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Abstract. There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent
for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate
homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK provides three
qualitatively different algorithms for tracking the homotopy zero curve: ordinary differential equation based, normal flow, and
augmented Jacobian matrix. Separate routines are also provided for dense and sparse Jacobian matrices. A high level driver is
included for the special case of polynomial systems.
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DESCRIPTION

Introduction. Homotopies are a traditional part of topology, and only recently have begun to be
used for practical numerical computation. The algorithms described here are known as probability
one globally convergent homotopy algorithms, which are related to, but distinct from, continuation,
parameter continuation, incremental loading, displacement incrementation, invariant imbedding,
and continuous Newton methods. These algorithms are also referred to as “continuous” methods,
to distinguish them from the simplicial homotopy methods, whose theoretical foundations date
back to the very origins of topology. The frameworks for fixed point and zero finding problems are
slightly different, so they will be discussed separately.

The fixed point problem will be considered first. Let B be the closed unit ball in n-dimensional
real Euclidean space E™, and let f: B — B be a C? map. Define p,: [0,1) x B — E" by

pa(A, 2) = Mz~ f(2)) + (1= A)(2 - ). (1)

The fundamental result [4] is that for almost all ¢ (in the sense of Lebesgue measure) in the interior
of B, there is a zero curve 4 C [0,1] X B of p,, along which the Jacobian matrix Dp,(),z) has
rank n, emanating from (0, a) and reaching a point (1, %), where Z is a fixed point of f. Thus with
probability one, picking a starting point ¢ € int B and following « leads to a fixed point Z of f.
This justifies the phrase “globally convergent with probability one”.
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The zero finding problem
F(z) =0, (2)

where F : E* — E™is a C* map, is more complicated. Suppose there exists a C* map
p:E™"x[0,1) x E"— E"
such that

1) the n X (m+ 1+ n) Jacobian matrix Dp(e, ), z) has rank n on the set

p710) ={(g,\,2) | a€ E™"0< A < 1,z€ E" p(a, ), z) =0},

and for any fixed ¢ € E™,
2) pa(0,2) = p(a,0,2) = 0 has a unique solution o,
3) pa(1,2) = F(a),
4) p;1(0) is bounded.

Then the supporting theory [4, 22, 26] says that for almost all a € E™ there exists a zero curve
7 of p,, along which the Jacobian matrix Dp, has rank n, emanating from (0, zo) and reaching a
zero T of F at A = 1. 4 does not intersect itself and is disjoint from any other zeros of p,. The
globally convergent algorithm is to pick ¢ € E™ (which uniquely determines 1), and then track the
homotopy zero curve 4. An obvious choice for p, is

pa(A,2) = AF(2) +(1-2) (2~ a). (3)

This satisfies properties 1)-3), but not necessarily 4). There are fairly general sufficient conditions
on F(z) so that (3) will satisfy property 4), but for some practical problems of interest the homotopy
map (3) will not suffice. This is why HOMPACK is designed to handle arbitrary homotopy maps
pa(A, 2) satisfying properties 1)—4).

A very special and common situation is when each component of the nonlinear function F(z)
is a polynomial in n variables. There is an elegant algorithm for this case which finds all solutions
of (2), real and complex, as well as solutions at infinity. HOMPACK provides an intelligent, easy
to use, high level driver for polynomial systems.

There are many different algorithms for tracking the zero curve v; HOMPACK supports three
such algorithms: ordinary differential equation based, normal flow, and augmented Jacobian matrix.
The ODE based algorithm was developed by Watson|21] in 1976, and is the basis for some of
the subroutines in HOMPACK. Sparse and dense Jacobian matrices require qualitatively different
algorithms, and the development of sparse homotopy algorithms[29] was a crucial advance. The
following sections describe the three curve tracking algorithms, their sparse matrix versions, and
the special polynomial system homotopy map.

Ordinary differential equation based algorithm (dense Jacobian matrix). Depending on the prob-
lem, the homotopy map p,(), z) may be given by (1), (3), or something else that is even nonlinear
in A. The details for these three cases are similar, so for the sake of brevity, only the zero finding
problem (2) with homotopy map (3) will be presented. Assuming that F(z) is C%, a is such that
the Jacobian matrix Dp,(), z) has full rank along +, and 7 is bounded, the zero curve v is C! and
can be parametrized by arc length s. Thus A = A(s), z= z(s) along ~, and

.

Pa(A(s), 2(s)) = 0 (4)
2



identically in s. Therefore

(00, 200) = D) ) (£ =0, )
dz
pr

=1 (6)

<d)\ dx)
ds’ ds g

A0)=0, z(0) =g, (7

the zero curve « is the trajectory of the initial value problem (5-7). When A(3) = 1, the corre-
sponding z(3) is a zero of F(z). Thus all the sophisticated ordinary differential equation techniques
currently available can be brought to bear on the problem of tracking v [18], [22].

With the initial conditions

Typical ordinary differential equation software requires (d)\/ds, dz/ds) explicitly, and (5), (6)
only implicitly define the derivative (d\/ds, dz/ds). (It might be possible to use an implicit ordinary
differential equation technique for (5-6), but that seems less efficient than the method proposed
here.) The derivative (d\/ds, dz/ds), which is a unit tangent vector to the zero curve 7, can be
calculated by finding the one-dimensional kernel of the n X (n + 1) Jacobian matrix

Dpa(A(s), 2(s)),

which has full rank according to the theory [22]. It is here that a substantial amount of computation
is incurred, and it is imperative that the number of derivative evaluations be kept small. Once
the kernel has been calculated, the derivative (d\/ds, dz/ds) is uniquely determined by (6) and
continuity. Complete details for solving the initial value problem (5-7) and obtaining z(3) are in
[21] and [22]. A discussion of the kernel computation follows.

The Jacobian matrix Dp, is nx (n+1) with (theoretical) rank n. The crucial observation is that
the last n columns of Dp,, corresponding to D,p,, may not have rank n, and even if they do, some
other n columns may be better conditioned. The objective is to avoid choosing n “distinguished”
columns, rather to treat all columns the same (not possible for sparse matrices). Kubicek|11]
and Mejia[14] have kernel finding algorithms based on Gaussian elimination and n distinguished
columns. Choosing and switching these n columns is tricky, and based on ad hoc parameters. Also,
computational experience has shown that accurate tangent vectors (d\/ds, dz/ds) are essential, and
the accuracy of Gaussian elimination may not be good enough. A conceptually elegant, as well as
accurate, algorithm is to compute the QR factorization with column interchanges [3] of Dp,,

k¥ oeee k%
QDp, P'Pz = .o+ | Pz=0,
0 EIE

where @ is a product of Householder reflections and P is a permutation matrix, and then obtain a
vector z € ker Dp, by back substitution. Setting (P2)n+1 = 1 is a convenient choice. This scheme
provides high accuracy, numerical stability, and a uniform treatment of all n+ 1 columns. Finally,

d\ dz 2z
(‘dz’ :r) =Tl
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where the sign is chosen to maintain an acute angle with the previous tangent vector on «. There
is a rigorous mathematical criterion, based on a (n+ 1) X (n + 1) determinant, for choosing the
sign, but there is no reason to believe that would be more robust than the angle criterion.

