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ABSTRACT

This paper examines, in the context of distributed execution, the meaning of
Ada constructs involving time. In the process, unresolved questions of interpreta-
tion and problems with the implementation of a consistent notion of time across
a network are uncovered. It is observed that there are two Ada mechanisms that
can involve a distributed sense of time: the conditional entry call, and the timed
entry call. It is shown that a recent interpretation by the Language Maintenance
Committee resolves the questions for the conditional entry calls but results in an
anomaly for timed entry calls. A detailed discussion of alternative implementa-
tions for the timed entry call is made, and it is argued that: 1) timed entry calls
imply a common sense of time between the machines holding the calling and
called tasks; and 2) the measurement of time for the expiration of the delay and
the decision of whether or not to perform the rendezvous should be made on the
machine holding the called task. The need to distinguish the unreadiness of the
called task from timeouts caused by network failure is pointed out. Finally, tech-
niques for realizing a single sense of time across the distributed system (at least

to within an acceptable degree of uncertainty) are also discussed.
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1. Introduction

One of the principal purposes for which the Ada language was designed is
the programming of embedded real-time systems [1], and, with increasing fre-
quency, embedded real-time systems involve distributed computing. It is there-
fore necessary that Ada support the distributed execution of programs. In this
paper, we explore one of the most important factors in achieving distributed exe-
cution of Ada programs: the management of time across a network of processors.
In particular, we examine the meaning of Ada constructs involving time in the
context of distributed execution, note that there are both unresolved questions of
interpretation and problems with the implementation of a consistent notion of
time across a network, and propose interpretations and timing mechanisms to
resolve these problems. Other important issues involving the distribution of Ada

across a network of processors are discussed in [2, 3, 4].

The Ada mechanisms involving time are the delay statement, the condi-
tional entry call, the timed entry call, and the selective wait statement. The
delay and selective wait statements are strictly local in their actions (i.e., their
effects take place on a single processor), and thus are not of concern in this
paper. Of course, the view of time and the underlying mechanisms for managing
it are crucial. The management of time in the distributed environment begins
with the management of time within a single processor. This is discussed in a

separate paper in which we recommend that time within a processor be kept in a
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(locally) absolute sense and show a mechanism for accomplishing absolute timing
which is simpler than the mechanisms now in use [5]. In this paper, we will argue
that, among other things, this absolute sense of time should be extended to the
multiple distributed processor situation as well, and that, indeed, such an abso-
lute network sense of time is required by the Reference Manual [1]. In doing so,
we will focus attention on conditional and timed entry calls. An absolute sense
of time is assumed in several models for real-time systems (see for example [6]),
and the advantages of using absolute time are also discussed in (7], where it is

proposed for fault tolerant distributed systems.

The definitions of conditional and timed entry calls are not entirely clear
when examined in the distributed setting. The interpretations applied signifi-
cantly effect the implementation. We will approach the problem by trying to
make a strict interpretation of Ada as presented in the Reference Manual (RM),
since the ‘‘no supersets, no subsets” philosophy is one of the major tenets of the
language and the principal upon which the portability of Ada is based. Where
there is possible ambiguity in the interpretation of the manual due to considera-
tion of distributed execution, the various possibilities and their implications are
discussed. We expect that, ultimately, the Ada Board and ISO Working Group 9
will have to examine these problems and issue interpretations of the RM to cover
the distributed situation more completely. It is hoped that the discussions
presented here will aid in the determination of logically consistent and imple-

mentable interpretations.
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In the next section we review the conditional and timed entry call structures
of Ada to place the rest of the paper in perspective. Section 3 then examines the
issues in conditional entry calls, while Section 4 does so for timed entry calls. In
both sections interpretations are proposed. Section 5 follows by addressing the
question of maintaining the network sense of time required for a reasonable
interpretation of time entry calls. Concluding remarks are presented in Section

6.

2. Overview of Conditional and Timed Entry Calls

The conditional entry call is used to determine whether or not the called
task is ready to accept an entry call and, if it is, to make the call. To illustrate,
suppose that a robot and an automatic guided vehicle (AGV) are engaged in a
cooperative manufacturing task in which the robot unloads two different kinds of
parts from a pair of machine tools, placing them in a temporary storage area, and
when the AGV is ready, loads parts onto it. The AGV alternately is loaded with
parts by the robot and transfers them to a longer term storage area where it is
unloaded and then returns to the robot for another load. We assume that the
temporary storage area always contains enough parts to fill the AGV. An
abstraction of the relevant parts of the robot and AGV tasks might look like the

following:

Timing Issues 3
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Ezample 1:
Abstraction of Robot Task

loop

select - This begins a conditional entry call.
AGV.READY(KIND); - This is the actual call.
— Load a part of type KIND on the AGV from
- temporary storage.

else
null;

end select;

— Unload a part from a machine tool

— and place it in temporary storage.

end loop;

4 Timing Issues
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bstracti G as

task AGV is
entry READY(K: out TYPE_OF_PART);

end AGYV,

task body AGV is

while AGV_NOT_FULL loop
accept READY(K: out TYPE_OF_PART) do;
K:= LOCAL_KIND_NEEDED;
end READY;

end loop;

Upon reaching the select, the robot task would check to see if the AGV task has
reached the accept READY statement. If it has, it will rendezvous with AGV at
that point. The rendezvous consists of executing the code between the ‘“‘accept
READY"' and the “end READY"'. In this case the rendezvous simply amounts to
invoking a function LOCAL_KIND_NEEDED to determine the type of the next

part to be loaded, and then assigning the result to KIND, a variable of the robot

Timing Issues 5
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task. (KIND is the actual parameter for K in the rendezvous executed by the
AGY task.) The value of KIND to tells the robot what kind of part to load next.
After completion of the rendezvous, the robot will proceed to load the AGV with
the appropriate part. Following this, the robot will unload the next part from
the machine it is tending. In the case where the AGV has not reached the
READY entry point at the time that the conditional entry point is made, then

the robot task will start immediately to unload the next part from the machine.

