
task consists of a single loop that requests message records from the postal service
(via a task entry call), interprets the request, and dispatches the request to the ap-
propriate handler (task or procedure) within the local agent. Messages requesting
access to data objects, are serviced immediately within the main task by calling a
GETPUT procedure (described below) and an immediate reply is sent.

with PACKAGE_NAME; package being represented
task body AGENT_MAIN is
M: MESSAGE_TYPE;

begin
loop
POSTALMAIL_BOX.GET(M); - - get message
case M.OBJ_LENUM is - - Branch according to object name.

- - Object references
when NAME_1 => GETPUT(M, PACKAGENAME.NAME.1);

when NAME K => GETPUT(M, PACKAGE NAME.NAME K);
- - Subprogram calls and task entries
when NAME K1 => MANAGER.DEPOSIT NAME K1(M);

when NAME_N => MANAGER.DEPOSIT_NAME_N(M);
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end case;
SEND_RETURN(M);
end loop;
end AGENT . MAIN;

The above abstraction is only for a single distributed package. Actually, the message
type would be embedded in a yet more general record having a varient part for each
distributed package, and the actual code would be slightly more involved.

It is imperative that the main task not be blocked for it provides concurrent
access to all objects and types in the specification of the unit it represents, and if
blocking occurred here, other, parallel, requests could be delayed. In particular,
the agent must not be blocked by a unit it calls on behalf of a remote client, as
could occur if the agent directly called the unit (the subprogram called might, for
instance, become blocked on an I/O wait). That is why a task is associated with
each subprogram and task entry. The main task places the message received in a
buffer, by calling an entry in a buffer manager task (the last of the tasks in the
local agent). A flag counter corresponding to the requested call is also incremented
at this time. ,

The buffer manager task has N additional entries, whose acceptances are condi-
tioned on a positive value of each of the corresponding N counters (indicating that
there is a message to be retrieved).. There are N call manager tasks (the N tasks
corresponding to subprograms and task entries), whose sole purpose is to retrieve a
message record from the corresponding conditional task entry in the buffer manager
task, execute the appropriate call to the source package body, and then return a
reply to the remote site.

The following code abstraction illustrates the manager task and the tasks cor-
responding to the subprograms and task entries that may be called.

task MANAGER is
entry DEPOSIT_E1(MESG : in MESSAGE);
entry DEPOSIT _S1(MESG : in MESSAGE);

entry EXTRACT_E1(MESG : out MESSAGE);
entry EXTRACT_S1(MESG : out MESSAGE);

end;

task body MANAGER is

E_FLAG: array(1.MAX_ENTRIES) of INTEGER;
begin

loop



select
accept DEPOSIT_E1(MESG : in MESSAGE) do
- - deposit the message for el
E_FLAG(1) := EFLAG(1) + 1;
end;

or
when EFLAG(1) >0=>
accept EXTRACT_E1(MESG : out MESSAGE) do
- - extract a message from the buffer and return it
E_FLAG(1) := EFLAG(1) -1
end;

end select;
end loop;
end MANAGER;

The suffix EI indicates the Ith entry point, and the suffix SI indicates the Ith sub-
program. The structure of the entry task for entry E1 is as follows:

task DO_E1
begin
loop
MANAGER.EXTRACT.E1( );
E1();
- - send back message;

end loop;
end DO_E];

The messages are provided by a mailbox system that delivers messages to the
correct local agent. The message interpretation and task calls by the agent essen-
tially achieves a routine to routine communication between routines in the remote
and local agents in a way that prevents delays in the response to one request from
locking out other parallel requests.

Pointer agents



Our allowed model of distribution permits access variables to point to objects
on machines other than the one holding the access variable. Since access variables,
as defined within a local Ada program, clearly cannot contain both the machine
identity and an address, whenever an access type definition is encountered in the
source package, it is replaced by a record structure containing two fields: a site
number, and the original access type. This new record type is then used in place of
the access type. The site number is always checked against the current site number,
to determine whether the object being pointed to is on the local site, or on a remote
site.

