THE OCCUPANT PLOTTING PACKAGE (PLOTCS)

for MVMA 2-D CVS

Users' Manual

R. O. Bennett, Senior Research Associate B. M. Bowman, Research Scientist

The University of Michigan Transportation Research Institute 2901 Baxter Road Ann Arbor, Michigan 48109-2150

January 18, 1989

.

Technical Report Documentation Page

UMTRI-88-47 4. Tite ad Static The Occupant Plotting Package (PLOTCS) for January 18, 1989 VMMA 2-D CVS: User's Manual 7. Activity R. O. Bennett and B. M. Bowman 1. Performing Organization Research Institute University of Michigan 2901 Baxter Road Ann Arbor, Michigan 12. Transportation Research Institute University of Michigan 13. Transformation Research Institute University of Michigan 14. Transportation Research Institute University of Michigan 15. Transformation Research Institute University of Michigan 16. Transformation Research Institute University of Michigan 17. State Research Prind Convert 18. Mannert 19. Transformation Research Prind Convert 11. Section Research Prind Convert 12. Section Research Prind Convert 13. Transformation Research Prind Convert 14. Section Research Prind Convert 15. Advert 16. Advert 17. Michigan 18. Section Research Prind Convert 19. Sectin Motton Corporation/Detroit <th>1. Report No.</th> <th>2. Government Accession No.</th> <th>3. R</th> <th>ocipient's Catalog N</th> <th>e.</th>	1. Report No.	2. Government Accession No.	3. R	ocipient's Catalog N	e.
4. Title ad Lahvie The Occupant Plotting Package (PLOTCS) for MVMA 2-D CVS: User's Manual 1. Separation Comparison Comp	UMTRI-88-47				
The Occupant Plotting Package (PLOICS) for MVMA 2-D CVS: User's Manual January 18, 1989 Address A fortuing Organization Quantity of the Statement Quantity of Michigan 2001 Baxter Road Ann Arbor, Michigan 2901 Baxter Road 2901 Baxter Road 2901 Baxter Road 2901 Baxter Road 2901 Baxter Ro	4. Title and Subtitle		5. R	sport Dote	
Num 2-D CV3. USER 3 initial Performing Organization Report Name Performing Organization Report Name Performing Organization Research Institute Performing Organization Research Institute Diversity of Michigan Performing Organization Research Private Performance Performing Organization Performance Performing Performance Performing Organization Performance Performing Performance Performing Organization Performance Performing Performance Performing Performance Performing Performance	The Occupant Plotting	Package (PLOTCS) for	J	anuary 18,	1989
7. Actacy R. O. Bennett and B. M. Bowman Federating Organization Responsible 7. Performing Organization Mass and Address UMTRI-88-47 7. Performing Organization Mass and Address It. Seek Lumit No. (TRAIS) 2001 Baxter Road Ann Arbor, Michigan 2901 Baxter Road It. Contract or Grant Ma. 201 Baxter Road It. Contract or Grant Ma. 201 Baxter Road It. Contract or Grant Ma. 2020 Baxter Road It. Contract or Grant Ma. 2030 Baxter Road Ann Arbor, Michigan 21. Separate Mass and Address It. Contract or Grant Ma. 22. Separate Mass Safety Restraint Division It. Separate Period Covered 23. Separate Mass Associates It. Separate Period Covered 24. Adurest It. Separate Safety Restraint Division 24. Adurest It. Separate Safety Restraint Division 24. Adurest It. Separate Period Covered 25. It makes graphics plots of the occupant and the vehicle Interfor a graphics plotting Program is called the Occupant Mather Program. 25. It nakese graphics port o	MVMA 2-D CV3. USELS	rialiual	•. •	orterming Organizatio	in Code
R. O. Bennett and B. M. Bowman UMTRI-88-47 1. Pertoning Openiesian Nees and Address Transportation Research Institute 18. Net Umit Net (TRAIS) 302364 Transportation Research Institute 302364 University of Michigan 11. Center & Gent Net 2901 Baxter Road 11. Center & Gent Net Ann Arbor, Michigan 11. The of Report of Corrord The MVMA Signal, Bendix Safety Restraint Division 11. The of Report of Princip Corrord Chrysler Motors Corporation/Detroit 11. The of Report of Princip Corrord The MVMA 2-D Crash Victim Simulation model is a computer program 14. Semaring Agency Code The MVMA 2-D Crash Victim Simulation model is a computer program 14. Semaring Agency Code The MVMA 2-D Crash Victim Simulation model is a computer program 14. Semaring Agency Code The plotting program is called the Occupant Plotting Package 14. Semaring Agency Code Interior and restraint systems for each time point from recorded model and data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the specification of a viewing system. Section 4 presents a summary of the a	7 Author(s)		. P.	prforming Organizatio	in Report No.
	R. O. Bennett and B. M	. Bowman	U	MTRI-88-47	
11 anisportation Research Institute 302364 University of Michigan 302364 2901 Baxter Road 11. Converter & Guet He. 2901 Baxter Road 11. Type of Report and Point Covered 12 Semesting Appendix and Address 11. Type of Report and Point Covered 13 Semesting Appendix Address 11. Semesting Appendix Address 14. Mathematical States 11. Semesting Appendix Address 15. Address 11. Semesting Appendix Address 16. Address 12. Semesting Appendix Address 17. Kathematical States 14. Semesting Appendix Address 18. Address 14. Semesting Appendix Address 18. Address 13. Semesting Appendix Address 18. Address 14. Semesting Appendix Address 18. Address 14. Semesting Appendix Address 18. Address 15. Semesting Appendix Address 19. Semesting Appendix Address 14. Semesting Appendix Address 18. Address 15. Semesting Appendix Address 19. Semesting Appendix Address </td <td>9. Performing Organization Name and Address</td> <td>h Institute</td> <td>10. 1</td> <td>Vork Unit No. (TRAIS</td> <th>5)</th>	9. Performing Organization Name and Address	h Institute	10. 1	Vork Unit No. (TRAIS	5)
2901 Baxter Road II. Type of Report Read Paried Control 12 Summerics Approx of Addition II. Type of Report Read Paried Control 13 Summerics Approx of Addition Final Report 14 Summerics Approx of Addition Final Report 15 Advert Final Report 16 Advert Final Report 17 Type of Report Red Paried Control Final Report 18 Advert Industrial Engineering 19 Failure Analysis Associates Id. Summering Approx Control 18 Advert The MVMA 2-D Crash Victim Simulation model is a computer program used for simulating occupant motion in an automobile crash. This manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle interior and restraint systems for each time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system. (Section 4 presents a summary of the analysis used to achieve necessary coordinate transformation. 19. For the Design Ib. Breather battore between a discussion of the CALCOMP Standard Subroutines.	University of Michigan	II IIISCICULE	3	02364	
Ann Arbor, Michigan 12 Spearsing Agency Meas ad Address Allied Signal, Bendix Safety Restraint Division Chrysler Motors Corporation/Detroit Industrial Engineering Failure Analysis Associates 14. Spearsing Agency Cade Final Report 14. Spearsing Agency Cade Failure Analysis Associates 14. Spearsing Agency Cade 14. Spearsing Agency Cade 15. Adures 16. Adures 16. Adures 17. Englishing Spearsing Spearsing Cade 18. Spearsing Agency Cade 19. Spearsing Agency Cade 1	2901 Baxter Road				
 12. Semesting Agency Means and Adverse Allied Signal, Bendix Safety Restraint Division Chrysler Motors Corporation/Detroit Industrial Engineering Failure Analysis Associates 14. Spenseing Agency Code 14. Spenseing Agency Code 14. Spenseing Agency Code 15. Adverse 16. Adverse 16. Adverse 17. Adverse 18. Adverse 19. Spenseing Agency Code 19. Spenseing Agencoordinate Specification o	Ann Arbor, Michigan		13. 1	ype of Report and P	eried Covered
Alied Signar, Bendrik Safety Restraint Division Chrysler Motors Corporation/Detroit Industrial Engineering Failure Analysis Associates 14. Spennering Agency Code 14. Adverser 14. Spennering Agency Code The MVMA 2-D Crash Victim Simulation model is a computer program manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained, and overlay plots that show the envelope of occupant motion can be obtained, as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformations. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B N. Key Text. 17. Key Text B. Biothetic Idence Contains a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines. 18. Design Automotive Safety Occupant Dynamics Plotting Restraint Systems B. Stenty Cecil (d dis pege) 2. Here UNCLASCIFER	12. Spensoring Agency Name and Address	Safaty Destaciat Disisi	F	inal Report	
Industrial Engineering Industrial Engineering Failure Analysis Associates 14. Abuve The MVMA 2-D Crash Victim Simulation model is a computer program used for simulating occupant motion in an automobile crash. This manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformations. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B V. Key Text Design N. Imitted Wint Accurate Statem Vict Accuration A benthete Statem Vict Accurate 2. Section 2 PLOTCS on the calculate of the speed Vict Accurate 2. Section 2 Plote	Chrysler Motors Corpor	ation/Detroit	on _.		
Failure Analysis Associates Failure Analysis Associates The MVMA 2-D Crash Victim Simulation model is a computer program used for simulating occupant motion in an automobile crash. This manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformation. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B contains a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines. IV. Key Text Design N. Imittee N. Imittee VILIMITED Design Notice Plotting 2. Section 2 Plotting Plotting 2. Section 2 Plotting Restraint Systems 2. Section 2 Plotting Note of the discover a section of the information reco	Industrial Engineer	ing	14. 9	ponsoring Agency C	ode
14. Advected The MVMA 2-D Crash Victim Simulation model is a computer program used for simulating occupant motion in an automobile crash. This manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformations. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B contains a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines. 19. Key Need Design Automotive Safety Craphics Occupant Dynamics Plotting Restraint Systems 2. Sective Design Automotive Safety Craphics Duct Accelered 2. New of Page 2. Price 19. Key Event 2. Sective Constinues a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines.	Failure Analysis Assoc	iates			
Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformations. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B 17. Key Week Design Automotive Safety Graphics Occupant Dynamics Plotting Restraint Systems 18. Sective Clease (of this peak) 19. Sective Clease (of the sective clease (developed for use with The plotting pro- (PLOTCS). It makes gra- interior and restraint data. Separate plots f overlay plots that show as well. The user has	the MVMA 2-D CVS. gram is called the phics plots of the of systems for each time or different time valu the envelope of occur control through input	Occupa poccupa point les ca pant n data	apant Plott ant and t nt from rec an be obt notion can of many pl	ing Package the vehicle corded model tained, and be obtained lot options.
17. Key Words Design M. Distribution Statement Contains a discussion of the dependencies of PLOTCS on the dependencies of PLOTCS on the CALCOMP Standard Subroutines. Automotive Safety UNLIMITED CALCOMP Standard Subroutines. Occupant Dynamics UNLIMITED CALCOMP Standard Subroutines. Plotting Restraint Systems 2. Security Cleased. (of this page) 21. No. of Pages 22. Price UNCLASSIFIED UNCLASSIFIED Contains a discussion of the discussion of the discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines.	Section 2 of this data) for the PLOTCS relationship between a PLOTCS Plot Space coo the specification of a the analysis used to Section 5 presents nume Appendix A contain the models for use	manual presents the co program. Section 3 di selected model run co rdinate system (the si viewing system. Secti achieve necessary co rous example plots pro s a specification of the by the Occupant Plo	ontro iscus: bordin tandan ion 4 bordin bordin bouced the in botting	l card lay ses how to hate syste rd transfor presents a hate trans i by the pr hformation g Package.	yout (input specify the em and the mation) and a summary of sformations. cogram. recorded by Appendix B
Automotive Safety Graphics Graphics UNLIMITED Occupant Dynamics UNLIMITED Plotting Restraint Systems 19. Security Cleast. (of this page) 21. No. of Pages 22. Price UNCLASSIFIED UNCLASSIFIED	17. Key Words Design M.	Bistilution Statument dependenc:	a ies (aiscussion of PLOTCS	n or the 5 on the
Graphics UNLIMITED Occupant Dynamics UNLIMITED Plotting Restraint Systems 19. Security Cleasel, (of this page) 21. No. of Pages UNCLASSIFIED UNCLASSIFIED	Automotive Safety	CALCOMP ST	tanda	rd Subrouti	ines.
Plotting Restraint Systems P. Security Cleasel, (of this page) 2. No. of Pages 2. Price UNICLASSIFIED UNICLASSIFIED	Graphics	UNLIMITED			
Restraint Systems 2. Security Clessif. (of this page) 21. No. of Pages 22. Price UNICLASSIFTED UNICLASSIFTED 10. Content of the pages <	Plotting				
	Restraint Systems	Security Classified data and		90 Ma (1	
CONTRADUCTOR DI LINULIADO DE LI	UNCI ASSI FIED	INCLASSIFIED		1 6 F	<i>11.</i> 7 mce

Reproduction of completed page authorized

TABLE OF CONTENTS

Section P			
1.0	Introduction to PLOTCS	1	
2.0	PLOTCS Input Data Description	3	
	2.1 Introduction	3	
	2.2 PLOTCS User Input	4	
3.0	Specification of the Standard Transformation and Viewing System	17	
	3.1 The Standard Transformation	17	
	3.2 Viewing Matrix Selection	19	
4.0	Summary of Analysis	23	
	4.1 The Standard Transformation	23	
	4.2 The Orthogonal Projection of an Ellipsoid	27	
5.0	Example Plots Produced by PLOTCS	33	
	5.1 Occupant Restrained by 3-Point Belt System	33	
	5.2 Overlayed Plots of Unbelted Occupant Restrained by Simulated Steering Column	73	
	5.3 Unbelted Occupant Restrained by Simple Airbag	85	
	5.4 Occupant Restrained by Shoulder Belt System . with Belt Extension through Fixed Ring	97	
	5.5 MVMA 2-D Tutorial Example Data Set No. 1 1 in English Units	01	
6.0	References	23	
Appe	endix A: PLOTCS Hold File Record Layouts 1	25	
Appe	endix B: Dependence of PLOTCS on Standard 1 CALCOMP Plot System Subroutines	47	

LIST OF FIGURES

Figure	Page
1. Effect of Standard Transforma	tion
2. The Viewing Point in Spherica Relative to the PLOTCS Plot S	l Coordinates 20 Space System
3. Relationships Between Coordin	ate Systems 25
4. The Shadow Ellipse on the Vie	wing Plane 30

LIST OF TABLES

Table		Page
1	PLOTCS Control Card Layout	5
A-1	Coordinate System Ordering	125
A-2	Ellipsoid Ordering	126
A-3	Notation Used	126
A-4	Layout of PLOTCS Hold File	127
B-1	Subroutine VPLOT	148
B-2	Subroutine ZDBAXS	149
B-3	Subroutine ZDBBEG	150
B-4	Subroutine ZDBCRV	151
B-5	Subroutine ZDBEND	152
B-6	Subroutine ZDBNUM	153
B-7	Subroutine ZDBPLT	154
B-8	Subroutine ZDBSYM	155
B-9	NUMBER Subroutine Description	156
B-10	PLOT Subroutine Description	157
B-11	PLOTS Subroutine Description	158

.

7A

1.0 Introduction to PLOTCS

A graphics plotting routine has been developed at UMTRI for use with the MVMA 2-D Crash Victim Simulation model (and with an early UMTRI version of the CAL 3-D model). [1,2] This post-processor program is called the Occupant Plotting Package (PLOTCS). It makes up to three plots (views) of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. The views are each a user-specified region of an orthographic projection of the three-dimensional occupant and vehicle interior onto a user-specified plane.

Section 2 presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of each viewing system. Section 4 presents a summary of the analysis used to achieve the necessary coordinate transformations and the orthographic projection. Section 5 presents numerous example plots produced by the program.

Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B contains a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines.

2

•

2.0 PLOTCS Input Description

2.1 <u>Introduction</u>. The PLOTCS program produces plots of orthographic projections, or shadows, on the X-Z plane of each of the user-specified viewing systems at each of the user-specified time points. For each such viewing system, the Y-axis is the line-of-sight for the corresponding plot.

The user must specify each of the viewing systems with respect to the PLOTCS Plot Space coordinate system. The user must also relate the PLOTCS Plot Space coordinate system (in which positive X is forward in the model run, positive Y is leftward in the model run, and positive Z is upward in the model run) in terms of any one of the general segment systems of the model run. If the chosen model run coordinate system is different from the PLOTCS Plot Space coordinate system, the user must set the switch "LNORM" positive and supply the corresponding control cards. All general segment systems of the model run must be orthogonal but may be left-handed.

The PLOTCS plotter program expects as input both a deck of control cards and a character hold file of recorded data. The control deck is read from logical device number 5 in the form of formatted lines; the hold file data are read from logical device number 1 in the form of formatted records. The control cards must be made up by the user of the plotter program and contain information on the specific plots to be made. They are further described in Section 2.2. The character data file must have been previously written by a run of a crash simulation program and contains the information that the plotter program will use to make the plots. This is known as the PLOTCS Hold File and is further described in Appendix A.

Groups of special points to be plotted can be specified through either this control card input or through the model recorded PLOTCS Hold File. Up to a total of 50 such groups can be processed. This total includes all those groups specified by both sources. A total of 400 points can be processed which make up all of the groups of special points. Each group of special points is plotted as a broken line in three-dimensional space. MVMA 2-D CVS Version 6.1 (and higher) as resident on the Michigan Terminal System (MTS) at the University of Michigan is able to write the PLOTCS Hold File. The MVMA 2-D CVS "GO" Processor supplements MVMA 2-D two-dimensional data (X-Z) with Y-coordinate data for writing to the ("three-dimensional") PLOTCS Hold File.

2.2 <u>PLOTCS User Input</u>. The plotter program expects to find a formatted line file, previously set up by the user, attached to logical device number 5. This should contain a number of lines (also referred to as cards) that describe the views to be plotted and the times at which they should be plotted. The layouts of these cards, including card formats, program variable names, descriptions, and default values (if any) are described in Table 1.

As a general rule, if any field in the PLOTCS Control Card input deck is left blank or put in as zero, the value given in the Default Column will be used. Sets of direction cosines are the basic exceptions to this rule. Direction cosines are dealt with in terms of triads. The defaults for each such triad are used only when the whole triad is blank or zero. TABLE 1. PLOTCS CONTROL CARD LAYOUT (1 of 12)

Card 1 -- SWITCHES

<u>_Col</u>	Item	Description	<u>Default</u>
01-02	ICGSWT	Plot C.G. symbol if positive.	1
03-04	IJNT	Plot joints and centerlines if positive.	1
05-06	IJTSYM	No joint symbol if negative; solid circle for joints if 1; hollow circle for joints if 2.	2
07-08	INECK	Plot special neck if positive. Magnitude is joint number of the neck joint in the joint specifications below.	1
09-10	IHEAD	Plot upper neck joint offsets from head c.g. in head system if positive. Magnitude is the joint end number of the neck joint specified by the magnitude of INECK in the joint specifications below.	1
11-12	-	Blanks	-
13-14	IELL	Plot contact ellipsoids if positive.	1
15-16	IPNL	Plot contact panels if positive.	1
17-18	IBAG	Plot airbag ellipsoidal outlines if positive.	1
19-20	IABP	Plot panel ellipsoids if positive.	1
21-22	-	Blanks	-
23-24	IBELT	Plot belts if positive.	1
25-26	IBLTIC	Plot belts as tick marks if positive; plot belts as outline lines if negative.	1
27-28	IRINGS	Plot belt rings if positive.	1
29-30	ISCPTS	Plot special points from model run.	1
31-32	JSCPTS	Plot special points specified with control card	ls 1
33-34	INPSGP	Number of groups of special points described as part of this control card deck.	0

5

TABLE 1. PLOTCS CONTROL CARD LAYOUT (2 of 12)

Card 1 -- SWITCHES (continued)

<u>Col</u> Item Description Default 35 - 36_ Blanks 37-38 LVIEW Model Run Coordinate system used as basis for 0 Plot Space. (Set -1 for inertial, set 0 for principal vehicle, or set to any general segment number.) If the model run is MVMA 2-D, set to -1; 39-40 LNORM -1 otherwise if model run is different from Plot Space, set positive and provide Cards 4-7. Number of views (different viewing systems) 1 IVIEWS 41-42 shown for each time (max 3). Blanks 43 - 44_ Plot legend of symbols used if positive. 45-46 LEGEND -1 47-48 IOVER Plot all times on one plot if positive. -1 Plot facial features if positive. 49-50 IFACE -1 51 - 52_ Blanks _ Auxiliary Printout Control Switch 0 53-54 IDB (Values 0-3 inclusive downward). Frequency Control for PLOT subroutine 0 55-56 INCZDB auxiliary printout (Values 0-10). Recorded data can be treated as ITWOD 1 57-58 effectively two-dimensional if positive.

TABLE 1.PLOTCS CONTROL CARD LAYOUT (3 of 12)

Card 2 -- PLOT LAYOUT PARAMETERS

Col	Item	Description	Default
01-08	BLTSPC	Distance between tick marks for belts (Model run units)	1.
09-16	BLTICK	Half-width of tick marks for belts (Plot inches)	.1125
17-24	RINGMX	Radius of maximum slip ring circle (Plot inches)	.1
25-32	RINGMN	Radius of minimum slip ring circle (Plot inches)	.08
33-40	ATTMAX	Radius of maximum belt attachment circle (Plot inches)	.1
41-48	ATTMIN	Radius of minimum belt attachment circle (Plot inches)	.05
49-56	ANCHLG	Length of anchor symbol (Plot inches)	.15
57-64	ANCHDP	Depth of anchor symbol (Plot inches)	.07
65-72	RADJNT	Radius of joint circle (Plot inches)	.045

TABLE 1. PLOTCS CONTROL CARD LAYOUT (4 of 12)

Card 3 -- PLOT TIMES AND PLOT LAYOUT PARAMETERS

Col	Item	Description	Default
01-08	T1	Beginning time to be plotted (msec)	Ο.
09-16	T 2	Last time to be plotted (msec)	200.
17-24	DELTAT	Time increment between plots (msec) (Negative increment means do all recorded plots within the time interval)	40.
25-32	RADCG	Radius of C.G. symbol (Plot inches)	0.10
33-40	WIDNEK	Half-width of tick mark for neck (Plot inches)	0.15
41-48	TCKNNO	Number of tick marks equispaced along neck	6.

.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (5 of 12)

Cards 4 to 7: MODEL RUN TRANSFORMATION SPECIFICATION CARDS (These cards must be present if LNORM is not zero.)

Card 4 -- PLOT SPACE ORIGIN (Set Up Card 1)

Col	Item	Description	Default
01-08	ORGNRM(1)	X-coordinate of Plot Space origin (*)	Ο.
09-16	ORGNRM(2)	Y-coordinate of Plot Space origin (*)	0.
17-24	ORGNRM(3)	Z-coordinate of Plot Space origin (*)	Ο.

Card 5 -- FORWARD DIRECTION (Set Up Card 2)

Col	Item	Description	Default
01-08	FORWRD(1)	Direction cosine of forward from X	1.
09-16	FORWRD(2)	Direction cosine of forward from Y	0.
17-24	FORWRD(3)	Direction cosine of forward from Z	0.

(*) Appropriate model run linear units.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (6 of 12)

Default

Ο.

1.

Cards 4 to 7: MODEL RUN TRANSFORMATION SPECIFICATION CARDS (cont.) (These cards must be present if LNORM is not zero.)

Card 6 -- LEFT DIRECTION (Set Up Card 3)ColItemDescription01-08GAUCHE(1)Direction cosine of left from X09-16GAUCHE(2)Direction cosine of left from Y

17-24 GAUCHE(3) Direction cosine of left from Z 0.

Card 7 -- UPWARD DIRECTION (Set Up Card 4)

Col	Item	Description	Default
01-08	UP(1)	Direction cosine of up from X	Ο.
09-16	UP(2)	Direction cosine of up from Y	Ο.
17-24	UP(3)	Direction cosine of up from Z	1.

SPECIAL POINTS SECTION OF RECORDS: (This section occurs only if INPSGP > 0 and consists of one card with INPSGP fields followed by one record for each special point specified on the first card.)

Card 8 -- GROUP LAYOUT CARD FOR SPECIAL POINTS

<u>Columns</u> 6j-5 to 6j NSPTGP(1,j), Number of points in group j (>=0). for j = 1, INPSGP

Card m+8 -- SPECIAL POINTS TO CONNECT IN GROUPS (There are exactly INPSPP of these cards where INPSPP is the sum of NSPTGP(j),j=1,INPSGP.)

<u>Columns</u> <u>Description</u>

01 to 06 j, Group number (1 to INPSGP).

07 to 12 Point number (1 to NSPTGP(1,j)).

13 to 20 General segment attachment number (1 to NGRD).

21 to 40 X-coordinate of current special point.

41 to 60 Y-coordinate of current special point.

61 to 80 Z-coordinate of current special point.

for m = 1, INPSPP

Note: Let M = 8 if INPSGP = 0 or M = INPSPP + 9 if INPSGP > 0.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (8 of 12)

PLOT VIEW SPECIFICATION SECTION OF RECORDS: (IVIEWS sets of these 7 cards are required.)

Card 7*K+M -- THE PLOT SPACE X-AXIS W.R.T. THE VIEWING SYSTEM (Viewing system specification, 1st card)

- Default Col Item Description 01-08 AMAT(1,1,K) Direction cosine from the Plot Space X-axis 1., 0., 1 to the Viewing X-axis 09-16 AMAT(1,2,K) Direction cosine from the Plot Space X-axis 0., -1., 0 to the Viewing Y-axis 17-24 AMAT(1,3,K) Direction cosine from the Plot Space X-axis 0., 0., 0 to the Viewing Z-axis
- Card 7*K+M+1 -- THE PLOT SPACE Y-AXIS W.R.T. THE VIEWING SYSTEM (Viewing system specification, 2nd card)
- ColItemDescriptionDefault01-08AMAT(2,1,K)Direction cosine from the Plot Space Y-axis0., 1., 0.
to the Viewing X-axis
- 09-16 AMAT(2,2,K) Direction cosine from the Plot Space Y-axis 1., 0., 0 to the Viewing Y-axis
- 17-24 AMAT(2,3,K) Direction cosine from the Plot Space Y-axis 0., 0., 1 to the Viewing Z-axis
 - Note: Where the Default Column contains a triad of numbers, the number is used corresponding to the value of K = 1, 2, or 3 for the current set of viewing system specification cards.

. **•**

TABLE 1. PLOTCS CONTROL CARD LAYOUT (9 of 12)

PLOT VIEW SPECIFICATIONS SECTION (continued) (IVIEWS sets of these 7 cards are required.)

