RSD-TR-7-87

INSTRUCTION LEVEL MECHANISMS FOR ACCURATE

REAL-TIME TASK SCHEDULING

Richard A. Volz

Trevor N. Mudge

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michgian 48109

April 1987

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING

Robot Systems Division
College of Engineering

The University of Michigan
Ann Arbor, Michigan 48109

1.

3.1.

3.2.

RSD-TR-7-87

TABLE OF CONTENTS

INErOAUCHION ...t e 1
Current Modes of Operation and Their Limitations 2
Basic Timing Functions for Real-Time Task Scheduling 5
Programmable Absolute Timercoooeceeevcceeieiiiieiiiieeeninnns b}
Simple Scheduling Modelc.ccoemmvimveciiiieeeeieeeannn, 8
Language Level ISSUEScoocovveiviceiiiniiiieeieeiieeeee e 10
Summary and Conclusioncccoevvveevecvienieeniecieeeeenenns 13
REferenceooocoiivouiiiiiiiice et 14

Instruction Level Timing Mechanisms for
Accurate Real-time Task Scheduling *

Richard A. Volz
Trevor N. Mudge

The Robotics Research Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109

December, 1986

Abstract: The scheduling of timed tasks is generally based, at the hardware level,
upon the use of time intervals. For example, most microprocessor families provide their
only hardware support for timing control in the form of a programmable interval timer
chip accessible as an I/O device over the system bus. In this paper we will argue that a
more natural and elegant solution bases timing on a local (to a particular cpu) absolute
timer. Further, we will show that the desired timing functions can be provided by simple
extensions to existing cpu architectures. The widespread use of the “time interval” view
has also influenced, in a negative way, the design of many programming languages. An
important example is Ada, a language designed with real-time multi-tasking explicitly
in mind. We will describe the difficulty with the current timing methods used in Ada,
and present a method for overcoming the timing weakness by using the proposed timing
mechanisms, while still remaining within the definition of the Ada language.

*This work was sponsored by General Dynamics, contract no. DEY-601540.

1 Introduction

Real-time, multi-tasking processing requires that the activities of the processors be
scheduled in accordance with both timing and external event requirements. Programming
tools used for writing such applications should contain effective mechanisms for managing
system resources to meet these kinds of requirements. Current time management tools
have evolved from a separate development of hardware timers which may be added to
the bus of a computer system and scheduling algorithms which use the timers. The
consequence of this uncoordinated approach has been the development of timing systems
which are largely interval based, inefficient, limited in resolution practically obtainable,
difficult to use, and not readily extended to dealing with distributed systems. In this paper
we argue that a unified approach to the development of software scheduling mechanisms
and supporting hardware yields much more efficient, natural and easy to use tools for
time control. In particular, we suggest that timing control should be expressed in terms
of absolute time at the language level and show that there exist simple extensions to cpu
architectures which make the implementation particularly straightforward and efficient.
The virtues of absolute time have been also discussed elsewhere, [15,16] but these
discussions have not considered an instruction level approach.

The real-time performance of a system is highly dependent upon the performance of
the scheduler, which in turn, is highly dependent upon the timing mechanisms available.
Accordingly, real-time computer systems nearly always contain an interval timer, with
either a fixed or programmable interval, and frequently, but not always, a time of day
clock. If present, the time of day clock is usually of relatively low resolution, and of
little value in scheduling tasks with a high repetition rate. Scheduling at the user level is
typically accomplished by using some type of delay or wait function which puts the user
process to sleep until a specified interval of time has elapsed [1,2,5]. The use of a fixed
interval clock limits the practically achievable timer resolution because of the software
overhead associated with each timer interrupt. This is a limiting factor for many real-time
applications. A programmable interval clock can be used to reduce unessential software
overhead, but care must be taken in managing it to avoid loss of clock ticks [3].