Whenever the AGV is ready to be loaded with parts by the robot, it will
reach the loop shown above. If it reaches the the accept statement before the
robot makes the call, it will simply wait at that accept statement until the robot
task makes the call to READY. After each rendezvous, which initiates loading
another part, the function AGV_NOT_FULL is called to check if the AGV is full

(it returns a Boolean value).

We use the same example to illustrate timed entry calls. Consider the code

abstraction shown below.

6 Timing Issues
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FEzample 2:

stractio obot Tas

loop
select - This begins a timed entry call.
AGV.READY(KIND); - This is the actual call.
-- Load a part of type KIND on the AGV from temporary storage.
or
delay 1*SECOND; - The time limit for accepting the call.
end select;
- Unload a part from a machine tool
— and place it in temporary storage.

end loop;

The abstraction of the AGV task is the same in this case as for the conditional
entry call. The operation in this case is similar, except that the robot task will
now wait one second after attempting the call to AGV.READY before taking the

alternative of unloading a part from the machine it is tending.

Note that the segment of code which is executed during the rendezvous is
written as part of the called task. Normally, this will mean that this segment of

code will be located on the processor holding the called task. However,
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Haberman and Nassi [8] have shown that, in some cases, this code may be exe-
cuted in the context of the calling program for the purposes of reducing execution
time. We will consider the implications of both locations in the following discus-

sion.

3. Conditional Entry Calls

First, we examine an ambiguity in the interpretation of conditional entry
calls across a network of processors. The RM, in Paragraph 1 Section 9.7.2,
states that ‘A conditional entry call issues an entry call that is then canceled if a
rendezvous is not immediately possible.”. There is a possible difficulty in the
word ‘“‘immediate’”. At least one group [9] has interpreted the word ‘‘immediate’’
in a temporal sense and used this to disallow conditional en.try calls when such
calls are placed across the network since network delays would prevent the
“immediate’” determination of whether or not the call could be accepted. This
would mean that in the example above, the conditional entry call from the robot
task to the AGV task would always fail and the code sequence shown could not
be used to cause the AGV to be loaded. One would be forced to use the timed

entry call.

However, the RM also presents a non-temporal interpretation of the word
“immediate”’. In Paragraph 4 of the same section it restates the conditions for
cancellation of the call: *“The entry call is canceled if the execution of the called
task has not reached a point where it is ready to accept the call ...”. There is

nothing that inherently involves time in this interpretation. This statement
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expresses the action of the conditional entry call only in terms of the readiness of
the called task to receive the call. This is appropriate, and this interpretation
shall be used throughout the remainder of this paper. If a sense of time is

required, timed entry calls should be used.

In a related matter, the RM, in Paragraph 4 Section 9.7.3, states that timed
entry calls with zero or negative delays are to be treated as conditional entry
calls. Under the condition that the called task is ready to accept a call, an incon-
sistency may arise with respect to whether the rendezvous should be completed
or canceled. Due to delays in network transmission, there will be a set of small
delays for which the rendezvous fails, while for delay values either above or below
those in the set, the rendezvous would succeed. This situation is illustrated in
Fig. 1 below. A more consistent statement would result if the RM did not con-
tain the phrase about treating the case with zero or negative delay as conditional
entry calls. Nevertheless, the RM does state quite clearly that the situation is as

shown in Fig. 1.

Timed entry Timed entry Timed entry
calls sgcceed ‘ call; fail ‘ calls succeed
time —»
0 d .
min

Figure 1: The timed entry call anomaly.

Timing Issues 9
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These questions of interpretation of conditional entry calls have been con-
sidered by the Language Maintenance Committee of ISO Working Group 9 and
the Ada Board of AJPO. In Ada interpretation number Al 276 the committee

has stated roughly the interpretations expressed here.

4. Timed Entry calls

Timed entry calls are not as easily handled as conditional ones; the anomaly
of Fig. 1 is only part of the problem. They raise a number of issues, not only
about the interpretation of the timed entry call itself, but about the management
of time in a distributed environment as well. The timed entry call is the one
place in the RM where an upper bound is placed on the time duration for some
action to occur. This is both necessary and the source of interpretation and
implementation difficulties in a distributed environment. We interpret this upper
bound in a strict global absolute sense. That is, the stated action must be
accomplished within the required time in spite of network time delays or failures,

or the alternative action must be taken.

There is, of course, a trivial implementation of the timed entry call. One
could say that since one cannot, in general, exactly maintain a network sense of
time, rendezvous for timed entry calls never take place and the calling unit
always executes the alternative sequence of code. However, this is unnecessarily
restrictive, timed entry calls are a valuable part of the language, and it is possi-
ble, and thus important, to find consistent interpretations and implementations

for them, even in the distributed environment.

10 Timing Issues
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4.1. Review of Ada Timed Entry Calls

To begin a study of timed entry calls, we review the relevant statements

from the RM. In Paragraph 4 of Section 9.7.3, the RM says both that:

(1) “If a rendezvous can be started within the specified duration ..., it is

performed ...”
(2) *“.... the entry call is canceled when the specified delay has expired, ...

Statement (1) refers to an action performed on the processor containing the called
task, while statement (2) refers to an action performed on the processor contain-
ing the calling task. Implicit in these statements is thus the notion that there is
a common sense of time between the calling and called processors. This common
sense of time must be maintained in the face of network delays, clocks on indivi-
dual machines that are not precisely synchronized, as well as failures in the sys-
tem. In general, of course, this cannot be done exactly. One must develop
interpretations that take into account disparities in the clock measurements made
at different parts of the system. We will, however, initially develop our interpre-
tations assuming a perfect common network sense of time, i.e., if read at the
same time, clocks on all processors would yield the same value. We will also ini-
tially assume a constant network communication delay, d,, on all interprocessor
messages. Later we will relax these assumptions and extend our interpretations

to handle variations in time that exist in practice.

