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I. INTRODUCTION

The vibration-rotation spectrum of ammonia, NHB’ has been the
subject of many investigations, both experimental and theoretical, during
the course of the past thirty years.(l) Consequently, the main features
of this spectrum and the main features of the molecular structure are
well understood. Ammonia is a pyramidal molecule (symmetry group C5v)
with the N atom approximately 0.38 x 10'8 cm above the plane of the three

-8 cm. Its

hydrogen atoms, the N-H distance being approximately 1.02 x 10
vibrational spectrum shows four fundamentals, two totally symmetric
(species Al), and two doubly degenerate (species E). The rotational
structure is that of a symmetric top, the two totally symmetric funda-
mentals having a parallel band structure and the two doubly degenerate
fundamentals having a perpendicular band structure.

Probably the most striking feature of the ammonia spectrum is
that every line consists of two components. In the two doubly degenerate
fundamentals V3 and v, and in the totally symmetric fundamental vy the
separation of the two components is small (of the order of 1 cm'l). The
two components of the symmetric fundamental vo, however, show a much
greater splitting (36.6 em™). Similarly, the components of the overtones
of v5, V), and v, are only slightly split whereas the components of the
overtones of v, are very widely split. It is well known that the doubling
of the ammonia spectrum can be attributed to the existence of two equilib-
rium configurations for the molecule. Indeed, starting from one equilib-
rium configuration, the other can be obtained by inverting the nitrogen

atom through the plane of the three hydrogen atoms. If the potential

-l
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energy of the molecule is plotted as a function of the distance of the
nitrogen atom from the plane of the hydrogen atoms a curve of the form
shown in Figure 2 is obtained. The curve possesses two symmetrically
placed minima at the equilibrium configurations, separated by a central
maximum at the point where the nitrogen atom passes through the plane

of the hydrogen atoms. The energy levels of a particle moving through
such a double minimum potential occur in pairs. The lowest lying pair
of levels has the smallest separation while the separation of the re-
maining pairs increases rapidly with increasing energy. Sinée the po-
tential energy is symmetrical with respect to inversion through the
plane of the hydrogen atoms the wave functions corresponding to the
energy levels must be either even or odd functions of the inversion
coordinate. The even wave functions correspond to the lower members of
each pair (+ levels), whereas the odd wave functions correspond to the
upper members (- levels). The energy levels are labelled by a gquantum
number not, where np = 0, 1, ..., and so on. The doubling of the ammonia
spectrum is interpreted by associating the widely split fundamental v,
with a vibrational motion which carries the molecule from one equilibrium
configuration to another. Since ammonia has six vibrational degrees of
freedom.one needs, besides the quantum number no+, five other gquantum
numbers to describe completely the vibrational energy levels. Following

the notation used by Benedict, Plyler, and Tidwell(6'9>

, & vibrational

. . + ,@5 ,@L‘_
level will be described by the sextet of numbers (nl, No—, Nz 2, n) ).
A molecule in a given vibrational state can, of course, be in any one of

a number of rotational states. In order to specify an energy level com-

pletely, one must give, besides the vibrational gquantum numbers, the total



angular momentum quantum number J and the quantum number K associated
with the component of angular momentum along the symmetry axis of the
molecule. Thus an energy level of ammonia is specified completely by
the octet of quantum numbers (nl, ngi, n5ﬁ5, nhﬁu, J, K).

Infrared selection rules are determined by the dipole moment
vector of the molecule. Since the dipole moment changes sign when the
molecule is reflected through its center of mass, it follows that infra-
red transitions are allowed only between states of opposite parity. The
parity of the level (nl, ngi, n3ﬂ3, nuﬂu, J, K) is given by + (-l)K where
the :plus sign is taken for n2+ (+ levels) and the minus sign for Np-

(- levels). Thus, for parallel bands (A K = 0), transitions between

two + levels or between two - levels are forbidden. For perpendicular
bands Qﬁ(=ttlh transitions from + to - levels or - to + levels are for-
bidden. The action of this selection rule in the formation of inversion
doublets in the frequency spectrum of ammonia is illustrated in Figure 1.

The problem of a particle moving in a double minimum potential
was first solved by Dennison and Uhlenbeck.(g) Using the WKB method
these authors found, for energy levels lying below the central maximum

(c.f. Figure 2)

A _ |

= (1)

o T AR
where

X ‘ Y
An - exp‘_‘zf"- S LZm(V(X)—En)]ZClX:{

In Equation (l), Ah =B, - - E .+ , Vv is the classical frequency of

-1

oscillation in one of the potential minima, and En = 2[En- + En+]. Xn

is the smallest positive value of x satisfying the dquation V(x) = E,
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Figure 1. Formation of Inversion Doublets.
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(inner classical turning point). Using as data the values of Lo, BN, and
hv obtained from experimental work on the ammonia spectrum, Dennison
and Uhlenbeck were able to determine the values of the parameters in a
simple potential curve consisting of two equal parabolae Jjoined by a
horizontal straight line. The values they obtained correspond to a
potential barrier height of 1769 em™l and a distance of 0.38 x 10'8 cm
between the nitrogen atom and the plane of the hydrogen atoms.

The double minimum problem was considered also by Manning(5)
who showed that the one dimensional Schroedinger equation could be
solved numerically with a potential of the form
v y h (2)
—L—; = aS'ech(X/Zp)— b sech (x/2p)

The constants obtained by Manning from the data for ammonia are

a = 66,551 cm~l, b = 109,619 cm=1, and p = 0.04793 (h/cu)l/g where p

is the reduced mass for the vibration. By taking appropriate values

for the reduced mass, Manning was able to calculate the energy levels
for both NH5 and NDz . His results are given in Table I.

A theoretical treatment of the dependence of the inversion
splitting on the rotational quantum numbers J and K has been given by
Sheng, Barker, and Dennison.(h) Their method 1s based on the WKB
splitting formula, Equation (1). They begin by noting that in the
lowest order ammonia Hamiltonian

2

| 2 2 \

= + —-— ) -
H=T+\ aIB(Px"'PY T ZICE
the moments of inertia Ip and In will be strongly dependent on the in-

version coordinate. Here Py, Py and P, are the three components of the



total angular momentum of the molecule. T is the vibrational kinetic
energy and V, the potential energy. ©Since the rotational part of H

is diagonal in J and K they obtain a Hamiltonian

k2. _HZ
H= T+Vo + 7R[I@)-K]+ 5 K

+’_g_z(_.'_. — ~e>[3(3+l)-K1]+?a.z( L )KZ

- e
« I

| =

e e
where IB and I, are the equilibrium values of the moments of inertia.
Regarding VO as depending only on the inversion coordinate X, they ob-

tain an effective one dimensional potential energy function

V(x)= Volx) + 8V(X) (3)

where

SV (X) = %?(-%B—— —__:EE)[B'(J“H)—KZ] +§z(|_1:c_ che,)K2

Combining (3) with Equation (1) and expanding the exponential, they ob-

tain

X
o 24 " SV )
Np=Dp | 1- 3% X4 o0 (%)
n o N 2P (Vo(x)= En)
o s . 0 . . .

for the inversion splitting. In Equation (4), Ah is the inversion
splitting for the non-rotating molecule and p is a reduced mass for the
inversion motion. Using Manning's potential, Equation (2), for Vb(x),

and assuming the inversion motion along a parabolic path which approaches



the two equilibrium configurations in the direction required by the
appropriate normal coordinate, Sheng, Barker, and Dennison find, in
wavenumbers

A, =N =162 [T(T+N-K2) + . 060 K*
for the first vibrational state of ammonia. This calculation has been
repeated by Hadley and Dermison(5> for both the ground state and first
excited state of ammonia. Using the same path for the inversion co-
ordinate as Sheng, Barker, and Dennison, they find

A, =0, —156[T(T+D-K?*] +,063K?

A°=A‘:-— LOOIS LTI +)-K2] +,0018 K® |

By modifying the path of the inversion motion Hadley and Dennison found

the following alternate set of numbers for &y and Ag.
D,= A° — 2 [TWTr1)=K*) + .03K*

A, = A‘;__ool-ﬂ[-ll'(()’{-l)—Kz]+.ooi2\<z .

The most recent experimental values of these numbers, as given by

Benedict, Plyler and Tidwell (6=9) are
A, = 35.81- 1817 LT(@+N-K2] + .0721K*

A= 7934 - 005054 [T(T+1)—K*)+. 001798 K",

Recent investigations‘of the ammonia spectrum by Benedict,
Plyler, and Tidwell(6'9) and Garing, Nielsen and Rao(lo) have uncovered
a wealth of new information. Since the theory reviewed above is only a
first approximation to the actual situation in ammonia it is to be ex-

pected that some extension and refinement of theory will be needed to



account for some of the new data. Thus, a re-examination of the theory
of the inversion spectrum of ammonia seems pertinent and it is with this
objective in mind that the present investigation has been undertaken.
Some of the available data on ammonia is summarized in Tables IT, III
and IV. Examination of these tables reveals some interesting variations
in the inversion splittings. From Table III one sees that although the
magnitude of the inversion-vibration splitting depends mainly on the
quantum number no there is also a significant dependence on the remain-
ing quantum numbers. If the one dimensional models which have been used
in the past were strictly valid then all levels with np = O would have
the same splitting, namely .793 cm™L whereas the observed splittings for
these levels vary from .35 to 2.24 cm™L. Similarly, all levels with

no = 1 would have the splittings 35.81 em™L, Actually, the observed
splittings vary from 18.49 to 45.4% cm-1l,

The inversion-rotation splittings offer an even greater
challenge. The coefficients B~ - BT and C~ - Ct in the inversion-
rotation splitting formula

A =N+ (B=BY[T(T+)-K*] +(C-CN)K?
are given in Table IV. The main variations in these coefficients are
given by the inversion quantum number n,. In particular, the magnitudes
of B™ - BY and C= - C* increase with Ny as np goes from 0 to 2, but show
a marked decrease for np = 3. The coefficients of J(J+l) - K2 and K°
cannot be computed by means of the WKB formula, Equation (%), for levels

with n, equal to 2 or 3 since these levels lie above the central po-

tential barrier. Furthermore, the coefficients of J(J+l) - K2 and K°
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TABLE T

MANNING'S ENERGY LEVELS (cm™1)

NH3 in
Level Calc. Obs (1935) Obs (1959) Cale. Obs (1935) Obs (1959)
00090 0 0 0 0 0 0
00-0°° 0.83 0.67 0.793 < 0.2 0.053
0100 935 932 932.51 746.0 %6 5.7
01090 961 964 968.32 748.5 755 R
02t0%°% 1610 1600 1597.42 1379 1363 1359
02-0°0° 1870 1910 1882.16 1434 1437 1429
03+0000 2360 2380 2383.46 1852 1831 1830
030000 2840 2895.48 2140 2106.60
TABLE IT
VIBRATIONAL LEVELS OF AMMONIA (cm™1)
nln?nfLL iy = of o 1 1" ot o- 3+ 3-
NHy
00o%o° 0.00 0.793 932.51 968.32 1597.42 1882.16 2383.46 2895.48
0 0011 1628.26  1629.26 2539.6 2585.0
0 o0 20 3215.59  3217.83
10°0%  3335.72 3336.71  L2gk.51  ©320.06
011 o0 3443.59  3L443.94 b6.91  kh35.40
10011 4955.9h  4956.8
01111 5052.61  5053.18 6012.72  6036.40
022 0%  6849.96  6850.39
0 09 22 3239.7%  3241.16
D3
0 09 o 0.00 0.053 TH5.7 Tho.h 1359 1k29 1830 2106.60
0 00 20 (23592) 3093.01  3099.46
{;_oo o0 2420.05  2420.64 3171.89  3175.87
01t o° 3327.9%  3329.56
011 2%  ue87.29  1887.67
{; 11 o 4938, 44

TLevel with brackets are in Fermi resonance
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TABLE TII

VIBRATION-INVERSION SPLITTINGS IN NH3 (cm™)

*o43

n, ny 3 nj/ Inversion Splitting
o o o9 o9 793
o 1 o o° 35.81
o 2 09 o9 284, 7h
o 3 09 o9 512.02
o o 1+ o .35
o o 22 o° A3
o o o0 11 1.01
o o o9 20 2.2k
o o 00 22 1.h2
o o 11 1l .57
1 0o 09 o° .99
1 o o9 1t .86
o 1 1+ o9 18.49
o 1 o® 1t 45,0

o 1 1t 1l 23.68
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TABLE IV

ROTATION-INVERSION SPLITTINGS IN NH3 (cm'l)

A =N+ (Bﬁ-B£>[J(J+l)-K2] + (d;-dg)Ke

ny n% n§3 nﬁlL . B~- BT c-- ¢t
o o o9 o° -.005054 .001998
o 1 o9 o° -.1817 .0721

o 2 o% o° -.535 .231

o 3 o9 of -.3041 .103k4

1 o 09 o0 -.012 .003

o o 11 o0 -.0036 .0007

o o 09 1t 048 .011

1 1 o9 of -.1265 .0k70

o 1 11 0o -.0984 .0k29

o 1 00 3l -.191 .097

o 1 11 11 -.130 .05k
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have a significant dependence on the remaining vibrational quantum

numbers n,, nBzB, and nhzh . If a one-dimensional model were strictly
valid all states with n, = 1 would have B~ - BT ==,1817 cm'l and

c- -ct = .,0721 cm™l whereas for these levels the observed values of
B~ - BY vary from -.0984% to -.191 cm"l while the observed values of

c- - ¢t vary from .0429 to .097 cm'l. The dependence of B~ - Bt and
C~ - C* on the vibrational quantum numbers is considerably more strik-

ing in the levels with np = O. Whereas a one-dimensional theory would
imply that C- - Ct = ,001998 cm~! and B~ - Bt =-.005054 em~1l for all

levels with n, = 0, the observed values of ¢~ - Ct are seen to vary

from .0007 to .01l cm ~.

1

The observed values of B~ - Bt vary from
-.0036 em " to -.012 em™ with the exception of the levels (0, Oi, OO, ll)
where B~ - BT changes sign to become .048 cm-1l.

Although the inversion splitting is intimately related to the
single degree of freedom associated with the normal mode Vo, the mode in
which the pyramid height changes most drastically, it is clear from ﬁhe
new experimental information that there must be strong interactions be-
tween the inversion coordinate and the remaining vibrational coordinates.
Indeed, it appears that a development of the complete vibration-rotation
Hamiltonian is needed to explain the variation of the rotation-inversion
constants with the vibrational quantum numbers. In this thesis a scheme
is proposed for describing the interaction between the inversion coordi-
nate and the remaining vibrational coordinates. The development of this
scheme follows a course roughly parallel to the conventional treatment

of molecules, In the usual normal coordinate treatment of molecules the
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potential energy expansion, in lowest approximation, is equivalent to
the potential of a system of uncoupled harmonic oscillators. Inter-
actions between the vibrational motions are contained in the cubic and
quartic terms of the potential expansion. Normally, the cubic and
quartic part of the potential can be treated as a perturbation. The
analogous development for ammonia is obtained by representing the po-
tential, in lowest approximation, by a double minimum potential, involv-
ing the inversion coordinate, plus the potential of a system of un-
coupled harmonic oscillators involving the five remaining vibration co-
ordinates but not the inversion coordinate. Interactions between the
inversion coordinate and the remaining vibrational coordinates are ob-
tained by interpreting the parameters occurring in the double minimum
potential as functions of the vibrational coordinates. For example, if
Manning's potential were used for the double miﬁimum poterntial the
parameters a, b, and p would be interpreted as functions of the vibrational
coordinates. The multi-dimensional potential function obtained in this
way leads to a Schroedinger equation far too complicated to solve exactly.
Indeed, the problem of obtaining solutions seems completely hopeless un=-
less the interaction terms can be written in such a way that perturbation
theory'can be used. One might expect that this can be done since the in-
version splitting, although a drastic function of the inversion quantum
number n,, is a relatively mild function of the quantum numbers 1y, n5 and
nj. In this thesis the interaction terms are obtained by expanding the
parameters appearing in the double minimum potential in a Taylor series

in the vibrational coordinates. The interaction terms obtained in this
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way are roughly analogous to the cubic and quartic terms in the conven=-
tional potential expansion and are treated by means of perturbation
theory. The real justification for the use of perturbation theory,
however, must come a posteriori.

The potential energy function used in this thesis leads to a
fair overall description of the "pure inversion" levels (O, ngi,.OO, OO)
and accounts rather well for the dependence of the inversion-vibration
splittings on the quantum numbers nz and n), belonging to the two doubly
degenerate modes. Unfortunately the potential falls to account for the
dependence of the inversion-vibration splitting on the quantum number nj.
The rotation-inversion constents B~ - B and ¢~ - CT have been calculated,
in first approximation, for the levels (0, np, 09, 00) where no =G, 1,
2 and 3, The calculated results compare favorably with the observed
values. The problem of setting up the complete rotation-vibration
Hamiltonian and its development in orders of magnitude 1s considered.
Although a calculation of all the rotation-inversion constants on the
basis of this Hamiltonian has not proved practical some insight into
the dependence of B = BT and C~ - CT on the vibrational quantum numbers

is gained.



IT., INTERNAL COORDINATES AND THE
VIBRATTIONAL KINETIC ENERGY
Six internal coordinates are required to describe the vibra-
tional motions of the ammonia molecule. In order to introduce the
internal coordinates it is convenient to start with a cartesian refer-
ence frame attached to the molecule and with origin at the center of
mass of the molecule as shown in Figure 3. Let xi, yj; and z{ be the
cartesian coordinates of the itR atom with respect to this reference
frame. The subscripts i = 1, 2, and 3 refer to hydrogen atoms and i = k4
to the nitrogen atom. Let m be the mass of a hydrogen atom and M the
mass of the nitrogen atom. The twelve cartesian coordinates of the four
atoms can be replaced by six internal coordinates u:;(i =1, ..., 6) by

1

means of the scheme (c.f. Figure 4).¥

a——

- M
x\=—i§—_u‘_‘/3_ Wy— — Uy — U,

3 5 3 M+ 2m
ﬂ':“\zu|+li'w3‘g3~w*— M/:\—3m =

Z = - W—T?FALLZ - W%m(%)u5 N ‘r{/\?+:\w\ Gﬁ)ub
Xaﬁg Wy + “g“u% - ";:'U“f‘* MTsm We
ka;"la"“'+—;_- W3 "'i:iuq— MT3M Us

2, - s e = e\ s + e (3

* These coordinates are somewhat similar to those used by Slawsky and
Dennison. (15

=16-
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Xy = Yy — 'MT:sm W

9= U U - MTsy}. s

£3= = M:/\3m e M2+M3m (&\f‘)u5
Ky = M3+V;m e

_ 2m

- 3m
Z4 Mt3m )

The physical significance of the internal coordinates is easily dis-
covered. Consider first the case where uz = u} = ug = ug = O, One
then finds that

Eiq.-ZZ\ = Zyg “12:2_ = Zy- Zi = U,

Ys = - Z'j\ = '_‘Z-Ejz = W, .

