Introduction

Decision theoretic models, such as expectation models, multi-attribute
utility models, or time-discounting models, evaluate decisions or decision stra-
tegies with a real numberod index of preference such as a utility, a present
value, risk, expected value, etc, Most prominent decision theoretic models
are linear decomposition models that base their evaluation of choice alternatives
(a generic term for gambles, multi-attributed outcomes, and consumption streams)
on a weighted additive integration of subjective or objective input parameters,
which the degision maker or experts provide by means of simple choices or judg-
mental tasks., For example, the subjective expected utility model evaluates
gambles by combining subjective probabilities of events and utilities of decision
outcomes into expected utilities.

One of the peculiarities of linear optimization models is the flatness of
their evaluation function in the area of optimal choice alternatives. (We
implicitly assume here and in the following that choice alternatives have a
continuous or dense numerical description as vectors, decision functions, stop-
ping rules, probability cutoffs, etc.) A suboptimal choice does not seriously
hurt the decision maker as long as the alternative selected is not grossly away
from the optimum, This type of insensitivity is closely linked to a second type,
which is often found 1n decision analysis settings. Variations of model para-
meters like importance weights or subjective probabilities seldom produce
drastic changes in the model evaluation function., A set of quite different para-
meter values may lead to the selection of the same choice alternative; and even

if the use of a wrong set of parameter values leads to a different decision, the



first type of insensitivity will guarantee that the loss in expected value as
calculated by means of the model with the correct parameters will be rather
small, Some researchers (Yntema and Torgerson, 1961) have even argued for an
insensitivity across models., According to their results different models
should—under some mild conditions—lead to similar evaluations and decisions.

Although there are doubts about insensitivity across models (see Fischer,
1972) the evidence for the two other kinds of insensitivity is substantial.

In expectation models v, Winterfeldt and Edwards (1973) generalized scattered
findings of flat expected value functions as functions of decisions and decision
strategies. In multi-attribute utility theory Fischer (1972) demonstrated the
insensitivity of multi-attribute utility functions against variations in param-
eters like importance weights and single dimension utilities.

But up until now the evidence for flat maxima was based on more or less
general examples. The questions remained whether or not flatness is a ne-
cessity and what model characteristics cause it. Another problem with the
arguments for insensitivity in those examples is the concept of flatness itself,
A function may look flat, but that can easily be fixed by stretching the units
of the, ordinate and compressing the units of the abscissa, Flatness is not a
mathematical, but a psychological concept. 5% loss may be substantial for one
decision maker and negligible for another.

These arguments call for two kinds of research on the flax maximum phenom-
enon: first, a mathematical analysis that proves the inevitability of restricted
forms of the evalustion functions, given certain model characteristics, and
second, an experimental psychological analysis that shows whether or not these

restrictions can be interpreted as flatness,



This report presents the mathematical foundation of the flat maximum phe-
nomenon, Integrating some theorems from statistical decision theory it shows
that the nature of all linear optimization models imposes severe restrictions
on the model evaluation function. The mathematical proofs produce two further
important and practical results: they establish an equivalence between model
insensitivity against variations in choice alternatives and against variations
in parameter values; and they present the tools for a general and simple ap-
proach to sensitivity analyses., Some examples from statistics, psychological
modeling, and decision analysis demonstrate the use of the concepts and methods

developed.,

Why Evaluation Functions Are Restricted

The most severe restriction on a function is, of course, the specification
of its functional form and parameters, which determines each point of its graph.
At the other extreme one may only know that f is a function, Between these
extremes there are more or less severe confining properties such as convexity,
continuity, boundedness, number of minima and maxima, etc. Assume, for example,
that all we know about the function y = f(x) is

(a) it is defined for O £ x £ 1 and bounded between y = O and y = 1;
(b) it is strictly convex;
(¢) it is continuous;
(d) it has a unique minimum,
Figure la gives some examples of graphs of functions which satisfy (a) - (d).

