THE OCCUPANT PLOTTING PACKAGE (PLOTCS) for MVMA 2-D CVS

Users' Manual

R. O. Bennett, Senior Research Associate
B. M. Bowman, Research Scientist

The University of Michigan
 Transportation Research Institute
 2901 Baxter Road
 Ann Arbor, Michigan 48109-2150

Tochaical Repert Decumentation Poge

URTRI-88-47	2. Gowomam Accostion Mo.	3. Recipion's Condep Me.
The Occupant Plotting Package (PLOTCS) for MVMA 2-D CVS: User's Manual		5. Remen Oove $\begin{aligned} & \text { January 18, } 1989\end{aligned}$
7. AumaralR. O. Bennett and B. M. Bowman		8. Performing Orgenizetiea Rapert Mo. UMTRI-88-47
9. Porforming Orgenizetion Mane ad Adress Transportation Research Institute University of Michigan 2901 Baxter Road Ann Arbor, Michigan		
		11. Contreet or Grami No.
Allied Signal, Bendix Safety Restraint Divisior Chrysler Motors Corporation/Detroit Industrial Engineering Failure Analysis Associates		12. Troe of Reperi ind Praiod Cororol Final Report
18. Absmest The MVMA 2-D Crash Victim Simulation model is a computer program used for simulating occupant motion in an automobile crash. manual is a user's guide for a graphics plotting program that has been developed for use with the MVMA 2-D CVS. The plotting program is called the Occupant Plotting Package (PLOTCS). It makes graphics plots of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. Separate plots for different time values can be obtained, and overlay plots that show the envelope of occupant motion can be obtained as well. The user has control through input data of many plot options. Section 2 of this manual presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of a viewing system. Section 4 presents a summary of the analysis used to achieve necessary coordinate transformations. Section 5 presents numerous example plots produced by the program. Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B		
17. Key Wemb Design Automotive Safety Graphics Occupant Dynamics Plotting Restraint	UNLIMITED ${ }^{\text {a }}$	a discussion of the s of PLocrs on the ndard Subroutines.

.

TABLE OF CONTENTS

Section Page
1.0 Introduction to PLOTCS 1
2.0 PLOTCS Input Data Description 3
2.1 Introduction 3
2.2 PLOTCS User Input 4
3.0 Specification of the Standard Transformation 17 and Viewing System
3.1 The Standard Transformation 17
3.2 Viewing Matrix Selection 19
4.0 Summary of Analysis 23
4.1 The Standard Transformation 23
4.2 The Orthogonal Projection of an Ellipsoid 27
5.0 Example Plots Produced by PLOTCS 33
5.1 Occupant Restrained by 3-Point Belt System 33
5.2 Overlayed Plots of Unbelted Occupant 73 Restrained by Simulated Steering Column
5.3 Unbelted Occupant Restrained by Simple 85 Airbag
5.4 Occupant Restrained by Shoulder Belt System 97 with Belt Extension through Fixed Ring
5.5 MVMA 2-D Tutorial Example Data Set No. 1 101 in English Units
6.0 References 123
Appendix A: PLOTCS Hold File Record Layouts 125
Appendix B: Dependence of PLOTCS on Standard 147 CALCOMP Plot System Subroutines

LIST OF FIGURES

Figure Page

1. Effect of Standard Transformation 18
2. The Viewing Point in Spherical Coordinates 20 Relative to the PLOTCS Plot Space System
3. Relationships Between Coordinate Systems 25
4. The Shadow Ellipse on the Viewing Plane 30
LIST OF TABLES
Table Page
1 PLOTCS Control Card Layout 5
A-1 Coordinate System Ordering 125
A-2 Ellipsoid Ordering 126
A-3 Notation Used 126
A-4 Layout of PLOTCS Hold File 127
B-1 Subroutine VPLOT 148
B-2 Subroutine 2DBAXS 149
B-3 Subroutine ZDBBEG 150
B-4 Subroutine ZDBCRV 151
B-5 Subroutine ZDBEND 152
B-6 Subroutine ZDBNUM 153
B-7 Subroutine ZDBPLT 154
B-8 Subroutine ZDBSYM 155
B-9 NUMBER Subroutine Description 156
B-10 PLOT Subroutine Description 157
B-11 PLOTS Subroutine Description 158

1.0 Introduction to PLOTCS

A graphics plotting routine has been developed at UMTRI for use with the MVMA 2-D Crash Victim Simulation model (and with an early UMTRI version of the CAL 3-D model). [1,2] This post-processor program is called the Occupant Plotting Package (PLOTCS). It makes up to three plots (views) of the occupant and the vehicle interior and restraint systems for each time point from recorded model data. The views are each a user-specified region of an orthographic projection of the three-dimensional occupant and vehicle interior onto a user-specified plane.

Section 2 presents the control card layout (input data) for the PLOTCS program. Section 3 discusses how to specify the relationship between a selected model run coordinate system and the PLOTCS Plot Space coordinate system (the standard transformation) and the specification of each viewing system. Section 4 presents a summary of the analysis used to achieve the necessary coordinate transformations and the orthographic projection. Section 5 presents numerous example plots produced by the program.

Appendix A contains a specification of the information recorded by the models for use by the Occupant Plotting Package. Appendix B contains a discussion of the dependencies of PLOTCS on the CALCOMP Standard Subroutines.

2.0 PLOTCS Input Description

2.1 Introduction. The PLOTCS program produces plots of orthographic projections, or shadows, on the $X-Z$ plane of each of the user-specified viewing systems at each of the user-specified time points. For each such viewing system, the Y-axis is the line-of-sight for the corresponding plot.

The user must specify each of the viewing systems with respect to the PLOTCS Plot Space coordinate system. The user must also relate the PLOTCS Plot Space coordinate system (in which positive X is forward in the model run, positive Y is leftward in the model run, and positive Z is upward in the model run) in terms of any one of the general segment systems of the model run. If the chosen model run coordinate system is different from the PLOTCS Plot Space coordinate system, the user must set the switch "LNORM" positive and supply the corresponding control cards. All general segment systems of the model run must be orthogonal but may be left-handed.

The PLOTCS plotter program expects as input both a deck of control cards and a character hold file of recorded data. The control deck is read from logical device number 5 in the form of formatted lines; the hold file data are read from logical device number 1 in the form of formatted records. The control cards must be made up by the user of the plotter program and contain information on the specific plots to be made. They are further described in Section 2.2. The character data file must have been previously written by a run of a crash simulation program and contains the information that the plotter program will use to make the plots. This is known as the PLOTCS Hold File and is further described in Appendix A.

Groups of special points to be plotted can be specified through either this control card input or through the model recorded PLOTCS Hold File. Up to a total of 50 such groups can be processed. This total includes all those groups specified by both sources. A total of 400 points can be processed which make up all of the groups of special points. Each group of special points is plotted as a broken line in three-dimensional space.

MVMA 2-D CVS Version 6.1 (and higher) as resident on the Michigan Terminal System (MTS) at the University of Michigan is able to write the PLOTCS Hold File. The MVMA 2-D CVS "GO" Processor supplements MVMA 2-D two-dimensional data (X-Z) with Y-coordinate data for writing to the ("three-dimensional") PLOTCS Hold File.
2.2 PLOTCS User Input. The plotter program expects to find a formatted line file, previously set up by the user, attached to logical device number 5. This should contain a number of lines (also referred to as cards) that describe the views to be plotted and the times at which they should be plotted. The layouts of these cards, including card formats, program variable names, descriptions, and default values (if any) are described in Table 1.

As a general rule, if any field in the PLOTCS Control Card input deck is left blank or put in as zero, the value given in the Default Column will be used. Sets of direction cosines are the basic exceptions to this rule. Direction cosines are dealt with in terms of triads. The defaults for each such triad are used only when the whole triad is blank or zero.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (1 of 12)

Card 1 -- SWITCHES

Col	Item	Description De	Default
01-02	ICGSWT	Plot C.G. symbol if positive.	1
03-04	IJNT	Plot joints and centerlines if positive.	1
05-06	IJTSYM	No joint symbol if negative; solid circle for joints if 1 ; hollow circle for joints if 2.	2
07-08	INECK	Plot special neck if positive. Magnitude is joint number of the neck joint in the joint specifications below.	1
09-10	IHEAD	Plot upper neck joint offsets from head c.g. in head system if positive. Magnitude is the joint end number of the neck joint specified by the magnitude of INECK in the joint specifications below.	1
11-12	-	Blanks	-
13-14	IELL	Plot contact ellipsoids if positive.	1
15-16	IPNL	Plot contact panels if positive.	1
17-18	IBAG	Plot airbag ellipsoidal outlines if positive.	1
19-20	IABP	Plot panel ellipsoids if positive.	1
21-22	-	Blanks	-
23-24	IBELT	Plot belts if positive.	1
25-26	IBLTIC	Plot belts as tick marks if positive; plot belts as outline lines if negative.	1
27-28	IRINGS	Plot belt rings if positive.	1
29-30	ISCPTS	Plot special points from model run.	1
31-32	JSCPTS	Plot special points specified with control cards	s 1
33-34	INPSGP	Number of groups of special points described as part of this control card deck.	0

TABLE 1. PLOTCS CONTROL CARD LAYOUT (2 of 12)

COL	Item	Description	Default
35-36	-	Blanks	-
37-38	LVIEW	Model Run Coordinate system used as basis for Plot Space. (Set -1 for inertial, set 0 for principal vehicle, or set to any general segment number.)	0
39-40	LNORM	If the model run is MVMA $2-D$, set to -1 ; otherwise if model run is different from Plot Space, set positive and provide Cards 4-7.	-1
41-42	IVIEWS	Number of views (different viewing systems) shown for each time (max 3).	1
43-44	-	Blanks	-
45-46	LEGEND	Plot legend of symbols used if positive.	-1
47-48	IOVER	Plot all times on one plot if positive.	-1
49-50	IFACE	Plot facial features if positive.	-1
51-52	-	Blanks	-
53-54	IDB	Auxiliary Printout Control Switch (Values 0-3 inclusive downward).	0
55-56	INCZDB	Frequency Control for PLOT subroutine auxiliary printout (Values 0-10).	0
57-58	ITWOD	Recorded data can be treated as effectively two-dimensional if positive.	1

TABLE 1. PLOTCS CONTROL CARD LAYOUT (3 of 12)

Card 2 -- PLOT LAYOUT PARAMETERS

Col	Item	Description	Default
01-08	BLTSPC	Distance between tick marks for belts (Model run units)	1.
09-16	BLTICK	Half-width of tick marks for belts (Plot inches)	. 1125
17-24	RINGMX	Radius of maximum slip ring circle (Plot inches)	1
25-32	RINGMN	Radius of minimum slip ring circle (Plot inches)	. 08
33-40	ATTMAX	Radius of maximum belt attachment circle (Plot inches)	. 1
41-48	ATTMIN	Radius of minimum belt attachment circle (Plot inches)	. 05
49-56	ANCHLG	Length of anchor symbol (Plot inches)	. 15
57-64	ANCHDP	Depth of anchor symbol (Plot inches)	. 07
65-72	RADJNT	Radius of joint circle (Plot inches)	. 045

TABLE 1. PLOTCS CONTROL CARD LAYOUT (4 of 12)

Card 3 -- PLOT TIMES AND PLOT LAYOUT PARAMETERS

Col	Item	Description	Default
$01-08$	T1	Beginning time to be plotted (msec)	0.
$09-16$	T2	Last time to be plotted (msec)	200.
17-24	DELTAT	Time increment between plots (msec) (Negative increment means do all recorded plots within the time interval)	40.
25-32 RADCG	Radius of C.G. symbol (Plot inches)		
33-40 WIDNEK	Half-width of tick mark for neck	0.10	
$41-48$	TCKNNO	Number of tick marks equispaced along neck	0.15

TABLE 1. PLOTCS CONTROL CARD LAYOUT (5 of 12)

Cards 4 to 7: MODEL RUN TRANSFORMATION SPECIFICATION CARDS (These cards must be present if $L N O R M$ is not zero.)

Card 4 -- PLOT SPACE ORIGIN (Set Up Card 1)

Col	Item	Description	Default
01-08	ORGNRM(1)	X-coordinate of Plot Space origin (*)	0.
$09-16$	ORGNRM(2)	Y-coordinate of Plot Space origin (*)	0.
17-24	ORGNRM(3)	Z-coordinate of Plot Space origin (*)	0.
Card 5 -- FORWARD DIRECTION (Set Up Card 2)	Default		
Col	Item	Description	1.
$01-08$	FORWRD(1)	Direction cosine of forward from X	0.
09-16 FORWRD(2)	Direction cosine of forward from Y	0.	

TABLE 1. PLOTCS CONTROL CARD LAYOUT (6 of 12)

Cards 4 to 7: MODEL RUN TRANSFORMATION SPECIFICATION CARDS (cont.)
(These cards must be present if LNORM is not zero.)

Card 6 -- LEFT DIRECTION (Set Up Card 3)
Col Item Description
Default
01-08 GAUCHE(1) Direction cosine of left from X 0.

09-16 GAUCHE(2) Direction cosine of left from Y 1.

17-24 GAUCHE(3) Direction cosine of left from Z
0.

Card 7 -- UPWARD DIRECTION (Set Up Card 4)
Col Item Description Default
01-08 UP(1) Direction cosine of up from $X \quad 0$.
09-16 UP(2) Direction cosine of up from Y 0.
17-24 UP(3) Direction cosine of up from $Z \quad 1$.

```
SPECIAL POINTS SECTION OF RECORDS:
(This section occurs only if INPSGP > O and consists
of one card with INPSGP fields followed by one record
for each special point specified on the first card.)
```

Card 8 -- GROUP LAYOUT CARD FOR SPECIAL POINTS
Columns Description

TABLE 1. PLOTCS CONTROL CARD LAYOUT (8 of 12)

PLOT VIEW SPECIFICATION SECTION OF RECORDS:
(IVIEWS sets of these 7 cards are required.)

Note: Where the Default Column contains a triad of numbers, the number is used corresponding to the value of $K=1,2$, or 3 for the current set of viewing system specification cards.