Most modern languages intended for concurrent and/or real-time applications either
have mechanisms for timing control rooted in the use of time intervals or have none at
all. Ada provides a “delay interval” construct to allow a process to delay its execution
by the value of the variable interval [4, section 9.6]. Concurrent C and Concurrent Pascal
utilize similar mechanisms [6,7]. Modula-2 [8] provides no intrinsic timing mechanism
at all. Real-Time Euclid [17] uses techniques of Leinbaugh [15] and Stoyenko [16] to
achieve deadline scheduling of tasks!. Although interval based at the user level, it too

'Deadline scheduling of tasks means specifying the time (or interval) by which a task must complete.

would benefit from use of an absolute timer at the implementation level. Occam [9]
appears to have a construct which references a desired (local) absolute time. It maintains
an internal variable which represents time and can apparently be used to delay until after
a desired time. The syntax for using the AFTER feature does not appear very stable
however; several different versions have appeared in Occam documentation over the past
three years. Moreover, Occam does not maintain a global sense of time, and has a time
resolution too limited for many serious real-time applications. Instruction level support
for Occam’s AFTER construct is available in the Transputer [9], which appears to be
the first computer to provide direct support for an absolute sense of time at the hardware
level, but details on its implementation are not readily available. Since process scheduling
is done by the hardware, it is very difficult to make use of this timer to implement other
kinds of scheduling systems.

Aside from being non-optimal for real-time scheduling activities, interval based
timing causes additional complications for distributed systems which must maintain time
synchronism [10]. The adoption of an absolute sense of time at each node in the system
simplifies user level synchronization problems by reducing them to simply maintaining
synchronism among the individual system clocks.

The next section describes the difficulties with current timing mechanisms. Section
3 then presents a set of underlying support primitives based upon absolute timing which
allow efficient implementation and illustrates their use in a simple scheduling algorithm.
Section 4 describes the use of the new constructs to simplify and improve the efficiency
of timing control in Ada.

2 Current Modes of Operation and Their Limitations

The problems of concem are: 1) scheduling a set of tasks T3,...,T,, so that they are
made ready at the times t,,...,t,, where the times ¢,,...,t, are presumed to be known;
2) scheduling a task to be made ready after some interval of time has elapsed. Algorithms
for selecting the times ¢,,...,t, or the interval are covered elsewhere [11] and are not of
concem here. What is of concem is the interactions between the timer and the scheduler.

In most existing implementations, the timing hardware is designed without regard
for the types of scheduling algorithms best suited for real-time operation and the
schedulers must be written to accommodate existing hardware, with a resulting limitation
in performance. The most common present mode of operation is to use a fixed interval
timer which periodically interrupts the processor and invokes the scheduler. The scheduler
maintains a list of scheduled tasks, the times at which they are to be made ready, and a
software clock. Each time an interrupt occurs the software clock is updated and the list

of scheduled tasks checked to see if any task on it should be made ready. The overhead
associated with updating the clock and checking the task list after each interrupt places a
lower bound on the clock interval which may be used, as this overhead must be incurred
during each interval, regardless of whether or not there is a task to be scheduled.

The use of a programmable count down timer makes an alternative scheduling
discipline possible. Such a timer always counts down at some basic rate (10-100 kHz
are typical). Whenever zero is reached, an interrupt to the processor is generated and
the scheduler invoked. Thus, overhead is incurred only when a scheduling operation is
actually required, and, therefore, it is not necessary to choose a minimum interrupt rate
on the basis of the fraction of processor time taken up by time management. This type
of scheduling is preferred for real-time operations. In the case of the count down timer,
however, the count in the timer must be updated by the scheduler to the interval required
before the next task is to be made ready, and, as described below, this scheme is prone
to errors which can result in a “drift” of the time kept by the system?.

Many vendors offer programmable timers that operate as described above which may
be added as a device on the bus of a computer configuration and used for scheduling
operations (e.g., the Intel 8254 programmable interval timer [12]). A few processors,
e.g., the Intel 8096, even offer on-chip timers. All of these, however, suffer one major
deficiency: they allow a cumulative loss of time under some circumstances. If the timer
receives a new value by a store operation, the time between the occurrence of the previous
interrupt and the store operation is lost. This is of no consequence if no pulse from the
underlying clock generator arrived at the timer during the store. However, if such a pulse
did arrive during or before the store, its effect will be wiped out by the store of a new
value in the timer, resulting in a slow drift of the time maintained on the system (see
Figure 1). The likelihood of such loss of time is accentuated by the presence of other
external devices which might interrupt the processor or cycle steal from the processor
during time management.