The principal difficulty with interpretating these two statements in the dis-

tributed environment arises because information must be transmitted between
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the calling and called processors, and this transmission typically takes a signifi-
cant amount of time. Because of this network transmission time, it is not possi-
ble to operate in a manner that satisfies both statements (1) and (2) simultane-

ously.

Before discussing this problem in detail, we elaborate further on the implica-
tions of (1) and (2). Consider a timed entry call from a task executing on proces-
sor A to an entry of a task located on processor B. The entry call is made at
time ¢, and has a delay of d. Then the time t, = ¢, + d is the time by which
the called task must be able to accept the call. Taken literally, statement (1)
says that if by time ¢, the called task has reached an appropriate accept state-
ment the called task is made ready so that the rendezvous may take place. Simi-
larly, (2) says that if by time ¢, the called task has not reached an appropriate
accept statement the call is canceled and the calling task is made ready at the
alternative sequence of statements following the delay part of the timed entry
call. In neither case does the language require that the rendezvous or the alterna-
tive sequence of statements actually start, just that they be made ready within
the stated time interval. Actual starting times will depend upon other tasks, and

their priorities, that are also ready, and upon the scheduling mechanisms used.

This lack of rigid upper bounds on the actual start of actions ensuing from a
timed entry call might be used as an excuse for relaxing the rigid bounds implied
by (1) and (2) on the times at which the tasks are made ready. Indeed, we will
show that this is necessary for one or the other of the two statements. In spite of

this, however, we believe it is necessary to maintain rigid bounds where possible.
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An application may (particularly in the distributed situation) only have a single
task on a processor, in which case the task would resume shortly after being
scheduled, and an application might depend upon bounding this time. Further-
more, if the time bound were relaxed with respect to both statements, the timed
entry call would have no meaning at all. We will show that under certain reason-

able conditions the bound specified in (1) can be realized.

A slightly stronger interpretation, and one which is probably more difficult
to implement, would result if (1) were interpreted to mean that the called task
must actually start by the time ¢,. This would add little, however, since the
called task could always be preempted by a higher priority task. What might be
useful would be to bound the completion time of a rendezvous. Although Stan-
kovic [10, 11] discusses techniques that can guarantee ending times of tasks, these
techniques require more information, e.g., a global view of tasks to be scheduled
and their repetition rates, than are available in an Ada timed entry call state-
ment; they thus cannot be automatically constructed from the data associated

with the timed entry call.

4.2. Discussion of Problem

To illustrate the impossibility of simultaneously satisfying statements (1)
and (2), we describe one (of many) protocols which might be used in implement-

ing timed entry calls.

Ezample 3:

Timing Issues 13
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We consider the communication sequence shown in Fig. 2. At the time ¢, a
timed entry call is encountered, and a message is sent from processor A to pro-
cessor B indicating that the rendezvous is requested. This message is received by
B at time t,. It contains as a parameter the time ¢, = ¢, + d by which the
rendezvous is to be accepted. The measurement of the time ¢, is performed on
processor B and the decision of whether or not to accept the call also made on
processor B. Two cases are shown. For case 1, the called entry is able to accept
the call at the time ¢, - € and the rendezvous is accepted. For case 2, time ¢, is
reached without the entry call being accepted and the timed entry call fails. In
the case that the rendezvous is accepted, the called task is immediately made
ready on processor B and will execute in accordance with task scheduling
mechanisms in use on processor B. When the rendezvous is completed, a mes-
sage is sent to processor A indicating the completion. Statement (1) is thus satis-
fied. Note that processor A cannot know whether or not the call was accepted
until some time after ¢,, and that this violates a strict interpretation of state-
ment (2). It is only possible to cancel the call some time after t,, possibly as
much as d; after ¢, We will show later that there exists a different protocol

which would allow (2) to be satisfied at the expense of (1).

One set of issues, then, is which of the statements (1) or (2) is to be satisfied
and how this is to be done. We will refer to these two choices as interpretations
I1 and I2 resectively. There is, however, another aspect to the question which
must also be considered at this point: the use to which timed entry calls are put.

Until now, the discussion has been phrased in terms of determining the readiness

14 Timing Issues
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Processor A

request
entry

Processor B " :
9 :
a
W
t
t, d 2

t, = time at which the timed entry call is made on A

d = delay specified in the timed entry call

d, = network communication delay

t, = time at which the rendezvous request message from A is received by B
ty = t, + d = time by which the called task must be able to accept

Figure 2: Communication sequence for Example 3.

of the called task to accept an entry call as this is the obvious interpretation
from the RM. One might also consider using them as timeouts for detecting net-
work or other system failures. The network might fail at any of several points in
the communication sequence, or the processor on which the called task resides (or
the device associated with the entry point) might fail. By basing the interpreta-
tion of timed entry calls on statement (2), one might detect such failures through
timeouts. The use of timed entry calls for this purpose impacts the possible pro-
tocols and interpretations of statements (1) and (2) and thus will be considered

here.

There are three possible things one might try to accomplish with timed

entry calls,

Timing Issues 16
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e establish a bound on the time at which a rendezvous is scheduled to start
(1),

e establish a bound on the time at which the delay in awaiting a rendezvous

expires (I12), and
e detect network or system failures.

These goals are not mutually compatible and we will explore the differences

below.

Example 3 above assumed both a goal of achieving interpretation I1 and
that the time measurements and the decision process were performed on proces-
sor B. A communication sequence was then selected to achieve I1. Actually,
there are two possible interpretations, I1 and 12, and two locations at which the
time measurements and decisions could be made. There are thus four basic cases
to consider, with variations on each as to the locations at which the rendezvous
code could be located:

o Case 1: Interpretation I1 & decision on called processor,

o Case 2: Interpretation I2 & decision on called processor,

o Case 3: Interpretation I2 & decision on calling processor, and

e Case 4: Interpretation I1 & decision on calling processor.

Before discussing these cases, however, we will return to the question of the
use of timed entry calls and argue that they should not be used for device
timeouts and system failure detection; instead we will argue that exceptions

should be used. This discussion impacts the subsequent discussion on the
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interpretation of statements (1) and (2).