Figure 1b illustrates some inadmissible cases.
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This section will present the mathematical proof that evaluation functions
in linear optimization models have confining properties like the ones discussed
in this example. The substance of our argument are three theorems from satis-
tical decision theory, which are proven in Ferguson (1967) and DeGroot (1970).
The arguments and proofs are quite technical, but all theorems have a simple
intuitive meaning, and except for theorem 3 they seem self evident, Rather
than boring the reader with messy mathematics, we will rely on self-evidence,
whenever possible, and confine ourselves to interpretation. The reader inter-
ested in more mathematical detail should consult the two references cited, For
illustration a scoring rule example will accompany &ll theorems and proof
arguments,

We want to study the behavior of the model evaluation function U which is
defined over a set of choice alternatives X = [X,y,Z,.4000..]. For example, X
may be a set of gambles, decision functions, or multi-attributed outcomes; U
may be a utility function or an expected utility function. In our scoring rule
example X will be a set of probability estimates which are gambles by the defi-
nition of a scoring rule; U is the subjective expected value (SEV) of those
gambles,

The application of a linear decomposition model to such & choice situation
requires each x to be described as an n-tuple of elements Xi’ characterizing x
for a specific aspect or state Si of the choice situation, We assume therefore

that x has the following representation:
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For example, x may be a gamble in which one receives a dollar amount Xy if
event Si occurs; or a multi-attributed outcomes with value X, in attribute Si’
or a cash flow in which one receives a dollar amount X, at time Si' Note that
by labelling we implicitly let the number of states be finite. This finiteness
of the state space will be our first assumption (Al) for the further mathematical
development.,

Linear decomposition models go further by defining utility functions ui

within each state Si so that each choice alternative can now be characterized by

a vector of single state utilities:

S S S
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a(x) = (u(x), ug(xg),.....,ui(xi),...,.,un(xn))

According to our second assumption (A2) these utilities are bounded, i.e.,
m = ui(xi) = M for all i and x € X, and some real m,M,

Furthermore, in linear optimization models a weight vector w from a param-
eter set W associates with each state Si a weight wi which can be interpreted
as a subjective probability, an importance weight, or a discounting rate, In
expectation, time discounting, and multi-attribute models we can assume that

n
w, 20and X w, = 1,
i ) i
i=1
The linear model evaluates choice alternatives x now by computing the

scalar product w O u of the vectors u and w, or more simply as the weighted

average:



U(x,w) = wou(x) = » w,u (x) (1)

1
That alternative x* is optimal, which maximizes U, i.e., the decision rule of

linear optimization models is:
"choose x* with U(x*,w) > U(x,w) for all x ¢ X"
We will define
U*(w) = U(x*,w) (2)

i.e., U*¥ is the maximal attainable utility for a specific weight vector w, In
statistical decision theory x* would be called a Bayes decision with respect to
the prior distribution w.

Let us interpret the previous paragraph in the scoring rule situation,
assuming a simple two state case, in which Sl and S2 are two mutually exclusive
and exhaustive events, wl and w2 are the associated true subjective probabilities

2
(SP's). The set of choice alternatives X is a subset of the real plane R,

namely the tuples (x_,x

¥ 2) with 0 <x, <1 and x, +x, =1. The x,'s are

i

interpreted as the stated probabilities of the events Si. Since Xl = 1—x2 the
cholce set can be totally characterized by the real numbers between O and 1.
Scoring functions u, and u, are defined for each state S, such that Ux,w) =

SEV(§,E) is maximal if x = w., We will specifically analyze the quadratic scoring

rule in which:

Lour whole argument will be based on maximazation. The dual argument based
on minimization is basically the same.
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Schematically the scoring rule paradlgm is represented in Table 1.

Here, of course, U¥(w) has a very clear interpretation: Ux(w) = U(x*,w) =
U(w,w).