One solution to this problem is to add the new interval to the timer rather than store
to it. That is, if interval is the value of the interval timer, and new_interval is the next
delay interval, it is necessary to achieve

interval «— interval + new_interval;

rather than interval — new_interval , to avoid a drift in time. However, the add operation
must also be performed without losing account of any clock pulses that may occur

Throughout this paper we shall use the word “drift” to mean the cumulative loss of time due to missed
clock pulses. Elsewhere it is often used to describe the variations in the behavior of the oscillator producing
the clock pulses. This latter phenomenon is a function of the physical environment and cannot be entirely
avoided.

pulses to timer

counter value
5 4 3 2 1 o -1 -2 N
1 | | | | | | | |

S’

lost timing

pulses

contribute co:mat;r

relo

to drift with value
interrupt N
at expiration
of time
interval

Time to process
timer update, including

any time spend in cycle
stealing or higher priority
interrupt processing.

Figure 1: Drift during a store to timer operation.

during the add. If it were implemented in software, there would be the possibility of
the add blocking the pulses, particularly if interrupts or DMA occurred simultaneously.
Unfortunately, existing commercial timers do not support the desired “add to timer”
function in hardware, and one can only approximate the desired behavior by making the
timer management function run at the highest priority possible. Then, however, clock
pulses and nonmaskable interrupts can still intercede and lead to cumulative time loss.
A programmable count down timer with an “add to timer” function has been built in a
real-time computing systems laboratory at the University of Michigan and incorporated
into the scheduler in a real-time operating system [3]. In that system, the timer was a
device on the Q-bus of an LSI-11/1 system. Cyclic timing intervals of 1 millisecond
were realized with the system, intervals which were low for that generation of hardware.

While the timing problems can be solved via an “add to timer” function or the use
of a second register in conjunction with a programmable timer, as Digital Equipment
Corporation and IBM do in the VAX and RT [2,5], we believe the best solution to the
problem of scheduling events in time is based upon a common sense of “absolute time”.
This is the approach that we shall present in this paper. Although it is not essential to
the approach, the paper describes the placing of the necessary timing functions directly
on the cpu chip. While perhaps infeasible a few years ago, most current microprocessor
cpu chips can easily accommodate both the small amount of extra logic on-chip and the

few additional instruction codes. These can be used in an upward compatible fashion to
provide improved single chip real-time control processors.

3 Basic Timing Functions for Real-time Task Scheduling

3.1 Programmable Absolute Timer

There are three basic questions to be answered in defining the new programmable absolute
timer capability:

o How many bits should it have?
e Where should it be placed architecturally?

¢ How should it function?

The number of bits is a function of timer resolution and the maximum interval length to
be measured. A 32-bit timer with a 10 microsecond resolution allows a maximum period
of approximately a half a day. This is marginal for many applications. Since the number
of bits is not critical to the remainder of the discussion, we assume a timer with 64-bits
(this corresponds to a range of about 1/2 million years at a | microsecond resolution).

One of the key points to the proposed timer is that it be placed in the cpu. Proper
timing operation requires several complex operations to be performed atomically, that is
they must be performed in foto or not at all. This can be accomplished if the timer is
part of the cpu, but is difficult to guarantee if the timer is only accessed through the bus.
The need for atomic operation will become clearer as the necessary timer functions are
described and illustrated below.

The proposed scheme requires the addition of two cpu registers, as shown below.
The todc register holds the current iime and is incremented at a fixed rate. The c¢pr

63 0

timer or time of day clock (fodc)

63 0

compare register (cpr)

register is used to hold the time of the next event to be scheduled. The arrival of the
event is checked for by continuously comparing the contents of ¢pr with that of rodc. At
every clock tick, the following operations are performed:

todc — todc + 1;
if todc > cpr then

cpr — 1...1;
generate timer interrupt;
end if;

The comparison is atomic and is performed by hardware; clearly it should be performed
within a clock tick. A convenient choice for the clock tick would be a multiple of the
basic cpu clock. For example, in current 32-bit microprocessors a 2—4 phase clock would
be appropriate and yield a tick period on the order of 1 microsecond. This degree of
timer resolution is much finer than is currently typical. Just prior to generating a timer
interrupt cpr is loaded with its maximum value (all ones). This prevents subsequent
meaningless interrupts from occurring before new event times are loaded into cpr. The
timer interrupt is generated on every tick when cpr < todc, even if cpr is, for whatever
reason, loaded with a value less than the present time of day.

Given the above two registers and the continuous checking logic, four scheduling
primitives can be defined that are sufficient for the implementation of a number of
scheduling algorithms:

e Set timer
e Set compare register
e Conditional set compare register

e Read timer

We next describe the operation of these instructions and then illustrate their use in a
simple scheduling algorithm.