Thus vy, is the physical height of the ammonia pyramid and u; is the
distance from a hydrogen atom to the center of the hydrogen triangle.
All the coﬁfigurations that arise when Uz = Uy = U5 = Ug = O have
pyramidal symmetry. That is, the hydrogen atoms form an equilateral
triangle and the three N-H bond lengths are equal. The coordinates
Uz, Uy, U5, and ug describe motions in which the molecular framework
is distorted from pyramidal symmetry. The coordinates Uz and u)y de-
scribe motions in which the nitrogen atom remains stationary and the

hydrogen atoms undergo displacements parallel to the x - y plane.
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Center of mass 4

Figure 3. Equilibrium Configuration of Ammonia.
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Figure 4. Internal Coordinates.
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us represents a displacement of the nitrogen atom parallel to the y-axis
with a corresponding tipping of the hydrogen triangle, the motion being
parallel to the z-y plane. ug represents a displacement of the nitrogen
atom parallel to the x-axis with a corresponding tipping of the hydrogen
triangle, this time with the motion parallel to the x - z plane. The
motions represented by the internal coordinates are illustrated in

Figure 4. The two equilibrium configurations of ammonia are given by

o 1)
U, = u. u.z:-t u.a U.3=\,Lq.=LL5=u¢°=O
0 . -8 O .
where u; 1s approximately .94 x 10 cm and u, is approximately

.38 x 10_8 c

m. Inversion of the molecule through a plane passing through
the center of mass and perpendicular to the symmetry axis is accomplished
by means of the transformation
We— - U, Wi —>> U (i 2)
which implies
LiTm 20 K> K W Y ((=212,34)

It is clear that the coordinates Uy and u, are totally symmetric with
respect to the six operations of the symmetry point group C5V (Al type
vibrations). Furthermore Uz and u) transform among themselves under the
operations of C}v and are of type E, as are Ug and ug.

One may verify quite quickly by means of Equation (5) that the

three quantities

M(X, + X2 +X3) + MxXy

W\(xj,+t]2-t—t)3) +M\{)Lt

m (Z,\+—Z..2+ZJ) +MZL|.
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vanish identically. Furthermore the three quantities

3

S mg2e-295) 4 M (ge2-2,9)

(=1

3 L ] [] [ o
S w(zXe = XeZ:) + M2, Xa— X4Z.,)
1 |

L=
K . . . .
> o (Xgi—uk) + M UKage Yy Xy)
L=
vanish for all symmetric pyramidal configurations, that is, whenever
uz =u = u; = ug = 0. The first triplet of relations shows that the
origin of the molecule-fixed reference frame always remains at the
center of mass of the molecule. The second triplet of relations shows
that the molecule-~fixed reference frame is so oriented that the three
components of internal angular momentum, as seen in this frame, are
always zero whenever the molecule is in a pyramidal symmetry configura-
tion. It should be noted that the condition on the orientation of the
molecule~-fixed reference frame 1s a little more stringent than the con-
dition usually applied in molecular physics.*

The vibrational kinetic energy of the molecule can be ob-
tained quite easily. Upon introducing the mass weighted internal co-

ordinates

X, =73m W, xz_zyf—;u?_
X3 =73m U3 >(5:‘}/"/4—,CLL5=
Xy = Y3m Wy X6=7f/—;‘/((o

* The usual condition is that the internal angular momentum should
vanish when the molecule is in its equilibrium configuration.

H




00,

where 3Im r\/\

one finds

;o >\ X
2.(x5x54'bee)f;§£<§%)
2 aTd (X 2

+ (s 4 X0)] 55 (3] (6)
Before introducing the final set of coordinates to be used in this in-
vestigation it will be helpful to review briefly the normal coordinate
treatment of ammonia. Consider the purely fictitlous case where the
potential barrier separating the two equilibrium configurations becomes
50 high that the probability of an inversion from one configuration to
another is negligibly small. In this limiting case the molecule would
execute small amplitude oscillations about a single equilibrium con=-
figuration. Then the coordinates Xz, X, Xg, and xg would never differ
very much from zero and X1 and Xo would never differ very much from
their equilibrium values xlo and xQO. The vibrational kinetic energy

would be glven to a very good approximation by

*2 ’ | 12 @2
Ty —'z(%|+“62)+-;—_(>(3 Xq)‘*‘z—F Xs"‘xe)
where o
S| = X — X,
22 = X2 -— X:
and
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The potential energy would be replaced by the leading terms in its

Taylor expansion about the equilibrium configuration.

In view of the

symmetry properties of the coordinates, the leading terms in the po-

tential energy expansion would be

V

G 2 2 2
el +KadS, © K225, Kas (o 4 x4

t+ Kss(XsXs +X4Xe) + -‘Sii— (X;‘ +X<f)

Upon introduction of the normal coordinates

where

Q= cos¥ s, + sin¥ 5,

Q:_.—_ —sin¥ Q, + (_os?’“ $2

/ —_ . ' T ._.3(_6;
/ ‘ + C0ST Ze
G@X-<~S{h2'X+ G%
Q;'j: cos T X@ + Sin T Xe

&

l \ /
Quy=~SINT A + CesT 22

(o

Kn — Kaz
K\""Kzz = X
\/( E )+Klz

K3z~ P Kss
2

Cos 2T = - (7)

Kss — fo K55\ 2
“\/k = 2.f —5;) + o Kis



ol

the kinetic and potential energies assume the simple forms

720

o . v2 s g 2 2
Vi = 2‘-’(@( + O OSX 1 @%j *‘Q‘M + Q‘*j /

/

and
N TR T Y D S F e |
V= 5 Qo+ 2«-()\2 +:\ZI\Q - 3 ) (qu *“qu)
where
| 1
Af ( » K + K"Z 4- " k;\"‘" \\2-2-\2 z /2
L e — B )
/\zj 2 Q 2 / 2 (8)
and

> >
i
| N
H

The corresponding normal frequencies are given by

GO = sz A (em )y (=1,2,3,7%

The quadratic force constants Kij appearing above are mass dependent
quantities. However, they are related to the mass independent force

constants a, b, ¢, a, B, and 7 used by Dennison.(ll)

.- g
L) K 23, = Z«——

m

e ¥
Kz = 325 Kss = 77—
f%‘ﬁ”‘[“

ao o,
Kag= =50 Kes = —5 77— (10)
R ST

The quadratic force constants are merely the second derivatives of the

potential energy functien, evaluated at an equilibrium configuration.
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It should be born in mind that the quadratic force constants are well
defined quantities for any potential energy function possessing a mini-
mum even if the quadratic terms in the Taylor expansion are a very poor
approximation to the true potential. The potential energy function of
the ammonia molecule cannot be represented by the leading terms in its
Taylor expansion. Even so, there is a well defined set of quadratic
force constants associated with the ammonia potential. Indeed, if the
potential energy function for ammonia were known, the force constants
could be calculated by simple differentiation. Because of the symmetry
of the potential, evaluation of the derivatives at either of the two
equilibrium configurations will lead to the same set of force constants.
In practice, homplete potential energy functions for molechles are never
known. The values of the quadratic force constants must be inferred from
observed spectra. This is as true for ammonia as for any other molecule,
For the present it is sufficient to note that the constants Kij are mean-
ingful quantities even in the case of ammonia.

The final set of coordinates to be used in the ensuing calcula=-

tions now can be introduced. Let

X6

= CoS T Xy Sin T
Q‘sx gt Sin 7_—,o(x.)xz)

Xe

Ve X, X2)

Qux = — Sin T Xy + COST

— Q + lod Xr
(ng—— CoS T X5 + Sch 1 )?377;;:7

Xs
= —SinTKX - =
Q‘I:‘j ¢ C 3+ cos T _{—FW—)‘ (11)
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where ' l

/O(x\)xz) junen

o2 (32)

and the constant, 7, is defined by Equation (7). The coordinates QBX’
QBY’ Qly and th are defined in such a way that they become normal
coordinates in the vicinity of the equilibrium configurations of ammonia.
Note that in general they depend on the totally symmetric coordinates

x1 and Xxp. When expressed in terms of new coordinates, the vibrational

kinetic energy, Equation (6), becomes
- i(x2%,.x* \
—r\-/\lo = =X +X1) E(QSK+Q33>"" (qu C\)qj)

- -
where R5 is a vector with components Q5X, Q5y and Ry a vector with com-

ponents Q) , th. Finally, the coordinates x; and xp are replaced by a

pair of coordinates o and { defined by

Xy = g Sihho Cos &

X;_: Qo Cosha sin £

Ky= K
o e (K= (X0 X0 xS (=Y m’a)
Tzo | - Ef4&rT (13)

The constant, ag, in Equation (13) has been defined in such a way that,
in the neighborhood of an equilibrium configuration, 8o = 0 - 05 and
8 = ¢ - Co are proportional to the two totally symmetric normal co-

ordinates of ammonia. In fact, it is easy to show that this choice
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of a5 implies

2 | ‘ .
“i(‘%?* 3:) = @5_9 (C°SV\202— szfc)(80'2+ sz)

2 2
Kine? Kz20® - %o -sint 2 2
Sus) +Ki2 8,9, + _i_lgz.. _a_(coslqO‘Q sin g’o)(xl ST+ AL SF ) .
Here, oo and + {, are the equilibrium values of ¢ and {. From the

equations above, one sees that o and { are related to the normal

coordinates Qi and Qé by the relations
|
Q= [0 (coskay - sin"g,)] %2 s
)
QL= [ (coshia,= sin €] §¢

The physical significance of o and { is best seen by inverting Equations
(13) and replacing %7 and X, by thelr more physical counterparts u; and up.
It will be recalled, that up is the height of the ammonia pyramid and uj is
the distance from a hydrogen atom to the center of the hydrogen triangle.

One finds,
IA ) 2 ( Im ) 2
—r — U + (———mmm -
(a?cosk%‘ 2 aZsinkic )% = |

o2 sin*d )2 oz cosig )M T .

Thus, the family of curves in the uj; - up plane with o constant are
ellipses and the family of curves with { constant are hyperbolas. This
is illustrated in Figure 5. The coordinate { is to be identified as the
inversion coordinate. Indeed, the molecule can be inverted from one
equilibrium position to the other by changing { continuously from Co to
- §, while keeping o fixed at its equilibrium value 0y,. A precise com-

parison between this inversion coordinate and the one used by Sheng,



. _08-

Figure 5.

The Coordinates ¢ and €.
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Barker, and Dennison(h> (and also by Hadley and Dennison(5)) will be made
later when the numerical values of a,, 0y, and {, have been determined.
The change to a new form for the inversion coordinate actually has little
physical significance and is made mostly for mathematical convenience.
Upon introduction of the coordinates o and { the vibrational

kinetic energy, Equation (12), becomes

LN

(cos\3<r - sin'?) (6—2+§2)

V\g =

+ 5 (&jc + Qf‘:)) + %(Qjﬁ szﬁ

cos\qcrs(nhvf—s[hftos!& 2
Sinh'aced8 +2 oshirsnt2

2 2
+[s€nfc§3+ Cos”ERq}[ )
1

So far no approximations have been made. Equation (14) is a completely

rigorous expression for the classical vibrational kinetic energy.



ITI. THE POTENTTAL ENERGY AND THE
VIBRATIONAL HAMILTONIAN

The most general form of the potential energy function in the
immediate neighborhood of an equilibrium configuration of a molecule can
be deduced from symmetry considerations alone. However, there is no
straightforward procedure for inferring the form of the potential over
a finite region in the configuration space of the molecule. Conse-
dquently, whenever a finite potential is needed, as is the case with
ammonia, one must lean heavily on intuitive arguments. In this thesis
a potential energy function will be proposed in order to describe the
inversion-vibration interactions in ammonia. The implications of this
potential will be worked out in considerable detail and compared with
the observed data.

The relative success of one-dimensional treatments of the
ammonia molecule comes from the fact that there is one mode of motion
which is primarily involved in its inversion. This mode of motion will
be identified with the coordinate { of the previous section. It will be
recalled that { describes a motion in which the hydrogen atoms ride along
an elliptic path that can carry the molecule from one configuration to
an inverted configuration. It seems reasonable to assume that in spite
of the large amplitude of the inversion motion the instantaneous configu-
ration of the molecule never departs very much from the set of configu-
rations having pyramidal symmetry. Consequently it will be assumed that
the coordinates uz, U, us and ug, which describe the distortion of the

molecule from pyramidal symmetry, never vary very much from zero. This,

-30-
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in turn, implies that QBX’ Q5Y’ th’ and th never differ much from zero.
The family of elliptic paths along which the molecule can invert is ob-
tained by holding o constant and letting Q vary. 1t will be assumed that
the only memwbers of this family of paths which are accessible to the
molecule are those for which o differs very little from its equilibrium
value Oy That is, it 1s assumed that the accessible paths are those
which pass through small neighborhoods of the two equilibrium configu-
rations. This assumption impliés that the potential energy depends on

0 only through 80 =0 - 0,. In effect, oo, Q5X, Q5y, QL and Quy are
considered to describe very small oscillations while § describes a motion
of very large amplitude. In the subsequent discussion the five small

oscillation coordinates will be replaced by their dimensionless counter-

parts 5 qu’ qu’ Ay s and q&y’ defined by

‘/ﬂ.
- =y

o
“

h

4T e w, af (Cosh®q, - sin2g,)]

S0 =

§

1]

Qs

'/2
4TEc W3 | 73x

(15)
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The coordinates qj, Azxs 3y, Uixo and Ay Were defined in such
a way that they reduce to (dimensionless) normal coordinates in the vi-
cinity of either equilibrium configuration of the molecule. Thus, in
the neighborhood of the equilibrium configurations the dependence of the
potential energy on these coordinates is given by a sum of harmonic
oscillator potentials. It is tempting, then, to assume that in the
general case the dominant terms in the ammonia potential will be of the

form

VERYA S C,.2  C3;.2 2 Cy |2 L
o e e F o ) 3 or )

where Cq, 05’ and C), are constants and VO(Q) is a double minimum potential

of the general form illustrated in Figure 2, with minima at {5 and - {4
and a central maximum at { = 0. The potential above is, of course, in-
complete. It provides no interaction between the inversion coordinate
and the remaining coordinates. Consequently it implies that the inver-
sion splitting depends only on the quantum number np, and not on the other
quantum numbers. Although the observed inversion splittings are governed
mainly by the quantum number np there is also a significant dependence

on the remaining quantum numbers. Consequently, the potential above must
be supplemented by an interaction term.

The addition of an interaction term will lead to a non-separable
Schroedinger equation. However, the observed data for ammonia suggests
that a perturbation treatment of the interactions may be valid. The
change in the inversion splitting with the quantum number n, is much
greater than the variation of the splitting within groups of levels having

the same value of n,. This indicates that the inversion splitting is
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predominantly determined by the one-dimensional "potential Vo(g), and
only midly dependent on the interaction of the inversion coordinate (
with the remaining vibrational coordinates. One of the major tasks of
this thesis will be to justify a perturbation treatment of the inversion-
vibration interactions.

Although the inversion splittings are extremely sensitive
functions of the inversion potential, the WKB splitting formula,
Equation (l), suggests that there may be many mathematical functions
Vo(g) which can account, at least approximately, for the observed split-
tings. Practical considerations, however, limit the form of VO(Q) to
those functions for which the energy levels and wave functions can be
found with reasonable ease. A possible candidate is Manning's potential,
Equation (2). The energy levels for this potential are relatively easy
to find. Unfortunately, the wave functions, which are given by a semi-
convergent power series in the variable tanhg(xJEQ), would be somewhat
cumbersome to use in a perturbation calculation. In order to obtain

more manageable wavefunctions, the double minimum potential

“l) L R cos(£) 426 ees(Ef) fer igieTIL
he

2
L

Z(F+6) fov WL<\§\§T£ (16)

will be used in the present investigation. In Equation (16), F and G

are positive constants such that F < 4G and L is a positive constant such
that L < 1/2. This potential has a central maximum at ¢ = O and minima
wrt = s g, unere cos (&)= oz

=+ {, wher » Y
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It will be seen, after numerical values of F, G, and L have been ob-
tained, that the potential becomes very large at { = + nL so that the
wavefunctions for the low lying energy levels, for all practical pur-
poses, vanish. For |§[ > L, the wavefunctions are completely negligible.
The potential function, Equation (16), has been chosen mainly
for mathematical convenience. It has the general form to be expected
of an inversion potential in the neighborhoods of Co and - go and
throughout the interval - {, < §{ < (. For l¢] > I§O| it is undoubt-
edly a very poor approximation to the true ammonia potential. However,
one would not expect the low lying energy levels to be affected very
much by the behavior of the potential at large values of IQI. In the
next chapter it will be seen that the wavefunctions belonging to the
lowest eight energy levels become negligibly small when |§] >> |§O[o
Interactions between the inversion coordinate and the remaining
vibrational coordinates are obtained by assuming that the parameters F
and G are not really constants but mild functions of the coordinates
45 qBX’ q5y, dj, and qhy' Since these coordinates, which represent
very small oscillations, never differ very much from zero it should be
possible to obtain a very good approximation by expanding F and G in a
Taylor series and retaining only the leading terms. In principle, L
could be expanded in a Taylor series also. However, an expansion of L,
F, and G would yield more unknown constants than can be determined by
the available data on ammonia. Thus, in practice, one of the three
parameters must be regarded as a genuine constant. The argument for

choosing L as the constant can be stated as follows. The inversion
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splitting is expected to be a very sensitive function of the potential
barrier height and the separation of the potential minima. The height
of the central barrier for the potential given by Equation (16) is
F 12
46 [1- =]
40

and is independent of L. Furthermore, the separation of the potential
minima can be shown to be very insensitive to the value of L. Thus, if
one of the three parameters must be regarded as a true constant then L
~is probably the best choice.¥*

Since the potential energy must be invariant under the six
operations of the point group C5v the expansions of F and G depend on

q}x’ qu, Ay i 2 and qhy only through the combinations

2 2
Yz = Qax + ﬁ3‘j

2

Yo = G\:x + cli-g
> -
Y;*Yr..r = O‘SXCH-X + C\gg C}q_g

Furthermore, the six vibrational coordinates were defined in such a

way that in the vicinity of an equilibrium configuration A1, 93y> qu,

Wi Uy and 8¢ = ¢ - go are proportional to the normal coordinates of

the molecule, This implies that no term linear in q; occurs and imposes
-

oy
a relation between the coefficients of Ty r) 1in the expansions of F

and G. Thus, out to terms quadratic in the coordinates, one finds that

* The curvature of the potential near the minima is a sensitive function
of L. Thus, L controls the mean separation of consecutive inversion
doublets.
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the most general form of the expansion of F and G is
e el

-3

(30*‘6‘1 +f“ sV 4 Qfxq +kcos(f°)?«)ﬁ,

where Fg, Fq, F5’ Fiy, Gg, Gp, G3, Gy and k are true constants. In
order to simplify the computations to follow, k will be set equal to
zero. Thus one obtains

s

= < G R* C 2
e > + Y = 4 Yy

3 2

-_Z[Fo'*" F, c\z“f“‘; Y‘S +F Yy JCO ({)

+2[G+ G + 6,0 +6, 10 0s (ZQ (17)

as a possible approximate potential energy function for the ammonia
molecule. Equation (17) is, of course, a very incomplete potential
function. Cubic and quartic terms could be added to this potential.
However, unless the coefficients of the extra terms are strongly de-
pendent on the inversion coordinate £, they will not make an appre-
ciable contribution to the inversion splitting. Since the purpose of
this thesis is to describe the inversion splittings these extra terms
will not be included. In Appendix I it will be shown that the poten-
tial function, Equation (17), contains many of the cubic and quartic
terms involving the inversion coordinate that would be found in the
general potential expansion. It should be emphasized that the true
ammonia potential is unknown and that Equation (17) is no more than a

guess concerning the shape of the actual potential. The main task of
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this thesis is to discover to what extent, if any, Equation (17) can be
used to approximate the ammonia potential.