Card 7*K+M+2 -- THE PLOT SPACE Z-AXIS W.R.T. THE VIEWING SYSTEM (View system specification, 3rd card)

<u>Col</u>	Item	Description	Defa	ult
01-08	AMAT(3,1,K)	Direction cosine from the Plot Space Z-axis to the Viewing X-axis	0.,	0., 0.
09-16	AMAT(3,2,K)	Direction cosine from the Plot Space Z-axis to the Viewing Y-axis	0.,	0., -1.
17-24	AMAT(3,3,K)	Direction cosine from the Plot Space Z-axis to the Viewing Z-axis	1.,	1., 0.
Card 7	*K+M+3 PH (V	YSICAL SPECIFICATION OF THE VIEW PLOT AREA iew system specification, 4th card)		
Col	Item	Description	Defa	ault
01-08	XPLTLL(K)	Distance along paper of view plot area from left edge of plot paper (Plot inches).		. 5
09-16	ZPLTLL(K)	Distance across paper of view plot area from bottom of plot paper (Plot inches).	.5, 9	9., 17.5

17-24 XPLTLG(K) Length of plot area in X-direction 11. (Plot inches)

25-32 ZPLTLG(K) Length of plot area in Z-direction 8.5 (Plot inches) TABLE 1. PLOTCS CONTROL CARD LAYOUT (10 of 12)

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued) (IVIEWS sets of these 7 cards are required.)

Card 7*K+M+4 -- PHYSICAL SPECIFICATION OF PLOT REFERENCE FRAME (View system specification, 5th card)

_Col	Item	Description	<u>Default</u>
01-08	XVULLC(K)	Distance in x-direction of plot reference frame origin from left edge of plot area (Plot inches)	.5
09-16	ZVULLC(K)	Distance in z-direction of plot reference frame origin from bottom edge of plot area (Plot inches)	.5
17-24	XAXSLG(K)	Length of plot reference frame x-axis (Plot inches)	10.
25-32	ZAXSLG(K)	Length of plot reference frame z-axis (Plot inches)	7.

(Note: At the University of Michigan plots can be a maximum of 360 inches along paper where the Viewing X-direction is plotted and a maximum of 30 inches wide across paper where the Viewing Z-direction is plotted.) TABLE 1. PLOTCS CONTROL CARD LAYOUT (11 of 12)

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued) (IVIEWS sets of these 7 cards are required.)

Card 7*K+M+5 -- SCALING SPECIFICATION OF PLOT REFERENCE FRAME (View system specification, 6th card)

<u>_Col</u>	Item	Description	Ľ	Default
01-08	XLEFVL(K)	X-value to be shown in the lower left corner of the plot	-10.,	-50., -10.
09-16	XRIGHT	X-value to be shown in the upper right corner of the plot	90.,	50., 90.
17-24	ZBOTVL(K)	Z-value to be shown in the lower left corner of the plot	0.,	0., 35.
25-32	ZTOP	Z-value to be shown in the upper right by plot reference frame x-axis	-70.,	-70., -35.
33-40	ELLDEL(K)	Plot step size for representing shadow ellipses		1.
41-48	TICKVL(K)	Length represented by spacing between tick marks in plot		10.
	Note 1:	The lengths of the X and Z axes will		

- be adjusted to show the user-specified plot region with equal scales in both the X and Z directions.
- Note 2: If the ITWOD switch of the first control card is positive, Z-values are expected to be positive downward. In this case, the first four parameters of this card are identical in meaning to fields 3 through 6 of Card 1500 in MVMA 2-D CVS data sets. If the ITWOD switch is negative, the Zvalues are expected to be positive upward.
- Note 3: All parameters on this card are to be specified in appropriate model run position units.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (12 of 12)

4

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued) (IVIEWS sets of these 7 cards are required.)

Card 7*K+M+6 -- SPECIFICATION OF VIEW PLOT TITLE (Viewing system specification, 7th card)

<u>Col</u>	Item	Description	Default
01-12	VWTTL(1-3,K)	Title for View Plot (12 characters)	Х-Z, Y-Z, Х-Y

for K = 1, IVIEWS

3.0 Specification of the Standard Transformation and the Viewing Systems

The positional data recorded by the models in the hold files is in terms of model coordinate systems. PLOTCS begins by transforming all the data into the PLOTCS Plot Space System based on one coordinate system of the user's choice. The x-axis of the PLOTCS Plot Space System will be shown as the forward direction on the plots, the y-axis is shown to the left, and the z-axis is shown upward. After transformation into the PLOTCS Plot Space system the data are stored in internal tables. This process is called the Standard Transformation and is the subject of Section 3.1.

The viewing systems are specified in terms of the PLOTCS Plot Space system and the plots are made of the orthographic projection, or the shadow, of the model run configuration onto the x-z plane of each specified viewing system with the viewing y-axis being the line of sight of each such plot. Specification of these viewing systems is the subject of Section 3.2.

3.1 <u>The Standard Transformation</u>. Consider a seated occupant seen in an MVMA 2-D representation in the vehicle coordinate system. Without the standard transformation, PLOTCS would show this occupant upside down since z is positive downward in the model system while PLOTCS Plot Space has z positive upward. The purpose of the Standard Transformation is to put the x, y, and z values from the simulation into the Plot Space coordinate system illustrated at the bottom of Figure 1. The LNORM = -1 option should normally be selected for plotting MVMA 2-D results.

The relationship between the specified model system and the PLOTCS Plot Space system is defined by the user in the PLOTCS Control Cards by specifying the direction cosines of the "forward" direction, the "leftward" direction, and the "upward" direction in terms of the chosen model run coordinate system. Figure 1 illustrates the standard MVMA 2-D case.

Figure 1. Effect of Standard Transformation

3.2 <u>Viewing Matrix Selection</u>. In the general threedimensional case, the second step in setting up plots is determining the proper viewing matrix. Each of a possible three views are specified with respect to the PLOTCS Plot Space system.

One simple way is to choose a viewing point and imagine drawing a line to the origin of the plot view system. The plane upon which the orthographic projection is made is the plane perpendicular to this line through the plot view system origin. In fact, the line-of-sight thus established is the Y-axis of the plot view system. If the viewing point is represented in spherical coordinates in the PLOTCS Plot Space system (see Figure 2), then a proper viewing matrix is:

-sin θ	cos θ	0	
$-\sin\psi\cos\theta$	-sin ψ sin θ	-cos y	(1)
-cos ψ cos θ	-cos ψ sin θ	-sin ψ	

Figure 2. The Viewing Point in Spherical Coordinates Relative to the Standard System

An alternative approach is to use the direction cosines $(\cos \alpha, \cos \beta, \cos \gamma)$ of the line-of-sight. The direction cosines of the line-of-sight are related to the coordinates of the viewing point (Xp, Yp, Zp) by

$$\cos \alpha = Xp / D$$
, $\cos \beta = Yp / D$, $\cos \gamma = Zp / D$ (2)

where

$$D = \pm \sqrt{\frac{2}{Xp} + \frac{2}{Yp} + \frac{2}{Zp}}$$
(3)

and a proper viewing matrix is:

$$\begin{bmatrix} \cos \beta / \sin \gamma & -\cos \alpha / \sin \gamma & 0 \\ \cos \alpha & \cos \beta & \cos \gamma \\ -\cos \alpha / \tan \gamma & -\cos \beta / \tan \gamma & \sin \gamma \end{bmatrix}$$
(4)

if
$$\cos^2 \gamma \neq 1$$

or

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 if $\cos \gamma = \pm 1$ (5)

22

.

-

4.0 Summary of Analysis

The analysis is summarized in two parts. The first subsection deals with the various coordinate system transformations and the second subsection deals with the orthographic projection of a general ellipsoid upon the specified viewing plane.

4.1 <u>Coordinate Transformations</u>. Model run information is expressed in terms of several coordinate systems. PLOTCS first transforms the descriptions of all these coordinate systems to correct for the directions of the base underlying unit vectors. This coordinate system is called the Standard Transformation.

The Standard Transformation is defined in three steps:

- selection of one of the model run coordinate systems as a basis for relating the PLOTCS Plot Space system to the model run systems
- specification of a new origin with respect to the "base" system
- 3. specification of a direction cosine matrix about the new origin which relates the "base" system to the PLOTCS Plot Space system.

The Standard Transformation is applied to all positional data recorded by the simulation model. One or more viewing systems are then defined with respect to the PLOTCS Plot Space system. All of these transformations can be described in terms of a general rotation and a general translation. We will use the following index correspondences. The index "N" is for any of the model coordinate systems, the index "S" is for the PLOTCS Plot Space system, and the index "I" is for the model inertial system (with respect to which all the other model coordinate systems are related). Also, the index "M" will stand for the model coordinate system with respect to which the PLOTCS Plot Space system is defined, and the index "V" will be for any of the viewing coordinate systems. The indices "K" and "J" are general and can stand for any of these coordinate systems.

We will let R(K) stand for any positional vector given with respect to any coordinate system K. R'(K,J) will be the positional vector to the origin of any coordinate system K given with respect to any other coordinate system J. D(K,J)is the direction cosine matrix of any coordinate system K given with respect to any other coordinate system J, and D/(K,J) will stand for the inverse of the direction cosine matrix D(K,J). Since all of the coordinate systems are orthonormal, we have that

$$D/(K,J) = D(J,K) \quad . \tag{6}$$

Also, by definition of the direction cosines,

$$R(K) = R'(K,J) + D(K,J) * R(J) \text{ for any } K \text{ and } J \qquad (7)$$

Equation 7 serves as the basis for the necessary conversion equations for any model vector R(N) into any viewing system V:

$$R(V) = R'(V,S) + D(V,S) * R(S)$$
(8)

where R(V) is needed for the actual plotting of points, R'(V,S) and D(V,S) are obtained from control card input, and

$$R(S) = R'(S,M) + D(S,M) * R(M)$$
(9)

where R'(S,M) and D(S,M) are also obtained from control card input. (This equation holds even if D(S,M) represents a redefinition from a left-handed system to a right-handed system.) Also, for equation 9, we use

$$R(M) = D(M,I) * (D/(N,I) * R(N) + R'(N,I) - R'(M,I))$$

(10)

where

D(M,I), D(N,I), R'(M,I), and R'(N,I)

are all recorded in the model data hold file.

Figure 3 illustrates the relationship between these various coordinate systems.

Figure 3. Relationships Between Coordinate Systems

4.2 The Orthographic Projection	of an Ellipsoid. The
general equation of an ellipsoid in a	ny viewing system is:
$\alpha x^2 + \beta y^2 + \gamma z^2 + 2 (\gamma xy + \epsilon)$	$xz + \lambda yz) = 1 $ (11)
where	
$\alpha = D^{2}/a^{2} + D^{2}/b^{2} + \frac{11}{21}$	D^{2}/C^{2} , (12)
11 21	51
$\beta = D^2 / a^2 + D^2 / b^2 +$	D^{2}/c^{2} , (13)
12 22	32
	+ D D /~2 (14)
	31 32
$S = D^{2}/a^{2} + D^{2}/b^{2} + 13 \qquad 23$	D^{2}/c^{2} , (15) 33
$\epsilon = D D /a^2 + D D /b^2$ 11 13 21 23	+ D D $/c^2$, (16) 31 33
$\lambda = D D /a^2 + D D /b^2$	+ D D $/c^2$. (17)

In equations 12 through 17:

a, b, c	are the semiaxes of the ellipsoid, and
D ij	is the i-th row and j-th column element of the direction cosine matrix for the
	ellipsoid relative to the viewing system

In the nomenclature of the last section, equation 18 gives the relationship between the direction cosine matrix D with respect to the viewing system and the model system N to which the ellipsoid is attached:

$$D = D(V,S) * D(S,M) * D(M,I) * D/(N,I) * De$$
(18)

where

De is the direction cosine matrix which defines the relationship of the ellipsoid to the model system N; this matrix is recorded in the model hold file.

In the viewing system, the y-axis is the line-of-sight viewing axis and the x-z plane is the viewing plane. The orthographic projection, or shadow ellipse, is the shadow of the ellipsoid on the viewing plane which results from a light source parallel to the y-axis on the other side of the ellipsoid and shining on the plane. Equation 11 is solved for y to get equation 19 below. The edge of the shadow is made up of those points in the x-z plane for which a unique solution exists for y or where the discriminant equals zero.

$$y = \frac{-(\gamma x + \lambda z) \pm \sqrt{(\gamma - \alpha \beta) x^{2} + (\lambda - \beta \delta) z^{2} + 2(\gamma \lambda - \beta \epsilon) xz - \beta}}{\beta}$$
(19)
so
$$(\gamma - \alpha \beta) x^{2} + (\lambda - \beta \delta) z^{2} + 2(\gamma \lambda - \beta \epsilon) xz - \beta = 0$$
(20)

Equation 20 is the equation of an ellipse in the x-z plane. In order to simplify plotting, we will use a general parametric form of the equation of an ellipse:
$$\mathbf{x} = \mathbf{A}\cos\phi\,\cos\theta - \mathbf{B}\sin\phi\,\sin\theta \tag{21}$$

$$z = A \sin \phi \cos \theta + B \cos \phi \sin \theta$$
(22)

where

- A, B are the semiaxes of the shadow ellipse
 - ϕ is the angle of the A-axis of the ellipse with respect to the x-axis

and

 θ is the parametric variable.

Figure 4 shows the ellipse obtained by letting the parameter θ vary from 0 degrees to 360 degrees for a particular set of A, B, and ϕ .

If equations 21 and 22 are substituted into equation 20, the following equation results:

 $A^{2} [(\gamma - \alpha \beta) \cos^{2} \phi + (\lambda - \beta \delta) \sin^{2} \phi + 2(\gamma \lambda - \beta \epsilon) \sin \phi \cos \phi] \cos^{2} \theta$ + $B^{2} [(\gamma - \alpha \beta) \sin^{2} \phi + (\lambda - \beta \delta) \cos^{2} \phi - 2(\gamma \lambda - \beta \epsilon) \sin \phi \cos \phi] \sin^{2} \theta$ - β + $2 A B [(\gamma \lambda - \beta \epsilon) (\cos^{2} \phi - \sin^{2} \phi) + (\lambda - \gamma - \beta \delta + \alpha \beta) \sin \phi \cos \phi] \sin \theta \cos \theta$ (23)

= 0

Since each point on the ellipse is represented by a value of the parameter θ , this equation must be satisified for all values of θ . Three of the four terms in this equation include sin θ and cos θ factors. Since, while θ is an independent variable, sin θ and cos θ are not independent of each other, equation 23 can be written arbitrarily as two grouped terms, each having the value zero. Specifically, we can satisfy equation 23 by choosing a relationship between A, B, and β such that the first three terms sum to zero, provided that the fourth term is separately zero. From setting the coefficient of the fourth term to zero we get equation 24:

$\sin \phi \cos \phi$	=	γλ-βε	(24)
$\cos^2 \phi - \sin^2 \phi$		γ - λ - αβ + βδ	(21)

and since

$$\tan 2\varphi = \frac{\sin \phi \cos \phi}{\cos^2 \phi - \sin^2 \phi}$$
(25)

we get

$$\phi = \frac{-1}{2} \tan \left[2 \left(\gamma \lambda - \beta \epsilon \right) / \left(\gamma - \lambda - \alpha \beta + \beta \delta \right) \right]$$
(26)

The first three terms of equation 23 will sum to zero if we set the coefficients of the first two terms separately equal to β since $\sin^2 \theta + \cos^2 \theta = 1$.

Hence

 $\mathbf{A}^{2} \left[\left(\gamma - \alpha \beta \right) \cos^{2} \phi + \left(\lambda - \beta \delta \right) \sin^{2} \phi \right]$ (27)

+ 2 ($\gamma \lambda - \beta \epsilon$) sin $\phi \cos \phi$] = β

and

$$B^{2} [(\gamma - \alpha \beta) \sin^{2} \phi + (\lambda - \beta \delta) \cos^{2} \phi$$

$$(28)$$

$$- 2 (\gamma \lambda - \beta \epsilon) \sin \phi \cos \phi] = \beta$$

We can solve equation 27 for A and equation 28 for B in terms of the value ϕ determined in equation 26. This then represents a valid solution for equation 23. The values of A and B are presented as equations 29 and 30.

$$A = \frac{\sqrt{\beta}}{\sqrt{(\gamma - \alpha \beta) \cos^2 \phi + (\lambda - \beta \delta) \sin^2 \phi + 2(\gamma \lambda - \beta \epsilon) \sin \phi \cos \phi}}$$
(29)
$$B = \frac{\sqrt{\beta}}{\sqrt{(\gamma - \alpha \beta) \sin^2 \phi + (\lambda - \beta \delta) \cos^2 \phi - 2(\gamma \lambda - \beta \epsilon) \sin \phi \cos \phi}}$$
(30)

5.0 Example Plots Produced by PLOTCS

This section contains examples of plots produced by PLOTCS. Subsections are for separate runs of MVMA 2-D, and each subsection in general has several illustrative plots.

Each subsection is organized in the following manner. The data set for the PLOTCS post-processor (see Section 2.2) is first shown; the MVMA 2-D Input Processor data set is not shown except for the pertinent control in Field 2 of Card 101. The first plot shown is the time zero plot produced from the PLOTCS output. The time zero Stick Figure Printer Plot (Category 45) produced by the model run is presented next for comparison. The printed output from the PLOTCS program then follows if there is a particular point to be illustrated. Some of any remaining plots produced by the run are then presented. Finally, a printout of the PLOTCS hold file (see Appendix A) produced by the corresponding model run is appended to the first example, Sec 5.1.

5.1 Occupant Restrained by 3-Point Belt System. The data set used for this run is the DEMOBELT data set which is included on release tapes of the MVMA 2-D model. The run was made with Field 2 of Card 101 set to -20. and the run duration set to 0 to 160 msec. The plots are produced every 40 msec over the whole duration. Listing of DEMOBELT.GCP(2000) at 21:13:27 on JAN 15, 1989 for CCid=SXA3 on UM

.045

2000	1 1 2	1-1		1 1 1 1	•	0-1 1	- 1 - 1 - 1	0 0 1
2001	-	. 1125		.08		.05	. 15	.07
2002	0	160.	40.	. 10	. 15	9		
2003	.	0	o					
2004	0	-	°.					
2005	0	0						
2006	٦	<u>ع</u> .	11.	8.5				
2007	<u>ى</u>	5. 2	10.	7.				
2008	- 300	- 100.	0	- 140.	5. 2	20.		
2009	z-x	VIEW						

Page 1

36

•

BEGIN 2-D DCCUPANT KINEMATICS POST PROCESSOR BELTS WILL BE DRAWN, IF PRESENT. PANELS WILL BE DRAWN, IF PRESENT. JOINTS AND CENTERLINES WILL BE DRAWN, IF PRESENT. ELLIPSOIDS WILL BE DRAWN, IF PRESENT. AIRBAG OUTLINES WILL BE DRAWN, IF PRESENT.

.

																				0.0 0.0 1.0000000						
	n	0.0	0.0	0.0	-1.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	IEW 1 0 0000000						
00	5	_	_	000	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0 0	0.0	0.0	> 0 + 0						n
0.0 160.000 40.000	-	0.0	0.0	-1.0	0.0	0.50	0.50	11.00	8.50	0.50	0.75	10.00	7.00	ERS	-300.00	0.0-	200.00	140.00	5.00	- 0000 0.0 0.0	-	5		4	10	VUMBER =
PLOT START TIME (MSEC) PLOT END TIME (MSEC) PLOT INTERVAL (MSEC)	PLOTTING PARAMETERS PLOT #	DRGNRM: 0.0	FORWRD: 1.0000	GAUCHE: '0.0	UP: 0.0	PLOT X ORIGIN (IN)	PLOT Z ORIGIN (IN)	PLDT X LENGTH (IN)	PLDT Z LENGTH (IN)	AXIS X ORIGIN (IN)	AXIS Z ORIGIN (IN)	AXIS X LENGTH (IN)	AXIS Z LENGTH (IN)	VIEWING SYSTEM PARAMETI	POS'N ORIGIN X (IN)	POS'N DRIGIN Z (IN)	MAXIMUM X (IN)	MAXIMUM Z (IN)	ELLIPSE STEP FACTOR	VIEWING ROTATION MATRIX	END OF TIME PLOT NO.	END OF ALL PLOTS, TOTAL P				
																			3	9						

.

.

	+	1 PLOTCS		0	19		7	9	-	0		29	19 1	- е	7	0
	5	TITLE	ž	/MA 2-	D CVS	DEMON	STRATI	ON RUN	FOR A	BEL	TED	DRIVER	(UNTE	STED C	ATA)	u
	ი.	SUBTITL		THREE	-PUIN	N BELI	SYSIE	LA DATA	LUWER THFF			ING STI		UG88		,
	4 u	TT JIVU	ש ש ש ש			4 14 D	31.17		06:05:2	4	:					
	ניט	RELT.			TORS	O BELT		່ເດ		3		12	0	0		8
	2		•	- 1 	12.04	300		1.99999	76		-8.4	00006				
	8			1	255.9	000		22.1000	õ		- 107	.4000		(c
	ი	BELT	7	LOWER	TORS	O BELT		9 2 2	(2	(0		C		5
•	<u>o</u> :			C	11.80	669		14.7000	S			38000				
		RELT	c			PRFIT	5	.0.		0	2	0	4	12		
•			,				C	0.0			0.0					
•	7				0			0.0		-	0.0					
•	2	BELT	4	OUTBO	ARDLA	P BELT		-		12		0	4	0		0
	91			ł	238.1	8		27.899	66		-23.	10001				
	17			0	0.0		0	0.0			0.0			(
	18	BELT	ß	LOWER	RING	STRAP	_	-		12		0	12	0		-
	19			1	232.1	000	1	-33.200	8		-25.	10001				
	20				0.0			، 0.0		c	с. С	c	Ċ	Ċ		C
	51	BELT	9	CONEC		TORS	BLTS	5000		2	0	2	c	2		n
	22			1	12.04	0051	1	11 700			, <u></u>	98000				
	57		•	1100							2		FNDCOLL	NMI		
	24	PLANES	- 1						TTOPSO			2	UPPFRRT	NOM W	u	
	25	PLANES	4 6					UDYT C	DEAD			o	ASFG. FR	T DASI	, ,	
	97	PLANES DI ANEC	- ç	AVEG.		NA SH	•	I ASFG	COWLB	AR		12	BSEG. CC	DWLBAR		
•••	12	PLANES DI ANFS	2 4			AR	- •	14 ASEG	LOWER	ЧI		15	BSEG.LC	DWERIP		
• •	0 0	PI ANES	2 9	ASFG	MIDDL	dI	•	17 ASEG	. UPPER	IP		18	BSEG. UF	PERIP		
4		PLANES	<u>6</u>	ASEG.	ROOFF	NAN		20 ASEG	ROOFH.	DR		21	BSEG.RC	OFHDR		
4) E	PLANES	22	ASEG.	HDRS			23 HEAD	RESTTO	٩		24	HEADRES	STBACK		
	32	PLANES	25	BACKC	DFSEAT	IL INE	.,	26 ASEG	. SEBK			2.7	ASEG. SE	CU		
	33	PLANES	28	ASEG.	EDGE			29 ASEG	. HVACP	Z V				1		,
•••	34	GSEG	-	HEAD	59	SO 1HEAD	FXDSE	GMENT		<u>ч</u> ,	 N •	TOR	GS02UPF		RSO SEC	· n (
	35	GSEG	က ၊ က ၊	MTOFM	800	SOBMIDE		RSO SEG		4 (- -		GSO4LUV		AMGAN DON	<u>, 5</u>
	36	GSEG	្រ ព	ULEC ULEC	500			SEGMNI		0 0	 2 a	VDW			MUCHA W	; 5
	37	GSEG CTCC					EXE X			• ç	0 00	35 1 2	GS 12HEA	ART		:
	000		4 C D -				IMNEL 1	PSF		12		VHCL	GSOBVEH	HICLE	SEGMEN	_
	50		- C - C	LN AU	5 °	S 101NEF	STIAL S	SEGMENT		!	,					
	4 1 1		E H	AD				1.0000	00		0.0			0.0		
	42		-		11.17	7500	Ŭ	0.0			÷	000000		0.0		
	43				9.925	5000	Ŭ	0.0			0.0			00.	0000	
	44				9.92	2000	Ŭ	00001.0	00		0.0		1	-0.100	0000	
	45	ELL	2 BR	AIN				1.0000	ç		0 0			0.0 0.0		
	46		"		8.000	0000		0.0			- (000000		0.0	0000	
	47				8.000	0000		0.0			0.0 0.0			3.0	0000	
	48			1	8.000	0000	Ŭ	0.0	0		0.0 0.0					
	49	ELL	HO E	EST				1.0000	8		רי כי כי					
	50		N		12	0021					- c				0000	
	51								ç					10		
			20 4	ADT	0.21				80					0.0)))	
	20		= + C		600	0000	•		2		, ,	000000		0.0	•	
	រព	•	5)))))))))			0.0			0.0			1.00	0000	
	56				6.00	0000	•	0.0			0.0			0.0		
	57	ELL	5 ST	ERNUM				1.0000	00		0.0			0.0		
	58		2		1.00	0000	Ū	0.0			-	000000		0.0		

, age

-

i					0	
50			000000	0.0	0.0	0000001
60			1.00000	- 16.05301	0.0	00//8.21-
61	ELL	6 MIDTO	RSO	1.000000	0.0	0.0
62		e	11.00000	0.0	1.000000	0.0
63			11.00000	0.0	0.0	1.000000
64			11,00000	-5.200000	0.0	-2.700000
65	ELL	7 HIP		1.000000	0.0	0.0
66		4	12.50000	0.0	1.000000	0.0
67			12.50000	0.0	0.0	1.000000
68			12.50000	-1.800000	0.0	-1.100000
69	ELL	8 UPPERI	LEG	1.000000	0.0	0.0
70		ß	24.30000	0.0	1.000000	0.0
71			7.500000	0.0	0.0	1.000000
72			7.500000	-7.200000	0.0	0.3000000
73	ELL	9 KNEE		1.000000	0.0	0.0
74		2	6.150000	0.0	1.000000	0.0
75			6.150000	0.0	0.0	1.000000
76			6.150000	17.00000	0.0	0.400000
77	ELL	10 SHIN		1.000000	0.0	0.0
78		9	11.45000	0.0	1.000000	0.0
19			6.750000	0.0	0.0	1.000000
80	i		6.750000	-5.800000	0.0	-0.2000000
81	ELL	11 SHINZ		1.000000	0.0	0.0
82		9	12.00000	0.0	1.000000	0.0
83			4.500000	0.0	0.0	1.000000
8 4			4.500000	12.00000	0.0	-0.200000
82	ELL	12 FOOT		1.000000	0.0	0.0
86		9	12.00000	0.0	1.000000	0.0
87			12.00000	0.0	0.0	1.000000
88	i		12.00000	17.30000	0.0	-0.1400000
68	ELL	13 UPPER	ARM	1.000000	0.0	0.0 9
06		1	11.85000	0.0	1.00000	0.0
91			5.149999	0.0	0.0	1.000000
32			0.142000	-3.90000	0.0	0.0
6.6	ELL	14 ELBOW		1.000000	0.0	0.0
94		7	4.90000	0.0	1.000000	0.0
95 00			4.900000	0.0	0.0	1.000000
96			4.80000	12.80000	0.0	0.200000
18	ברר	15 LOWER	ARM	1.00000	0.0	0.0
86		20	10.25000	0.0	1.00000	0.0
			4.625000	-0.0		
35	113	16 HAND	000020.4			
102	1	8	4.625000	0.0	1.000000	0.0
103		1	4.625000	0.0	0.0	1.000000
104			4.625000	16.10001	0.0	0.0
105	ELL	17 CURVEI	DPANEL	0.2689199	0.0	0.9631625
106		12	13.80000	0.0	1.000000	0.0
107			9.399999	-0.9631625	0.0	0.2689199
108			9.339999	- 140.2400	0.0	-71.36099
109	ELL	18 KNOB		1.000000	0.0	0.0
110		12	3.000000	0.0	1.000000	0.0
111			0.5000000	0.0	0.0	1.000000
112			0.5000000	- 154 . 2500	0.0	-67.45000
113	ELL	19 COLUMN	VELLIPSE	1.000000	0.0	0.0
414		11	5.250000	0.0	1.000000	0.0
115			5.250000 E 750000	0.0	0.0	1.00000
9			000002.0	.	0.0	<u>.</u>