1. Set timer: stodc(new_todc, A, B)

¢(A,B) — todc;
todc — new_todc;

where new_todc is a 64-bit register pair or memory location, and A and B are a pair of
32-bit registers (we will assume for the purposes of this discussion that we are dealing
with a 32-bit machine). In addition to providing a way to intially set the value of the
clock, this instruction can be used to synchronize two or more loosely coupled cpu’s.
The value returned in the A,B register pair can be used for adjusting stored time values
after todc has been changed to bring it into synchrony with an external clock. This
operation should be atomic, i.e., no interrupts or DMA activity should intercede during
the operation. Further, the stodc should be a privileged instruction.

2. Set compare register: scpr(new_compare value, A, B)

¢(A,B) « cpr;
cpr new_compare_value;

where A and B are two 32-bit registers used to save the old value of cpr and
new_compare_value is a 64-bit quantity from cpu registers or memory. It is not
essential that scpr(A,B) be atomic for the purposes of this paper, though other
considerations are likely to make it desirable. If interrupts, DMA or other events result in
new_compare_value being less than todc when scpr is executed, then a timer interrupt will
be generated on the next clock tick. However, since the timing is based on “absolute time”
this local anomaly will not contribute to a cumulative bias as it can in similar situations
when the underlying timing mechanisms are based on interval timing. If initialization is
performed correctly the accuracy rests solely with the ability to minimize the variations
of the oscillator that increments fodc. The contents of todc are never modified except
when it is set initially or reset to effect synchronization with other processors or some
absolute time base.

3. Conditional set of compare register: cscpr(new_compare_value, flag, A, B)

flag — 0,

if new_compare_value < cpr then
¢(AB) « cpr;
cpr «— new_compare_value;
flag — 1;

end if;

This operation simply loads the compare register with a new event time if that time is
earlier than the one presently in cpr. The 1-bit register flag is set to 1 if the exchange is
made, and the old value is saved in a register pair. Typically, flag will be one of the cpu
status bits. The instruction cscpr should be atomic. If the new value set into cpr is less
than fodc, that is, one has attempted to schedule something to occur prior to the present
time, an interrupt will occur immediately after the next clock tick and the item to be
scheduled can be handled at the nearest possible point in time to that originally desired.
Again, because the scheme relies only on absolute time, there will be no permanent drift.

4. Read timer: rtodc(save_timer_value)
save_timer_value — todc;

This operation saves a copy of the timer in save_timer_value, a 64-bit pair of cpu registers
or memory locations.

3.2 Simple Scheduling Model

We can implement a task scheduler in several hierarchical levels. The bottom level makes
use of the machine instructions and maintains the set of time scheduled tasks. The upper
levels provide the interface to the user language, convert scheduling requests to the form
required by the low level scheduler, and maintain the sets of ready and blocked (for I/O
or synchronization) tasks. The low level scheduler is quite simple and can be used by a
variety of high level scheduling algorithms. We consider first the low level scheduler.

Consider a set of tasks to be scheduled at various points in time. Order the tasks by
the time at which they are to begin. For illustration purposes, we show the result as a
linked list of task control blocks (TCBs) in Figure 2. Each TCB contains, among other
things, a pointer, next, to the TCB of the next task in the scheduling sequence, and a
value, scheduled_time, at which the task is to begin. The variable HEAD points to the
head of the list. Suppose that cpr has already been loaded with HEAD .scheduled_time,
the time at which task T) is to begin. If TCB ptr is a pointer to the TCB of a new task,

TCB for task T TCB for task T»
HEAD next next —— -
scheduled_time scheduled_time
name (= T)) name (= T3)
TCB _code ptr TCB code_ptr

Figure 2: List of TCBs.
that task can be added to the list of Figure 2 as follows,

TCB ptr.scheduled_time — calculate scheduled time;
TS(TCB ptr);

where TS is the procedure

procedure TS(T:task_ptr) is
interrupts off;
cscpr(T.scheduled_time flag A ,B);
insert T in schedule list;
interrupts on;

end TS;

The first two lines represent the actions of the high level scheduler. The procedure TS
implements the low level scheduler. The action of the ¢scpr instruction permits the new
Fask to be placed at the head of the queue of tasks to be processed if its scheduled_time
is earlier than that of 7). Of course, the scheduled_time for 1} is not lost in such cases,

and it will be reloaded into cpr at the appropriate time, as we will see. The insertion

of T into the list can be done in the usual way by following the chain of TCB’s until
T.scheduled_time < next.scheduled_time.

