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Abstract. The slow viscous flow in a syringe is modelled by the quasi-steady axisymmetric
Stokes equation with a point sink for the needle hole. The governing equations are approximated
using nonstandard finite difference formulas optimized for the boundary conditions, and solved
numerically using a SOR technique. Streamlines and pressure profiles are computed for a variety
of syringe configurations.

1. Introduction. The syringe is probably the most important and most indispensable instrument
in medicine. The syringe consists of three parts, the needle, the glass cylinder and the plunger. As
the plunger is squeezed, the fluid inside the glass cylinder is ejected through the hollow needle.

The present paper is concerned with the low Reynolds number flow inside a syringe. This
situation occurs in the slow controlled intravenous infusion of fluids and drugs in the hospital or
laboratory. For example, typical vlaues for the Reynolds number in indicator-dilution experiments
are Re= 0.07(50cc syringe at lcc/min or Re= 0.015(10cc syringe at 0.1 cc/min). The infusion rates
are kept constant by a calibrated infusion pump.

In Figure 1 the plunger is moving to the left in a circular cylinder. Fluid is forced through
a hollow needle of diameter usually less than 3% of the diameter of the cylinder. Due to the
geometry the fluid dynamics can be separated into two parts: the flow in the needle and the flow in
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the cylinder. The flow in the needle (orifice) has been solved by Dagan, Weinbaum and Pfeffer [1],
who concluded the velocity profile is dominantly Poiseuille, with end effects limited to a distance
of only 1/4 the inner needle diameter. In what follows we shall study the cylinder region, with the
needle hole approximated by a sink.

2. Formulation

Let the origin of cylindrical coordinates (r, z) be situated at the sink. The cylinder is at Z =0,
¥ <aand 7 >0, * = a. At the time of investigation, the plunger is at Z = [, ' < a traveling with
velocity U. Let ' and w' be the velocity components in the ' and Z directions, respectively.

Since the Reynolds number is much less than one, the flow is governed by the quasi-steady
axisymmetric Stokes equation:
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The boundary conditions for the domain 0 < Z < [,0< ' < g are:

onZ =0 v =uw =0, except at the sink at the origin,
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r'=q, V=uw'=0 (3)
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We normalize all lengths by a, the velocities by U, the stream function by —%az U and drop
primes. The governing equations become
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B is the instantaneous ratio of the axial length of the cylinder to its radius. There exists a weak
singularity on the circle z = f, r = 1 where the velocity w is discontinuous and a strong singularity
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at the origin where 1 is discontinuous. These singularities pose immediate problems in solving for
the stream function directly. To remove the strong singularity analytically we set

(r,2) = o(r, 2) + x(1,2) (5)

where ¢ represents the Stokes flow due to a sink on an infinite solid plane [2]:

do=1- 2%+ )72 (6)
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The boundary conditions are
3}
onz=0, x=0, 8_):':0’ (8)
omz=f, x=r-1+8("+p")7,
0 -
;9_); — 3ﬂ27‘2(1‘2 +ﬂ2) 5/2 (9)
_ _ .0 10x,
onr=0, x=0 Eg’%ar(;g;)—O, (10)
onr=1 y=2(1+ zz)—s/z} % =-323(1+ zz)_5/2. (11)

Although Equations (7-11) are regular at the origin, a discontinuity in the derivative of x still
exists on z= f, r = 1. The boundary conditions are complicated enough such that an analytical
solution is not worthwhile. In what follows we shall use numerical means to solve the problem.

3. Description of the numerical method

The partial differential equation for x is solved numerically using finite difference methods [3],
which produce an approximation for x at each grid point. In the middle away from all boundaries,
standard difference equations are used to approximate the partial derivatives. Near the boundaries,
different nonstandard formulas are needed. These new difference formulas, using both values and
partials of x on the boundaries, were derived using the symbolic manipulation package SMP [4].
All the finite difference approximations used are given in Appendix A.

The finite difference approximation results in a linear system of equations Az = b, with di-
mension 2500 for a modest 50 X 50 grid. Since the boundary conditions are not symmetric and
difference formulas using known derivatives on the boundaries are employed, the coefficient ma-
trix A is not symmetric. The matrix A is nearly diagonally dominant, however, suggesting that
successive over-relaxation (SOR) may work. SOR does not, in fact, converge for all choices of
the relaxation parameter w anywhere between O and 2 (A is not symmetric and positive definite).
Nevertheless, excellent convergence for SOR was achieved with w = 1.6.