Because access variables can be passed from one machine to another, it is possi-
ble for a processor to hold an access variable pointing to an object on a site which
it does not directly reference and for which it does not therefore have an agent.
We therefore include pointer agents to allow access to objects on remote sites. The
structure of pointer agents is similar to that of local agents, except that provision
for subprogram calls need not be made.

Remote Data Object Access

Three characteristics of Ada data objects cause difficulty in developing a gen-
eral mechanism for handling references to remote objects: 1) the objects may be
composite objects, 2) they may have concatenated names, and 3) parts of a fully
concatenated name may be access variables pointing to objects on other machines.

The first issue manifests itself when one must copy a composite object (as op-
posed to a component of the object) from one site to another. For example, suppose
that site 2 uses a record A on the right hand of an assignment statement and that
A is located on site 1. Eventually, the agent and message system must convert A
to a bit string for transmission. It would usually be desireable that the part of the
system that performs the conversion not be aware of the structure of the object
(from object oriented design principles). However, if the object contains a mem-
ory address as part of its structure, the result received could be meaningless. For
example, suppose the record A contains a variable length array, as shown below.

subtype S is INTEGER range 1. MAX;
type IA is array (INTEGER range <>) of INTEGER,;
type R(L: S:=1) is
record
B: IA(1..L);
C: INTEGER := 0;
end record;
A: R;

One decision for the memory allocation for the record might be to allocate the
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storage for the array from a heap and place only a pointer to the array (or possibly its
dope vector) in the record. The need to perform whole object (record) assignments
in Ada might discourage such a memory allocation scheme, but nevertheless, it
is certainly a possibility. A bit by bit copy of the block of data corresponding
to the record A, would then copy this address, which would have no usefulness
when received by the requesting unit; in particular, the bit by bit copy of the
record block would not result in the array values being transmitted. To avoid this
problem, the routine that does the final message transmission must, indeed, contrary
to the above assumption, have knowledge of the record structure so that the array
values themselves may be transmitted, and not just the address of the array. Since
we are describing a pre-translator approach that uses existing Ada compilers, this
knowledge is dependent upon the implementation of the underlying compilers used.

To see the second issue, suppose that site 2 contains a statement like X := A.C.
How does one construct an address for A.C? Or describe, in a general way, to the
agents what element is to be returned? The syntax “A.C” exists only on site 2, and
the only information available there from the specification of the package containing
A is the logical record structure of A, not its physical structure. Again, implementa-
tion dependent knowledge of the rules used for construction of the physical structure
of records is necessary.

If one were to now add a fourth component, D, to the type R above, that is an
access type, and if the value of A.D were to point to another record stored on site
3, the third issue arises. The method used to calculate the address of the item to be
retrieved must not only contain implementation dependent knowledge, but it must
be distributed as well.

Strateqies for Remote Object Access

We are studying two methods of obtaining composite (as well as scalar) objects:
1) using knowledge of the rules for storage allocation and physcial record and array
construction, develop the distributed algorithms for calculating the address of the
target object and then implement these, possibly in assembly or some other lower
level language, and 2) use minimal implementation dependent knowledge and the
logical structure of records and arrays to utilize standard Ada mechanisms to per-
form the object transfers. We expect the former to lead to more compact (in terms
of code size) solutions, but to require a more detailed knowledge of the internal
workings of the underlying compilers, while the latter will require less knowledge of
the internal mechanisms used by the compilers at the expense of a larger amount
of code (automatically generated, however) in the agents. Since the latter is also
more in keeping with the philosophy of using existing compilers where possible with
minimal knowledge of their internals, and since developing this approach will aid
in developing the algorithms for the first approach, we have followed this one first,
and it is this one that will be described below. In subsequent work, we will explore
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the direct calculation of object addresses.
Accem to remote objects is based upon the following things:

e Anenumerated type, T_ ENUM, whose values are the names of every type and
field declared in the package for which an agent is being generated, and those
in packages included via a with.

e An enumerated type, NNENUM, whose values are the names of every data
object declared in the package for which an agent is being generated, and
those in packages included via a with.

o A collection of GETPUT procedures, one for each record or array type defined,
whose functions are to either handle the request for an object reference if the
request is for an object of the type the GETPUT handles, or to call another
GETPUT if the object requested is, or is derived from, one of the fields of the

type.

e A variant message structure containing appropriate fields indicating the type
of data required, the fields within records to be used, and an actual data
object of the type being referenced.