Several features which are a combination of common sense and computational experience should
be incorporated into the algorithm. Since most ordinary differential equation solvers only control
the local error, the longer the arc length of the zero curve v gets, the farther away the computed
points may be from the true curve 4. Therefore when the arc length gets too long, the last computed

point (A, ) is used to calculate

__AF@)+(1-))z
o= T . (8)

Then p3(, Z) = 0 exactly, and the zero curve of p3(}, z) is followed starting from (), Z). A rigorous
justification for this strategy was given in [22].

Remember that tracking o was merely a means to an end, namely a zero Z of F(z). Since v
itself is of no interest (usually), one should not waste computational effort following it too closely.
However, since 4 is the only sure way to %, losing v can be disastrous [22]. HOMPACK estimates
the curvature of each component of 7 using finite differences, and reduces the tolerance used by the
ordinary differential equation solver whenever the estimated curvature exceeds some threshold. The
tradeoff between computational efficiency and reliability is very delicate, and a fool-proof strategy
appears difficult to achieve. This is the reason HOMPACK provides several algorithms; no single
algorithm is superior overall, and each of the three beats the other two (sometimes by an order of
magnitude) on particular problems.

In summary, the algorithm is:

1. Set s: =0, y : = (0,a), ypold : = yp : = (1,0,...,0), restart : = false, error : = initial error
tolerance for the ODE solver.

2. If y; < 0 then go to 23.
3. If s> some constant then
4, s:=0.

5. Compute a new vector a from (8). If
lnew a —old a|| > 1+ constant * ||old qf],
then go to 23.

ode error : = error.

. If ||lyp — ypold||oo > (last arc length step) # constant, then ode error : = tolerance < error.

ypold : = yp.

© »®» =N o

Take a step along the trajectory of (5-7) with the ODE solver. yp = y'(s) is computed for the
ODE solver by 10-12:

10. Find a vector zin the kernel of Dp,(y) using Householder reflections.
11. If Zypold < 0, then z: = —2.

12. yp:=2/||2||.



13. If the ODE solver returns an error code, then go to 23.

14. If y; < 0.99, then go to 2.

15. If restart = true, then go to 20.

16. restart : = true.

17. error : = final accuracy desired.

18. If y; > 1, then set (s, y) back to the previous point (where y; < 1).
19. Go to 4.

20. If y; < 1 then go to. 2.

21. Obtain the zero (at y; = 1) by interpolating mesh points used by the ODE solver.
22. Normal return.

23. Error return.

Ordinary differential equation based algorithm (sparse Jacobian matrix). Large nonlinear systems
of equations with sparse symmetric Jacobian matrices occur in many engineering disciplines, and
each class of problems has special characteristics. Nonlinear structural mechanics problems (see
references 19-23, 26, 29, 36, 37, 42, 76, 78, 80 in [31]) will be considered here, because they are
representative of many problems outside structural mechanics, and yet have enough special features
to admit efficient solution. As in the previous section, the fixed point and general cases are similar
to the zero finding case, so only the latter is described here. For technical reasons it is preferable
to write the homotopy map in (3) as

pa(z,A)

with the order of the arguments reversed (this is an internal matter to HOMPACK and causes
no confusion at the user interface, since the user only specifies F(z)). The matrix Dyp,(z,A) =
A DF(z)+(1-A)Iis symmetric (because it is the Hessian matrix of some energy potential function)
and sparse with a “skyline” structure, such as

( o o
o o o ®11 %16
o o, o7 o o ' 3
¢ O 034 30
o 933 29
® o5 o33 ®28
& 017 & &3 €7
®19 ®22 ®%
[ [ ] 021 025
\ ° ° ° ® ® ) ° 09y }

Typically such matrices are stored in packed skyline format, in which the upper triangle is stored
in a one-dimensional array indexed as shown above. The auxiliary array (1, 2, 4, 6, 8, 12, 17, 19,
21, 24, 32) of diagonal indices is also required. By convention the auxiliary integer array has length
n+ 1 with the (n+ 1)st element containing the length of the packed real array plus one.
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The general theory from the previous section applies equally well here, so the zero curve 7
given by (z(s), A(s)) is the trajectory of the initial value problem

2oele) M9) = [Derlele, A6, Dol M) (42 =0, )
)
pr

'I(dz dA) -1, (10)

2(0) = ¢, A(0) =0. (11)

Since the Jacobian matrix has rank n along 7 , the derivative (dz/ds, d\/ds) is uniquely determined
by (9, 10) and continuity, and the initial value problem (9-11) can be solved for z(s), A(s). As
before, the problem is to solve the initial value problem (9-11), which requires calculating the
implicitly defined derivative (tangent vector) (dz/ds, d\/ds). The difficulty now is that the first n
columns of the Jacobian matrix Dp,(z,A) are definitely special, and any attempt to treat all n+ 1
columns uniformly would be disastrous from the point of view of storage allocation. Any algorithm
requires computing the kernel of the n X (n + 1) matrix Dp,(z,A), which has rank n. This can
be elegantly and efficiently done for small dense matrices, but the large sparse Jacobian matrix of
structural mechanics presents special difficulties. The approach taken here is to solve Dp,y = 0
using a preconditioned conjugate gradient algorithm. This conjugate gradient algorithm will now
be described.

Let (z,A) be a point on the zero curve v, and § the unit tangent vector to v at (%,A) in the
direction of increasing arc length s. Let |gx| = max;|7;|. Then the matrix

A= [D”“gf"‘)] (12)

where ¢ is a vector with 1 in the kth component and zeros elsewhere, is invertible at (z,A) and in
a neighborhood of (%,A) by continuity. Thus the kernel of Dp, can be found by solving the linear
system of equations

Ay = Ypent1 = b. (13)

Given any nonsymmetric, nonsingular matrix A, the system of linear equations Ay = b can be

solved by considering the linear system
AAtz=b.