TABLE 1. PLOTCS CONTROL CARD LAYOUT (9 of 12)

```
PLOT VIEW SPECIFICATIONS SECTION (continued)
(IVIEWS sets of these 7 cards are required.)
```

Card 7*K+M+2 -- THE PLOT SPACE Z-AXIS W.R.T. THE VIEWING SYSTEM (View system specification, 3rd card)

Col	Item	Description	Default
01-08	$\operatorname{AMAT}(3,1, \mathrm{~K})$	Direction cosine from the Plot Space Z-axis to the Viewing X-axis	0., 0., 0 .
09-16	$\operatorname{AMAT}(3,2, \mathrm{~K})$	Direction cosine from the Plot Space Z-axis to the Viewing Y-axis	0., 0., -1.
17-24	$\operatorname{AMAT}(3,3, \mathrm{~K})$	Direction cosine from the Plot Space Z-axis to the Viewing Z-axis	1., 1., 0.
Card 7		YSICAL SPECIFICATION OF THE VIEW PLOT AREA iew system specification, 4 th card)	
Col	Item	Description	Default
01-08	XPLTLL(K)	Distance along paper of view plot area from left edge of plot paper (Plot inches).	. 5
09-16	ZPLTLL (K)	Distance across paper of view plot area from bottom of plot paper (Plot inches).	.5, 9., 17.5
17-24	Xpltlg (K)	Length of plot area in X -direction (Plot inches)	11.
25-32	ZPLTLG(K)	Length of plot area in z-direction (Plot inches)	8.5

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued) (IVIEWS sets of these 7 cards are required.)

COL	Item	Description	Default
01-08	XVULLC (K)	Distance in x-direction of plot reference frame origin from left edge of plot area (Plot inches)	. 5
09-16	ZVULLC (K)	Distance in z-direction of plot reference frame origin from bottom edge of plot area (Plot inches)	. 5
17-24	XAXSLG (K)	Length of plot reference frame x-axis (Plot inches)	10.
25-32	ZAXSLG (K)	Length of plot reference frame z-axis (Plot inches)	7.

(Note: At the University of Michigan plots can be a maximum of 360 inches along paper where the Viewing X-direction is plotted and a maximum of 30 inches wide across paper where the Viewing Z-direction is plotted.)

TABLE 1. PLOTCS CONTROL CARD LAYOUT (11 of 12)

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued)
(IVIEWS sets of these 7 cards are required.)

Col	Item	Description	Default
01-08	XLEFVL(K)	X-value to be shown in the lower left corner of the plot	-10., -50., -10.
09-16	XRIGHT	X-value to be shown in the upper right corner of the plot	90., 50., 90.
17-24	ZBOTVL (K)	Z-value to be shown in the lower left corner of the plot	0., 0., 35.
25-32	ZTOP	Z-value to be shown in the upper right by plot reference frame x-axis	$-70 .,-70 .,-35 .$
33-40	ELLDEL (K)	Plot step size for representing shadow ellipses	1.
41-48	TICKVL (K)	Length represented by spacing between tick marks in plot	10.

Note 1: The lengths of the X and Z axes will be adjusted to show the user-specified plot region with equal scales in both the X and Z directions.

Note 2: If the ITWOD switch of the first control card is positive, Z-values are expected to be positive downward. In this case, the first four parameters of this card are identical in meaning to fields 3 through 6 of Card 1500 in MVMA 2-D CVS data sets. If the ITWOD switch is negative, the Z values are expected to be positive upward.

Note 3: All parameters on this card are to be specified in appropriate model run position units.

PLOT VIEW SPECIFICATIONS SECTION OF RECORDS: (continued) (IVIEWS sets of these 7 cards are required.)

```
Card \(7 * \mathrm{~K}+\mathrm{M}+6\)-- SPECIFICATION OF VIEW PLOT TITLE (Viewing system specification, 7th card)
```

| Col Item | Description |
| :--- | :--- |\quad Default

for $K=1$, IVIEWS

3.0 Specification of the Standard Transformation and the Viewing Systems

The positional data recorded by the models in the hold files is in terms of model coordinate systems. PLOTCS begins by transforming all the data into the PLOTCS Plot Space System based on one coordinate system of the user's choice. The x-axis of the PLOTCS Plot Space System will be shown as the forward direction on the plots, the y-axis is shown to the left, and the z-axis is shown upward. After transformation into the PLOTCS Plot Space system the data are stored in internal tables. This process is called the Standard Transformation and is the subject of Section 3.1.

The viewing systems are specified in terms of the PLOTCS Plot Space system and the plots are made of the orthographic projection, or the shadow, of the model run configuration onto the $x-z$ plane of each specified viewing system with the viewing y-axis being the line of sight of each such plot. Specification of these viewing systems is the subject of Section 3.2.
3.1 The Standard Transformation. Consider a seated occupant seen in an MVMA 2-D representation in the vehicle coordinate system. Without the standard transformation, PLOTCS would show this occupant upside down since z is positive downward in the model system while PLOTCS Plot Space has z positive upward. The purpose of the Standard Transformation is to put the x, y, and z values from the simulation into the Plot Space coordinate system illustrated at the bottom of Figure 1. The LNORM $=-1$ option should normally be selected for plotting MVMA 2-D results.

The relationship between the specified model system and the PLOTCS Plot Space system is defined by the user in the PLOTCS Control Cards by specifying the direction cosines of the "forward" direction, the "leftward" direction, and the "upward" direction in terms of the chosen model run coordinate system. Figure 1 illustrates the standard MVMA 2-D case.

Model Axes
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right] \quad \begin{aligned} & \text { Standard Transformation } \\ & \text { Matrix to Redefine } \\ & \text { X and } Z \text { Axes (example) }\end{aligned}$
Plot System Axes

Pigure 1. Effect of Standard Transformation
3.2 Viewing Matrix Selection. In the general threedimensional case, the second step in setting up plots is determining the proper viewing matrix. Each of a possible three views are specified with respect to the PLOTCS Plot Space system.

One simple way is to choose a viewing point and imagine drawing a line to the origin of the plot view system. The plane upon which the orthographic projection is made is the plane perpendicular to this line through the plot view system origin. In fact, the line-of-sight thus established is the Y -axis of the plot view system. If the viewing point is represented in spherical coordinates in the PLOTCS Plot Space system (see Figure 2), then a proper viewing matrix is:
$\left[\begin{array}{llc}-\sin \theta & \cos \theta & 0 \\ -\sin \psi \cos \theta & -\sin \psi \sin \theta & -\cos \psi \\ -\cos \psi \cos \theta & -\cos \psi \sin \theta & -\sin \psi\end{array}\right]$

Figure 2. The Viewing Point in Spherical Coordinates Relative to the Standard System

An alternative approach is to use the direction cosines ($\cos \alpha, \cos \beta, \cos \gamma$) of the line-of-sight. The direction cosines of the line-of-sight are related to the coordinates of the viewing point ($\mathrm{Xp}, \mathrm{Yp}, \mathrm{Zp}$) by

$$
\begin{equation*}
\cos \alpha=X p / D, \cos \beta=Y p / D, \quad \cos \gamma=Z p / D \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
D= \pm \sqrt{X_{p}^{2}+Y p^{2}+z p^{2}} \tag{3}
\end{equation*}
$$

and a proper viewing matrix is:
$\left[\begin{array}{lll}\cos \beta / \sin \gamma & -\cos \alpha / \sin \gamma & 0 \\ \cos \alpha & \cos \beta & \cos \gamma \\ -\cos \alpha / \tan \gamma & -\cos \beta / \tan \gamma & \sin \gamma\end{array}\right]$

$$
\text { if } \cos ^{2} \gamma \neq 1
$$

or
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
if $\cos \gamma= \pm 1$
(5)

4.0 Summary of Analysis

The analysis is summarized in two parts. The first subsection deals with the various coordinate system transformations and the second subsection deals with the orthographic projection of a general ellipsoid upon the specified viewing plane.
4.1 Coordinate Transformations. Model run information is expressed in terms of several coordinate systems. PLOTCS first transforms the descriptions of all these coordinate systems to correct for the directions of the base underlying unit vectors. This coordinate system is called the Standard Transformation.

The Standard Transformation is defined in three steps:

1. selection of one of the model run coordinate systems as a basis for relating the PLOTCS Plot Space system to the model run systems
2. specification of a new origin with respect to the "base" system
3. specification of a direction cosine matrix about the new origin which relates the "base" system to the PLOTCS Plot Space system.

The Standard Transformation is applied to all positional data recorded by the simulation model. One or more viewing systems are then defined with respect to the PLOTCS Plot Space system. All of these transformations can be described in terms of a general rotation and a general translation. We will use the following index correspondences. The index "N" is for any of the model coordinate systems, the index "S" is for the PLOTCS Plot Space system, and the index "I" is for the model inertial system (with respect to which all the other model coordinate systems are related). Also, the index "M" will stand for the model coordinate system with respect to which the PLOTCS Plot Space system is defined, and the index "V" will be for any of the viewing coordinate systems. The indices "K" and "J" are general and can stand for any of these coordinate systems.

We will let $R(K)$ stand for any positional vector given with respect to any coordinate system K. $R^{\prime}(K, J)$ will be the positional vector to the origin of any coordinate system K given with respect to any other coordinate system J. $D(K, J)$ is the direction cosine matrix of any coordinate system K given with respect to any other coordinate system J, and $D /(K, J)$ will stand for the inverse of the direction cosine matrix $D(K, J)$.

Since all of the coordinate systems are orthonormal, we have that

$$
\begin{equation*}
D /(K, J)=D(J, K) . \tag{6}
\end{equation*}
$$

Also, by definition of the direction cosines,

$$
\begin{equation*}
R(K)=R^{\prime}(K, J)+D(K, J) * R(J) \text { for any } K \text { and } J \tag{7}
\end{equation*}
$$

Equation 7 serves as the basis for the necessary conversion equations for any model vector $R(N)$ into any viewing system V :

$$
\begin{equation*}
R(V)=R^{\prime}(V, S)+D(V, S) * R(S) \tag{8}
\end{equation*}
$$

where $R(V)$ is needed for the actual plotting of points, $R^{\prime}(V, S)$ and $D(V, S)$ are obtained from control card input, and

$$
\begin{equation*}
R(S)=R^{\prime}(S, M)+D(S, M) * R(M) \tag{9}
\end{equation*}
$$

where $R^{\prime}(S, M)$ and $D(S, M)$ are also obtained from control card input. (This equation holds even if $D(S, M)$ represents a redefinition from a left-handed system to a right-handed system.) Also, for equation 9 , we use

$$
R(M)=D(M, I) *\left(D /(N, I) * R(N)+R^{\prime}(N, I)-R^{\prime}(M, I)\right)
$$

where

$$
\begin{equation*}
D(M, I), D(N, I), R^{\prime}(M, I) \text {, and } R^{\prime}(N, I) \tag{10}
\end{equation*}
$$

are all recorded in the model data hold file.
Figure 3 illustrates the relationship between these various coordinate systems.

Figure 3. Relationships Between Coordinate Systems
4.2 The Orthographic Projection of an Ellipsoid. The general equation of an ellipsoid in any viewing system is:

$$
\begin{equation*}
\alpha x^{2}+\beta y^{2}+\gamma z^{2}+2(\gamma x y+\epsilon x z+\lambda y z)=1 \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha=D_{11}^{2} / a^{2}+D_{21}^{2 /} b^{2}+D_{31}^{2} / c^{2}, \tag{12}\\
& \beta=D_{12}^{2 /} a^{2}+D_{22}^{2 /} b^{2}+D_{32}^{2} / c^{2}, \tag{13}\\
& r=D_{11} D_{12} / a^{2}+D_{2122}^{D} / b^{2}+D_{31} D_{32} / C^{2}, \tag{14}\\
& \delta=D_{13}^{2 /} a^{2}+\underset{23}{D^{2} / b^{2}+D_{33}^{2} / c^{2}, ~} \tag{15}\\
& \epsilon=D_{111_{13}} / a^{2}+D_{2123} D^{2} / b^{2}+D_{31} D_{33} / c^{2}, \tag{16}\\
& \lambda=D_{12} D_{13} / a^{2}+D_{22} D_{23} / b^{2}+D_{32} D_{33} / C^{2} . \tag{17}
\end{align*}
$$

In equations 12 through 17:
a, b, c are the semiaxes of the ellipsoid, and
D is the $i-t h$ row and $j-t h$ column element
ij of the direction cosine matrix for the ellipsoid relative to the viewing system.

In the nomenclature of the last section, equation 18 gives the relationship between the direction cosine matrix D with respect to the viewing system and the model system N to which the ellipsoid is attached:

$$
\begin{equation*}
D=D(V, S) * D(S, M) * D(M, I) * D /(N, I) * D e \tag{18}
\end{equation*}
$$

where
De is the direction cosine matrix which defines the relationship of the ellipsoid to the model system N; this matrix is recorded in the model hold file.

In the viewing system, the y-axis is the line-of-sight viewing axis and the $x-z$ plane is the viewing plane. The orthographic projection, or shadow ellipse, is the shadow of the ellipsoid on the viewing plane which results from a light source parallel to the y-axis on the other side of the ellipsoid and shining on the plane. Equation 11 is solved for y to get equation 19 below. The edge of the shadow is made up of those points in the $x-z$ plane for which a unique solution exists for y or where the discriminant equals zero.

$$
\begin{equation*}
y=\frac{-(\gamma x+\lambda z) \pm \sqrt{(\gamma-\alpha \beta) x^{2}+(\lambda-\beta \delta) z^{2}+2(\gamma \lambda-\beta \epsilon) x z-\beta}}{\beta} \tag{19}
\end{equation*}
$$

so

$$
\begin{equation*}
(\gamma-\alpha \beta) x^{2}+(\lambda-\beta \delta) z^{2}+2(\gamma \lambda-\beta \epsilon) x z-\beta=0 \tag{20}
\end{equation*}
$$

Equation 20 is the equation of an ellipse in the $x-z$ plane. In order to simplify plotting, we will use a general parametric form of the equation of an ellipse:

$$
\begin{equation*}
x=A \cos \phi \cos \theta-B \sin \phi \sin \theta \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
z=A \sin \phi \cos \theta+B \cos \phi \sin \theta \tag{22}
\end{equation*}
$$

where
A, B are the semiaxes of the shadow ellipse
$\phi \quad$ is the angle of the A-axis of the ellipse with respect to the x -axis
and
$\theta \quad$ is the parametric variable.
Figure 4 shows the ellipse obtained by letting the parameter θ vary from 0 degrees to 360 degrees for a particular set of A, B, and ϕ.

