University of Michigan
Department of Mechanical Engineering
Cavitation and Multiphase Flow Laboratory
Report No. UMICH 014571_17_A

WET STEAM FLOW

Α

STUDY OF THE MINIMUM WETTING

RATE OF LAMINAR FILM MOTIVATED

BY SURFACE SHEAR ONLY

by

Aurelius B. Weeks

Submitted to

Professor H.G. Hammitt University of Michigan Multi-Phase Flow Lab

April 1978

This study was done as part credity for ME 490 and ME 538

Supported by National Science Foundation Grant No. ENG 75-2315 and internal University of Michigan SEP Funds

INTRODUCTION

As part of the continuing research in Multi-Phase Flow at the University of Michigan, the author was assigned the problem of determining the minimum wetting rate (critical flowrate) of liquid (water) that will completely cover the surface of a test turbine blade under the action of shear forces caused by high velocity steam flow. The assignment also included a study of a theoretical model proposed by D.E. Hartley and W. Murgatroyd for establishing the conditions under which a thin liquid film will tend to completely wet a solid surface over which it is flowing.

This paper presents the results of minimum wetting rate obtained under controlled experimental conditions and a discussion of the theoretical model developed by Hartley and Murgatroyd.

NOMENCLATURE

M	rate of mass flow
p	static pressure
ΔP	static pressure difference
W	liquid velocity in the direction of flow
х,у,г	retangular co-ordinates
X	width of a liquid stream

Greek symbols

δ	liquid film thickness
0	angle of contact between liquid and solid
μ	liquid viscosity
ρ	liquid density
σ	liquid to air surface tension
au	shear stress

Suffixes

С	critical - i.e., at point of film break up
G	gas alone
L	liquid
W	connected with velocity or momentum
δ	at the outer edge of the liquid film
σ	connected with surface tension

Experimental Set-up

A thorough description of the experimental set-up and equipment is given in the original paper by Professor H.G. Hammitt. A brief description of the procedure used in collecting data for determining the minimum wetting rate of the water is given below.

Water was introduced onto the test blade through small openings in the leading end of the blade. Steam was introduced into the test chamber through the pipe line running from the boiler room to the chamber. The test chamber had previously been evacuated to create vacuum conditions.

The steam was allowed to flow into the chamber at a fixed flowrate which was determined by a flow measuring orifice. The pressure difference between the inlet and outlet of the orifice was read directly in height of mercury. When the steam rate was constant, water was slowly introduced onto the blade. The water was quickly spread over the blade by the shear action of the flowing steam. The water flowrate was increased by about 1 cc/min until it just completely covered the blade. At that instant, the flowrate of the water was recorded. The flow of water onto the blade was then increased

to its fullest then slowly decreased to the point where the first dry patch started to reappear. At this point, the flow was recorded. The whole process was repeated with a different flowrate of steam.

The two flowrates of water were never found to be the same.

The first one obtained by increasing the water flow was
always higher than the second which was obtained when the
flow was decreased.

The rate at which the liquid completely covered the test blade and the rate at which the first dry patch reappeared were both recorded dependent on the coordination of the person observing the flow and the person controlling the liquid flow. It was not possible for one person to handle both due to the location of the test chamber and the water flowrate meter.

The accuracy of the results was further hampered by poor lighting of the test chamber. It was very difficult to achieve direct lighting in the blade itself due to the quality of the material used to construct the test chamber. Plastic was used, and at the time the experiment was carried out the walls had many scratches.

Results

The results of the minimum wetting rate measurements are shown in Figure 1. Superimposed on the same figure is the form predicted by the Hartley-Murgatroyd model obtained by using our data in their theoretical equation. The equation predicts what the minimum wetting rate of water should be for a given steam velocity.