From the perspective of the local agent, a remote direct (not via access variables)
data object access begins with the local agent main task receving a message from
the postal system. One of the fields in this record contains a value of type NN ENUM
that indicates the outermost name in the fully qualified name of the object being
referenced. The local agent main task then performs a case statement on this value.
There is thus a case for each object name. Each case calls a GETPUT procedure
and passes it the message, the object named, and a count of the number of name
components to the fully contatenated name sought (including array arguments).

If the object passed is a scalar object, the count will be zero and the request can
be satisfied directly by the GETPUT procedure by simply copying a value between
the appropriate field in the message record and the object passed to it. Another
field in the message record contains the type of the object to be returned.

If the COUNT is not zero, then either an array element is being sought, or a
fully concatenated name has not yet been fully expanded. In the former case, the
indices for the array element (or slice) are contained in other fields of the message
record and the GETPUT can select the appropriate element(s) of the array. These
either directly satisfy the request or are used to recurse as described next. _

If the GETPUT is handling a record type, there will be another field in the mes-
sage recard corresponding to this type of record which will contain a value of type
T_ENUM (containing the field name to be selected). The GETPUT contains a case
statement conditioned on this field indicator. There is thus a case corresponding to
each field possible in the record. The action of each branch of the case is similar.
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Another GETPUT is called, passing to it the message record and object pointed to
by a concatenation of the object name passed in and the corresponding field name.

Below is an abstraction of a typical GETPUT routine for a record type. The
forms for other types are similar, but tend to be even a bit simpler.

procedure GETPUT(M: in out MESSAGE; OBJ: in out T; COUNT: NATURAL) i
begin
COUNT := COUNT - 1;
if COUNT = 0 then - - the name is fully expanded
if <a get request> then
- - copy value from OBJ to appropriate field in message record;
else
- - copy value from appropriate field in message record to OBJ;
end if;
return;
end if;
case <field name from message record> is
when F1 => GETPUT(M, OBJ.F1,COUNT);

when FN => GETPUT(M, OBJ.FN,COUNT);
end case;
end;

Here T is a record type of an object being passed in and F1..FN are the fields in
the record type. If one of the fields, FI, say, were an access variable, that access
variable would have been replaced by a record (as described in the pointer agent
section above) and the action for the corresponding case would first check to see if
the requested object were on the current site or elsewhere. I local, then the call
to GETPUT would be made as shown above. If elsewhere, then an appropriate
message would be propagated to the pointer agent on the indicated site.

Message Record Structure

The interprocessor message structure is key to the operation of the above object
referencing scheme. For each source package, a different message record type is
defined. These records consist of a fixed part, and a variant part. There is one case
of the variant part for each type of data object defined in the source package. In
the case of a subprogram or task entry call, the variant part of the record contains
fields for all of the arguments, and if applicable, a function result. The fixed part
of the record contains field selectors which are used for accessing fields of records,
as described above. A simple example of 2 message record type is given below. It
should be self-explainatory from the previous discussion.
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type MESS.T( DATA.TYPE: T.EENUM ) is
record
OBJ_LENUM : NENUM ; - - indicates outermost object
TYPE1.FIELD : T . ENUM; - - record type TYPE1
TYPE2.X1: TYPE2X1.T; --2-dim array type TYPE2
TYPE2X2 : TYPE2.X2.T;

case DATA_TYPE is - - reflects data to be exchanged
when TYPE1D =>
TYPE1_VAL : TYPE]L;
when TYPE2.D =>
TYTE2_VAL : TYPE2;
when CALL1.D => - - function CALL1
CALL1_ARGI1 : FLOAT;
CALL1_RESULT : FLOAT;
when CALL2D => - - subprogram CALL2
CALL2_ARG1 : INTEGER;
CALL2_ARG2 : INTEGER,;
when FLOATD =>
FLOAT_VAL : FLOAT;
when INTEGERD =>
INTEGER.VAL : INTEGER;
end case;
end record;
end;

Since the postal service deals with all types of messages, a global message record
type is defined. The global message record also consists of a fixed part, and a vari-
ant part. The various cases of the variant part are, as one might guess, merely
the different message records for each source package. The fixed part contains the
destination package number, and the return address, which consists of the source
site number, and a logical channel number.