If equations 21 and 22 are substituted into equation 20 , the following equation results:

```
    A2 [(\gamma-\alpha\beta) \mp@subsup{\operatorname{cos}}{}{2}\phi+(\lambda-\beta\delta) sin
```



```
- \beta
+2AB[(\gamma\lambda-\beta\epsilon)( \mp@subsup{\operatorname{cos}}{}{2}\phi-\mp@subsup{\operatorname{sin}}{}{2}\phi)+(\lambda-\gamma-\beta\delta+\alpha\beta)\operatorname{sin}\phi\operatorname{cos}\phi]\operatorname{sin}0\operatorname{cos}0
```

$$
=0
$$

Since each point on the ellipse is represented by a value of the parameter θ, this equation must be satisified for all values of θ. Three of the four terms in this equation include $\sin \theta$ and $\cos \theta$ factors. Since, while θ is an independent variable, $\sin \theta$ and $\cos \theta$ are not independent of each other, equation 23 can be written arbitrarily as two grouped terms, each having the value zero. Specifically, we can satisfy equation 23 by choosing a relationship between A, B, and β such that the first three terms sum to zero, provided that the fourth term is separately zero. From setting the coefficient of the fourth term to zero we get equation 24 :

Figure 4. The Shadow Ellipse in the Viewing Plane

and since

$$
\begin{equation*}
\tan 2 \phi=\frac{\sin \phi \cos \phi}{\cos ^{2} \phi-\sin ^{2} \phi} \tag{25}
\end{equation*}
$$

we get

$$
\begin{equation*}
\phi=\frac{1}{2} \tan ^{-1}[2(\gamma \lambda-\beta \in) /(\gamma-\lambda-\alpha \beta+\beta \delta)] \tag{26}
\end{equation*}
$$

The first three terms of equation 23 will sum to zero if we set the coefficients of the first two terms separately equal to β since $\sin ^{2} \theta+\cos ^{2} \theta=1$.

Hence

$$
\begin{equation*}
A^{2}\left[(\gamma-\alpha \beta) \cos ^{2} \phi+(\lambda-\beta \delta) \sin ^{2} \phi\right. \tag{27}
\end{equation*}
$$

$+2(\gamma \lambda-\beta \in) \sin \phi \cos \phi]=\beta$
and
$B^{2}\left[(\gamma-\alpha \beta) \sin ^{2} \phi+(\lambda-\beta \delta) \cos ^{2} \phi\right.$
(28)
$-2(\gamma \lambda-\beta \epsilon) \sin \phi \cos \phi)=\beta$

We can solve equation 27 for A and equation 28 for B in terms of the value ϕ determined in equation 26 . This then represents a valid solution for equation 23 . The values of A and B are presented as equations 29 and 30.

$B=\frac{\sqrt{\beta}}{\sqrt{(\gamma-\alpha \beta) \sin ^{2} \phi+(\lambda-\beta \delta) \cos ^{2} \phi-2(\gamma \lambda-\beta \epsilon) \sin \phi \cos \phi}}$

5.0 Example Plots Produced by PLOTCS

This section contains examples of plots produced by PLOTCS. Subsections are for separate runs of MVMA 2-D, and each subsection in general has several illustrative plots.

Each subsection is organized in the following manner. The data set for the PLOTCS post-processor (see Section 2.2) is first shown; the MVMA 2-D Input Processor data set is not shown except for the pertinent control in Field 2 of Card 101. The first plot shown is the time zero plot produced from the PLOTCS output. The time zero Stick Figure Printer Plot (Category 45) produced by the model run is presented next for comparison. The printed output from the PLOTCS program then follows if there is a particular point to be illustrated. Some of any remaining plots produced by the run are then presented. Finally, a printout of the PLOTCS hold file (see Appendix A) produced by the corresponding model run is appended to the first example, Sec 5.1.
5.1 Occupant Restrained by 3-Point Belt System. The data set used for this run is the DEMOBELT data set which is included on release tapes of the MVMA 2-D model. The run was made with Field 2 of Card 101 set to -20 . and the run duration set to 0 to 160 msec . The plots are produced every 40 msec over the whole duration.

$-_{0}^{\circ}$	
- - ¢	
-	๙
-	
-¢0	
- \quad -	
-	
$\overline{-}-0-000^{\text {® }}$	

$X-Z$ VIEW
0.0 MSEC
 msec. Stick figure printer plot frame for time
)() () ! !) ()) ()): : : :

VIEWING ROTATION MATRIX

$$
\begin{aligned}
& \text { END OF TIME PLOT NO. } \\
& \text { END OF TIME PLOT NO. } \\
& \text { END OF TIME PLOT NO. } \\
& \text { END OF TIME PLOT NO. } \\
& \text { END OF TIME PLOT NO. }
\end{aligned}
$$

END OF ALL PLOTS, TOTAL NUMBER =

 0

```
00000000000000
00000000000000
```

		$\overline{0}$									
	－のか	じの	$\bigcirc \infty$	－No							0
\bigcirc	への0	150	${ }^{\circ} \stackrel{\infty}{ }$	Nom	90	$0{ }^{\circ} 0$	$\bigcirc{ }^{\circ} \mathrm{O}$	$\checkmark 9$	Noid		10
¢ 0	－${ }_{\text {－}}$	96	\bigcirc	${ }^{\text {N0\％}}$	¢N\％	${ }^{\circ} \mathrm{C}$	¢ ${ }^{\text {N }}$	べ	－		0
	O60	∞ in－	$1 \square_{1} 0$	－の の	0 N－	$\cdots \mathrm{m}$	$\infty 0$ N		00%		－
○ロ゚	－ 0	$\checkmark \cdot 6$		欠ัウ	$\stackrel{\text { ¢ }}{0} \times$	n ${ }^{0}$	$\stackrel{\sim}{5} 0^{\text {¢ }}$	∞			
－	－	－ก็．	\cdots	ก	－	$\stackrel{\square}{-}$	－		の		O
0	\bigcirc	010	010	010	010	010	010	010	$\bigcirc 10$		10

¢	\circlearrowleft	\checkmark	\bigcirc	$\stackrel{1}{0}$	0	0	\bigcirc	0	O	
ㅇu	山	山	山	山	山	山	山	山	\sim	${ }_{\sim}^{4}$
				\sim						

ㄸono

	175	SEG	12	0.0
	176			0.0
	177			1.000000
	178			0.0
	179			0.0
	180	SEG	13	0.0
	181			1.000000
	182			0.0
	183			0.0
	184	PL	1	-67.09300
	185			2000.000
	186			-50.22501
	187	PL	2	-64.75900
	188			2000.000
	189			-59.94901
	190	PL	3	-166.8580
	191			2000.000
	192			-84.46080
	193	PL	4	-180.6670
	194			2000.000
	195			-69.77840
	196	PL	5	-212.5782
	197			2000.000
	198			-94.60210
	199	PL	6	-180.6670
	200			2000.000
	201			-69.77840
	202	PL	7	-140.5000
$\stackrel{\sim}{\sim}$	203			2000.000
	204			-11.00000
	205	PL	8	-280.0000
	206			2000.000
	207			-11.00000
	208	PL	9	-108.6500
	209			2000.000
	210			-27.6000 1
	211	PL	10	-109.4000
	212			2000.000
	213			-61.70000
	214	PL	11	-121.4000
	215			2000.000
	216			-62.70000
	217	PL	12	-121.4500
	218			2000.000
	219			-71.89999
	220	PL	13	-117.3000
	221			2000.000
	222			-76.1000 1
	223	PL	14	-151.5000
	224			2000.000
	225			-51.95000
	226	PL	15	-147.9000
	227			2000.000
	228			-61.85001
	229	PL	16	-154.2500
	230			2000.000
	231			-67.45000
	232	PL	17	-148.5500

0.0
0.0
0.0
1.000000
0.0
0.0
0.0
1.000000
0.0
-67.09300
-2000.000
-50.22501
-64.75900
-2000.000
-59.94901
-166.8580
-2000.000
-84.46080
-180.6670
-2000.000
-69.77840
-212.5782
-2000.000
-94.60210
-180.6670
-2000.000
-69.77840
-140.5000
-2000.000
-11.00000
-280.0000
-2000.000
-11.00000
-108.6500
-2000.000
-27.60001
-109.4000
-2000.000
-61.70000
-121.4000
-2000.000
-62.70000
-121.4500
-2000.000
-71.89999
-117.3000
-2000.000
-76.10001
-151.5000
-2000.000
-51.95000
-147.9000
-2000.000
-61.85001
-154.2500
-2000.000
-67.45000
-148.5500
-000000
1.000000
0.0
-0.0
-0.0
0.0
1.000000
0.0
0.0
0.0
0.0
1.000000

- 178.9160
- 2000.000
- 2000.000
-77.07120
-176.5820
-176.5820
-2000.000
- 86.79520
- 169.1920
- 2000.000
- 74.73680
- 174.8310
-2000. 000
-94.08800
-204. 3648
-2000. 000
-60.69308
- 174.8310
-2000. 000
-94.08800
- 176.4000
- 2000.000
- 11.00000
- 190.0000
- 2000.000
- 11.00000
- 140.5000 -2000.000 -11.00000
-108.6500 - 108.6500 -2000.000 -27.60001 - 109.4000 -2000.000 -61.70000 - 121.4000 - 2000.000 - 62.70000 - 121.4500 -2000.000 - 71.89999 -142.5000 - 2000.000 -36. 25000 - 151.5000 -51.95000 - 141.0000 -2000. 000 -55.50000
- 154.2500
-178.9160
2000.000 -77.07120 - 176.5820 2000.000 -86.79520
- 169 . 1920 2000.000
-74.73680
- 174.8310 2000.000 -94.08800
-204.3648 2000.000
-60.69308
-174.8310
2000.000
-94.08800
-176.4000
2000.000
- 11.00000
- 190.0000
2000.000
- 11.00000
-140.5000 2000.000 - 11.00000 - 108.6500 2000.000 -27.60001 - 109.4000 2000.000 -61.70000 -121.4000 2000.000 -62.70000 - 121.4500 2000.000
-7189999 -71.89999
-142.5000 - 142.5000 -36.25000 -151.5000
2000.000 -51.95000 - 141.0000 2000.000
-55.50000
-154.2500

-2000.000

-82.55000 | \circ |
| :--- |
| 0 |
| in |

 O

 O 8.
0
en
0
0
0
1
1 -8.8
0.8
0.8
0.0
0.0
1
1
1 808
0
0
0
0
0
0
0
0
1 $00091 \cdot \varepsilon z-$
$000 \cdot 0002-$
 $0008 \varepsilon \cdot 9 \varepsilon-1$
$000 \cdot 0002-$ $000 \cdot 002-$
$0012.281-$
$0008.98-$ OO9Ev-97-
 8080
08
0
0
0
0
0

0.0
0.0

```
    2000.000
    -78.649990
    -250.0000
    $2000.000
    2000.000
                        -124.1000
                        2000.000
                        -232.6000
                        $24.3600
                        %O8
                        -2000.000
                        -106.3301
                        r}2000.00
                        -85.83000
                        r
                *
                    8.0
                8:88
                    2000.000
                        *
                    80%
                    8%O
                        -130.9.000
```


 10-3158bLOE:O

[^0]

[^1]
 OZLO IE 000 000 OZE9 เてz 000 000 $0282 \cdot \varepsilon 81$
$0008 \varepsilon \cdot 9 \varepsilon$ \circ
0
O_{1}
0
0
0
 $000 \varepsilon{ }^{0} \mathrm{OOZ}$ $0 Z \angle 6 \cdot 6 E 1$
$000 \varepsilon \sigma^{\circ} \mathrm{Oz}$ $10009 \cdot 19$
$000 \cdot 0002$

0.0
0.0
1.0
\circ
0
0
0
0
-0
-0
000^{-1}

8	8
0	0
0	0
0	0
0	0
0	0

0.000000

000
0.0 .000000
0.0
0.0
000° 8
0
0
0
0
0
0
0

$\stackrel{1}{a}$
a
a
a

$$
\begin{array}{cc}
\begin{array}{l}
\text { RING } \\
\text { BLT }
\end{array} & 1 \\
\text { BLT } & 2 \\
\text { BLT } & 3 \\
\text { BLT } & 4 \\
\text { BLT } & 5 \\
\text { BLT } & 6 \\
\text { OFOR TIME }= \\
\begin{array}{c}
\text { SEG }
\end{array} & 1
\end{array}
$$