Before we enter into a discussion of the behavior of U and U¥*, we need to
state two preliminary theorems, which will establish a relation between the
parameter set W and the choice set X,

THM 1 Assuming that the state space if finite (Al) and that the
u,(xi) are bounded (A2), there exists for every w € W at

1

least one x € X such that U(x,w) = U*(w).

We will define the subset of X, which contains those elements x which are otpimal
under w as Xﬁ’ and elements of XW as X . A similar theorem is proven in
Ferguson (1967). It seems self evident for finite X: you Jjust order the x's
according to their U-values (all of which are finite by Al and A2) and choose
the x with the maximal U,

The second theorem is more sophisticated and, in fact, substantial work is
based on it in decision theory. To state it, we first have to introduce the
notion of dominance (here in a somewhat wider sense than usual). We call a

choice alternative x dominated, if there exist other alternatives y and z and

a real number a (0 < a < 1) such that



(1) ui(xi) < aui(yi) + (l-a)ui(zi) for all i (Lka)

and

(2) ui(x ) < aui(yi) + (l-a)ui(zi) for some i, (L4b)

i

The set of non-dominated alternatives 1s called admissible., We label the
admissible subset of X as i, and we will assume in the following that X = X
(A3).
THM 2 Given Al, A2, and A3, there exists for all x ¢ X at least
one W € W such that U(x,w) = U*(w).
Similarly to theorem 1 we will define the subset of W which contains those

parameters w which would make x an optimal choice W , and elements w ¢ W we
- - X - X

will call yxe This theorem is rather difficult to prove and requires a sub-
stantial number of "lemmas" such as the famous separating hyperplane theorem,
The idea of theorem 2, however, is simple: admissible cholce alternatives are
potential candidates for optimal choices,

Theorems 1 and 2 allow us to step freely from the parameter set W to the
choice set X and back in our analysis of U as a function of both, w and x.

The main purpose of these theorems here is to establish an equivalence between
parameters and choice alternatives for the insensitivity analysis,

Both theorems have a simple interpretation in our scoring rule example.
Since here X = W and, by definition of a proper scoring rule X = i, the theorems
say that for each true subjective probability vector w, there is an optimal
probabllity estimate x, and tor each estimate x there 1s a subjective prob-

ability vector w which would make this estimate optimal. In fact, we already

knew that, since the unique value x = w was the best estimate in the SEV sense,

8



After these preliminary theorems we are now able to study the restrictions
on U and U¥, By the definition of U* and by the properties of linear opti-

mization models, we know that

(1) the range of U* will be the restricted range of W,

(2) U* has to go through all the corner points [sup {ui(xi)], W= 1].
X

But our third theorem imposes a much more severe restriction on U¥:
THM 3 Under Al and A2 U* as defined in (3) is a convex function
of w, i.,e.,, U¥[av + (1-a)w] < aU*(v) + (l-a)U*(w) for all
0<a<l, v,weW,
The proof is rather simple, and it is presented here, since the convexity of U
is not at all self evident, For a different version of the proof, see DeGroot
(1970). Consider the vector av + (l-a)w. From theorem 1 we know that there is

at least one x such that

Ulx,av + (1-a)w] = Ux[ay + (l-a)w]. (5)
By definition of U
Ulx,av + (1-a)w] = [av + (1-a)w] ou(x) = avou(x) + (1-a) wou(x)., (6)

The latter equality follows from the distributivity of "o." Again by theorem 1

there exist y and 2z ¢ X such that

Uy,v) = U¥(v) (7)

and



U(z,w) = U*(w). (8)
Since

*(v) > U(x,¥)
and

W(w) > U(x,w) = wou(x) (10)
it follows by substitution that

U*[av + (l-a)w] = aU(x,v)+ (1-a)U(x,w) < aU*(v) + (l-a)U%(w). (11)