The actions performed by the scheduler upon the occurrence of a timer interrupt are
equally simple, but do involve a simple link to the higher level scheduler. In particular,
we suppose that the high level scheduler maintains a ready list of tasks from which it
will select the task to be actually given the cpu resources. If the variable NOW is used
to retain the cpr time which caused the timer interrupt, then the scheduler need only
perform the following:

TIMER_INT HND:
interrupts off ;
save registers ;
NOW «— HEAD scheduled_time;
repeat
add task pointed to by HEAD to set of ready tasks;
HEAD « HEAD .next,
until NOW # HEAD .scheduled_time |,
scpr(HEAD .scheduled_time A.B) ;
restore registers ;
interrupts on ;

The repeat. .. until is executed at least once and moves all the tasks that were scheduled
to run at the time given in cpr (which caused the interrupt) to the set of ready tasks.
These tasks all have the same scheduled_time. The very next task in the list of TCBs is
now at the head of the queue in Figure 2 and has its scheduled_time placed in the compare
register to await its start time. In this simple example, neither the flag nor the registers
which retumn the old value of cpr were used because all of the needed information was
held in the TCBs. However, in more complex scheduling methods, a need for them may
arise.

To illustrate how this basic low level time scheduler can be embedded in a more
sophisticated scheduler, consider one possible mechanization of a system to positively
verify that tasks have completed within a specified deadline, and to raise an exception if
they have not. In this case, each task that is to be scheduled must have two values of time
associated with it (provided by a higher level scheduling algorithm or command—see
next section for an illustration): the time at which the task is to be made ready, and
the time by which it is to be completed. To manage this, we introduce a task done
block (TDB), which plays a symmetric role with respect to the TCB. The TDB is set
by the higher level control algorithms to contain the deadline by which the task must
be terminated, and contains a pointer to whatever exception handling code is to be used
upon failure to complete in time. The use of the low level scheduler then proceeds as
follows:

TCB ptr.scheduled_time — calculate scheduled time;
TDB ptr.deadline time «— calculate deadline;
TS(TCB _ptr);

TS(TDB prr);

This results in a scheduled list of the form shown in Figure 3 with TCBs and TDBs
interspersed (not necessarily altemnating). The TDBs are queued in the same way as the
task control blocks. If a task’s deadline is reached, the TDB will invoke the exception
code (which may be defined by either the system or the user) in the same manner as
invoking another task. If a task is completed before its deadline, then it must invoke a
higher level scheduling routine which will remove the TDB from the scheduling (ueue, in
which case the TDB will never invoke the exception code. Obviously, in order to avoid
the possibility of a false indication of deadline passage due to the system overhead in
processing the completion call from the task, the exception code must begin by verifying
that the task did, in fact, not finish.

One can actually overlay several scheduling concepts on the underlying time
scheduling mechanism. In order to implement priority scheduling, one need only have
the higher level scheduler maintain several priority queues, one for each priority level.
The only change required in the low level scheduler is in TIMER_INT_HND. This routine
must now look at the priority of the task (presumed to be in the TCB) and add the task
to the correct queue.

TCB TDB
HEAD next e next ...
scheduled time deadline_time
name name
TCB _code ptr TDB_code_ptr

Figure 3: Lists of TDBs and TCBs.

Of course, the higher level scheduler may manipulate the ready queues without going
through the low level timer scheduler. That is, during I/O or synchronization waits, it
may remove a task from active status and place it on a suspended queue until the task is
able to proceed, and then place it back on the ready queue. And tasks that do not require
time scheduling may be placed in the ready queue by the high level scheduler without
involving the low level time scheduler at all.

4 Language Level Issues

The pervasiveness of the “time interval” view has influenced the design of programming
languages in a way that has introduced unnatural complexity into the scheduling
operations. An important example which is indicative of several other languages as
well, is Ada, a language designed with real-time multi-tasking explicitly in mind. Ada
provides a predefined data type, DURATION; objects of this type represent time intervals.
A language construct, delay, provides a delay for at least the length of time given by
an argument of type DURATION. In addition, a predefined package, CALENDAR, is

10

specified which provides a data type TIME, and a set of mathematical operations for
dealing with TIMEs and DURATIONSs. For example, it provides a function “-” which
subtracts two TIMEs and yields a DURATION.