N

[^2]| 465 | | | -0.9246719 | 0.0 | 0. 3807648 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 466 | SEG | 8 | -202.6354 | 0.0 | -55.84187 | |
| 467 | | | 0.9819364 | 0.0 | O. 1892111 | |
| 468 | | | 0.0 | 1.000000 | 0.0 | |
| 469 | | | -0. 1892111 | 0.0 | 0.9819364 | |
| 470 | SEG | 9 | -220.8057 | 0.0 | -108.8467 | |
| 471 | | | -0.3183062 | 0.0 | 0.9479880 | |
| 472 | | | 0.0 | 1.000000 | 0.0 | |
| 473 | | | -0.9479880 | 0.0 | -0.3183062 | |
| 474 | SEG | 10 | -223.1842 | 0.0 | -78.81800 | |
| 475 | | | O. 1357237E-O 1 | 0.0 | 0.9999079 | |
| 476 | | | 0.0 | 1.000000 | 0.0 | |
| 477 | | | -0.9999079 | 0.0 | O. $1357237 \mathrm{E}-\mathrm{O} 1$ | |
| 478 | SEG | 11 | -180.0989 | 0.0 | -80.76262 | |
| 479 | | | 1.000000 | 0.0 | -0. $126185: 3 \mathrm{E}-\mathrm{O} 4$ | |
| 480 | | | 0.0 | 1.000000 | 0.0 | |
| 481 | | | O. $1261853 \mathrm{E}-\mathrm{O} 4$ | 0.0 | 1.000000 | |
| 482 | SEG | 12 | -7.283402 | 0.0 | 0.0 | |
| 483 | | | 1.000000 | 0.0 | -0.0 | |
| 484 | | | 0.0 | 1.000000 | 0.0 | |
| 485 | | | 0.0 | 0.0 | 1.000000 | |
| 486 | SEG | 13 | 0.0 | 0.0 | 0.0 | |
| 487 | | | 1.000000 | 0.0 | 0.0 | |
| 488 | | | 0.0 | 1.000000 | 0.0 | |
| 489 | | | 0.0 | 0.0 | 1.000000 | |
| 490 | PL | 1 | -74.37640 | -74.37640 | -186.1994 | -186. 1994 |
| 491 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 492 | | | -50.22501 | -50.22501 | -77.07120 | -77.07120 |
| 493 | PL | 2 | -72.04240 | -72.04240 | -183.8654 | -183.8654 |
| 494 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 495 | | | -59.9490 1 | -59.94901 | -86.79520 | -86.79520 |
| 496 | PL | 3 | -174.1414 | -174.1414 | -176.4754 | - 176.4754 |
| 497 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 498 | | | -84.46080 | -84.46080 | -74.73680 | -74.73680 |
| 499 | PL | 4 | -187.9504 | -187.9504 | -182.1144 | -182.1144 |
| 500 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 501 | | | -69.77840 | -69.77840 | -94.08800 | -94.08800 |
| 502 | PL | 5 | -213.4299 | -213.4299 | -206.4664 | -206.4664 |
| 503 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 504 | | | -93.38917 | -93.38917 | -59.20159 | -59.20159 |
| 505 | PL | 6 | -187.8787 | -187.8787 | -182.0430 | -182.0430 |
| 506 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 507 | | | -69.77543 | -69.77543 | -94.08510 | -94.08510 |
| 508 | PL | 7 | -147.7834 | -147.7834 | -183.6834 | -183.6834 |
| 509 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 510 | | | -11.00000 | -11.00000 | -11.00000 | -11.00000 |
| 511 | PL | 8 | -287.2834 | -287.2834 | -197.2834 | -1972834 |
| 512 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 513 | | | -11.00000 | -11.00000 | -11.00000 | -11.00000 |
| 514 | PL | 9 | - 115.9334 | -115.9334 | -147.7834 | -147.7834 |
| 515 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 516 | | | -27.60001 | -27.60001 | -11.00000 | -11.00000 |
| 517 | PL | 10 | -116.6834 | -116.6834 | - 115.933 .1 | -115.9334 |
| 518 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 519 | | | -61.70000 | -61.70000 | -27.60001 | -27.60001 |
| 520 | PL | 11 | -128.6834 | -128.6834 | -116.6834 | -116.6834 |
| 521 | | | 2000.000 | -2000.000 | -2000.c00 | 2000.000 |
| 522 | | | -62.10000 | -62.70000 | -61.70000 | -61.70000 |

G！てて・8Eて－

[^3]

$\circ O$
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

$$
\begin{aligned}
& 0.0 \\
& 0.8977927 \\
& -50.58673
\end{aligned}
$$

$$
\begin{aligned}
& -0.4950578 \\
& 0.0 \\
& 0.8688600 \\
& -38.07644
\end{aligned}
$$

$$
\begin{aligned}
& 0.8548860 \\
& 0.0 \\
& 0.5188158 \\
& -61.38498 \\
& 0.5127316
\end{aligned}
$$

$$
\begin{aligned}
& -38.07643 \\
& 0.8548860 \\
& 0.0 \\
& 0.5188158
\end{aligned}
$$

$$
\begin{aligned}
& -61.38498 \\
& 0.5127316 \\
& 0.0 \\
& 0.8585490
\end{aligned}
$$

$$
\begin{aligned}
& 0.0 \\
& 0.8585490 \\
& -57.02558 \\
& -0.1559161
\end{aligned}
$$

$$
\begin{aligned}
& -57.02558 \\
& -0.1559161 \\
& 0.0
\end{aligned}
$$

$$
\begin{aligned}
& -89.00962 \\
& 0.6176212
\end{aligned}
$$

$$
\begin{array}{r}
-62.65260 \\
0.9898014
\end{array}
$$ －O－30tss609．0－ $000000!$

$0!$
$0 \cdot 0$
$0 \cdot 0$
$000000 \cdot$
$0 \cdot$
$0 \cdot 0$
$0 \cdot 0$
$0 \cdot$
000000
$0!$
0 OZ1 $\angle 0 \cdot \angle L-$
000 OOOZ－
$\angle Z 18 \cdot \bullet Z Z-$ OOO OOOZ－
$\angle 8 \angle V^{\circ}$ zとて－ OZS6L．98－
$000 \cdot 0002-$ 000 OOOZ－
L880 $51 z-$
$02565-98-$

$$
\begin{array}{r}
2960068- \\
\varepsilon O \angle \angle \angle 86 \circ \\
0.0
\end{array}
$$

$$
\begin{aligned}
& 0.9898014 \\
& 0.0 \\
& -0.1424540
\end{aligned}
$$ -2000.000

-74.73680
-220.7277 -220.7277
-2000.000
 $80^{\circ} 000 z-$
$1598 \cdot \mathrm{sez}$
1
 0
0
0
0
0
0
0
$\underset{\sim}{8}$

1 4.

$$
\begin{aligned}
& 0.0 \\
& -0.7864757 \\
& -62.65260
\end{aligned}
$$

凹	岕	\cdots	出	出	芯	岛	$\begin{aligned} & \text { u } \\ & \text { un } \end{aligned}$	5	出	$\frac{1}{2}$	\underline{a}	$\frac{1}{2}$	$\frac{1}{2}$	a	a

00068 G8－ $000 \cdot 000 z$ 895て＇zOE－ 000 oooz L9G9．てOE－ L9G9．coe－
OOE\＆ 901 － 000 000z 1959 －Oモと－ ○OEE• 901 － $000 \cdot 0002$ L9s9．06z－ 0001•tて1－ 000 0002 1966ํてこて－ oosz•9て1－ 000 •000̃ 96t LIZ－ 0009 とを 96L••9て－ oooss＇z8－ 000 0002
レ9ロナ・カ6ト－
OOOSV L9－ 000 000z
19t1．002－
OOOS Gヶ－
000 000己
1968 •981－
000G6．1G－
000 OOOZ
L96E LG1－－
000sて・9と－
000 0002
L96E．881－
6668° I $L-$ $000 \cdot 0002$
L918．L91－
00001・て9－
000•0002
$\angle 962 \cdot \angle 91-$
0000 L 19－ 000 000て L96て＇sst－ $10009^{\circ} \mathrm{LZ}-$ 000 0002 L9tG•tG1－ 00000 11－ 000 0002 L968．981－ 00000 •1－ $000 \cdot 0002$ 1.968 SEZ－ 00000 •11－ $000 \cdot 0002$ 196 ºzて $^{\circ}$
－1180＊6－

000ع8＇ 98 －
000 0002－ 89Gて＇z0e－ 000 oooz－ L9G9．zOE－ OOEE• 901－ 000 oooz－ L959．06て－ OOEE•901－ 000．0002－ 1959 O6て－ OOO1・ャて1－ 000 0002－ 966° 乙てて－ oosて・9て1－
000 0002－
－960．L1てー
0009 「とに－
000 0002－
1964•19て－
oooss＇28－
000．000て－－
19ロがカ61－
OOOG 4 L9－
000 0002－
－9ャ1•OOZ－－
Jooos Gs－
000．0002－
2968．981－
000G6．15－
000 OOOZ－
L95E＇L．61－
000ç• 9ε－
000 000て－
L．96E•81－
66668 1 1 －
000． COO －-
L9tと L91－
0000にての－
000 000 －
196 $^{\circ} \mathrm{L91}$－
$0000 L \cdot 19-$
000 000で－
L96て Gs！－
0009 12－
COO OOOZ－
L9から＇tSi－
00000•1：－
000 0002－ L96E 981 00000 11－ 000•000z－ $\angle 968$ sez－ 00000 ・トー 000•000z－
 1180••

00091 ・モ己 $000 \cdot \mathrm{OOOZ}-$ 2968 GLZ
$00068 \cdot \mathrm{SB}$ 000 $000 \mathrm{OB-}$ 89 GZ こOE－ OOEE 901 OOO OOOZ L9G9 zOE OOOE8． 58 000 0002 L9Sて．06と 0009° てと 000 －000て－ L96L・フス OOO1・ヶてし 000•0002 4966° ててて 0009° Zと1 000 0002－ $\angle 968^{\circ}$ S6て $66679^{\circ} 8 \mathrm{~L}$ $000 \cdot 0002-$ L968． 991 oooss•28－ 000．0002 し9カが七6トー 000st L9－ 000 0002 L9ャ1 00て 100G8：19－ 000 0002－ L96L． 861 － 00056．15 000•0002－ L．96E L61 $10001{ }^{\circ} \mathrm{L-}$ 000．0002－ L961．ع91 66668 1 L 000 000て $\angle 9+E \cdot \angle 91$ 00001.29 000 ODOZ L962 $\angle 91$ 00001 19 000． OOOZ － L962 G51 10009 LZ 000 OOOZ L9ts＇tsi 00000 1 1 $000 \cdot 0002$ $\angle 968$ sてE $00000^{\circ} 11$ 000 OOO L96E 981 SIILL 69

$00091 \cdot \varepsilon 己-$ $000 \cdot 000{ }^{\text {a }}$－			018 698
L968 ${ }^{\circ} \mathrm{GLZ}$	sz	7 d	898
000e8＇s8－			1.98
000－0002			998
895z＇zoe－	ャ	7 d	¢98
OOEE•901－			－98
000 0002			$\varepsilon 98$
L9G9＇zoe－	$\varepsilon 乙$	7 d	て98
000ع8•58－			198
000＊0002			098
L9s2＊06て－	てて	7d	698
0009＊ 2 ¢．			858
000＊0002			LS8
L96L．192－	1 し	7 d	958
			GS8
000．0002			－58
L966＊ててて－	Oz	7 d	ES8
0009＊てع।－			258
000 0002			158
L968＇ 562 －	61	7 d	Os8
666t9 8L－			6 b 8
000＊0002			878
L968 ${ }^{\text {S91－}}$	81	Id	Lt8
OOOSS＇28－			9ヶ8
000＊0002			Gt8
L9カt＊ 6 6－	LI	78	ャワ8
OOOSt＇L9－			とロ8
000．0002			てヤ8
L9ャ1＊OOZ－	91	7 d	1 18
100s8．19－			Ot8
000．0002			6ع8
1．96L．E61－	Sı	7 d	8¢．8
OOOG6．1s－			Lع8
O00 0002			988
L96E＊L61－	－1	7 d	SE8
$10001.94-$			DE8
000＊0002			عと8
L961 E91－	$\varepsilon 1$	7d	てع8
$66668^{\circ} \mathrm{L}$ L－			1 ¢8
$000 \cdot 0002$			Oع8
L90¢ 1.91 －	て1	7 d	6 28
OOOOL＇29－			828
$000 \cdot 0002$			Lて8
L962 291 －	11	7 d	9 28
$00001 \cdot 19-$			Sて8
000 0002			ちて8
L962 Sst－	Of	7d	こと8
$10009{ }^{\text {Lz－}}$			こて8
000＊0002			1 ¢8
	6	7d	O28
$00000 \cdot 11-$			618
OOO 000こ			818
L968 gとE－$^{\text {－}}$	8	7 d	L18
00000 11－			918
000＊000z			Sl8
L96E＇981－	L	7 d	－18
SttLL＇69－			と18

$\stackrel{\sim}{\sim} \stackrel{\oplus}{\sim} \stackrel{\oplus}{\sim}$
－

[^4]\qquad ～
の
σ
n
6

[^5]
39.89477 -39
0.0
0.0
 -36.68367
-0.4034691
0.0
0.9149933
-50.86039
-0.5903426
0.0
0.8067136
-40.50024
0.8299383
0.0
0.5578552
 $-0.7229677 \mathrm{E}-\mathrm{O} 4$
O.O 1.000000
0.0
0.0
0.0 1.000000
1.0 00
00 .000000
-235.4604


```
#
```


[^6]| | | | |
| :---: | :---: | :---: | :---: |
| | 1104 | PL | 2 |
| | 1105 | | |
| | 1106 | | |
| | 1107 | | |
| | 1108 | PL | 3 |
| | 1109 | | |
| | 1110 | | |
| | 1111 | PL | 4 |
| | 1112 | | |
| | 1113 | | |
| | 1114 | PL | 5 |
| | 1115 | | |
| | 1116 | | |
| | 1117 | PL | 6 |
| | 1118 | | |
| | 1119 | | |
| | 1120 | PL | 7 |
| | 1121 | | |
| | 1122 | | |
| | 1123 | PL | 8 |
| | 1124 PL | | |
| | 1125 | | |
| | 1126 | PL | 9 |
| | 1127 | | |
| | 1128 | | |
| | 1129 | PL | 10 |
| $\underset{\omega}{\infty}$ | 1130 | | |
| | 1131 | | |
| | 1132 | PL | 11 |
| | 1133 P | | |
| | 1134 | | |
| | 1135 | PL | 12 |
| | 1136 | | |
| | 1137 | | |
| | 1138 | PL | 13 |
| | 1139 PL | | |
| | 1140 | | |
| | 1141 | PL | 14 |
| | 1142 | | |
| | 1143 | | |
| | 1144 | PL | 15 |
| | 1145 PL | | |
| | 1146 | | |
| | 1147 | PL | 16 |
| | 1148 | | |
| | 1149 | | |
| | 1150 | PL | 17 |
| | 1151 | | |
| | 1152 | | |
| | 1153 | PL | 18 |
| | 1154 (| | |
| | 1155 | | |
| | 1156 | PL | 19 |
| | 1157 | | |
| | 1158 | | |
| | 1159 | PL | 20 |
| | 1160 | | |