Translation Procedure

The translations required for the methods outlined above involve numerous steps
and are quite involved. In this section we describe briefly the procedures to be used
and a utility that has been prepared to simplify use of the pre-translator.

The first step in the translation procedure is to insure that the program to be
distributed is correct. This is accomplished by compiling it for a single system. The
programmer must do this before invoking the pre-translator.
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When a correct program is available, the translation and compilation procedure
consists of the following steps:-1) determination of the order of pretranslation of
source files, 2) pretranslation of source files, 3) pre-link operations, 4) determination
of the order of compilation of original sources (including agents) for target sites, 5)
compiling and linking of individual site programs. Two utilities have been written
to facilitate some of these steps.

The pre-compilation utility (ADAUTIL) will translate the network of package
dependencies implicit in a set of source files to a set of file dependencies in Unix
“makefile® format. The list of relevant source files must be specified, and one or
more targets (main programs) must be specified. Since the order of pretranslation
is identical to the order of Ada compilation, ADAUTIL takes an option specifying
whether a makefile to run the pretranslator, or a makefile to run the Ada compiler
is desired.

The second utility, called MESSUTIL, performs step three above. The opera-
tions done during setp 3 are: 1) constructing the global message record from all
relevant package message records, 2) constructing a package of package site con-
stants, 3) constructing main procedures for each site, and 4) constructing a meta
makefile capable of performing steps 4 and 5 above.

Two scripts were written to simplify the pretranslation process. One script per-
forms steps 1 to 3 above, and the other invokes the meta makefile, to perform steps
4 and 5. f any non-Ada object modules need to be linked into any site, the meta
makefile may be edited in between the running of the two scripts.

4. DISCUSSION OF THE APPROACH

One of our principal concerns with the system developed is the run-time overhead
associated with the mechanisms we used. We can model this performance in terms
of the run-time overhead associated with various kinds of remote references. From
the tests performed in [13] we know that task rendezvous times exceed procedure call
times by one and a half to two orders of magnitude, and that task elaboration times
are several times larger than rendezvous times. We can also reasonably expect the
network communications times to be sizable. For example message end-to-end times
for MAP are on the order of 100ms, more or less independent of message size [14],
for the Intel hypercube, a few milliseconds, and for the NCUBE hypercube, several
hundred microseconds to a millisecond, where the latter two depend somewhat upon
message size, the variable component of message size being 1-10 microseconds/byte
[15]. We thus neglect all local procedure and function call times, and model our
overhead in terms of the number of messages and rendezvous required.

Thus, let t,, and t, be the times to complete a message transfer and local ren-
dezvous, respectively and let nj, and n; be the number of messages and local ren-
dezvous required for a remote operation of type o. Then, the time to complete a
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remote operation is
ny - Tu+n-t,

In these cases, we represent the overhead by the pair (n?,,n?).

Whenever there are task elaborations involved, we represent the number by E. It
is listed separately since it is generally not necessary to do the task elaboration with
each access, but only when tasks or procedures are first elaborated. Nevertheless,
even though many of these need be done only once immediately after system load,
the number of tasks in the system could have an impact on the scheduling algorithms
to be used and the efficiency of any runtime system, and the number E is thus
important.

The following sections present briefly the costs associated with each of the re-
mote operations.

Data Objects — (2,4), E=0

Access/Updates to data objects require two messages and four rendezvous. One
message is to send the request and the second to receive an acknowledgement. The
rendezvous are for the mail system. This presumes that the requested object is
on the first remote site accessed. If there is a continuation to other sites through
pointers, the above numbers must be mulitplied by the number of remote accesses
required to satisfy the request.

Task Objects — (2, 6), E = # of entries

Task objects are accessed through entry calls. This requires two messages as for
data objects and six rendezvous for synchronization (4 for the mail system and 2
for the handler).