To illustrate the influence of interval timing, we present an Ada version of a commonly
used timing loop for repetitive (at a fixed interval) operations and note that even though
the language has interval based timing mechanisms the user must still maintain an absolute
sense of time (at least locally). We consider a simple control loop, that, for instance,
might be controlling the motion of a robot arm, which must be executed repetitively with
period 0.01 seconds. Denote the control action by the subprogram F. Then using the Ada
language syntax the loop may be expressed as [13]:

with CALENDAR;
declare
use CALENDAR;
INTERVAL: constant DURATION = 0 .01;
NEXT_TIME: TIME := FIRST_TIME,
begin
loop
delay NEXT_TIME - CLOCK;
F;
NEXT_TIME := NEXT_.TIME + INTERVAL,;
end loop;
end;

where the package CALENDAR provides the data types DURATION and TIME, and the
functions CLOCK (for returning the current value of TIME), “-” and “+” for operating
on values of these types.

There are several observations to be made about this example. First, even though
the example itself is intrinsically interval based and the language provides interval based
timing, it is necessary for the user to implement an absolute (at least local to this problem)
sense of time. This is necessary because of the unknown length of time required for the
execution of F (indeed, it may not even be constant). Without the maintenance of an
absolute sense of time, there could be a long term drift in the timing of the loop which
could be harmful to the operation being performed.

The syntax of the language reflects the bias toward an underlying interval timer.
The example illustrates the inefficiency of this. One must first convert from a time
interval specification to an absolute time specification and then back again. Furthermore,
arithmetic involving data objects of type TIME is not necessarily efficient. On one

11

6

compiler tested, the times required for “+” an are on the order of 200 microseconds.
Even worse, CLOCK function measurements on five Ada compilers showed times ranging
from 94 to 3400 microseconds [14]. Furthermore, the underlying scheduling operations
may suffer from one of the kinds of ills described in Section 2.

The times required for timing operations is highly dependent upon the representation
of the data types. The underlying use of an interval timer in conjunction with the
requirement to provide functions returning the MONTH, DAY and YEAR of the TIME
make a record representation appealing. It is this underlying record implementation which
leads to the large execution times.

The use of an underlying absolute timer would allow and encourage improvements
in several ways. First, it would encourage an underlying representation of TIME objects
as extended fixed point numbers, with conversion being performed for MONTH, DAY
and YEAR as necessary. Then the TIME arithmetic and CLOCK functions could be
performed in microseconds rather than hundreds of microseconds. Time could easily
be kept in Greenwich Mean Time allowing compatibility across time zones; the time
zone would then be simply a set-up parameter. Second, it would allow a more natural
language expression of the timing function. Using the package facility a new package
could be defined, ABS_TIME, that supercedes the capabilities of CALENDAR and that
is based on absolute time. Among other things it could provide: 1) a new procedure
DELAY_UNTIL(T: TIME), which would delay until the timer reaches the time passed in
as a parameter; 2) a new type DURATION with 64-bit precision. These would typically
be used in place of the current delay statement in Ada.

Then the above control loop may be expressed as:

with ABS_TIME;
declare
use ABS_TIME;
INTERVAL: constant ABS_TIME. DURATION := 0.01;
NEXT_TIME: TIME := FIRST_TIME,;
begin
loop
DELAY _UNTIL(NEXT_TIME);
F;
NEXT_TIME := NEXT.TIME + INTERVAL;
end loop;
end;

12

Several points are worth noting. First, no reading of the clock is necessary. Second,
no subtraction of time is necessary. Both of these contribute to being able the execute
much faster loops. Also, the expression of the timed loop is more natural and easier to
understand.