2000.000
-50.22501
-171.3035
2000.000
-59.94901
-273.4025
2000.000
-84.46080
-287.2115
2000.000
-69.77840
-290.5546
2000.000
-70.72254
-287.2051
2000.000
-69.77500
-247.0444
2000.000
-11.00000
-386.5444
2000.000
-11.00000
-215.1944
2000.000
-27.60001
-215.9444
2000.000
-61.70000
-227.9444
2000.000
-62.70000
-227.9944
2000.000
-71.89999
-223.8445
2000.000
-76.10001
-258.0444
2000.000
-51.95000
-254.4444
2000.000
-61.85001
-260.7944
2000.000
-67.45000
-255.0945
2000.000
-82.55000
-226.5444
2000.000
-78.64999
-356.5444
2000.000
-132.6000
-283.6445
2000.000

-2000.000
-50.22501
-171.3035
-2000.000
-59.94901
-273.4025
-2000.000
-84.46080
-287.2115
-2000.000
-69.77840
-230.5546
-2000.000
-70.72254
-287.2051
-2000.000
-69.77500
-247.0444
-2000.000
-11.00000
-386.5444
-2000.000
-11.00000
-215.1944
-2000.000
-27.60001
-215.9444
-2000.000
-61.70000
-227.9444
-2000.000
-62.70000
-227.9944
-2000.000
-71.89999
-223.8445
-2000.000
-76.10001
-258.0444
-2000.000
-51.95000
-254.4444
-2000.000
-61.85001
-260.7944
-2000.000
-67.45000
-255.0945
-2000.000
-82.55000
-226.5444
-2000.000
-78.64999
-356.5444
-2000.000
-132.6000
-283.6445
-2000.000
-1
-2000.000
-77.07120
-283.1264
-2000.000
-86.79520
-275.7365
-2000.000
-74.73680
-281.3754
-2000.000
-94.08800
-297.4806
-2000.000
-36.52734
-281.3709
-2000.000
-94.08502
-282.9444
-2000.000
-11.00000
-296.5444
-2000.000
-11.00000
-247.0444
-2000.000
-11.00000
-215.1944
-2000.000
-27.60001
-215.9444
-2000.000
-61.70000
-227.9444
-2000.000
-62.70000
-227.9944
-2000.000
-71.89999
-249.0444
-2000.000
-36.25000
-258.0444
-2000.000
-51.95000
-247.5444
-2000.000
-55.50000
-260.7944
-2000.000
-67.45000
-255.0945
-2000.000
-82.55000
-322.4444
-2000.000
-132.6000
-278.1445
-2000.000
2000.000
-77.07120
-283.1264 2000.000
-86.79520
-2757365
-275.7365 2000.000 -74.73680 -281.3754
2000.000 2000.000
-94.08800 -297.4806 2000.000
-36.52734
-2813709
-281.3709 2000.000
-94.08502
-282.9444
2000.000
2000.000
-11.00000
-296.5444
-296.5444
2000.000

- 11.00000
-247. 0444
- 11.00000
- 215.1944
2000.000
-27.60001
-215.9444
-215.9444
2000.000
-61.70000
-227.9444
2000.000
-227.90044
-227.9
227.9944
2000.000
-71.89999
-249.0444
- 36.25000
-258.0444
-51.95000
51.95000
-247.5444
2000.000
-55.50000
- 260.7944
2000.000
-67.45000
-255.0945
2000.000
-3224444
-322.4444
- 132.000
-132.6000
-278.1445
-278.1445
$\begin{array}{r}2000.000 \\ -11.00000 \\ -278.4865 \\ 2000.000 \\ -11.00000 \\ -246.6365 \\ 2000.000 \\ -27.60001 \\ -247.3865 \\ 2000.000 \\ -61.7000 \\ -259.3865 \\ 2000.000 \\ -62.7000 \\ -259.4365 \\ 2000.000 \\ -71.89999 \\ -280.4865 \\ 2000.000 \\ -36.25000 \\ -289.4865 \\ 2000.000 \\ -51.95000 \\ -278.9865 \\ 2000.000 \\ -55.50000 \\ -292.2365 \\ 2000.000 \\ -67.45000 \\ -286.5365 \\ 2000.000 \\ -82.55000 \\ -353.8865 \\ 2000.000 \\ -132.6000 \\ -309.5865 \\ 2000.000 \\ -126.2500 \\ -315.0865 \\ 2000.000 \\ -124.1000 \\ -382.7465 \\ 2000.000 \\ -106.3300 \\ -382.7465 \\ 2000.000 \\ -106.3300 \\ -334.7465 \\ 2000.000 \\ -106.3300 \\ -394.34666 \\ 2000.000 \\ -85.83000 \\ -382.3465 \\ 2000.000 \\ -85.83000 \\ -361.54655 \\ 2000.000 \\ \hline\end{array}$ n
0
0
0
0
No
No
1

 $000 \cdot 0002$
 0
0
0
0
0
0
0
0
 $\mathrm{S} 986 \cdot 8 \mathrm{Lz}$ 80

0.
1.

0
0
0
10
 S9EG 982
0005 F
$000 \cdot 000$

 8 $0001 \cdot t 21$

$000 \cdot 0002$ $\mathrm{G} 9+\angle \cdot$ Z 8 E | 8 |
| :--- |
| 8 |
| 8 |
| 0 |
| 0 |

 0
$i 8$
0
0
0

 \circ
0
0
0
0
0

 $000 \cdot 0002$
$590 \mathrm{~s} \cdot 19 \mathrm{E}$
－ 2000.000 -11.00000
-246.6365
 -27.60001

-247.3865 \begin{tabular}{l}
\circ

${ }^{\circ}$

0

0

\hline

0

\hline

\hline
\end{tabular}

 $\begin{array}{r}0 \\ { }^{\circ} \mathrm{O} \\ \mathrm{N}^{\circ} \\ \hline\end{array}$

 n
N
N
N
N
N
N
N
 n
0
0
0
0
0
0
0
N
1

 \circ
0
0
0
0
0
0
0
0
0
 08
0
0
0
0
0
0
0

 80
80
0.80
0
0
0
0
0
0
0

0 | 0 n |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

\qquad $n 80$
0
0
0
0.
0_{0}
n_{0}
N 2000.000

 \circ
O_{0}
0
0
O_{1}

10 in | \circ |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 10 |
| 1 |

 n
0_{0}
N_{n}
n_{n}
n_{0}
 -257.9865
 n
0
∞
0
∞_{0}
i
∞
0
0
0

 $n \circ$
0
0
0
no
no
0 2000.000
-132.6000
-382.3465

 -394.7465
2000.000
-106.3300 0
0
0
0
0
0
0
0

 00
00
00
0
0
0
0
0

\cdots | n |
| :--- |
| 0 |
| 0 |
| H_{0} |
| . |
| -0. |
| 0 |
| 0 |

の		$=$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	\pm	n	$\stackrel{\square}{-}$	三	$\stackrel{\infty}{ }$	\bigcirc	$\stackrel{\sim}{\circ}$	$\bar{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\sim}$	へ
a	$\frac{1}{2}$	$\frac{1}{2}$	a	$\frac{1}{2}$	a	a	2	a	$\stackrel{-1}{\square}$	$\frac{1}{2}$	a	a	a	a	$\frac{1}{2}$	\square	\square	2

[^7]| 1335 | | | -46.43600 | -46.43600 | -37.08600 | -37.08600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1336 | PI . | 28 | -320. 1965 | -320. 1965 | -320. 1965 | -320.1965 |
| 1337 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 1338 | | | -20.23000 | -20.23000 | -45.73000 | -45.73000 |
| 1339 | PL | 29 | -276.8865 | -276.8865 | -268.7865 | -268.7865 |
| 1340 | | | 2000.000 | -2000.000 | -2000.000 | 2000.000 |
| 1341 | | | -64.60001 | -64.60001 | -40.00000 | -40.00000 |
| 1342 | RING | | 1 | -212.1793 | -39.52387 | -39.10704 |
| 1343 | BLT | 1 | | 0.0 | 0.0 | 0.0 |
| 1344 | | | | 0.0 | 0.0 | 0.0 |
| 1345 | BLT | 2 | | -212.1793 | -39.52387 | -39. 10704 |
| 1346 | | | | 0.0 | 0.0 | 0.0 |
| 1347 | BLT | 3 | | -5.703000 | -10.50000 | -13.76000 |
| 1348 | | | | -212.1793 | -39.52387 | -39.10704 |
| 1349 | BLT | 4 | | -5.703000 | 10.50000 | -13.76000 |
| 1350 | | | | 0.0 | 0.0 | 0.0 |
| 1351 | BLT | 5 | | -212.1793 | -39.52387 | -39. 10704 |
| 1352 | | | | 0.0 | 0.0 | 0.0 |
| 1353 | BLT | 6 | | 0.0 | 0.0 | 0.0 |
| 1354 | | | | 0.0 | 0.0 | 0.0 |
| 1355 | OFOR | TIME = | 160.0000 | | | |
| 1356 | SEG | 1 | -365.0801 | 0.0 | -90.91681 | |
| 1357 | | | -0.9299280 | 0.0 | 0.3677416 | |
| 1358 | | | 0.0 | 1.000000 | 0.0 | |
| 1359 | | | -0.3677416 | 0.0 | -0.9299280 | |
| 1360 | SEG | 2 | -380.3396 | 0.0 | -64.47361 | |
| 1361 | | | O.5456977E-02 | 20.0 | 0.9999851 | |
| 1362 | | | 0.0 | 1.000000 | 0.0 | |
| on 1363 | | | -0.9999851 | 0.0 | O.5456977E-O2 | |
| - 1364 | SEG | 3 | -378.4980 | 0.0 | -44.29910 | |
| 1365 | | | 0.2725864 | 0.0 | 0.9621313 | |
| 1366 | | | 0.0 | 1.000000 | 0.0 | |
| 1367 | | | -0.9621313 | 0.0 | 0.2725864 | |
| 1368 | SEG | 4 | -367.3740 | 0.0 | -39.42139 | |
| 1369 | | | 0.9893618 | 0.0 | -0.1454760 | |
| 1370 | | | 0.0 | 1.000000 | 0.0 | |
| 1371 | | | O. 1454760 | 0.0 | 0.9893618 | |
| 1372 | SEG | 5 | -349.3514 | 0.0 | -55.25507 | |
| 1373 | | | 0.7512555 | 0.0 | -0.6600115 | |
| 1374 | | | 0.0 | 1.000000 | 0.0 | |
| 1375 | | | 0.6600115 | 0.0 | 0.7512555 | |
| 1376 | SEG | 6 | -325.4158 | 0.0 | -45.02046 | |
| 1377 | | | 0.4908158 | 0.0 | 0.8712633 | |
| 1378 | | | 0.0 | 1.000000 | 0.0 | |
| 1379 | | | -0.8712633 | 0.0 | 0.4908158 | |
| 1380 | SEG | 7 | -374.0732 | 0.0 | -62.33532 | |
| 1381 | | | 0.6533744 | 0.0 | 0.7570349 | |
| 1382 | | | 0.0 | 1.000000 | 0.0 | |
| 1383 | | | -0.7570349 | 0.0 | 0.6533744 | |
| 1384 | SEG | 8 | -350.7792 | 0.0 | -55.77362 | |
| 1385 | | | 0.9750639 | 0.0 | -0.2219242 | |
| 1386 | | | 0.0 | 1.000000 | 0.0 | |
| 1387 | | | 0.2219242 | 0.0 | 0.9750639 | |
| 1388 | SEG | 9 | -364.4972 | 0.0 | -89.95146 | |
| 1389 | | | -0.9719378 | 0.0 | 0. 2352380 | |
| 1390 | | | 0.0 | 1.000000 | 0.0 | |
| 1391 | | | -0. 2352380 | 0.0 | -0.9719378 | |
| 1392 | SEG | 10 | -378.7939 | 0.0 | -69.66669 | |

1393			0. 2673094	0.0	0.9636107	
1394			0.0	1.000000	0.0	
1395			-0.9636107	0.0	0. 2673094	
1396	SEG	11	-341.6419	0.0	-80.76318	
1397			1.000000	0.0	-0.5997926E-O4	
1398			0.0	1.000000	0.0	
1399			0.5997926E-04	0.0	1.000000	
1400	SEG	12	-168.7517	0.0	0.0	
1401			1.000000	0.0	-0.0	
1402			0.0	1.000000	0.0	
1403			0.0	0.0	1.000000	
1404	SEG	13	0.0	0.0	0.0	
1405			1.000000	0.0	0.0	
1406			0.0	1.000000	0.0	
1407			0.0	0.0	1.000000	
1408	PL	1	-235.8447	-235.8447	-347.66\%7	-347.6677
1409			2000.000	-2000.000	-2000.000	2000.000
1410			-50.22501	-50.22501	-77.07120	-77.07120
1411	PL	2	-233.5107	-233.5107	-345.3337	-345.3337
1412			2000.000	-2000.000	-2000.000	2000.000
1413			-59.94901	-59.94901	-86.79520	-86.79520
1414	PL	3	-335.6097	-335.6097	-337.9437	-337.9437
1415			2000.000	-2000.000	-2000.000	2000.000
1416			-84.46080	-84.46080	-74.73680	-74.73680
1417	PL	4	-349.4188	-349.4188	-343.5827	-343.5827
1418			2000.000	-2000.000	-2000.000	2000.000
1415			-69.77840	-69.77840	-94.08800	94.08800
1420	PL	5	-367.9658	-367.9658	-360.7544	-360.7544
1421			2000.000	-2000.000	-2000.000	2000.000
O) 1422			-83.04141	-83.04141	-48.90526	-48.90526
© 1423	PL	6	-349.4212	-349.4212	-343.5867	-343.5867
1424			2000.000	-2000.000	-2000.000	2000.000
1425			-69.77562	-69.77562	-94.08557	-94.08557
1426	PL	7	-309. 2517	-309. 2517	-345. 1517	-345.1517
1427			2000.000	-2000.000	-2000.000	2000.000
1428			-11.00000	-11.00000	-11.00000	-11.00000
1429	PL	8	-448.7517	-448.7517	-358.7517	-358.7517
1430			2000.000	-2000.000	-2000.000	2000.000
1431			-11.00000	-11.00000	-11.00000	-11.00000
1432	PL	9	-277.4017	-277.4017	- 309.2517	-309.2517
1433			2000.000	-2000.000	-2000.000	2000.000
1434			-27.60001	-27.6000 1	-11.00000	-11.00000
1435	PL	10	-278.1517	-278.1517	-277.4017	-277.4017
1436			2000.000	-2000.000	-2000.000	2000.000
1437			-61.70000	-61.70000	-27.60001	-27.60001
1438	PL	11	-290. 1517	-290.1517	-278.1517	-278. 1517
1439			2000.000	-2000.000	-2000.000	2000.000
1440			-62.70000	-62.70000	-61.70000	-61.70000
1441	PL	12	-290. 2017	-290. 2017	-290. 1517	-290. 1517
1442			2000. 000	-2000.000	-2000.000	2000.000
1443			-71.89999	-71.89999	-62.70000	-62.70000
1444	PL	13	-286.0518	-286.0518	-200. 2017	-290.2017
1445			2000.000	-2000.000	-2000.000	2000.000
1446			-76.1000 1	-76.10001	-71.89999	-71.89999
1447	PL	14	-320.2517	-320.2517	-311.2517	-311.2517
1448			2000.000	-2000.000	-2000.000	2000.000
1449			-51.95000	-51.95000	-36.25000	-36.25000
1450	PL	15	-316.6517	-316.6517	-320.2517	-320.2517