4.3. Timeout Detection of System Failures

The use of timed entry calls for failure detection implies, first of all, a meas-
urement of time on the calling processor since the failures being tested for could
preclude receipt of a value of time measured at any other location. This either
limits the protocol choices or requires the determination of the lapse of the time
interval on both the calling and called processors. In either case, unfortunately,
if timed entry calls are used to detect network, node or device failures (any of
which we will call a system failure), there is a possible ambiguity in the interpre-
tation of the expiration of the delay. One cannot know whether it means merely
that the called task has not reached an appropriate accept or whether there has

been a system failure.

As an illustration, consider an extension to Example 3 in which the expira-
tion of the time delay is measured on both processors A and B, and that a net-
work failure occurs at time £, + 4, before the messages can reach processor A.
The calling task will eventually time out, and have no way of knowing whether
or not the called task was able to accept the call. This means that the alterna-
tive part of the timed entry call must be prepared to deal with an indeterminate

situation.

To solve this problem, one must first recognize that there are two distinct
types of conditions to be detected, the readiness of the called task and system

failure detection. We believe that two distinct techniques are required. In par-
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ticular, we believe that the timed entry call should be used for determining the
readiness of the called task and that exceptions should be used for device

timeouts.

The use of exceptions to handle device timeouts seems more more natural
than using timed entry calls since a network or other system failure is, in fact, an
exception to normal operation and would seem to fit the role for which excep-
tions were intended. Also, the actions which must be taken to recover from a
timeout can be more drastic that those required from a task being unready to
accept a call. For example, in the illustration described above, the called task
may have started the rendezvous when the calling task times out, requiring the

recovery procedure to roll back the effect of the rendezvous.

In order to use exceptions in this way, an implementation could include a
generic package TIMEOUT that provides an exception and associated data
and operations. A data object of type DURATION would be needed for each
instance of TIMEOUT, and procedures would be needed to set this value and ini-
tiate timing. Each task using TIMEOUT exceptions could instantiate an instance

of this generic package to provide an actual exception and associated objects.

generic
package TIMEOUT is

LATE_START: exception;

procedure SET_START_LIMIT(DEL: DURATION);
end TIMEOUT;

Figure 3: Sample specification of a generic package for providing timeouts.

18 Timing Issues
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The generic package TIMEOUT must essentially provide two kinds of

things,

e functions which take an object of type DURATION as an argument and

activate a timeout, and
e exceptions which are raised if the timeouts expire.

The details of the generic TIMEOUT package depend on the interpretation of

statements (1) and (2) and the protocol implementing them.

To illustrate, we will again extend Example 3. The delay associated with
the timed entry call will be used, as illustrated previously, for the obvious pur-
pose of checking the readiness of the called task. The generic package
TIMEOUT will provide an additional timeout for failure detection. Figure 3
shows the specifications of a generic package intended to be used with the proto-
col of Example 3. It provides an exception LATE_START, and the procedure
SET_START_LIMIT which provides a link to the run-time system and defines
the additional timeout. The effect of this timeout is not immediate, however. It
is activated upon the next timed entry call. If an entry call acknowledge message
is not received within the specified time limit after the beginning of the entry

call, the exception LATE_START is raised.

With the use of TIMEOUT, the timed entry call of Example 3 would take

the following form:

EX3_TIMEOUT is new TIMEOUT;

Timing Issues 19
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with EX3_TIMEOUT;

EX3_TIMEOUT.SET_START_LIMIT(2.0+NETWORK_DELAY);
select

REMOTE.ENTRY(PARAMETERS);
or

delay DELTA;

- alternative sequence of statements if the called task

-- i3 not at an appropriate accept

end select;

exception

when EX3_TIMEOUT.LATE_START => -- corrective action

The interpretation of the timed entry call would then be in accordance with
statement (1). The cancellation of a call due to expiration of DELTA occurs only
when processor A receives a message from processor B indicating that the rendez-
vous could not be accepted in time. If a message indicating success or failure is
not received by the time 3 = ¢, + 2d,, it is assumed that there has been a sys-

tem failure and LATE;START is raised. Note that with the addition of
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TIMEOUT, the alternative sequence of the timed entry call always refers to the
failure of the called task to reach an appropriate accept within the desired time;
it never refers to a system failure. System failures are always handled by excep-
tions, which is in line with the intent of exceptions. If it were possible to actually
bound the network transmission time by d, , then the exception LATE_START
would always mean system failure and we would have orthogonality of the two
constructs (timed entry call and timeout detection of system failures). While
such a bound will not exist in all circumstances, in practice it may exist in a very

large percentage of situations.

This example does not provide for any error checking on the ending time of
a rendezvous, or system failure during the message exchange at the conclusion of
the rendezvous, but, then, neither does Ada. One could handle the possibility of
detecting system failures during a rendezvous by including additional exceptions
and procedures in the generic package TIMEOUT. These will not be discussed

here, but deferred to discussions of individual protocol and interpretation options.

If one did not use the TIMEOUT package, the protocol of Example 3 would
have to be changed or the system could hang forever on a system failure. One
possibility would be to perform timing on both processors and make an explicit
check of the system when the calling processor detects the elapse of the delay
specified. This is similar to the protocol suggested in [12] in which the calling
processor tries to withdraw the request at the expiration of the delay. However,
this approach has two negative features. First, it removes some of the ortho-

gonality of language features. Second, it requires extra overhead in the usual
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situation in which the expiration of the time delay simply means that the called

task has not reached an appropriate accept.

We will thus consider timed entry calls to be used for testing the readiness

of the called task and not for detecting system failures.

4.4. Alternative Interpretations of Statements (1) and (2)

The following sections will address five basic protocol types and interpreta-
tions of statements (1) and (2) for dealing with timed entry calls. These
correspond to the four cases listed above and a variation of the location of the
rendezvous code. As appropriate, additional TIMEOUT procedures for failure

detection will be discussed.