2

0.0	0.0	0.0	0.0	0.0
Ũ	Ŭ	Ŭ	Ŭ	Ŭ
8	00	00	00	00
784C	453	943	1770	1990
4	- 15	Ε	-9	9.7
3		e		4
-		2		e
_		*		÷
NECK		NSPN		LSPN
-		7		e
JOINTS		JOINTS		JOINTS
117	118	119	120	121
	117 JDINTS 1 NECK 1 1 2 4.784000 0.0	117 JDINTS 1 NECK 1 2 4.784000 0.0 118	117 JDINTS 1 NECK 1 2 4.784000 0.0 118	117 JDINTS 1 NECK 1 2 4.784000 0.0 118 -15.45300 0.0 -15.45300 0.0 119 JDINTS 2 USPN * 2 3 13.94300 0.0 120 -6.477000 0.0 0.0 0.0

	UD TNIT C	ç		C		
		4		,		
		c		~		
	CINTON	י		t	-0 453000	
103	UTNTS	Δ	HIP < 4	S	0.0	0.0
124)	-23 99001	0.0
105	UINTS	ŝ	KNFE > 5	9	16,17900	0.0
126))	-24.00301	0.0
127	JOINTS	9	SHDR / 2	7	-7.602000	0.0
128					-13.06400	0.0
129	JOINTS	7	ELBW + 7	8	13.09800	0.0
130					- 15 . 11300	0.0
131	OFOR TIME =		0.0			
132	SEG 1		-220.9099		0.0	- 109 . 8300
133			-0.3090170		0.0	0.9510565
134			000		1.000000	0.0
125			-0.9510565			0 3090170
136	C SEG		-224 4000			-75 67799
137	5		0 3489950F-01			0.9993908
138						C
						0 3489950F-01
	(() ()					
0.140	טרק ט					
141			0.2/51340		0.0	0.9614059
142			0.0		1.000000	0.0
143			-0.9614059		0.0	0.2751340
144	SEG 4		-211.6391		0.0	-45.58078
145			0.9207774		0.0	0.3900885
146			0.0		1.000000	0.0
147			-0.3900885		0.0	0.9207774
148	SEG 5		- 189. 1615		0.0	-53.96382
149			0.9369591		0.0	0.3494390
150			0.0		1.000000	0.0
151			0.3494390		0.0	0.9369591
152	SEG 6		-163.1083		0.0	-38.22904
153			0.4538662		0.0	0.8910699
154			0.0		1.000000	0.0
155			-0.8910699		0.0	0.4538662
156	SEG 7		-221.6506		0.0	-71.02086
157			0.3583679		0.0	0.9335804
158			0.0		1.000000	0.0
159			-0.9335804		0.0	0.3583679
160	SEG 8		-202.0967		0.0	-56.03869
161			0.9832549		0.0	0.1822355
162			0.0		1.000000	0.0
163			-0.1822355		0.0	0.9832549
164	SEG 9		-221.0311		0.0	-109.1334
165			-0.3090170		0.0	0.9510565
166			0.0		1.000000	0.0
167			-0.9510565		0.0	0.3090170
168	SEG 10		-222.4164		0.0	-79.04927
169			0.3489950E-01		0.0	0.9993908
170			0.0		1.000000	0.0
171			-0.9993908		0.0	0.3489950E-01
172	SEG 11		-172.8870		0.0	-80.76550
173			1.000000		0.0	0.0
174			0.0		1.000000	0.0

С

Listing of PLTDBLT6	at 06:09:38	on DEC	14,	1988	for	CCid=LETM	on	UM	

175			0.0	0.0	1.000000	
176	SEG	12	0.0	0.0	0.0	
177			1.000000	0.0	-0.0	
178			0.0	1.000000	0.0	
179			0.0	0.0	1.000000	
180	SEG	13	0.0	0.0	0.0	
181			1.000000	0.0	0.0	
182			0.0	1.000000	0.0	
183			0.0	0.0	1.000000	
184	PL	1	-67.09300	-67.09300	-178.9160	-178.9160
185			2000.000	-2000.000	-2000.000	2000.000
186			-50.22501	-50.22501	-77.07120	-77.07120
187	PL	2	-64.75900	-64.75900	-176.5820	-176.5820
188			2000.000	-2000.000	-2000.000	2000.000
189			-59.94901	-59.94901	-86.79520	-86.79520
190	PL	3	-166.8580	- 166 . 8580	- 169 . 1920	-169.1920
191			2000.000	-2000.000	-2000.000	2000.000
192			-84,46080	-84.46080	-74.73680	-74.73680
193	PL	4	-180.6670	- 180 . 6670	-174.8310	-174.8310
194			2000.000	-2000.000	-2000.000	2000.000
195			-69.77840	-69.77840	-94.08800	-94.08800
196	PL	5	-212.5782	-212.5782	-204.3648	-204.3648
197			2000.000	-2000.000	-2000.000	2000.000
198			-94.60210	-94.60210	-60.69308	-60.69308
199	PL	6	-180.6670	- 180,6670	-174.8310	-174.8310
200		-	2000.000	-2000.000	-2000.000	2000.000
201			-69.77840	-69.77840	-94.08800	-94.08800
202	PL	7	-140.5000	- 140 . 5000	-176.4000 ·	- 176 . 4000
203		•	2000.000	-2000.000	-2000.000	2000.000
204			-11.00000	-11.00000	-11.00000	-11.00000
205	PL	8	-280.0000	-280.0000	- 190.0000	- 190.0000
206			2000.000	-2000.000	-2000.000	2000.000
207			-11.00000	-11.00000	-11.00000	-11.00000
208	PL	9	- 108 . 6500	- 108 . 6500	- 140.5000	-140.5000
209			2000,000	-2000.000	-2000.000	2000.000
210			-27.60001	-27.60001	-11.00000	-11.00000
211	PL	10	-109.4000	- 109 . 4000	-108.6500	- 108 . 6500
212			2000.000	-2000.000	-2000.000	2000.000
213			-61.70000	-61.70000	-27.60001	-27.60001
214	PL	11	-121.4000	-121.4000	- 109 . 4000	- 109 . 4000
215			2000.000	-2000.000	-2000.000	2000.000
216			~62.70000	-62.70000	-61.70000	-61.70000
217	PL	12	-121.4500	- 121.4500	-121.4000	-121.4000
218			2000.000	-2000.000	-2000.000	2000.000
219			-71.89999	-71.89999	-62.70000	-62.70000
220	PL	13	-117.3000	- 117.3000	-121.4500	- 121.4500
221			2000.000	-2000.000	-2000.000	2000.000
222			-76,10001	-76.10001	-71.89999	-71.89999
223	PL	14	-151.5000	-151.5000	-142.5000	- 142 . 5000
224			2000.000	-2000.000	-2000.000	2000.000
225			-51,95000	-51.95000	-36.25000	-36.25000
226	PL	15	- 147 . 9000	- 147 . 9000	-151.5000	- 151.5000
227			2000.000	-2000.000	-2000.000	2000.000
228			-61.85001	-61.85001	-51.95000	-51.95000
229	PL	16	-154.2500	- 154 . 2500	-141.0000	-141.0000
230			2000.000	-2000.000	-2000.000	2000.000
231			-67.45000	-67.45000	-55.50000	-55.50000
232	PL	17	-148.5500	- 148 . 5500	- 154 . 2500	- 154 . 2500

Page 4

•

233			2000.000	- 2000 . 000	-2000.000	2000.000
234			-82.55000	-82.55000	-67.45000	-67.45000
235	ΡL	18	- 120.0000	- 120.0000	- 148 . 5500	- 148 . 5500
236			2000.000	-2000.000	-2000.000	2000.000
237			-78.64999	-78.64999	-82.55000	-82.55000
238	PL	19	-250.0000	-250.0000	-215.9000	-215.9000
239			2000.000	2000.000	- 2000 . 000	2000.000
240			- 132 . 6000	- 132 . 6000	- 132 . 6000	-132.6000
241	٦L	20	- 177 . 1000	-177.1000	-171.6000	-171.6000
242			2000.000	- 2000 . 000	-2000.000	2000.000
243			- 124 . 1000	- 124 . 1000	- 126.2500	- 126 . 2500
244	P٢	21	-215.9000	- 2 15 , 9000	- 177 . 1000	-177.1000
245			2000.000	- 2000 . 000	-2000.000	2000.000
246			- 132.6000	- 132 . 6000	- 124 . 1000	- 124 . 1000
247	P٢	22	-244.3600	-244.3600	-244.7600	-244.7600
248			2000.000	-2000.000	-2000.000	2000.000
249			-85.83000	-85.83000	- 106 . 3300	- 106.3300
250	P٢	23	-256.7600	-256.7600	-244.7600	-244.7600
251			2000.000	-2000.000	- 2000.000	2000.000
252			- 106 . 3300	- 106.3300	- 106.3300	- 106.3300
253	ΡL	24	-256.3601	-256.3601	256.7600	-256.7600
254			2000.000	- 2000 . 000	2000 . 000	2000.000
255			-85,83000	85,83000	~ 106.3300	- 106.3300
256	٦L	25	-230.0000	-230.0000	-256.3601	-256.3601
257			2000.000	-2000.000	- 2000 . 000	2000.000
258			-23.16000	-23.16000	-85.83000	-85,83000
259	٦٢	26	-223.5600	-223.5600	-244.3600	-244.3600
260			2000.000	-2000.000	- 2000 . 000	2000.000
261			-36.38000	-36.38000	-85.83000	-85.83000
262	ΡĽ	27	- 182.2100	- 182 . 2 100	-223.5600	-223.5600
263			2000.000	-2000.000	-2000.000	2000.000
264			-46.43600	-46.43600	-37.08600	-37.08600
265	Ы	28	- 182 2100	- 182 . 2100	- 182 2100	- 182 . 2 100
200	-)				
202					- 45 73000	
107	ā	00				
200	7	23		0006.861-		
			-64 60001	-64 60001	- 40,000,000	-40,000,000
	DINC	Ŧ	- 00000 - 100			- 18 AFRED
				- Z 13. 0/ 14	-33.20000	-40.43000
212	011	-				
274	BLT	0		-219.6714	-33.20000	-48.45660
275				0.0	0.0	0.0
276	BLT	e		-5.703000	- 10 . 50000	-13 76000
277				-219.6714	-33.20000	-48.45660
278	BLT	4		-5,703000	10.50000	- 13 . 76000
279		ı		0.0	0.0	0.0
280	BLI	ŋ		-219.6714	-33.20000	-48.45660
187		ţ		0.0		
202	פרו	٥				
284	OFOR	1 I ME =	20.00000))	>
285	SEG	-	-220.8719	0.0	- 109 . 8 15 7	
286			-0.3126089	0.0	0.9498819	
287			0.0	1.000000	0.0	
288			-0.9498819	0.0	-0.3126089	
289	SEG	7	-224.4853	0.0	-75.72068	
290			0.3074851E-0	1 0.0	0.9995272	

M
5
CC 1d=LETM
for
1988
14,
DEC
uo
06:09:38
at
.16
PLTOBL
of
Listing

	291			0.0	1.000000	0.0
	202			-0 9995272	0 0	0 3074851E-01
	203	SFG	e	4790 000-	0.0	-55 55073
	294	5	,	0.2715918	0.0	0.9624125
	295			0.0	1.000000	0.0
	296			-0.9624125	0.0	0.2715918
	297	SEG	4	-211.8267	0.0	-45.61228
	298			0.9209466	0.0	0.3896888
	299			0.0	1.000000	0.0
	300			-0.3896888	0.0	0.9209466
	301	SEG	ស	- 189.3078	0.0	-53,88398
	302			0.9386770	0.0	-0.3447978
	303			0.0	1.000000	0.0
	304		(0.3447978	0.0	0.9386770
	305	SEG	9	- 163 . 1880	0.0	- 38.03332
	306			0.4554826	0.0	0.8902447
	307			0.0	1.00000	0.0
	806		ł	-0.8902447	0.0	0.4354820
	60E	SEG		-221,6865	0.0	- 10.98801
	016			0.3562540	0.0	0.9343832
	115			0.0	1.00000	0.0
	312			-0.9343892	0.0	0.3562540
	313	SEG	80	-202.1724	0.0	-55.93090
	314			0.9824554	0.0	0.1864976
	315			0.0	1.000000	0.0
	316			-0.1864976	0.0	0.9824554
	317	SEG	0	-221.0077	0.0	- 109.0659
	318			-0.3117205	0.0	0.9501738
49	319			0.0	1.000000	0.0
Э	320			-0.9501738	0.0	-0.3117205
	321	SEG	9	-222.4654	0.0	-79.00296
	322			0.3313268E-01	0.0	0.9994510
	323			0.0	1.000000	0.0
	324			-0.9994510	0.0	0.331326BE-01
	325	SEG	-	- 173.9076	0.0	-80.76347
	326			1.000000	0.0	-0.5943518E-06
	327			0.0	1.000000	0.0
	328			0.5943518E-06	0.0	1.00000
	329	SEG	12	-1.072015	0.0	0.0
	099			1.00000		
					1.00000	1 00000
	200	CEG	5			
	000	25.6	2			
	335				1.00000	
	336				0.0	1.000000
	337	٩L	-	-68.16502	-68.16502	-179.9880
	338			2000.000	-2000.000	~ 2000.000
	339			-50,22501	-50.22501	-77.07120
	340	ΡL	5	-65.83102	-65.83102	- 177.6540
	341			2000.000	-2000.000	-2000.000
	342			-59.94901	-59.94901	-86.79520
	343	ΡL	e	-167.9300	- 167.9300	-170.2640
	344			2000.000	- 2000.000	-2000.000
	345	i		-84.46080	-84.46080	- 74.73680
	346	P٢	4	- 181.7390	- 181./390	
	145			2000, 2002 -69 77840	-69 77840	- 2000 - 00 - 00 - 00 - 00 - 00 - 00 -
	017				0101100	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

-179.9880 2000.000 -77.07120 -177.6540 2000.000 -86.79520 -170.2640 -2400 -2000.000 -175.9030 -175.9030 -9300 -94.08800

9

349	ΡL	ß	-212.5850	-212.5850	-204.5125	- 204 . 5125
55C			2000.000 - 94 59551	-94 59551	-60.65268	-60.65268
50	Id	9	- 181.6875	- 181.6875	-175.8516	-175.8516
53	-)	2000.000	- 2000 , 000	-2000.000	2000.000
54			-69.77637	-69.77637	-94.08597	-94.08597
55	PL	7	-141.5720	-141.5720	-177.4720	-177.4720
56			2000.000	-2000.000	-2000.000	2000.000
57			-11.00000	-11.00000	-11.00000	-11.00000
58	ΡL	8	281.0720	-281.0720	- 191.0/20	07/0.181-
59			2000.000	-2000.000	- 2000.000	- 1 1 00000
60	Ē	đ	- 11.00000	- 109 - 2220	- 11 - 00000	- 141 - 5720
	т Г	n	000 000			
202			- 27 60001	-27,60001	-11.00000	- 11.00000
50	ā	10	- 110 4720	- 110 4720	- 109 . 7220	- 109 . 7220
19	נ -	2	2000.000	-2000.000	-2000.000	2000.000
99			-61.70000	-61.70000	-27.60001	-27.60001
67	PL	11	-122.4720	- 122.4720	-110.4720	-110.4720
68			2000.000	- 2000.000	- 2000.000	2000.000
69			-62.70000	-62.70000	-61.70000	-61.70000
70	ΡL	12	- 122.5220	- 122.5220	- 122.4720	- 122 . 4720
71			2000.000	-2000.000	-2000.000	2000.000
72	ī	0	-71.89999	-71.89999	-427 5220	-62./0000
	۲L	13	- 118.3/20	- 118.3/20		
14			2000.000	- 76 10001	-71 89999	-71 89999
20	ō	11	- 150 5720	- 152 5720	- 143 . 5720	-143.5720
	1	ŗ	2000.000	-2000.000	-2000.000	2000.000
78			-51.95000	-51.95000	-36.25000	-36.25000
79	PL	15	-148.9720	-148.9720	- 152.5720	-152.5720
80			2000.000	-2000.000	-2000.000	2000.000
81	i	(-61.85001	-61.85001	-51.95000	-51.95000
82	ЪГ	16	- 155.3220	0775.001 -		
6.8			2000.000	- 2000.000	-55 5000	-55 50000
2 U	٦	17	-149 6220	- 149 . 6220	- 155.3220	- 155.3220
	-	-	2000.000	-2000.000	-2000.000	2000.000
87			-82.55000	-82.55000	-67.45000	-67.45000
88	٩L	18	-121.0720	-121.0720	-149.6220	-149.6220
89			2000.000	-2000.000	-2000.000	2000.000
00	ā	0	-78.64999	- 18.64899	-216 0720	-216 9720
	т Г	<u>ת</u>				2000.000
20			- 132 6000	- 132 6000	- 132 . 6000	- 132.6000
20	Ыd	20	-178.1720	-178.1720	-172.6720	-172.6720
60	-)	2000.000	-2000.000	-2000.000	2000.000
96			- 124. 1000	- 124 . 1000	- 126 . 2500	- 126.2500
97	P۲	21	-216.9720	-216.9720	- 178 . 1720	178 . 1720
98			2000.000	-2000.000	- 2000,000	2000.000
66			-132.6000	- 132.6000	- 124 . 1000	- 124 . 1000
00	ЪГ	22	-245.4320	-245.4320	-245.8320	- 245.8320
01			2000.000	-2000.000	- 2000.000	- 106 3300
70	G	с с с	- 63. 63000	- 257 8370	-245 8320	- 245 8320
200	L L	2		000,000 -	- 2000,000	2000.000
0.4 0.5			- 106.3300	- 106.3300	- 106 . 3300	- 106.3300
06	ΡL	24	-257,4321	-257.4321	-257.8320	-257.8320

٢

407			2000.000	-2000.000	- 2000 . 000	2000.000
408			-85.83000	-85.83000	- 106.3300	- 106 . 3300
409	٩L	25	-231.0720	-231.0720	-257.4321	-257.4321
410			2000.000	- 2000 . 000	- 2000.000	2000.000
411			-23 16000	23,16000	-85.83000	-85.83000
412	Id	26	-224 6320	-224 6320	-245.4320	-245.4320
413	1	2			- 2000,000	2000.000
			-36 38000	-36 38000	-85,83000	-85.83000
415	Id	77	- 183 . 2820	- 183.2820	-224.6320	-224.6320
746	1	i				
0 1			-46 43600	-46 43600	-37 08600	-37 08600
418	d	28	-183.2820	- 183.2820	183 . 2820	- 183.2820
419	1)			- 2000,000	2000.000
					- 45 73000	-45.73000
	ā	00	- 120 0720	000057:07	000001101-	-131 8720
421	L L	23	0000 0000			
422			2000.000			
423		•	- 64 . 6000		-40.0000	
424	KING	-		-219.6/14	-33.20000	-46.43000
425	BLT	-		0.0	0.0	0.0
426	1			0.0	0.0	0.0
427	BLT	2		-219.6714	-33.20000	-48.45660
428				0.0	0.0	0.0
429	BLT	e		-5.703000	- 10.50000	- 13.76000
430				-219.6714	-33.20000	-48.45660
431	BLT	4		-5.703000	10.50000	- 13.76000
432		•			0 0	0.0
	RIT	ſ		-219 6714	-33 2000	-48.45660
000)				0 0
404 107 E)	110	u				
		D				
4.00		T 1 M C -	10,0000	0.0	0.0	0.0
104					- 108 0750	
4004	סבפ	-	- 220.0304			
400			1 66771 6 .0 .0	1 00000	0.0	
441	(1 ((-0.9499983	0.0		
442	SEG	N	-225.9382	0.0	- /4.91163	
443			-0.1/98991E-02	0.0	0.9999984	
444			0.0	1.000000		
445			-0.9999984	0.0	-0.1798991E-02	
446	SEG	e	-224.2524	0.0	-54.72172	
447			0.2641468	0.0	0.9644825	
448			0.0	1.000000	0.0	
449			-0.9644825	0.0	0.2641468	
450	SEG	4		0.0	0/F/F.C4-	
104			0.9454386	0.0	0.3238003	
452			0.0	1.00000		
504		ι	FOOBEZE O-		0.3434380	
404	סבפ	n	00/6/061-		20000.00-	
2004			0.0		0.0440124	
458	SEG	y	- 164 5540		-37 49172	
000	2	0	0.0661320		0 8852466	
460			0.0	1 00000	0.0	
461			-0 8852466	0.0	0.4651220	
462	SEG	7	-222.4627	0.0	-70.81277	
463] 	•	0.3807648	0.0	0.9246719	
464			0.0	1.000000	0.0	

Page

œ

	465			-0.9246719	0.0	0.3807648	
	466	SEG	8	-202.6354	0.0	-55.84187	
	467			0.9819364	0.0	0.1892111	
	468			0.0	1.000000	0.0	
	469			-0.1892111	0.0	0.9819364	
	470	SEG	9	-220.8057	0.0	-108 8467	
	471		-	-0 3183062	0.0	0 9479880	
	472			0.0	1 000000	0.0	
	472			-0.0470880	1.000000	-0.2182002	
	473	SEC	10	-0.9479880	0.0	70.3183062	
	474	SEG	10	-223.1842	0.0	-78.81800	
	475			0.135/237E-01	0.0	0.9999079	
	476			0.0	1.000000	0.0	
	4/7	-		-0.9999079	0.0	0.1357237E-01	
	478	SEG	11	-180.0989	0.0	-80.76262	
	479			1.000000	0.0	-0.1261853E-04	
	480			0.0	1.000000	0.0	
	481			O. 1261853E-04	0.0	1.000000	
	482	SEG	12	-7.283402	0.0	0.0	
	483			1.000000	0.0	-0.0	
	484			0.0	1.000000	0.0	
	485			0.0	0.0	1 000000	
	486	SEG	13	0.0	0.0	0.0	
	487	010		1 000000	0.0	0.0	
	488			0.0	1 000000	0.0	
	400			0.0	1.000000	1.000000	
	409	DI		0.0	0.0	1.000000	400 4004
	490	PL	1	-74.37640	-74.37640	- 186 . 1994	-186.1994
	491			2000.000	-2000.000	-2000.000	2000.000
	492	~ .	_	-50.22501	-50.22501	-77.07120	-77.07120
	493	PL	2	-72.04240	-72.04240	-183.8654	-183.8654
S	494			2000.000	-2000.000	-2000.000	2000.000
\sim	495			-59.94901	-59.94901	-86.79520	-86.79520
	496	PL	З	-174.1414	-174.1414	-176.4754	-176.4754
	497			2000.000	-2000.000	-2000.000	2000.000
	498			-84.46080	-84.46080	-74.73680	-74.73680
	499	PL	4	-187.9504	- 187 . 9504	-182.1144	-182.1144
	500			2000.000	-2000.000	-2000.000	2000.000
	501			-69.77840	-69.77840	-94.08800	-94.08800
	502	PL	5	-213.4299	-213.4299	-206.4664	-206.4664
	503			2000.000	-2000.000	-2000.000	2000.000
	504			-93.38917	-93.38917	59.20159	-59,20159
	505	PL	6	-187.8787	- 187 . 8787	-182.0430	-182 0430
	506			2000 000	-2000_000	-2000 000	2000 000
	507			-69 77543	-69 77543	-94 08510	~94 08510
	508	PI	7	-147 7834	-147 7834	-183 6834	-183 6834
	509		•	2000,000	-2000,000	-2000,000	2000 000
	510			-11,00000	-11 00000	2000.000	2000.000
	510	ы	0	-11.00000	-11.00000	-11.00000	-11.00000
	511	FL	0	-287.2834	-287.2834	-197.2834	- 197 2834
	512			2000.000	-2000.000	-2000.000	2000.000
	513		•	-11.00000	-11.00000	-11.00000	-11.00000
	514	PL	9	-115.9334	-115.9334	-147.7834	-147.7834
	515			2000.000	-2000.000	-2000.000	2000.000
	516	_ ·		-27.60001	-27.60001	-11.00000	-11.00000
	517	ΡL	10	-116.6834	-116.6834	-115.9334	-115.9334
	518			2000.000	-2000.000	-2000.000	2000.000
	519			-61.70000	-61.70000	-27.60001	-27.60001
	520	PL	11	-128.6834	-128.6834	-116.6834	-116.6834
	521			2000.000	-2000.000	-2000.000	2000.000
	522			-62.70000	-62.70000	-61.70000	-61.70000

523	PL	12		-128.7334	- 128 . 7334	- 128 . 6834	- 128 . 6834
524				2000.000	-2000.000	-2000.000	2000.000
525				-71.89999	-71.89999	~62.70000	-62.70000
526	PL	13		-124.5834	-124.5834	- 128 . 7334	- 128 . 7334
527				2000.000	-2000.000	-2000.000	2000.000
528				-76.10001	-76.10001	-71.89999	-71.89999
529	PL	14		- 158 . 7834	- 158 . 7834	- 149 . 7834	-149.7834
530				2000.000	-2000.000	-2000.000	2000.000
531				-51.95000	-51.95000	-36.25000	-36.25000
532	PL	15		-155.1834	-155,1834	- 158 . 7834	- 158 . 7834
533				2000.000	-2000.000	-2000.000	2000.000
534				-61.85001	-61.85001	-51.95000	-51.95000
535	PL	16		-161.5334	-161.5334	-148.2834	-148.2834
536	. –			2000,000	-2000.000	-2000.000	2000.000
537				-67 45000	-67,45000	-55,50000	-55.50000
538	PI	17		- 155 8334	-155 8334	-161 5334	- 161. 5334
539		••		2000 000	-2000_000	-2000_000	2000-000
540				-82 55000	-82 55000	-67 45000	-67 45000
541	PI	18		-127 2834	-127 2834	- 155 8334	-155 8334
541	FL	10		2000 000	-2000 000	-2000,000	2000_000
542				-79 64000	-79 64999	-82 55000	-82 55000
543	ы	10		-18.04999	-257 2934	-223 1834	-223 1834
544	FL	19		-207.2834	-2000 000	-2000 000	223.1834
545				2000.000	-2000.000	- 122 6000	-132 6000
546	~			-132.6000	-132.6000	-132.6000	- 132.6000
547	PL	20		-184.3834	- 184 . 3834	~178.8634	-178.8834
548				2000.000	-2000.000	-2000.000	2000.000
549	~ •			-124.1000	-124.1000	-126.2500	-126.2500
550	PL	21		-223.1834	-223.1834	- 184 . 3834	- 184.3834
551				2000.000	-2000.000	-2000.000	2000.000
552	~ .			-132.6000	-132.6000	-124.1000	-124.1000
553	PL	22		-251.6434	-251.6434	-252.0434	-252.0434
554				2000.000	-2000.000	-2000.000	2000.000
555				-85.83000	-82.83000	-106.3300	-106.3300
556	PL	23		-264.0434	-264.0434	-252.0434	-252.0434
557				2000.000	-2000.000	-2000.000	2000.000
558				-106.3300	-106.3300	- 106 . 3300	- 106 . 3300
559	PL	24		-263.6435	-263.6435	-264.0434	-264.0434
560				2000.000	-2000.000	-2000.000	2000.000
561				-85.83000	-85.83000	- 106 . 3300	- 106 . 3300
562	PL	25		-237.2834	-237.2834	-263.6435	-263.6435
563				2000.000	-2000.000	-2000.000	2000.000
564				-23.16000	-23.16000	-85.83000	-85.83000
565	PL	26		-230.8434	-230.8434	-251.6434	-251.6434
566				2000.000	-2000.000	-2000.000	2000.000
567				-36.38000	-36.38000	-85.83000	-85.83000
568	PL	27		-189.4934	- 189 . 4934	-230.8434	-230.8434
569				2000.000	-2000.000	-2000.000	2000.000
570				-46.43600	-46.43600	-37.08600	-37.08600
571	PL	28		-189.4934	- 189 . 4934	- 189 . 4934	- 189 . 4934
572				2000.000	-2000.000	-2000.000	2000.000
573				-20.23000	-20.23000	-45.73000	-45.73000
574	PL	29		-146.1834	-146.1834	- 138 . 0834	- 138 . 0834
575				2000.000	-2000.000	-2000.000	2000.000
576				-64.60001	-64.60001	-40.00000	-40.00000
577	RING	3	1		-217.9674	-37.42711	-46.21441
578	BLT	1			0.0	0.0	0.0
579					0.0	0.0	0.0
580	BLT	2			-217.9674	-37.42711	-46.21441

Page 10

.