The number of task elaborations that need to be done initially is equal to the
number of entries to the task. Entry calls to task objects created from task types
require no special handling by themselves. However, each task object created from
a remote type requires two messages for creation and four rendezvous for synchro-
nization. All further access are as in the case of task objects.

Procedures and Functions —(2,6); E =1

Since the local agent treats procedure and function calls in the same way as task
entry calls, the analysis is analogous.

Pointers

There are two factors to consider here, the overhead when the object pointed to
is remote, and the overhead when the object is local. Remember that all pointers
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are replaced with records having a site number and a pointer. This requires that
all accesses via pointers begin with a check of whether or not the object is local
or remote. If remote, the time of the check will be insignificant in comparison to
the time required for the remote access and may be neglected. In this case the
overhead depends upon the type of objected being referenced, and will follow the
results obtained above.

However, if the access is local, the overhead is more significant. The exact
amount of degradation will depend upon how an individual compiler implements
pointer accesses and if then else constructs. In a simple test in which we wrote
as efficient assembly language code as we could for local pointer accesses with and
without the pointer record construct used here, the difference was a factor of four.
In interpreting this, however, one must take into account the magnitude of time
involved (only a few microseconds are the most) and the frequency of occurence.
With these considerations taken into account, we do not feel that much overall time
will be added to local accesses.

Summary Analysis Comments

To place the above analyses in perspective, one must compare typical times for
message transfers and rendezvous. Some typical network times were mentioned
above. Rendezvous times on the order of 500-600 microseconds have been reported
for an 8 mhz IBM PC/AT, and on the order of 300-400 microseconds for Motorola
68000 processors. It is also the case that these times have been dropping significantly
with each new release of Ada compilers intended for real-time applications, and are
predicted by Ada vendors to become yet considerably smaller over the next year or
two. Thus, except for the fastest networks, the message times will either be close to
the rendezvous times or dominate them, and the approach taken will be primarily
influenced by the network message times.

There is further issue that may be of concern, the number of tasks and GETPUT
routines needed in the local agents. These have a linear dependence upon the num-
ber of entries (and subprograms) and types present in a remotely accessed package.
While this may seem rather large, one is not likely to access a large number of
things remotely, and those that are accessed remotely can be packaged separately
from those that are not, thus keeping the number of extra tasks and routines to a
minimam.

5. STATUS AND CONCLUSIONS

At the present time, the distributed translation system is operational for dis-
tributed packages with simple objects in their visible parts, i.e., no record or array
definitions. Scalar data objects, subprograms and declared tasks may be directly
referenced (no timed or contional calls). Tests have been successfully completed
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with up to three VAX processors cooperating on the execution of a single program.
The implementation of the strategy described for referencing arrays and records
(with fully concatenated names) is nearly complete, and expected to be in opera-
tion within a few weeks.

Nevertheless, there is still considerable work to be accomplished before the dis-
tribution of library packages and subprograms is complete. Although the strat-
egy has been determined (see [16]), work has not yet been begun on handling
timed/conditional task entry calls. Similarly, the dynamic creation of tasks is not
complete. Two strategies will be implemented in this case. In the first, the created
objects will be placed on the site elaborating the definition of the task type. In
the second, the task object will be placed on the site creating the task through
a declaration or new operator. The first is simpler to implement, but may make
the task objects remote from the unit executing the code calling for their creation,
while the second implementation is considerably more complex, and as noted in [9],
may contain hidden remote object references. Finally, task termination must be
properly handled.

More importantly, there are many issues of language definition that must be
addressed. Our work has only addressed one point in the problem space to date,
homogeneous, loosely coupled systems with static distribution. Additional represen-
tation mechanisms are needed to describe limitations dependent upon architectural
considerations, to describe binding mechanisms, and to describe processor types
(so that implicit data conversions can be accomplished). Moreover, it is probably
necessary to require greater use of representational specifications on data objects to
which remote access is allowed. Finally, there should be a more explicit definition
of the allowed units of distribution.
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Figure 1: Loosely coupled system upon which we seek distributed program execution
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Figure 2: Overall operation of translation system
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