Since the coefficient matrix for this system is both symmetric and positive definite, the system can
be solved by a conjugate gradient algorithm. Once a solution vector zis obtained, the vector y from
the original system can be computed as y = A’2. An implementation of the conjugate gradient
algorithm in which y is computed directly, without reference to z, any approximations of z, or AA,
was originally proposed by Hestenes [10], and is commonly known as Craig’s method [7]. Each
iterate y* minimizes the Euclidean error norm ||y — y'|| over the translated Krylov space

y° + span{r®, 44O, (44150, ..., (A4%)" 10},
where ¥ = b— Ay°. Below (u,v) denotes the inner product u'v.
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Craig’s Method:
Choose 3°;
Compute 0 = b— Ay%;
Compute p° = A4?;
For 1= 0 step 1 until convergence do
BEGIN
;= (r', )/ (¢, p")
¥t = ¢ + apt
Fl = i — 0 Apt
o= (41,40 ()
Pl = Aty 4 B
END

Let @ be any nonsingular matrix. The solution to the system Ay = b can be calculated by solving
the system

By=(Q 'A)y=Q b=y (14)

The use of such a matrix is known as preconditioning. Since the goal of using preconditioning
is to decrease the computational effort needed to solve the original system, @ should be some
approximation to A. Then Q!4 would be close to the identity matrix, and the iterative method
described above would converge more rapidly when applied to (14) than when applied to (13). In
the following algorithm B and g are never explicitly formed. The algorithm given above can be
obtained by substituting the identity matrix for Q.

Craig’s method using a preconditioner:
Choose ¢°, @;
Compute 10 = b— 4y%

—1r0.

)

Compute 7 = Q
Compute p° = A*Q~ %7,
For ¢ = 0 step 1 until convergence do

BEGIN

a; = (¥, 7)/(p', p')

y* = i + g

L 3 _ g, 1 Ap
ﬂi — (;H—l) "",f+1>/<;i’ ;l)
pHl = ALQtHL 4 g
END



For this algorithm, a minimum of 5(n+ 1) storage locations is required (in addition to that for 4).
The vectors y, #, and p all require their own locations; Q%% can share with Ap; Q 1 Ap can share
with A*Q~%. The computational cost per iteration of this algorithm is:

1) two preconditioning solves (@ 1v and @ *v);
2) two matrix-vector products (Av and A'v);
3) 5(n + 1) multiplications (the inner products (p, p) and (¥, 7), ap, Bp, and Q"' Ap).

The coefficient matrix A in the linear system of equations (13), whose solution y yields the
kernel of Dp,(z,X), has a very special structure which can be exploited if (13) is attacked indirectly
as follows. Note that the leading n X n submatrix of A is D;p,, which is symmetric and sparse, but

possibly indefinite. Write
A=M+1L (15)

where

The choice of ¢ as the last row of 4 to make A invertible is somewhat arbitrary, and in fact any
vector (¢!, d) outside a set of measure zero (a hyperplane) could have been chosen. Thus for almost
all vectors ¢ the first n columns of M are independent, and similarly almost all (n + 1)-vectors are
independent of the first n columns of M. Therefore for almost all vectors (¢, d) both A and M are
invertible. Assume that (¢, d) is so chosen.

Using the Sherman-Morrison formula (L is rank one), the solution y to the original system
Ay = b can be obtained from

-1,
M U€y 1

~1p,
(M~ lu)tepyr +1 M (16)

y= |-

which requires the solution of two linear systems with the sparse, symmetric, invertible matrix M.
It is the systems Mz = u and Mz = b to which Craig’s preconditioned conjugate gradient algorithm
is actually applied.

The only remaining detail is the choice of the preconditioning matrix Q. @ is taken as the
modified Cholesky decomposition of M, as described by Gill and Murray [9]. If M is positive definite
and well conditioned, @ = M. Otherwise, @ is a well conditioned positive definite approximation
to M. The use of a positive definite @ is reasonable since in the context of structural mechanics
DF(z) is positive definite or differs from a positive definite matrix by a low rank perturbation. The
Gill-Murray factorization algorithm can exploit the symmetry and sparse skyline structure of M,
and this entire scheme, Equations (13-16), is built around using the symmetry and sparse skyline
structure of the Jacobian matrix D;p, = ADF + (1 - A) L.

For sparse problems, the logic of tracking the zero curve « is exactly the same as for the
dense Jacobian matrix case. The only difference is in the kernel calculation and the concomitant
data structures (step 10 of the algorithm in the previous section), which are substantially more
complicated for the sparse Jacobian matrix case. These low level details are best left to the code,
where they are thoroughly documented.



Normal flow algorithm (dense Jacobian matrix). As the homotopy parameter vector a varies,
the corresponding homotopy zero curve « also varies. This family of zero curves is known as the
Davidenko flow. The normal flow algorithm is so called because the iterates converge to the zero
curve « along the flow normal to the Davidenko flow (in an asymptotic sense). As before, only the
zero finding case need be described.

The normal flow algorithm has three phases: prediction, correction, and step size estimation.
(2) and (3) are the relevant equations here. For the prediction phase, assume that several points

PO = (A(s1),2(s1)), P® = (A(s3), z(s3)) on « with corresponding tangent vectors (dA/ds(s;),
dz/ ds(s1)), (dA/ds(sy), dz/ds(sq)) have been found, and h is an estimate of the optimal step (in arc
length) to take along . The prediction of the next point on v is

70 = p(s; + ), (17)

where p(s) is the Hermite cubic interpolating (A(s), z(s)) at s; and sp. Precisely,

p(s1) = (AM(s1),2(s1)),  #'(s1) = (dN/ds(s1), da/ ds(s1)),
p(s2) = (A(s2),2(s2)), p'(s2) = (dN/ds(s2), dz/ ds(s2)),

and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(©), the corrector iteration is
t
2640 = 2 - [ Dy, (20)] fu(2¥),  k=0,1,... (18)

where [Dpa(Z("))]'r is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian matrix Dp,.
Small perturbations of a produce small changes in the trajectory + , and the family of trajectories
7 for varying a is known as the “Davidenko flow”. Geometrically, the iterates given by (18) return
to the zero curve along the flow normal to the Davidenko flow, hence the name “normal flow
algorithm”.

A corrector step AZ is the unique minimum norm solution of the equation
[DPa]AZ = ~Pa: (19)

Fortunately AZ can be calculated at the same time as the kernel of [Dpa], and with just a little more
work. Normally for dense problems the kernel of [Dpa] is found by computing a QR factorization
of [Dpa], and then using back substitution. By applying this QR factorization to —p, and using
back substitution again, a particular solution v to (19) can be found. Let u # 0 be any vector in
the kernel of [Dp,]. Then the minimum norm solution of (8) is

vtu

AZ =v- ot (20)
Since the kernel of [Dpa] is needed anyway for the tangent vectors, solving (19) only requires
another O(n?) operations beyond those for the kernel. The number of iterations required for
convergence of (18) should be kept small (say < 4) since QR factorizations of [Dp,] are expensive.
The alternative of using [Dpa(Z(O))} for several iterations, which results in linear convergence, is
rarely cost effective.