The water rate was reduced by approximately 1 cc/min for each successive dry patch test. Therefore, each minimum wetting rate falls between two limits. At the upper limit the surface is just completely covered with liquid, and at the lower limit the dry patch has just reappeared. No attempt was made to obtain a more precise figure for minimum wetting rate and the results are plotted as bar lines between the two limits. It will be observed that the minimum does decrease with increase in steam velocity, in agreement with the Hartley-Murgatroyd theory.

The smooth curve through the four data points is an attempt to show how the theory model predicts how the liquid film should act when motivated by surface shear only, as was the case in our experiment. The Hartley-Murgatroyd equation for finding the minimum wetting rate is:

20 Squares to the Inch

Steam 11. 1. .. tin

Mrse X10

This equation was obtained from the power criterion. The same equation from the force criterion is:

$$[MX] = 3.30 (P4/z)^{\frac{1}{3}} [6(1-\cos\theta)]^{\frac{2}{3}}$$

In the above equation the minimum wetting rate depends on the contact angle θ . We did not measure θ in our experiment, therefore, the equation could not be used with our data in its present form.

Figure 1 shows that our lower data points fall close to the curve generated by the Hartley-Murgatroyd equation.

The Hartley-Murgatroyd Theoretical Model

The theoretical model used to analyze the experimental data was developed by D.E. Hartley and W. Murgatroyd in their

paper "Criteria for the Break-up of Thin Liquid Layers
Flowing Isothermally Over Solid Surfaces." The model predicts
"the conditions under which a thin liquid film will tend to
completely wet a solid surface over which it is flowing."
The model suggests two criteria; "One is based on a force balance
at the upstream stagnation point of a dry patch, and the
other on the minimum total energy rate in a transversely
unrestrained stream."

The Force Balance Criterion

The force balance criterion was developed in two stages.

The first stage was developed in the above mentioned paper.

The second stage was developed in a paper by W. Murgatroyd titled "The Role of Shear and Form Forces in the Stability of A Dry Patch in Two-Phase Film Flow." This new development was necessary after the model had been applied to experimental data by F.G. Hewitt and M.C. Lacey. Their results were published in a paper titled; "The Breakdown of the Liquid Film in Annular Two-Phase Flow." The paper disclosed a large discrepancy between the contact angle required to solidify the Hartley-Murgatroyd theoretical model and that measured by Hewitt and Lacey.

Hewitt and Lacey suggested that an important additional force, possibly aerodynamics should be included in the force

balance criterion. This force was later found by Murgatroyd to be two forces, shear and form. The effect of these forces on the force balance equation was shown by Murgatroyd in his paper cited above.

First Model

The original model of the Force Balance Criterion only considered two forces; Surface Tension along G_SG_P as shown in Figure 2 and Fluid Pressure Over G_SG_P . Under the assumption implied in Figure 2, the fluid pressure in the inner surface of G_SG_P exceeds that on the outer surface owing to the conversion of fluid kinetic energy into static pressure. The static pressure at G is:

The force $T_{\mathbf{W}}$ along $G_{\mathbf{p}}G_{\mathbf{S}}$ due to this resolved in the Z-direction will be:

$$T_W = dx \int_0^{SAB} P[W(y)]^2/2 dy$$

The restraining force due to surface tension is:

where \P is the surface tension and θ the contact angle. Thus, the point G will be in neutral equilibrium if:

Second Model

Figure 3 shows the upstream part of a dry patch which has already formed, together with a few appropriate stream surfaces. The particular surface EG which passes through the stagnation point G is shown in section 3B. The point E (distant 1 from G) is assumed to be sufficiently far enough upstream for the flow at E to be unperturbed by the dry patch. The thickness of the film at E is δ , and downstream of E, it is assumed to remain of order of magnitude δ .