Since 41, U3xs Uzys Uy and Uy reduce to dimensionless normal
coordinates near the equilibrium configurations, the corresponding normal
frequencies can be found by evaluating the second derivatives of V/hc at

an equilibrium configuration. One finds

= €, - 4R os(8) + 46,cos(3E)
Wz = C;~ 4F,cos(L) + %egms(-éé)

These relations can be used to eliminate the constants Cq, CBIand Cy
from the potential function. With a slight bit of rearrangement one
sees that apart from an additive constant, which can be neglected,

Equation (17) can be rewritten as

%/Z: S S
LR N+ 2t

+ (26 +ag |- 2R cos T + 2G,cos T

‘I’[_ZF (cos —Cos :°)+;.6 (cos Cosg%f)} (45~

FlaR st - ces ) rag, (cos B -ces B4 065 1)

26 2%,
+\_ 2\-‘*((03 = = (08 = o )‘\‘264(&5— —Cos —E )] (ﬁ?‘ !> (18)
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where

= kg +

“T1

3

|
N1

F:I
/ ‘ 2, , -
Cic = <bo + %é + (53 T (:‘+ R (19)

It is in this form that the potential will be used in the subseduent
calculations. It should be observed that this potential has minima at

z;'f = + £ t’..“

o L~

where F
!;,

Ces (_.f):. o

L 4 o

corresponding to the two equilibrium configurations of the molecule.
Having arrived at expressions for the kinetic and potential
energies, one can set up the vibrational Hamiltonian for the molecule.
Equation (14), which is a rigorous expression for the kinetic energy,
is a bit more general than is needed. Examination of this equation
reveals that the term involving [sin T i; + cos T ﬁ;] gives contribu-
tions to the inversion splittings of the order of B~ - B+, namely of the
order of .005 em~t fof states with no = O, and of the order of .2 cm'l
for states with np = 1. (c.f, Table IV). Consequently this term will
be neglected in the treatment of the inversion-vibration splitting which
are of the order of .8 em™Ll in states with n, = 0 and 35 em™l in states
with np = 1. A further simplification arises from the assumption that

o never differs very much from Oge Thus, the vibrational kinetic energy

can be approximated by ,
2 2 o 2 R
Toip, = %(cos%m—smefwéﬁ‘ +£7)

R R )

[
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The transcription to quantum mechanics 1s straight forward. When made

in such a way that the volume element in configuration space is simply

C\(S’G')clg "—‘ng)(C!anj AQ‘MAQ‘H one finds

%2 | 5% i l 2% ]
Toes [ + |

203 [Ycoshia-sime 882 Yeoshigy- scniZ | Coskay-Sintg 2 (50|
T T
23 TR SR S You S S‘éz”;’;] ,

Upon introducing the dimensionless coordinates defined by Equation (15)

and letting

X = —f—i QXQ‘; —%—) (20)

where L is the potential constant appearing in Equations (17) and (18)

one finds for the vibrational Hamiltonian

Hv\‘b :_Déi _.__49_\_3_:_ - @3(62 -[-az )__ E}_J:'-J(i .f_,:aj.)
he oAT 2 R T \se ¥y) 2 DYk o

. A e N v
__D[.g\(x)—)-<2+'§z()() 5&] _Zl-g\ﬁx)(bj?‘* z\) + k@:{-
where
> - |
= jTmic a2 (c:;s%zda-sma o) L=
£x)= (sin Lx)'— sin‘,
W= Cosh*ay, — ((Sin LX)
2 s ' o
‘(‘z(’Q: 2L (coshoy = sin')(stn Lx)(cos L x) (21)

[coshiey = (sinLx)*]*



~U0=

and

\/e-é‘-f_\/'\'wwe. + W, - DG((OSL%‘O—SMLQ) 1-2 (SML.X)Z‘*- 3(S£hLX)z(COS LX)Z
e e 7-:'9\“() [ cos h*we- (sm\.x)"]z Cosha, - (Sin Lx)?

Vopp 1s an "effective" potential for the vibrational motions of the
molecule whereas Vi, is the actual potential. In this thesis, the
trial potential function given by Equation (18) will be identified with
the effective potential Vefr. Upon making this identification, the

vibrational Hamiltonian can be written as

D ) N
H‘viL = Hvib + Hvib (22)

e o M 2N N
. .
Wy EZ__ _ 9 2 2
2z ( Bo}fx 3‘]%3+‘I"" *c\ﬁ

> | / 2 / / >
N -2 _ Cos 2X

¥ Actually, Equation (23) holds for - m < x < 7. For n < [x| < g%
the last term in Equation (23) should be replaced by
[c.f. Equation (16)]: /2

2 I F bt
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and
()
At b, 0 (9= £ )+ hyo) (15=1) 4 b 00 (65 1)
c
. i bz a \ &
— {:\()()m + £ o(x :._]__Cu. a o (24)
D803 4,005, ‘-Z”C‘(X)<E>“hz+éi>
where

"‘CLX) = —ZFi (cos X = Co.s)Q;) + 2 6&603 ax —Cos Zxo) (
{ = {) 3) Q'v

In order to calculate the vibrational energies implied by this Hamiltonian

25)

the Schroedinger equation
| fgz - fEP
— ) : —_ C \
he HV\b Vib E(em) Vib
1
must be solved. In order to facilitate this calculation Héi% will Dbe

(0)

regarded as a perturbation on the "zero-order" Hamiltonian Hijy .
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IV, VIBRATIONAL ENERGIES OF NH5 IN LOWEST APPROXTIMATION

The calculation of the inversion=-vibration splittings is begun
by finding the eigenvalues and eigenfunctions of the "unperturbed"

Schroedinger equation

1 H ©) (_,_j-[-:w:) _ Em) ‘:E (6)
This equation is separable. Indeed, the A1, 93xs Azys Axo qﬁy dependence

of this equation is trivial. One finds

Y
Eue=BEng #0000+ 5) « Wsngt1) + Wy (ng +1) (25)

M) .
\«t\° “}/ +(><)/¥‘ /\//mﬁa(j“)?ak&%m@ H‘M) T’ﬂ) (26)

where Wnl is a one-dimensional harmonic oscillator wave function and
and are two-dimensional isotropic harmonic oscillator wave-

‘l’n523 \lfn)_‘_,@)_;, P

functions. Engi and ani are the eigenvalues and eigenfunctions of the

one-dimensional equation

LD;XZ \/ (x) ‘\L’(X)=E‘\L(><) (27)

where
/ F'z ) /
Vix) = [26 +’+G° :]»-ZFOCosx +20G, Cos 24X
for - TT < X £+
/2 | / /
=[2G+ qe;] r2(RrCe)

For ’N<\X\S£I[‘_ '
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It does not appear possible to obtain exact solutions of Equation (27)

in terms of known functions. However, for E << V(n) it is possible to
obtain eigenvalues and eigenfunctions numerically. The proper procedure
would be to obtain solutions in the interval - n < x < + 7w and join them,
in the usual manner, to the exponential solutions for the intervals

T < le < g% . However, for the levels of interest in the present in-
vestigation it will be seen that y(x), in the interval - 1 < x < + x
becomes negligibly small¥* as Ix] — 7 so that the exponential solutions
in the intervals =n < IX! S_é% are negligibly small. Consequently, in
the subsequent work only solutions in the interval - n < x < 7 will be

considered. That is, the eigenfunction will be treated as if they
2

2L

The form of V'(x) suggests that one should expand y(x) in a

vanished identically in the intervals = < |xi <

Fourier series in the interval - # < x < + =, Since the operator

(2) 2 /
H -"‘D‘é“>29_+\/(>()

is unchanged when x 1is replaced by -x, the eigenfunctions must be either

even functions or odd functions of the coordinate x. The even functions

are given by

oo

Qe CLK

= =t — (038 K X
Y Y %ﬁ'
and the odd functions by
S b
o= ;;: 2K Sin KX

— K=\ﬁ

* For the levels Dot = Bi it is found that the value of [m(x)le at
x =+ n 1is less than 10-8 of its maximum value. Scale drawings of
the wavefunctions are given in Figures 8 through 15.
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Substitution of these expansions into Equation (27) yields the

two matrix equations

-

Sk

Kz C

where

+ _ Cos KX
We = v )
)r K21
|- = fiiiiwﬁgﬁ
L v

BT .
) ./ - N = O
B e (28)
()=
oo t N ) L=
(29)

The exact solution of Equations (28) and (29) would involve the diago-

+ -
nalization of the infinite matrices H(E) and H(2) .

However, good

approximations to the eigenvalues and eigenvectors can be obtained by

retaining only the first N terms in the expansions of the eigenfunctions

and diagonalizing the N x N truncations of the infinite matrices H

(2)*

and H(E)—, provided N is chosen to be sufficiently large. This procedure

is essentially equivalent to a variational treatment.

The form of the

matrices, whose matrix elements are given in Table V, indicates that a
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TABLE V

+ -
NON-VANISHING MATRIX ELEMENTS oF E(2) amp m(2)

g(2)*
n=20,1, 2, 3, o
F 2
H,, = 2G4 + ho" + 1D n#1
GO
2
1
Hll=2Gc;+ig——, +1%p + g
o

H02 = Hgo = ’\/é G

Hpontl = Hpyy on = - F§ n>1
Hp,n+o = Hn+2,n = Gc') n>1
g(2)”

n=1, 2, 3,

Hnn;2G5+ii;+n2D n#1
o

Hyq =2Gé+%§+lgD - ¢

Hynel = Hn+l,n =- P

Hn,n+2 = Hn+2,n = Gé
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very good approximation can be obtained in this way. The only non-
vanishing matrix elements are either on the principal diagonal or on

the first or second diagonal above or below the principal diagonal.

The off diagonal elements are independent of k while the diagonal ele-
ments increase as k°. By truncating the matrices at a sufficiently large
N a very good approximation to the low lying eigenvalues and their eigen-
functions should be obtained. Thus, given numerical values of the con-
stants D, F;, and G;, approximate eigenvalues and eigenfunctions of
Equation (27) can be found by determining the eigenvalues and eigenvectors
of two finite matrices. This can be done quite easily with the aid of a
digital computer.*

By trying several different values N for the dimension of the
truncated matrices it was found that a value of N equal to 12 was suffi-
ciently large since an increase in N beyond this value leads to insigni-
ficant changes in the eigenvalues and eigenvectors corresponding to ob-
gserved levels in the ammonia spectrum. At least two cycles of computation
are required to determine the constants D, Fé, and GY. Although the de-
composition of the vibrational Hamiltonian into Hégg and Hé%% was made

in a way that minimizes the contribution of Hé%% to the levels (O, Do+,

OO, OO), this contribution is not negligible. A tentative choice of D,

Fé and Gé is made by neglecting H(%g altogether and choosing the three
vi

* Most of the initial computing was done on the IBM 650 at the University
of Michigan Statistical Research Laboratory. ZILater the investigation
was continued on the IBM 704 at General Motors Research Laboratories.
Final computations were performed on the IBM 704 at the University of
Michigan Computing Center.
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potential constants so that the best possible fit to the observed levels

(O, Nyt OO OO) is obtained. Using the resulting eigenfunctions, the
— )

2

approximate contribution due to Hé%% is calculated. Then the values of
D, Fé, and Gé are adjusted to compensate for the contributions of Hé%%

to the levels (O, Dot s OO, OO). The best values of D, Fé, and Gé that

have been found in this way are

D= 64,93 cm~t
Fl'= 1894.61 cn™t
G! = 1288.68 em~1 . (30)

It is possible, however, that a better choice of these numbers could be
made. The eigenvalues and eigenvectors of the 12 x 12 truncations of
the matrices H(E)+ and H<2>w have been computed using the above set of
potential constants. The results are presented in Tables VI and VII.

The calculated energy differences En2+w E are given in Table VIIT along

o+

with the observed differences for the levels (0, Nots OO, OO). However,

comparison between theory and experiment should be made only after the

(1)

contributions of HVib have been computed and incorporated in the calcu-
lated values. In order to indicate the magnitude of the error intro-
duced by replacing the infinite matrices H(E)+ and H(2)- by finite

N x N matrices, the calculated energy differences are given for N equal
to twelve, sixteen, and twenty. The eigenvalues for the 12 x 12 trunca-
tions have been computed using two different matrix diagonalizing schemes,
Jacobi's method, and Givens'! Method. A comparison of the results indi-
cates that the eigenvalues can be computed with an error less than 0.0l

cm'l.
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A scale drawing of the lower portion of the one-dimensional
'potential" V'(x), showing the positions of the energy levels, is given
in Figure 6. The separation of the lowest pair if levels is too small
to be shown. Figure 7 shows a scale drawing of the path of the coordi-
nate x through physical space. The path used by Sheng, Barker, and
Dennison is shown on the same diagram. The double minimum wavefunctions

are depicted in Figures 8 through 15.



EIGENVALUES AND EIGENVECTORS OF H
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TABLE VI

(12 x 12 TRUNCATION)

(2

)+

nz O+ l+ 2+ 3+ 4+
(jiggi 514,55 451,71 2131.65 2899.49 3925.35
ag L6715, .125510 437270 -.131256 224109
aq . 362054 495878 307225 .225158 -.131521
8o L4 7480 603562 177672 357973 -.113213
a3 167819 .073639 .575400 -.048483 371143
al .022430 531707 485977 269292 .000916
as .160871 252730 -.102389 . 733106 -.01hk177
ag .062313 .097022 -.304725 .353%268 637748
a7 .020628 .110248 -.089206 -. 17256k .578506
ag .017838 .009066 .055148 -.188563 -. 005545
ag .000387 .019376 034769 -. 014796 -.19211%
a1 .002506 .005476 -.002021 .034106 -.054597
all . 00049k 001508 - . 00540k .010167 . 02000k
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TABLE VII
ETGENVALUES AND ETGENVECTORS OF H(2)~
(12 x 12 TRUNCATION)

ns o 1- 2~ 3" L=
(Ei%i) 515.49 1487.20 2L01.77 3387.16 LL82,53
by 771718 122245 . 368526 -.2k0582 .254615
bo .523913 L811ke .00kLk3 .298187 .266783
b3 148653 . T60T54 .107159 .188733 .088k27
bl 31092k L17h758 .695448 -.110052 307827
bs .072999 .313068 539354 Lhgoo 151417
bg 066367 .206113 -.085132 71728k .214h791
o7 .037308 .021520 -.254207 .178893 . 728610
bg .003985 .056222 -. 064203 -.205890 .352643
bg .007251 .009731 .0ko722 -.122204 129749
by, .000800 .007187 .021746 .011743 140729
byq .000775 . 002637 -.001966 .024031 .009218
byp .000206 .000%83 -.003106 .003291 .020130
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TABLE VIII

ENERGY DIFFERENCES FOR THE LEVELS (0, nj, 0%, o9

(N x N TRUNCATION)

Level Energy Difference (cm™)

Calculated
npt N = 12 N = 16 N = 20 Observed
ot 0.00 0.00 0.00 0.00
0~ 0.9 0.9 0.9% 0.793
1t 937.16 937.16 937.16 932.51
1- 972.65 972.65 972.65 968.32
2t 1617.10 1617.09 1617.09 - 1597.k2
2T 1887.22 1887.22 1887.22 1882.16
3+ 2384 .94 2384 ,85 238L.85 2383.46
3" 2872.61 2872.55 2872.55 2895.48
L+ 3410.80 3409.30 3409.30 -

L= 3967.98 3967.67 3967.67 -
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V. INVERSION-VIBRATION SPLITTINGS

Having obtained zero order energies and wavefunctions it is

now possible to compute the contributions due to the perturbation

S

This calculation is done in two steps. First, perturbation
theory 1s used to express the energy corrections as functions of the
interaction cdnstants F; and Gy (1 =1, 3, 4). The second step is to
choose numerical values of the interaction constants in such a way
that a good overall description of the vibration-inversion splitting
is obtained.

The matrix elements of Héig are readily evaluated. The in-
tegrals over the harmonic oscillator wavefunctions are well known and
give no difficulty. The integrals over the double minimum wavefunctions
must, of course, be evaluated numerically. All the non-vanishing matrix
elements of Héig are presented in Table IX. It is seen that the matrix
of Héig is diagonal in the quantum numbers £3 and f) and has no ele=-
ments connecting + states with - states. Since there are no matrix
elements connecting states of the same unperturbed energy, non-degenerate
first and second order perturbation theory can be used to calculate the
energy corrections.