თ ა

.0 10.50000	37.42711	.0	37.42711	0.0	0.0.		0.8931713	0.0	0.4497165 - 68 45069	00000000000000000000000000000000000000	0.0	0.2237931E-01	-48.29091 0.9603631	0.0	0.2787520	-44.11709	0.2187220	0.0 0.9757872	-52 10071	0.3327896	0.0	0.9430011	-36.88417 0 8582567	0.0	0.5132206	- 65 . 36282	0.7663627	0.0 0 6424081	-55.27869	0.3064111E-02	0.0	0.9999953 -100 5950	0.9163404	0.0	0.4004000	-72.66585	0.0	0.3778470E-01	-80.75878	0.4065152E-04	0.0	1.000000	0.0	0.0	1.000000
- 000E0	. 9674 -:	0	. 9674	00	0		0.0	1.000000	0.0		1.000000	0.0	0.0	1.000000	0.0	0.0	0.0	1.00000		0.0	1.000000	0.0	0.0	1.000000	0.0	0.0	0.0	1.000000	0.0	0.0	1.000000	0.0	0.00	1.000000	0.0	0.0	1 00000		0.0	0.0	1.000000	0.0	0.0	1.000000	0.0
0.0	-217	0.0	-217	0.0	0.0	60.00000	-224.9663 -0.4497165	0.0	-0.8931713 -724 5887	-234,3002 -0 2237931F-01	0.0	-0.9997496	-233.0947 0.2787520	0.0	-0.9603631	-222.0590	0.9757872	0.0	- 100 / 364	0.9430011	0.0	0.3327896	-171.8607 0 5132206	0.0	-0.8582567	-227.1419	0.6424081	0.0	-203.6147	0.9999953	0.0	-0.3064111E-02	-0.4004000	0.0	-0.9163404	-230.7105	-0.3778470E-01	-0 9992859	- 195. 1306	1.000000	0.0	0.4065152E-04 -72 33152	1.000000	0.0	0.0
e		4	5	u	þ	TIME =			c	v			ო			4			Ľ	5			9			7			8)		c	ס			10			11			•	2		
BLT		BLI	BLT	RIT		OFOR	SEG			200			SEG			SEG			535	0 - 0			SEG			SEG			SEG			010	0			SEG			SEG				5 10		
581 582	583	585	586	587 588	589 589	590	592	593	594 505	500 700	597 597	598	599 600	601	602	603	604	605	909	608	609	رت 10 م		613	614	615	616	617	619	620	621	622	624	625	626	627	628	620	631	632	633	634 00E	636 636	637	638

۲

11 Juge 11

0.0 -13.76000 -46.21441 -13.76000 0.0 -46.21441 0.0 0.0

Listing of PLTDBLT6	at 06:09:38	on DEC 14.	1988 for	CCid=LETM on UM	î
---------------------	-------------	------------	----------	-----------------	---

isting c	of PLTD	BLT6 at	06:09:38 on DEC	14, 1988 for CCid	I=LETM on UM	
639	SEG	13	0.0	0.0	0.0	
640			1.000000	0.0	0.0	
641			0.0	1.000000	0.0	
642		_	0.0	0.0	1.000000	
643	PL	1	-89.41452	-89.41452	-201.2375	-201.2375
644			2000.000	-2000.000	-2000.000	2000.000
645			-50.22501	-50.22501	-77.07120	-77.07120
646	PL	2	-87.08052	-87.08052	- 198 . 9035	- 198 . 9035
647			2000.000	-2000.000	-2000.000	2000.000
648	ы	2	-59.94901	-59.94901	-86.79520	-86.79520
649	PL	3	- 189 . 1795	-189.1795	-191.5135	-191.5135
650			-2000.000	-2000.000	-2000.000	2000.000
652	DI	4	-202 0885		~ 107 1505	-14.13680
653	FL	4	2000 000	-202.9885	-197.1525	- 197. 1525
654			-69 77840	-69 77840	-2000.000	-94 08800
655	PI	5	-221 7023	-221 7023	-215 4438	-215 4438
656			2000 000	-2000 000	-2000,000	2000 000
657			-86,66687	-86,66687	-52 34321	-52 34321
658	PL	6	-202.9102	-202,9102	- 197 0752	- 197 0752
659		-	2000.000	-2000.000	-2000 000	2000 000
660			-69.77136	-69.77136	-94.08120	-94.08120
661	PL	7	-162.8215	-162.8215	- 198 . 72 15	- 198.7215
662			2000.000	-2000.000	-2000.000	2000.000
663			-11.00000	-11.00000	-11.00000	-11.00000
664	PL	8	-302.3215	-302.3215	-212.3215	-212.3215
665			2000.000	-2000.000	-2000.000	2000.000
666			-11.00000	-11.00000	-11.00000	-11.00000
667	PL	9	-130.9715	- 130 . 97 15	-162.8215	-162.8215
668			2000.000	-2000.000	-2000.000	2000.000
669			-27.60001	-27.60001	-11.00000	-11.00000
670	PL	10	-131.7215	-131.7215	-130.9715	-130.9715
671			2000.000	-2000.000	-2000.000	2000.000
672			-61.70000	-61.70000	-27.60001	-27.60001
673	PL	11	-143.7215	-143.7215	-131.7215	-131.7215
674			2000.000	-2000.000	-2000.000	2000.000
675		40	-62.70000	-62.70000	-61.70000	-61.70000
676	PL	12	-143.7715	-143.7715	-143.7215	-143.7215
677			2000.000	-2000.000	-2000.000	2000.000
678	DI	12	-120 6245	-/1.89999	-62.70000	-62.70000
680	FL	13	-139.0219	~139.6215	- 143 . 77 15	-143.7715
681			-76 10001	-2000.000	-2000.000	-74 80000
682	PI	14	-173 8215	- 172 8215	-164 9215	-164 9949
683		14	2000_000	-2000 000	- 104.8215	-164.6215
684			-51 95000	-51 95000	-26.25000	- 26, 25000
685	PI	15	-170 2215	- 170 2215	-173 8215	-173 8215
686			2000_000	-2000 000	-2000 000	2000 000
687			-61 85001	-61 85001	-51 95000	-51 95000
688	PL	16	-176 5715	-176 5715	-163 3215	-163 3215
689	. –		2000.000	-2000.000	-2000 000	2000 000
690			-67,45000	-67,45000	-55.50000	-55 50000
691	PL	17	-170.8715	-170.8715	-176 5715	- 176 57 15
692			2000.000	-2000.000	-2000.000	2000.000
693			-82.55000	-82.55000	-67.45000	-67.45000
694	PL	18	-142.3215	-142.3215	-170.8715	- 170.8715
695			2000.000	-2000.000	-2000.000	2000.000
696			-78.64999	~78.64999	-82.55000	-82 55000

Page 12

បា បា

ΡL	19	-272.3215	-272.3215	-238.2215	-238.2215 2000_000
		2000.000	-2000.000	-2000.000	- 132 6000
č		- 132.6000	- 132 . 6000	- 193.9215	- 193.9215
7	N7	2000.000	-2000.000	- 2000 . 000	2000.000
		- 124 . 1000	- 124 . 1000	-126.2500	-126.2500
P٢	21	-238.2215	-238,2215	- 199.4215	CI 74.621 -
		2000.000	-132 6000	- 124.1000	- 124 . 1000
10	<i>c c</i>	-266.6815	-266.6815	-267.0815	-267.0815
-	1	2000.000	2000.000	- 2000 . 000	2000.000
		-85.83000	-85.83000	- 106.3300	-106.3300
P٢	23	-279.0815	-279.0815	-267.0815	-26/.0819
		2000.000	-2000.000	-2000.000	2000.000
		- 106 . 3300	- 106.3300	- 106. 3300	- 779 D815
P٢	24	-278.6816	-278.6816	-2/9.000	2000.000
		2000.000	- 2000.000	- 106 3300	- 106 . 3300
ā	5	-85.83000	- 757 3715	278.6816	-278.6816
۲ ۲	67		- 2000 - 000	-2000.000	2000.000
		2000.000	- 23 16000	-85.83000	-85.83000
ā	20	- 245 AR15	-245.8815	-266.6815	-266.6815
۲ ۲	07	2000-000	-2000.000	-2000.000	2000.000
		-36.38000	-36.38000	-85.83000	-85.83000
d	27	-204.5315	-204 5315	-245.8815	-245.8815
J -		2000.000	-2000.000	- 2000 . 000	2000.000
		-46.43600	-46.43600	-37.08600	- 37 .08600
P٢	28	-204.5315	-204.5315		-204.53.000
		2000.000	-2000.000	-2000.000	- 45 73000
		-20.23000	-20.23000	-45./3000	-153 1215
ЪГ	29	- 161.2215	- 191 - 27 191 -		2000.000
		-64 60001	-64.60001	-40.00000	-40.00000
	•	- 0000 · + B	-715 6794	-38, 12105	-44.10434
Z H Y C	-	_		0.0	0.0
פר	-			0.0	0.0
1 1 0	ç		-215.6794	-38.12105	-44.10434
	N		0.0	0.0	0.0
BLT	ო		-5.703000	- 10.50000	- 13.76000
	I		-215.6794	-38.12105	-44.10434
BLT	4		-5.703000	10.50000	- 13 . 76000 2 0
			0.0	0.0	0.0
BLT	ឆ		-215.6794	-38.12105	-44.10434
			0.0	0.0	
BLT	9		0.0		
			0.0	0.0	0
OFOR	I IME =	80.0000		- 89 98977	
SEG	-	-234.2610		0.6602449	
		-0. / J 1050	1 00000	0.0	
		-0 6602449		-0.7510503	
C L L	Ċ	- 250 9607		-60.79330	
000	N	-0.2435304	0.0	0.9698933	
		0.0	1.000000	0.0	
		-0.9698933	0.0	0.2435304	
SEG	с С	-253.0836	0.0	-40.91933	
;		0.1964792	0.0	0.9805080	
		0.0	1.000000	0.0	

id=LETM on UM	0.1964792	-38.71029	-0.4404184	0.0	0.8977927	-50.58673	-0.4950578	0.0	U. B0886UU - 38 07643	0.8548860	0.0	0.5188158	-61.38498	0.5127316	0.0	0.8585490	-57.02558		0.0	0.3811103	- 63.00302 0 6176313	0.0	-0.7864757	-62.65260	0.9898014	0.0	-0.1424540	-80.75872 -0 60966406-04		1.000000	0.0	0.0-	0.0 1 000000		0.0	0.0	1.000000	-224.8127	-2000.000			-86,79520	-215.0887	-2000.000	-74.73680	-220.7277	-2000.000	-94.U88UU -735 8651	- 2000,000	-40.84138	-220.6659	-2000.000
14, 1988 for CC	0.0	0.0	0.0	000000.1	0.0	0.0	0.0	1.000000			1.000000	0.0	0.0	0.0	1.000000	0.0	0.0	0.0				1.00000	0.0	0.0	0.0	1.000000	0.0	0.0		0.0	0.0	0.0	1.000000		0.0	1.000000	0.0	-112.9897	-2000.000	-110 6557		-59.94901	-212.7547	-2000.000	-84.46080	-226.5637	-2000.000	-69.11840 -734 3560	-2000.000	-75.69829	-226.5004	- 2000 . 000
06:09:38 on DEC	-0.9805080	-243.3199	0.8977927	0.0	0.4404184	-222.4759	0.8688600	0.0	0.49303/8 -195 9655	0 5188158	0.0	-0.8548860	-237.7362	0.8585490	0.0	-0.5127316	-211.5627	0.98///03	0.0	1010001.0	- Z34.3131	0.0	-0.6176212	-245.3607	-0.1424540	0.0	-0.9898014	-218.7211	0.0	0.6095540E-04	-45.89668	1.000000	0.0		1.000000	0.0	0.0	-112.9897		-110 6557 -110 6557		-59.94901	-212.7547	2000.000	-84.46080	-226.5637	2000.000	-934 3560	2000.000	-75.69829	-226.5004	2000.000
at		4				ഹ			G	>			7				8			đ	D			10			•	-			12			5	2																	
PLTDBLT6		SEG				SEG			SEG				SEG				SEG			010	200			SEG				SEG			SEG			SEG	5			PL 1		с 1d	i I		PL 3			PL 4		5)]		PL 6	
Listing of	755	756	757	758	759	760	761	762	163 164	765	766	767	768	769	770	171	772	511	115	2//		778	179	780	781	782	183	785	786	787	788	789	790	167	193	794	795	707	181	061 661	800	801	802	803	804	805	806	801 808	809	810	811	812

-224.8127 2000.000 -77.07120 -222.4787 2000.000 -86.79520 -215.0887 2000.000 -74.73680 -215.0887 2000.000 -235.8651 2000.000 -220.6659 -220.6659 2000.000

14 Page

.

MU no MT31=bi33 of 8801 .41 330 on DEC 14, 1988 for CCid=LETM on UM

00068.68-	00068.68-	00091 .62-	00091 .52-			0/8	
000:0007	000:0003	000:0007	000:0007			699	
000 0002	000 0002-	4060 000	000 0002	67		000	
8996 208-	8990 206-	2968 926-	1968 970-	90	10	898	
0066 901-	0066 901-	00068 58-	00058 38-			2.98	
2000 000	- 2000 000	- 2000 000	2000 000			998	
-302,6567	2929 202-	8992, 206-	8952 205-	40	Id	598	
- 106 3300	- 106 3300	0066, 301 -	0066, 901 -			198	
2000.000	-2000.000	- 5000,000	2000.000			698	
7920.6567-	7929.062-	7929.505-	7929,505-	53	ЪГ	298	
- 106 3300	- 106 3300	00068.88-	00068.28-			198	
2000.000	-2000.000	-2000.000	2000.000			098	
7928.065-	-530°6267	-290.2567	-290.2567	55	٦d	658	
-124.1000	-154.1000	- 135 . 6000	-135.6000			858	
2000.0002	- 2000 . 000	-2000.000	2000.000			L28	
-522.9967	-222.9967	7967,192-	7967, 1967	51	٦d	958	
-156.2500	-126,2500	-154.1000	-124,1000			558	
2000.000	- 5000 000	-2000.000	5000.000			798	
1964.712-	1964,712-	-222,9967	-222.9967	50	ЪГ	628	
-132.6000	-135.6000	- 135.6000	-132.6000			258	
5000.000	-2000.000	-2000.000	5000.000			158	
1961 197-	-261-1967	1968.962-	7968 · 295-	61	ЪΓ	058	
00099178-	00099.28-	6649.8/-	-18,64999			678	
5000,0002		-3000.000	5000.000			878	
/977.761-	/922 2222	/968.691-	/968 991-	81	Ъľ	118	
000641/9-	00091/19-	00065.28-	00055.78-		, a	978	
000:0007	0001022	-2000.000	5000.000			678	
1941 .002-	(971,002	(955 561-	/977 761-	71	Ъ	510	
2300 000-				2.	10	640	
00009 99-		00097 23-	00097 29-			2+0 (00
1000 0002	-3000 000			01	- -	1.60	.,
7328 381-	7968 981-	2901 002-	2971 002-	91	10	118	
00096 19-	00096 19-	10048 19-	10098 19-			01/8	
3000 000		-3000 000	3000 000	<u> </u>	7.1	000	
1966 161-	7966 761-	L961 E61-	1.961 661-	21	Id	86.8	
-36,25000	- 36, 25000	0009619-	00096 19-			768	
2000,000	-2000-000	-3000 000	5000 000			958	
7966.881-	7966,881-	7966 761 -	7965,761-	14	ЪГ	932	
66668.17-	66668.17-	10001.97-	10001-92-			468	
2000.000	-5000.000	-2000.000	5000.000			833	
7945.731-	767.5467 767.54	7901 E91-	7961 . 631 -	61	٦d	835	
-62.70000	-62,70000	66668.17-	66668 L T -			834	
2000.000	-2000.000	-5000,000	2000.000			068	
7962.791-	7962.791-	73467 - 167 -	73467 - 167 -	15	٦d	829	
00007.13-	00002-19-	-62.70000	-62.70000			828	
5000.000	-5000.000	- 2000 . 000	2000.000			85J	
7962.231 -	7962.231-	7362 . Tot -	762 . 761 -	11	ЪΓ	826	
-27.60001	10009.72-	00001.18-	00007.18-			825	
2000.000	-2000.000	-2000.000	2000,000			854	
L94.54.461-	L945 451-	- 122 5367	1962 . 231 -	01	ЪГ	853	
00000.11-	00000 . 1 1 -	-27.60001	10009.72-			855	
5000,000	- 5000 . 000	- 2000 . 000	5000.000			128	
/966.981-	/9661981-	/929'291-	1929.201-	6	ЪГ	078	
00000.11-	00000.11-	00000.11-	00000 . 11 -			618	
000.0002	000:0007-	000:0007-	000.0002			818	
/968.662-	/968 657-	/968:676-	/968-675-	R	٦d	/18	
2000 300-	2000 300 -	00000.11-	2000 100	0		910	
000.0007		000:0007-	000.0002			C10	
				,	ЪЧ		
7200 CCC	1300 000-	7205 28F-	7200 281-	L	10	610 118	
01180 16-	01180 66-	SHILL 69-	ALLT 09-			518	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ā	20	-760 1667	260 A567	- 200 2567	100 JEC7
P.L 27 236 36000 256 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 36000 36 37 360000 36000 36000 <t< th=""><th>- 2</th><th>ľ</th><th>97</th><th>2000 000</th><th>- 2000 000</th><th>- 2000 000 -</th><th>000 0002</th></t<>	- 2	ľ	97	2000 000	- 2000 000	- 2000 000 -	000 0002
PL 27 -228. 1067 -269. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -769. 4567 -728. 1067 -728. 1067 -728. 1067 -728. 1067 -728. 1067 -728. 1065 -728. 1065 -728. 1065 -728. 1065 -728. 1065 -728. 1065 -728. 1065 -716. 6967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967 -716. 4967	• e			-36.38000	-36.38000	-85.83000	-85,83000
PL 2000.0000 -5000.0000 -5000.000 -500	4	РГ	27	-228.1067	-228.1067	-269.4567	-269.4567
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ច			2000.000	-2000.000	-2000.000	2000.000
2000.000 2000.000	9 - 0	PL	28	-46.43600 -228.1067	-46.43600 -228.1067	-31.08600 -228.1067	-228.1067
P.L 29 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7507 -141, 7500	. 60		1	2000.000	-2000.000	-2000.000	2000.000
2000:000 -2000:000 -2000:000 -40.0000	നറ	đ	90	-20.23000	-20.23000 -184 7967	-45.73000 -176.6967	-45.73000 -176.6967
RIN3 1) – (l •) 	2000.000	-2000.000	-2000.000	2000.000
HIT 1 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>		DIVIC	•	-64.60001	-64.60001 -717 0234	- 40.0000 - 30 53511	-40.0000
BLT 2 0.0	n 4	BLT	-	-	0.0	0.0	0.0
BLI 2 -212.3244 -39.53511 -40.1455 BLT 4 -5.703000 -10.50000 -13.7600 BLT 5 -5.703000 -10.50000 -13.7600 BLT 6 -0.0 0.0 0.0 -13.7600 BLT 6 -0.0 0.0 0.0 -13.7600 BLT 6 -0.0 0.0 0.0 -13.7600 BLT 6 -212.9234 -39.5311 -40.1455 COD 0.0 0.0 0.0 0.0 -40.1455 SEG 2 -211.9247 0.0 0.0 0.0 SEG 2 -211.9247 0.0 0.0 0.0 SEG 2 -199043 0.0 0.0 0.0 SEG 2 -199043 0.0 0.0 0.0 0.0 SEG 2 -199043 0.0 0.0 0.0 0.0 0.0 SEG 2 -213.9863 0.0 0.0 0.0 0.0 0.0 SEG 1 0.0<	<u>ا</u> م	1	(0.0	0.0	0.0
BLT 3 -5.703000 -10.50000 -13.7600 -13.7714143 -13.7610 -13.7714143 -13.7714143	0 -	BLI	2		-212.9234	11050.65- 0.0	-40.14554 0.0
BLT 4 -212.9234 -39.53511 -40.145 BLT 5 0.0 0.0 0.0 0.0 BLT 5 0.0 0.0 0.0 0.0 BLT 6 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 SEG 0.1300646 1.000000 0.0 0.0 0.0 SEG 1000000 0.0 0.0 0.0 0.0 0.0 SEG 0.1300646 1.000000 0.0 0.0 0.0 0.0 SEG 0.1300646 1.000000 0.0 0.0 0.0 <td></td> <td>BLT</td> <td>e</td> <td></td> <td>-5.703000</td> <td>- 10.50000</td> <td>- 13 . 76000</td>		BLT	e		-5.703000	- 10.50000	- 13 . 76000
BLI 5 0.000 0.0 <td>n (</td> <td>1</td> <td></td> <td></td> <td>-212.9234</td> <td></td> <td>-40.14554</td>	n (1			-212.9234		-40.14554
BLT 5 -212.9234 -39.5511 -40.1455 BLT 6 0.0 0.0 0.0 0.0 0.0 FI 6 0.0 0.	0,	BLT	4		-5.703000	10.50000	- 13 . /6000
BLT 6.0 0.0 0.0 0.0 FIL 6.0 0.0 0.0 0.0 0.0 FIL 1 -2811413 0.0 0.0 0.0 0.0 FIL -0.9831413 0.0 0.0 0.0 0.0 0.0 0.0 FIL -2811415 0.0 0.0 0.1828477 0.0 0.0 0.0 FIL -0.1828471 0.0 0.0 0.0 0.0 0.0 0.0 FIL -0.1828473 0.0 0.0 0.0 0.0 0.0 0.0 FIL -1000000 0.0 0.0 0.0 0.0 0.0 0.0 FIL -1000000 0.0 0.0 0.0 0.0 0.0 0.0 FIL -1000000 0.0	- 0	BLT	ß		-212.9234	-39.53511	-40.14554
BLT 6 0.0	e				0.0	0.0	0.0
OFDR 100.0000 0.0 77.19424 0.0 SEG 1 -251.4775 0.0 -182.8477 0.0 -77.19424 0 0 0 0.0 983.1413 1.000000 0.0 -77.19424 0 0 0 0 0 0 0 983.1413 2 -1828.043 0 0 0 0 983.1413 2 -2182.0669 0 0 0 938.1413 -57.693.143 2 -2122.0669 0 0 0 938.538 0 0 3 -222.0669 0 0 0 938.14693 0 0 0 0 0 0 0 0 938.14693 0 0 938.14693 0 0 0 0 0 0 938.14693 0 0 0 0 0 0 0 0 0 0 0 0 0 0	रा ।	BLT	9		0.0	0.0	0.0
SFG 1 -100000 0.0 -77,1942 0	o (0010	- 7447 7		0.0	0.0	0.0
-0.9831413 0.0 0.1828477 0.0 0.0 1.000000 0.0 0.1 -0.14389043 0.0 -0.983133 0.1 -0.14389043 0.0 -0.983133 0.1 0.0 0.0 0.9895338 0.1 0.1308646 0.0 0.8985338 0.1 0.1308646 0.0 0.93914003 0.1308646 0.0 0.0 0.9914003 0.1308646 0.0 0.0 0.9914003 0.1308646 0.0 0.0 0.9914003 0.1308646 0.0 0.0 0.9914003 0.1 0.00 0.0 0.9914003 0.0 0.0 0.0 0.9914003 0.0 0.0 0.0 0.9914003 0.0 0.0 0.0 0.9914003 0.0 0.0 0.0 0.9914003 0.0 0.0 0.0 0.9914003 0.0 0.0 0.0 0.991403 0.0 0.0 0.0 0.914033 0.0 0.0 0.0	• •	SEG	1 1 ME =	-251.4775	0.0	-77.19424	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m			-0.9831413	0.0	0.1828477	
SEG 2 -0.1422477 0.0 -0.38331413 0.0 0.0 0.0 0.0 0.0 0.13381413 5EG 2 -0.14389043 0.0 0.0 0.13885338 0.0 1<000000	~			0.0	1.000000	0.0	
5EG -<	<u>~</u> .		c	-0.1828477	0.0	-0.9831413	
SEG 3 -282.0663 0.0 -0.4389043 SEG 3 -282.0663 0.0 -9914003 0.1308646 0.0 -38.7465 0.0 -38.7465 0.1308646 0.0 -38.7465 0.0 -38.7465 0.1308646 0.0 0.0 -38.7465 0.0 0.1308646 0.0 0.0 -38.7465 0.0 0.1308647 0.0 0.0 -46.88697 0.0 0.14688697 0.0 0.0 -6.4688697 0.0 0.14688697 0.0 0.0 -6.4688697 0.0 0.14688697 0.0 0.0 -6.538825 0.0 0.14688697 0.0 0.0 -6.538825 0.0 0.14688697 0.0 0.0 -6.538825 0.0 0.1443290 0.0 0.0 -6.4638625 0.0 0.1556514 0.0 0.0 -6.443290 0.0 0.10 0.0 0.0 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 0.0		SEG	7	-2/6./949 -0 /3800/3		- 201.03425 0 8085338	
SEG 3 -0.8985338 0.0 0.1308646 0.0 38.74465 0.1308646 0.0 38.74465 0.1308646 0.0 0.0 0.1308646 0.0 0.0 0.1308646 0.0 0.0 0.1308646 0.0 0.1308646 0.0 0.0 0.1308646 0.0 0.0 0.1308646 0.0 0.0832674 0.0 0.8832674 0.0 0.1308646 0.0 0.4688697 0.0 0.0 0.8832674 0.0 0.0 0.68832674 0.0 0.4688697 0.0 0.0 0.68832674 0.0 0.4688697 0.0 0.0 0.1493290 0.1<000000				0.0	1.000000	0.0	
SEG 3 -282.0669 0.0 -38.74469 0 1308646 0.0 0.9914003 0.0 9914003 0 1000000 0.0 0.9914003 0.0 0.9914003 0 0 9832674 0.0 0.1308646 0.0 0.9914003 0 0 0.0 0.0 0.1308646 0.0 0.1308646 0 0.0 0.0 0.0 0.1308646 0.0 0.0 0 0.10 0.0 0.0 0.0 0.1308646 0.0 0 0.16 0.0 0.0 0.0 0.0 0.0 0 0.16 0.0 0.0 0.0 0.0 0.0 0.143290 0.0 0.0 0.0 0.0 0.0 0.0 0.1200000 0.0 0.0 0.0 0.0 0.0 0.0 0.143290 0.0 0.0 0.0 0.0 0.0 0.0 0.1200000 0.0 0.0 0.0 0.0 0.0 0.0 0.1200000 0.0 </td <td>_</td> <td></td> <td></td> <td>-0.8985338</td> <td>0.0</td> <td>-0.4389043</td> <td></td>	_			-0.8985338	0.0	-0.4389043	
0.1308646 0.0 0.9914003 0.0 -29314003 0.0 0.0 -29314003 0.0 0.1308645 0.0 0.1308645 0.23914003 0.0 -36.73381 0.1308657 0.0 -36.73381 0.0 0.14688697 0.0 0.0 0.0 -4688697 0.0 0.0 -46.88697 0.0 0.0 -46.88697 0.0 0.0 -48.32674 0.0 0.0 -48.32857 0.0 0.0 -48.358250 0.0 0.0 -44.3290 0.0 0.0 -149.588255 0.0 0.0 -149.358250 0.0 0.0 -149.358250 0.0 0.0 -149.358250 0.0 0.0 -149.358250 0.0 0.0 0.0 0.0 0.0 -39.05334 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		SEG	e	-282.0669	0.0	-38.74469	
SEG 4 -272.8663 0.0 0.0 0.0 SEG 4 -272.8663 0.0 0.0 0.0 0.0 0.0 8832674 0.0 0.0 -6.4688697 0.0 0.0 0.0 0.0 0.0 -6.4688697 0.0 0.0 -36.73381 0.0 0.4688697 0.0 0.0 -44.5588250 0.0 -43.5588250 0.0 0.0 0.0 0.0 0.0 0.0 -6.5358256 0.0 -43.558255 0.0 0.0 0.0 0.0 0.0 -6.5358256 0.0 -36.7334 0.0 5EG 6 0.5358250 0.0 -36.538255 0.0 -36.53326 0.0 0.0 0.0 0.0 -6.5358255 0.0 -36.65334 0.0 -60.49323 5EG 6 -224.5514 0.0 0.0 -6.5358255 -60.49323 0.0 -224.5514 0.0 0.0 -539.05334 -20000777 -60.49323 5EG 7 -0.560.3496 0.0 0.0	<i>.</i>			0.1308646	0.0	0.9914003	
SEG 4 -272,8659 0.0 -36.73381 0.0 0.8832674 0.0 -0.4688697 0.0 0.1 0.08832674 0.0 -0.4688697 0.0 0.1 0.08832674 0.0 0.0 -36.73381 0.1 0.08832674 0.0 0.0 -36.73381 0.1 0.00000 0.0 0.0 -49.58825 0.1 0.00 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.25358250 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0.0	1.00000	0.0 0 1308646	
0.0 0		SEG	4	-272.8669		-36.73381	
0.0 1.000000 0.0 0.4688637 0.0 0.8832674 0.4688637 0.0 0.8832674 0.883267 0.0 0.8832674 0.883267 0.0 0.0 0.883260 0.0 0.0 0.883260 0.0 0.0 0.6 0.0 0.0 0.7358250 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.7358250 0.0 0.0 0.0 0.10 0.0 0.6 0.2358250 0.0 0.6 0.2358250 0.0 0.6 0.23593098 0.0 0.0 0.0 0.0 0.1 0.00 0.0 0.2533496 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			•	0.8832674	0.0	-0.4688697	
SEG 5 -252.6114 0.0 0.883267 0.883250 0.0 -49.58825 0.8443290 0.0 -49.58825 0.8443290 0.0 -49.58825 0.0 0.8443290 0.0 56 -224.5514 0.0 0.5358250 0.0 -39.05334 0.6 0.6 -39.05334 0.6 0.0 0.0 56 -224.5514 0.0 0.5358250 0.0 0.0 0.53358250 0.0 0.6 0.0 0.6 0.0 0.7 0.0 0.8432334 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	_			0.0	1.000000	0.0	
564 5 -232.6114 0.0 -49.58825 0 0 0 6 0.5358250 0.0 5 6 0.5358250 0.0 0.0 1.000000 0.0 7 5 6 0.5358250 0.0 0.0 0.8443290 0.0 7 5 6 0.5358250 0.0 0.0 0.8443290 0.0 7 5 6 0.53599098 0.0 0.0 0.8443290 0.0 9 0.5999098 0.0 0.0 0.8443290 0.0 0.0 5699098 9 0.0 1.000000 0.0 0.0 0.9599098 0.0 0.0 9 0.0 0.0 0.0 0.0 0.190000 0.0 0.0 5 6 1.000000 0.0 0.0 0.3506510 0.0 0.0 6 1.000000 0.0 0.0 0.0 0.0 0.0 0.0 5 6 0.0 0.0 0.0 0.0 0.0 0.0 6	~	0	L	0.4688697	0.0	0.8832674	
SEG 6 -224.5514 0.0 -39.05334 SEG 6 -224.5514 0.0 -39.05334 0.55359038 0.0 -39.05334 0.0 0.0 0.0 -39.05334 0.0 0.0 0.0 -39.05334 0.0 0.0 0.0 1.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		510	n	-252.5118 0 8443790		-49,36623 -0 5358350	
SEG 6 -224.5514 0.0 -39.05334 0.5358250 0.0 -39.05334 0.5539038 0.0 -39.05334 0.0 0.0 -39.05334 0.0 1.00000 0.0 0.0 1.00000 0.0 0.0 1.00000 0.0 0.0 -0.8000677 0.0 0.0 -0.8000677 0.0 0.0 0.0 0.0 0.3560510 0.0 0.3506510 0.0 0.0 0.3506510 0.0 0.0 0.0 0.9365062 0.0 0.0 0				0.0	1.000000	0.0	
SEG 6 -224.5514 0.0 -39.05334 0 0.5999098 0.0 0.8000677 0.8000677 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0.5358250	0.0	0.8443290	
0.5939098 0.0 0.8000677 0.0 1.000003 0.0 0.0 -0.8000677 0.0 0.0 -0.8000677 0.0 1.000003 0.0 550098 260.3436 0.0 -60.43323 20.3365062 0.0 0.3506510 0.0 0.0 0.3506510 0.0 0.0 0.3365062 1 0.00000 0.0 25G 8 -233.5047 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		SEG	9	-224.5514	0.0	-39.05334	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~			0.5999098	0.0	0.8000677	
0 0.0	•			0.0	1.000000	0.0	
0.9365062 0.0 0.3506510 1 0.0 0.0 0.3506510 1 0.0 0.0 0.3506510 1 0.0 0.0 0.3506510 1 0.0 0.0 0.3566510 1 0.0 0.0 0.3566510 1 0.0 0.0 0.3566510 0 0.0 0.0 0.3365062 0 0.0 0.0 0.2635931 0 0.0 0.0 0.0646340	~ -	SEG	7	-0.8000677 -260 3496	0.0	0.5999098 -60 49333	
1 0.0 1.00000 0.0 1 -0.3506510 0.0 0.9365062 5 5EG 8 -233,5047 0.0 0.9365062 5 0.0 0.0 0.0 0.9365062 0.0 6 5EG 8 -233,5047 0.0 0.0 -59,88408 7 0.0 0.0 1.00000 0.0 0.0646340 0.0 7 0.0 0.0646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.9646340 0.0 0.0 0.9646340 0.0 0.0 0.9646340 0.0 0.0 0.9646340 0.0 0.0 0.9646340 0.0 0.0 0.0 0.0 0.0 0.0 0.0			•	0.9365062	0.0	0.3506510	
-0.3506510 0.0 0.9365062 5 564 0.0 0.9365062 6 -233,5047 0.0 -59,88408 7 0.0 0.0 -0.2635931 0.0 1.000000 0.0 0.0 0.0 0.0 0.0 0.0	_			0.0	1.000000	0.0	
5 5EG 8 -233.5047 0.0 -59.88408 5 0.9646340 0.0 -0.2635931 7 0.0 1.000000 0.0 8 0.2635931 0.0 0.0 1 0.00 0.9646340 0.0				-0.3506510	0.0	0.9365062	
		SEG	80	-233.5047	0.0	-59.88408 -0.2626034	
1 0.2635931 0.0 0.9646340				0.9646340	0.0	-0.2635931	
				0.2635931	0.0	0.9646340	