4.4.1. Case 1: Interpretation I1 & Decision on Called Processor

Consider first taking the called processor as the point of decision and refer-
ence for time measurements. This is essentially the situation illustrated in Exam-
ple 3 above. The principal question with this protocol is the interpretation of
statement (2) which calls for cancellation of the entry call when the delay has
expired, i.e., at time t,. As illustrated in the example above, if one makes the
decision about accepting a timed entry call on processor B at time ¢4, then it is
not possible for processor A to make a decision about canceling the call “when
the delay has expired”, i.e., also at time ¢{,. However, if one makes a liberal
interpretation of statement (2), then canceling the entry call only means taking
the alternative sequence at some time after t,, and taking the alternative

sequence (if present) at time ¢, + d + d, on processor A would be consistent
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with (2). The decision of whether or not to cancel the call is then not directly
dependent upon time, but deperds only upon receipt of the appropriate message

from processor B.

With this interpretation and communication sequence the timed entry call is
written assuming that no relevant network or system failures occur. A secondary
means, such as the TIMEOUT.LATE_START exception described above is
required, and provides an adequate means, for detecting failures during the initia-

tion of the rendezvous.

Detecting failures during the rendezvous or the completion message
transmission is a bit more complex. There are two obvious possibilities. First, if
the user can be expected to place an upper bound, say dp, on the time to per-
form the rendezvous (including any delays accruing from interrupts of higher
priority tasks) then a second procedure SET_RENDEZVOUS_LIMITY..) could be
added to the generic package TIMEOUT together with a second exception
LATE_FINISH, which has the effect of raising the exception if a completion mes-
sage is not received at the calling processor within the duration specified in the
argument. The obvious difficulty with this approach is the existence of the
bound dp; in general, one will not be able to place such a bound on the system.
Without an upper bound, the occurrence of the exception could, in some cases,
represent delays introduced through response to higher priority tasks rather than
a system failure. The exception handler would then have to perform explicit

checks to determine the actual situation.
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Second, a double phase completion protocol, as shown in Fig. 4, could be
used. In this case, processor A must acknowledge the receipt of the completion
message from processor B. Processor B performs the timeout check. It could
either use the same duration specified in SET_START_LIMIT or use a separate
procedure to specify the limit. A system failure would then be detected on pro-
cessor B, which would then raise the exception LATE_FINISH if the ack-
nowledge were not received in time. This case, however, only checks the system
during the completion message exchange; it does not provide any detection capa-
bilities for failures during execution of the rendezvous. It is likely that if this
option is chosen an implementation would provide, as an implicit parameter,
information about the lineage of the task on processor A so that processor B

could report the failure to the appropriate parent task.

We note that this protocol is similar, in some respects, to the protocol sug-
gested in [12], in which decisions are made on both processors. In that proposal
no message is sent from B to A to indicate acceptance of the call. Instead, if the

delay expires on the calling processor A, a message is sent to B at time ¢, asking

Processor A

send /\/

fail send send

request

entry rendezvous ack.
: : done
Processor B L J.&Vi
: : time —p
t
t 1 2

Figure 4: Communication sequence indicating end of rendezvous.
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to withdraw the rendezvous request. If the rendezvous was actually started
within the requested time, the withdrawal request is denied and the rendezvous
proceeds. The calling processor cannot know until two message times after ¢,
whether or not the rendezvous is proceeding. Assuming no network failures, the
effect is similar to the protocol described here except that a larger delay (two net-
work message times) can occur before the canceling of a timed entry call due to

the unreadiness of the called task.

4.4.2. Case 2: Interpretation 12 & Decision on Called Processor

In this case, processor B makes the decision and must notify processor A by
time ¢, whether or not the call can be accepted with the given time interval, as
shown in Fig. 5. In order to do this, processor B must be able to bound the net-
work delay and make the decision prior to time ¢,. Thus, the interpretation of
statement (1) must be relaxed and the decision point moved up in time. This is

analogous to the relaxation of statement (2) which was made in Case 1.

rendezvous
done

time —»

Processor A 1
oc :\ request

Processor B

t
t 1 2

Figure 5: Communication sequence for Case 2.
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The difficulty in this case is the need to bound the network delay, d,.
When one considers the possibility of transmission errors and retransmissions,
this is not strictly possible. Also, for many networks, the message transmission
time, even for successful transmissions, cannot be bounded. Thus, this case will

not be considered further.

4.4.3. Case 3: Interpretation 12 & Decision on Calling Processor

A communication sequence to achieve this combination is shown in Fig. 6.
The shaded arrow from A to B at the beginning of the sequence is an optional
messages in the sequence. The solid arrow from B to A is the upper bound on
the time at which the message could be sent while the shaded arrow from B to A
indicates that it could be sent at any earlier time. The essential point is that
processor B notifies processor A when it is ready to accept an entry call. If pro-
cessor A has received a ready message from B by the time ¢, the call is accepted;
if not, the call is canceled at time ¢{,. Once processor A makes the decision, a
message is sent to processor B indicating whether or not the rendezvous is to be
performed. In this case, the time of making the decision in the task containing
the rendezvous code segment ready is relaxed. The notification that B is ready

to accept a call may either be in response to a request from processor A (shaded

arrow at the beginning of the sequence) or a broadcast to all that it is ready.

This case is essentially the dual of Case 1 in the sense that the roles of A
and B in timing and decision making are reversed. However, contrary to Case 1,

if the call is canceled, one cannot know if it is due to the unreadiness of the
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- : 41. -\ -
Processor A X request Nsend \Va
: \ entry cond decision send
ready rendezvous
done
Processor B /'\'/ ]
time —»

Figure 6: Communication sequence for Case 3.

called task or a system failure. If it is important to make this distinction, the
alternative code sequence must explicitly check the system status. This impairs
the orthogonality of the construct to other mechanisms for handling errors. Also,
the task executing the rendezvous is not made ready until after a message is
received from A indicating that the rendezvous is to be performed. A network
failure could occur during the transmission of this message and the system would

hang.