In order to achieve the desired goal of expressing the energy
corrections as functions of the interaction constants alone it is neces-
sary to know the numerical values of the normal frequencies wy, w3, and
w), . Furthermore, in order to do the numerical integrations over the

inversion coordinate x it is necessary to assign numerical values to the

five parameters, agy, (o, 0y, L, and x5. The most recent estimates of the

-62-
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TABLE IX

NON-VANISHING MATRIX ELEMENTS OF Héig

1 1 (1)
(nlunéi n3£5nhﬂulﬁg Hviblnl Not n5z3nuﬂu) =

1 2 d 1 ol

1 1
+ (n2i|h3|n2i)n3 + (ngjlhh|n2i)nh

+ 1 (1) *,
(m-2, 077, ng, sxmyh, |5 Hyipln, ngnglangg))

1 1
(nl n,t n3£5nu£4|ﬁ% Héi%|nl-2, not n5£5n4£4)

1.1 & NEN
y (n2i|hl -5 fllngi) ny(n] - 1)

1 1 (1)
(nl nzi,nB-E, £5n4£4|55 Hvib‘nl ngi n5£5n4£4)

1 1
= (nl Nyt n5£5nuﬂhlﬁg Héi%lnl nzi, n3-2, £5n4£4)

1,1 S 1
§ (nzilhjinzi) n 2 -4 2

3 3

1 1 1
(n n,+ Dzhz, 1)y-2, ﬂ”'ﬂg Hviglnl n2i n5£5n4£4)

il

H(l)

viblnl not, n5-2, anuﬂu)

1 ‘ 1
(ny ns+ n5£5n4£4|ﬁg

]

% (e [nps) Vo2 - 4y

+1C
(gelelnge) = 1 w1, (s, (e
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normal frequencies and equilibrium moments of inertia of NH5 and ND5
have been made by Benedict and Plylern(7) Their values for W, w3,
and w), will be used in the present calculation. The equilibrium dimen-

0 and x. 0 can be calculated from thelr estimated values of the

sions x
1 2

equilibrium moments of inertia and will be used also. From Equation
(13) it is seen that a, can be calculated once the quadratic force con-
stants a, b, and ¢ for the symmetric vibrations are known. With the

aid of Equations (8) through (lO), the constants a, b, and ¢ can be cal-
culated once (w1>NH3’ (wl)NDB’ and (&Q)NH5 are known. For the first
two of these frequencies the values given by Benedict and Plyler will be
used. The normal frequency (aQ)NH5 can be calculated from the potential

energy function given by Equations (17) or (18). One finds

(W) =606 [1- ()] (o)

The constants Fy and G, are as yet unknown. However, the constants

1

1
! = + = + + ' =
Fo Fo 5 Fl F5 F) and GO Go + 5

Gl + G3 + Gy are known. Assum-
ing that ¥y, F5, and F) are much smaller than FO, and Gy, G5 and G) are
much smaller than Gy, one can obtain an approximation to (cDQ)NH3 by re-
placing FO by Fé and GO by Gé in Equation (30). With the resulting
approximate value of (mg)NH3, and the frequencies (wl)NH5 and (wl)ﬁﬁg’
one can obtain approximate values of the quadratic force constants a, b,
c and thus an approximate value of ag. Equation (13) may be used to ob-
tain approximate values of o, and {o- The approximate value of L can

then be obtained from the constant D. Finally, the equilibrium value

Xo Of the inversion coordinate 1s given by QO/LO Thus, the values of Wy,
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wB and w)y are known and the values of ag, {5, 0y, L, and x5 can be

estimated. Consequently, the numerical integrations required to evalu-
ate the matrix elements of Hé%g can be done and the energy correction
expressed as a function of the interaction constants F; and Gy (i =1,

3, 4) alone.

The improved energies, including the contribution due to

7(1)

oib’ will be given by

‘ to) — 1)
Ev:g = Ev.'b + \:v.‘L. (31)

where E<O) is the zero order energy given by Equation (25). The energy

e

vib
correction Evib will be of the form

oo ALnE) en A ) « ngAnE) +ny Aynd)
+
+ Y\T‘/‘\n(\(),_t) + Y\; ;A\%g(,ﬂzt) -+ nj Aqq(“{)

x p inE
+Y\3nq/\3,.,m;) +Y\\Y\3/—\,3(W{)+W\Y\4Aw 2 )
2 Z t
+ QS L_,)(Y)f) t+ »Qq Lqmz>

where the coefficients Aj, Aij: and Ly depend only upon the interaction
constants F; and G; and the quantum number Dot o The problem at hand is
to determine the six interaction constants so that HEquation (51) will
yield the correct inversion vibration splittings.

In order to describe the method by which the interaction con-

stants are determined it is convenient to introduce the notation

AE (n, n,_h323 nytt) = Eing nSBnd-—E i nz*'ﬂf’m“o")
E (ningnnd)= 5 |Emng NP+ Enninendt) )
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AE is the splitting of the levels (nl ngi n3£3 nuzh) and E is their

mean position. For simplicity, the splittings AE (0 no 00 OO) will be
denoted by‘Ang. The constants Fz and Gz can be determined from the

observed shift in splitting
- b
A}\ i.l \ O ) - A o

and the observed anharmonicity

-

- i PR LR Fo N
Tl L) - \ clcloe & ) + B (o )J
since these two quantities are independent of F;, Gy, F), and Gy. Equat-
ing the observed numbers to the calculated expressions, in terms of F5

and Gz, one obtains a pair of equations of the form

LS R P s+ {:a RS AP G o e
e T . { - - : — ‘; = ’ e a
s kf§3 L A R A R e G

-~ e N

N

where the Ci and Ci' are numerical constants. Numerical values of F5
and G5 are found by solving this pair of equations. The best values of
F5 and G5 that have been found, so far, are

T b N R

G, s = {4 C R ‘

and the anharmonicity

—

—_ X TR = o
Eareiy-|glore?or) s Elocad ’3
yvield a pair of equations involving F) and G alone. The best values
of F) and G) so far obtained are
ri+ = 2,

G

it
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The question naturally arises of why the two observed shifts
in splitting AE(0 0 11 00) - A, and AB(0 1 11 00) - A were not used
to determine F5 and G5a One finds that the two equations for F3 and
G5 obtained by using these two experimental numbers are almost constant
multiples of each other. Thus, with an interaction of the form postu-
lated in this thesis, the two observed splittings with nz = 1 are not,
effectively, independent pieces of information. Two pieces of informa-
tion of a distinctly different nature are needed. Thus, the observed
anharmonicity and one observed splitting have to be used.

The determination of Fq and Gy, if at all possible, is subject
to much greater uncertainty than the determination of FB’ G3’ Fh and Gy -
Three pairs of levels (1, 0%, 02, 09), (1, 1%, o9, 09), anda (1, 0%, 0°, 11),
involving the excitation of the q; mode, have been observed in the spec-
trum of NHB’ From Table II one sees that

B (10Ecfe8) ~u Bty (065c°2°)
A more general potential than the one used in this thesis would contain
a term of the form kjj) qy ry2 which has matrix elements connecting the
levels (l, Oi, OO, OO) and (0, Oi, OO, 20). Consequently, these levels
will be in Fermi resonance with each other. Similarly, the levels
(1, 15, 09, 09) would be in resonance with (0, 1%, 00, 29) and (1, of,
00, 11) would be in resonance with (0, 0%, 09, 31). (The levels
(0, oX, 09, 31) and (0, 1%, 09, 2°) have not yet been cbserved in the
ammonia spectrum.) In general, one would expect the Fermi resonance
to have some effect on the splittings of the levels involved. Similarly,

the observed anharmonicity

E(\\o"o")—['E'(clc‘*o“) + E ( loo°o°)]
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can be expected to involve a contribution due to the Fermi resonance.
In order to make reliable estimates of Fq and Gy one must know the
values that the anharmonicity, and one splitting, would have in the
absence of the Fermi resonance.

Benedict, Plyler, and Tidwell(g) have attempted to estimate
the magnitude of the cubic constant kjl), connecting the resonating
1evels (1, 0%, 02, 09) anda (0, 0%, 09, 29). 1f their estimate of
- klhh/Jé = 37.4 em~l is correct, then the observed value of E(l, 0,
OO, OO) would be 13.15 em~1 higher than the unperturbed value ﬁhile
the observed value of E(0, 0, 09, 29) would be 13.15 em™L lower than
the unperturbed value. The observed splittings of the levels (1, Oi,
09, 09) and (0, 0%, 00, 20) are 0.99 cm™! and 2.24 cml, respectively.
No matter whether the observed numbers or estimated values of the un-

perturbed numbers are used*, one has the problem of choosing Fl and

Gl such that

AE(100°d") > A,

AE(110°0°)< By,

It appears that there are no values of ¥y and G, unless third and
higher order perturbations give significant contributions, which will
satisfy these inequalities. One can fit the splitting of the levels

(1, ox, 09, 09), in which case the predicted splitting of the levels (1,
li, OO, OO) is much too large or one can fit the splitting of the levels
(l, li, OO, OO), in which case the calculated splitting of the levels
(l, Oi, OO, OO) will be too small. In order to obtain a rough estimate

of the values of F and Gy the second alternative was chosen. Although

* Assuming the estimated value of kj)) in Reference (9) is valid ome
finds that the Fgrmioresonance should increase the splitting of the
levels (1, Oi, 07, 0Y) by about .09 cm~! and decrease the splitting

of (0, 0%, 09, 29) by an equal amount.
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this cholce is quite arbitrary it might perhaps be hoped that the
Fermi resonance has a smaller percentage influence on the splitting
of the levels (1, 1*, 09, 00) than on the splitting of the levels

(l, Oi, OO, OO). The values of F; and Gy obtained in this way are

Fy =-14k.0 em-l

Gy = 25.6 cml

It should be understood that the numbers for F; and G may be very
badly in error. Indeed, it is very doubtful whether the form of the
postulated interaction between q; and the inversion coordinate x is
valid.,

Since F ' and G,' are known, the values of the interaction
constants can be used, with the aid of Equation (19), to calculate Fs
and Go. Equatian(BO) then can be used to obtain an improved value for
the normal frequency wo for NHB’ which‘in turn can be used to obtain
improved estimates of the force constants a, b, and ¢. Improved esti-

mates of the parameters ag, {y, o

os L, and x4 then can be made. The

best values so far obtained for these parameters are presented in

Table X. As a final step, the corrections to the energy levels due to
Hé%% are re=calculated using the interaction constants and the im-
proved parameters given in Table X. The re-computation yields final
values for the coefficients Ai, Aij’ and L; in the energy correction
formula. The final values of these coefficients are presented in Table
XI. The reliability of the calculated results is limited, of course,
by the uncertainty in the interaction constants F; and Gy. However,

only the coefficients Ay, Aqq, AlB and Aq), are much affected by this
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uncertainty. The remaining coefficients are very insensitive to the
values of F; and Gy.

It should be noticed that the magnitudes of the interaction
constants F; and Gi are sufficiently small to justify the use of pertur-
bation theory. That thls would be so was not. obvious at the beginning
of the calculation. Another point of interest is that Hé%% contributes
a correction to the levels (O, Oot s OO, OO). It is found that only
matrix elements of Hé%g for which Any, = 0, + 1 make significant contri-
butions to the energy corrections of the lower states. In the calculation
of the energy corrections only contributions of matrix elements (neiniglné)
with ny, nd < L were retained, where this limitation was dictated by prac-
tical considerations of the availlable digital computer time. However it
1s estimated that the contributions of matrix elements with ny > 4 is
less important for the lower states than the contributions of third or
higher order perturbation terms. The corrected energies for the levels
(0, Not OO, Oo) for np = 0, 1, and 2 are given in Table XII. The cor-
rection for n, = 3 has not been calculated since it involves matrix ele-
ments connecting n, = 3 levels to ny = 4 levels. The corrected levels
should be compared with the unperturbed levels given in Table VIII. In-
clusion of the correction due to Héi% is seen to enhance the agreement
between the calculated and observed energies. However, the ground state
splitting remains too large even after the correction has been applied.
Unfortunately, with the simple form of the potential assumed in this in-
vestigation, it does not seem possible to decrease the ground state split-

ting and still retain a good overall description of the remaining (O, Nk,

OO, OO) levels. This matter is discussed more fully in Appendix IT.
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The calculated inversion splittings, as a function of the
vibrational quantum numbers, for levels with no equal to O or 1 are

given by
AE (nonfnl)= Ag=.5590, =,734 hy +.220 Ny
+.272Nn% +.2%93 N5 02603
— 16T nsng + 783 NNg =176 N1y

s
—.00034, -, 000744

(31)
and
DEM S0 2 N - 16,445 0, =22,626N3 + 6,749 ha
+ 5949900 +a213 05+ 5HEND
=3.687hzNyg +12./64 NNy ~2.599 NN+
—.0048 42 0017 44 (32)

In deriving Equation (31) and (32), third and higher order perturbation
corrections have been neglected. Although the magnitudes of the inter-
action constants Fi and Gi are much less than the magnitudes of Fo and
Go, the splittings are such sensitive functions of F; and G; that terms
cubic in the quantum numbers n{ are not completely negligible.

The calculated splittings for levels with n; = O are compared
with the observed splittings in Table XIII. These numbers were obtained

from Equations (31) and (32) by setting A, and A equal to their observed
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values 0.79% and 35.81 cm'l, respectively. The numbers in Table XITT
are sensitive functions of FB’ GB’ Fh’ and Gh but are essentially inde-
pendent of Fl and Gla It is seen that the calculated and observed re-
sults agree reasonably well with the exception of the splitting of the
levels (0, 0%, 0 9 20). 1t vas pointed out above that this pair of
levels is in Fermi resonance with the pair (l, Oi, OO, OO) so that
agreement between the calculated and observed splittings perhaps should
not be expected. Apart from the exception just mentioned, eleven data
have been accounted for with four interaction constants. Differences
between the observed and calculated values of the order of 1 to 2 cm~t

1 for the levels

for the levels (nj, 1%, n5z3, ngzu) and 0.1 to 0.2 cm~
(n R Oi, n3£5, nuzu) can be expected due to the neglect of third and
higher order perturbation corrections, the neglect of cubic and quartic
terms in the expansion of the potential parameters T and G, and the
approximate nature of the double-minimum wavefunctions wnei(x). The
fact that the calculated numbers do not reproduce exactly the data used
to determine the interaction constants is due primarily to the fact that
these constant were obtained using approximate values of the parameters
8gs Cos 0gs L, and xg whereas the numbers given in Table XIII were cal-
culated using improved values for these parameters. Table XIV summarizes
the results for the splittings of the states in which the symmetric a4y
vibration has been excited. In this case there 1is very little agreement
between the calculated and observed numbers. The anharmonicity used to
determine Fq and Gy should be the one corrected for Fermi resonance,

namely 20.18 em™t + CFR(lOOOOO) - CFR(llOOOO), vhere Cyp is the correc-

tion due to Fermi resonance. Benedict, Plyler, and Tidwell(9) have
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TABLE X
PARAMETERS FOR NH5
@ = 3516.98 cm-l
w5 = 3590.51 em~L
a, = 1689.11 em™t
xi = 2.100 x 1020 om x gnt/?
xg = T757 x 10720 e x gml/2

F' = 1894.61 cm™L
G' = 1288.68 cm™t
D= 64.93 cm~t
Fy = 2111.91 cm™t

Gp = 1275.68 cm™t

F, = 14k .0 cm-l
Gy = 25.6 cm™t
Fz = -175.0 em™L
G5 = 14.0 cm~t
F, = 29.7 cn™t
G, = -13.8 em™1
Xy = 1.14k41
sinh oy =  1.1133
sin {, = 2648
L = 2342
8o = 1.957% x 10720 e x gml/2
w, = 1047.98 cm~t
a =  2.2712 x 10° dyne/cm
b = 7.0770 x 102 dyne/cm
C

.062k x 10° dyne/cm

]
n
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TABLE XI

COEFFICIENTS IN THE ENERGY CORRECTION FORMULA (cm=1)

ay(0%) = - 235 8,(07) = - .299
Ay (0%) = - 1.608 A1(07) = - 2.167
A5(0+) = - 5.658 A3(O') = - 6,392
By (07) = - .997 8 (07) = - 77
Ay;(0") = - 7.188 A17(07) = - 6.916
a35(0*) = - 8.233 A35(07) = - 7.950
By (07) = - .5k A, (07) = - .515
Az, (07) = L.320 Az, (07) = L.15%
A13(0+) = -15.525 Al3(0') = -1h,7h2
Aqp(0%) = k,ok6 Ay, (07) = 3.870
Lz(07) = - .0771 Lz(07) = - .O77h
Ly(0*) = - .0250 Ly (07) = - .0257
A(1*) = - h.221 Ax(17) = - 4.6%6
Ay (1%) = ko.175 A1 (17) = 23.730
Az(1) = ho.ouk Az(17) = 18.318
Ap(1%) = -18.8%1 Ap(1-) = -12.082
A1 (1%) = -12.792 Aj1(17) = - 6.843
Azz(1%) = -1k.078 Azz(17) = - 7.865
Ay (1) = - 1,063 Ay (17) = - 519
Az, (17) = 7.779 Az, (17) = k.09
Al5(l+) = -26.926 A3(17) = -1Lk.772
Apy(1t) = T7.435 A (1) = 3.8%6
;3(1+) = - ,0562 L5(l') = - ,0610
L, (%) = - .0166 (1) =- .0183

Ap(2%) = -10.68 Ap(27) = - 9.75




(D=

TABLE XTI

CORRECTED ENERGY LEVELS iy, (O,

+ 0
n2) O }OO)

—

Level Calculated (cm™1) Observed (em=1)
0 ot o0 o° 0.00 0,00
0 0~ 00 @ 0.88 0.79%
01t 00 o0 933,20 932.51
01" o° 0O 968.29 968,32
0 2t 00 o0 1606.70 1597.42
0 2= 09 o® 1877.78 1882.16
Splitting Calculated (cm~1) Observed (em=1)
Ay 0.88 0.793
N 25,09 35,81
Ly 271.08 o8l 56
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TABLE XTIIT

INVERSION-VIBRATION INTERACTIONS: DEGENERATE VIBRATTONS

Inversion Splitting

Level Calculated (cm™1) Observed (cm=1)
001100 e .35 a
002900 L6 -

002200 L6 43

000011 1.04 1.04  b,e

000920 1.%4 2.2L

000022 1.33 1.42

oo1t1t 2 .57

011100 19.39 18.49

010011 43,10 45k

o111t 23,00 23,68
Anharmonicity Ca%z;&%ged O?i;f{§d

E(011109) - [E(010%°) + E(001109)] 32,30 31.98 a

E(010°11) - [E(010%°) + E(000°11)] -15.28 -14.9  b,d

E(o11111) - [E(010%°) + E(oo111l)] 19.18 21 .2l

a Used to fit F5 and G5
b Used to fit TlL and G4

c A more recent value is 1.01 cm“"l - ¢.f. Reference (lO).

1

a In view of Reference (10), - 16.88 cm™ is probably better.
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TABLE XIV

INVERSION-VIBRATION INTERACTIONS: LEVELS WITH n =1

Inversion Splitting

Level Calculated (em=1) Observed (em=1)
100900 .51 .99
101100 .8l -
100011 .58 .86
110000 25,32 25,55
Anharmonicity Calculated Observed
(em™1) (em=1)
E(110%9) - [E(010%°) + E(100°%°) ] 30,63 30.18 cm¥

* Including a somewhat arbitrary correction of 10 em™t

for Fermi resonance.
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estimated that Cpg(100°0°) is 13.5 cm™l. Since the levels (0, 1%, 09, 29)
have not been observed it is difficult to make a reasonable estimate of
CFR(llOOOO). For the purpose of determining F; and G a somewhat arbi=
trary estimate of 10 cm~! was made for the overall contribution of the
Ferml resonance to the anharmonicity.