4. The streamlines.

After x (r, 2) is computed, it is added to g to obtain the stream function ¢. Figure (2) shows
the streamlines for # = 5 or when the plunger is 5 radius’ distance from the sink. For such large
B values, the fluid flow shows 3 distinct regions: the plunger region at right, the middle Poiseuille

3



region and the sink region at left. The flow in the plunger region is similar to the entry flow into
a circular tube [5] where the uniform velocity profile is changed into the parabolic profile. Our
results agree with Lew and Fung’s [5] analytical result and Wagner’s [6] numerical result for the
infinite tube at zero Reynolds number. The entrance length is about one diameter. The middle
regions shows almost Poiseuille parallel flow. For comparison, the dashed lines are the Poiseuille
streamlines

=202 — ¢4, (12)

In the sink region the fluid turns and flows into the origin. The streamlines are dominated by
the Stokes sink represented by 1. There are no regions of recirculation although the velocity is
quite low in the corner at r = 1, z = 0. Figures 3-7 show the changes in streamline patterns as
the plunger moves in closer. The three distinct regions disappear due to mutual interaction. At
B = 0.25 the velocity becomes almost radially inwards in contrast to the mainly axial Poiseuille
flow at g = 5.

5. The pressure distribution.

The pressure is numerically computed by finite differences from the normalized Stokes formula:
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The constant pressure lines are shown in Figures 8-13. We see a high pressure region exists near
the corner at z = 3, r = 1 while near the center of the plunger (z = 8, r = 0) the pressure shows
a local high for large 8 and a local low for 8 < 1. In the vicinity of the sink, the pressure is high
on the surface z = 0 and is low on the axis r = 0. The pressure pattern near the sink persists for
all B and agrees with the Stokes sink pressure distribution [2]. Notice that for § = 5 there exists a
middle Poiseuille region where pressure is independent of radial distance and the pressure gradient
is uniform axially.

6. Discussion

The Stokes flow in a syringe is now solved. Although the streamlines do not show recirculation,
the flow in a syringe is not uniform. The pressure distribution is more complicated. Regions of
local high and local low pressure may cause particulate matter in the fluid to migrate, resulting in
inhomogeneity of the injectate.

Stokes flow is not valid in the immediate neighborhood of the sink where velocities increase
indefinitely. To eliminate the singularity, one must consider a hole of finite radius at the origin.
Dagan, Weinbaum and Pfeffer [1] considered a finite cylindrical hole in an infinite plate and com-
puted the streamlines and pressure distribution. They found the effect of the hole is limited to one
hole radius in the vicinity of the junction. We conclude that the shape and size of the hole has
little effect on the flow in the syringe presented in this paper.

What is the force on the plunger? Due to the difference in size, almost all hydrodynamic
resistance comes from the flow through the needle. Reference [1] showed the pressure difference
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through a finite sized hole of radius a), and length L is a linear sum of Poiseuille resistance and
Sampson resistance [7]. Thus the force on the plunger is a constant:

F=nd <§§ﬁ+3) . (14)
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FIGURE CAPTIONS

Figure 1. Syringe geometry and coordinate system.

Figure 2. ¢ streamlines for § = 5.0 (solid) and Poiseuille streamlines (dashed).
Figure 3. ¢ streamlines for § = 2.0.

Figure 4. 1 streamlines for § = 1.0.

Figure 5. ¢ streamlines for § = .75.

Figure 6. 1 streamlines for 8 = .50.

Figure 7. 1 streamlines for § = .25.

Figure 8. Constant pressure lines (equispaced values) for § = 5.0.
Figure 9. Constant pressure lines (equispaced values) for § = 2.0.
Figure 10. Constant pressure lines (equispaced values) for 8 = 1.0.
Figure 11. Constant pressure lines (equispaced values) for 8 = .75.
Figure 12. Constant pressure lines (equispaced values) for 8 = .50.
Figure 13. Constant pressure lines (equispaced values) for # = .25.
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APPENDIX A

FINITE DIFFERENCE FORMULAS

For the first derivative with respect to r at all points,

d(CHI(z,r)) CHI(z,r+h) - CHI(z,r-h)

For the second partial with respect to r at all points,

2
d (CHI(z,r)) CHI(z,r+h) - 2CHI(z,r) + CHI(Zz,r-h)

For the third partial with respect to r in the middle away from the
boundaries r=0 and r=1,

3
d (CHI(z,r)) CHI(z,r+2h) - 2CHI(z,r+h) + 2CHI(Zz,r-h) - CHI(z,r-2h)