Consider the infinitesimally thin element of liquid centered on EG and shown shaded in Figure 3a, the following forces act on this element.

a. Shear forces

Upstream of E the shear stress $\mathcal{T}_{s,s}$ from the gas phase is balanced by the stress $\mathcal{T}_{s,s}$ at the solid liquid interface. The film velocity U and therefore, $\mathcal{T}_{s,s}$ ($\mathcal{I}_{s,s}$) decrease to zero at G, whereas $\mathcal{T}_{s,s}$ ($\mathcal{I}_{s,s}$ Us $\mathcal{I}_{s,s}$) assumed constant except very close to G. Thus, the out-of-balance shear force on the element equals:

Now the state of affairs is such that the dry patch is so large that surface tension forces in the plane of the solid surface are negligible, i.e., R>>5.

b. Form forces

K2 depends on the distance \$.

c. Surface forces

an upstream force.

d. Momentum flux

The flux of momentum across unit width of film at E is:

where U_O(g) is the velocity in the undisturbed film at E. If EG is assumed to be a straight line and that flow is symmetrical about it, it can be shown, by expanding U and W in Taylor series about their values on the line EG that the ratio of the flow of X-momentum from the element due to the W component to the flow of X-momentum due to U vanishes, in the limit with \$X.

Thus, in the limit one need only consider the term:

The momentum equation is:

with $K = K_1 + K_2$ in which K_1 and K_2 (and therefore K) can be expected to be in the range of magnitude $10^{1} - 10^{2}$.

The static force has been replaced by the form and shear forces in the final equation. The equation was further refined to read:

For Laminar film motivated by surface shear only, the minimum wetting rate is given by:

$$[M/X]_{c} = 3.30 (PM/x)^{1/3} [\sigma(1-6-0)]^{2/3}$$

Power Criterion

The power criterion was developed fully in the first paper published by Hartley and Murgatroyd on the subject.

If a laminar film is flowing under the influence of surface shear so great that the weight of the liquid is not significant, the velocity in the film is given by:

and at the surface of the liquid the velocity is:

The total specific flowrate is given by:

The minimum wetting rate is given by:

Conclusions

The results of the experiment have demonstrated that the minimum wetting rate decreases continuously with increasing steam rate where the water film is motivated by surface shear only.

We made no attempt to discover if the new force balance equation clarified the discrepancy between the contact angle required to satisfy the theory and that measured by Hewitt and Lacey.

No special attention was paid to the form the liquid film took at breakdown.

REFERENCES

- 1. D.E. Hartley and W. Murgatroyd, <u>Criteria for the Break-up of Thin Liquid Layers Flowing Isothermally Over Solid Surfaces</u>, Int. J. Heat Mass Transfer, Volume 7, pp 1003-1015, 1964
- 2. G.F. Hewitt and M.C. Lacey, <u>The Breakdown of the Liquid Film in Annular Two-Phase Flow</u>, J. Heat and Mass Transfer, Volume 8, pp 784-791, 1965
- 3. W. Murgatroyd, The Role of Shear and Form Forces in The Stability of a Dry Patch in Two-Phase Film Flow, J. Heat and Mass Transfer, Volume 8, pp 297-301, 1965

APPENDIX

DATA

Nomenclature

 $\frac{1}{2}$

Max Steam Velocity mysec @ : Liquid flow Rate film thickness (m/sec (Qx2) cox8xh) ; Interface Velouty (Tih) Liquid Reynolds No Mean Interface Shear Stress (M Vi) Weber Namber $\left(\frac{s_{s} \overline{U_{i}^{2} h}}{\sigma}\right) \left(\frac{s_{s} \overline{U_{i}^{2} h}}{\sigma}\right)$: Froude Number $\left(\begin{array}{c} \overline{Ui} \\ \overline{gh} \end{array}\right)$: Wave length : frequency Sect Dimensional Wave Vel Com/sec Dimensionless (C/Oi) : Wave number $(\frac{27}{\lambda})$ Dimensionless Wave Number (kh) Rs: (ToH): Steam Reynolds Number based on Turnel Height