1567	PL	3	-335.6097	-335.6097	-337.9437	-337.9437
1568			2000.000	-2000.000	-2000.000	2000.000
1569			-84.46080	-84.46080	-74.73680	-74.73680
1570	PL	4	-349.4188	-349.4188	-343.5827	-343.5827
1571			2000.000	-2000.000	-2000.000	2000.000
1572			-69.77840	-69.77840	-94.08800	-94.08800
1573	PL	5	-367.9658	-367.9658	-360.7544	-360.7544
1574			2000.000	-2000.000	-2000.000	2000.000
1575			-83.04141	-83.04141	-48.90526	-48.90526
1576	PL	6	-349.4212	-349.4212	-343.5867	-343.5867
1577			2000.000	-2000.000	-2000.000	2000.000
1578			-69.77562	-69.77562	-94.08557	-94.08557
1579	PL	7	-309.2517	-309.2517	-345.1517	-345.1517
1580			2000.000	-2000.000	-2000.000	2000.000
1581			-11.00000	-11.00000	-11.00000	-11.00000
1582	PL	8	-448.7517	-448.7517	-358.7517	-358.7517
1583			2000.000	-2000.000	-2000.000	2000.000
1584			-11.00000	-11.00000	-11.00000	-11.00000
1585	PL	9	-277.4017	-277.4017	-309.2517	-309.2517
1586			2000.000	-2000.000	-2000.000	2000.000
1587			-27.60001	-27.60001	-11.00000	-11.00000
1588	PL	10	-278.1517	-278.1517	-277.4017	-277.4017
1589			2000.000	-2000.000	-2000.000	2000.000
1590			-61.70000	-61.70000	-27.60001	-27.60001
1591	PL	11	-290.1517	-290.1517	-278.1517	-278.1517
1592			2000.000	-2000.000	-2000.000	2000.000
1593			-62.70000	-62.70000	-61.70000	-61.70000
1594	PL	12	-290.2017	-290.2017	-290. 1517	-290. 1517
~ 1595			2000.000	-2000.000	-2000.000	2000.000
1596			-71.89999	-71.89999	-62.70000	-62.70000
1597	PL	13	-286.0518	-286.0518	-290.2017	-290.2017
1598			2000.000	-2000.000	-2000.000	2000.000
1599			-76. 10001	-76. 10001	-71.89999	-71.89999
1600	PL	14	-320.2517	-320.2517	-311.2517	-311.2517
1601			2000.000	-2000.000	-2000.000	2000.000
1602			-51.95000	-51.95000	-36.25000	-36.25000
1603	PL	15	-316.6517	-316.6517	-320.2517	-320.2517
1604			2000.000	-2000.000	-2000.000	2000.000
1605			-61.8500 1	-61.85001	-51.95000	-51.95000
1606	PL	16	-323.0017	-323.0017	-309.7517	-309.7517
1607			2000.000	-2000.000	-2000.000	2000.000
1608			-67.45000	-67.45000	-55.50000	-55.50000
1609	PL	17	-317.3018	-317.3018	-323.0017	-323.0017
1610			2000.000	-2000.000	-2000.000	2000.000
1611			-82.55000	-82.55000	-67.45000	-67.45000
1612	PL	18	-288.7517	-288.7517	-317.3018	-317.3018
1613			2000.000	-2000.000	-2000.000	2000.000
1614			-78.64999	-78.64999	-82.55000	-82.55000
1615	PL	19	-418.7517	-418.7517	-381.6517	-384.6517
1616			2000.000	-2000.000	-2000.000	2000.000
1617			-132.6000	-132.6000	-132.6000	-132.6000
1618	PL	20	-345.8518	-345.8518	-340.3518	-340.3518
1619			2000.000	-2000.000	-2000.000	2000.000
1620			-124.1000	-124. 1000	-126.2500	-126.2500
1621	PL	21	-384.6517	-384.6517	-345.8518	-345.8518
1622			2000.000	-2000.000	-2000.000	2000.000
1623			-132.6000	-132.6000	-124.1000	-124.1000
1624	PL	22	-413.1117	-413.1117	-413.5117	-413.5117

$\bigcirc 0_{0}$


```
5.2 Overlayed Plots of Unbelted Occupant Restrained BY Simulated Steering Column. The data set used for this run is the DEMODAT data set which is included on release tapes of the MVMA 2-D model. The run was made with Field 2 of Card 101 set to -10 . and the run duration set to 0 to 80 msec. Four different PLOTCS runs were made with this hold file. The first plot uses the same scale as the plots of the last subsection. The second plot shows a plot region 20 cm smaller and illustrates that the plot axes are adjusted to the proper length for the user-specified region and that the plot is centered while maintaining at least the user-specified left margin. The final two plots illustrate an option for plotting all times in one plot to give an indication of movement.
```


ori

- -i00- $=0.0$
DEMODAT. SML (2000)

$\stackrel{n}{0}$
Σ

OVERLAY.P(2000) CCid=SXA3 on

$$
--000=00
$$

[^8]N
$800000000 \quad 00000$
00
1.0000000

0.00

[^9]σ
の

END OF ALL PLOTS, TOTAL NUMBER =
$\stackrel{5}{5}$

$$
-\frac{10}{1}
$$

$$
\begin{array}{ll}
0 & - \\
0 & - \\
\hline & -
\end{array}
$$

$$
\begin{aligned}
& \stackrel{9}{0} \\
& \stackrel{0}{0}-0.0
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 0
\end{aligned}
$$

$$
0-\frac{n}{\square}
$$

(s)

$$
\bar{\circ} \quad-
$$

5.3 Unbelted Occupant Restrained by Simple Airbag.

This data set is for PLOTCS plots for an MVMA 2-D run with the simple Airbag Submodel. Field 2 of Card 101 is set to -20 . and the run duration is set to 0 to 80 msec . This also illustrates the use of the zero plot time increment to plot all data in the PLOTCS hold file.
$\stackrel{10}{6}$
\sum_{3}
¢
$-\hat{0}$
0
0
\vdots
\vdots
\vdots
$-{ }_{-0}^{0}$
$\stackrel{\circ}{\circ}$
ì
$0-\frac{10}{-}$
in
-
$-\infty \quad$ - \quad -

- $-000-=00$
bagoata.ap

X-Z VIEW
0.0 MSEC
fage st-45 8 -D cVs VG.O. Aug EXAMPLE "MODROS" AIRBAG DATA SET FOR MVMA $2-D$ CVS: UNVALISATED DATA HEC 14. 198806:O4:51 STICK FIGURE PRINTER PLOT FRAME FOR TIME $=$ O.O MSEC.

END OF TIME PLOT NO. 1
END OF TIME PLOT NO.
MISSING TIME STEP INFORMATION ON PLOTCS HOLD FILE.
END OF ALL PLOTS, TOTAL NUMBER $=6$
$\mathrm{x}-\mathrm{Z}$ VIEW
GO.OMSEC

X-Z VIEW
80.0 MSEC

5.4 Occupant Restrained by Shoulder Belt System With. Belt Extension Through Fixed Ring. In this MVMA 2-D run, Field 2 of Card 101 was set to -1 . and the run time duration was set to 0 to 2 msec . This PLOTCS run illustrates the user's control over the size of symbols, the alternate filled-circle representation for joints, and an alternate representation of belts.

```
    \(\varnothing\)
\(\sum\)
on
1989 for CCid=SXA3
\(\begin{array}{lllll}1 & -1-1-1 & 0 & 0 & 1 \\ .05 & .15 & & .07\end{array}\)
6.
○
\(0-\frac{n}{2}\)
-
\(\overline{-\infty} \quad \stackrel{\infty}{\square}\)
- Noó- =0
\(-\frac{\stackrel{n}{n}}{-} \cdot \operatorname{con} n\)
VIEW
```


ㅅNNONOCNONONO

$\stackrel{3}{3} \underset{\substack{3 \\ 2}}{\substack{3}}$ $X-Z$ 0.0

5.5 MVMA 2-D Tutorial Example Data Set No. 1 (1977) in English Units. The data set used for this run is the ENGLISH data set which is included on release tapes of the MVMA $2-D$ model. Ten different PLOTCS data sets are presented here, together with corresponding plots, to illustrate use of the first five PLOTCS control switches and their results. [Note: It will be seen that while the ENGLISH data set and the data used for PLOTCS are in English units, plot axes are labeled "CM". Provision has not been made in PLOTCS for "INCH" labeling because it is thought that all current (and anticipated) use of MVMA 2-D is in metric system units.]

X-Z VIEW
0.0 MSEC

PLOT	StART TIM	me (msec)	O. 0
PLOT	end time	(MSEC)	20.0000
PLOT	INTERVAL	(MSEC)	20.0000
Plotting parameters			
PLDT	*		1
OR	GNRM :	0.0	0.0
FOR	WRD :	1.0000	0.0
GAU	UCHE:	0.0	-1.0000
	UP:	0.0	0.0
PLOT	x ORIGIN	(IN)	0.50
PLOT	z ORIGIN	(IN)	0.50
PLOT	x LENGTH	(IN)	11.00
PLOT	z LENGTH	(IN)	8.50
AXIS	x ORIGIN	(IN)	1.30
AXIS	2 ORIGIN	(IN)	0.75
AXIS	x Length	(IN)	8.40
AXIS	z Length	(IN)	7.00
VIEWING SYstem parameters			
Pos'N	ORIGIN \times	(IN)	0.0
Pos'N	ORIGIN	2. (IN)	-5.00
MAXI	mum X (IN)		60.00
MAXI	Mum Z (iN)		50.00
ELLIP	SE Step fad	factor	5.00

$800000000 \quad 0000$
\cdots
~

VIEW 1
0.0
1.0000000
0.0

end of time plot no.

end of time plot no.

END OF ALL PLOTS, TOTAL NUMBER $=$
N
$\stackrel{5}{6}$

$\begin{array}{ll}1 & - \\ 0 & 1 \\ & 0\end{array}$

0	
∞	0
	0

$\stackrel{\circ}{-}$
-

$\stackrel{-}{\because}$

4


```
    045
    -0
on
Cid=S\timesA3
-0.0
\vdots
0-% in
```



```
--800-=0% +
~
```


$\frac{5}{8}$ 1989 for CCid=SXA3 on UM
 -

- -

4

.045

\sum_{0}^{15}
$-\hat{O}$
on JAN 15, 1989 for CCid= SXA3 on UM
$-\frac{n}{1}$
$\frac{1}{1}$
-0.0
\vdots
0
\div
ค
.08
.10
$\stackrel{n}{\infty} \times \stackrel{n}{1}$ -
-
-
-

6.0 References

1. Bowman, B. M., and Bennett, R. O., MVMA Two-Dimensional Crash Victim Simulation, Version 6. UMTRI-88-23,1,2,3. 3 vol., 980 p. University of Michigan Transportation Research Institute, June 1988.
2. Fleck, J. T., Butler, F. E., and Vogel, S. L., An Improved Three-Dimensional Computer Simulation of Vehicle Crash Victims. Report No. DOT HS-801 507,508,509,510. Calspan Corporation, April 1975.

Appendix A. PLOTCS HOLD FILE RECORD LAYOUTS

Three-dimensional data is stored in the PLOTCS Hold File in appropriate character representation (ASCII/EBCDIC/ etc) using the formats described in this Appendix. This hold file contains a complete description of the three-dimensional configuration at a number of specified discrete time points within the time interval of interest.

This hold file is organized into two parts: the specification of those quantities which do not change as a function of time (this part occurs first), and the specification at each recorded time for those quantities which do change as a function of time. This Appendix is organized in the same manner.

The specification of all these quantities is organized in terms of a number of coordinate systems called "general segment systems." The conventions for presenting these coordinate systems to the PLOTCS program are presented in Table A-1.

Table A-1. Coordinate System Ordering Required

1	to NSEG
NSEG +1 to NVEH	User-specified Systems Vehicle Systems (of which the
NVEH +1 to NVEH + NBAG	last is the principal vehicle)
Airbag Systems	
NGRD $=$ NVEH + NBAG +1	Inertial System

Note: Each of the variable names used in Table A-1 and A-2 are defined in Table A-4.

PLOTCS recognizes ellipsoids used to represent several different physical elements in the three-dimensional configuration. Table A-2 presents the ordering conventions for groups of the various kinds of ellipsoids.

Table A-2. Ellipsoid Ordering Required

| 1 | to IPANPT |
| :--- | :--- | | Fixed axis length ellipsoids |
| :--- |
| controlled by inputted switch |

Table A-4 makes use of several record numbering conventions. Certain variable names occur in record number expressions. The meanings of these variable names are presented in Table A-3. This Appendix organizes the layout specifications in terms of groups of records called "sections". Each section is replicated as necessary for the complete description of the three-dimensional configuration and is limited as stated within the section.

Table A-3. Variable Names Used in Record Number Expressions

Symbol	Description Record number of the last record of the last replication of the last section previous to the current section.
$m \quad$Current count index for the current section whose limits are defined at the beginning and end of the description of the current section.	
$J \quad$Number of replications for the current section.	