What does this theorem mean in our scoring rule example? Defining U*(E)
as U*(wl), we see that U* is severly restricted through the boundaries and by
convexity. Figure 2a glves some examples of graphs of U* functions which might

have been generated by some scoring rule (actually, U* is equivalent to some

scoring rule), Figure 2b shows inadmissible graphs. Figure 2c shows the U*
function for our quadratic scoring rule. The interpretation of convexity in
this example is very intuitive: the more certain you are about the events Si’
the better your optimal decision will be in terms of SEV,

We know now that U* 1s a restricted function of w, but what about U as a
function of x? With theorems 1 and 2 it becomes simple to step from U* to U,
U has two arguments, w and x, We know that U is linear in the wi's, thus as a

function of w U defines an n-1 dimensional hyperplane. Tn the scoring rule
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case U is a line as illustrated in Figure 3.

- —— - - - - ——

What do these lines, planes, and hyperplanes have to do with U¥? First,
U is defined on the same space W on which U¥ is defined. Second, U(E:E> and
u*(w) have at least one point in common, namely the point [U*(yx),yxj. Third,
U* is everywhere at least as large as U, i.e., U¥(w) > U(x,w) for all w € W~
and x € X, This last fact follows by simple contradiction., If U¥ was not at
least as large as U for all w and x, then there would exist some x and w such
that U(x,w) > U%¥(w), which contradicts the definition of U¥(w). Therefore,
as a line U is a tangent to U¥*, as a plane it is a tangent plane, and as a
hyperplane it is a tangent hyperplane to U¥, Figure L4 clarifies these concepts
in our scoring rule example.

Figure 4 also exemplifies how the restrictions on U and the possible losses

AU are determined totally by the shape and the slopes of U¥, All losses which

- - — " - - -

may be encountered in a choice situation (whether they are due to a suboptimal
choice or the use of a wrong set of parameter values) are differences between
U* and some hyperplane tangent to it. Assume in a two state case you could
construct U¥ without restrictions and you wanted to make losses around a value
Z a8 large as possible within the boundaries of ui. You probably would con-

struct a U*¥ function which looks somewhat like in Figure 5. But by convexity of

11



U¥ this shape is inadmissible, The convexity of U¥ will make losses in the area
of the optimal choice alternative small,

This intuitive interpretation of the restrictions on the behavior of U
around its maximum through the convexity of U¥ can also be expressed mathems-
tically, Since U is a tangent hyperplane to U¥, it can be totally determined
by n-1 slopes and one point., Assuming that U¥ is differentiable at W the

actual formula for U in terms of U* is consequently:

n-1
= % + -
U(x,w) U*(w_) 21 a, (v - w, ) (12)

where d, = du*/dw,| w , i.e., the directional slope of U¥ evaluated at w |,
i i’ == —x
How much do we stand to lose by the choice of an nonoptimal alternative?
Assume that Hy is the true weight vector, y is the optimal choice alternative,

but instead we choose x # y. Since by definition

U = U 1
(;L,w_y) (v_vy) (13)
and

Ul ) = Wr(w )+ a (w, - w (11)

==~y %’ 4= 1 iy ix’°

we will lose

AU = U*%(w ) -~ Ux(w ) —nil a, (w, -w, ) (15)

~y —x’ 4= iV ily  ix’°

The convexity of U* puts limits on the differences between the U*'s as well as
on the slopes di' Since, in addition (wiy— wiX) cannot exceed 1 (and will

typically be much smaller) the loss AU will remain small,

12



How much will we lose if we base our decision on a parameter value v

when, in fact, the true value is w? We would choose x such that

U(x,y) = U(v) (16)
We will receive
Uew) = Ux(v) 5 d (v - V) (17)