Page 16

ч
CC i d=LETM
for
1988
14.
DEC
50
06:09:38
at
PLTDBLT6
oĘ
Listing

ΜŊ

					-254.2407 2000.000 -77.07120	-251.9067 2000.000 -86.79520	-244.5167 2000.000 -74.73680	-250.1557 2000.000 -94.08800	-266,1533 2000,000 -35,05109	-250.1288 2000.000 -94.08245	-251.7247 2000.000 -11.00000	-265.324/ 2000.000 -11.00000	2000.000	- 183.9747 2000.000 -27.60001	- 134.7247 2000.000 -61.70000	- 196.7247 2000.000 -62.70000	- 196 . 7747 2000 . 000
-76.84156 0.2593564 0.0 -0.9657817	-56.23040 0.8702786 0.0 -0.4925599	-80.7609 -0.6948075E-04 0.0	-0.0 -0.0 0.0 1.000000	0.0 0.0 1.00000	254.2407 -2000.000 -77.07120	-251.9067 -2000.000 -86.79520	-244.5167 -2000.000 -74.73680	- 250. 1557 - 2000. 000 - 94. 08800	266 1533 -2000.000 -35.05109	-250.1288 -2000.000 -94.08245	-251,7247 -2000.000 -11.00000	-265.3247 -2000.000 -11.00000	-213.9247 -2000.000 -11.00000	- 183.9747 - 2000.000 - 27.60001	- 184.7247 -2000.000 -61.70000	- 196 . 7247 - 2000 . 000 - 62 . 70000	- 196 . 7747 - 2000 . 000
0.0 0.0 1.000000	0.0 1.000000 0.0	0.0 0.0 1.000000	0.0 0.0 1.000000	0.0 0.0 1.000000 0.0	- 142 . 4177 - 2000 . 000 - 50 . 22501	-140.0837 -2000.000 -59.94901	-242.1627 -2000.000 -84.46080	-255.9917 -255.9917 -2000.000	-257.4659 -2000.000 -68.84179	-255.9631 -2000.000 -69.77245	-215.8247 -2000.000 -11.00000	-355.3247 -2000.000 -11.00000	- 183.3147 - 2000.000 - 27.60001	- 184 . 7247 - 2000 . 000 - 61 . 70000	- 196.7247 - 2000.000 - 62.70000	- 196.7747 -2000.000 -71.89999	- 192.6247 -2000.000
-250.5884 -0.9657817 0.0 -0.2593564	-2.233399 -2.11.6875 -0.4925599 0.0 -0.8702786	-248.1839 1.000000 0.0	0.69480/55-04 -75.32472 1.000000 0.0 0.0	0.0 1.000000 0.0	-142.4177 2000.000 -50.22501	-140.0837 2000.000 -59 04901	-242.1827 2000.000	-64,46060 -255,9917 2000.000	-257.4659 2000.000 -68.84179	-255.9631 2000.000 -69.77245	-215.8247 2000.000 -11.00000	-355.3247 2000.000 -11.00000	- 183 . 9 / 4 / 2000 . 000 - 27 . 6000 1	- 184.7247 2000.000 - 61.70000	- 196.7247 2000.000 -62.70000	-196.7747 2000.000 -71.89999	-192.6247 2000.000
თ	10	5	12	13	÷	7	e	4	a	9	7	œ	თ	10	Ŧ	12	13
SEG	SEG	SEG	SEG	SEG	ΡL	ΡL	٩L	ΡL	ΡL	ЪГ	ΡL	ΡL	ЪГ	ΡL	ΡL	PL	ΡL
929 930 931	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	037 038 038 050 050	0 4 9 0 4 4 0 4 4 3 0 4 4 3 0 4 4 3 0 4 4 4 3 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	945 946 947	0490 050 051	000 000 000 000	0 0 0 0 0 0 0 0 1 0 0 1	95/ 958 959 959	961 962 963	964 965 966	967 968 969	970 971 972	973 974 975	976 977 978	979 980 981	0 8 3 0 8 3 0 8 3 0 8 3	986 986

	987				-76.10001	-76.10001	-71.89999	-71.89999
	988	PL	14		-226.8247	-226.8247	-217.8247	-217.8247
	989				2000.000	-2000.000	-2000.000	2000.000
	990				-51.95000	-51.95000	-36.25000	-36.25000
	991	ΡL	15		-223.2247	-223.2247	-226.8247	-226.8247
	992				2000.000	-2000.000	-2000.000	2000.000
	993				-61.85001	-61.85001	-51,95000	-51,95000
	994	Ρl	16		-229.5747	-229.5747	-216.3247	-216.3247
	995	. –			2000 000	-2000_000	-2000_000	2000_000
	996				-67 45000	-67 45000	-55 50000	-55 50000
	997	PI	17		-223 8747	-223 8747	-229 5747	-229 5747
	998		• •		2000 000	-2000,000	-2000 000	2000 000
	999				-82 55000	-82 55000	-67 45000	-67 45000
	1000	DI	10		-105 2047	-195 -2247	-222 9747	- 222 8747
	1000	r L	10		199.9247	-193.3247	-2000 000	223.8747
	1001				2000.000	-2000.000	-2000.000	2000.000
	1002		40		-78.64999	-78.64999	-82.55000	-82.55000
	1003	PL	19		-325.3247	-325.3247	-291.2247	-291.2247
	1004				2000.000	~2000.000	-2000.000	2000.000
	1005		• •		-132.6000	-132.6000	-132.6000	- 132.6000
	1006	PL	20		-252.4247	-252.4247	-246.9247	-246.9247
	1007				2000.000	-2000.000	-2000.000	2000.000
	1008				-124.1000	-124.1000	-126.2500	- 126 . 2500
	1009	PL	21		-291.2247	-291.2247	-252.4247	-252.4247
	1010				2000.000	-2000.000	-2000.000	2000.000
	1011				- 132 . 6000	- 132 . 6000	- 124 . 1000	-124.1000
	1012	PL	22		-319.6847	-319.6847	-320.0847	-320.0847
	1013				2000.000	-2000.000	-2000.000	2000.000
თ	1014				-85.83000	~85.83000	- 106 . 3300	- 106 . 3300
د م	1015	PL	23		-332.0847	-332.0847	-320.0847	-320.0847
	1016				2000.000	-2000.000	-2000.000	2000.000
	1017				- 106 . 3300	- 106 . 3300	- 106 . 3300	- 106 . 3300
	1018	PL	24		-331.6848	-331.6848	-332.0847	-332.0847
	1019				2000.000	-2000.000	-2000.000	2000.000
	1020				-85.83000	-85.83000	-106.3300	-106.3300
	1021	PL	25		-305.3247	-305.3247	-331.6848	-331.6848
	1022	• =			2000.000	-2000.000	-2000.000	2000.000
	1023				-23.16000	-23, 16000	-85,83000	-85 83000
	1024	PI	26		-298 8847	-298 8847	-319 6847	-319 6847
	1025	• =			2000.000	-2000 000	-2000,000	2000_000
	1026				-36 38000	-36_38000	-85 83000	-85_83000
	1027	PI	27		-257 5347	-257 5347	-298 8847	-298 8847
	1028	• •	- /		2000 000	-2000,000	-2000,000	2000,000
	1020				-46 43600	-46 43600	-37 08600	- 27 08600
	1020	ום	29		-257 5247	-257 5247	- 257 5247	-257 5247
	1030	FL.	20		-201.0341	-257.5347	-257.5347	-237.5347
	1031				2000.000	-2000.000	-2000.000	2000.000
	1032	D 1	20		~20.23000	-20.23000	-45.73000	-45.73000
	1033	PL	29		-214.2247	-214.2247	-206.1247	-206.1247
	1034				2000.000	-2000.000	-2000.000	2000.000
	1035	D T 110			-64.60001	-64.60001	-40.00000	-40.00000
	1036	RING		1		-211.7134	-39.89477	-38.27629
	1037	REI	1			0.0	0.0	0.0
	1038		_			0.0	0.0	0.0
	1039	BLT	2			-211.7134	-39.89477	-38.27629
	1040					0.0	0.C	0.0
	1041	BLT	3			-5.703000	- 10 . 50000	- 13 . 76000
	1042					-211.7134	-39.89477	-38.27629
	1043	BLT	4			~5.703000	10.50000	-13.76000
	1044					0.0	0.0	0.0

Page 18

-39.89477 0.0 0.0	0 -69.72507 -0.3755573 0.0	-0.926/992 -58.58911 0.9200546 0.0 -0.317901	- 39, 32616 - 39, 32616 0, 9934579 0, 0 1141989 - 36, 68367 - 36, 68367	0.9149933 -50.86039 -0.5903426 0.0 0.8067136 -40.50024 0.8299383	0.5578552 -61.50498 0.3933693 0.0 0.9193806 -60.73976 -0.2902884 0.0 9569392 -67.84450 -0.4663255	-0.0 -0.8846132 -58.50548 0.7964823 0.0 -0.6046619 -0.7229677E-04 0.0	1.000000 0.0 -0.0 1.000000 0.0 0.0 0.0 1.000000 1.000000
211.7134 .0 .0	0.0 0.0 1.00000	0.0 0.0 1.000000		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 1.000000 0.0 0.0 1.000000 0.0 -173.6375
1000	120.0000 -284.4154 -0.9267992	0.3755573 -309.2804 -0.3917901 0.0 -0.9200546	-0.9240034 -0.1141989 -0.0 -0.9934579 -304.6118 -304.6118	0.4034691 -285.2588 0.8067136 0.0 0.5909426 -258.8167 0.5578552	-0.8299383 -294.3827 0.9193806 0.0 -0.3933693 -267.8785 0.0 0.0 0.0 0.2902884 -283.6498	0.0 0.4663255 -304.3032 -0.6045619 0.0 -0.7964823 -279.4259 1.000000 0.0	0.7229677E-04 -106.5444 1.000000 0.0 0.0 1.000000 1.000000 0.0 0.
യ വ	TIME = 1	0	ώ 4	o a	r 8 6	6 <u>-</u>	
BLT BLT	OFUR SEG	SEG	SEG SEG	SEG SEG	SEG SEG SEG	SEG SEG	SEG SEG
1045 1046 1047	1048 1050 1051	1053 1054 1055 1056	1059 1060 1061 1062 1062	1065 1067 1068 1068 1070 1071	29 1075 1077 1077 1077 1077 1077 1083 1083 1083 1083 1083 1083 1083 1083	1084 1085 1087 1088 1089 1090 1092	1093 1094 1095 1096 1098 1098 1101

-285.4604

Page 19

--38.27629 0.0 0.0 Listing of PLTDBLT6 at O6:09:38 on DEC 14, 1988 for CCid=LETM on UM \longrightarrow

1103			2000.000	-2000.000	-2000.000	2000.000
1104			-50.22501	-50.22501	-77.07120	-77.07120
1105	PL	2	- 171. 3035	-171.3035	-283.1264	-283.1264
1106			2000.000	~2000.000	-2000.000	2000.000
1107			-59.94901	-59.94901	-86.79520	-86.79520
1108	PL	3	-273.4025	-273.4025	-275.7365	-275.7365
1109			2000.000	-2000.000	-2000.000	2000.000
1110			-84.46080	-84.46080	-74.73680	-74.73680
1111	PL	4	-287.2115	-287.2115	-281.3754	-281.3754
1112			2000.000	-2000.000	-2000.000	2000.000
1113			-69.77840	-69.77840	-94.08800	-94.08800
1114	PL	5	-290.5546	-290.5546	-297.4806	-297.4806
1115			2000.000	-2000.000	-2000.000	2000.000
1116			-70.72254	~70.72254	-36.52734	-36.52734
1117	PL	6	-287.2051	-287.2051	-281.3709	-281.3709
1118			2000.000	-2000.000	-2000.000	2000.000
1119			-69.77500	-69.77500	-94.08502	-94.08502
1120	PL	7	-247.0444	-247.0444	-282,9444	-282 9444
1121		•	2000,000	-2000_000	-2000 000	2000 000
1122			-11,00000	-11 00000	-11 00000	-11 00000
1123	PI	8	-386 5444	-386 5444	-296 5444	-296 5444
1124		5	2000 000	-2000 000	-2000 000	2000 000
1125			-11 00000	-11 00000	-11 00000	-11 00000
1125	DI	9	-215 1944	-215 1944	-247 0444	-11.00000
1120	Г с	3	215.1944	-2000 000	-247.0444	-247.0444
1127			2000.000	-2000.000	-2000.000	2000.000
1120	ы	10		-27.60001	-11.00000	-11.00000
1129	PL.	10	-215.9444	-215.9444	-215.1944	-215.1944
1130			2000.000	-2000.000	-2000.000	2000.000
1131	~		-61.70000	-61.70000	-27.60001	-27.60001
1132	PL	11	-227.9444	-227.9444	-215.9444	-215.9444
1133			2000.000	-2000.000	-2000.000	2000.000
1134	~.		62.70000	-62.70000	-61.70000	-61.70000
1135	PL	12	-227.9944	-227.9944	-227.9444	-227.9444
1136			2000.000	-2000.000	-2000.000	2000.000
1137			-71.89999	-71.89999	-62.70000	-62.70000
1138	PL	13	-223.8445	-223.8445	-227.9944	-227.9944
1139			2000.000	-2000.000	-2000.000	2000.000
1140			-76.10001	-76.10001	-71.89999	-71.89999
1141	PL	14	-258.0444	-258.0444	-249.0444	-249.0444
1142			2000.000	-2000.000	-2000.000	2000.000
1143			-51.95000	-51.95000	-36.25000	-36.25000
1144	PL	15	-254.4444	-254.4444	-258.0444	-258.0444
1145			2000.000	-2000.000	-2000.000	2000.000
1146			-61.85001	-61.85001	-51.95000	-51.95000
1147	PL	16	~260.7944	-260.7944	-247.5444	-247.5444
1148			2000.000	-2000.000	-2000.000	2000.000
1149			-67.45000	-67.45000	-55.50000	-55.50000
1150	PL	17	-255.0945	-255.0945	-260.7944	-260.7944
1151			2000.000	-2000.000	-2000.000	2000.000
1152			-82.55000	-82.55000	-67.45000	-67.45000
1153	PL	18	-226.5444	-226.5444	-255.0945	-255.0945
1154			2000.000	-2000.000	-2000.000	2000.000
1155			-78.64999	-78.64999	-82.55000	-82.55000
1156	PL	19	-356 5444	-356.5444	-322 4444	-322 4444
1157			2000.000	-2000.000	-2000 000	2000 000
1158			-132 6000	-132 6000	-132 6000	-132 6000
1159	PL	20	-283.6445	-283 6445	-278 1445	-278 1445
1160	• =		2000 000	-2000 000	-2000 000	2000 000
			£000.000	£000.000	2000.000	2000.000

Page 20

ი ი :