Wave length

		de mars	Cm ² /s	2.67×10+																	
(311,0=M)	6,59 x10 \$	9,6 x10-5	1.459	R = 2	h+		2.538	28.25	7,382	10505	13,53,	7.765	20.05	22, 113	N 5 1/C	0/~*	29.405	27,51.4			-
				3	Ws	1	619	N	-12	1	-3	- 37	-2	0			<u></u>	154			
13 m/sec	<i>S</i>	My = 6.49 x103 cumis Ms =	7 = 6.49x103 cm/s 25=	0 = 69,56/, dynalan	R		34 9 0.087 143.56	41.89 0.159 119.60	35.69	62.83 0.685 79-74	52.36 0.433 95.69	119.60	78.70	9564	/// 2	(46.7.29	95.69	342,446.55			
25:50 chro	8/m	K10 2	40,	2/95	ধ		0.087	9212	0.398	0,485	0.433	हैं व	1.30 7	(20,12)	(0,016)	6,294	1.591725.6	(0.342)			-
1	{vw/8 = 18	=6.44)	43	- 69.	4x 1	Con	34.9	41.89	52.36 0.398	62.83	52,36	हिंद है हिंदी	4.00 E. 5.	52,36	(9100) (87,4)	(8,98) (8,294)		(42,11)			Ť
±ω") • O	97	م مهر س	, <u>"</u>	6	ಎ		1.08	0.68	0.58	6.39	18.0	oal		4.62	(80'5)	(4.6)			<u> </u>		1
			_	 >	, c	33/m	4.5	3.75	2.40	1.50	4.80	32.8	(63.e) [6.0	(42,0)	(0'05)	(74,4)	31.6	(34:E)			-
					4		\$ T	25	0 4	51	40	52	(44) 160	(35)	(05)	120	889	で で で で で で で で で で に に に に に に に に に に に に に			
				>	く {		2.2	0.15	0,12	0,10	0,12	9,15	(4,5)	3,5	6 =	0,10	21.0	(9:29)	7		
					للا	ļ	0117	8.06	75.5	मरग	2.58	4.54	2,86	0 / 6	100	3.89	4.00	7 24	7		
(n atm)				M	×	1. 24.0 PT. O	1,64	1.84.	229			2,49 19, 18	7 . 7 .	77	35.34	52,34	8	0 75		_
(41°c	(0)				the series		म् म् न	4.33 1.64	2 50 184	74.2	21.05	3.50				3.5	21.32	6			
Tr= 109°F (41°C)	Pr= 2,5 psia Co,19 atm)			\rightarrow	(R)		- 4-1	3.22	485	,	12,87	8,22 19,31	801 24,74		22.21	45.35 12.5 53.85 PS.P 125.9.0	0,0305 10,93 51,52, 2,32, 52,36 4,00	000	019767 12.06 24.21		
01 =	7 2 7			→	Q.		t	5.48	4.11	3.82	5.95	8 22			97	9.84	10.93		90.5		
不	ال ِ 1-						970017	8500.0	0,0016	0 p 109	0.0140 5.95 (12.87 2.75 7.12	0.0152			0,0229 -119 22.21 22.29						
					3		!	N	7,5					•	4	<u>.</u>	8		,	7.2. <u></u>	!
				;		=		_	7		7		T :	-	٦	לנ	જ	(?		