It might be tempting to argue that the discrepancy between the
computed and observed splittings for the pair (1, Oi, OO, OO) can be
attributed entirely to the Fermi resonance with the pair (O, Oi, OO, 20).
It is very easy to show, however, that such an argument is probably in-
correct. Suppose there were terms in the potential of the form f(x)qlr42
having matrix elements connecting the states (1, 0%, 0°, 09) and (0, of,
Oo, 20). Let the matrix elements connecting the two (+) states be V;g and
Vgl and the matrix elements connecting the two (-) states Dbe Vi2 and
Vo1 . The symmetry of the perturbing term must be such that it has no
matrix elements connecting (+) states with (-) states. The energy shift
due to the resonance between the two sets of levels is given by the roots

E of the two secular determinants

s
.r“(’a) t
Ce ™ Ei‘. \/tz

r o) .
A Eze”Ex

where E<S) and E(S) are the energies of the unperturbed levels (1, Oi,
1= 2~
09, 09) and (0, 0X, 00, 29)., The perturbed energies are readily shown

to be .
{6)
+ o+ ZE&::

)
EOEEANEY

1
f
Tl

m
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/2
where I ) = ) (o) \& 5
Eye — Eot e = E,x +
3 ( i« — B, ) + W.W,Méwz.,«)Jr\\/l?_ )

AN —z

=
The effect of the resonance on the inversion splitting is given by

- (0)

— —)|

c-Ew = EZ-EY - (A=A
— (%) ot

Eys— Bt = EX-ES - (A= A+)

Thus, if the effect of the resonance is to increase the splitting of

1

the pair (1, 0%, Oo, OO) it must also decrease the splitting of the
pair (O, Oi, OO, 20) by an equal amount, and vice versa. However, with
the choice of the six interaction constants made in this thesis, the
O) 0

splittings of the levels (1, 0%, 0, o

and (0, Oi, 0-, EOi would have
to be increased simultaneously in order to account for the observed
numbers, Clearly, a simultaneous increase in splitting cannot be
achieved by a Fermi resonance alone. Another possibility remains,

however. In view of the generally good agreement obtained for split-

tings involving the degenerate vibrations one could assume that the

+ 0

calculated splitting of 1.34 em™l for the level (0, 0%, 0°, 20) is cor-

rect, in the absence of the Fermi resonance, and that the resonance

increases this splitting to the observed 2.2k cm’l.

In this case the
unperturbed splitting of the levels (1, Oi, OO, OO) would have to be
1.89 em™! in order for the resonance to yield the observed splitting

of .99 em~L, However, if Fq and Gy are chosen so that the unperturbed
splitting of (1, Oi, 0] 9 OO) is 1.89 cm™l then the unperturbed splitting
for the levels (l, li, OO, OO) would be of the order of 7O em=l whereas

the observed splitting is 25.55 em . It appears highly unlikely that
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a Fermi resonance perturbation could reduce the splitting of the levels
(1, 1%, 00, 00) by such a large amount. It is highly probable that the
actual interaction between the g; vibration and inversion is more sophis-
ticated than the simple interaction postulated in this thesis. However,
with the limited amount of information available concerning states in
which the q; vibration is excited there is little hope of guessing an
improved form for the interaction.

The discussion above also casts some doubt on whether the dis-
crepancy between the calculated and observed splittings of the levels
(O, Oi, OO, 20) can be attributed to Fermi resonance alone. Indeed, the
interaction may be strongly /), dependent whereas the model used in this

investigation is practically independent of 4. The inclusion of an
ﬁ
r
)

but was omitted arbitrarily in this work, is of no help in this connec-

ﬁ

© Ty term in Hé%%, which is allowed by the symmetry of the molecule
- -

tion. An r3 + r), term would meke contributions to the splitting which

are proportional to the products nzn) and £5£h and consequently could not

account for the difference of the splittings of (0, 0%, 0°, 2°) ana

+
(0, ot, o9, 2°).

Unfortunately the splitting of the levels (0, 0%, 20, o9)
has not been observed so that it is not known whether there is a similar
dependence of the inversion splitting on £3.

The investigation, so far, has attempted to account for 2% ob-
served data from the vibration-inversion spectrum of NH5' These data are
the positions of the seven "pure inversion" levels (O, Nyt OO, OO), the

splittings of twelve other pairs of vibrational levels, and four numbers

which essentially measure the anharmonicity of the interaction of the
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vibrational modes with the inversion. It has been shown that the poten-
tial energy function postulated in this thesis will account for the
"pure inversion" levels, and all but one datum involving the interaction
of the degenerate vibrations with the inversion, or a total of 18 data.
Of the five data which cannot be accounted for, four are intimately in=-
volved with the non-degenerate g7 vibration and the fifth, the splitting
of the levels (0, 0%, 09, 20), is involved with qj at least through a

Fermi resonance with the levels (1, 0%, 0°, 09).



VI. VIBRATIONAL ENERGIES OF ND5 IN LOWEST APPROXIMATIONS

Now that the potential constants for NH3 have been determined
it is a simple matter to obtain the constants for NDz. The binding forces
in molecules are, to a very good approximation, mass independent. Con-
sequently the potential energy of NH5 must be identical to the potential
energy of NDB’ In order for a potential of the form given by Equation
(17) to be valid for ND5 as well as NH5 the following relations must hold

between the potential constants.

(F”ND_% = (Fa)NHg

(@c>!\iD~ - {GG)NH.%

N =)

( C(\.‘\’{ > N D\ ———
F. = — N (R

NN \
(Gi)sz_ (LQ;'):ZZ (GL)NHs

(D) w, (W2 )by g

(D)NH3 ((’QZ>NH3

These relations can be obtained by the following arguments. If the po-
tential energies of NDz and NH3 are to be identical then they must be
identical at the planar configuration (g =q =rz=T) = 0) and at the
equilibrium configurations (¢ = + (., where cos ({ /L) = F /4Gy, and

=80~
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qp =Tz =T} = 0). Equating the potential energies of NHz and NDz at

these points, one obtains the two equations

_Z(E)ND3+2(G°)ND3 = —Z(FO\NH_,.-\-Z(G«;)NHg

(R )z (F )2'.\““
cIND - - e /TR
—Z(GO\Nbs = "I‘(Go) N;.B - -2 (GO)N"B 4(60\)N\‘\3

whose solutions are the first two of the Equations (55). From

cos (t,/L) = F /UG, it follows that

£\ = (ﬁo
L /ND, L /NH: .
The interactions constants F; and Gy are related to the normal frequencies

w; by relations of the form

Wp = Cp -4y C°5<§E>+”6e cos (22) |

Hence, the interaction constants of ND5 must be related to those for
NH3 by the second pair of relations of Equation (33)0 The last of
Equations (33) follows from Equation (30). The normal frequency (aQ)NDB

can be obtained by application of the product rule

/o

(W by (W2)wpy _  mu [ Mr3my
(W) )Nkg (WO2) N3 7o | M+3my

where m 1s the nitrogen mass, My the hydrogen mass, and My the deuterium

mass. The normal frequencies (G&)NHB and (&&)NDB for i =1, 3, 4 are
known from the analysis of the NH3 and ND3 spectra by Benedict and
Plyler(Y), and (wQ)NH5 was calculated in the preceding chapter. The
values of the constants for ND3, calculated from Equation (33), are given
in Table XV. The constants F,' and G,' appearing in the effective one-

dimensional potential can be obtained from Equation (19). The three



constants needed to solve the one-dimensional problem for ND5 are

found to have the values

D= 37.95 co~l
F ' = 1953.61 cm~t
G o= 1285.08 em™t

Using these values of the constants the eigenvalues of the one-dimensional

double minimum problem, Equation (27), have been found for ND_, according

3
to the method described in Chapter IV of this thesis. In this case, the
0 level lies 394,93 em™! above the minima of the effective one-dimen-
sional potential V'(x). The energy differences Enzi - Eo+ are given in
Table XVI. A calculation of the contributions to the energies of ND5
dvue to the perturbation Hé%g, which would be complicated by the presence

of several resonances, will not be given in this work.

TABLE XV
CONSTANTS FOR NDs (cm™1)

wy = 2496.96
wz = 2642.18
w), = 1226.32
wp = 801.01
D = 37.93
F, = 2111.91
G, = 1275.68
Fq = -102.2
G = 18.2
Fz = -128.8
Gz = 10.3
F, = 21.6

-10.0

(@)
=
i




ENERGY DIFFERENCES FOR THE LEVELS (0, n
(N x N TRUNCATION)
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TABLE XVI

2

+, 09, 09) of 1Dy

Level Energy Differences (em™1l)
Calculated
not Observed
N =12 N =16 N = 20

ot 0.00 0.00 0.00 0.00
0~ 0.08 0.08 0.08 0.053
1" 746.90 Th6.7h 46, Th 5.7
1 751.20 751.18 751.18 THO. L
ot 1359.71 1359.45 1359.45 1359

2 1435.70 1435.60 1435.60 1429

3+ 1835.47 1834.98 1834.98 1830

3= 2115.41 2115.08 2115.07 2106.60
Lt 2k 95.39 24 85,28 2485.28 -

L- 2873.08 2867.55 -

2867.55




VII. INVERSION-ROTATION SPLITTINGS IN NHz

The infra red spectrum of ammonia shows the rotational struc-
ture of a symmetric top molecule. The effective rotational constants
are functions of the vibrational quantum numbers and the symmetry
(+ or -) of the inversion state. In other words, the inversion
splittings are functions of the rotational quantum numbers and, as
indicated in the introduction to this thesis, can be expressed by a
formula of the form

A, = O + (B - B[ T(T+1)-K*] + (C;—C:)Kzf-- -,
Although terms quartic in J and K are often added to this type of ex-
pression in order to obtain an empirical fit to the experimentally ob-
served splittings, the dominant contribution comes from the quadratic
terms. In this investigation no attempt will be made to calculate terms
quartic in J and K even though they could be included in the theoretical
development. Until the quadratic terms can be accounted for accurately,
there seems to be little point in trying to calculate the smaller quar-
tic terms.

For motions in which the degenerate vibrations are not excited
the ammonia molecule maintains the geometry of a symmetric pyramid, in
which case the two moments of inertia perpendicular to the symmetry axis
are equal and the products of inertia vanish. One of the basic assump-~
tions made in this investigation is that in spite of the large amplitude
of the inversion motion the instantaneous configuration of the molecule
never departs very much from one of pyramidal symmetry. Thus, in lowest

approximation, the rotation-vibration Hamiltonian can be regarded as the

-86-
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sum of the vibrational Hamiltonian and a symmetric rotator Hamiltonian

- | 2 2 | 2
H = Hvu, >+ (P + >+ — i
5, (Pc+ Py) + 53R ()
where I, is the moment of inertia about the symmetry axis and I is

the moment of inertia about an axis perpendicular to the symmetry axis.

Py, P, and P, are the three components of the total angular momentum

Xy

with respect to a molecule-fixed reference frame. The moments of
inertia I, and I, will be very sensitive functlons of the inversion
coordinate, but, in lowest approximation, will be independent of the
remaining vibrational coordinates.

In the introduction it was pointed out that the rotation-
inversion constants B™ - BY and ¢™ - ¢* , are extremely sensitive func-
tions of the inversion quantum number, no, while their dependence on
the remaining vibrational quantum numbers is much milder. Thus, one
might expect that the main features of the inversion doublet separation
are contained in the simple Hamiltonian given above. Indeed, the in-
vestigations of Sheng, Barker and Dennison(u) and Hadley and Dennison(5>
give ample verification to this expectation. Nevertheless it becomes
clear from the experimentally observed data that the higher order terms
in the complete vibration=-rotation Hamiltonian cannot be neglected en-
tirely. However, since the contributions of the higher order terms are
rather difficult to compute and since the Hamiltonian (34) can be expected
to give the major contributions to the inversion doublet separations, the
following method of attack will be used. First the contributions of the

Hamiltonian (34) will be calculated and compared to the observed data.
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Then the complete vibration-rotation Hamiltonian will be developed and
those terms which can contribute to B~ - BT and C~ - C' examined. Before
presenting the lengthy development of the complete Hamiltonian it will
be profitable to work out in some detail the implications of a Hamiltonian
of the form of Equation (34).

For the purpose of computation it is convenient to rewrite
Equation (34) as

H - H(O) + H(l)

where

}4(6) ]—4t?b 2 2 2
-~ = i J - Jz +
he e Blo=J2]+ Ce 02 (35)

@)) O]

}:i :_H\‘L _ 2 .2 _ 2
he TZ+<B BlT- T2 [+ (C-Co) T2 (36)

where

h !

B = gWEC Iy C T %mic To

(37)

B and C are functions of the inversion coordinate. B, and Cg are the
equilibrium values of B and C and are constants.¥ Jd = L/ﬁ Pa(a=x,y,z)
are dimensionless angular momentum operators and J° = JXE + Jyg + JZE.

Hég% is given by Equation (23) and Hé%% is given by Equation (24).

* B = 3.965 cm-T and Ce = 6.341 em~1. (7)
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If the degenerate frequencies are not excited the moments of
inertia are
Iy = |_2Xl2. + XZ
Ti= Xt
where xq and Xp are the mass weighted internal coordinates introduced in
Chapter II. Upon introducing the coordinates o and { defined by

Equation (13) and replacing ¢ by its equilibrium value o,, one obtains

2
sin“&, — (sin Lx)

e| [cosh3ay— | ) ‘ 2
- o ! X
(cosh263+\ 4—(Stn L )

B-B. = B

(38)
c C cos £y— (cos Lx)*
(-Ce=Ce (Cos Lx)2
(39)
where x = Q/L is the inversion coordinate.
The "zero-order" Schroedinger equation
Hw) (0) (o) (o)
=BT
— T
has solutions
SR P
Vib T KM (40)
0) co) 2 2
E =E vib T BeL“T(‘J_H)_K ]+C€K (1)

¢(0)

where ¥ TM is a symmetric top wavefunction, vib is the wavefunction

given by Equation (26), and Eé?% is given by Equation (25). The energy
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correction due to the "perturbation," H(l>, is easily obtained. Since
the calculation of the vibration-rotation energies will be restricted
to terms at most quadratic in the rotational quantum numbers J and K,

the corrected energies are found to have the form

E=Evw. +B(n\n§n3hq)[d'<3+ - KZ] + C(n\n;‘-nan)Kz (42)

where E_,. 1s given by Equation (31) and

t
B(nningng =R, +/5,(N2) +‘h./3.mzi)+ h3/>’3mf) +nq/3’qu)

C oy nyng)= Co+ 5,_(‘”3) R AGESET M S5 (n2)enydy(ny) 43)

[

The quantities Bg(ngi) and 72(n2i) are the expectation values of
Equations (38) and (39), respectively. The coefficients Bi(ngi) and
7i(n2i> with 1 = 1, 3, or 4 arise from cross terms between the off-

diagonal matrix elements of Equations (58) and (39), respectively, and

the off-diagonal matrix elements of Hé%%. Numerical values of the
B; (no+) and 7; (npt) are given in Table XVII.
The quantities of interest in this investigation are the dif-

ferences of the rotational constants of the (+) and (-) levels, namely
B—B" = B(h, N7 nyNng)— BNIN;ny)
CT-CY= Cning nyNg)— CWNE n; Na)

The calculated values of B~ - BY and C~ - C+, for the levels (O, Ny,

Oo, OO, J, K), are compared with the observed values in Table XVIII.
The numbers given in Table XVIII are differences of the diagonal matrix

elements of the rotational part of Equation (36) and correspond to the
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quantities calculated by Sheng, Barker and Dennison(”) for no = 1 and
Hadley and Dennison(5) for n, = 0 and 1. Although agreement between
the observed and calculated numbers is not perfect, and should not be
perfect in the present approximation, the calculated numbers do show
the correct dependence on the quantum number n,. The magnitudes of
B~ - BY and C- - C* increase with no for no equal to 0, 1, and 2 and
decrease when no is equal to 3.

Although the differences of the rotational constants depend
mainly on the inversion quantum number, no, they have been found to vary
significantly with the vibrational quantum numbers n;, nz and n). In

order to discuss this dependence it is convenient to write

B(nhin; nshy)— Bning Nz Ny)

= R(on; 0o)-B(oh 00) + AR(NN,NNy)

C(ninz nsng)—Cinint ng ny)

= C(Oh;oo)-C(oh;:oo) + AC (nmmsn*)

[ 4
In the present approximation, AB and AC depend only on the coefficients
i (not) and 74 (npf), 1 =1, 3, or 4, of Equation (43) and hence arise

from cross terms between off-diagonal matrix elements of H(i) and off-

vib

diagonal matrix elements of Equations (38) and (39), The calculated
values of AB and AC, for levels with no = 1, are compared with the ob-
served values in Table XIX. It is seen from this table that the changes

in B~ - BY ana ¢~ - C+, for levels with n, = 1, as functions of np, nz,

and n),, are given surprisingly well by the simple Hamiltonian,(34) In
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all cases the signs of AB and AC are correct and, with the exception of
the level (O 1+ o0 ll), the calculated magnitudes agree rather well with
the observed numbers. The corresponding numbers for levels with n, =0
are shown in Table XX. The calculated values of AB and AC for the levels
(1 o< Oo OO) undoubtedly should be disregarded since they are strongly
dependent on the potential consténts Fy and Gj. It was seen in Chapter V
that these constants, which account for the inversion splitting of the
levels (1 1% o0 OO), were inadequate to describe the splitting of the
pure vibrational levels (1 ot o0 Oo)o Hence, they cannot be expected

to give the correct inversion-vibration-rotation interaction for the
latter. For the levels (0 ot 11 OO> the calculated and observed values
of AC agree well while the calculated and observed values of AB agree in
sign and only roughly in magnitude. The calculated and observed numbers
for the levels (0 0L 0 ll) disagree violently. Indeed, the sign of AB

is not given correctly.