						- 176 7500																																												
1161			- 124 . 1000	-124.1000	- 126 2500	0002.021-																																												
1162	PL	21	-322.4444	-322.4444	-283.644	0000 0000																																												
1163			2000.000	-2000.000	-2000.000																																													
1100			- 132.6000	- 132.6000	- 124 . 1000	-124.1000																																												
1011	10	, , , , , , , , , , , , , , , , , , ,	-350.9044	-350.9044	-351.3044	-351.3044																																												
		1		-2000.000	-2000.000	2000.000																																												
0011			-85,83000	-85.83000	- 106.3300	- 106 . 3300																																												
1011	ā	53	-363.3045	-363.3045	-351.3044	-351.3044																																												
1169	-	0	2000.000	-2000.000	-2000.000	2000.000																																												
1170			- 106 . 3300	- 106 . 3300	- 106 . 3300	-106.3300																																												
1171	٦L	24	-362.9046	-362.9046	-363.3045	-363.3045																																												
1172	I		2000.000	- 2000 . 000	- 2000.000	2000.000																																												
1173			-85.83000	-85.83000	- 106 . 3300	- 106 . 3300																																												
1174	Īd	25	336.5444	-336.5444	-362.9046	-362.9046																																												
1175		1	2000.000	-2000.000	-2000.000	2000.000																																												
0244			-23 16000	-23.16000	-85.83000	-85.83000																																												
0/11	Ĩ	<u>л</u> е	-330,1044	-330.1044	-350.9044	-350.9044																																												
1111	1		2000.000	-2000.000	-2000.000	2000.000																																												
			-36 38000	-36.38000	-85,83000	-85.83000																																												
6/11	č	F.C	-788 7545	-288.7545	-330.1044	-330.1044																																												
118()	ЧГ	17			- 2000.000	2000.000																																												
1181				-46 43600	-37.08600	-37.08600																																												
1182	ā	00	-788 7545	-288.7545	-288.7545	-288.7545																																												
1183	L L	287			- 2000,000	2000.000																																												
1184			2000.000		-45 73000	-45.73000																																												
1185			-20.23000	- 20. 23000 0.15 4444	20000 - CEC-	-237.3445																																												
1186	ΡL	29	-245.4444	-243.4444		2000.000																																												
1187			2000.000	-2000.000		-40 00000																																												
1188			-64.60001	-64.60001	-40.0000	-38 84622																																												
1189	RING	-		-211.8988																																														
0611 რ	BLT	-		0.0		0.0																																												
1191		1		0.0	-20 65561	-38.84622																																												
1192	BLT	7		-211.8388		0.0																																												
1193	1	¢			- 10 5000	- 13, 76000																																												
1194	BLI	ŋ		- J. 1 03030	-39 65561	-38.84622																																												
1195	ł	•		- 211.0300	10.5000	- 13.76000																																												
1196	BLI	4				0.0																																												
1197	Ì	ı		-711 8988	-39.65561	-38.84622																																												
1198	BLI	ß			0.0	0.0																																												
1199	1	C				0.0																																												
1200	BLI	Q			0.0	0.0																																												
1021	OFOD	T 1 MF =	140.0000																																															
1202	SFG SFG	+	-324.2267	0.0	-75.31946																																													
1204			-0.8962069	0.0	-0.4436363																																													
1205			0.0	1.000000	0.0																																													
1206			0.4436363	0.0	-0.8962069																																													
1207	SEG	7	-344.7553	0.0	-61.80/93																																													
1208			-0.1512851	0.0	0.9884902																																													
1209			0.0	1.000000	0.0																																													
1210			-0.9884902	0.0	1682161.0-																																													
1211	SEG	e	-346.0995	0.0	-41.593/0 2 0000002																																													
1212			0.1181455	0.0	0.9323363																																													
1213			0.0	1.00000	0.0																																													
1214			-0.9929963	0.0	0.1101433 - 27 64553																																													
1215	SEG	4	-336.216/		-0 2650192																																													
1216			0.9642431	1 00000	0.0																																													
121/			0.V	0.0	0.9642431																																													
1218			0.2000104	>.>																																														
88 for CCid=LETM on UM	-53.00536 -0 6402599	0.00000	0.7681584	-42.74198		0.00	-62 50418	0.5642760	0.0 0.0	0.8255862	-59.24801	-0.2735868	000000 0.0	0.96184/3	-0.5490790	0.0 00000	-0.8357705	-64.43945	0.9399614		-0.3412808 -0.75776	-00.10213 -0.68795595-04		1.00000	0.0	0.0-			0.0	0.000000	1.000000	205.0795 -316.9025	2000.000 -2000.000	50.22501 -77.07120			304.8445 -307.1785	2000.000 -2000.000	84.46080 -74.73680	318.6535 -312.8175	2000.000 2000.000	69.77840 -94.08800	329.6251 -327.8512		78.20772 -43.30329 Allo Cetto - 210 0000	318.63/2 	2000.000 6a 77509 -94 08509	278.4865 -314.3865	2000.000 - 2000.000	11 00000 - 11 00000
------------------------	-------------------------	---------	---------------	---------------	---------------	------	-----------	-----------	---------	---------------	---------------	---------------	------------	---------------	------------	-----------	---------------	---------------	---------------	------	------------------------	-----------------------------	------	-------------------	---------------	--------------	------	------	------	----------	----------	--------------------	--------------------	--------------------	------	------------	--------------------	--------------------	--------------------	--------------------	-------------------	--------------------	--------------------	----------	---	--------------	--------------------------------	--------------------	---------------------	---------------------
:09:38 on DEC 14, 19	-317.7885 0.0	0.0	0.6402599 0.C	-293.0775 0.0	0.5117265 0.C			0.C	0.0	0.5642760 0.C	-308.3487 0.C	0.9618473 0.C	0.0	0.2735868 0.C		0.0	0.5490790 0.0	-340.1506 0.0	0.3412808 0.C	0.0				0.6879559E-04 0.C	-137.9865 0.0	1.000000 0.0	0.0			0.0	0.0 0.0	- 205.0795	2000.000	-50.22501 -		- 59 94901	- 304 . 8445	2000.000	-84.46080	-318.6535	2000.000	-69.77840	-329.6251 -	2000.000	-78.20772		2000.000	-278.4865	2000.000	
T6 at 06	ß	-	-	9		ī	7	•		ī	8	-		c	آ م	-	-	10	1		•		-	-	12			e +	2	-	-	-		Q	N		e	1		4			ß		(9		7		
f PLTOBL	SEG			SEG			SEC	510			SEG			(010			SEG				SEG			SEG			SEC	010			PL		ā	ŗ		Id	1		ΡĽ			ΡL		ā	۲۲		٩L	1 -	
Listing o	1219	1221	1222	1223	1224	9001	2221	1228	1229	1230	1231	1232	1233	1234	1236	1237	1238	1239	1240	1241	1242	1243	1245	1246	9 1247	UT 1248	1249	1250	1252	1253	1254	1255	1256	1257	8621	0901	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1211	1273	1274	

-316.9025 2000.000 -77.07120 -314.5685 2000.000 -86.79520 -307.17852 2000.000 -312.8175 2000.000 -312.8175 2000.000 -312.828 2000.000 -312.828 2000.000 -312.828 2000.000 -317.8512 2000.000 -317.9865 -317.9865 Listing of PLTDBLT6 at 06:09:38 on DEC 14, 1988 for CCid=LETM on UM

1277			2000.000	-2000.000	- 2000.000	2000.000
1278			-11.00000	- 11.00000	-11.00000	- 11.00000
1279	P۲	ຫ	-246.6365	-246.6365	-2/00/000	2000 000
1281			-27.60001	-27.60001	- 11.00000	- 11.00000
1282	٩L	10	-247.3865	-247.3865	-246.6365	-246.6365
1283			2000.000	-2000.000	-2000.000	2000.000
1284			-61.70000	-61.70000	-27.60001	-27.60001
1285	P٢		-259.3865	-259.3865		-247.3865
0071					-61 70000	-61 70000
1288	PL	12	-259.4365	-259.4365	-259.3865	- 259.3865
1289	I		2000.000	-2000.000	-2000.000	2000.000
1290			-71.89999	-71.89999	-62.70000	-62.70000
1291	P٢	13	-255.2865	-255.2865	-259.4365	-259.4365
1292			2000.000	-2000.000	2000 . 000	2000.000
1293	i	•	-76.10001	-76.10001	-71.89999	-71.89999
1294	Ы	14	-289.4865	-289.4865	-280.4865	-280.4865
1295			2000.000	-2000.000	-2000.000	2000.000
1296	i	L	-51.95000	-51.95000	- 36.25000	- 36. 25000
1671	7	6			- 2030.4863	
1298					- 2000.000	2000.000
	ā	16	- 00.000-		- 278 0865	-778 9865
1001	J	2				
2021	Ĩ	77	-286 5365	-286 5365	-200 236F	-292 2365
		-				
1305			-82 55000	-82.55000	-67.45000	-67.45000
1306	Ы	18	-257.9865	-257.9865	-286.5365	-286.5365
1307	1	2				
1308			- 78.64999	-78.64999	-82.55000	-82.55000
1309	PL	10	-387.9865	-387,9865	-353,8865	-353,8865
1310	1	1	2000.000	-2000.000	-2000.000	2000.000
1311			-132.6000	-132.6000	-132.6000	-132.6000
1312	P۲	20	-315.0865	-315,0865	-303 5865	-309,5865
1313			2000.000	- 2000 . 000	- 2000.000	2000.000
1314			-124.1000	-124.1000	- 126.2500	- 126.2500
1315	P۲	21	-353.8865	-353.8865	-315.0865	-315.0865
1316			2000.000	-2000.000	-2000.000	2000.000
1317			- 132 . 6000	- 132 . 6000	- 124 . 1000	- 124 . 1000
1318	٩Ľ	22	-382.3465	-382.3465	-382.7465	-382.7465
1319			2000.000	-2000.000	- 2000 . 000	2000.000
1320			-85.83000	-85.83000	- 106.3300	- 106 . 3300
1321	٢	53	-394.7465	-394./465	- 382 . / 465	-382./465
1322			2000.000	-2000.000	-2000.000	2000.000
1323	i	ļ	-106.3300	- 106 . 3300	- 106 . 3300	- 106 . 3300
1324	٦L	24	-394.3466	- 394 . 3466	-394.7465	-334./465
1320						
9761	Z	L	- 85.83000		- 106.3300	
1327	r L	67	- 367. 3865	- 367. 5005 2000 2000	- 334 . 3466	-3466
1328			2000.000	-2000.000	-2000.000	2000.000
1329	ā	20	-23.16000	-23.16000 -261 E166	-85.83000	- 85.83000 - 200 - 200
0551	7	07				
1551			2000.000	- 2000.000		2000.000
2001	10	<i>L c</i>	- 30, 30,00 - 30,1965	-200 1965 -200 1965	-361 5465	- 361 5465
1334 4551	1	- 7	2000.000	- 2000.000	- 2000 . 000	2000.000

Listing of PLTDBLT6 at 06:09:38 on DEC 14, 1988 for CCid=LETM on UM

133	5		-46.43600	-46.43600	-37.08600	-37.08600
133	6 PL	28	-320, 1965	-320, 1965	-320, 1965	-320, 1965
133	7		2000.000	-2000.000	-2000.000	2000.000
133	8		-20,23000	-20,23000	-45.73000	-45.73000
133	9 PI	29	-276.8865	-276 8865	-268,7865	-268 7865
134	0		2000_000	-2000 000	-2000,000	2000 000
134	1		-64 60001	-64 60001	-40,00000	-40,00000
134	2 DIN	G	1	-212 1793	-39 52387	~39 10704
134	2 RIT	u 1	•	0.0	0.0	0.0
134				0.0	0.0	0.0
134	4 5 DIT	2		-212 1702		- 20 10704
134		2		-212.1793	-39.52387	-39.10704
134	0 7 DIT	2		0.0 E 700000	0.0	0.0
134	/ BLI	3		-5.703000	-10.50000	-13.76000
134	8			-212.1/93	-39.52387	-39.10704
134	9 BLI	4		-5.703000	10.50000	- 13.76000
135	0	_		0.0	0.0	0.0
135	1 BLT	5		-212.1793	-39.52387	-39.10704
135	2			0.0	0.0	0.0
135	3 BLT	6		0.0	0.0	0.0
135	4			0.0	0.0	0.0
135	5 OFOR	TIME =	160.0000			
135	6 SEG	1	-365.0801	0.0	-90.91681	
135	7		-0.9299280	0.0	0.3677416	
135	8		0.0	1.000000	0.0	
135	9		-0.3677416	0.0	-0.9299280	
136	O SEG	2	-380.3396	0.0	-64.47361	
136	1		0.5456977E-02	0.0	0.9999851	
136	2		0.0	1.000000	0.0	
ී 136	3		-0.9999851	0.0	0.5456977E-02	
[∼] 136	4 SEG	з	-378.4980	0.0	-44.29910	
136	5		0.2725864	0.0	0.9621313	
136	6		0.0	1.000000	0.0	
136	7		-0.9621313	0.0	0.2725864	
136	8 SEG	4	-367 3740	0.0	-39 42139	
136	9	•	0 9893618	0.0	-0 1454760	
137	0		0.0	1 000000	0.0	
137	1		0 1454760	0.0	0.9893618	
137	2 SEG	5	-349 3514	0.0	-55 25507	
137	3 320	5	0 7512555	0.0	-0.6600115	
137	<u>л</u>		0.7512555	1 000000	0.0000113	
137	5		0.6600115	1.000000	0.0	
137	6 SEG	6	-325 4158	0.0	-45 02046	
137	0 JLG 7	U	0 4009159	0.0	43.02040	
137	0 ·		0.4908158	0.0	0.8712033	
137	0		0.0	1.000000	0.0	
137	9	-	~0.8/12633	0.0	0.4908158	
138		/	~374.0732	0.0	-62.33532	
138	1		0.6533744	0.0	0.7570349	
138	2		0.0	1.000000	0.0	
138	3	~	-0.7570349	0.0	0.6533744	
138	4 SEG	8	-350.7792	0.0	-55./7362	
138	5		0.9750639	0.0	-0.2219242	
138	6		0.0	1.000000	0.0	
138	/		0.2219242	0.0	0.9750639	
138	ช SEG	9	-364.4972	0.0	-89.95146	
138	9		-0,9719378	0.0	0.2352380	
139	0		0.0	1.000000	0.0	
139	1		-0.2352380	0.0	-0.9719378	
139	2 SEG	10	-378.7939	0.0	-69.66669	

Page 24

Listing of PLTDBLTG at 06:09:38 on DEC 14, 1988 for CCid=LETM on UM

1202			0.2672094	0.0	0 9636107	
1393			0.2073034	1 000000	0.000000	
1394			0.0	1.000000	0.0	
1395			-0.9636107	0.0	0.2673094	
1396	SEG	11	-341.6419	0.0	-80.76318	
1397			1.000000	0.0	-0.5997926E-04	
1398			0.0	1.000000	0.0	
1399			0.5997926E-04	0.0	1.000000	
1400	SEG	12	-168.7517	0.0	0.0	
1401			1.000000	0.0	-O.O	
1402			0.0	1.000000	0.0	
1403			0.0	0.0	1.000000	
1404	SEG	13	0.0	0.0	0.0	
1405			1.000000	0.0	0.0	
1406			0.0	1.000000	0.0	
1407			0.0	0.0	1.000000	
1408	PL	1	-235.8447	-235.8447	-347.6677	-347.6677
1409			2000.000	-2000.000	-2000.000	2000.000
1410			-50,22501	-50.22501	-77.07120	-77.07120
1411	PL	2	-233.5107	-233.5107	-345.3337	-345.3337
1412			2000.000	-2000.000	-2000.000	2000.000
1413			-59,94901	-59,94901	-86.79520	-86.79520
1414	PI	з	-335.6097	-335,6097	-337.9437	-337.9437
1415	, 5	0	2000 000	-2000.000	-2000.000	2000,000
1416			-84 46080	-84 46080	-74 73680	-74 73680
1417	PI	4	-349 4188	-349 4188	-343 5827	-343 5827
1418		-	2000,000	-2000 000	-2000 000	2000 000
1410			-69 77840	-69 77840	-94 08800	-94 08800
1420	Di	5	- 367 9658	-367 9658	-360 7544	-360 7544
1420	F L	5	2000 000	-2000 000	-2000 000	2000,000
0 1421			-83 04141	-83 04141	-48 90526	-48 90526
ŵ 1422	DI	G	-249 4212	-349 4212	-343 5867	-343 5867
- 1423	FL	0	2000 000	-2000 000	-2020 000	2000 000
1424			2000,000	-2000.000	-2000.000	-04 08557
1425	D.	7	-69.77562	-69.17562	-94,08557	-94.08557
1426	PL	/	-309.2517	-309.2517	-345, 1517	-345.1517
1427			2000.000	-2000.000	-2000.000	2000.000
1428	-		-11.00000	-11.00000	-11.00000	-11.00000
1429	PL	8	-448.7517	-448./51/	-358.7517	-358.7517
1430			2000.000	-2000.000	-2000.000	2000.000
1431		_	-11.00000	-11.00000	-11.00000	-11.00000
1432	PL.	9	-277.4017	-277.4017	-309.2517	-309.2517
1433			2000.000	-2000.000	-2000.000	2000.000
1434			-27.60001	-27.60001	-11.00000	-11.00000
1435	PL	10	-278.1517	-278.1517	-277,4017	-277.4017
1436			2000.000	-2000.000	-2000.000	2000.000
1437			-61.70000	-61.70000	-27.60001	-27.60001
1438	PL	11	-290.1517	-290.1517	-278.1517	-278.1517
1439			2000.000	-2000.000	-2000.000	2000.000
1440			-62.70000	-62.70000	-61.70000	61.70000
1441	PL	12	-290.2017	-290.2017	-290.1517	-290.1517
1442			2000.000	-2000.000	-2000.000	2000.000
1443			-71.89999	-71.89999	-62.70000	-62.70000
1444	ΡL	13	-286.0518	~286.0518	-290.2017	-290.2017
1445			2000.000	-2000.000	-2000.000	2000.000
1446			-76.10001	-76.10001	-71.89999	-71.89999
1447	ΡL	14	-320.2517	-320.2517	-311.2517	-311.2517
1448			2000.000	-2000.000	-2000.000	2000.000
1449			-51.95000	-51.95000	-36.25000	-36.25000
1450	PL	15	-316.6517	-316.6517	-320.2517	-320.2517

rage 25

	1451			2000.000	-2000.000	- 2000 . 000	2000.000
	1452			-61.85001	-61.85001	-51.95000	-51.95000
	1453	PL	16	-323.0017	-323.0017	-309.7517	-309.7517
	1454			2000.000	~2000.000	-2000.000	2000.000
	1455			-67.45000	-67.45000	-55.50000	-55.50000
	1456	PL	17	-317.3018	-317.3018	-323.0017	-323.0017
	1457			2000.000	-2000.000	-2000.000	2000.000
	1458			-82.55000	-82.55000	-67.45000	-67.45000
•	1459	PI	18	-288 7517	-288 7517	-317 3018	-317 3018
	1460	•		2000,000	-2000.000	-2000.000	2000.000
	1461			-78 64999	-78 64999	-82 55000	-82 55000
	1462	PI	19	-418 7517	-418 7517	-384 6517	-384 6517
	1463	• •	10	2000,000	-2000,000	-2000,000	2000 000
	1464			-132 6000	-132 6000	-132 6000	-132 6000
	1465	PI	20	-345 8518	-345 8518	-340 3518	-340 3518
	1466			2000_000	-2000,000	2000,000	2000_000
	1467			-124 1000	-124 1000	-126 2500	- 126 2500
	1468	PI	21	-384 6517	-384 6517	-345 8518	-345 8518
	1469	• -		2000 000	-2000 000	-2000,000	2000_000
	1470			-132 6000	-132 6000	-124 1000	-124 1000
	1470	PI	22	-413 1117	-413 1117	-413 5117	-413 5117
	1472	• •		2000 000	-2000 000	-2000 000	2000_000
	1472			-85 83000	-85 83000	-106 3300	-106 3300
	1475	PI	23	-425 5118	-425 5118	-413 5117	-413 5117
	1475	• •	20	2000 000	-2000 000	-2000 000	2000_000
	1476			-106_3300	-106_3300	-106_3300	- 106 - 3300
	1470	PI	24	-425 1119	-425 1119	-425 5118	-425 5118
_	1478		24	2000 000	-2000 000	-2000 000	2000 000
5	1479			-85 83000	-85 83000	-106_3300	-106 3300
U	1480	PI	25	-398 7517	-398 7517	-425 1119	-425 1119
	1481	• •	20	2000,000	-2000,000	-2000 000	2000 000
	1482			-23 16000	-23 16000	-85 83000	-85 83000
	1483	DI	26	-392 3117	-392 3117	-413 1117	-413 1117
	1484		20	2000 000	~2000_000	-2000 000	2000 000
	1485			-36 38000	-36 38000	-85 83000	-85 83000
	1486	PI	27	-350 9618	-350 9618	-302 3117	-392 3117
	1487			2000,000	-2000,000	~2000_000	2000 000
	1488			-46 43600	-46 43600	-37 08600	-37 08600
	1489	PI	28	-350 9618	-350 9618	-350 9618	-350 9618
	1490		20	2000 000	-2000,000	-2000 000	2000_000
	1491			-20 23000	~20.23000	-45 73000	-45 73000
	1492	PI	29	-307 6517	-307 6517	-299 5518	-299 5518
	1493		20	2000,000	-2000,000	-2000 000	2000 000
	1494			-64 60001	-64 60001	-40,00000	-40,00000
	1495	RIN	3	1	-212 2191	-39 49519	-39 07309
	1496	BIT	- 1	•	0.0	0.0	0.0
	1497		•		0.0	0.0	0.0
	1498	BIT	2		-212 2191	-39 49519	-39 07309
	1499	DL.	-		0.0	0.0	0.0
	1500	BLT	з		-5 703000	- 10 50000	-13 76000
	1501	221	•		-212.2191	-39,49519	-39 07309
	1502	BLT	4		-5.703000	10 50000	-13 76000
	1503	221			0.0	0.0	0.0
	1504	віт	5		-212.2191	-39.49519	-39 07309
	1505	221	0		0.0	0.0	0.0
	1506	віт	6		0.0	0.0	0.0
	1507		-		0.0	0.0	0.0
	1508	OFOR	TIME =	160.0000		0.0	0.0

MU
ы
CCid=LETM
for
1988
14,
DEC
uo
06:09:38
at
PLTDBLT6
0 Ŀ
Listing

-90.91681 0.3677416 0.0	-0.00 -0.00 -64.47361 0.9999851 0.0	0.5456977E-02 -44.29910 0.9621313 0.0	0.2725864 - 39.42139 -0.1454760 0.0 9893618	-55.25507 -0.6600115 0.0 0.7512555	-45.02046 0.8712633 0.0 0.4903158	-62.33532 0.7570349 0.0 0.6533744	-55.77362 -0.2219242 0.0 0.9750639	-89.95146 0.2352380 0.0 -0.9719378 -69.66669	0.9636107 0.0 0.2673094 -0.5997926E-04 0.0	0.0 0.0 1.000000	0.0 0.0 1.000000	-347.6677 -2000.000 -77.07120 -345.3337 -2000.000
0.0	1.000000 0.0 0.0 1.000000	0.0 0.0 1.00000	0.00	0.0 1.000000	0.0 1.000000 0.0	0.0 0.0 1.000000	0.0 0.0 1.000000 0.0	0.0 0.0 1.000000 0.0 0.0	0.0 1.000000 0.0 0.0 0.0	0.0 0.0 1.000000 0.0	0.0 0.0 1.000000	-235.8447 -2000.000 -50.22501 -233.5107 -2000.000
- 365 . 0801 -0 . 9299280	0.0 -0.3677416 -380.3396 0.5456977E-02 0.0	-0.5999851 -378.4980 0.2725864	-0.0 -0.9621313 -367.3740 0.9893618 0.0	0.1454760 -349.3514 0.7512555 0.0		-374.0732 0.6533744 0.0 -0.7570349		-364.4972 -0.9719378 0.0 -0.2352380 -378.7939	0.2673094 0.0 -0.9636107 -341.6419 1.000000 0.0	0.5997926E-04 - 168.7517 1.000000 0.0 0.0	0.0 1.000000 0.0	-235.8447 2000.000 -50.22501 -233.5107 2000.000
-	CI	e	4	ß	9	٢	ω	9 10	÷	12	13	5 -
SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG SEG	SEG	SEG	SEG	PL PL
1509 1510	1511 1512 1512 1514 1514	1516 1518 1518	1519 1520 1521 1523	1524 1525 1526	1528 1529 1530 1531	1533 1534 1535	1538 1538 1538 1539 1540	1541 1542 1543 1544 1545	1546 1547 1548 1549 1550 1551	1552 1553 1554 1555	1557 1558 1559	1561 1561 1562 1563 1565

-347.6677 2000.000 -77.07120 -345.3337 2000.000 -86.79520

										1	,
Listing of	F PLIDBLIG	at	06:09:38	on	DEC	14.	1988	for	CCid=LETM	on UM	1

	1567	PL	3	-335.6097	-335.6097	-337.9437	-337.9437	
	1568			2000.000	-2000.000	-2000.000	2000.000	
	1569			-84.46080	-84.46080	-74.73680	-74.73680	
	1570	PL	4	-349.4188	-349,4188	-343.5827	-343.5827	
	1571			2000.000	-2000.000	-2000.000	2000,000	
	1572			-69.77840	-69 77840	-94.08800	-94 08800	
	1573	PI	5	-367 9658	-367 9658	-360 7544	-360 7544	
	1574	• •	· ·	2000 000	-2000 000	-2000,000	2000,000	
	1575			-83 04141	-83 04141	-48 90526	-49, 90526	
	1575	DI	e	-249 4212	-240 4212	-343 5967	-242 590526	
	1570	r.	0	-349.4212	-349.4212	-343.5867	-343.5867	
	1577			2000.000	-2000.000	-2000.000	2000.000	
	1578		-	~69.77562	-69.7/562	-94.08557	-94.08557	
	15/9	PL	/	-309.2517	-309.2517	-345.1517	-345.1517	
	1580			2000.000	-2000.000	-2000.000	2000.000	
	1581			-11.00000	-11.00000	-11.00000	-11.00000	
	1582	PL	8	-448.7517	-448.7517	-358.7517	-358.7517	
	1583			2000.000	-2000.000	-2000.000	2000.000	
	1584			-11.00000	-11.00000	-11.00000	-11.00000	
	1585	PL	9	-277.4017	-277.4017	-309.2517	-309.2517	
	1586			2000.000	-2000.000	-2000.000	2000.000	
	1587			-27.60001	-27.60001	-11.00000	-11.00000	
	1588	PL	10	-278.1517	-278.1517	-277.4017	-277.4017	
	1589			2000.000	-2000.000	-2000,000	2000 000	
	1590			-61 70000	-61 70000	-27 60001	-27 60001	
	1591	PI	11	-290 1517	-290 1517	-278 1517	-278 1517	
	1592		••	2000,000	-2000,000	-2000 000	2000,000	
	1593			-62 70000	-62 70000	-61 70000	-61 70000	
	1555	DI	10	-82.70000	-62.70000	-61.70000		
ы	1594	PL.	12	-290.2017	-290.2017	-290.1517	-290.1517	
+	1595			2000.000	-2000.000	-2000.000	2000.000	
	1596			-/1.89999	-71.89999	-62.70000	-62.70000	
	1597	PL	13	-286.0518	-286.0518	-290.2017	-290.2017	
	1598			2000.000	~2000.000	-2000.000	2000.000	
	1599			-76.10001	-76.10001	-71.89999	-71.89999	
	1600	PL	14	-320.2517	-320.2517	-311.2517	-311.2517	
	1601			2000.000	-2000.000	-2000.000	2000.000	
	1602			-51.95000	-51.95000	-36.25000	-36.25000	
	1603	PL	15	-316.6517	-316.6517	-320.2517	-320.2517	
	1604			2000.000	-2000.000	-2000.000	2000.000	
	1605			-61.85001	-61.85001	-51.95000	-51.95000	
	1606	PL	16	-323.0017	-323.0017	-309.7517	-309.7517	
	1607			2000.000	-2000.000	-2000.000	2000.000	
	1608			-67.45000	-67.45000	-55.50000	-55.50000	
	1609	PL	17	-317.3018	-317.3018	-323.0017	-323.0017	
	1610			2000.000	-2000.000	-2000.000	2000.000	
	1611			-82.55000	-82.55000	-67.45000	-67.45000	
	1612	PL	18	-288.7517	-288 7517	-317 3018	-317 3018	
	1613			2000 000	-2000 000	-2000_000	2000 000	
	1614			-78 64999	-78 64999	-82 55000	-82 55000	
	1615	PI	19	-418 7517	-418 7517	-384 6517	-384 6517	
	1616			2000 000	-2000 000	-2000 000	2000 000	
	1617			-132 6000	- 132 6000	-132 6000	-132 6000	
	1618	PI	20	-345 9519	-345 9519	-340 3519	-340 3549	
	1619		20		-2000 000		- 340, 3516	
	1620			- 124 1000	- 124 1000	-2000.000	2000.000	
	1624	01	24		-124.1000	-126.2500	-126.2500	
	1621	PL	21	-384.651/	-384.6517	-345.8518	-345.8518	
	1022			2000.000	-2000.000	-2000.000	2000.000	
	1623			- 132.6000	- 132 . 6000	-124.1000	- 124 . 1000	
	1624	PL	22	-413.1117	-413.1117	-413.5117	-413.5117	