$f = .0378$ $U_0 = . 132 \text{ m/sec} (M = 0.31)$ $S_f = 1 \qquad S_8 = 7.5 \times 10^{-5} \text{ (3/m.1)}$ $M_f = 6.08 \times 10^{-3} (\frac{2}{\text{cm.2}}) M_S = 9.61 \times 10^{-5} \text{ (a.7.8)}$ $V_f = 6.08 \times 10^{-3} (\frac{2}{\text{cm.2}}) V_S = 1.287 (\text{a.7.8})$	(0 = 68 (dipar/cm) RS=5.47x1.04	F C' C K K RX Wb bt	0.92 41.89 0.13 245 0.61 5	50 6.0 0.99 52,36 0.36 1.96 1.33 12,246	5.0 0.61 62.83 0.64	(60,2) (4.46) (4.49) (0,03)	0.12	(42) (42) (42) (434) (436) (426) (44) (420) (420)	(60,45) (6,55) (4,61) (0,29; (1060)	78) (38.0) (15.1)	260 260 190 6283 1.92 1.63 5.865625		
	っ	くを	0,15	0.12	0110	(1,4)	(1,1)	(8.0)	(6, 69)	0,12	0.0		
			13.51	5, 40	89.9		19:13	31.6	7.63	4,00	76.24		
		β°0,×		3.62	4.81 9.18	11.03 27.06	35.03	7.85 49.11	3.69 44.30	2,18 52,38	81.82		
(44°C)		T.0	12,27	5.12	4.87	11.03	7,80				2,72		
112°F (44°C) 2.5 psia (0.19"(m)	->	œ	3.43	98.9	13.91	30.56	27,41	34.2b	12,32 41.13	54 83	68.53		
Tr= 112 °F (44 °C) Pr= 2.5 psia (0.1911[m]	→	<u></u>	6.51	6.04	8,17	15,06	14.62	0,0129 16.40	12.32	10,93	1366		
下产		ل E	0.0022	0,0061 6.64 6.86	0,0102 8,17 13,71	30 0.0083 15,06 20.5b	0,0114 14.62	De10'0	0.0203	0,0305 10,93 54.83	90500	 ***************************************	
		(A)	42	0/	7	30	0.7	7 ·	9	20	00/		· · ·
	•	+ ~	8.8	19.0	3.90	53		.85	4.4	7.41	8.2T		

(g/cart) (du/24:35.) (cm.2/s)	1,5-2,4/1,5	
= 0, 95) (0,5) (10,5) X10,5		
$7L_{c} = 721$, 4 deput $f = .0165$ $J_{c} = 122$, 4 deput $J_{c} = 1$ ($J_{c} = 1$)	x x x	1.48 4.88 4.15 11.680 5.9.66.900 9.2 25721 13.2 37.910 13.2 37.910 13.1 37.910 18.11 50.64
m sec 15) Eg = 15 Emilia Ms = 15 Emilia Ms = 15	1 - 67.5 (ayre/cm) - 67.5 (ayre/cm) - 67.5 (ayre/cm)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 = 721. 4 done. Jo = 122. 4 done. St = 1 (g. lows) My = 5.28 x10 ³ (dw. x.) Yy = 5.28 x10 ³ (fw. y.)	8 K	1 2 N 2 N 2 N 2 N 3 N 3 N 3 N 3 N 3 N 3 N
TO CO X SO X SO X	× × ×	8) (20 10 10 10 10 10 10 10 10 10 10 10 10 10
25 = 721. 4 dens. 36 = 128 x103 (dens.) 45 = 5.28 x103 (dens.) 75 = 5.28 x103 (dens.)	1 2 x 5	
	၁	6.62 6.62 (6.62) (3.31) (2.45) (1.91) (2.45) (2.45) (2.45) (2.45) (2.45)
2.5	Confece	(130) 1864 (100) 300 (100)
-287735.584	f 1295	2000 2000
3/2	Z Gm	(0.00) (0
	ഥ	121.06 121.06 124.83 124.83 124.88 123.02 123.02 124.88
म	3 ×	
2,5)	45.00	20.82 20.82 20.82 21.82 21.82 11.61 10.91
Tr= 125 F (526) Pr= 2,5 Psia (0,19 atm)	→ ℃	0013 16.03 3.95 65.11 4.95 0832 13.02 7.89 21.48 8.04 20046 18.12 15.79 20.80 23.38 20046 27.17 21.06 31.19 50.31 2.0061 27.37 31.56 23.65 67.45 2.0061 27.37 31.56 23.65 67.45 2.0123 24.51 47.35 12.49 90.78 2.0123 24.51 47.35 12.49 90.78 2.0127 26.35 62.14 10.91 129.65 2.0137 29.35 62.14 10.91 129.65
25.5	75) wy	18.12 18.12 27.17 24.51 24.51 24.51 24.51
上世	4	9,0013 15,02 3.95 65,111 9,0046 18.12 15,09 20,80 0,0046 27,17 21,06 31,19 0,0061 27,17 21,06 31,19 0,0103 24.51 47,25 12,49 0,01197 24,83 47,25 12,49 0,01197 24,83 78,93 11,27
	(Q)	7 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		2.81 7.87 5.63 7.44 7.87 7.44