In comparing Case 1 and Case 3, we make several observations. Both
achieve an upper bound on making either (but not both) the rendezvous code or
the alternative code sequence ready under the conditions that the given code sec-
tion is selected. Case 1 achieves the bound on the rendezvous code, while Case 3
achieves it on the alternative sequence. Second, Case 1 appears to be somewhat
more amenable to achieving orthogonality of the language than Case 3. Also,
since accomplishing the rendezvous within a given time interval would seem to be
the intent of the timed entry call, placing the bound on the rendezvous code

would seem more natural than placing it on the alternative sequence. For these
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reasons, we prefer interpretation Case 1.

4.4.4. Case 4: Interpretation I1 & Decision on Calling Processor

Figure 7 illustrates a message sequence for accomplishing this case. As with
the previous case, the called task must notify the calling task that it is ready to
accept an entry call. It may do so either by responding to a entry request or in a
broadcast mode. The difference between this mode and the previous case is that
the calling processor must anticipate the network time delay and make the deci-
sion far enough ahead of time to allow the message containing the decision to
reach the called task by time ¢,. However, since the time reference is on the
called processor, the decision time must be advanced further than in Case 3 so
that the decision can reach the called processor by time ¢{,. The amount of time
by which statement (1) must relaxed is thus greater than in Case 3. Further, this
case depends upon the bounding of the network time, which is an undesirable
feature. Thus, this case does not appear to have any advantages, and will not be

considered further.

Processor A g —- ‘\'f
. . d
request : send : sen
antry ready send rendezvous
decision done
Processor B /"\\'/ :
: : time —»

t
t1 2

Figure 7: Communication sequence for Case 4.

28 Timing Issues



RSD-TR-18-86

4.4.5. Case 5: Same as Case 3 with Rendezvous Code on Calling Pro-

cessor

It has been suggested that for purposes of optimization the code associated
with the rendezvous could be placed in the context of the calling task [8]. In the
distributed situation, this would involve placing the code for the rendezvous on
the processor holding the calling task. With the code on the calling processor, it
would seem that the only reasonable combination of the other parameters is to
use I2 and make decision on the calling processor. This corresponds to Case 3
above. A message sequence for accomplishing this is shown in Fig. 8. Comparing
this figure with Fig. 2, it can be seen that fewer messages are required, though at
the expense of including any local variables of the called task as input and/or
output parameters in the messages. Since in most cases the number of messages
is more important in determining communication times than the length of the
messages, this approach might have some advantages in terms of communication
efficiency. However, this approach shares with Case 3 the ambiguity in interpret-

ing the absence of receiving a response from the called processor by time ¢,: one

\request ] N send

: \ entry : results at end
: send of rendezvous
input : /\/

Processor A

Processor B ‘
time —»

t
t 1 2

Figure 8: Communication sequence for Case 5.

Timing Issues 29



RSD-TR-18-86

cannot tell if this is due to not reaching an appropriate accept, or a system

failure.

4.5. Timed Entry Calls in the Presence of Timing Uncertainties

In most distributed situations the problem will be complicated, not only by a
network delay, but by an uncertainty in the consistency of the sense of time
maintained on two or more processors (see Section 5 for a detailed discussion of
this point). Since two different machines will not have exactly the same value of
time, it will not be possible to make a precise determination of whether the ren-
dezvous can or cannot be started within the given time interval, as required by a
strict interpretation of (1) and (2) above. >From the perspective of the called
processor, there will generally be a subinterval of measured time during which it
is impossible to determine whether or not the specified delay has expired. See
Fig. 9. A complete interpretation of time entry calls must state what is to be
done if the called task becomes able to accept a call within this uncertainty inter-

val.

Processor A

request
entry

Processor B
time —»

uncertainty interval

Figure 9: Timed entry calls in the presence of uncertainty.
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An interpretation of timed entry calls that resolves this uncertainty is: “‘if
the call can be guaranteed to be able to start within the given delay it is started
and canceled otherwise”’. Thus, if the called task becomes able to accept a timed
call within the uncertainty interval, the entry call would be canceled even though
in some instances it might actually have been within the specified delay; it is can-

celed because it is not possible to know that it is within the given delay.

4.6. Summary of Timed Entry Call Interpretations

There are thus several aspects to complete and consistent semantics of timed

entry calls. For convenience, we summarize them here:

(1) Timed entry calls imply a common sense of time between the machines

holding the calling and called tasks.

(2) The measurement of time for the expiration of the delay and the deci-
sion of whether or not to perform the rendezvous should be made on the

machine holding the called task.

(3) An implementation must guarantee that acceptance of a timed entry call
means that the called task was ready to accept the call within the speci-
fied delay. The call fails if there is uncertainty about when the called

task is ready to accept.

(4) Exceptions should be used to handle timeouts caused by failures in sys-

tem components.

In other words we believe that the interpretation of timed entry calls given by

Case 1 is the appropriate way to view inter-processor timed entry calls in a
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distributed system. Furthermore, exceptions should be used (rather than timed
entry calls) to handle communication errors. Finally, a common sense of time is
needed. The maintenance of a common sense of time between the calling and

called task is discussed next.

5. Maintaining a Network Sense of Time

It was noted in Section 4.1 that the definition of timed entry calls implies a
single sense of TIME throughout the execution of a program, and that it is not
possible to absolutely achieve such a common sense of time across a distributed
network. In this section, we consider various methods for managing distributed
timing and discuss how to take their characteristics into account in the imple-
mentation of timed entry calls. We will show that the best that we can expect to
do is to bound the differences in the sense of time on different processors in the
system. The bound on the time synchronization among the processors will be
treated as an additional uncertainty, as described in Section 4.5. Three methods
will be considered, maintaining a network time server to which all processors go
when they need a value for time, maintaining separate but synchronized clocks
on each processor, and exporting the delay to be used on the called processor.
This is not intended to be an exhaustive list of methods; however, it is represen-

tative of the more obvious options available with current technologies.