Page 28

16	325				2000.000	- 2000.000	-2000.000	2000.000
16	526				-85.83000	-85.83000	- 106 . 3300	- 106 . 3300
16	527	ΡĽ	23		-425.5118	-425.5118	-413.5117	-413.5117
16	528				2000.000	- 2000.000	- 2000.000	2000.000
16	529				- 106 . 3300	- 106.3300	- 106.3300	- 106 . 3300
16	33 0	ΡL	24		-425.1119	-425.1119	-425.5118	-425.5118
16	631				2000.000	- 2000 . 000	-2000.000	2000.000
16	632				-85.83000	-85.83000	- 106.3300	- 106 . 3300
16	633	ΡL	25		-398.7517	-398.7517	-425.1119	-425.1119
16	534				2000.000	- 2000 . 000	- 2000 . 000	2000.000
1	535				-23.16000	-23.16000	-85.83000	-85.83000
16	5 3 6	ΡL	26		-392.3117	-392.3117	-413.1117	-413.1117
16	537				2000.000	- 2000 . 000	-2000.000	2000.000
4	538				-36.38000	-36.38000	-85.83000	-85.83000
16	539	٩L	27		-350.9618	-350.9618	-392.3117	-392.3117
16	540				2000.000	-2000.000	-2000.000	2000.000
16	541				-46.43600	-46,43600	-37.08600	-37.08600
16	642	٩L	28		-350.9618	-350.9618	-350.9618	-350.9618
16	643				2000.000	-2000.000	-2000.000	2000.000
16	544				-20.23000	-20.23000	-45.73000	-45.73000
16	545	٩L	29		-307.6517	-307.6517	-299.5518	-299.5518
16	546				2000.000	- 2000 . 000	-2000.000	2000.000
16	547				-64.60001	-64.60001	-40.00000	-40.00000
16	548	RING		-		-212.2191	-39.49519	-39,07309
16	549	BLT	-			0.0	0.0	0.0
16	650					0.0	0.0	0.0
16	651	BLT	0			-212.2191	-39.49519	-39.07309
Ŧ	652					0.0	0.0	0.0
1	653	BLT	(7)	-		-5.703000	- 10.50000	- 13.76000
7	654					-212.2191	-39.49519	-39.07309
₽ 2	655	BLT	4	_		-5.703000	10.50000	-13.76000
16	656					0.0	0.0	0.0
16	657	BLT	ល			-212.2191	-39,49519	-39.07309
16	658					0.0	0.0	0.0
1	659	BLT	Q			0.0	0.0	0.0
16	660					0.0	0.0	0.0
.,	\$.28,	\$13.78	⊢					

5.2 <u>Overlayed Plots of Unbelted Occupant Restrained By</u> <u>Simulated Steering Column</u>. The data set used for

this run is the DEMODAT data set which is included on release tapes of the MVMA 2-D model. The run was made with Field 2 of Card 101 set to -10. and the run duration set to 0 to 80 msec. Four different PLOTCS runs were made with this hold file. The first plot uses the same scale as the plots of the last subsection. The second plot shows a plot region 20 cm smaller and illustrates that the plot axes are adjusted to the proper length for the user-specified region and that the plot is centered while maintaining at least the user-specified left margin. The final two plots illustrate an option for plotting all times in one plot to give an indication of movement. Listing of DEMODAT.6CP(2000) at 20:51:43 on JAN 15, 1989 for CCid=SXA3 on UM

.045

1 0 0 1	15 .07								
0-1 1 -1-1-	.05	.9						20.	
1 0	- .	. 15						ي. و	
1 1 1 1	.08	. 10				8.5	7.	- 140.	
		20.	.0	0	-	11.	10.	0	
	. 1125	20.	0	-	0.	с.	5.	- 100 .	VIEW
1 1 2	-	o	+	0	0	<u>ى</u>	<u>ى</u>	- 300 -	Z – X
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DEMODAT.SML(2000) at 20:59:04 on JAN 15, 1989 for CCid=SXA3 on UM

.045

- 0 0	5.								
- + - 1 - 1	<u>.</u>								
0-1-1	Ω.	9						20	
0 · -	-	. 15					1	ي. ي	
+ + +	.08	. 10				8.5	7.	- 140.	
1 1 1	- .	20.	o	0		11.	10.	0.0	
	. 1125	20.	o	.	.0	5.	2	- 100.	VIEW
1 1 2	÷-	.0	- -	0	0	٦	٦	-280.	Z - X
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

--

•

Listing of DVERLAY.P(2000) at 21:05:07 on JAN 15, 1989 for CCid=SXA3 on UM

.045

100	10.								
0-11-11-1	cl . c0.	. o					()	20.	
1 1 0	- - !	. 15					I	ي. م	
+ +	.08	.10				8.5	. 7	- 140.	
1 1 1	-	10.	.0	0	-		10.	.0	
1-1 1	.1125	80.	0	-	.0	, D	נו	- 100.	VIEW
1 1 2	-	.0	-	.0	.0	ع	ع	- 300 -	Z - X
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

-

BEGIN 2-D OCCUPANT KINEMATICS POST PROCESSOR BELTS WILL BE DRAWN, IF PRESENT. PANELS WILL BE DRAWN, IF PRESENT. JOINTS AND CENTERLINES WILL BE DRAWN, IF PRESENT. ELLIPSOIDS WILL BE DRAWN, IF PRESENT. AIRBAG OUTLINES WILL BE DRAWN, IF PRESENT.

							0.0 0.0 1.000000
	m	0.0 0.0 -1.0000	0000	0000	0000	0.0	IEW 1 0 0000000
0.0	7	000 000	0000	0000	0000	0.0	> 0 000
0.0 80.000 10.0000	-	00000	0.50 11.00 8.50	0.50 0.75 10.00 7.00	ERS - 300.00 -0.0 200.00 140.00	5.00	1.00000 0.0 0.0
PLOT START TIME (MSEC) PLOT END TIME (MSEC) PLOT INTERVAL (MSEC)	PLOTTING PARAMETERS PLOT #	DRGNRM: 0.0 FDRWRD: 1.0000 GAUCHE: 0.0 UP: 0.0	PLOT Z ORIGIN (IN) PLOT Z ORIGIN (IN) PLOT X LENGTH (IN) PLOT Z LENGTH (IN)	AXIS X ORIGIN (IN) AXIS Z ORIGIN (IN) AXIS X LENGTH (IN) AXIS Z LENGTH (IN) AXIS Z LENGTH (IN)	VIEWING SYSTEM PARAMET POS'N ORIGIN X (IN) POS'N ORIGIN Z (IN) MAXIMUM X (IN) MAXIMUM Z (IN)	ELLIPSE STEP FACTOR	α VIEWING ROTATION MATRIX

END OF TIME PLOT NO. 9

თ END OF ALL PLOTS, TOTAL NUMBER = Listing of DVERLAY.BP(2000) at 21:09:28 on JAN 15, 1989 for CCid=SXA3 on UM

.045

2000	1 1 2	1-1 -1	1 - 1 - 1		0	0-1 1 -1 1-1	1001
2001	-	.1125	.	.08	- .	. 05	15 .07
2002	0	80.	10.	.10	. 15	. 9	
2003	.	.0	0				
2004	0		0				
2005	.0	.0					
2006	J	.5	11.	8.5			
2007	م	ع	10.	7.			
2008	- 300 -	- 100 .	.0	- 140.	ئ	20.	
2009	Z – X	VIEW					

-

5.3 <u>Unbelted Occupant Restrained by Simple Airbag</u>. This data set is for PLOTCS plots for an MVMA 2-D run with the simple Airbag Submodel. Field 2 of Card 101 is set to -20. and the run duration is set to 0 to 80 msec. This also illustrates the use of the zero plot time increment to plot all data in the PLOTCS hold file. Listing of BAGDATA.AP(2000) at 21:20:05 on JAN 15, 1989 for CCid=SXA3 on UM

.045

2000	1 1 2	<u>+</u> - 1 - 1		1 1 1	0	0	1-1-1	0 0 1
2001	-	.1125	- .	.08	-	.05	. 15	.07
2002	0	80.	0	. 10	. 15	.9		
2003	-	0	.0					
2004	.0	-	.0					
2005	0	.0						
2006	5.5	.5	11.	8.5				
2007	5.5	5.	10.	7.				
2008	-200.	0.0	10.	-130.	ى	20.		
2009	Z - X	VIEW						

-

,

BEGIN 2-D OCCUPANT KINEMATICS POST PROCESSOR BELTS WILL BE DRAWN, IF PRESENT. PANELS WILL BE DRAWN, IF PRESENT. JOINTS AND CENTERLINES WILL BE DRAWN, IF PRESENT. ELLIPSOIDS WILL BE DRAWN, IF PRESENT. AIRBAG OUTLINES WILL BE DRAWN, IF PRESENT.

0.00 0.000000 0.0		0-0 0 0000 0000 0 0000 0000 0 0000 0000	80.000 80.000 10.00	PLOT START TIME (MSEC) PLOT INTERVAL (MSEC) PLOTTING PARAMETERS PLOTTING PARAMETERS PLOTTING PARAMETERS PLOT NG 0.0 OCO GAUCHE: 0.0 PLOT X ORIGIN (IN) PLOT X ORIGIN (IN) PLOT Z ORIGIN (IN) PLOT Z CORIGIN (IN) PLOT Z LENGTH (IN) AXIS X ORIGIN (IN) AXIS X ORIGIN (IN) AXIS Z ORIGIN (IN) AXIS Z ORIGIN (IN) AXIS Z LENGTH (IN) AXIS Z LENGT (IN) AX
ш	HOLD FIL	PLOTCS 6	ATION ON NUMBER =	AISSING TIME STEP INFORM End of All Plots, total I
			9	END OF TIME PLOT NO.
			Б	END OF TIME PLOT NO.
			4	END OF TIME PLOT NO.
			e	END OF TIME PLOT NO.
			7	END OF TIME PLOT NO.
			-	END OF TIME PLOT NO.
0.0 0.0 1.0000000	IEW 1 0 0000000 0	> 0 + 0	1.00000 0.0 0.0	/IEWING ROTATION MATRIX
	0.0	0.0	5.00	ELLIPSE STEP FACTOR
	0.0 0.0 0.0	0.0 0.0 0.0	ERS - 200.00 - 10.00 200.00 140.00	VIEWING SYSTEM PARAMET POS'N ORIGIN X, (IN) POS'N ORIGIN Z (IN) MAXIMUM X (IN) MAXIMUM Z (IN)
	0.0	0.0	10.00 7.00	AXIS X LENGTH (IN) AXIS Z LENGTH (IN)
	0.0 0.0	0.0 0.0	0.50	AXIS X ORIGIN (IN) AXIS 7 ORIGIN (IN)
	0.0 0.0	0 0 0 0	11.00 8.50	PLOT X LENGTH (IN) PLOT Z LENGTH (IN)
	0.0 0	0 0 0 0	0.50	PLOT X ORIGIN (IN) PLOT Z ORIGIN (IN)
	0.0-1.0000	00	0.0	GAUCHE: 0.0 UP: 0.0
	0.0		0.0	DRGNRM: 0.0 FORWRD: 1.0000
	ო	N	-	PLOTTING PARAMETERS PLOT #
			0.0 80.0000 0.0	PLOT START TIME (MSEC) PLOT END TIME (MSEC) PLOT INTERVAL (MSEC)

.

91

96

•

5.4 Occupant Restrained by Shoulder Belt System With. Belt Extension Through Fixed Ring. In this MVMA 2-D run, Field 2 of Card 101 was set to -1. and the run time duration was set to 0 to 2 msec. This PLOTCS run illustrates the user's control over the size of symbols, the alternate filled-circle representation for joints, and an alternate representation of belts.

١.

Listing of 2PTBLT47.P(2000) at 21:23:18 on JAN 15, 1989 for CCid=SXA3 on UM

.06

8	-	1-1 1 1	- - · -	1-1 1 1	0 · •	0-1 1-0		0 0 1
		. 1125	.	.08	-	G O.	c1.	·0.
	0	2.	7	. 15	. 15	6.		
	-	0	0					
	0	-	0					
	.0	0	+					
	<u>ى</u>	5	11.	8.5				
	<u>.</u> ۲	<u>.</u> 5	10.	7.				
	- 300 -	- 100.	0	- 140 .	1.25	20.		
	×	Z VIEW						

rage

5.5 <u>MVMA 2-D Tutorial Example Data Set No. 1 (1977)</u> <u>in English Units</u>. The data set used for this run is the ENGLISH data set which is included on release tapes of the MVMA 2-D model. Ten different PLOTCS data sets are presented here, together with corresponding plots, to illustrate use of the first five PLOTCS control switches and their results. [Note: It will be seen that while the ENGLISH data set and the data used for PLOTCS are in English units, plot axes are labeled "CM". Provision has not been made in PLOTCS for "INCH" labeling because it is thought that all current (and anticipated) use of MVMA 2-D is in metric system units.] Listing of DATRO1.P at 21:27:03 on JAN 15, 1989 for CCid=SXA3 on UM

.045

001	.07								
0-1 1 -1-1-1	.05 .15	6.						10.	
1 1 0	- .	. 15						ບ. ເ	
1 1 1	.08	. 10				8.5	7.	-45.	
1 1 1	.	20.	0	0	.	11.	10.	+5.	
2 1 1 1	.1125	20.	o	-	o	5.	2	60.	-Z VIEW
+	-	o	-	0	0	<u>ى</u>	<u>ی</u>	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

rage

Listing of DATRO2.P at 21:29:54 on JAN 15. 1989 for CCid=SXA3 on UM

.045

100	10.								
0-1 1 -1-1-1	cl. <u>c</u> 0.	6.						10.	
1 1 0	-	. 15						ى. 2	
1 1 1	.08	. 10				8.5	7.	-45.	
1 1 1	-	20.	o	0		11.	<u>10</u> .	+5.	
2-11 1	. 1125	20.	o	- .	o	5.	.5	60.	-Z VIEW
-	-	0	-	0	0	<u>.</u>	<u>.</u>	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Page

BEGIN 2-D OCCUPANT KINEMATICS POST PROCESSOR BELTS WILL BE DRAWN, IF PRESENT PANELS WILL BE DRAWN, IF PRESENT. JOINTS AND CENTERLINES WILL BE DRAWN, IF PRESENT ELLIPSOIDS WILL BE DRAWN, IF PRESENT. AIRBAG OUTLINES WILL BE DRAWN, IF PRESENT.

.

PLOT START TIME (MSEC) PLOT INTERVAL (MSEC) PLOT INTERVAL (MSEC) PLOT INTERVAL (MSEC) PLOT W CORGNRM: 0.0 GRGNRM: 0.0 GAUCHE: 0.0 DP:	20.0000 20.0000 20.0000 20.0000 11.0	0000 0000 0000 0000 0000 0000 0000 0000 0000	
EWING ROTATION MATRIX	1.00000 0.0 0.0	00 0.0 0.0 0.0	1 000 0.0 1.000000
D OF TIME PLOT NO.	-		

END OF TIME PLOT NO.

2 END OF TIME PLOT NO.

2 END OF ALL PLOTS, TOTAL NUMBER = -

•

Listing of DATRO3.P at 21:32:42 on JAN 15, 1989 for CCid=SXA3 on UM

.045

- 0 0	5.								
+++++++++++++++++++++++++++++++++++++++	CI. C								
0-1-0		9						2	
1 1 0	-	. 15						2	
1 1	.08	. 10				8.5	٦.	-45.	
1 1 1		20.	0	0		11.	1 0.	+5.	
2 1 1 1	. 1125	20.	o	-	o	<u>.</u>	<u>ى</u>	60.	Z VIEW
		0	- -	o	0	ع	.5	0	- ×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DATRO4.P at 21:35:17 on JAN 15, 1989 for CCid=SXA3 on UM

.045

100	· · ·								
0-1 1 -1-1-1	et . e 0.	6.						10.	
1 1 0	-	. 15						ى ،	
+ +	.08	10				8.5	7.	-45.	
1 1 1		20.	0	0	-	11.	10.	+5.	
2-1-1 1	. 1125	20.	0	- -	O	.5	٦	.09	-Z VIEW
1	-	0	.	0	0	<u>ى</u>	<u>.</u>	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

-

•

Listing of DATRO5.P at 21:41:43 on JAN 15, 1989 for CCid=SXA3 on UM

.045

+ 0 0	.0.								
- 1 - 1 - 1	5.15								
0-1 1	Ō.	9						₽	
1 1 0	- .	. 15						5.	
	.08	. 10				8.5	7.	-45.	
1 1 1	- .	20.	o	0	+	11.	10.	+5.	
- 1 - 1 - 1 - 1	. 1125	20.	o	<u>-</u>	0	5.	.5	.09	(-Z VIEW
-	-	0	-	0	o	<u>.</u>	5	0	Ŷ
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

•

Listing of DATROG.P at 21:44:15 on JAN 15, 1989 for CCid=SXA3 on UM

.045

0 0 1	5								
- 1 - 1 - 1	сг.								
0-1 1	GO .	9						10.	
1 1 0	-	. 15					1	ບ.	
-	.08	. 10				8.5	7.	-45.	
1 1 1		20.	0	0		11.	10.	+£.	
-1-1 1 1	. 1125	20.	0	-	.0	5	<u>.</u>	.09	-Z VIEW
+	-	0	-	0	0	ເ <u>ດ</u>	<u>.</u>	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DATR07.P at 21:46:09 on JAN 15, 1989 for CCid=SXA3 on UM

.045

100	20.								
	c1 . 05	6.					•	10.	
110 0-	-	. 15						2.	
+	.08	. 10				8.5	٦.	-45.	
1 1 1	- .	20.	0	.0	.	11.	10.	+22.	
-1 1-1	. 1125	20.	o	.	0	م	ۍ ۲	60.	-Z VIEW
	+	0	+	0	0	<u>د</u>	ۍ. ۲	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DATRO8.P at 21:48:17 on JAN 15, 1989 for CCid=SXA3 on UM

0.45

100	6.								
0-1 1 -1-1-1	er. eo.	6.					(10.	
	. .	. 15						2	
	.08	10				8 .9	7.	-45.	
		20.	0	0	-		10.	+ 12 ·	
2-1111	. 1125	20.	0	-	0	ັນ	ع	60.	-Z VIEW
+ +	.	0	.	0	0	٦	<u>.</u> 5	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DATRO9.P at 21:50:08 on JAN 15, 1989 for CCid=SXA3 on UM

.045

+ 0 0	· 0.								
0-1 1 -1-1-1	. 05 . 15	9						10.	
1 1 0	- .	. 15						ы. С	
1 1	.08	.10				8.5	7.	-45.	
1 1	- .	20.	°.	0	-	11.	<u>10</u> .	+5.	
2 1-1 1	.1125	20.	0	.	0	. 5	5.	60.	Z VIEW
	-	O	- -	o	0	<u>.</u> ۲	<u>.</u> ۲	o	-×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Listing of DATR10.P at 21:51:56 on JAN 15, 1989 for CCid=SXA3 on UM

.0.15

+ 0 0	<u>.</u>								
	cl .								
0-1-1	.05	.9						10.	
1 0	- .	. 15						ດ. ເ	
•	.08	.10				8.5	7.	-45.	
1 1 1	-	20.	.0	0		11.	10.	+ 5 .	
2 1-1 1	. 1125	20.	.0	.	O	.5	ی ۲	60.	-Z VIEW
	1.	0	.	0	.0	<u>ى</u>	<u>.</u>	0	×
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

-

,

•

6.0 References

- Bowman, B. M., and Bennett, R. O., <u>MVMA Two-Dimensional</u> <u>Crash Victim Simulation, Version 6</u>. UMTRI-88-23,1,2,3.
 3 vol., 980 p. University of Michigan Transportation Research Institute, June 1988.
- 2. Fleck, J. T., Butler, F. E., and Vogel, S. L., <u>An Improved Three-Dimensional Computer Simulation of Vehicle Crash Victims</u>. Report No. DOT HS-801 507,508,509,510. Calspan Corporation, April 1975.

Appendix A. PLOTCS HOLD FILE RECORD LAYOUTS

Three-dimensional data is stored in the PLOTCS Hold File in appropriate character representation (ASCII/EBCDIC/ etc) using the formats described in this Appendix. This hold file contains a complete description of the three-dimensional configuration at a number of specified discrete time points within the time interval of interest.

This hold file is organized into two parts: the specification of those quantities which do not change as a function of time (this part occurs first), and the specification at each recorded time for those quantities which do change as a function of time. This Appendix is organized in the same manner.

The specification of all these quantities is organized in terms of a number of coordinate systems called "general segment systems." The conventions for presenting these coordinate systems to the PLOTCS program are presented in Table A-1.

Table A-1.Coordinate System Ordering Required1toNSEGUser-specified SystemsNSEG + 1toVehicle Systems (of which the
last is the principal vehicle)NVEH + 1toNVEH + NBAGAirbag SystemsNGRD = NVEH + NBAG + 1Inertial System

Note: Each of the variable names used in Table A-1 and A-2 are defined in Table A-4.

PLOTCS recognizes ellipsoids used to represent several different physical elements in the three-dimensional configuration. Table A-2 presents the ordering conventions for groups of the various kinds of ellipsoids.

Table A-2. Ellipsoid Ordering Required 1 to IPANPT Fixed axis length ellipsoids controlled by inputted switch "IELL". IPANPT + 1 to IELBAG Fixed axis length ellipsoids controlled by inputted switch "IABP". IELBAG + 1 to NELP Ellipsoids with axis length as a function of time and controlled by inputted switch "IBAG". where IELBAG = IPANPT + NOABPN and/or = NELP - NBAG

Table A-4 makes use of several record numbering conventions. Certain variable names occur in record number expressions. The meanings of these variable names are presented in Table A-3. This Appendix organizes the layout specifications in terms of groups of records called "sections". Each section is replicated as necessary for the complete description of the three-dimensional configuration and is limited as stated within the section.

Table A-3. Variable Names Used in Record Number Expressions

- Symbol Description
 - k Record number of the last record of the last replication of the last section previous to the current section.
 - m Current count index for the current section whose limits are defined at the beginning and end of the description of the current section.
 - J Number of replications for the current section.

Note: Each of these variables take on appropriate values for each different section. Square brackets in an expression indicate integer arithmetic is used. Table A-4. Layout of PLOTCS Hold File (1 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (1 of 12)

- RECORD 1 -- Controls and Counts (1 of 2)
- Columns Item and Description
 - 01-08 Record File Identifier: "1PLOTCS "
- 09-14 NOABPN: Number of airbag panel ellipsoids
- 15-20 IPANPT: Base index of airbag panel ellipsoids among all ellipsoids
- 21-26 NSEG: Total no. of user-specified coordinate systems (min 0; max 98)
- 27-32 NJNT: Total no. of joints (connections between segments by relating a fixed point w.r.t. one system to a fixed point w.r.t. the other system) (min 0; max 97)
- 33-38 NBLT: Total no. of belts (min 0; max 18)
- 39-44 NRING: Total no. of rings (min 0; max 2)
- 45-50 NBAG: Total no. of ellisoidal airbag outlines (variable-sized ellipsoids) (min 0; max 98)

Table A-4. Layout of PLOTCS Hold File (2 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (2 of 12)

RECORD 1 -- Controls and Counts (2 of 2)

- Columns Item and Description
- 52-56 NPL: Total no. of parallelogram-shaped planar surfaces (min 0; max 100)
- 57-62 NELP: Total no. of ellipsoids (min 0; max 100) (includes regular ellipsoids, additional ellipsoids, airbag panel ellipsoids, and ellipsoidal airbag outlines)
- 63-68 NGRD, Number of general segment coordinate systems or MAXSEG: and also the number of the model run inertial coordinate system. (min 2; max 100)
- 69-74 NVEH: Number of the principal vehicle coordinate system. (min 1; max 99)
- 75-80 MODSGP: Number of groups of special points to be connected with lines (0-50, see note in Special Points Section of Part 2).

RECORD 2 -- Title Record 1

Co.	lumns	Description

- 01-08 Record Identifier: " TITLE "
- 09-80 HTITLE(1-18), Model Run Title

Table A-4. Layout of PLOTCS Hold File (3 of 19) PART 1: TIME INVARIANT RECORD LAYOUTS (3 of 12)

RECORD 3 -- Title Record 2

- Columns <u>Description</u>
- 01-12 Record Identifier: "SUBTITLE "
- 13-80 STITLE(1-17), Model Run Subtitle, Part 1

RECORD 4 -- Title Record 3

Columns	<u>Description</u>
---------	--------------------

01-08 Blanks

•

05-80 STITLE(18-35), Model Run Subtitle, Part 2

RECORD 5 -- Title Record 4

<u>Columns</u>	Description
01-16	Record Identifier: " DATE,TIME, JOB "
17-28	DATE(1-3), Model Run Date
29-40	Blanks
41-48	TIMDAY(1-2), Model Run Time of Day
49-60	Blanks
61-68	NAMJOB(1-2), Model Run Job Name or Account
61-80	Blanks

Table A-4. Layout of PLOTCS Hold File (4 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (4 of 12)

BELT SECTION OF RECORDS (1 of 2): (The following section of three records occurs exactly J = NBLT times; it is absent if J = 0.)

RECORD 3*m+3 -- Belt Title Typical Record

Columns	Description
01-06	Record Identifier, "BELT "
07-11	Belt Number (m)
12-12	Blank
13-32	BLTTTL(1-5,m), Belt Title
33-40	KBLT(1,m), Belt Drawing Control Switch: 0 draw 2 lines: AA to TA and AB to TB. 1 draw 1 line: AA to TA. 2 draw 2 lines: AA to AB and TA to TB. 3 draw 2 lines: TA to TB and TB to AA. 4 draw 1 line: TA to TB. 5 draw 1 line: AA to AB. 6 draw 1 line: TA to AA.
41-48 49-56 57-64 65-72	KBLT(2,m), Point AA attachment system number. KBLT(3,m), Point AB attachment system number. KBLT(4,m), Point TA attachment system number. KBLT(5,m), Point TB attachment system number.
73-80	 KBLT(6,m), Symbol control switch: A:B A is KBLT(1,m) setting; B is KBLT(6,m) setting. 0:0 AA & AB are anchors; TA & TB are attach. 1:0 AA is anchor and TA is attach; 1:1 AA is anchor and TA is none. 2:0 AA is anchor, AB & TB are attach, TA is none. 3:0 AA is anchor, TA is attach, TB is none. 4:0 TA is none and TB is attach; 4:1 TA is attach and TB is none. 5:0 AA is anchor and AB is attach; 5:1 AA & AB are attach; 5:2 AA is attach and AB is anchor; 5:3 AA & AB are none; 5:4 AA is anchor and AB is none.
	6:0 AA is attach and TA is none.

Table A-4.Layout of PLOTCS Hold File (5 of 19)PART 1:TIME INVARIANT RECORD LAYOUTS (5 of 12)

BELT SECTION OF RECORDS (2 of 2):

RECORD 3*m+4 -- Belt Endpoint AA Relative Position

Columns	Description	
01-12	Blanks	
13-29	BBELT(1,m)	(X,Y,Z) of Endpoint AA which is fixed
30-46	BBELT(2,m)	
47-63	BBELT(3,m)	w.r.t. system no. Rbbi(2,m)

RECORD 3*m+5 -- Belt Endpoint AB Relative Position

Columns	Description
01-12	Blanks
13-29	BBELT(4,m) (Y Y 7) of Endpoint AB which is fived
30-46	BBELT(5,m)
47-63	BBELT(6,m)

for m = 1, NBLT

Table A-4. Layout of PLOTCS Hold File (6 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (6 of 12)

PARALLELOGRAM SECTION OF RECORDS: (This section of one record occurs exactly J = [NPL + 2] / 3 times.)