DAte : 513/77 T = - = Nome Hon F = TE (t_-2) Vs = Ww Fs= PE <u>P</u> Vs QI T 01 14 1312 15 -09 -2.9 - f 137 12 10 X 17 (0) 253 105 -3.5 17 2-17 12 4.7 12 2 23 8 10 2 - 5.1 - 12 12 (0.0 14 X 12 236 237 5: -123 133 52

8 73 -7.0 -13.55 1-7 700 100 -75 -12.5 12 12 | 710 | 101-85 - 125 13 135 13,0 201 103,10 -125 167 12 190 100 -105 -102 - 15 C X

DAR: 6/13/77 平。 1/3/11/2 1. TE (-rt) 1/2 = 7/w 45 DE Vs 01 QI T-14 75 115-15 2-2 1/4 -2.9 13 165 25 34 - 22 16 985 ----191 -5° 2265 99 - 15 - 155 12 | 120 | 121-85 - 125 1 137 108 10 -129 108 100 -129 109 100 -129 12 190 197 10.5 212 - 15

루:		T =				٠,	· · · · ·	المحدال	
', -						No	NAE	/	
(L. F.,									
		Ts							
t-2 -			U	st c	OU S1	Sten	-		
ا ا الم				فسرني المسائل	,	0	1		
3	Romank	! Stean (suply	فسري مسمعه (100 to	المراجع المراجع	(green)		
H	V_{ε}	01	QI	Ţ<	T	6	A.		
H									; \$ \$
1 × 2									
, ,									
272		: 4	6	250	110	1.5	11.5		
		14	8	<u> 244</u>	/13	2.4	11.7		
9 % 2		13		242	112	2.7	12		
		157	<u>13</u>	6252	107	4,2	12		
P Y 2		15		235	110		- 1		
		-12	12	249	105	4.4 5	125		
7X2		16	10				,		·
/ V S		14	14	245 220	105	5,2	12.5		
/X2		17	1)		104		- 1		
; × 2		15	8	210	104		12-3		:
			•	202			12.4		
4X2		18	12	700	101	8	125		
		16	12	192	98	9	12,5		;
ラメン		16	11	188	li∞		15.5		
		16	12	181	100	10	12.5		:
, X a		14	12	700	103	10.5	12		
		13	12,	170	[60	11	12,5		
									· \
								Charles Continued to	Arriva de la compansión d
						1			-
				Ł		1	,	I	

1 = DAG 0/2/17 d ... Nome backer - In F. : Ts £-3 Fs: V_s QI Ps P 10 Ts J_F Hur 11 × 2 11 7.5 255 106 10 × 2 10 -2.4 247 16 9 x 2 13 14 105 - 35 - 9: --0 8 x 2 14 :35 135 -4 5 14 7 X 2 101 -38 16 2 ; } -17.2 13 6 Y 13 212 93 -7.0 -12.2 2 12 93 -7,2 5 × 13 204 -12,2 10 2 . 4 × 95 -94 -123 7-رن زخ : 2 :0 3× 2 95 -10.4 -12.3 10 77 7.5 186 100 -11,5 -12.3 7 9 3 × 3

F =