Note: Each of these variables take on appropriate values for each different section. Square brackets in an expression indicate integer arithmetic is used.

Table A-4. Layout of PLOTCS Hold File (1 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (1 of 12)

Columns	Item and	d Description
01-08	Record	File Identifier: "1PLOTCS "
09-14	NOABPN:	Number of airbag panel ellipsoids
15-20	IPANPT:	Base index of airbag panel ellipsoids among all ellipsoids
21-26	NSEG:	Total no. of user-specified coordinate systems (min 0; max 98)
27-32	NJNT :	Total no. of joints (connections between segments by relating a fixed point w.r.t. one system to a fixed point w.r.t. the other system) (min 0; max 97)
33-38	NBLT :	Total no. of belts (min 0; max 18)
39-44	NRING:	Total no. of rings (min 0; max 2)
45-50	NBAG :	Total no. of ellisoidal airbag outlines (variable-sized ellipsoids) (min 0; max 98)

Table A-4. Layout of PLOTCS Hold File (2 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (2 of 12)

RECORD 2 -- Title Record 1
Columns Description

01-08	Record Identifier: " TITLE "
09-80	HTITLE(1-18), Model Run Title

```
Table A-4. Layout of PLOTCS Hold File (3 of
```

PART 1: TIME INVARIANT RECORD LAYOUTS (3 of12)

```
```

RECORD 3 -- Title Record 2
Columns Description
01-12 Record Identifier: " SUBTITLE "
13-80 STITLE(1-17), Model Run Subtitle, Part 1

```
RECORD 4 -- Title Record 3
Columns Description
    01-08 Blanks
    05-80 STITLE(18-35), Model Run Subtitle, Part 2
RECORD 5 -- Title Record 4
Columns Description
01-16 Record Identifier: " DATE,TIME, JOB "
17-28 DATE(1-3), Model Run Date
29-40 Blanks
    41-48 TIMDAY(1-2), Model Run Time of Day
    49-60 Blanks
    61-68 NAMJOB(1-2), Model Run Job Name or Account
    61-80 Blanks

Table A-4. Layout of PLOTCS Hold File (4 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (4 of 12)


Table A-4. Layout of PLOTCS Hold File (5 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (5 of 12)
```

BELT SECTION OF RECORDS (2 of 2):
RECORD 3*m+4 -- Belt Endpoint AA Relative Position
Columns Description
01-12 Blanks

13-29	$\operatorname{BBELT}(1, m)$
30-46	$\operatorname{BBELT}(2, m)$
$47-63$	$\operatorname{BBELT}(3, m)$

```
RECORD 3*m+5 -- Belt Endpoint AB Relative Position
Columns Description
01-12 Blanks
\begin{tabular}{|c|c|c|}
\hline 13-29 & \(\operatorname{BBELT}(4, \mathrm{~m})\) | & ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) ) of Endpoint AB which is fixed \\
\hline 30-46 & \(\operatorname{BBELT}(5, \mathrm{~m})\) | & \\
\hline & & w.r.t. system no. KBLT( \(3, m\) ) \\
\hline 47-63 & BBELT ( 6 ,m) & \\
\hline
\end{tabular}

Table A-4. Layout of PLOTCS Hold File ( 6 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (6 of 12)
```

PARALLELOGRAM SECTION OF RECORDS:
(This section of one record occurs exactly
J = [NPL + 2] / 3 times.)
RECORD k+m -- Parallelogram Plane Title Typical Record

```

Columns
01 to 07
08 to 11
12 to 12
13 to 32

33 to 35
36 to 36
37 to 56

57 to 59
60 to 60
61 to 80

\section*{Description}

Record Identifier: " PLANES"
Number of first plane for record ( \(b=3 * m-2\) )
Blank
PLTTL(1-5,b), Title for bth parallelogram planar surface

Number of second plane for record ( \(b+1\) )
Blank
PLTTL( \(1-5, b+1)\), Title for ( \(b+1\) )st parallelogram planar surface

Number of third plane for record ( \(b+2\) )
Blank
\(\operatorname{PLTTL}(1-5, b+2)\), Title for ( \(b+2\) ) nd parallelogram planar surface
```

where m = 1, J

```

Table A-4. Layout of PLOTCS Hold File (7 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (7 of 12)
```

BAG SECTION OF RECORDS:
(This section is exactly similar to the
parallelogram section above.)
(This section of one record occurs exactly
J = [NBAG + 2] / 3 times.)
RECORD k+m -- Airbag Plane Title Typical Record

```

Columns
01 to 07
08 to 11
12 to 12
13 to 32
33 to 35
36 to 36
37 to 56
57 to 59
60 to 60
61 to 80

\section*{Description}

Record Identifier:" AIRBAG"
Number of first airbag for record (b=3*m-2)
Blank
BAGTTL(1-5,b), Title for bth airbag
Number of second airbag for record \((b+1)\)
Blank
BAGTTL(1-5,b+1), Title for (b+1)st airbag
Number of third airbag for record (b+2)
Blank
BAGTTL(1-5,b+2), Title for (b+2)nd airbag
```

 where m = 1 to J
    ```

Table A-4. Layout of PLOTCS Hold File (8 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (8 of 12)
```

GENERAL SEGMENT COORDINATE SYSTEM SECTION OF RECORDS:
(This section of one record occurs exactly
J = [NGRD+1] / 2 times.)
RECORD k+m -- Coordinate System Designation Typical Record
Columns Description
0 1 ~ t o ~ 0 5 ~ R e c o r d ~ I d e n t i f i e r : ~ " ~ G S E G " ~
0 6 ~ t o ~ 0 9 ~ N u m b e r ~ o f ~ f i r s t ~ s e g m e n t ~ s y s t e m ~ f o r ~ r e c o r d ~ (b = 2 * m - 1)
10 to 10 Blank
1 1 to 11 CGS(b), 1 character plot symbol for system
12 to 13 Blanks
14 to 17 SEG(b), 4 character abbreviation for segment system
18 to 20 Blanks
21 to 40 SEGTTL(1-5,b), 20 character title for segment
system
41 to 46 Blanks
47 to 49 Number of second segment system for record (b+1)
50 to 50 Blank
51 to 51 CGS(b+1), 1 character plot symbol for system
52 to 53 Blanks
54 to 57 SEG(b+1), 4 character abbrev. for segment system
58 to 60 Blanks
61 to 80 SEGTTL(1-5,b+1), 20 character title for segment
system
where m = 1, J

```

Table A-4. Layout of PLOTCS Hold file (9 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (9 of 12)

ELLIPSOIDAL SECTION OF RECORDS (1 of 2):
(This section of four records occurs exactly J=NELP times.)


Table A-4. Layout of PLOTCS Hold File (10 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (10 of 12)

ELLIPSOIDAL SECTION OF RECORDS (2 of 2):


RECORD k+4*m -- Ellipsoid Attachment Position
\begin{tabular}{ll} 
Columns & Description \\
01 to 12 & \(\operatorname{Blanks}\) \\
13 to 29 & \(\operatorname{BD}(3, m)\), Semiaxis length along ellipsoid z-axis \\
30 to 46 & \(\operatorname{SOFT}(1, m)\) \\
47 to 63 & \(\operatorname{SOFT}(2, m)\) \\
64 to 80 & (X,Y, \(Z)\) of Ellipsoid Center \\
for \(m=1\) to \(\operatorname{NELP}\)
\end{tabular}

Table A-4. Layout of PLOTCS Hold File (11 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (11 of 12)


Note: INECK is specified to be the Joint Number from columns 08 through 12 for the neck joint.

Table A-4. Layout of PLOTCS Hold File (12 of 19)
PART 1: TIME INVARIANT RECORD LAYOUTS (12 of 12)
```

JOINT SECTION OF RECORDS (2 of 2):

```

RECORD k+2*m -- Joint Position
Columns Description
01 to 29 Blanks
30 to \(46 \quad \operatorname{POSJNT}(1,2, \mathrm{~m}) \mid\)
47 to \(63 \quad \operatorname{POSJNT}(2,2, \mathrm{~m})\)
64 to \(80 \quad \operatorname{POSJNT}(3,2, \mathrm{~m}) \mid\)
(X, Y, Z) of joint point specified w.r.t. coordinate system n2
```

for m = 1 to NJNT

```

Note: If either/both system's joint point is not coincident with that system's origin and/or the two system's joint points are not coincident, then a line is drawn between them. Each joint will produce \(0,1,2\), or 3 lines.

Table A-4. Layout of PLOTCS Hold File (13 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (1 of 7)

> Note: (All the applicable records occurring in Part 1 are written in the hold file followed by all the applicable records occurring in this part for each time point that is to be recorded in ascending order of time.)

RECORD k+1 -- Specification of Time for This Set of Time Variant Record

Columns
01 to 10 Record Identifier, "OFOR TIME="
11 to 27 Model simulated time at which the following values were effective.

COORDINATE SYSTEM SECTION OF RECORDS:
(This section of four records occurs exactly \(J=N G R D\) times. \(k\) for this section of records is the same as it was for the first (previous) record for this set of time variant records.)

RECORD k+4*m-2 -- Coordinate System Origin Position
\begin{tabular}{ll} 
Columns & Description \\
01 to 05 & Record Identifier, " SEG " \\
06 to 10 & Coordinate System Number \\
11 to 27 & \(\operatorname{SEGLP}(1, \mathrm{~m})\) \\
28 to 44 & \(\operatorname{SEGLP}(2, \mathrm{~m})\) \\
\begin{tabular}{l} 
(X,Y, Z) of coordinate \\
system origin
\end{tabular} \\
45 to 61 & \(\operatorname{SEGLP}(3, \mathrm{~m})\)
\end{tabular}

Table A-4. Layout of PLOTCS Hold File (14 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (2 of 7)
(One set of these cards is needed for each recorded time.)


RECORD k+4*m+1 -- Coordinate System Orientation Matrix Row 3
Columns Description

01 to 10 Blanks
11 to \(27 \quad D(3,1, m) \mid\)
Coordinate System Direction Cosine
28 to 44 Orientation Matrix, Row 3 w.r.t. Inertial System

Table A-4. Layout of PLOTCS Hold File (15 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (3 of 7)
(One set of these cards is needed for each recorded time.)

PLANAR PARALLELOGRAM SECTION OF RECORDS (1 of 2): (This section of three records occurs exactly J=NPL times.)

RECORD k+3m-2 -- Corner Point X-Coordinates
\begin{tabular}{|c|c|}
\hline Columns & Description \\
\hline 01 to 03 & Record Identifier, " PL" \\
\hline 04 to 08 & Parallelogram Number (m) \\
\hline 09 to 12 & Blanks \\
\hline 13 to 29 & PPLTS(1,1,m), Corner Point 1 X-coordinate (w.r.t. inertial system) \\
\hline 30 to 46 & PPLTS(2,1,m), Corner Point 2 (Clockwise Adjacent to Corner 1) X-coordinate (w.r.t. inertial system) \\
\hline 47 to 63 & ```
PPLTS(3,1,m), Corner Point 3 (Clockwise Adjacent
    to Corner 2) X-coordinate
    (w.r.t. inertial system)
``` \\
\hline 64 to 80 & ```
PPLTS(4,1,m), Corner Point 4 (Clockwise Adjacent
 to Corner 3) X-coordinate
 (w.r.t. inertial system)
``` \\
\hline
\end{tabular}

RECORD k+3m-1 -- Corner Point Y-Coordinates

\section*{Columns}

\section*{Description}

01 to 12

13 to 29

30 to 46
47 to 63

64 to 80

Blanks

PPLTS(1,2,m), Corner Point 1 Y-coordinate PPLTS(2,2,m), Corner Point 2 Y-coordinate PPLTS(3,2,m), Corner Point \(3 Y\)-coordinate PPLTS(4,2,m), Corner Point \(4 Y\)-coordinate

Table A－4．Layout of PLOTCS Hold File（16 of 19）
PART 2：TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME（4 of 7）
```

PLANAR PARALLELOGRAM SECTION OF RECORDS (2 of 2):

```
RECORD k+3m -- Corner Point Z-Coordinates
    Columns Description
    01 to 12 Blanks
    13 to 29 PPLTS(1,3,m), Coェュさ? Point 1 Z-coordinate
    30 to 46 PPLTS (2,3,m), Corner Point 2 Z-coordinate
    47 to 63 PPLTS (3,3,m), Corner Point 3 Z-coordinate
    64 to \(80 \quad\) PPLTS \((4,3, \mathrm{~m})\), Corner Point 4 2-coordinate
        for \(m=1\), to NPL
RING SECTION OF RECORDS:
(This section of one record occurs exactly J=NRING times.)
RECORD k+m -- Ring Position

Columns
01 to 06
07 to 12
13 to 20
21 to 40
41 to 60
61 to 80 for \(m=1\) to NRING

Table A-4. Layout of PLOTCS Hold File (17 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (5 of 7) (One set of these cards is needed for each recorded time.)

BELT SECTION OF RECORDS:
(This section of two records occurs exactly J=NBLT times.)