RECORD k+m -- Parallelogram Plane Title Typical Record

Columns	Description
01 to 07	Record Identifier: " PLANES"
08 to 11	Number of first plane for record ($b=3*m-2$)
12 to 12	Blank
13 to 32	PLTTL(1-5,b), Title for bth parallelogram planar surface
33 to 35	Number of second plane for record (b+1)
36 to 36	Blank
37 to 56	PLTTL(1-5,b+1), Title for (b+1)st parallelogram planar surface
57 to 59	Number of third plane for record (b+2)
60 to 60	Blank
61 to 80	PLTTL(1-5,b+2), Title for (b+2)nd parallelogram planar surface

where m = 1, J

Table A-4. Layout of PLOTCS Hold File (7 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (7 of 12)

BAG SECTION OF RECORDS: (This section is exactly similar to the parallelogram section above.) (This section of one record occurs exactly

J = [NBAG + 2] / 3 times.)

RECORD k+m -- Airbag Plane Title Typical Record

Columns	Description
01 to 07	Record Identifier:" AIRBAG"
08 to 11	Number of first airbag for record ($b=3*m-2$)
12 to 12	Blank
13 to 32	BAGTTL(1-5,b), Title for bth airbag
33 to 35	Number of second airbag for record (b+1)
36 to 36	Blank
37 to 56	BAGTTL(1-5,b+1), Title for (b+1)st airbag
57 to 59	Number of third airbag for record (b+2)
60 to 60	Blank
61 to 80	BAGTTL(1-5,b+2), Title for (b+2)nd airbag
where $m = 1$ to J	

133

Table A-4. Layout of PLOTCS Hold File (8 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (8 of 12)

GENERAL SEGMENT COORDINATE SYSTEM SECTION OF RECORDS: (This section of one record occurs exactly J = [NGRD+1] / 2 times.)

RECORD k+m -- Coordinate System Designation Typical Record Columns Description Record Identifier: " GSEG" 01 to 05 Number of first segment system for record (b=2*m-1) 06 to 09 10 to 10 Blank CGS(b), 1 character plot symbol for system 11 to 11 12 to 13 Blanks SEG(b), 4 character abbreviation for segment system 14 to 17 18 to 20 Blanks 21 to 40 SEGTTL(1-5,b), 20 character title for segment system 41 to 46 Blanks Number of second segment system for record (b+1) 47 to 49 Blank 50 to 50 CGS(b+1), 1 character plot symbol for system 51 to 51 52 to 53 Blanks 54 to 57 SEG(b+1), 4 character abbrev. for segment system Blanks 58 to 60 SEGTTL(1-5,b+1), 20 character title for segment 61 to 80 system

where m = 1, J

134
Table A-4. Layout of PLOTCS Hold File (9 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (9 of 12)

ELLIPSOIDAL SECTION OF RECORDS (1 of 2): (This section of four records occurs exactly J=NELP times.)

RECORD k+4*m-3 -- Ellipsoid Orientation Matrix (First Row)

<u>Columns</u>	Description
01 to 04	Record Identifier, " ELL"
05 to 08	Ellipsoid Number
09 to 09	Blanks
10 to 29	ELLNAM(1-5,m), Ellipsoid Name
30 to 46	DELP(1,1,m)
47 to 63	DELP(1,2,m) Cosine Matrix, First Row
64 to 80	DELP(1,3,m)

RECORD k+4*m-2 -- Ellipsoid Orientation Matrix (Second Row)

Columns	Description
01 to 04	Blanks
05 to 08	IELSEG(m), Coordinate System Number to which Ellipsoid is attached
13 to 29	BD(1,m), Semiaxis Length Along Ellipsoid x-Axis
30 to 46	DELP(2,1,m) Orientation Direction
47 to 63	DELP(2,2,m) Cosine Matrix, Second Row w.r.t. Inertial System
64 to 80	DELP(2,3,m)

.

Table A-4. Layout of PLOTCS Hold File (10 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (10 of 12)

ELLIPSOIDAL SECTION OF RECORDS (2 of 2):

RECORD k+4*m-1 -- Ellipsoid Orientation Matrix (Third Row)

Columns	Description
01 to 12	Blanks
13 to 29	BD(2,m), Semiaxis Length Along Ellipsoid y-Axis
30 to 46	DELP(3,1,m) Orientation Direction
47 to 63	DELP(3,2,m) Cosine Matrix, Third Row
64 to 80	DELP(3,3,m)

RECORD k+4*m -- Ellipsoid Attachment Position

Columns	Description
01 to 12	Blanks
13 to 29	BD(3,m), Semiaxis length along ellipsoid z-axis
30 to 46	SOFT(1,m) (X, Y, Z) of Ellipsoid Center
47 to 63	SOFT(2,m) w.r.t. Coordinate system IELSEG(m)
64 to 80	SOFT(3,m)

for m = 1 to NELP

Table A-4.Layout of PLOTCS Hold File (11 of 19)PART 1:TIME INVARIANT RECORD LAYOUTS (11 of 12)

JOINT SECTION OF RECORDS (1 of 2): (This section of two records occurs exactly NJNT times.)

RECORD k+2*m-1 -- Joint Identification and Connected Segments

<u>Co</u>]	umns	Description
01	to 07	Record Identifier, " JOINTS"
08	to 12	Joint Number
13	to 13	Blank
14	to 17	<pre>JOINT(m), Joint Name (4 characters)</pre>
18	to 18	Blank
19	to 19	<pre>JS(m), Joint Plot Symbol (1 character)</pre>
20	to 24	JTOFRO(1,m), Segment Number to which Joint connects (n1)
25	to 29	JTOFRO(2,m), Segment Number from which Joint connects (n2)
30	to 46	POSJNT(1,1,m)
47	to 63	POSJNT(2,1,m) specified w.r.t. coordinate
64	to 80	system n1 POSJNT(3,1,m)
	Note:	INECK is specified to be the Joint Number from columns 08 through 12 for the neck joint.

.

Table A-4. Layout of PLOTCS Hold File (12 of 19)

PART 1: TIME INVARIANT RECORD LAYOUTS (12 of 12)

JOINT SECTION OF RECORDS (2 of 2):

RECORD k+2*m -- Joint Position

<u>Co</u>	lumr	<u>is</u>	Description		
01	to	29	Blanks		
30	to	46	POSJNT(1,2,m)	(X.Y.Z)	of joint point
47	to	63	POSJNT(2,2,m)	specified	w.r.t. coordinate
64	to	80	POSJNT(3,2,m)	Gigtem Hz	

for m = 1 to NJNT

Note: If either/both system's joint point is not coincident with that system's origin and/or the two system's joint points are not coincident, then a line is drawn between them. Each joint will produce 0, 1, 2, or 3 lines. Table A-4. Layout of PLOTCS Hold File (13 of 19)

PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (1 of 7)

Note: (All the applicable records occurring in Part 1 are written in the hold file followed by all the applicable records occurring in this part for each time point that is to be recorded in ascending order of time.)

RECORD k+1 -- Specification of Time for This Set of Time Variant Record

- Columns Description
- 01 to 10 Record Identifier, "OFOR TIME="
- 11 to 27 Model simulated time at which the following values were effective.

COORDINATE SYSTEM SECTION OF RECORDS: (This section of four records occurs exactly J=NGRD times. k for this section of records is the same as it was for the first (previous) record for this set of time variant records.)

RECORD k+4*m-2 -- Coordinate System Origin Position

Columns	Description
01 to 05	Record Identifier, " SEG "
06 to 10	Coordinate System Number
11 to 27	SEGLP(1,m) (X X Z) of coordinate
28 to 44	SEGLP(2,m) system origin w.r.t. Inertial System
45 to 61	SEGLP(3,m)

Table A-4. Layout of PLOTCS Hold File (14 of 19) PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (2 of 7) (One set of these cards is needed for each recorded time.)

RECORD k+4*m-1 -- Coordinate System Orientation Matrix Row 1

Columns	Description
01 to 10	Blanks
11 to 27	D(1,1,m) Coordinate System Direction Cosine
28 to 44	D(1,2,m) Orientation Matrix, Row 1 w.r.t. Inertial System
45 to 61	D(1,3,m)

RECORD k+4*m -- Coordinate System Orientation Matrix Row 2

Colum	ns	Description	
01 to	10	Blanks	
11 to	27	D(2,1,m)	Coordinate System Direction Cosine
28 to	44	D(2,2,m)	Orientation Matrix, Row 2 w.r.t. Inertial System
45 to	61	D(2,3,m)	

RECORD k+4*m+1 -- Coordinate System Orientation Matrix Row 3

Columns	Description	<u>L</u>
01 to 10	Blanks	
11 to 27	D(3,1,m)	Coordinate System Direction Cosine
28 to 44	D(3,2,m)	Orientation Matrix, Row 3 w.r.t. Inertial System
45 to 61	D(3,3,m)	

Table A-4. Layout of PLOTCS Hold File (15 of 19) PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (3 of 7) (One set of these cards is needed for each recorded time.)

PLANAR PARALLELOGRAM SECTION OF RECORDS (1 of 2): (This section of three records occurs exactly J=NPL times.)

RECORD k+3m-2 -- Corner Point X-Coordinates

Columns	Description
01 to 03	Record Identifier, " PL"
04 to 08	Parallelogram Number (m)
09 to 12	Blanks
13 to 29	PPLTS(1,1,m), Corner Point 1 X-coordinate (w.r.t. inertial system)
30 to 46	PPLTS(2,1,m), Corner Point 2 (Clockwise Adjacent to Corner 1) X-coordinate (w.r.t. inertial system)
47 to 63	PPLTS(3,1,m), Corner Point 3 (Clockwise Adjacent to Corner 2) X-coordinate (w.r.t. inertial system)
64 to 80	PPLTS(4,1,m), Corner Point 4 (Clockwise Adjacent to Corner 3) X-coordinate (w.r.t. inertial system)

RECORD k+3m-1 -- Corner Point Y-Coordinates

<u>Col</u>	umr	15	Description				
01	to	12	Blanks				,
13	to	29	<pre>PPLTS(1,2,m),</pre>	Corner	Point	1	Y-coordinate
30	to	46	PPLTS(2,2,m),	Corner	Point	2	Y-coordinate
47	to	63	PPLTS(3,2,m),	Corner	Point	3	Y-coordinate
64	to	80	PPLTS $(4,2,m)$,	Corner	Point	4	Y-coordinate

141

Table A-4. Layout of PLOTCS Hold File (16 of 19)

PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (4 of 7)

PLANAR PARALLELOGRAM SECTION OF RECORDS (2 of 2):

RECORD k+3m -- Corner Point Z-Coordinates

Columns		IS	Description				
01	to	12	Blanks				
13	to	29	<pre>PPLTS(1,3,m),</pre>	Corner	Point	1	Z-coordinate
30	to	46	PPLTS(2,3,m),	Corner	Point	2	Z-coordinate
47	to	63	PPLTS(3,3,m),	Corner	Point	3	Z-coordinate
64	to	80	<pre>PPLTS(4,3,m),</pre>	Corner	Point	4	Z-coordinate
	for $m = 1$, to NPL						

RING SECTION OF RECORDS: (This section of one record occurs exactly J=NRING times.)

RECORD k+m -- Ring Position

Columns	Description				
01 to 06	Record Identifier, " RING "				
07 to 12	Ring number (m)				
13 to 20	Blanks				
21 to 40	XRING(m) (X X Z) of Bing m				
41 to 60	YRING(m) W n t Vehicle System				
61 to 80	ZRING(m)				
_					

for m = 1 to NRING

Table A-4. Layout of PLOTCS Hold File (17 of 19) PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (5 of 7) (One set of these cards is needed for each recorded time.)

BELT SECTION OF RECORDS: (This section of two records occurs exactly J=NBLT times.)

RECORD k+2*m-1 -- Time Variant Belt Endpoint TA Position

Columns	Description				
01 to 04	Record Identifier, " BLT"				
05 to 09	Belt Number (m)				
10 to 20	Blanks				
21 to 40	TTPTS(1,m) (Y Y Z) of Endpoint TA				
41 to 60	TTPTS(2,m) fixed w r t KBLT(4,m) system				
61 to 80	TTPTS(3,m)				

RECORD k+2*m -- Time Variant Belt Endpoint B Position

Columns	Description				
01 to 20	Blanks				
21 to 40	TTPTS(4,m) (X, Y, Z) of Endpoint TB				
41 to 60	TTPTS(5,m) fixed w.r.t. KBLT(5,m) system				
61 to_80	TTPTS(6,m)				

Table A-4. Layout of PLOTCS Hold File (18 of 19)

PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (6 of 7) (One set of these cards is needed for each recorded time.)

AIRBAG SECTION OF RECORDS: (This section occurs only if NBAG > 0 and consists of exactly J=NBAG records.)

RECORD k+m -- Time Variant Airbag Outline Ellipsoid Semiaxes

Columns Description Record Identifier, " BAG" 01 to 04 05 to 09 Airbag Number (m) 10 to 20 Blanks 21 to 40 BD(1,m), Airbag Outline Semiaxis in Airbag X-direction 41 to 60 BD(2,m), Airbag Outline Semiaxis in Airbag Y-direction 61 to 80 BD(3,m), Airbag Outline Semiaxis in Airbag Z-direction for m = 1 to NBAG

Table A-4. Layout of PLOTCS Hold File (19 of 19) PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (7 of 7) (One set of these cards is needed for each recorded time.)

SPECIAL POINTS SECTION OF RECORDS: (This section occurs only if MODSPG > 0 and consists of one card with MODSPG fields followed by one record for each special point specified on the first card.)

RECORD k+1 -- Group Layout Card for Special Points

<u>Columns</u> <u>Description</u>

01 to 08 Record Identifier, "OGROUPS ".

6j+3 to 6j+8 NSPTGP(j), Number of points in group j (>=0).

for j = 1, MODSPG

RECORD k+m+1 -- Time Variant Special Points to Connect in Groups (There are exactly MODSPP of these cards where MODSPP is the sum of NSPTGP(j),j=1,MODSPG.)

<u>Columns</u> <u>Description</u>

01 to 08 Record Identifier, " SPC PTS".

09 to 12 j, Group number (1 to MODSPG).

13 to 16 Point number (1 to NSPTGP(j)).

17 to 20 General segment attachment number (1 to NGRD).

21 to 40 X-coordinate of current special point.

41 to 60 Y-coordinate of current special point.

61 to 80 Z-coordinate of current special point.

for m = 1, MODSPP

Note: Groups of special points can be specified here and also in the control card input. The total of all groups from both sources (INPSGP+MODSGP) cannot exceed 50, and the total of all points in all these groups (INPSPP+MODSPP) cannot exceed 400.

Appendix B. Dependence of PLOTCS on the Standard CALCOMP Plot System Subroutines

This Appendix deals with the use of hardware/systemdependent plot routines within the PLOTCS program. The usage of such routines is organized in two levels. The first level is identified as the PLOTCS Plot Interface. Routines at this level call routines at the second level, namely, the Standard CALCOMP Plot System Subroutines (which on MTS at the University of Michigan are also an interface to the local plotting system). The purpose of this appendix is to describe both the routines of the PLOTCS Plot Interface and those of the Standard CALCOMP Plot System Subroutines which are used by the PLOTCS Plot Interface.

Installation of PLOTCS on a system which makes use of a non-CALCOMP plotting package will generally be accomplished by changing the routines of the PLOTCS Plot Interface to call the routines of the local plotting system. The information in this Appendix should expedite these necessary changes in the PLOTCS Plot Interface.

The PLOTCS Plot Interface consists of eight subroutines, each with one or two plotting functions. Three of these routines are accomplished in terms of other routines of the PLOTCS Plot Interface. They are included here in case it is easier for the installer to call some of his own more advanced routines directly. Tables B-1 through B-8 describe each of the eight subroutines and detail their use within PLOTCS. Tables B-9 through B-12 present descriptions of the four Standard CALCOMP Subroutines needed by the PLOTCS Plot Interface as found in MTS Volume 11 for the Michigan Terminal System.

Table B-1. Subroutine VPLOT

Purpose: This subroutine performs appropriate coordinate conversions, restricts drawing to the user-specified plot area, and calls lower level plotting functions. The two plotting functions used in PLOTCS are moving the plotting pen to a particular location with the plotting pen up or with the plotting pen down.

Fortran call: VPLOT(JR, X, Y, Z, IFUN, ISYS)

Arguments:

JR	Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
Х, Ү, Ζ	Location to which to move the plotting pen. If ISYS = 0, this is the three-dimensional location in the PLOTCS Plot Space system.
	If ISYS = 1, this is the two-dimensional location on the plotting paper; Y is ignored.
IFUN	Plotting Function Indicator If IFUN = 0, do no plotting function and return after any needed coordinate conversion.
	If IFUN = 2, draw with pen down within the plotting area only.
	If IFUN = 3, move with pen up within the plotting area only.

ISYS Location Dependence Indicator (see above).

Discussion:

VPLOT always remembers its last call and computes the appropriate edge point for any destination outside the plot area. If any function lies entirely outside the plot area, it is ignored except for its effects on the next function. The use of VPLOT for conversion purposes has almost entirely been replaced by calls to a newer routine, CONVRT. This routine is completely parallel to ZDBPLT as far as plot function is concerned. The difference is that this routine accommodates to the plot area while ZDBPLT is absolute.

Table B-2 Subroutine ZDBAXS

Purpose: To draw a single axis with numbering and a title. Fortran call: ZDBAXS(X, Z, C, N, AXL, ANG, V1ST, VDEL, SCALE) Arguments:

- X, Z Location of origin of the axis on the plot. (inches)
- C A character array containing the axis title.
- N Magnitude is the number of characters in the axis title. Sign is positive if all labeling is placed on the counterclockwise side of the axis. Sign is negative if all labeling is placed on the clockwise side of the axis.
- AXL Length of the axis. (inches)
- ANG Counterclockwise angle of the axis from the horizontal at its origin. (degrees)
- V1ST Value to be plotted at the axis origin.
- VDEL Increment in value at each tick mark.
- SCALE Scale factor for value per plot inch.

Discussion:

This subroutine is written in terms of ZDBNUM, ZDBPLT, and ZDBSYM.

Table B-3 Subroutine ZDBBEG

Purpose: Initializes the plot.

Fortran call: ZDBBEG(JJROUT)

Arguments:

JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.

Discussion:

This subroutine makes use of subroutine PLOTS.

Table B-4 Subroutine ZDBCRV

Purpose: Draws a curve with a broken line specified by pairs of data values in two arrays. Curve is restricted to the plot area.

Fortran call: ZDBCRV(X, Z, NUM)

Arguments:

X, Z Two arrays containing the locations of endpoints of the broken line on the plot.

NUM Number of endpoints to be plotted.

Discussion:

This subroutine uses VPLOT to carry out its function.

Table B-5 Subroutine ZDBEND

Purpose: Terminates a plot or all plotting and prints an advisory message in the printed output.

Fortran call: ZDBEND(I, NUM)

Arguments:

I	Function indicator.					
	If I = 0, end current plot.					
	If $I = 1$, end all plotting.					
NUM	Number of current plot or all plots to be included in advisory message.					

Discussion:

This subroutine uses ZDBPLT. In other systems, this subroutine will likely call two different subroutine and not subroutine ZDBPLT.

Table B-6 Subroutine ZDBNUM

Purpose: Draws a number.

Fortran call: ZDBNUM(JJROUT, X, Z, H, V, A, N)

Arguments:

- JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
- X, Z Location of lower left corner of leading digit of number on plot area. (inches)
- H Height of each digit for plotting. (inches)
- V Value to be plotted.
- A Orientation angle from horizontal. (degrees)
- N Indicator for number of digits to the right of the decimal point.

Discussion:

This subroutine calls subroutine NUMBER to do its task. The option for N which is presented above is the only one used by PLOTCS. Other options are presented in Table B-9.

Table B-7 Subroutine ZDBPLT

Purpose: Move plotting pen either up or down.

Fortran call: ZDBPLT(JJROUT, X, Z, N)

Arguments:

- JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
- X, Z Location in plot area to which the pen is to be moved. (inches)
- N Function indicator. N = 2 if to move with plotting pen down. N = 3 if to move with plotting pen up.

Discussion:

This subroutine makes use of subroutine PLOT. It actually has all the functions of PLOT, but PLOTCS uses only the two above and plot termination. The other functions are not detailed here but can be found in Table B-10.

Table B-8 Subroutine ZDBSYM

Purpose: Draws a character string.

Fortran call: ZDBSYM(JJROUT, X, Z, H, C, A, N)

Arguments:

- JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
- X, Z Location in plot area at which the lower left corner of the first character is to be drawn. (inches)
- V Character variable containing characters to be plotted.
- A Orientation angle for characters plotted from horizontal. (degrees)

N Number of characters to be plotted.

Discussion:

This subroutine uses subroutine SYMBOL. There are options to this subroutine which are not used by PLOTCS and are not explained here. In PLOTCS its only function is to plot a character string. See Table B-12 for other functions if they are of interest. Table B-9. NUMBER Subroutine Description

HTS 11: Plot Description System

August 1978

NUMBER

Subroutine Description

Purpose: NUMBER draws a number.

Calling Sequence:

CALL NUMBER(x,y,height,fnum,angle,lfrac)

Parameters:

- <u>x</u>, <u>y</u> are the floating-point (REAL*4) coordinates of the lower-left corner of the first character of the number.
- height is the floating-point (REAL*4) height of the characters to be drawn.
- fnum is the floating-point (REAL*4) number to be drawn.
- angle is the floating-point (REAL*4) angle in degrees at which the characters are drawn.
- lfrac liftac is a fullword integer (INTEGER*4). If <u>lfrac</u> is positive, it is the number of digits to the right of the decimal point. The maximum value is nine. If <u>lfrac</u> is zero, the number is drawn without a fraction, but with a decimal point. If <u>lfrac</u> is -1, the decimal point is not drawn. If <u>lfrac</u> is less than -1, the <u>lfrac</u>-1 low-order digits are truncated.

Appendix C: CALCOMP Standard Subroutine Interface 209

.

HTS 11: Plot Description System

August 1978

PLOT

Subroutine Description

PLOT moves the pen from its current position to the point (X,Y). PLOT may also be used to move the origin or terminate the plot file. Purpose:

Calling Sequence:

CALL PLOT(x,y,ic)

Parameters:

- <u>x,y</u> are the floating-point (REAL*4) coordinate values of the new per position. \underline{x} and \underline{y} may be either absolute or relative, depending on the value of IC.
- is a fullword integer (INTEGER*4) specifying the function to be performed by PLOT. The values <u>ic</u> for <u>ic</u> are: 2 Draw (with the pen down) to the absolute
 - coordinate $(\underline{x},\underline{y})$. 3 Hove (with the pen up) to the absolute

 - coordinate $(\underline{x}, \underline{y})$. 12 Draw (with the pen down) to the relative coordinate $(\underline{x}, \underline{y})$.
 - 13 Hove (with the pen up) to the relative coordinate $(\underline{x}, \underline{y})$. 999 The pen is moved to the end of the plotting
 - region and the plot is terminated.

If the value of \underline{ic} is negative, the function specified by the absolute value of \underline{ic} is per-formed. In addition, the new pen position becomes the origin of the absolute coordinate system.

Appendix C: CALCOMP Standard Subroutine Interface 211

Table B-11. PLOTS Subroutine Description

HTS 11: Plot Description System

August 1978

PLOTS

Subroutine Description

Purpose: PLOTS initializes the plot.

Calling Sequence:

CALL PLOTS

Description: The PLOTS subroutine should be called before any other plotting subroutines are called. It should be called only once.

All arguments are ignored. Some installations may require arguments to the PLOTS subroutine. The arguments required wary depending on the installation.

212 Appendix C: CALCOMP Standard Subroutine Interface

Table B-12. SYMBOL Subroutine Description (1 of 2)

MTS 11: Plot Description System

August 1978

STHBOL

Subroutine Description

Purpose: SYMBOL draws symbols.

Calling Sequence:

CALL SYMBOL(x,y,height,char,angle,nc)

Parameters:

- $\underline{x}, \underline{y}$ are floating-point (REAL*4) coordinates. If <u>nc</u> is positive, \underline{x} and \underline{y} are the coordinates of the lower-left corner of the first character drawn. If <u>nc</u> is negative, \underline{x} and \underline{y} are the coordinates of the center of the symbol.
- height is the floating-point (REAL*4) height of the characters to be drawn.
- <u>char</u> If <u>nc</u> is positive, <u>char</u> is the character string to draw. If <u>nc</u> is negative, <u>char</u> is an integer number specifying the single symbol to draw.
- angle is the floating-point (REAL*4) angle in degrees at which the characters are drawn. <u>nc</u> is a fullword integer (INTEGER*4). If <u>nc</u> is
 - positive, it is the number of characters in <u>char</u>. The valid negative values for <u>nc</u> are -1 move with the pen up to the center of the
 - symbol.
 -2 Hove with the pen down to the center of the symbol.
- Description: Four special control characters exist in the character set. These are backspace (heradecimal 11), carriage return (heradecimal 15), superscript (heradecimal 22), and subscript (heradecimal 27). Backspace backspaces over the previous character. Carriage return returns to the beginning of the line and spaces down by 1.5*<u>height</u>. If a superscript code is encountered in normal text, succeeding characters are raised 0.7*<u>height</u> and are drawn with a size of 0.5*<u>height</u>. A subscript code reverts to normal placement and size. Subscript positioning is similar to superscript positioning.

The following page defines the character set produced by SYMBOL.

214 Appendix C: CALCOMP Standard Subroutine Interface

Table B-12. SYMBOL Subroutine Description (2 of 2)

MTS 11: Plot Description System

August 1978

00		10 Í	20 }	30 ∑	40	50 &	60 -	70 0
01	\odot	11 "BS "	21 {	31 +	41 A	51 J	61 /	71 1
02	⚠	12 \Lambda	22 M	₃₂ ≤	42 B	52 K	€2 S	72 2
63	+	13 E	23 T	33 ≥	43 C	s≈L	63 T	73 3
04	X	14	24 Φ	34 🛆	44 D	54 M	64 U	74 Ц
05	\diamond	15 °CR"	25 🕀	35 C	45 E	55 N	es V	7 5 5
06	4	18 ≠	28 🕈	зе 🗍	48 F	58 0	ee W	786
07	X	π±	27 X	37 \	47 G	57 P	67 X	7 7
08	Ζ	18	28 W	38 Î	48 H	58 Q	68 Y	78 8
09	Y	19	29 X	39 7	49 I	59 R	es Z	79 9
OA	Ă	1A	29 œ	3A ‡	4A ¢	5A	6A ∞	7A 🕻
08	Ж	18 J	28 δ	38 [‡]	48 .	58 \$	68,	78 #
0C	X	1C ⊃	2c €	3C 🕶	_{4C} <	5C ¥	ec %	7C ©
00		10 V	20 M	30 ×	40 (50)	eo —	70 '
Œ	*	1E \sim	2E "UC"	3E 1	4E +	5E ;	_{6E} >	7E =
0F	_	¥F ≈	2F "LC"	3 ∓ ↓	4F	5 –	ef ?	7F "

SYMBOL SET (HEX CODE : SYMBOL OR CONTROL)

Appendix C: CALCOMP Standard Subroutine Interface 215

.

.