=1 11 1

and consequently we will lose

M= Ux(w) - Ur(v) ¥l (v~ v). (18)
j=1 11 i

Two general expressions may be helpful for limiting purposes: the maximum

possible loss 1s determined by

= 195 -U*¥(f )-d + 4d
AU e Iﬁ%{*@k) (£,)-d, +a) (19)

where & and El are the unit weight vectors with e, = 1 and fl =1, ©See

Figure 6 for illustration,

But this loss would only result from an extremely foolish choice. By
choosing y such that the value U(X,yy) is the minimal point of U¥ (in decision
theoretic terms y is the minimax strategy), we can reduce the maximum possible

loss to

AU = su - U* .
minimax s§p ip {ui(xi)} U-(Ey) <20>

See Figure 7 for illustration,
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By now it should be clear how to do a sensitivity analysis with the tools
developed., The first step is to construct the function U¥, Often this can be
done explicitly, If an explicit solution is not possible or too difficult and
time consuming, one can help oneself with the following procedure: first, plot
the cornerpoints U*(gk), then determine U*(w) where w is the "least favorable"
weight vector which would make a minimax cholce optimal, Then find some other
points of U*¥ and exploit the convexity property to approximate the whole
function, Alternatively U¥ can be approximated by plotting some U - lines.
This procedure can be done graphically in two state cases., In cases with a
larger number of states computer aid is needed, Equations (19) and (20) give
some boundary losses, and equation (15) determine for each particular case the
potential losses. In general: the flatter U* as a function of w, the flatter
U as a function of x will be around its maximum,

To summarize this section: First we established a relation between the
parameter set and the choice set in two therorems by making three assumptions.
We assumed that the state space is finite (Al), that the single state utility
functions are bounded (AE), and that the choice set is admissible (AB). Then
we showed that under Al and A2 in linear optimization models the function U*
is severely restricted by its boundaries and through convexity. Finally, we
demonstrated the restrictions on the actual evaluation function U as a function
of U*¥ and outlined a general approach to sensitivity analysis using the prop-

erties of U*,



The next section will give some examples to demonstrate the concepts and

methods developed.

Examples

A Signal Detection Example

We assume a Simple two state signal detection situation in which a datum d
may be sampled from either of two normally distributed populations Sl or 82.
These distributions have equal variances s = 1 and different means m1 and mE.

Two decisions can be made upon observing d:
(1) a.: d was sampled from 85
or

(2) a_.: d was sampled from S

2 2°

The prior probability for sampling from Si is Wi’ with w, = 1 - We. Payoffs
are 1¢ for correct decisions, O for incorrect decisions,

The choice set X here is the set of real valued decision functions x,
which are cutoffs along the possible real values of d (x is in this case
related to the usual likelihood ratio criterion B by x = 1nB/d'). x is eval-
uated by a simple expected value model.

To formulate the problem in the format of the preceding section, we con-

struct the expected value matrix, where expectations are taken over the random

variable d within each state Si' This matrix indicates for each x the expected

15
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Insert Table 2 about here

amount of money the decision maker stands to lose under Si (see Table 2). The

expected values are defined as

]

EV(xlSl) Pr(d < xlsl) (21)

EV(X|S2) Pr(d > x|sg)° (22)

As in the scoring rule example, we have in this paradigm a 1:1 mapping
from prior probabilities wi into the choice alternatives x. As it is well

known P*, the optimal likelihood ratio criterion for the payoffs given is
¥* = - 2
p w /(1-w ) (23)
and consequently

x¥ = 1n [wl/(l-wl)]/d' (24)

- —— . . ) - - — - - . - -

Figure 8 shows the U* function as determined from Table 2,

U*(wl) = wlPr(d < x*/sl) + (l-wl)Pr(d > x*/Sg). (25)

On the abscissa we have ordered the x*-values under wl to show how they are

related.

Assume now that wl = ,5 is the true prior probability, but instead of

16



x* = 0 we choose some other x' = + o which would be optimal under w1 = 1.
IMgure ¢ demonstrates the ponssible loss AU we expect in this case,
We see how the flatness of U* prevents this loss from being large. V.