RECORD \(k+2 * m-1\)-- Time Variant Belt Endpoint TA Position
\begin{tabular}{ll} 
Columns & Description \\
00 to 04 & Record Identifier, "BLT" \\
05 to 09 & Belt Number (m) \\
10 to 20 & Blanks \\
21 to 40 & \(\operatorname{TTPTS}(1, \mathrm{~m})\) \\
41 to 60 & \(\operatorname{TTPTS}(2, \mathrm{~m})\) \\
61 to 80 & \(\operatorname{TPPTS}(3, \mathrm{~m})\)
\end{tabular}

RECORD k+2*m -- Time Variant Belt Endpoint B Position

Columns
01 to 20
\begin{tabular}{ll}
21 to 40 & \(\operatorname{TTPTS}(4, \mathrm{~m}) \mid\) \\
41 to 60 & \(\operatorname{TTPTS}(5, \mathrm{~m})\) \\
61 to 80 & \(\operatorname{TPPTS}(6, \mathrm{~m})\)
\end{tabular}

Description
Blanks
\(\operatorname{TTPTS}(4, \mathrm{~m}) \mid\)
(X, Y, Z) of Endpoint TB
fixed w.r.t. KBLT(5,m) system

Table A-4. Layout of PLOTCS Hold File (18 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME ( 6 of 7) (One set of these cards is needed for each recorded time.)
```

AIRBAG SECTION OF RECORDS:
(This section occurs only if NBAG > O and consists
of exactly J=NBAG records.)
RECORD k+m -- Time Variant Airbag Outline Ellipsoid Semiaxes

```

Columns

01 to 04

05 to 09

10 to 20

21 to 40

41 to 60

61 to 80

\section*{Description}

Record Identifier, " BAG"
Airbag Number (m)
Blanks
\(B D(1, m)\). Airbag Outline Semiaxis in Airbag X-direction
\(B D(2, m)\), Airbag Outline Semiaxis in Airbag Y-direction
\(B D(3, m)\), Airbag Outline Semiaxis in Airbag Z-direction
```

 for m = 1 to NBAG
    ```
```

 for m = 1 to NBAG
    ```

Table A-4. Layout of PLOTCS Hold File (19 of 19)
PART 2: TIME VARIANT RECORD LAYOUTS FOR TYPICAL TIME (7 of 7) (One set of these cards is needed for each recorded time.)
```

SPECIAL POINTS SECTION OF RECORDS:
(This section occurs only if MODSPG > O and consists
of one card with MODSPG fields followed by one record
for each special point specified on the first card.)
RECORD k+1 -- Group Layout Card for Special Points
Columns Description
0 1 to 08 Record Identifier, "OGROUPS ".
6j+3 to 6j+8 NSPTGP(j), Number of points in group j (>=0).
for j = 1, MODSPG
RECORD k+m+1 -- Time Variant Special Points to Connect in Groups
(There are exactly MODSPP of these cards where
MODSPP is the sum of NSPTGP(j),j=1,MODSPG.)
Columns Description
0 1 to 08 Record Identifier, " SPC PTS".
0 9 ~ t o ~ 1 2 ~ j , ~ G r o u p ~ n u m b e r ~ (1 ~ t o ~ M O D S P G) .
13 to 16 Point number (1 to NSPTGP(j)).
1 7 to 20 General segment attachment number (1 to NGRD).
2 1 to 40 X-coordinate of current special point.
4 1 to 60 Y-coordinate of current special point.
6 1 ~ t o ~ 8 0 ~ Z - c o o r d i n a t e ~ o f ~ c u r r e n t ~ s p e c i a l ~ p o i n t .
for m = 1, MODSPP
Note: Groups of special points can be specified here and also in the control card input. The total of all groups from both sources (INPSGP+MODSGP) cannot exceed 50, and the total of all points in all these groups (INPSPP+MODSPP) cannot exceed 400.

```

Appendix B. Dependence of PLOTCS on the Standard CALCOMP Plot System Subroutines

This Appendix deals with the use of hardware/systemdependent plot routines within the PLOTCS program. The usage of such routines is organized in two levels. The first level is identified as the PLOTCS Plot Interface. Routines at this level call routines at the second level, namely, the Standard CALCOMP Plot System Subroutines (which on MTS at the University of Michigan are also an interface to the local plotting system). The purpose of this appendix is to describe both the routines of the PLOTCS Plot Interface and those of the Standard CALCOMP Plot System Subroutines which are used by the PLOTCS Plot Interface.

Installation of PLOTCS on a system which makes use of a non-CALCOMP plotting package will generally be accomplished by changing the routines of the PLOTCS Plot Interface to call the routines of the local plotting system. The information in this Appendix should expedite these necessary changes in the PLOTCS Plot Interface.

The PLOTCS Plot Interface consists of eight subroutines, each with one or two plotting functions. Three of these routines are accomplished in terms of other routines of the PLOTCS Plot Interface. They are included here in case it is easier for the installer to call some of his own more advanced routines directly. Tables B-1 through B-8 describe each of the eight subroutines and detail their use within PLOTCS. Tables B-9 through B-12 present descriptions of the four Standard CALCOMP Subroutines needed by the PLOTCS Plot Interface as found in MTS Volume 11 for the Michigan Terminal System.

Table B-1. Subroutine VPLOT
Purpose: This subroutine performs appropriate coordinate conversions, restricts drawing to the user-specified plot area, and calls lower level plotting functions. The two plotting functions used in PLOTCS are moving the plotting pen to a particular location with the plotting pen up or with the plotting pen down.

Fortran call: VPLOT(JR, X, Y, Z, IFUN, ISYS)
Arguments:
JR Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
\(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) Location to which to move the plotting pen. If ISYS \(=0\), this is the three-dimensional location in the PLOTCS Plot Space system.
If ISYS \(=1\), this is the two-dimensional location on the plotting paper; \(Y\) is ignored.

IFUN Plotting Function Indicator If \(I F U N=0\), do no plotting function and return after any needed coordinate conversion. If \(I F U N=2\), draw with pen down within the plotting area only. If IFUN \(=3\), muve with pen up within the plotting area only.

ISYS Location Dependence Indicator (see above).

\section*{Discussion:}

VPLOT always remembers its last call and computes the appropriate edge point for any destination outside the plot area. If any function lies entirely outside the plot area, it is ignored except for its effects on the next function. The use of VPLOT for conversion purposes has almost entirely been replaced by calls to a newer routine, CONVRT. This routine is completely parallel to ZDBPLT as far as plot function is concerned. The difference is that this routine accommodates to the plot area while ZDBPLT is absolute.

Table B-2 Subroutine 2DBAXS
Purpose: To draw a single axis with numbering and a title.
Fortran call: ZDBAXS(X, Z, C, N, AXL, ANG, V1ST, VDEL, SCALE)
Arguments:
\(\mathrm{X}, \mathrm{Z}\) Location of origin of the axis on the plot. (inches)

C A character array containing the axis title.
\(N \quad\) Magnitude is the number of characters in the axis title. Sign is positive if all labeling is placed on the counterclockwise side of the axis. Sign is negative if all labeling is placed on the clockwise side of the axis.

AXL Length of the axis. (inches)
ANG Counterclockwise angle of the axis from the horizontal at its origin. (degrees)

V1ST Value to be plotted at the axis origin.
VDEL Increment in value at each tick mark.
SCALE Scale factor for value per plot inch.
Discussion:
This subroutine is written in terms of ZDBNUM, ZDBPLT, and ZDBSYM.
```

 Table B-3 Subroutine 2DBBEG
 Purpose: Initializes the plot.
Fortran call: ZDBBEG(JJROUT)
Arguments:
JJROUT Calling Purpose Indicator for use in producing
auxiliary or debugging printout when that is
required.
Discussion:
This subroutine makes use of subroutine PLOTS.

```

\section*{Table B-4 Subroutine 2DBCRV}

Purpose: Draws a curve with a broken line specified by pairs of data values in two arrays. Curve is restricted to the plot area.

Fortran call: \(\operatorname{ZDBCRV}(X, Z, N U M)\)
Arguments:
\(\mathrm{X}, \mathrm{Z}\) Two arrays containing the locations of endpoints of the broken line on the plot.

NUM Number of endpoints to be plotted.
Discussion:
This subroutine uses VPLOT to carry out its function.

Table B-5 Subroutine ZDBEND
Purpose: Terminates a plot or all plotting and prints an advisory message in the printed output.

Fortran call: ZDBEND(I, NUM)
Arguments:
I Function indicator.
If \(I=0\), end current plot.
If \(I=1\), end all plotting.
NUM Number of current plot or all plots to be included in advisory message.

Discussion:
This subroutine uses ZDBPLT. In other systems, this subroutine will likely call two different subroutine and not subroutine ZDBPLT.

Table B-6 Subroutine 2DBNUM
Purpose: Draws a number.
Fortran call: ZDBNUM(JJROUT, X, Z, H, V, A, N)
Arguments:
JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
 of number on plot area. (inches)

H Height of each digit for plotting. (inches)
\(v \quad\) Value to be plotted.
A Orientation angle from horizontal. (degrees)
\(N \quad\) Indicator for number of digits to the right of the decimal point.

Discussion:
This subroutine calls subroutine NUMBER to do its task. The option for N which is presented above is the only one used by PLOTCS. Other options are presented in Table B-9.

\section*{Table B-7 Subroutine 2DBPLT}

Purpose: Move plotting pen either up or down.
Fortran call: ZDBPLT(JJROUT, X, Z, N)
Arguments:
JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.
\(\mathrm{X}, \mathrm{Z}\) Location in plot area to which the pen is to be moved. (inches)
\(\mathrm{N} \quad\) Function indicator. \(\mathrm{N}=2\) if to move with plotting pen down. \(\mathrm{N}=3\) if to move with plotting pen up.

Discussion:
This subroutine makes use of subroutine PLOT. It actually has all the functions of PLOT, but PLOTCS uses only the two above and plot termination. The other functions are not detailed here but can be found in Table B-10.

Table B-8 Subroutine ZDBSYM
Purpose: Draws a character string.
Fortran call: ZDBSYM(JJROUT, X, Z, H, C, A, N)
Arguments:
JJROUT Calling Purpose Indicator for use in producing auxiliary or debugging printout when that is required.

X, \(Z \quad\) Location in plot area at which the lower left corner of the first character is to be drawn. (inches)

V Character variable containing characters to be plotted.

A Orientation angle for characters plotted from horizontal. (degrees)
\(N \quad\) Number of characters to be plotted.
Discussion:
This subroutine uses subroutine SYMBOL. There are options to this subroutine which are not used by PLOTCS and are not explained here. In PLOTCS its only function is to plot a character string. See Table B-12 for other functions if they are of interest.

\title{
Table B-9. NUMBER Subroutine Description
}

\section*{aTS 11: Plot Description Systen}

August 1978

\section*{NOBBER}

Subroutine Description

Purpose: NOMBER draus a number.
Calling Sequence:
CALI NOMBER ( \(x, \eta\), height, fnum,angle, lfrac)
Paraneters:
\begin{tabular}{|c|c|}
\hline X.I & are the floating-point (REAL*4) coordinates of the lover-left corner of the first charac ter of the nuaber. \\
\hline height & is the floating-point (REAL*4) height of the \\
\hline & characters to be drava. \\
\hline fnum & is the floating-point (RELL*4) number to be \\
\hline & \begin{tabular}{l}
dravn. \\
is the floating-point (REAL*4) angle
\end{tabular} \\
\hline angle & is the floating-point (REAL*4) angle degrees at which the characters are dravi \\
\hline & degrees at vhich the characters are dravn. \\
\hline Iac & lfrac is a Eullvord integer (IETEGER*4) is if \\
\hline & lfrac is positive, it is the \\
\hline & to the right of the decial \\
\hline & maximu value is nine. If lfrac is zero, \\
\hline & nuaber is dravn without a fraction, but vit \\
\hline & decinal point. If lfzac is -1 , the decina \\
\hline & point is not dravn. If lfrac is less \\
\hline & -1, the lfrac-1 low-order digits \\
\hline & \\
\hline
\end{tabular}

Table B-10. PLOT Subroutine Description
ars 11: Plot Description Systea

Augus: 1978
plot
Subroutine Description

Purpose: PIOT moves the pen from its current position to the point (X,Y). PLO: way also be used to wove the origin or terminate the plot file.

Calling Sequence:
CALL PLOT (x,y,ic)
parameters:
\(\underline{X}, \mathcal{I}\) are the floatigg-point (REAL*4) coordinate values of the new pen position. \(\underline{z}\) and \(I\) may be either absolute or relative, depending on the value of IC.
ic is a fullvord integer (INTEGER*4) specifiing the function to be performed by plot. The values for ic are:

2 Draw (with the pen down) to the absolute coordinate ( \(\mathbf{X}, \mathbf{I}\) ).
3 Hove (vith the pen up) to the absolute coordinate ( \(x, Y\) ).
12 Drav (with the pen down) to the relative coordinate ( \(\mathrm{X}, \mathrm{I}\) ).
3 Bove (with the pen up) to the relative coordinate ( \(\mathrm{X}, \mathrm{I}\) ).
999 The pen is moved to the end of the plotting region and the plot is terminated. If the value of ic is aegative, the function specified by the absolute value of ic is performed. In addition, the new pen position becomes the origin of the absolnte coordinate syster.
```

Table B-11. PLOTS Subroutine Description
aTS 11: plot Description System
PLOTS
Subroutine Description
Purpose: PloTS initializes the plot.
Ca\iing Sequence:
CALI PLOTS
Descripiion: The PLOTS subrontine should be called before any other
plotting subroutines are called. It should be called only once.
111 arguments are ignored. Sone installations may require arguments to the pIOTS subroutine. The arguments required vary depending on the installation.

```

ETS 11: P10: Description Systea

August 1978

\section*{STMBOL}

Subroutine Description

Purpose: \(\quad\) SYMBOL dravs symbols.
Calling Sequence:
CALI SYMBOL (X,Y,height, char,angle, nC)
Parameters:


Description: Pour special control characters exist in the character set. These are backspace (heradecinal 11). carriage retura (heradeciaal 15), superscript (heradeciaal 2E), and sabscript (hexadeciaal 2F). Backspace backspaces over the previous character. Carriage rerura returas to the begiaaing of the line and spaces down by 1.5 \%height. If a superscript code is encountered in noraal text, succeeding characters are raised 0.7*height and are dravn vith a size of 0.5*heisht. a subscript code reverts to noraal placunent and size. Subscript positioning is sinilar to superscript positioning.

The following page defines the character set produced by SYMBOL.

Table B-12. SYMBOL Subroutine Description (2 of 2)

\section*{aTS 11: plot Description System}

August 1978

SYMBOL SET (HEX CODE : SYMBOL OR CONTROL
```


[^0]:

[^1]: かo

[^2]:

[^3]:

[^4]: a a a a

 岃
 茁
 出 $\quad \underset{\sim}{u}$

 「

[^5]:

[^6]:

[^7]:

[^8]: $\begin{array}{lc}\text { PLOT START TIME (MSEC) } & 0.0 \\ \text { PLOT END TIME (MSEC) } & 80.00 \bigcirc \bigcirc \\ \text { PLOT INTERVAL (MSEC) } & 10.00 C O\end{array}$
 Plotting parameters
 plot \#

[^9]: VIEW 1
 0.0
 1.0000000
 0.0