There are, of course, a few other language constructs that have been proposed for
specifying task timing information. CRASH [3] and Real-Time Euclid [17] both allow
periodic execution of tasks to be specified. CRASH allows one task to schedule another
with an “EVERY interval DO task” statement, while Euclid has a “PERIODIC FRAME
interval FIRST ACTIVATION ATTIME time” statement as part of a process declaration.
CRASH also has a “DO task AT time” statement. The “at time” parts of these map
straightforwardly into the underlying implementation described above. The “interval”
parts can be handled by having the scheduler perform actions similar to the timed loop
described above. That is, if the interval is held in a variable INT in the TCB of each
task, TIMER_ INT_HND can be modified so that after adding the task pointed to by HEAD
to the ready queue, it adds INT to TCB _ptr.scheduled_time and reschedules the task. If
deadline checks were being made, it would also add INT to TDB ptr.deadline_time in a
TDB block and reschedule it. Altematively, at the completion of a task, the task will
return control to the scheduler, and the scheduler could, as part of its actions, add INT to
the previous timers and reschedule the task (and its TDB). In any event, the mapping of
the more complex scheduling operations onto the proposed instruction level mechanism
is straightforward and easier to understand than interval based techniques because there
is no need to worry about either doing certain critical sections of scheduler code within
fixed time intervals or the myriad of things that can interfere with this.

S Summary and
Conclusions

The management of time is critical in real-time embedded systems. We have shown that
basing time on a (local) absolute timer is more natural, leads to simpler implementations,
and is easier to use. The timing registers and primitives introduced can be easily
implemented on a cpu chip or on a timer board that can be attached to the system
bus. We have illustrated both simple time scheduling using the proposed instructions
and new high level language functions to allow more efficient and natural expression of
timed loops.

The use of (local) absolute timers also simplifies the maintenance of synchronism
across a set of machines and isolates the real problem, that of providing correct
synchronized values of time to each of the processors in the system. Though beyond the

13

scope of this paper, there are a number of mechanisms possible for solving this latter
problem, e.g., radio and satellite broadcasts of digitally encoded time and geographical
position to allow for transmission time compensation [10].

References

[1] Intel Corporation, iIRMX-86 Reference Manuals, Santa Clara, CA, 1980.
[2] Digital Equipment Corp., VAX 11/780 Hardware Handbook, Maynard, MA, 1978.

[31 R.A. Volz, The CRASH—Compiler for Real-time Applications Shop—Manual,
Electrical and Computer Engineering Dept., The University of Michigan, Ann Arbor,
MI, 1978.

[4] Ada Programming Language (ANSI/MIL-STD-1815A), Washington, D.C., 20301:
Ada Joint Program Office, Department of Defense, OUSD(R&D), Jan. 1983.

[5] G. Erwin, IBM RT PC AIX Operating System Technical Reference, Preliminary
Edition, Document No. SV21-8009-1, Austin, TX, June 1986.

[6] N.H. Gehani and W.D. Roome, Concurrent C, AT&T Bell Laboratories Report,
Murray Hill, NJ, 1985.

[7] Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,
Englewood Cliffs, NJ, 1977.

[8] N. Wirth, Programming in Modula-2, Springer-Verlag, Berlin, 1982.

[9] Dick Pountain, A Tutorial Introduction to Occam Programming, INMOS Corp., PO
Box 16000, Colorado Springs, CO 80935, 1985.

[10] R.A. Volz, and T.N. Mudge, “Timing Issues in the Distributed Execution of Ada
Programs,” special issue on Parallel and Distributed Processing, IEEE Transactions
on Computers, April 1987.

[11] K. Ramamritham and J.A. Stankovic, “Dynamic task scheduling in distributed hard
real-time systems,” IEEE Trans. Software Engineering, vol. 1, no. 3, July 1984.

[12] Intel Corporation, Microsystems Components Handbook, Santa Clara, CA, 1984.
[13] J.G.P. Bames, Programming in Ada, (2nd ed.), Addison-Wesley: London, England,
1984.

14

[14] R.M. Clapp, L.J. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze, “Toward
real-time performance benchmarks for Ada,” Communications ACM, vol. 29, no. 8,
pp- 760-778, Aug. 1986.

[15] D.W. Leinbaugh, “Guaranteed Response Times In Hard-Real-Time Environment,”
IEEE Trans. Software Engineering, vol. SE-6, pp. 85-91, Jan. 1980.

[16] A.D. Stoyenko, “Real-Time Systems: Scheduling and Structure,” Dept. of Computer
Science, Univ. Toronto, Dec. 1984.

[17] E. Kligerman and A. Stoyenko, “Real-Time Eulcid: A Language for Reliable
Real-Time Systems,” IEEE Trans. on Software Engineering, vol. SE-12, no. 9, pp.
941-949, Sep. 1986.

15

DA
3 9015 03527 2551