32 Timing Issues



RSD-TR-18-88

5.1. A Network Time Server

The first mechanism we will consider is the use of a network time server. In
this case each program use of a timing construct will require one or more accesses
to the network server. The implementation of timed entry calls must take into
account the time required to access the time server. We first describe the imple-
mentation scenario that could be followed for Case 1 and then develop an expres-

sion for the delay to be used by the called processor.
Referring to Fig. 2, the implementation sequence might be as follows:

e The processor containing the calling task will obtain the time from the net-
work server and include both it and the specified delay in the timed entry

call message sent to the processor holding the called task.

e The processor having the called task will call the network time server to

obtain the time at the time the call is received.

o The processor containing the called task will compute the remaining time

delay with which the called task is requested to start.
e Local management of the timed entry call will proceed as usual.

Thus, in addition to the network delay, there will be an effect from the time to

make two accesses to the network time server.

Next we obtain an expression for the local time delay (d;) to be used on the
called processor to bound the time it will wait for an appropriate entry to be
reached. For the purposes of this analysis denote the time measured on processor

A by a superscript A, similarly for time measure on B. Further, let AT,, be the
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worst case difference in time that any processor can experience with respect to
the server, i.e.,
t} -t; < AT,

where ¢ can indicate any of the processors in the system and tj is the time
returned by the time server when processor # makes the request at time ¢;. In
the case of an exact sense of network time, the local delay is given by,

dq =d-(t -t,), (1)
this guarantees the delay on B will not run past ¢{,. Taking server inaccuracy

into account results in the following:

t, <t
thus,
d-(t, -t)>d-(t7-t))
but,
ty 2> tjl‘ - ATM
therefore,
& > d-(tF-tf)- AT, . (2)

Since tZ and t{ are the quantities that are measured (rather than ¢, and ¢,) the
right hand side of (2) is the best estimate we can obtain for d; that guarantees

that the called task is able to accept the call within the specified delay.

The utilization of a network time server is thus dependent upon our ability
to bound the service time of the timer server. Two sources of service time must
be considered, the propagation delay, and delays from interfering access requests.

Propagation delays will depend upon the geometry of the system, and can often
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be bounded if there is suitable information about the geometry. However, the
type of connection and not just its geometry must also be considered. Ethernets,
for example, could not guarantee a bound; on the other hand, they might be
acceptable in a practical sense. Delays due to interference of timer server
requests from more than one processor may or may not be present, depending
upon the particular method used to implement the network time server. If
present, however, they usually inject an uncertainty in the response time from
the server. If this cannot be bounded, then, strictly speaking, the network time
server cannot be used as the basis for implementing timed entry calls in the dis-

tributed environment.

65.1.1. Synchronizing Clocks

An alternative method of providing timing is to maintain synchronism
among the local clocks of the processors. There are then two issues to be con-
sidered here, the mechanism to be used to maintaining synchronism among the
clocks and the development of an expression to be used for the local delay, d;, on
the called processor. We consider first the maintenance of synchronism among

the local clocks of the processors.

Until now, we have spoken of a clock on each processing unit, though the
Ada semantics actually imply two, a time of day clock and a relative timer. We
must be concerned with maintaining synchronism in both. For purposes of dis-
cussion, however, we will assume that we are talking about maintaining syn-

chronism among a set of time of day clocks. Without further discussion we will
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assume that operations on these clocks are also reflected into the local relative
timing clocks. Actually, as pointed out in [5], timing could be based solely upon
the use of absolute timing, with an improvement in performance, though this is

rarely done today.

The straightforward approach to the clock synchronization problem, and the
one we will analyze, is to have a central master clock that periodically transmits
time stamps to all of the local clocks so that they can be brought into agreement
(synchronized). We will assume that the local clocks can drift with respect to
one another and the master. This drifting can result in two situations when a
synchronization time stamp is received: local time is either ahead, or behind of
the time received. Let ¢! be the time on the local clock when an update time
stamp is received, and let ¢* be the value of the time stamp received. When ¢°
is received, this value will replace ¢! in the local clock. Depending upon the rela-

tive values of ¢! and t* different corrective actions must be taken.

In the first case, ¢! >¢*. Resetting the local clock will essentially replay the
local time for an amount of ¢’-t'. Thus, any local processes awaiting the
expiration of a delay will have this amount of time added to their delay. For
those that have been waiting since the last clock update, this will simply compen-
sate for the fact that the local clock was running too fast. For those which have
been waiting for less than a clock synchronization period, the delay will be over-
compensated slightly. In those cases corresponding the use of the delay only to
delay a process, this does not matter, since Ada is only required to delay for at

least as long as the specified delay. For situations where the delay relates to an
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inter-processor timed entry call, the delay has already been reduced by the syn-
chronization uncertainty and again Ada semantics are maintained. However, in
the case of local intra-processor timed entry calls, the specified delay time could
be exceeded. This indicates that the synchronization uncertainty must be taken
into account even for local timed entry calls. The process for doing this is very
similar to the establishment of the bound for d; above, and will be discussed

below.

In the second case, ¢’ >t!. In this case, the update to the local clock
bypasses the elapse of time on the local processor. By so doing, one or more
scheduled delay expirations may be passed. It is thus necessary to check the list
of scheduled delay actions and make ready any tasks whose delays expired during
the clock update. It is worth noting that this happens automatically with the

techniques described in [5] and no special checking of the schedule is necessary.

There are two obvious methods for distributing a master clock. One is by a
hardwired connection, and the other is by radio. Distributing the time signal by
a wire is the easier to implement. The main source of inaccuracy is the propaga-
tion delay. Each of the local clocks will see the time signal delayed by about 1.5
nanoseconds per foot of wire. Of course, a correction factor can be applied to
each clock in the system to compensate for the configuration geometry of the
local clocks with respect to the master. However, if microsecond precision is all
that is required, only systems in which the local clocks are more than about 500
feet from the master need compensation. If only millisecond precision is required,

then distance approaching 100 miles would be acceptable. The weaknesses of this
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approach are fairly apparent: a physical connection between clocks is required
which is a potential source of failure. The physical connection limits applications
to systems in which the components do not have autonomous mobility—ruling
out, for instance, the AGV of Examples 1 and 2. The issue of fault tolerance is
important, considering the kinds of embedded systems that Ada is targeted for,
e.g., on-board avionics. However, standard techniques such as triple-modular-

redundancy can be used to reduce this problem.