When the iteration (18) converges, the final iterate Z(* 1) is accepted as the next point on
~, and the tangent vector to the integral curve through Z® is used for the tangent-this saves a

Jacobian matrix evaluation and factorization at Z(*t1). The step size estimation described next
attempts to balance progress along ~ with the effort expended on the iteration (18).

Define a contraction factor

|20 - 20
L= 1o (21)
a residual factor ”
pa(2V)]
k= Pa Z(o)) ’ (22)
a distance factor (Z* = limy—o, Z(*)
_ 2V - 7|
D= z(0) — z+||” (23)

and ideal values L, R, D for these three. Let & be the current step size (the distance from Z* to the
previous point found on + ), and h the “optimal” step size for the next step. The goal is to achieve

L R D M
IR0 m (24)
for some ¢. This leads to the choice
h= (min{L/L, R/R, D/D})" "4, (25)

a worst case choice. To prevent chattering and unreasonable values, constants hy;, (minimum al-
lowed step size), hyax (maximum allowed step size), By, (contraction factor), and Byax (expansion

factor) are chosen, and h is taken as
= min {max {huin, Brinh, b}, Brvsch, bons | - (26)

There are eight parameters in this process: L, R, D, hmin, hmax, Bmin, Bmax, ¢ HOMPACK permits
the user to specify nondefault values for any of these. The choice of & from (26) can be refined
further. If (18) converged in one iteration, then h should certainly not be smaller than h, hence set

h := max{h, h} (27)

if (18) only required one iteration.

To prevent divergence from the iteration (18), if (18) has not converged after K iterations, h is
halved and a new prediction is computed. Every time h is halved the old value kg4 is saved. Thus
if (18) has failed to converge in K iterations sometime during this step, the new h should not be
greater than the value h,q known to produce failure. Hence in this case

il = min{hold, ’_Z} (28)
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Finally, if (18) required the maximum K iterations, the step size should not increase, so in this
case set

k= min{h, h}. (29)
The logic in (27-29) is rarely invoked, but it does have a stabilizing effect on the algorithm.
In summary, the algorithm is:

1.s:=0,y:=(0,a), h := 0.1, firststep : = true, arcae, arcre : = absolute, relative error
tolerances for tracking 7, ansae, ansre : = absolute, relative error tolerances for the answer.

2. If firststep : = false then
3. Compute the predicted point Z(© using (17).
else

4. Compute the predicted point Z(©) using a linear predictor based on y = (0,a) and the
tangent there.

5. Iterate with equation (18) until either
“AZU‘)“ < arcae + arcre HZ(")“

or

4 iterations have been performed

6. If the Newton iteration (18) did not converge in 4 steps, then
7. h:=h/2.
8. If his unreasonably small, then return with an error flag.
9. Go to 2.
10. firststep : = false.
11. If y; < 1, then compute a new step size h by (21-29) and go to 2.
12. Do 13.-18. some fixed number of times.
13. Find 3 such that p(3); = 1, using yold, ypold, y, yp in (17).
14. Do two iterations of (18) starting with Z(®) = p(3), ending with Z(®),
15. If

)

|Z1(2) - 1' + “AZ(I)” < ansae+ ansre Hz(l)

then return (solution has been found).
16. If 21 > 1, then
17. y: =2 yp: = tangent at Z(2).

else
18. yold : = Z(®), ypold : = tangent at 72,
19. Return with an error flag.

11



Normal flow algorithm (sparse Jacobian matrix). The logic of the predictor, corrector, and step
size estimation phases of this algorithm is identical to that given in the previous section. Similar
to the ordinary differential equation based algorithm, the difference between the dense and sparse
Jacobian matrix cases is the low level numerical linear algebra. The main linear algebra problem
is the solution of (19), which also involves the calculation of the kernel of Dp,(z,A). (19) is solved
using the same matrix splitting, preconditioning matrix, and conjugate gradient algorithm used
for the sparse ordinary differential equation based algorithm (equations 12-16). For efficiency, the
kernel and Newton step are calculated together by solving

szac(tzl") DAPalgizx)] [v AZ} — [;k —pagzx;\-)} ) (30)

Augmented (dense) Jacobian matrix algorithm. The augmented Jacobian matrix algorithm has
four major phases: prediction, correction, step size estimation, and computation of the solution
at A = 1. Again, only the zero finding case is described here. The algorithm here is based on
Rheinboldt [17], but with some significant differences: (1) a Hermite cubic rather than a linear
predictor is used; (2) a tangent vector rather than a standard basis vector is used to augment the
Jacobian matrix of the homotopy map; (3) updated QR factorizations and quasi-Newton updates
are used rather than Newton’s method; (4) different step size control, necessitated by the use of
quasi-Newton iterations, is used; (5) a different scheme for locating the target point at A = 1 is
used which allows the Jacobian matrix of F to be singular at the solution.

The prediction phase is exactly the same as in the normal flow algorithm. Having the points
PO = (X(s1),2(s1)), P@® = (A(sy), 2{s3)) on + with corresponding tangent vectors

dA dA

o) 'g;(ﬁ) ) 35(82)
z ’ z ’
'&;(31) ;1;(82)

the prediction Z(® of the next point on 7 is given by (17).

In order to use this predictor, a means of calculating the tangent vector T(® at a point P @) is
required. This is done by solving the system

0

DPa(P(Z)) :

[ e 7= | o (31)
1

for z, where Dp, is the n X (n+ 1) Jacobian of p,. Normalizing z gives

r4

7@ = =
]

(52)

The last row of (31) insures that the tangent T(2) makes an acute angle with the previous tan-

gent T(W). It is the augmentation of the Jacobian matrix with this additional row which motivates
the name “augmented Jacobian matrix algorithm.” The solution to (31) is found by computing a
QR factorization of the matrix, and then using back substitution [6].
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Starting with. the predicted point Z(%), the correction is performed by a quasi-Newton iteration
defined by
A® 17T p (Z("))
k+1) _ p(k a —
A )‘Z()—[T(z)t] 0 ), k=0,1,... (33)

where A® is an approximation to the Jacobian matrix Dp, (Z (’“)). The last row of the matrix in

(33) insures that the iterates lie in a hyperplane perpendicular to the tangent vector T@), (33) is
the quasi-Newton iteration for solving the augmented nonlinear system

pa(y) -
(T(z)t(y - z(O))) =0 (34)
A corrector step AZ™® is the unique solution to the equation

A® ~pa (2¥)
() = Pa
[T(z)t}AZ _< . ) (35)

The matrix on the left side of this equation is produced by successive Broyden rank one updates
[6] of the matrix in (31). Precisely, letting 2(~1) = P(®), 4(-1) = Dp, (P?®), and

(k)
CI
M= [T(Z)t]’
the update formulas are
_ A-D) Dp, (PO g

P = [T(z)t} = [ T((l)t )] + ent1 (T(z) _ T(l)) , (50
and

(k+1) ®) (Zﬂa - M(")AZ(")) AZE)E

M = MW + AZ®t A7) , k=-1,0,.. (37)

where

~ (k+1)) _ (k)
A,,F(pa(z )0 pa(2 )>‘

These updates can be done in QR factored form, requiring a total of O(n?) operations for each
iteration in the correction process[6]. When the iteration (33) converges within some tolerance, the

final iterate Z(*) is accepted as the next point on the zero curve 4.