Complete agreement between the calculated and observed rotation-
inversion constants should not be expected on the basis of a Hamiltonian
as incomplete as Equation (34). In fact, it is rather remarkable that
the calculated and observed numbers agree as well as they do. In order
to discuss the possible contributions due to neglected terms in the
Hamiltonian it will be convenient to use the symbol”VU to mean "of the
order of magnitude of." By numbers of the order of w or B will be meant
numbers of the order of magnitude of wpo= 1047.98 cm~L and Be = 9.965 cm'l,
respectively. The symbol n will be used to represent the collection of

six vibrational quantum numbers and J to represent the two rotational
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TABLE XVII

-.039993

-.080141
-.122296
031764
.033635
025590
039369

- ,010136

.309620
-,142895
-.208919

057433
-.032810

L0b36L5

.064482

-.017529

.714178

-.125151

147835
.065656

B2(07)
B (07)
B5(07)
By (07)
75(07)
71(07)
75(07)
71, (07)

Bp(17)
B1(17)
B3(1-)
Ay (17)
72(17)
71(17)
73(17)
74(17)

o (27)

72(2_’)

52(3')
70(37)

LOk5545
.075269
118176
030540
.035166
.023673
.035166
.009798

.140587
075911
118094
.030428
.015892
.024909
.039L52
.009972

.145634
.Ok7184

.106612

.160586
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TABLE XVITI

INVERSION-ROTATION SPLITTINGS IN THE LEVELS
(0 ny+ 00 00 J k)

nyt (B~ - BY)calc (B™ - B")gbs (c™ - C+)calc (€™ = ") ops
o™ -.005552 (em™)  -.005054% (em™1)  .001531 (cm-1) .001998 (cm=1)
1t -.1690 -.1817 L0487 .0721
ot -.5685 -.535 .1723 231
3t -.254kL ~. 3041 ,0949 ,1034
TABLE XIX
DEPENDENCE OF B~ - BY AND ¢~ - ¢* ON nq, ns, AND n WHEN np = 1
- _ . -1
Level MBogie (em™L) MBypg (cm 1) ACegice (em™)  AC s (em™)
1 1% 00 o© .0670 ,0552 -.0187 -.0251
0 1% 11 0 ,0908 .0833 -.0250 -.0292
01t 00 11 -.0270 -.009 .0076 .025
o1f 1131 .0638 .052 -.0175 -.018
TABLE XX
DEPENDENCE OF B™ - B AND C™ - C* ON ny, ng, AND n) WHEN np = O
Level ABcaulc(cmnl) AN (cm-l) ACegic <Cm“l) LChps <cm~l)
1 0% 09 o9 .0049 -.007 -.0019 .001
0ot 1t o0 L0kl .0015 -.0011 -.001%

0 ot 00 31 -.0012 .099 0003 .009
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quantum numbers J and K. For example, one finds

() B
(nl 2 |n) e (55

' "i(l)' B
(n] I : Y| n) A w]/E

C

(n.' H::fotln) ~ B (%)JZ

(n] H;‘ift In‘n)~ B]/% J*

where
(v) 1)

()
F* vot Fﬁ - Fﬁ vib

In the calculation of the corrections to the rotational energies, ob-
tained by treating Equation (36) as a perturbation, two kinds of terms
have been taken into account. First, the diagonal matrix elements of
H(li were calculated. These give a correction of order

ro BZ JZ

o -
Next, the contribution due to cross terms between the off-diagonal

matrix elements of H(l)

.. and H(l) were calculated. This contribution is
vib rot

of the order

S R)EET): 5T

Thus, the inversion-rotation splittings calculated above are the dif-
ferences of two terms of the order of magnitude of (Bg/w)JQG However,

one knows from the usual molecular theory that there are terms in the
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rotation=-vibration Hamiltonian which have not been included in the
present treatment that make contributions of order (B2/w)J®. The main
interest in the present investigation is not in the rotational constants
themselves but in their differences for the - and + inversion states.
Not all terms of order (Bg/(b)J'2 should be expected to give equally im=-
portant contributions to the inversion-rotation splittings. The dominant
contributions should come from those terms which are sensitive functions
of the inversion coordinate. Nevertheless, to give a proper treatment
of the dependence of the inversion splittings on the rotational quantum
numbers one should develop the complete rotation-vibration Hamiltonian
and retain all terms which can make contributions of order (Bg/w)Jg.

The relative success of the calculations based on the incomplete
Hamiltonian(ih) suggests that the neglected terms make only a very small
contribution to the inversion splittings, with the exception, perhaps,
of the levels with n) = 1. One would like to verify this. Also, one
would like to see why the calculated and observed splittings for levels
with n) = 1 disagree so badly. The remainder of this chapter will be de=-
voted to obtaining a development of the complete Hamiltonian out to terms
which make contributions of order (B2/<D)J'2 to the rotational energies.,
The task of diagonalizing this Hamiltonian is complicated by several
resonances and has not been accomplished in general. Nevertheless, it
has been possible to calculate the contribution to the energies of the
levels (0 ny+ 00 00 J k).

The general Hamiltonian for an N-atomic molecule, using a com-

pletely arbitrary set of 3N-6 internal (vibrational) coordinates, can be
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written in the form

X)H)Z ) - '

H:%%F*j (P ,otf‘C,)/Aj/A‘J( "ﬁ)ﬁ 3

N6 } ! ! ]
%NZ gt o e gV +4)

where Px’ P _, and P are the three components of total angular momentum

¥y
in a molecule-fixed reference frame, Py py, and p, are the components
of the internal angular momentum, and py (¢ =1, 2, ..., 3N-6) are the
3N-6 linear momentum operators conjugate to the 3N-6 internal coordinates.
The quantities “ij are related to the reciprocals of the moments and
products of inertia and the quantities Cy, Cy, and C,, which do not occur
in the usuval molecular vibration-rotation Hamiltonian, are functions of
the internal coordinates. A discussion of the derivation of Equation
(44) and the precise definition of all quantities appearing in Equation
(44) are given in Appendix III. Equation (44) is a little more general
than the usual molecular Hamiltonian in which the internal coordinates
are normal coordinates. In Appendix ITI it is shown that when normal
coordinates are chosen for internal coordinates, Equation (Mh) reduces
to the usual molecular Hamiltonian in the form given by Darling and
Dennison.(lB) The necessity of using the more general Hamiltonian arises
from the fact that the inversion coordinate is not a normal coordinate,
and, indeed, does not even describe a small oscillation.

Equation (44) will be developed in the five small oscillation

coordinates, retaining only those terms which make contributions to the

energy of order (Bz/cb)J2 or larger. Furthermore, .terms whose energy
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contributions are of higher degree than quadratic in the rotational
quantum numbers J and K will be discarded. Under these restrictions
one obtains

F* _ F+(D) N F*kl)

where H(O) is again given by Equation (35) and

)

()
%z Hh”’ + BB T3] + C.B 0T

ALdiog + den(2)E + docoliS )62 [737]
fport s st () duoe(S)i
FAL APy o) + 4,00 (b= T

Poton 22~ G {22 (- 90 B V5 (R0 -
FRfdop - (00 3y + B0 |

X[ + T 2] gm0, ) - (S + )T,

I [(E RS RN TR e BT )




-99-

where

Ac, T gwic az

LY

A discussion of the derivation of Equation (45) and the precise defini-
tion of the functions ¢j(x) are given in Appendix III. If one sets all
the ¢j(x) = 0 except $(x) and f5(x), Equation (45) reduces to Equation
(36) with

B - By = B (%)

C - Co = Cefn(x)

The additional terms are essentially of two types. One type consists

of terms quadratic in the total angular momentum operators and quadratic
in the small displacement coordinates. The others are the "coriolis"
operators, linear in the total angular momentum operators. A third

type of term which, in general, could give contributions of order
(Ba/a))J2 has been omitted. It consists of terms quadratic in the total
angular momentum operators but linear in the small displacement coordi-
nates. These terms have matrix elements connecting states for which

one of the vibrational quantum numbers differs by unity. They will make

contributions to the rotational energies of order (Bg/w){]"2 only if the
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potential perturbation has matrix elements between states for which one
vibrational quantum number differs by unity. Due to the special form
of Héi% used in this thesis the potential perturbation has no matrix
elements involving a change in a vibrational quantum number by one unit.
It has been pointed out that the potential function used in this work
is incomplete since it does not contain any of the terms cubic in the
small displacement coordinates, but independent of the inversion co-
ordinate, that normally can be expected to appear. If these missing
cubic terms were included then it would be necessary to include the
terms quadratic in the total angular momentum operators and linear in
the small displacement coordinates. The neglect of these terms can be
expected to introduce appreciable errors in the calculation of the ro-
tational constants Bi and ot but should not affect appreciably the dif-
ferences B™ - BY and ¢ - ¢t.*

Another term which has not been included in Equation (45) is

the /£-type doubling operator

3 H 10> sint +2- (03cos T +2
Te =" 2Re g0 ( wy B TSy I )( “J)

10°5indT 2 03, 2, 2
+( 0. |3t Cos T")( and)]

where ¢£(x) is defined in Appendix IIT. Normally this operator gives

contributions of order (BB/OJE)J3 only. However, for degenerate levels

with 44 = + 1 and K = + 1, this operator contributes to the "giant"

*  Whereas calculations of the-differenges B” - BY and ¢ - ¢t are rela-
tively successful, calculations of B— and C— for the individual in-
version states are not very successful.
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Z-type resonance discussed by Garing, Nielsen, and Rao.(lo) In the
present investigation no attempt will be made to discuss this special
case.

Unfortunately, a perturbation treatment of Equation (45) pe=
comes exceedingly complicated due to the presence of several near
resonances. For example, the coriolis operator proportional to ¢lo(x)
has matrix elements connecting the states (l np~ OO OO J K) and
(o Nyt 11 o0 g K+1). The difference between the zero order energies of

these two states is

Epz ~Epy —73.53 +3.62(2K+1) cm™!

This difference is especially small when n, is 0 or 1 since Eo_ - EO+ =
.94 em~l and E)- - Ej+ = 35.49 em™. Another resonance arises from the
fact that the coriolis operator proportional to 1/i(fy; 9/0x + f{5) has
matrix elements connecting the states (0 2% 0° 0° J K) and (0 07 09 1

J K+1). The energy difference between these levels is

—72.96 +3.62 (2Kk+1) cm”!

.

Due to these rotational resonance interactions it is not possible for
levels where nj, nz, and n)j are not all zero, to compute the corrections
to B~ - BT by ordinary non-degenerate perturbation theory. Such calcu-
lations have been tried but the corrections to B™ - BY so0 obtained
proved too large, due mainly to the presence of resonance denominators.
It appears, however, that non-degenerate perturbation theory can be used
to calculate the contributions to the energies of thé levels (0, Oi, OO,
OO, J, K) and (0, li, OO, OO, J, K) and the subsequent calculations will

be limited to these levels.
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The differences of the rotational constants for the levels
(0, ox, 09, 00) anda (0, 1%, 00, 00), calculated from Equation (L45),
are given in Tablé XXI. It is seen that the calculated values of
C™ - C* @iffer little from those computed on the basis of the Hamiltonilan
(34), although the additional contributions do make a slight improvement.
The magnitudes of the calculated values of B~ = Bt are now consilderably
too large whereas formerly they were too small. From a breakdown of
the contributions to B~ - BT from individual terms of Equation (h5),
presented in Table XXII, it can be seen that the contributions due to
the extra terms in Equation (45) are all very small compared to the con-
tribution from the original Hamiltonian (54), with the single exception

of the contribution from the cariolis operator

Ao(gﬁ“(x)%( + ¢|2(x))[( \OE;;“ T‘fs‘ ces Tﬁ:)( )

- (g ‘“%)(3“5@)

Thus, it is not strictly legitimate to neglect all terms in the rotation-
vibration~inversion Hamiltonian except those given by Equation (34),

It has been pointed out that when nj, nz and n), are not all
zero the rotational constants will be affected by rotational resonance
interactions. Thus one should not expect the simple Hamiltonian given
by Equation (34) to give correct values of B~ - BT for these levels.

Yet 1t was seen earlier that with the exception of levels with n) =
Equation (34) leads to reasonable values for the differences of the ro-

tational constants. Thus, resonance interactions must have a much
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l, J, K) than, say, on

greater effect on the levels, (0, No+t s OO, 1
the levels (0, Dot ll, OO, J, K). That this should be the case is

by no means obvious in the absence of explicit calculations using the
complete Hamiltonian, Equation (L5).

One of the chief effects of rotational resonances is to alter
the dependence of the rotational energies on the rotational quantum
numbers, Thus, in bands seriously affected by rotational resonances
one cannot expect the inversion splittings to be given by a simple
power series in the rotational quantum numbers. It is worthwhile, then,
to look at the experimental situvation. One finds, that in the bands
(0, 0%, 09, 11) and (0, 1%, 09, 11) the inversion pattern is highly
irregular(8’9’lo) and that the numbers given for the rotation-inversion
constants are averages derived from data that can be fitted only very
poorly by a power series in the rotational quantum numbers. Similarly,
the bands (1, 0%, 09, 0°) (0, o, 09, 29), anda (0, 0%, 0°, 22) show a
very irregular inversion patterna(9) The first two of these bands are,
of course, further complicated by a Fermi resonance interaction. On the
other hand, the bands (0, 0%, 11, 09) and (0, 1%, 11, 09) show a very
regular inversion pattern.(6’9) Thus, it is apparent from the observed
data that the bands with n) > O are affected by rotational resonances.
On the other hand, the observed data for bands with nz = 1 and nj = O
show no evidence of rotational resonance interactions, contrary to what
one might expect on the basis of the Hamiltonian given by Equation (45).

Rather lengthy calculations will be required in order to deter-

mine whether the Hamiltonian (45) implies results consistent with the
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observed inversion patterns in the bands (O, Not, OO, ll) and

Y(O, nei, ll, OO). These calculations will be considered at a future
date. At the present there is some doubt regarding the favorable
outcome of further calculatiéns based on this Hamiltonian. Indeed, it
may very well be that the model proposed in this thesis is not suffi-
clently sophisticated to yield the finer details of the inversion

doublet separation in the spectrum of ammonia.



APPENDIX I

COMPARISON WITH THE GENERAL POTENTTAL EXPANSION

Let a3, dp, dzxs 3ys Uixo and Uy be the six dimensionless
normal coordinates of ammonia. The most general expansion of the poten-

tial energy about an equilibrium configuration will be of the form

V=V® v Yl

where V(g) contains the quadratic terms, V(B) the cubilc terms, V(A) the

quartic terms, and so on. The quadratic part is given by

(¢
VA 2 O

> 2 2 ) 2 ra
— = Z + %2 g 1—“3( )+ 5S4 (gt
e ST T TR T () T (e foy)
The most general form, consistent with the symmetry of ammonia, of the

cubic part is

m—kuq, +|<..2‘1 2+ kmj et Kaza 77_
+ kzs;TAT-?s-x +ag) + katy 72(141“ 73;;)% k23492 (13¢ J4x * J3934y)
#Kisaq) o o)+ K W‘fzx*“?%) # Kiza 9 Ufaeqae £ 734 Juy)
+k353j33 kjﬁj -3 fsx) b K Gy (6\23 ~373<)

+Ksbqhqg) jsx 733%-2?3373% 4x 3qq %\33 jq& - "’j)ﬂcl"ﬂ“?‘*{\

The complete quartic terms will not be given. In the present investi-

gation only the part of the potential involving the normal coordinate

-106-
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o, which is intimately related to the inversion coordinate, is of in-

terest. The quartic terms involving qo are

Y, “)

———

= kz..\jzj?Jrkm\ji{,' . k?_a_zl7sz7, . knm?:

hazss 2 (5 9) + Kansa T (Jocfer + J3usy)
thazon 92 (foc  Pig) + Kizaz 972 (0 955 )

Flizsa {9 QaxGant oy Q4y) + Kiaww 1% (qe + 7%55
+l<z3337L733(j§3—37§x) + kzqmzﬂ‘rg(i%— 3742*)

T \<7.33‘1‘ 71&74‘3 ('13:?;(‘ 7;-3\ + 2C]s~3 73><C(4x]

k . ( 2 2 ) ] A+
£ Kazat 7| Jou 0= 199) + 2949 x4 e
Of the terms listed above only those having diagonal matrix elements
normally would be of interest, namely the therms whose coefficients are
kop11s kpopos kppzz, and kppl .

If the potential used in this thesis, Equation (17) or (18),

is expanded in a Taylor series about an equilibrium configuration one

finds
W) g & Wy o - 1%%) 2 2 "y 2 2
Vool el g ade e ¢ 20 - 7hy)

+ kzzz"fz_ +Kkuz G(lzjg_ + ka3 11 (‘1;“- 7;3) + kﬁ‘(‘l?z (?;;( + 743)

4 2 z z 2z
+knzz“9_ + kuzZT. ﬂ?;. + k?-7-33°]z (ﬁ3’% tT3y4) "'K;_z%j:. (94 +TL’§)> (1-1)
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where
Ly
= = - X
T 2D Lx=xe)
COS Xo = e
© 4G,

(.Y = 16D G,1- (420)2]

N
—
N
T
W
3
x

(o)
|
I
))
o
>
N
X
[od
—_1

Fy cos Xp — “ C’)q co3d ZXo:}

The potential used in this thesis contains only those cubic and quartic
terms which involve qp. In particular it contains four of the six possi-
ble cubic terms involving go and it contains the four quartic terms in

do which normally would be of importance. The cubic and quartlic constants
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can be calculated from the values of the potential constants given in

Table X. One finds

kzzzz 83.8G v,
Kiz = = N4 o’
== 127,06 cm”!

Kay = 33.7 ew!

Kazap = ~ 18:27 em”
Kias = Lo cw'
K223z = —4.4 em”
Keagy = — 3.0 crl.



APPENDIX IT

FURTHER DETAILS ABOUT THE POTENTIAL V' (x)

A great deal of attention has been given to the solution of

the one-dimensional equation
d” ! ,
[_Dsz+V‘K)]/VD= E (11-1)

where
2

\/'(x\= 2G 1';;-6 — 2Fcos x + 20G ¢cos 2X .

The basic problem is to choose constants D, F, and G so that the eigen-
values of (II-1) will approximate as closely as possible the observed
energies of the levels (O, n,%, OO, OO) of ammonia. The initial choice
of the potential constants was made by matching the central barrier
height, the separation of the minima, and the curvature of V'(x) at the
minima with the corresponding quantities for Manning's potential,
Equation (2). Equation (II-l) was then solved several times using po-
tential constants slightly different from the initial choice. In this
way it was possible to observe the manner in which the eigenvalues de-
pend upon the potential constants. Eigenvalues for twenty-seven sets

of potential constants in the neighborhood of
D= (480 ew
189070 cwm

|

Tl
"

1286 .02 cw ! (11-2)

a»

«110=
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are given in Tgble XXIII. Comparison with the observed numbers, given

in Table VIIT, shows that values of the potential constants, for which
the splitting El' - El+ and the separation El+ - EO+ agree well with
the observed numbers, imply a ground state splitting Eg- - Eg+ considera-
bly larger than the observed wvalue.

Since there are three constants D, ¥, and G available, one
would suspect that it should be possible to fit the three numbers
Ei1- - B9+, Ejt+ - Epot, and Eg~ - Egp+ exactly. In order to investigate

this possibility it is convenient to write Equation (I1-1) as

2 2
~d A -] I
where
. B E) . FE
A - D B - .D \/\/ -—-D—- . (II-—M)
If one defines the quantities & and B as
- l:--:O"— on‘_ - WQ" - Wo+
X = - = (11-5)
t;*’ to* VVH-‘ Vvo+
2 = E-—- B+ o Wi — W+
| Ei+ — Eor Wi+ — We + (11-6)
ther
E‘-l- = EO+ = D (W\"' ~V\/O+> (I1-7)
B Eyr =X DW= Wor ) .