3 3
dr 2h

Near the boundary r=0 (i.e. at points (z,h) )

3
d (CHI(z,r))
3
dr
d(CHI(z,r-h)) / 8 CHI(z,r~h)  CHI(z,r+2h)
=3CHI(Zz,r) + 2h ——=======e==- + —eeemeeeeee- t —eemmemmeee
dr 3 3
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Hear the boundary r=1 (i.e. at points (z,1-h) )

3
d (CHI(z,r))

d(CHI(z,r+h)) 8 CHI(z,r+h) CHI(z,r-2h)
3CHI(z,r) + 2h ~—=======mm—- = TTmsmmsmmsms = mmmesse—eee
dr 3 3

For the fourth partial with respect to r away from the boundaries r=0 and

d (CHI(z,r))

CHI(z,r-2h) = 4CHI(Zz,r-h) + 6CHI(z,r) - 4CHI(z,r+h) + CHI(z,r+2h)

—— - — - ——— - — — — - - - - — - - — . - = e = - = ——— - -~ - - - -

Near r=0

G
d (CHI(z,r))

CHI(z,r+3h) 8CHI(z, r+2h)
16CHI(Zz,r) = =========-- + —mmmmecnccas = 9CHI(Zz,r+h)
4 3

113CHI(Zz, r-h) d (CHI(z,r-h))
[P ——— —Sh ——————————————
12 dr




Near r=1,

4
d (CHI(z,r))

CHI(z,r-3h) 8CHI(Zz,r-2h)
16CHI(z,r) = -=——==———-- t —mmmmm - = 9CHI(z,r-h)
4 3

113CHI(z, r+h) d (CHI(z,r+h))

e + 5h —=——mmmmmmeemm
12 dr

For the fourth partial with respect to z away from the boundaries z=0 and
Z=beta.

d (CHI(z,r))

CHI(z-2k,r) = GCHI(z-k,r) + 6CHI(z,r) - GCHI(ztk,r) + CHI(z+2k,r)



Hear z=0

A
d (CHI(=z,r))

CHI(z+3k,r) 8CHI(z+2k,r)
16CHI(z,r) - -——=-—-—--- + - - 9CHI(z+k,r)
4 3

113CHI(z-k,r) d (CHI(z-k,r))
R = BK ==———ememeaeee
12 dr

Near z=beta,

G
d (CHI(z,r))

4
dz
CHI(z-3k,r) 8CHI(z-2k,r)
16CHI(Zz,r) = —========—- + e = 9CHI(z-k,r)
4 3
113CHI(z+k,r) d (CHI(z+k,r))
- - + 5K ———=m-mmmmemee
12 dr
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For the mixed fourth partial in the middle away from all boundaries.

6
d (CHI(z,r))

2 ( 30CHI(z,r) + CHI(z,r-2h) - 16CHI(z,r-h)
- 16CHI(z,r+h) + CHI(z,r+2h) )
- ( 30CHI(z-k,r) + CHI(z-k,r-2h) - 16CHI(z-k,r-h)
- 16CHI(z-k,r+th) + CHI(z-k,r+2h) )
- ( 30CHICz+k,r) + CHI(z+k,r-2h) - 16CHI(z+k,r-h)

- 16CHI(ztk,r+h) + CHI(z+k,r+2h) )

- —— - - - A > = = > = . . - - - - - S G = I - G . = S - - - . - - - - -



Hear z=0,

d (CHI(z,r))

-10CHI(z,r)  257CHIC(z-k,r) 7CHIC(z+k,r) 2CHI(z+2k,r)

-2 ( —m—mmmme- + mmmmmmmmeeee R = mmmmmmemeeee
3 164 4 9
CHICz+3k,r) 5k d CHI(z-k,r)
T ———— T —— )
48 12 dz

=10CHI(z,r-h)  257CHI(z-k,r-h) 7CHIC(z+k, r-h) 2CHI(z+2k, r~h)

O T ——— + e T —— T ——
3 144 4 9
CHI(z+3k,r-h) 5k d CHI(z-k,r-h)
+ mmmmmmmmmeeee e e )
48 12 dz

=10CHI(z,rth)  257CHI(z-k,r+h) 7CHIC(z+k, r+h) 2CHI(z+2k, r+h)

R T —— + mmm————— + -— T —
3 144 4 9
CHI(z+3k, rt+h) 5k d CHI(z-k,r+h)
B R )
48 12 dz
2 2



Near z=heta,

d (CHIC(z,r))