The step size estimation algorithm is an adaptation of a procedure developed by Rheinboldt[17].
At each point P(*) with tangent T™®) along ~, the curvature is estimated by the formula

[08] = £ in 2], )
where
w® = _— Q) = arccos (T(")tT(k‘l)) , Asp = HP(") - P(k"l)H .

13



Intuitively, oy represents the angle between the last two tangent vectors, and the curvature is
approximated by the Euclidean norm of the difference between these two tangents divided by As;.

This curvature data can be extrapolated to produce a prediction for the curvature for the next
step

e g (o], .
Sk Ilw +Ask+Ask_1< v v ) (39)

Since £ can be negative, use
€k = max(& min, £;) for some small Epin > O, (40)

as the predicted curvature for the next step.

The goal in estimating the optimal step size is to keep the error in the prediction ||Z 0) — Z(*)H
relatively constant, so that the number of iterations required by the corrector will be stable. This
is achieved by choosing the step size as

h= 28,6, (41)

where 6 represents the ideal starting error desired for the prediction step. & is chosen as a function
of the tolerance for tracking the curve and is also restricted to be no larger than half of As;.

As with the normal flow algorithm, additional refinements on the optimal step size are made in
order to prevent chattering and unreasonable values. In particular, h is chosen to satisfy equations
(26) and (28). This k is then used as the step size for the next step.

The final phase of the algorithm, computation of the solution at A = 1, is entered when a
point P(®) is generated such that Pl(z) > 1. P is the first such point, so the solution must lie

on ~ somewhere between P(2) and the previous point P(!). The algorithm for finding this solution
is a two step process which is repeated until the solution is found. First, starting from a point

P® a prediction Z(*~2) for the solution is generated such that Zl(k_z) = 1. Second, a single quasi-

Newton iteration is performed to produce a new point P**1) close to +, but not necessarily on the
hyperplane A = 1.

Normally, the prediction Z(*~2) is computed by a secant method using the last two points P*)
and P(-1);

_
26-9 = pW 4 (pt-1 _ pi) (p<(’°1‘1) h P)"‘)) . (42)
1 -4

However, this formula can potentially produce a disastrous prediction (e.g., if |P1(k_1) - Pl(k)l <

11— Pl(k)l ), so an additional scheme is added to ensure that this does not happen. In order

to implement this scheme, a point P(°??) must be saved. This point is chosen as the last point
computed from a quasi-Newton step which is on the opposite side of the hyperplane A = 1 from
p®, Thus, the points P(°?") and P® bracket the solution. The prediction Z(*~? may be bad
whenever the inequality

Hz(k—2) - p(k)’l > 'lp(k) - p(opp)H (43)
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is true. In this case, Z(=2) is recomputed from the equation

_ p®
Z(k=2) — p(® | (p(opp) - p(k)) '(;((;;P)jp?—k))_' (44)
1 T4

This chord method, while much safer than the secant method (42), is used only in the special case
(43) because it has a much slower rate of convergence than the secant method.

An exception to these linear prediction schemes occurs with the first step of the final phase.
Since the tangents T(1) and T(?) at P(1) and P(?) are available, this information is used to generate a
Hermite cubic polynomial p(s) for calculating the first prediction point Z (©), This is done by finding
the root 3 of the equation p;(s) = 1. Z(9) is then given by

29 = p(3). (45)

After the predictor Z*~?) has been determined, a quasi-Newton step is taken to get the point
P(+1) | This step is defined by
P(H—l) — Z(k—2) + AZ(k—2), . (46)

where AZ*"2) is the solution to (35). Again, the matrix in (35) is produced by the rank one
updates (36) and (37).

The alternating process of computing a prediction and taking a quasi-Newton step is repeated
until the solution is found.

In summary, the algorithm is:

1. s:=0,y:=(0,a), ypold : = (1,0), h: = 0.1, failed : = false, firststep : = true, arcae, arcre: =
absolute, relative error tolerances for tracking «, ansae, ansre : = absolute, relative error toler-
ances for the answer.

2. Compute the tangent yp at y, using (31) and (32), and update the augmented Jacobian matrix
using (36).

3. If firstep = false then

4. Compute the predicted point Z(©) with the cubic predictor (17) based on yold, ypold, y,
yp.

else
5. Compute the predicted point Z(©) using a linear predictor based on y and yp.
6. If failed = true then

7. Compute the augmented Jacobian matrix at Z(©).

8. Compute the next iterate Z(1) using (33).

9. limit : = 2([— log 1o (arcae + arcrel|y||) | + 1). Repeat steps 10-11 until either

|

HAZ(")“ < arcae + arcre
or
limit iterations have been performed.
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10. Update the augmented Jacobian matrix using (37).

11. Compute the next iterate using (33).

. If the quasi-Newton iteration did not converge in limit steps, then
13. h:= h/2; failed : = true.

14. If his unreasonably small, then return with an error flag.

15. Go to 3.

. Compute the tangent at the accepted iterate Z(*) using (31) and (32), and update the aug-
mented Jacobian matrix using (36).

. Compute the angle o between the current and previous tangents by (38).

. If a > n/3, then

19. h:= h/2; failed : = true.

20. If h is unreasonably small, then return with an error flag.

21. Go to 3.

. yold:=y, ypold: = yp,y: = Z(*) yp : = tangent computed in step 16, firststep : = false.
. If y1 < 1, then compute a new step size h by Equations (26, 28, 38-41) with &pin = 0.01,

8, = min {(arcae+ tzrca'eHyH)l/4 , %Hy - yoldll} ,

and go to 3.
. Find 3 such that p(3); = 1, using yold, ypold, y, and yp in (17). yopp : = yold, 70) : = p(3).
. limat . = 2([— logyo (ansae + ansre|y|)) | + 1). Do steps 26-33 for k=2,..., limit + 2.

26. Update the augmented Jacobian matrix using (37).
27. Take a quasi-Newton step with (46).
28. If

’

‘Pl(k-}-l) - 1' + “AZ(k‘Z)H < ansae + ansre ”Z(k'z)

then return (solution has been found).

20. If IPI(HI) - 1' < ansae + ansre,
then

Zk-1) . — p(k+1)
else do steps 30-33.

30. yold . =y, y:= pkt1)
31. If yold; and y; bracket A = 1, then yopp : = yold.