E\- = Ev=gD (Wi - Wer)

(I1-9)
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TABLE XXXTIT

CALCULATED ENERGY LEVELS

The notation in this table is related to that of the text by the equivalences

ESO = Eo+ - Eo+ EAQ = EO- - Eo+
ES1 = El+ - EO+ EA1 = El' - EO+
ES2 = E2+ - Eo+ EA2 = Ee— - Eo+
ES3 = E5+ - Eot EA3 = Ep- - Eg+

EGST is the energy difference between En+ and the potential minima.

e

N
|

64 .00 F 1276.02 EGST

D = = 1875.70 G = = 508.42
FAO = 0.91 EAL = 961.05 EA2 = 186k.21 EA% = 2836.68
ESO = O. ESl = 926.53 ES2 = 1599.15 ES3 = 2355.75

D = 64,00 F = 1875.70 G = 1286.02 EGST = 511.31
EAO = 0.83 ‘ EAl = 966.55 EA2 = 1872.56 EA% = 284k, 54
ESO = O. ESL = 934,31 ES2 = 1614.96 ES3 = 2365.75

D = 64.00 F = 1875.70 G = 1296.02 EGST = 514.16
EAO = O0.77 EAl = 972.05 EA2 = 1881.01 EA3 = 2852.56
ESO = O. ES1 = 941.96 ES2 = 1630.89 ES3 = 2376.01

D = 64.00 F = 1890.70 G = 1276.02 EGST = 507.60
EAO = 0.96 EAL = 959.h47 EA2 = 1862.80 EA% = 2837.98
ESO = O. ESL = 923.25 ES2 = 1592.05 ES3 = 2354 4k

D = 64,00 F = 1890.70 G = 1286.02 EGST = 510.50
EAO = 0.89 EA1 = 964.97 EA2 = 1871.06 EA3 = 2845.71
ESO = O. ES1 = 0931.13 ES2 = 1607.77 ES3 = 2364.25

D = 64.00 F = 1890.70 G = 1296.02 EGST = 513.38
EAO = 0.81 EAl = 970.46 EA2 = 1879.43 FA% = 2853.60
ESO = O. ES1 = 938.86 ES2 = 1623.60 ES3 = 2374.3%0

D = 64.00 F = 1905.70 G = 1276.02 EGST = 506.78
EAO = 1.02 EAlL = 957.90 EA2 = 1861.4%4 EA% = 2839.3%6
ESO = O. ESl = 919.92 ES2 = 1585.04 ES3 = 2353.26

D = 64,00 F = 1905.70 G = 1286.02 EGST = 509.69
EAO = 0.9% EAl = 963.3%9 EA2 = 1869.62 EA3 = 2846.96
ESO = O. ESl = 927.89 ES2 = 1600.64 ES3 = 2%62.87

D = 64.00 F = 1905.70 G = 1296.02 EGST = 512.58
EAO = 0.86 EAL = 968.88 EA2 = 1877.91 EA% = 2854,72
ESO = O. ESL = 935.72 ES2 = 1616.3%9 ES3 = 2372.73

D = 64.80 F = 1875.70 G = 1276.02 EGST = 511.40
EAO = 0.96 EALl = 966.74 EA2 = 1876.52 EA3 = 2857.72
ESO = O. ESl = 93%0.60 ES2 = 1605.18 ES?3 = 2371.60

D = 64.80 F = 1875.70 G = 1286.02 EGST = 51k.31
EAO = 0.89 EAl = 972.26 ~ EA2 = 1884.84 EA% = 2865.54
ESO = O. ESL = 938.49 ES2 = 1620.95 ES?3 = 2381.49
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TABLE XXXIII (CONT'D)

CALCULATED ENERGY LEVELS

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAO
ESO

EAQ
ESO

EAO
ES0

EAO
ESo

EAO
ESO

onou nonn mnn 0o nuu nnn oo LI | Honon o Wwounn nouon nnu [

64.80
0.82

64.80
1.03

64.80
0.93

64.80
1.08

64.80
0.99

64,80
0.92

65.60
1.02

65.60
0.93

0.86

65.60
1.08

65.60
0.99

65.60
0.91

65.60
1.15

65.60
1.05

65.60
0.96

EA1
ESL

EAl
ES1

EA1
ES1

EAL
ESL

EAL
ESL

EA1
ES1

EAY
ES1

EAL
ES1

EAL
ES1

EA1
ES1

EA1
ES1

EAl
ES1

EAL
ES1

EAL
ES1

EAL
ES1

EA1
ES1

o nnon nunu nun nnu o [ | o Wonon L | nonu nmnu nouno nnu nnon

1875.
977
96

1890.
965
927.

1890.
970
935

1890.
976.
k3.

1905.
963.
%°3.

1905.
969.
931.

1905.
o7k
939.

1875.
g72.
93k,

1875.
977.
-

1875.
983.
950.

1890.
970.
931.

1890.
976.
939.

1890.
981.
MhT.

1905.
969.
927.

1905,
o7k,
935.

1905.
980.
k3,

70
T

.22

70

A7

28
70

.67
.25

70
18
o7

70
60
88

T0
10
95

80

70
79
96

70
30
96

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
ES2

EA2
Eg2

EA2
ES2

EA2
ES2

EA2
Es2

EA2
ES2

nonu nmnan non o wonu o i nonu nun I on-n o wnn o oo W W

1296,
1893,
1636.

1276.
1875
1598.

1286.
1883
1613,

1296.
1891,
1629,

1276.
1873.
1591

1286.
1881.
1606.

1296.
1890.
1622

1276.
1888.
1611.

1286.

1897.
1626.

1296.
1905
16k2,

1276.
1887.
160k,

1286
1895.
1619.

1296,
1903.
1635,

1276.
1886.
1597.

1286,
189k,
1612,

1296,
1902.
1628.

02
26
83

02

.16

13

02

-39

79

02
T2
59

02
85

.16

02
99
T1

02
25

R

02
80
21

02
08
93

02

Ry

78

02
L8
21
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The values of & and B computed from the observed energy levels of ammonia

are

-3 - |
Hops = 0,896 561 K10 Bobs = ©.384562X 10

If A and B can be chosen so that the calculated Values of O and B agree
exactly with the observed values then the constants D, F, and G can be
determined from Equation (II-4) so that the eigenvalues of Equation (II-1)
agree exactly with the observed energies of ammonia.

Bﬁ 80lving Equation (II1-3) for many pairs A and B, it was found,
empirically, that & and B are given very well by the equations
o X 1052 LTIU3IBT +, 246127 (A=As)—. 644397 (B —Bo )

£.20382 (A=A, )+ 271413 (A-A0) (B-B,)
+.712288 (B-Bo)*

(11-10)
AX 107 =3,78722 +.8378%3 (A=Ao) - L3412 (B~ B,)

+,0947898 (A-Ao)— 393892 (A-AL)(B -6, )
+.47399) (B—B, )™

(I1-11)

where
A, =29.1775 B,z 19.8960

In order to find the values of A and B which yield the observed

values of O and B one replaces & by &

obs 11 Equation (II-10) and B by Bsbs

in Equation (II-11) and solves the resulting equations for A and B. The
two equations are plotted in Figure 16. Interestingly enough, the two

curves do not intersect so that the two equations can not have a real
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solution. Consequently, D, F, and G can not be chosen so that the calcu-
lated values of El_ - El+, El+ - EO+, and Eo_ - EO+ agree exactly wlth
the observed values. Apparently, the analytic form of V' (x) must re-
strict the spectrum of Equation (II-1) in such a way that El_ - El+,
El+ - Eb+, and EO_ - EO+ can not be given completely arbitrary values.

In order to obtain a better fit to the observed energies of

the levels (O, 0.+, OO, OO) it is necessary to modify the potential. One

2
possible line of generalization is to regard the potential V'(x), used

in this investigation, as the leading terms in a Fourier expansion of

the complete potential. The next higher approximation would then be

| 2 _
V(X) = 26+74Eé — 2Fcces ¥ + 2 cos 2X

FCos ax oS X o

This line of generalization has not been very fruitful. The energy levels
obtained by retaining the cos 3x term but not the cos bx term have been
obtained both exactly* and by perturbation theory. The perturbation
treatment illustrates the effect of the cos 3x term quite well. Using

the wavefunctions obtained with the constants (II~2) one finds

_Y _
E,r = 513,50 70[96 X —. 738872 %16 A° cw|

-1

-4
Eo- = 514.43- ok 1940 = T0TI32XI0 AT ow

-4_2 -\
- - _ - —1,A2065x10 A" e
E,p= 144875 200503 A
-

-4 2
148417 — ,22@/23)— 910978 XIb )\ e,

m
T

l'_

* By exactly it is meant here that the solution was obtained by the method
described in Chapter IV, which is, of course, an approximation method.
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Here N is the coefficient of the cos 3x term. A little study of these
energy formulas will reveal that a choice of A which reduces the split-
ting Eg- - Ep+ will produce an almost proportional reduction in the
splitting El' - El+' What is needed is a perturbation which decreases
EO_ - EO+ while increasing E;. - El+ slightly. The requirements which
must be satisfied by such a perturbation can best be seen from the WKB
splitting formula, Equation (1). An examination of this formula reveals
that the inversion splitting is controlled mainly by the area under the
central maximum of the potential curve. For example, one would like a
perturbation which, in the notation of Figure 2, increases the ratio of
the area enclosed by E, and the central barrier of V(x) to the area en-
closed by Ei and the central barrierof V(x). No attempt has been made
to include such a perturbation since it would shed little light on the
main problem of this thesis, namely the interaction of the inversion

motion with the remaining degrees of freedom of ammonia.



APPENDIX III

DEVELOPMENT OF THE ROTATION-VIBRATION HAMILTONIAN

The Hamiltonian, Equation (44), used in Chapter VII can be
drived by methods very similar to those used by Wilson and Howard(12>
and Darling and Dermison.(l3> The essential difference is that
Equation (44) is valid for an arbitrary set of 3N-6 internal (vibra-
tional) coordinates, whereas the Wilson, Howard, Darling, and Dennison
Hamiltonian is valid only when normal coordinates are used for internal
coordinates. This generalization is necessary since a practical treat-
ment of ammonia inversion requires the introduction of a coordinate
which describes a motion of large amplitude. The details of the deri-
vation of Equation (4%) will not be given here since there is almost a
one-to-one correspondence to the derivation of the usual molecular
Hamiltonian as given for example by Wilson, Decius, and Cross.(lu) The
necessary modifications can be seen at once by comparing the following
equations to the corresponding equations in Reference (14). The results
are given below for a molecule of N atoms.

Let ry, ro, ..., Ty, be the cartesian position vectors of the
N atoms with respect to a molcule-fixed reference frame. This reference
frame is defined by specifying the location of its origin and its orienta-
tion with respect to the molecule. The origin will be required to be at

the center of mass of the molecule so that

N

—>
wirYs = o
Lot (I11-1)

=1

-118-
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where m; is the mass of the i®™® atom. The orientation can be specified
by imposing suitable conditions on the internal angular momentum
N .
5 TR
. « X o
; L ¢ (11I-2)
t=|
as measured with respect to the molecule-fixed frame. The conditions
used in this thesis is that the internal angular momentum should vanish
whenever the degenerate modes are not excited. Thus six conditions are
- - -

imposed on the 3N components of the position vectors Tis Tpy esoy Ty

That is, only 3N-6 of these components are independent variables. ILet

ok oL 2 ~
W= WG,y ) =12, 386 (TI1-3)

be 3N-6 independent internal coordinates. Let Xi{, Y1, and z; be the

three components of 519 Classically, the vibrational kinetic energy is

given by
IN-(
N 2 . 2 .« 2 '040/3
L W { X .+ 7, :;J_ > Guog
2 ZJ,L:\ AX; *"j\; Z; ) zdl—')ﬁzld g U W (1T7-1)

In general, the coefficients gdB are functions of the internal coordinates.
Let gaﬁ e the elements of the inverse to the matrix ga5, That is

3N—6

R
(5=Z' 30(183 = gotx (I1I-5)
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The internal angular momentum of the molecule is given by

3IN- @

;MLL");Z‘L—Z&);\) = 042:47; R I

Il

N . , 3N-6 v ol
2om\BK=XZ) = 2 g U
¢ = L=

N6

N []
ém(xzjz -Jz&) = é:;. {f( (/L*

The Equations (III-6) define the 3(3N-6) functions &g, Ny, (o

o(-‘ 3N-6 b(/é 0(‘ IN-6 0()6 %sw—é 0(/3
E-298  UZYp L2V

for @ = 1 to 3N-6. Introduce 3N-6 linear momentum operators

Pt T S (£31,2,0005 300 )

and define

(111-6)

Now

(I1I-7)

(I11-8)

(I11-9)
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The moments of inertia are defined by

Tex = Zmilyf+2;)
L=

N 2 Z
- ( . XG
Inn ;Z:'.’m (2. + °)

N
I, = szL(X£L+ é%) (TII-10)

=g

and the products of inertia by

v = !

N
- VY) .ZI
Ijz, — L \jt ¢

- (III-11)

- = JIL-11
IZ)( - < mg Z\‘:X‘:

Modified moments and products of inertia, I‘ij, are now defined by
3N-6 e

I;x = IKX—Z’-.F f*

H
(&
Ls
)
H
A
(<
[
Q
N
~
R

I 356 (111-12)
Thy= Lay ™ ZFpx

/ 3“'4 Y
Lyz = Lxzt 2,5 &y
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The matrix s« (i, J =x, vy, z) is defined as the inverse of the matrix
1d

! /
I/xx ‘Ix3 - Tz

/ r_ !

/
--I'zx "Izl_.tj Izz

(I11-13)

and u is defined as the determinant of the matrix of the UK Let g be

the determinant of the matrix of the gaB. Let

3IN=6 4
. -k > 97
C3 L églau“
3N-¢ X
2%
G- 2 5
g Lo%=) J (TII-14)

and let Py, Py, and P, be the three components of the total angular momen-
tum of the molecule. Finally, let V(u®) be the potential energy. Then,

the exact Hamiltonian operator of the molecule is

i ) "'(P ’@*Cc)/» /u (Ps - Jf)/ua

*

L3

Uy ~Yy /2 'fz. 0(/9 14 "/‘f_‘_ \/(w()
"z %{& ’F /& /‘0/3/& a © o (111-15)
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The translational kinetic energy of the center of mass has been discarded
since it is of no spectroscopic interest.

Probably the most obvious difference between Bquation (III-15)
and the usual molecular Hamiltonian is the appearance of the functions
Cx’ Cy’ and CZ. They arise in the following fashion. If the classical

kinetic energy of a system of particles is

THZ A i

then one form of the quantum mechanical Hamiltonian operator is

. Yo n %P =74y
=+w ¥ AN ¥ oW T+
H=73 0%8-' Jfok )‘f/@ (o)

where 1\.@B is the inverse of AaB and ¥ = det Aaﬁ' With this form of the

Hamiltonian the wavefunctions are normalized according to

j/%*/% wW 41‘412'473...

w 1s a welght factor which can be chosen arbitrarily. Instead of the
canonical momenta py sometimes it is convenient to use operators P&

which are not canonical momenta. Suppose the operators are related by
/

Let the weight factor in Equation (a) be chosen so that w = det wij'

Gw'zé\/\jx#_/\i(ﬁ \/\//@l> (e)

Define
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and

A p
ES - <Je+' CS/k

Then
¥=w G . (a)

Now put Equation (b) into Equation (a) to obtain

/ |
=2 T W P AW B e
X BV

Using Equations (c) and (4), H can be re-written

ZGMZ{-W*/S#(W A CACHAChEY

'\‘

Define
/ -1
-\
=| W 42; \A/ FD ( W Vy]'—-'FD
[ ig P het /~
Then the Hamiltonian can be written

. "Z Gw( WG >6/26'M gl V.

Equation (f) is the starting point for deriving Equation (III-15). The
operators P& can be identified with the operators P, - p,, etc. From
Equation (e) one sees that the quantities CH vanish classically. However,
when the PL are quantum mechanical operators the Cu do not vanish in
general. Equations (III-14) were calculated from Equation (e).

Equation (III-15) is identical to Equation (44) of Chapter VII.

It is Hermitian operator. The volume element in configuration space is

A\/Vib ’ A \/Y‘ot'
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where
A\/V':b = J(L| A(,L?_o PR Au—SN’(o
and, if the three Euler angles 9, ¢, and X are used as rotational co-

ordinates,

c‘\/poe_= Sin 6 d6 c)¢ dx
The total angular momentum operators can be expressed in terms of o, ¢,
and X alone while all other quantities appearing in Equation (II1-15)
are independent of O, ¢,‘and X.

Before applying Equation (III-15) to ammonia it will be of
some interest to examine the limiting case in which the internal coordi-
nates are also normal coordinates. Normal coordinates are related to
the cartesian components of the atoms by equations of the form

3N=-6

X;: l: +Z)/Q(O(QJ(

k=)

3IN-6

o]
4i = Y + S Q«

oK =i
IN=-6

2,22, + é"ux Q) %

(I11-16)

i:,)2>.|1)/\/

where Xio, yio, and zi-Q are the cartesian components of the equilibrium

position of the ith atom. The quantities zia, 3 s and ny o are constants

determined so that Wl
3N—6 . 2 « 2
_%:Zmi(xt v Y +Z, 3“2&&

L=

\/ = —I-L Z >\0L C\\LQL + higher terms.
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Thus, &ap = 8&5 and g = 1. Using the standard condition

N 3N-b
EM -‘1;’2:\,%,“4’7;('%(}4“;&‘ nc,&mw(>Q/3
N_ 3N-p
?& :a: :é:m(n"ﬁﬁi* Hig i) Qs
N SN-&

It follows from Equations (III-17) that

CX:C:)-:CZ,’O
Thus one sees that, when normal coordinates are used, Equation (III-lB)
reduces to the usual molecular Hamiltonlan as given by Darling and

Dennison. Combining (III-9) and (III-17), one sees that the internal

angular momentum can be written in the symmetrical form

be s 2 Ly Qufs=Gupa)

B> K

o= 2, £, (Qupa =Gt
)\Ez- Z CZ) (Qu“@@ Qﬂ%«) (IT1-18)



-127-

where
x) N
éﬂo(/@ :gmé (mdo(hi/g“ WMW‘L"@) (ITI-19)

(¥) (z)

with similar expressions for Ca& and CQB

In the case where general internal coordinates are used
Eqr Mgy and Ca will not be simple linear functions of the internal
coordinates. In particular, for ammonia, ga, Ny and éa will be
functions of the inversion coordinate. Consequently it will not, in
general, be possible to express the internal angular momentum operators
in the symmetrical form given by Equation (I11-18). The Hamiltonian
about to be written down for ammonia, therefore, will look a little
different from the usual Hamiltonian for a symmetric XY5 molecule.

In order to set up the Hamiltonian for ammonia it is convenient
to start with the coordinates xy, Xp, QBX’ Q5y’ Qi s and th defined in

Chapter II. It will be recalled that
X, = Tam U, XZ:NI—/: Lz

where Uy is the pyramid height and uy is the distance from a hydrogen
atom to the center of the hydrogen triangle. The coordinates Q5X, st,
Qix, and Q4y are defined by Equation (11) and are small displacement
coordinates which reduce to normal coordinates in the neighborhoods of
the equilibrium configurations.