Winterfeldt and Edwards (1972) showed in a direct analysis of the U-function,

that U is generally flat in signal detection situations.

A Multi-Attribute Example

Assume that we have two attributes on which we evaluate riskless options,
say Jjob offers. Attribute Sl may be salary, S2 may be staff benefits. We have

five offers, each of which has been evaluated by a utility function u, in each
i

—— . " ot - S - - - -

- - o - o - —— -

attribute (see Table 3). We can immediately delete §5 since it is dominated:

a(z) = 3l - (8, 10) (26)

i.e.,

) (27)

u (z_.) > ul(le) and u_(z_) > u2(

X
1'71 272 30

All other alternatives are admissible, U¥* in thls case will be pilecewise

linear, and its construction is rather easy. We Just plot all the functions

) (28)

U(x )W) =

XM wuy {

3 + (1-
Xgp) A Ju(xg g
(see Figure 9), Naturally U* is defined by the line segments of U such that

U(x, ,w_) > U<§j’wl) for all j. (29)

L7



(in Figure 9 marked by the solid line), Assume now that we choose x,_ for

- - — > " - - -

W, = 1/2, Figure 9 also indicates what we will stand to lose.

Similar analyses can be done with any matrix like the one in Table 3, as
we find them in time discounting models or simple decision analysis problems,
For more than two states graphical representations become impossible, and

computer aid is needed., In those cases one should use the approach of bounding

losses by the slopes and points of U¥ as sketched in the previous section,

18
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Table 1

Schematical representation of the scoring rule
situation with quadratic scoring functions

= -( 1= 2 + - - 2
(SEV(x,) = w [1-(1-x )] + (1-w ) (1-x,9)).
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Decision Cutoff x = 1n B/d’

Table 2

Expected value table for the two state signal

detection situation (ml = -,5; m, = +,5)
Prior
W W

Prob, 1 2
States S, S5

-0 0 1

x Prld < x|51] Pr(d > x]Se]
______________________________ e
0 .69 .69
+ o0 1 0
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Outcomes

Table 3

Multl-attributed outcomes x, described
by their single attribute utilities

Importance W W
Welght L 2
Attribute Sl S2
x 2 12
1
X
) 6 11
X 7 10
3
x 10 9
N
X 12 5
5
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Figure la

Graphs of functions which satisfy (a) - (d)

f(x)

Figure 1b

Graphs of functions which do not satisfy (a) - (d)




Figure 2a

Graphs of hypothetical U%-functions which satisfy the boundary

conditions U%(0)=k and U%(1l) = 1 and convexity.
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Figure 2b

Graphs of non-admissible U* functions
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Figure 2c

U#-functions in our scoring rule example
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Figure 3

The lines defined by U(x,w) in the scoring rule example
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Figure 4

Demonstration of the relation between the hyper-

hlanes U(x,w) and U%(w) in the scoring rule example
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Figure 5

Inadmissible U* function (with foundary values k and 1) which
would make the loss due to small deviations from an optimal

choice severe.
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Figure 6

Graphical determination of maximum possible loss

AU in a two state case.
max

U*(0) c \ u™ ()
U*(w)
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?AU max
U(x g w)




Figure 7

Graphical determination of the maximum possible loss

under a minimax choice y (AU
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Figure 8

U and U* functions in the signal detection example

(ml = -.5; m, = +.5)
100
’;— U*(w, )
~
) 69 Uloyw,)
™ AU
O |
<L
Q. 50+ /
)
w
l.—
O
o
N U(+o,-w) U(-o,w,)
)
Al 5 0 W
x* = - x¥=0 x* = +m

PRIOR PROBABILITY OF S|



MULTIATTRIBUTE UTILITY U FOR EACH CHOICE
ALTERNATIVE x; AND WEIGHT VECTOR w,
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Figure 9

U and U* functions in the multi-attribute example
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