32. Compute Z*~1) with the linear predictor (42) using y and yold.
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33. If ”Z(""I) - yH > ||y — yopp]|, then compute Z*~1) with the linear predictor (44) using y
and yopp.

34. Return with an error flag.

Augmented (sparse) Jacobian matrix algorithm. The augmented Jacobian matrix algorithm for
sparse Jacobian matrices differs from the dense algorithm in three respects: (1) like the sparse
normal flow and ODE based algorithms, the low level numerical linear algebra is changed to take
advantage of the sparsity of the problem; (2) quasi-Newton iterations are abandoned in favor of pure
Newton iterations; (3) Rheinboldt’s step size control [17] is implemented more faithfully because of
the use of Newton iterations. Except for these three changes, the logic for tracking the zero curve
7 is exactly the same as for the dense algorithm.

The change in the linear algebra effects the algorithm in two places: computing the tangent
vector (Equation 31), and computing the corrector step (Equation 35). Rather than using a QR
factorization, these two linear equations are solved by using the preconditioned conjugate gradient
algorithm described for the sparse ordinary differential equation based algorithm (Equations 14-
16). Note however that the matrices in (31) and (35) are different than the matrix in (12), in that
the final row is a tangent vector rather than a standard basis vector.

The use of Newton iterations rather than quasi-Newton iterations is necessitated by the current
lack of a good (comparable to Broyden or BFGS) sparse quasi-Newton update formula. The
fill-in produced by a good (dense) update formula is unacceptable, and the efficacy of deferred
updating [12] is questionable (the number of applications of the Sherman-Morrison formula grows
exponentially with the number of deferred updates). Also there is some evidence that, at least
in the context of structural mechanics [29], a model trust region strategy with exact (expensive)
Jacobian matrix evaluations is better than (cheap) quasi-Newton updating. The effect of using
Newton’s method in the algorithm is to replace every quasi-Newton update with the calculation of
the exact augmented Jacobian matrix.

The final change for the sparse matrix algorithm is an enhancement to the step size control,
allowed by the use of Newton iterations. The enhancement involves implementing a more sophisti-
cated control over the ideal starting error & used in Equation (41). The next estimate for the ideal

starting error & is computed using the exact error 5,50) of the last predicted point, the size of the

last Newton step 3,5*), and the number of iterations i« required by the correction process.
=10 5,50) (47)

where 6 is a function of S,S*), ~,£0), and 1 as described by Rheinboldt [17].

The goal behind these calculations is to keep the number of corrector iterations fixed at four.

Thus 0 is computed so that if the prediction error had been & rather than S,EO), the number of
correction steps would have been approximately four, instead of 4. Once 6 is computed, it is used
in (41) to calculate the next step size. For sharply turning curves, this 6 is too large for convergence
in four corrector iterations consistently. Numerical experiments suggest that the desired behavior
(convergence in four corrector iterations) is obtained by using the formula

6 = 0 61 (48)
instead of (47). HOMPACK uses (48).
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Polynomial systems. This section describes the POLSYS driver for finding all complex solutions
to polynomial systems with real coefficients. A system of n polynomial equations in n unknowns,

F(z) =0, (49)

may have many solutions. It is possible to define a homotopy so that all geometrically isolated
solutions of (49) have at least one associated homotopy path. Generally, (49) will have solutions at
infinity, which forces some of the homotopy paths to diverge to infinity as A approaches 1. However,
(49) can be transformed into a new system which, under reasonable hypotheses, can be proven to
have no solutions at infinity and thus bounded homotopy paths. Because scaling can be critical
to the success of the method, POLSYS includes a general scaling algorithm (SCLGNP). POLSYS
uses an input “tableau” of coefficients and related parameters to define the polynomial system.
This tableau is used to generate function and partial derivative values (FFUNP). The user need
not code any subroutine to be called by POLSYS.

Although the POLSYS homotopy map is defined in complex space, the POLSYS code does
not use complex computer arithmetic. Since the homotopy map is complex analytic, the homotopy
parameter A is monotonically increasing as a function of arc length [8]. The existence of an infinite
number of solutions or an infinite number of solutions at infinity does not destabilize the method.
Some paths will converge to the higher dimensional solution components, and these paths will
behave the way paths converging to any singular solution behave. Practical applications usually
seek a subset of the solutions, rather than all solutions [13, 19]. However, the sort of generic
homotopy algorithm considered here must find all solutions and cannot be limited without, in
essense, changing it into a heuristic.

Let C™ denote n-dimensional complex Euclidean space, and define G: C* — C" by
Gj(z:) = bjzjdj - 4, ] = 1, S () (50)

where a; and b; are nonzero complex numbers and d; is the (total) degree of Fj(z), forj =1,...,n.
Define the homotopy map

pe(A,2) = (1-2) G(z) + A F(a), (51)
where ¢ = (a,b), ¢ = (a1,...,8,) € C* and b= (by,...,b,) € C* Let d = dy-- d, be the total
degree of the system.

Theorem. For almost all choices of a and bin C", p;1(0) consists of d smooth paths emanating from
{0} x C™, which either diverge to infinity as A approaches 1 or converge to solutions to F(z) = 0
as ) approaches 1. Each geometrically isolated solution of F(z) = 0 has a path converging to it.

A number of distinct homotopies have been proposed for solving polynomial systems, e.g., [2],
5], 8], [16], [32]. The homotopy map in (51) is from [16]. As with all such homotopies, there will
be paths diverging to infinity if F'(z) = O has solutions at infinity. These divergent paths are (at
least) a nuisance, since they require arbitrary stopping criteria. Solutions at infinity can be avoided
via the following projective transformation.

Define F'(y) to be the homogenization of F(z):

F}'(y) = yn-i-ldj Ei(yl/yn+1: v Jyn/yn-’rl): ] = 1) ey (52)

Note that, if F'(y°) = 0, then F'(ay®) = O for any complex scalar . Therefore, “solutions” of
F'(y) = 0 are (complex) lines through the origin in C™*!. The set of all lines through the origin
in C™t1 is called complex projective n-space, denoted CP", and is a smooth compact (complex)
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n-dimensional manifold. The solutions of F'(y) = 0 in CP™ are identified with the solutions
and solutions at infinity of F(z) = 0 as follows. If L € CP" is a solution to F'(y) = 0 with
y=(y1,92,--, Ynt1) € L and ypt1 # 0, then &= (y1/Yn+1, ¥2/¥n+1, .-+, ¥n/Ynt+1) € C™ is a solution
to F(z) = 0. On the other hand, if £ € C" is a solution to F(z) = 0, then the line through y = (z,1)
is a solution to F'(y) = 0 with yp41 = 1 # 0. The most mathematically satisfying definition of
solutions to F(z) = 0 at infinity is simply solutions to F'(y) = 0 (in CP") generated by y with
Ynt+1 = 0. However, to avoid dealing with CP", these solutions are often taken to be z € C™ such
that

1) y = (g,0) is a solution to F'(y) =0, and

2) z is nonzero and the first nonzero component is 1.