The development of the Hijs Pxs Pys Pzo Cy s Cy, and C, is

straightfbrward but tedious. Neglecting higher order terms in the small
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one finds
coordinates QBX: Q5y, Qhx, and thy

2 N zz- 7"+ z
/«Lxx = E:_T + %‘Z(COS qu33— SthTQu}a)ﬁ-?—’Iﬁ_i(chZ’fP@S )(C\)g)( @33)
i

LT*-S)S‘ ZT)(Q*&*'C@%) +2(1_f)5““/t‘°57(@3x@4x +@33Q"3>
+ (Cos e

2 Z z
- f SL"’LZT (Q&LX _Q%)— f ces T (Q‘M —Q‘fa)}

(II1-20)

X

o™, - 24 (s sz )
i T

Njw

j%z%(stnz’t-»-fccn;t)(q);-r@%)

+ (ST s o5t ) Qo) P25 T s T(Gan Ry + Gy Ry )
2 4

+ G\SL‘PLZZ(Q;( ‘Q3B ) + 5 cos' (Q‘-/X - Q‘/J) 2)

(I11-21)
! 3f—~——~“'vf)i sin' T (R z +4)32 ) + Cosl’t(Q‘,; + Q‘Z‘7>
/"LZZ. = i+ I.Lz k74 \")

(I1I-22)
+ R2S(nT coST (ngQtM + 6233 Q‘/g}) g
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fraz = oy = Zq:r T2 (sin sy + s T Quy)

2_51?
];‘]:4.

( ) i(agt —5£nzT)<Q3KQ4x‘Q33Q‘w>

+ sinT ¢M1—<Q3i—62qzx-@3§+@93 )}

(I11-23)

Pzx = oz = ;WIXP' (sin T Qax + Cosz Qax )
N

Xz > 2

+ 2sinTeasT( szsz “Q‘*"Qqﬂ ) E

(III-24)
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Pry = My = .32:‘_'2(@5 T Qax — SinT Qax )
]

- _.SI_"% { sintr Q3KQ35 + cos’ T Q'—#XQ‘/:J

I

+ Sinrcas T (G Qay + Gy Gax) }

(I11-25)
| 2 2
J\P" = -"Z%? (SinT Q%wr- Cos’z:c%)i-t (Xzé_S(\—X'OX?.)

>
"85 i, Sl bR @)

(II1-26)
B &y 2
b= EE (st Quy 05 TQux) T V255, 1552
|

2 2 _g 2 2 ), 2
+1s % %E(Q”xa@sg Ky BQ%>+(Q"3@Q3X be@'fj ) E

(111-27)

S

102_ = (¢ scntr - CDSZ"—')T—(QSXCS;"Q% - Qay BQSX)
2 — 2

+(pees”® = sen'e) 'ct@‘*‘fz@"rg oy 96&+X>

.f-_._(l,tf)s:‘ntcos’ti

<>t

3
Cnesgy,” Py See ) ol s B a@zﬁi
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C :‘E_ 2%, X2 o
T (ZI“)3/2-(S‘“ ¢ 6233 tees ™ Q‘@ > (ITI-29)
C :-—‘E_ZX.Xz (SM,CQ (s @ )
J L(2T,)% 3 9% (II1-30)
=0
CZ' (III-31)
2
]:ll = '%r X'2'+ )<2.
(I11-32)
2
.= X
(II11-33)
I .
‘fj =
2L (ITI-34)

In the development of the Hamiltonian all terms whose energy contributions
are of higher degree than quadratic in the rotational quantum numbers J
and K will be discarded. Furthermore, terms whose contributions to the
energy are of smaller order of magnitude than (Bg/w)J2 will be dropped.

22y - ~'fe /2 ‘V9 _='
o 32 P R g (B s

H contains three basic types of terms, namely

rot
@ F M PP
O g (poped + Py P+ )P
(c) 'T-k;‘/(,(;j‘kij-&— o
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where 1, j = x, y, Zz. Consider terms of type (a). Of these terms only
those diagonal in the rotational quantum numbers are of interest since
the off diagonal terms lead to energy terms of degree higher than quadra-
tic in J and K. Thus, with regard to type (a) terms the only Hi j that
need be considered are those for which i = j. In the order of magnitude

notation of Chapter VII one finds

l R |B>z
i = =B v (5t
/‘Aﬂﬂ T ij T\w
where I is a moment of inertia and g is any one of the four degenerate
vibrational coordinates in dimensionless form. The term linear in g
has only off diagonal matrix elements connecting states for which the

vibrational quantum numbers change by plus or minus one. The potential

, (1)
perturbation HVib

, used in this thesis, has no matrix elements connecting
states for which the degenerate quantum numbers change by one unit. Thus,
the terms in K33 linear in g cannot connect with the potential perturba-
tion and therefore can be neglected. Of the terms quadratic in q? only
those which have matrix elements diagonal in the vibrational quantum
numbers need be retained since the off diagonal elements make contribu-
tions to the energy smaller than (BZ/w)Je.

Consider next the type (b), or coriolis, terms. Only the term
proportional to the operator p,P, has diagonal matrix elements. The re-
maining coriolis terms contribute only through the squares of their matrix
elements. With the exception of p;, it is necessary to retain only the
leading term of Hi (the term of order l/I) since higher order terms make

energy contributions smaller than (Bg/w)JEH This means that the Hi 3 with

i # J can be neglected'completely since their leading terms are of order

£~f§/w q.
I
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Type (c) terms have matrix elements of order B. They can con-
tribute to the rotational energies only through connections with matrix
elements of Hrot which are off diagonal in the vibrational gquantum
numbers. The largest matrix elements, off diagonal in the vibrational
quantum numbers, of H.ot are of order BJE/& so that the contributions
from type (c) terms will be of the order of magnitude of Bg/a)Jh/w Je,
Thus, type (c) terms can be neglected altogether. In the derivation of
the classical vibrational kinetic energy in Chapter II it will be recalled
that a term of the form [cf. Equation (12)]

X.);;—Xz )2, <
X%+ ?.Xzz]

LSLV\.’K _ﬁs + CoS Tﬁ]z [

arose and was subsequently neglected. In the transcription to quantum
mechanics this term becomes an operator of type (c) with matrix elements
of order B and consequently can be neglected in the calculation of ro-
tational energies. Considerable simplification in the form of the kine-
tic energy is thus obtained since one can take gop = SQBO

With these simplifications, the terms of H,.,{ which can con-

tribute to the inversion-rotation constants B~ - BT and C~ - CT are

- 2 2 1 2
Hmt= ZIH(D—‘B) + ZInPZ

e
+ (3?)31(X?+X§—X§cos 2t)R2 + (XB+x2+xZeos 22) RS (P2 BY)
2L

3 ka)a S."L.L’t Rz ¥ Co\sz't- Ri .PZ'
—————— —— L 3 Y
+(ZIH)2 Xy [ -:\

|

T. (21, ){VZ* 4z Yos 27 ] ( Qg oy~ Qay )
+ X e Jeos 27 ) (Qux Gy~ Quy Gox) §* B

.l—

(I1I-35)
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‘|4+Xi th 2
- U )5 tL(QIM'Zﬁb Q33<€‘M> + (@ ﬁa‘%’“@xﬂ'a

Tal 2-]:\|)
__[_)E___ 2 -x2 )+ (02 —x V5
@I 2% T Xa 29X, axz (2T, )3/7.]

[ - _
X L(Sin’t Q;—tos’thf )(R—in)— (SinTQg*CDSTQ;)(PX-*. %)j

(?.I 3/2[(61%‘6)3 Q36 )RR Ry F-Q5 R, ) (Bev %):)

where

Rﬁz = Qox Q53

In order to find the final form of the Hamiltonian one in-

<+

troduces the coordinates o and { defined by Equation (13) of Chapter II
and expands the resulting Hamiltonian in powers of the small coordinate
80 = 0 - 0,. The "volume element", dxjdx,, then transforms into

(coshzco - singg,)l/ed(ﬁo)dg, It is much more convenient to have d(%ac)dt

for the "volume" element. This can be accomplished by the transformation
2 -3 i P 7 -
H—> (coshay - s €)72 H (cosh'sy - sth*2) )2

on the complete Hamiltonian. Upon making this transformation and
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introducing the dimensionless coordinates defined by Equation (15) of
Chapter III, and the inversion coordinate x = Q/L, one obtains the de-
sired form of the Hamiltonian. The development of the pure vibrational
part of the Hamiltonian is not given here since it has been discussed

in detail in Chapters IT and III. Any terms which involve g; and x alone
and are independent of the momentum operators are absorbed into the
"effective" potential, Equation (17). The resulting Hamiltonian can be

written as the sum of an "unperturbed" part, H(O), and a "perturbation",

r(1),

(0) (1)
H = H + H (III-36)

where 1(0) is given by Equation (35) and r(1) ig given by Equation (45)

of Chapter VIT. The functions ¢j(x) appearing in H(l> are defined below.

Scn*e — (scnlx)®
gﬁl(x) R FoTCy— 5
(*"—) + (sin Lx)

cos h*ag +\

¢ o) = Cos’ £, — (cos L)()l
~ (Cos LX)Z

qﬁ ) < (ZDLZ) Z(SinhZG;)z \_1+(sm LX)z—JZ
2 = (Coskia, +1)° Uﬂf—'—'> +(sin L) :

Cogh*ay +\

— 2 (ZCosL\ZO‘O - l) j_i + (Sin Lx)Z]

] z 2
(Cosh?ay +\)2 i(_______,cosh %—\>+(stn Lx)z]
Cog h*Tp + )
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¢ ( IZDﬁ)[COSqu(To-SMZ‘fo Sm\:&a...(\—Cosz’tcaskzo-o)(stn LX)L
(x) = = [ ; -
h /0060 (coshZay + ) [(Cosk To— | ) , , 133

a ——_co;h10‘0+-l + (sin LX) J

¢() (/ZDLZ)[Costa-U~smzﬁo].[sw\n +(I+coztcoska~)5mL><)z]
(X )=
5

e Lttt | () o e 1
| ZDLZ)(ZCOSL»ZG‘O— ‘) \
(X)= 3
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APPENDIX IV

TABLES OF MATRIX ELEMENTS

Matrix elements involving the double minimum wavefunctions
were evaluated numerically using Simpson's rule. With thirty sub-
divisions between zero and =n it was found that the integration error
was less than 107! times the numerical value of the integrand.

The accuracy of the matrix elements is limited by the accuracy
to which the wavefunctions are known. Twelve term wavefunctions were
used to evaluate the matrik elements given in the following table. In
order to test the accuracy of the wavefunctions a few matrix elements
were evaluated using fourteen term wavefunctions. The matrix elements
agreed to at least six significant figures, with the exception of matrix

elements involving O/Ox which agreed to four or five significant figures.
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+ i+
(ng ‘hBIn2 )

~-13%9-

(n2'|h5|né')

(n,*|by, ™)

(n2'|hhlné')

00

02
03
11
12
13
22
23
33

467606 x 101
867375 x 102
213726 x 102

LL6L270 x 100
Ahh662 x 102
118434 x 107
471151 x 102
100408 x 103
.13004%2 x 103

.2hL878 x 102

(n,* [y |n,*)

.542328 x 101
878445 x 102
.126225 x 102
.252747 x 101
214308 x 102
.119915 x 103
.165911 x 102
234857 x 102
.1%36849 x 103
.89076% x 101

(ng [y 3

.87312% x 109
228496 x 102
L346734 x 101
.178068 x 101
.182366 x 102
L327715 x 102
.909685 x 101
.366790 x 102
.3506%2 x 102
.170506 x 102

(557l 03"

-.655510 x 100

.229026 x 102
665662 x 100
.171871 x 10L1
.115947 x 102
.313853% x 102
.167909 x 100
.151160 x 102
344866 x 102
.902593 x 101

(712, [n37)

.179351 x 10%
.813915 x 10°
173895 x 10°
190976 x 101
497647 x 102
.113072 x 103
.bo1257 x 102
.106826 x 103
.123020 x 109
360425 x 102

(n,*|g, 3%/ + 1, 3/3x|np*)

(ny7[£;

.252028 x 101
.821361 x 102
.856668 x 101
.366937 x 101

27hlize x 102
.112272 x 103
.103887 x 102
330431 x 102

.126487 x 103
.565791 x 101

P/ox® + £, 3/dx|n}")

.198772 x 102
135438 x 10-1
46338l x 10-2
.133960 x 10-2
.3030L0 x 1072

.17804k x 1071
.9k8055 x 102
.964387 x 10-2
.202837 x 1071
285542 x 10-2

(n2+|¢l[né+)

209264 x 10-2
13854k x 10-1
.360913 x 10-2
k11220 x 103
277680 x 10~3
.190968 x 10-1
.532233 x 10-2
.190433 x 10-2
.229159 x 10-1
.891787 x 1072

(n" 1 |247)

272164 x 1071
397984 x 10-1
.57%596 x 10-1
609136 x 107t
.396541 x 10-1
.614595 x 10-1
.145083 x 100
.25626% x 1072
.183408 x 100
.166487 x 10-1

(ny*|8,1n5")

.260876 x 1071
.510165 x 1071
262753 x 10-1
113582 x 10°
.2k0685 x 10-1
.154060 x 100
321238 x 10-1
.bo3451 x 1072
324971 x 100
.152486 x 10-1

(n,718,1n87)

.LO1377 x 102
.639752 x 1071
.16%243 x 10-1
110208 x 1072
.310743 x 10-1
.874902 x 10-1
.358252 x 10-1
.T16768 x 10-1
966487 x 10-1
.148371 x 10-1

CRITAEYS

1

456117 x 1072
.648416 x 1071
.100948 x 10-1
.124ko6 x 1072
.141097 x 10-1
.889947 x 10-1
.136784 x 10-1
.1b6162 x 10-1
102474 x 100
.106999 x 10-1

(ny7185147)

.530L97 x 102
.318863 x 10-1
.115586 x 10-1
.387615 x 1072
517480 x 10-2
417493 x 1071
.234896 x 10-1
.197392 x 10-1
480763 x 1071
.10%554 x 10-1

554653 x 10-2
.326830 x 10-1
934755 x 10-2
.1ko7h8 x 10-2
250653 x 10-2
453269 x 10-1
140636 x 1071
L7hi196 x 102
.551837 x 107+
.253280 x 10-1

.9%0913 x 1072
.155256 x 1072
.301491 x 10-3
467250 x 104
.103536 x 10-1
.221296 x 10-2
727922 x 10-3
.115175 x 1071
.2h1k75 x 1072
.101283% x 10-1

.929488 x 1072
156265 x 10-2
.132347 x 10-3
L644025 x 10-4
.991180 x 10-2
216771 x 10-2
.15625% x 10-3
100510 x 10-1
245316 x 1072
.952609 x 1072



-1ho-

;) (518, 1n5") (718, 1n37) (0" B Im5") ONTARS
00 -.391918 x 1071 391331 x 107+ 377515 x 1071 376891 x 107F
o1 61152 x 1072 .6hshze x 1072 67502k x 102 678951 x 1072
02 -.125469 x 10-2 -.557873 x 103 -.127179 x 102 -.529613 x 10-7
03 -.185855 x 1072 -.262946 x 103 -.231754 x 103 -.292021 x 10-3
11 434855 x 10-1 Jh166ke x 1071 Jhoz720 x 1071 .hokz80 x 107t
12 .912880 x 10-2 .8950%7 x 10-2 966211 x 10-2 .ob310h x 10-2
13 -.302028 x 1072 -.662782 x 1072 -.310733 x 1072 -.608598 x 103
22 4827231 x 1071 o226l x 1071 475086 x 1071 .h109h7 x 1071
23 996364 x 10-2 .101327 x 10-1 105333 x 10-L .106584 x 10-1
33 L2538 x 10-1 Jhoosol ¥ 10-1 414600 x 1071 .388456 x 10-1

) (5] fglm5") (ny” | 1m57) (ny* 1 1m3") (ny |7 1m37)
00 495847 x 1072 495966 x 10-2 .592k25 x 10-2 .594098 x 10-2
01 .157273 x 10-D -.161203 x 10-D -.186988 x 10-2 .188705 x 102
02 .570110 x 10~% 461050 x 10-* 407712 % 1073 .213560 x 10-3
03 .19118% x 10-+ -.738610 x 109 .185330 x 10-% .571212 x 10-*
11 190678 x 1072 LUOkL6T x 1072 A75737 % 1072 .527668 x 10-2
12 .205920 x 107D -.223566 x 102 -.262932 x 10-° 261320 x 1072
13 .115858 x 10-3 693663 x 104 .9k6625 x 10-3 276104 x 10-3
22 Ji83hol x 1072 496901 x 10-2 343713 x 1072 517266 x 102
23 237127 x 10-2 -.27218% x 10-3 -.288712 x 10-2 .298537 x 10-2
33 198338 x 10-2 .50572% x 1072 511655 x 102 .585883 x 102

(n5* #gl05") (ng” gl2") (ny*185124") (ny” [851047)
00 562704 x 10-1 -.556612 x 10-1 Jiphrh % 100 L4h3031 x 100
0L . 738568 x 10-1 -.751227 x 10-1 687266 x 10-1 .700248 x 10-1
02 .213379 x 10-1 .1b7971 ¢ 10-1 .2098%5 x 10-1 .151915 x 10-1
03 .36949% x 10-2 -.105624 x 1073 453452 x 1072 796081 x 10-3
11 LOL67hL x 10-1 -.7265%1 x 10-1 .4118%9 x 100 L2928k x 100
12 .99651k x 10-1 -.103448 x 100 921175 x 10-1 .965816 x 1071
13 J4sh612 x 10-1 .210678 x 10-1 L4h1598 x 10-1 .219921 x 10-1
22 134418 x 109 -.694600 x 1071 373934 x 100 423965 x 100
23 .111508 x 100 -.121294 x 109 .103731 x 109 .11k223 x 100
33 .675133 x 1071 -.363974 x 100 436772 % 100 466467 x 100

ny' mp” (ny*151n7) (ap"|Byy /0% + Prplny™) (5" ]fy5lnp7)
ot o- ,226178 x 10° 277264 x 1072 36201 x 10°
ot 1- -.276%%0 x 10t -.55%503% x 109 -.542808 x 10™L
ot - -.539464 x 1072 438012 x 1071 -.988656 x 1077
ot 3= .134868 x 10-2 284173 x 10-1 .2k98gk x 10-2
1t o~ -.300194 x 10-1 .551208 x 100 -.588229 x 101
it o1- .194907 x 100 .910707 x 10-1 376112 x 100
1+t 2- -.333022 x 10-1 654567 x 100 -.654736 x 10-1
1t 3- -.805519 x 1072 .3LW760 x 10-1 -.1482%32 x 1071
2+ 0~ -.329941 x 10-2 -.108658 x 100 -.579365 x 10-2
o+ 1- -.730052 x 10-1 .730930 x 100 -.141703% x 100
ot - .148%99 x 109 .545528 x 100 .286752 x 109
2+ 3= -.531645 x 10-2 -.k12k69 x 100 -.115794 x 10-1
3+ 0- .352353 x 10-2 -.225416 x 10-1 654325 x 10-2
3t 1- -.128605 x 10-2 -.3010%38 x 100 -.130456 x 10-2
3t - -.131620 x 100 .959401 x 100 -.255018 x 100
3t 3= .145189 x 100 .10k257 x 101 281417 x 100
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