Synchronizing local clocks can also be achieved by having them reference
one of the time keeping services supported by the U.S. Naval Observatory and
the National Bureau of Standards [13, 14]. Both organizations provide phone line
or satellite services, the NBS also provides a radio service (WWVB). These ser-
vices are capable of providing time references with accuracy ranging from mil-
liseconds to 10's of microseconds, depending on the particular service and on the
extent to which corrections are made for location. Clearly, receiving the signal
and making corrections for location is more complicated and costly than dealing
with a clock provided over a wire. On the other hand in the case of satellites and
radio stations no physical connections are needed. This allows for significant
relative motion between the clocks and also make fault tolerance more readily

implementable.

An important question that arises is how frequently one must update the
clocks in the system. This issue has been addressed empirically in [15] where it
was found that to maintain synchrony within 10 milliseconds on a collection of

VAX computers, a synchronization process had to be executed once every 173
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seconds. The clocks used in this case were not of high precision, however. Simi-
lar bounds would have to be established on the clocks to be used on each of the

computers in the network.

Next we consider the use of multiple clocks, which are synchronized periodi-
cally, for the implementation of Case 1. This is very similar to the network
server case, except that instead of accessing a network server clock—thus adding
delay times to time values received—we access a local clock whenever we need a
time value. The local access can be much faster than access to the network time
server, but the value returned has some error in it, as discussed above. The
analysis to determine the lower bound that can be placed on d; follows that for
the network time server. Let AT, , be the worst case difference in time between
any clock in the system and the master clock, i.e.,

|t -t; | < AT,
where § can indicate any of the processors in the system, t; is the time measured
on the local clock and ¢; is the corresponding time on the master clock. Then we
have

ty - tcBS Ach

and

tf - tl S AToc .
These may be directly substituted into (1) to obtain

g >d-(tZ-t4)-2:AT, . (3)

As with the network server case, the right hand side of (3) is the best estimate we

can obtain for d; that guarantees that the called task is able to accept the call
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within the specified delay.

While there are some similarities between the network time server case and
the maintenance of synchronous clocks, there are important differences. The
overhead of accessing a network clock is decoupled from the use of the clock for
timed entry calls. Thus, the overhead is not necessarily attached to timed entry
calls, but is distributed over whole operation of the system. When the requested
delay is large, the network time server case loses accuracy since the local relative
clock used for timing the delay d; may drift with respect to the server. In the
analysis leading to inequality (2) an accurate local clock was assumed. With the
use of synchronized clocks, this drift will not exceed the bounds derived since the
local clock is periodically updated. Further, in the hardwired case it is often pos-
sible to keep the clock skew AT,, much smaller than AT,,. We thus prefer the

synchronized clock method of maintaining a network sense of time.

5.1.2. Rely on the Exported Value of Delay

In some situations it may not be possible, or necessary, to share a common
sense of time between processors (e.g., between satellites exploring deep space).
In such cases, timed entry calls can be handled by exporting the time from the
calling unit and use only this and local timing to manage things on the receiving
processor. This requires knowledge of, or at least a bound on, the network com-
munication times, and a bound on the relative drift of the local clocks. The
implementation scenario for Case 1 is now a lot simpler than in the previous two

cases: the processor containing the calling task transmits the specified delay to
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the called task. The best guarantee for d; is now,

d > d-AT,,
where AT,, incorporates both the communication delay d, and the relative
drift. Unfortunately, in most cases that amount of drift grows with time and is
unbounded. In practice, this is likely to place an upper bound on the length of

delays that can be used, as in the network server case.

5.1.3. Uniprocessor Considerations

Considerations such as those described above can be carried out in a unipro-
cessor situation as well. For example, the delay d, corresponds to the overhead
associated with implementing the checking and rendezvous. Indeed, these times
should be included in the AT's in the distributed situation as well. Depending
upon the accuracy of the delay interval implemented, the AT’s may be signifi-
cant. This is likely to be the case for most processors at the 50 microsecond
accuracy recommended in the RM and even more likely for the 10 microsecond
accuracy discussed for some implementations. Strictly speaking, in these cases a
timed entry call for small delays should fail even though a conditional entry call
should succeed. This conformance is likely to be very difficult to measure, how-

ever.

6. Summary and Conclusions

The need for distributed execution of Ada programs is growing rapidly as

closely coordinated operation of multiple processors for such applications as
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robotics, space systems, and vehicle control increase. At this stage of develop-
ment, distributed execution raises many issues of both interpretation and imple-
mentation. In this paper we have focussed on the impact of distributed execution
on time related constructs. Two constructs were singled out for attention
because their effect can be inter-processor. These were the conditional entry call
and the timed entry call. An anomaly with the timed entry call was pointed out
that results from equating timed entry calls with zero or negative delay to condi-
tional entry calls. Then, it was pointed out that there are several fundamentally
different ways of interpreting timed entry calls across a network corresponding to
the locations at which the time measurements and decisions are made. Placing
both of these on the called processor causes fewer difficulties than the other
choices. The use made of timed entry calls also affects the communication proto-
cols necessary. It was recommended that the detection of network failures or
device timeouts be associated with exceptions rather than the elapse of a delay in
a timed entry call. It was also noted that the realization of a common sense of
time across the distributed system is required, and an interpretation proposed
that allows for a bounded variation in the value of time at different points across

the system.

The possible interpretations presented are just that, possible interpretations.
It remains for the governing bodies of the Ada Language to develop official
interpretations of these constructs. It is hoped that this discussion will help in

those deliberations.
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