This second definition is adequate for some purposes, but it is incomplete. It is hard, for example,
to give a natural definition of nonsingular solution at infinity using it.

A basic result on the structure of the solution set of a polynomial system is the following
classical theorem of Bezout[20]:

Theorem. There are no more than d isolated solutions to F'(y) = 0 in CP™ If F'(y) = 0 has only
a finite number of solutions in CP", it has exactly d solutions, counting multiplicities.

Recall that a solution is isolated if there is a neighborhood containing that solution and no other
solution. The multiplicity of an isolated solution is defined to be the number of solutions that
appear in the isolating neighborhood under an arbitrarily small random perturbation of the system
coefficients. If the solution is nonsingular (i.e., the system Jacobian matrix is nonsingular at the
solution), then it has multiplicity one. Otherwise it has multiplicity greater than one.

Define a linear function

w(y1, -, Ynt1) =61y + a2 + oo + Ent1Yns1

where £1,...,€ns1 are nonzero complex numbers, and define F" : C"t1 — C**1 by

F;'(y):ﬁ;!(y)’ I=1...,n

Flo(5) = u(y) - 1. 3)

So F"(y) = 0 is a system of n+ 1 equations in n + 1 unknowns, referred to as the projective

transformation of F(z) = 0. Since u(y) is linear, it is easy in practice to replace F"(y) = 0 by an
equivalent system of n equations in n unknowns. The significance of F"'(y) is given by

Theorem[15]. If F'(y) = O has only a finite number of solutions in CP", then F"(y) = 0 has exactly
d solutions (counting multiplicities) in C™*! and no solutions at infinity, for almost all £ € C™*1,

Under the hypothesis of the theorem, all the solutions of F'(y) = O can be obtained as lines
through the solutions to F"(y) = 0. Thus all the solutions to F(z) = 0 can be obtained easily
from the solutions to F"(y) = 0, which lie on bounded homotopy paths (since F"(y) = 0 has no
solutions at infinity).

There is no practical theory to guide the scaling of polynomial systems. A common sense
approach is to scale the variables and equations to minimize the sum of squares of the exponents of
the coefficients. An advantage of this criterion is that it leads to algorithms that effect scaling by
solving a single linear system, A w = b, where A depends only on the structure of the polynomial
system (the degrees of the variables) and not on the values of the coefficients.
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Let
Fi(z) =Z p,Jsz'J" , i=1,...,n, (54)
j=1

where pj; is a real number and dg is a nonnegative integer. The positive integer n; is the number
of terms in equation :. Call the variable scaling factors vy,..., v, and the equation scaling factors
e1,--., ey Define a new set of independent variables 2 by

7, =10%z, fork=1,...,n, (55)
and a new polynomial system S(z) =0 by
Si(2) = 104 F;(10" 4, ..., 10%2,),  i=1,...,n. (56)

Thus, letting L; = 10810(l1’ij|):

ny "
S,-(z) = Z Sgn(l’{j)loeiloL‘j H (IO”kzk)dijk
=1 =1

I
- ngn(p )10 [eitLg+ 2y mig] H ik (57)

i=1

Now choosing e; and v to minimize the sum of squares of the exponents of the coefficients of S
corresponds to the unconstrained minimum of

Z Z [e, LI+ Z vkd,,k] . (58)

1*1 7=1
VE = 0 is the linear equation ‘
Aw=b (59)
with w=(e1,..., €q, v1,...,v,)" and
ny
Ay = bpymy, Apnts = Z drjs)

ng
An+f,s = Z dajr; n+r n+s — Z Z dqrdz]s;
j=1

=1 j=1
ny
_ZL’i’ by = = ZZLvdun
J=1 i=1 j=1

where r and s take on all integer values from 1 to n. Observe that A does not depend or the values
of the coefficients of F(z) (the p’s), but rather only on the exponents (the d’s). If any coefficient
Py is zero, it must be omitted from the above calculations. In practice whether p;; is zero will be
decided by a threshold test, and changing this threshold can significantly affect the scaling of the
system.

The parameters n, n;, p;, dijx defined above constitute the coefficient tableau. The subroutine
SCLGNP uses this tableau to generate the scale factors e; and v, and the subroutine FFUNP uses
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it to compute system and Jacobian matrix values for POLSYS. This has the advantage of being
very general, but the disadvantage of usually being less efficient than a specialized FFUNP. If CPU
time is an issue, the user may modify FFUNP to reduce the amount of repeated computation
inherent in its generic form.

The projective transformation functions essentially as a scaling transformation. Its effect is to
shorten arc lengths and bring solutions closer to the unit sphere. The SCLGNP scaling is different,
in that it directly addresses extreme values in the system coefficients. The two scaling schemes
work well together.

POLSYS is written so that the user can choose to evoke the projective transformation or not
and evoke scaling or not. If either of these options is selected, it is transparent to the user; the
solutions are returned untransformed and unscaled. The input to POLSYS is the coefficient tableau
and a few parameters for the path tracking algorithm used by POLSYS. POLSYS has a parameter
NUMRR (number of reruns) so that 1000¥“NUMRR steps will be taken before a path is abandoned.
The use of both the projective transformation and scaling is recommended for most problems.

Organizational details. HOMPACK is organized in two different ways: by algorithm/problem type
and by subroutine level. There are three levels of subroutines. The top level consists of drivers,
one for each problem type and algorithm type. Normally these drivers are called by the user, and
the user need know nothing beyond them. They allocate storage for the lower level routines, and
all the arrays are variable dimension, so there is no limit on problem size. The second subroutine
level implements the major components of the algorithms such as stepping along the homotopy
zero curve, computing tangents, and the end game for the solution at A = 1. A sophisticated user
might call these routines directly to have complete control of the algorithm, or for some other task
such as tracking an arbitrary parametrized curve over an arbitrary parameter range. The lowest
subroutine level handles the numerical linear algebra, and includes some BLAS routines. All the
linear algebra and associated data structure handling are concentrated in these routines, so a user
could incorporate his own data structures by writing his own versions of these low level routines.
Also, by concentrating the linear algebra in subroutines, HOMPACK can be easily adapted to a
vector or parallel computer.

The organization of HOMPACK by algorithm/problem type is shown in Table 1, which lists
the driver name for each algorithm and problem type.