-10CHI(z,r) 257CHI(z+k,r) 7CHIC(z-k,r) 2CHI(z-2k,r)

-2 ( —mmmme——- + ——mmm—emeeee L R
3 144 4 9
CHI(z-3k,r) 5k d CHI(z+k,r)
R I )
68 12 dz

=10CHI(z,r-h)  257CHI(z+k,r-h) 7CHIC(z=k,r-h) 2CHI(z-2k, r-h)

I G R L - mmmmmmeeeeeeee
3 1644 4 9
CHI(z-3k,r-h) 5k d CHICz+k,r-h)
T —— S )
48 12 dz

=-10CHI(z, r+h) 257CHI(ztk,r+h) 7CHI(z~k, r+h) 2CHI(z-2k, r+h)

R I I e ——
3 1644 4 9
CHI(z-3k, r+h) 5k d CHI(z+k,r+h)
I R )
48 12 dz
2 2



Near r=0,

d (CHI(z,r))

-10CHI(z,r)  257CHI(Zz,r-h) 7CHI(Zz, r+h) 2CHI(Z, r+2h)

-2 ( ——mmmmm- + —mmmmmmm e R - -
3 144 4 9
CHI(z,r+3h) 5h d CHI(z,r-h)
O et I e )
48 12 dr

-10CHI(z-k,r)  257CHI(z-k,r-h) 7CHIC(z-k, r+h) 2CHI(z-k,r+2h)

I + mmmmemeemm—eee + mmmeemeemeeee - e
3 144 G 9
CHI(z-k,r+3h) 5h d CHI(z-k,r-h)
R L + == mmmmmmm—meee )
48 12 dr

=10CHI(z+k,r)  257CHI(z+k,r-h) 7CHIC(z+k, r+h) 2CHI(z+k, r+2h)

+ (- + -- + e - e
3 144 4 9
CHICz+k, r+3h) 5h d CHI(z+k,r-h)
R + = e )
48 12 dr
2 2



Near r=1,

d (CHI(z,r))

-10CHI(z,r) 257CHI(z,r+h) 7CHIC(Z,r=h) 2CHI(z,r-2h)

w2 ( ~mm———————— $ e I - e
3 144 4 9
CHI(z,r-3h) 5h d CHI(z,r+h)
+ mmmm——————— B — )
48 12 dr
-10CHICz-k,r)  257CHICz-K,r+h) 7CHICz~k, r-h) 2CHI(z-k,r-2h)
N G R + ————— - _——
3 166 4 9

CHI(z-k,r-3h) 5h d CHI(z-k,r+h)

-10CHICztk,r)  257CHI(z+k,r+h) 7CHI(z+k, r=h) 2CHI(z+k,r-2h)

O T 4 mmm—mmmmmeeeeeo $ e I
3 144 4 9
CHI(z+k, r-3h) 5h d CHI(z+k,r+h)
4 mmmmmmmmmeee e e R )
48 12 dr
2 2



For the mixed third partial in the middle away from the boundaries z=0
and z=beta.

d (CHI(z,r))

30CHI(z,r-h) + CHI(z-2k,r-h) = 16CHI(z-k,r-h) - 16CHI(z+k,r-h)
+CHI(z+2k, r-h)
+ 30CHI(z,r+h) + CHI(z-2k,r+h) - 16CHI(z-k,r+h) - 16CHI(z+k;r+h)

+CHI(z+2k, rt+h)

————— —— S I - - - - T S S S - = S Gme W P B D S e e - - W . S Y S - - - - - - - -

Near z=0,

d (CHI(z,r))

=10CHI(z,r=h) 257CHI(z-k,r=h) 7CHI(z+k, r-h) 2CHI(z+2k, r-h)

CHI(z+3k, r-h) 5k d CHI(z-k,r-h)

-10CHI(z, r+h) 257CHI(z-k, r+h) 7CHI(ztk, r+h) 2CHI(z+2k, r+h)
N R + T T ——

3 144 4 9

CHI(z+3k,r+h) 5k d CHI(z-k,r+h)
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Near z=beta,

d (CHI(z,r))

-10CHI(z,r-h) 257CHI(z+k, r-h) 7CHIC(z=k,r-h) 2CHI(z-2k, r=h)

CHI(z-3k,r-h) 5k d CHI(z+k,r-h)

-10CHI(z,r+h) 257CHI(z+k, r+h) 7CHI(z-k,r+h) 2CHI(z~2k, rth)

CHICz-3k, r+h) 5k d CHICz+k,r+h)