Table 1. Taxonomy of homotopy subroutines.

z = f(z) | F(z)=0 | p(a,A,2)=0 algorithm

dense sparse dense sparse dense sparse
FIXPDF | FIXPDS | FIXPDF | FIXPDS | FIXPDF | FIXPDS | ordinary differential equation
| FIXPNF | FIXPNS | FIXPNF | FIXPNS | FIXPNF | FIXPNS | normal flow
FIXPQF | FIXPQS | FIXPQF | FIXPQS | FIXPQF | FIXPQS | augmented Jacobian matrix

The naming convention is
D
FIXP{ N { Z } )
Q
where D ~ ordinary differential equation algorithm, N ~ normal flow algorithm, @ ~ aug-
mented Jacobian matrix algorithm, F ~ dense Jacobian matrix, and S &~ sparse Jacobian matrix.
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Using brackets to indicate the three subroutine levels described above, the natural grouping of the
HOMPACK routines is:

[FIXPDF] [FODE, ROOT, SINTRP, STEPS] [DCPOSE]

[FIXPDS] [FODEDS, ROOT, SINTRP, STEPDS| [GMFADS, MFACDS, MULTDS, PCGDS,
QIMUDS, SOLVDS]

[FIXPNF] [ROOTNF, STEPNF, [TANGNF]] [ROOT]

[FIXPNS] [ROOTNS, STEPNS, TANGNS| [GMFADS, MFACDS, MULTDS, PCGDS, PCGNS,
QIMUDS, ROOT, SOLVDS]

[FIXPQF] [ROOTQF, STEPQF, TANGQF| [QRFAQF, QRSLQF, RIUPQF, UPQRQF]
[FIXPQS] [ROOTQS, STEPQS, TANGQS] [GMFADS, MULTDS, PCGQS, SOLVDS]

The BLAS subroutines used by HOMPACK are DAXPY, DCOPY, DDOT, DNRM2, DSCAL,
DIMACH, IDAMAX.

-The user written subroutines, of which exactly two must be supplied depending on the driver
chosen, are F, FJAC, JFACS, RHO, RHOA, RHOJAC, RHOJS.

The special purpose polynomial system solver POLSYS is essentially a high level driver for
HOMPACK. POLSYS requires special versions of RHO and RHOJAC (subroutines normally pro-
vided by the user). These special versions are included in HOMPACK, so for a polynomial system
the user need only call POLSYS, and define the problem directly to POLSYS by specifying the
polynomial coefficients. POLSYS scales and computes partial derivatives on its own. Thus the
user interface to POLSYS and HOMPACK is clean and simple. The only caveat is that FFUNP
cannot recognize patterns of repeated expressions in the polynomial system, and so may be less
efficient than a hand crafted version. If great efficiency is required, the user can modify the default
FFUNP; the sections in the code which must be changed are clearly marked. The grouping is:

[POLSYS] [POLYNF, POLYP, ROOTNF, STEPNF, TANGNF| [DIVP, FFUNP, GFUNP, HFUNP,
HFUN1P, INITP, MULP, OTPUTP, POWP, RHO, RHOJAC, ROOT, SCLGNP, STRPTP]

Testing. Since work was begun on HOMPACK in 1976, it has been tested on hundreds of problems.
Two early versions of HOMPACK ([24] and [21]) were applied to a series of difficult engineering
problems, some of which were surveyed in [28]. Numerical results on the application of homotopy
methods to optimization wer? reported in [23] and [25], and to nonlinear two-point boundary value
problems in [26], [27], and [30]. The sparse matrix components of HOMPACK have been tested on
large structural mechanics problems [29].

Table 2 shows some results for Brown’s function, which has an ill conditioned Jacobian matrix,
and an exponential function, whose zero curve 7 has several sharp turns. Brown’s function is

a=]]=-1
=1
)=+ zi—(nt+1), k=2..,n
=1
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Table 2. Numerical results.

Brown’s function

FIXPDF FIXPNF FIXPQF
n NFE TIME NFE TIME NFE TIME arc length
5 87&-3; 71 175—22 .19 95—2; .59 2.7
10 85(-2 2.12 24(-2 .61 8(-2 1.54 3.7
15 102£-2§ 5.64 23&-2% 1.39 11&-2; 4.46 44
20 08(-4 10.44 22(-2 2.44 9(-2 5.56 5.1
25 123%—33 22.83 295-2} 5.39 11&-23 11.27 5.7
30 96(-3 27.99 23(-2 6.62 11(-2 15.46 6.2
35 1105—43 48.54 28§-2§ 11.72 12{-2; 25.41 6.6
40 110(-4 68.54 26(-2 15.85 11(-4 30.99 7.1
45 128?43 105.32 30€-3g 24,73 135—2; 48.01 75
50 113(-4 125.48 29(-2 32.99 11(-2 45.18 7.8
Exponential function
2 70(-4) 27 12(-2) 07 5(-2) 14 1.6
3 270&-5? 1.42 39§-2g 31 26 -2} 1.18 5.1
4 280(-4 2.03 75(-2 87 37(-3 2.96 6.5
5 486 -4; 4.73 213(-6 3.38 62(-3 7.06 14.5
6 817é-5 10.20 293{-8; 6.16 70§-3g 9.92 16.9
7 1517(-6 24.98 433(-8 11.73 105 -33 18.49 24.0
8 293115 60.50 577 E—Sg 20.73 162%—4 36.65 476
9 4511?8; 109.82 824{-83 37.44 2065—4; 54.11 61.8
10 5671(-8 165.32 1001(-9 53.80 268(-4 79.45 85.8

The exponential function is
n
fe(z) =z — exp (cos(kz a:,)), k=1,...,n.
=1

The starting point was @ = 0. The solutions were found with a relative error of 1071°, and the
CPU times are for a VAX 11/785. NFE is the number of Jacobian matrix evaluations. The number
in parentheses represents the magnitude of the tracking tolerance as a power of 10. This tracking
tolerance represents the largest tolerance which succeeded in tracking the zero curve.

POLSYS was applied to the polynomial system
Fi(z) = ajlz"{ + a]-2z% + 432172 + 642 + 522 + a5 =0, for j=1,2,

where
aj; = -.00098 a5 = 88900 a23 — -29.7

03 = 978000 a5 =—-1.0  ag = .00087
a;3 = —9.8 a; = —.01 as; = —.124
a14 = —235 a2 = —.984 agg = —.25
The exact solutions (to four significant figures) are
(21, 72) = (.09089, —.09115),
(2342, —.7883),
(.01615 + 1.6857, .0002680 -+ .0044285),
(.01615 — 1.6851,.0002680 — .0044287).
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Table 3. Number of Jacobian matrix evaluations for polynomial system.

projective transformation scaling path 1 path 2 path 3 path 4 total
yes yes 53 37 35 46 171
no yes 41 37 39 1937 2054
yes no 143 110 132 134 519
no no 22 102 101 21047 21350

Table 3 shows the number of Jacobian matrix evaluations for POLSYS with various options applied
to this problem. The local curve tracking tolerance was 10™4 and the end game tolerance was 10~ 14,
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